Sample records for internal physical processes

  1. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  2. Impact of Visa Issues on an International Physics Graduate Student in the U.S.

    NASA Astrophysics Data System (ADS)

    Keivani, Azadeh

    2011-03-01

    More than 35 percent of the physics graduate students in the US are temporary visa holders. Many of these students work in large international collaborations and must travel abroad for research and international conferences, sometimes more than once a year. In many cases, students have to reapply for their visas in order to return to the U.S., a process that can be time-consuming and costly. Furthermore, many international students cannot leave the U.S. even in the case of an emergency because a slow visa process may mean deferring for a semester or losing financial support. Thus visa issues affect not only the scholastic life of students but also their personal lives. Finding ways to resolve these issues could positively affect the quality of graduate research by eliminating these extra hurdles to the progress of international physics graduate students.

  3. Going global in physical therapist education: International Service-Learning in US-based programmes.

    PubMed

    Pechak, Celia; Thompson, Mary

    2011-12-01

     Internationalization is expanding its presence in higher education in the United States. Reflecting this trend that includes incorporating global perspectives in the curricula, physical therapist education programmes increasingly offer international opportunities such as International Service-Learning (ISL) to their students. Service-learning, a teaching strategy that integrates community service with structured learning activities, has gained broad acceptance in health professions education including physical therapy, and is therefore the focus of this paper. The specific purposes of this paper were to identify and analyse the commonalities that existed among established ISL programmes within physical therapist education programmes in terms of structures and processes, and to consider its broader implications for physical therapist education.   A descriptive, exploratory study was performed using grounded theory. Snowball and purposive, theoretical sampling yielded 14 faculty members with experience in international service, international learning or ISL in physical therapist education programmes. Faculty were interviewed by phone. Interview transcriptions and course documents were analysed applying grounded theory methodology. Data from eight programmes which met the operational definition of established ISL were used to address the purposes of this paper.   Five phases of establishing an ISL programme were identified: development, design, implementation, evaluation, and enhancement. Although no single model exists for ISL in physical therapist education; commonalities in structures and processes were identified in each phase. However, attention to service objectives and outcomes is lacking.   While analysis revealed that each programme shared commonalities and demonstrated differences in structures and processes compared with the other programmes, the study demonstrated a general lack of focus on formal community outcomes which raises ethical concerns. Future research and dialogue is warranted to explore ethics and good practice in ISL and other global health initiatives in physical therapy. This study may facilitate reflections and creative solutions by individual faculty and the profession. Copyright © 2010 John Wiley & Sons, Ltd.

  4. PREFACE: First International Workshop and Summer School on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir

    2006-07-01

    The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially.

  5. Fate and Contribution of Internal Wave-Forced Barnacle Settlers to Community Structure in Northern Baja California, a Year after Settlement

    NASA Astrophysics Data System (ADS)

    Lievana, A.; Ladah, L. B.; Lavin, M. F.; Filonov, A. E.; Tapia, F. J.; Leichter, J.; Valencia Gasti, J. A.

    2016-02-01

    Physical transport processes, such as nonlinear internal waves, operating within the coastal ocean of Baja California, Mexico, are diverse, variable and operate on a variety of temporal and spatial scales. Understanding the influence of nonlinear internal waves, in part responsible for the exchange of water properties between coastal and offshore environments, on the structure of intertidal communities is important for the generation of working ecological models. The relationship between the supply of ecological subsidies associated with physical transport processes that operate on relatively short spatial and temporal scales, such as the internal tide, and intertidal community structure must be understood as processes that operate on distinct spatial and temporal scales may be prone to react uniquely as the climate changes. We designed an experiment to quantify recruitment and adult survivorship of Chthamalus sp. whose settlement was associated with internal wave activity in the nearby ocean and found that the number of settlers was a robust predictor of the number of adults observed, indicating that post-settlement processes such as competition and predation are not likely to significantly affect the structure of the intertidal barnacle community resulting from internal-wave forced settlement.

  6. Studies of Visual Attention in Physics Problem Solving

    ERIC Educational Resources Information Center

    Madsen, Adrian M.

    2013-01-01

    The work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes--top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and…

  7. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    2017-11-02

    The goals of the project are to leverage laboratory scientific strength in physical acoustics for critical international safeguards applications; create hardware demonstration capability for noninvasive, near real time, and low cost process monitor to capture future technology development programs; and measure physical property data to support method applicability.

  8. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    NASA Astrophysics Data System (ADS)

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  9. Optoelectronics Research Center

    DTIC Science & Technology

    1992-05-16

    dot structures in Si and related materials. External cavity operation of diode lasers has provided a wealth of information on internal device physics...new class of optical information processing. A major feature of the AFOSR OERC has been interactions with the Air Force Phillips Laboratory and with...structures in Si and related materials. External cavity operation of diode lasers has provided a wealth of information on internal device physics and

  10. Using compression calorimetry to characterize powder compaction behavior of pharmaceutical materials.

    PubMed

    Buckner, Ira S; Friedman, Ross A; Wurster, Dale Eric

    2010-02-01

    The process by which pharmaceutical powders are compressed into cohesive compacts or tablets has been studied using a compression calorimeter. Relating the various thermodynamic results to relevant physical processes has been emphasized. Work, heat, and internal energy change values have been determined with the compression calorimeter for common pharmaceutical materials. A framework of equations has been proposed relating the physical processes of friction, reversible deformation, irreversible deformation, and inter-particle bonding to the compression calorimetry values. The results indicate that irreversible deformation dominated many of the thermodynamic values, especially the net internal energy change following the compression-decompression cycle. The relationships between the net work and the net heat from the complete cycle were very clear indicators of predominating deformation mechanisms. Likewise, the ratio of energy stored as internal energy to the initial work input distinguished the materials according to their brittle or plastic deformation tendencies. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  11. International Conference on Vacuum Ultraviolet Radiation Physics, 8th, Lunds Universitet, Sweden, Aug. 4-8, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Nilsson, Per-Olof (Editor); Nordgren, Joseph (Editor)

    1987-01-01

    The interactions of VUV radiation with solids are explored in reviews and reports of recent theoretical and experimental investigations from the fields of atomic and molecular physics, solid-state physics, and VUV instrumentation. Topics examined include photoabsorption and photoionization, multiphoton processes, plasma physics, VUV lasers, time-resolved spectroscopy, synchrotron radiation centers, solid-state spectroscopy, and dynamical processes involving localized levels. Consideration is given to the fundamental principles of photoemission, spin-polarized photoemission, inverse photoemission, semiconductors, organic materials, and adsorbates.

  12. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review

    NASA Astrophysics Data System (ADS)

    Vihma, T.; Pirazzini, R.; Fer, I.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Lüpkes, C.; Nygård, T.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.

    2014-09-01

    The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.

  13. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review

    NASA Astrophysics Data System (ADS)

    Vihma, T.; Pirazzini, R.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Nygård, T.; Fer, I.; Lüpkes, C.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.

    2013-12-01

    The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2008, significant advances have been made in understanding these processes. Here these advances are reviewed, synthesized and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal and fjordic processes, as well as in boundary-layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of super-imposed ice and snow ice, and the small-scale dynamics of sea ice. In the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but challenge is to understand their interactions with, and impacts and feedbacks on, other processes. Uncertainty in the parameterization of small-scale processes continues to be among the largest challenges facing climate modeling, and nowhere is this more true than in the Arctic. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.

  14. Application of the First Law of Thermodynamics to the Adiabatic Processes of an Ideal Gas: Physics Teacher Candidates' Opinions

    ERIC Educational Resources Information Center

    Gonen, S.

    2014-01-01

    The present study was carried out with 46 teacher candidates taking the course of "Thermodynamics" in the Department of Physics Teaching. The purpose of the study was to determine the difficulties that teacher candidates experienced in explaining the heat, work and internal energy relationships in the processes of adiabatic compression…

  15. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    NASA Astrophysics Data System (ADS)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially.

  16. Internal consistency and validity of a new physical workload questionnaire

    PubMed Central

    Bot, S; Terwee, C; van der Windt, D A W M; Feleus, A; Bierma-Zeinstra, S; Knol, D; Bouter, L; Dekker, J

    2004-01-01

    Aims: To examine the dimensionality, internal consistency, and construct validity of a new physical workload questionnaire in employees with musculoskeletal complaints. Methods: Factor analysis was applied to the responses in three study populations with musculoskeletal disorders (n = 406, 300, and 557) on 26 items related to physical workload. The internal consistency of the resulting subscales was examined. It was hypothesised that physical workload would vary among different occupational groups. The occupations of all subjects were classified into four groups on the basis of expected workload (heavy physical load; long lasting postures and repetitive movements; both; no physical load). Construct validity of the subscales created was tested by comparing the subscale scores among these occupational groups. Results: The pattern of the factor loadings of items was almost identical for the three study populations. Two interpretable factors were found: items related to heavy physical workload loaded highly on the first factor, and items related to static postures or repetitive work loaded highly on the second factor. The first constructed subscale "heavy physical work" had a Cronbach's α of 0.92 to 0.93 and the second subscale "long lasting postures and repetitive movements", of 0.86 to 0.87. Six of eight hypotheses regarding the construct validity of the subscales were confirmed. Conclusions: The results support the internal structure, internal consistency, and validity of the new physical workload questionnaire. Testing this questionnaire in non-symptomatic employees and comparing its performance with objective assessments of physical workload are important next steps in the validation process. PMID:15550603

  17. Fate of internal waves on a shallow shelf

    NASA Astrophysics Data System (ADS)

    Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne

    2017-11-01

    Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.

  18. On Real-Time Operating Systems.

    DTIC Science & Technology

    1987-04-01

    1Ri2 193 ONREAL-TIME OPERATING SYS EMS(U MAYLAN UN V COLLG PARK DEPT OF COMPUTER SCIENCE S LEVI ET AL APR 87 CS-TR-1838 NOSO14-87-K-9124 UNCLASSIFIED...and processes. In each instance the abstraction takes the form of some non- physical resource and benefits both the system and the user. ...The...service, which is important as an inter-process service (for physical synchronization) as well as an internal service for a process. A time service in a

  19. Definition and Proposed Realization of the International Height Reference System (IHRS)

    NASA Astrophysics Data System (ADS)

    Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael

    2017-05-01

    Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.

  20. Internal Medicine House Officers' Performance as Assessed by Experts and Standardized Patients.

    ERIC Educational Resources Information Center

    Calhoun, Judith G.; And Others

    1987-01-01

    Three chronically ill patients were trained to evaluate the performance of 31 second-year internal medicine house officers based upon: a checklist for the medical data elicited during the medical interview; the process of the interview; and the physical examination technique. (Author/MLW)

  1. Physical and chemical controls on the critical zone

    USGS Publications Warehouse

    Anderson, S.P.; Von Blanckenburg, F.; White, A.F.

    2007-01-01

    Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.

  2. The problem of carrying out a diagnosis of an internal combustion engine by vibroacoustical parameters

    NASA Technical Reports Server (NTRS)

    Lukanin, V. N.; Sidorov, V. I.

    1973-01-01

    The physics of noise formation in an internal combustion engine is discussed. A dependence of the acoustical radiation on the engine operating process, its construction, and operational parameters, as well as on the degree of wear on its parts, has been established. An example of tests conducted on an internal combustion engine is provided. A system for cybernetic diagnostics for internal combustion engines by vibroacoustical parameters is diagrammed.

  3. Comparison of international guideline programs to evaluate and update the Dutch program for clinical guideline development in physical therapy

    PubMed Central

    Van der Wees, Philip J; Hendriks, Erik JM; Custers, Jan WH; Burgers, Jako S; Dekker, Joost; de Bie, Rob A

    2007-01-01

    Background Clinical guidelines are considered important instruments to improve quality in health care. Since 1998 the Royal Dutch Society for Physical Therapy (KNGF) produced evidence-based clinical guidelines, based on a standardized program. New developments in the field of guideline research raised the need to evaluate and update the KNGF guideline program. Purpose of this study is to compare different guideline development programs and review the KNGF guideline program for physical therapy in the Netherlands, in order to update the program. Method Six international guideline development programs were selected, and the 23 criteria of the AGREE Instrument were used to evaluate the guideline programs. Information about the programs was retrieved from published handbooks of the organizations. Also, the Dutch program for guideline development in physical therapy was evaluated using the AGREE criteria. Further comparison the six guideline programs was carried out using the following elements of the guideline development processes: Structure and organization; Preparation and initiation; Development; Validation; Dissemination and implementation; Evaluation and update. Results Compliance with the AGREE criteria of the guideline programs was high. Four programs addressed 22 AGREE criteria, and two programs addressed 20 AGREE criteria. The previous Dutch program for guideline development in physical therapy lacked in compliance with the AGREE criteria, meeting only 13 criteria. Further comparison showed that all guideline programs perform systematic literature searches to identify the available evidence. Recommendations are formulated and graded, based on evidence and other relevant factors. It is not clear how decisions in the development process are made. In particular, the process of translating evidence into practice recommendations can be improved. Conclusion As a result of international developments and consensus, the described processes for developing clinical practice guidelines have much in common. The AGREE criteria are common basis for the development of guidelines, although it is not clear how final decisions are made. Detailed comparison of the different guideline programs was used for updating the Dutch program. As a result the updated KNGF program complied with 22 AGREE criteria. International discussion is continuing and will be used for further improvement of the program. PMID:18036215

  4. Comparison of international guideline programs to evaluate and update the Dutch program for clinical guideline development in physical therapy.

    PubMed

    Van der Wees, Philip J; Hendriks, Erik J M; Custers, Jan W H; Burgers, Jako S; Dekker, Joost; de Bie, Rob A

    2007-11-23

    Clinical guidelines are considered important instruments to improve quality in health care. Since 1998 the Royal Dutch Society for Physical Therapy (KNGF) produced evidence-based clinical guidelines, based on a standardized program. New developments in the field of guideline research raised the need to evaluate and update the KNGF guideline program. Purpose of this study is to compare different guideline development programs and review the KNGF guideline program for physical therapy in the Netherlands, in order to update the program. Six international guideline development programs were selected, and the 23 criteria of the AGREE Instrument were used to evaluate the guideline programs. Information about the programs was retrieved from published handbooks of the organizations. Also, the Dutch program for guideline development in physical therapy was evaluated using the AGREE criteria. Further comparison the six guideline programs was carried out using the following elements of the guideline development processes: Structure and organization; Preparation and initiation; Development; Validation; Dissemination and implementation; Evaluation and update. Compliance with the AGREE criteria of the guideline programs was high. Four programs addressed 22 AGREE criteria, and two programs addressed 20 AGREE criteria. The previous Dutch program for guideline development in physical therapy lacked in compliance with the AGREE criteria, meeting only 13 criteria. Further comparison showed that all guideline programs perform systematic literature searches to identify the available evidence. Recommendations are formulated and graded, based on evidence and other relevant factors. It is not clear how decisions in the development process are made. In particular, the process of translating evidence into practice recommendations can be improved. As a result of international developments and consensus, the described processes for developing clinical practice guidelines have much in common. The AGREE criteria are common basis for the development of guidelines, although it is not clear how final decisions are made. Detailed comparison of the different guideline programs was used for updating the Dutch program. As a result the updated KNGF program complied with 22 AGREE criteria. International discussion is continuing and will be used for further improvement of the program.

  5. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    NASA Astrophysics Data System (ADS)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially. E. Benova

  6. The SENNAPE Project: An University-Industry Joint Program in Information Technology.

    ERIC Educational Resources Information Center

    Seixas, J. M.; Maidantchik, C.; Caloba, L. P.

    The SENNAPE (Software Engineering and Neural Networks Applied to Physics and Electricity) project has been putting together the European and the Brazilian industries towards neural processing developments in the fields of high-energy physics and electricity. It is a multi-disciplinary international collaboration with the participation of different…

  7. Education Financial Management: Weak Internal Controls Led to Instances of Fraud and Other Improper Payments. Report to Congressional Requesters.

    ERIC Educational Resources Information Center

    Calbom, Linda M.

    This report to Congressional Requesters is concerned with internal control problems found in the U.S. Department of Education. Significant internal control weaknesses in the U.S. Department of Education's payment processes and poor physical control over its computer assets made the department vulnerable to (and in some cases resulted in) fraud,…

  8. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    NASA Astrophysics Data System (ADS)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of the Institute of Physics. The support from the IOPCS staff made this publication possible. The 8th AISAMP was sponsored primarily by the University of Western Australia and Curtin University of Technology, both in Perth, Western Australia, and by Journal of Physics: Conference Series. Support was also received from the International Council of Science, ICSU. Guidance and active participation from colleagues, particularly from the University of Western Australia, and Curtin University, and from the Australian National University and Melbourne University were sources of strength for the actual organization of the conference. Dr Elena Semidelova receives special thanks for her organizing abilities. We hope that this issue of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between all scientists and their countries. Evan Bieske, Stephen Buckman and Jim F Williams Guest Editors

  9. Validity and reliability of a modified english version of the physical activity questionnaire for adolescents.

    PubMed

    Aggio, Daniel; Fairclough, Stuart; Knowles, Zoe; Graves, Lee

    2016-01-01

    Adaptation of physical activity self-report questionnaires is sometimes required to reflect the activity behaviours of diverse populations. The processes used to modify self-report questionnaires though are typically underreported. This two-phased study used a formative approach to investigate the validity and reliability of the Physical Activity Questionnaire for Adolescents (PAQ-A) in English youth. Phase one examined test content and response process validity and subsequently informed a modified version of the PAQ-A. Phase two assessed the validity and reliability of the modified PAQ-A. In phase one, focus groups (n = 5) were conducted with adolescents (n = 20) to investigate test content and response processes of the original PAQ-A. Based on evidence gathered in phase one, a modified version of the questionnaire was administered to participants (n = 169, 14.5 ± 1.7 years) in phase two. Internal consistency and test-retest reliability were assessed using Cronbach's alpha and intra-class correlations, respectively. Spearman correlations were used to assess associations between modified PAQ-A scores and accelerometer-derived physical activity, self-reported fitness and physical activity self-efficacy. Phase one revealed that the original PAQ-A was unrepresentative for English youth and that item comprehension varied. Contextual and population/cultural-specific modifications were made to the PAQ-A for use in the subsequent phase. In phase two, modified PAQ-A scores had acceptable internal consistency (α = 0.72) and test-retest reliability (ICC = 0.78). Modified PAQ-A scores were significantly associated with objectively assessed moderate-to-vigorous physical activity (r = 0.39), total physical activity (r = 0.42), self-reported fitness (r = 0.35), and physical activity self-efficacy (r = 0.32) (p ≤ 0.01). The modified PAQ-A had acceptable internal consistency and test-retest reliability. Modified PAQ-A scores displayed weak-to-moderate correlations with objectively measured physical activity, self-reported fitness, and self-efficacy providing evidence of satisfactory criterion and construct validity, respectively. Further testing with more diverse English samples is recommended to provide a more complete assessment of the tool.

  10. Physics of systematic frequency variations in hydrogen masers

    NASA Technical Reports Server (NTRS)

    Mattison, Edward M.

    1990-01-01

    The frequency stability of hydrogen masers for intervals longer that 10(exp 4) seconds is limited at present by systematic processes. Researchers discuss the physics of frequency-determining mechanisms internal to the maser that are susceptible to systematic variations, and the connections between these internal mechanisms and external environmental factors. Based upon estimates of the magnitudes of systematic effects, they find that the primary internal mechanisms currently limiting long-term maser frequency stability are cavity pulling, at the level parts in 10(exp 15) per day, and wall shift variations, at the level of parts in 10(exp 16) to parts in 10(exp 15) per day. They discuss strategies for reducing systematic frequency variations.

  11. Physics of systematic frequency variations in hydrogen masers

    NASA Technical Reports Server (NTRS)

    Mattison, Edward M.

    1992-01-01

    The frequency stability of hydrogen masers for intervals longer than 10 exp 4 s is currently limited by systematic processes. The physics of frequency-determining mechanisms internal to the maser that are susceptible to systematic variations, and the connections between these internal mechanisms and external environmental factors are discussed. From estimates of the magnitudes of systematic effects, it is found that the primary internal mechanisms limiting long-term maser frequency stability are cavity pulling, at the level of parts in 1015 per day, and wall shift variations, at the level of parts in 10 exp 16 to parts in 10 exp 15 per day. Strategies for reducing systematic frequency variations are discussed.

  12. The place of physical activity in the WHO Global Strategy on Diet and Physical Activity.

    PubMed

    Bauman, Adrian; Craig, Cora L

    2005-08-24

    In an effort to reduce the global burden of non-communicable disease, the World Health Organization released a Global Strategy for Diet and Physical Activity in May 2004. This commentary reports on the development of the strategy and its importance specifically for physical activity-related work of NGOs and researchers interested in increasing global physical activity participation. Sparked by its work on global efforts to target non-communicable disease prevention in 2000, the World Health Organization commissioned a global strategy on diet and physical activity. The physical activity interest followed efforts that had led to the initial global "Move for Health Day" in 2002. WHO assembled a reference group for the global strategy, and a regional consultation process with countries was undertaken. Underpinning the responses was the need for more physical activity advocacy; partnerships outside of health including urban planning; development of national activity guidelines; and monitoring of the implementation of the strategy. The consultation process was an important mechanism to confirm the importance and elevate the profile of physical activity within the global strategy. It is suggested that separate implementation strategies for diet and physical activity may be needed to work with partner agencies in disparate sectors (e.g. urban planning for physical activity, agriculture for diet). International professional societies are well situated to make an important contribution to global public health by advocating for the importance of physical activity among risk factors; developing international measures of physical activity and global impacts of inactivity; and developing a global research and intervention agenda.

  13. Maternal abuse history, postpartum depression, and parenting: links with preschoolers' internalizing problems.

    PubMed

    Madigan, Sheri; Wade, Mark; Plamondon, Andre; Jenkins, Jennifer

    2015-01-01

    The current study examined a temporal cascade linking mothers' history of abuse with their children's internalizing difficulties through proximal processes such as maternal postnatal depressive symptoms and responsive parenting. Participants consisted of 490 mother-child dyads assessed at three time points when children were, on average, 2 months old at Time 1 (T1), 18 months at Time 2 (T2), and 36 months at Time 3 (T3). Maternal abuse history and depressive symptoms were assessed via questionnaires at T1. Observations of responsive parenting were collected at T2 and were coded using a validated coding scheme. Children's internalizing difficulties were assessed in the preschool period using averaged parental reports. Path analysis revealed that maternal physical abuse was associated with depressive symptoms postnatally, which were in turn associated with children's internalizing behavior at 36 months of age. We also found that the association between physical abuse history and responsive parenting operated indirectly through maternal depressive symptoms. These findings remained after controlling for covariates including socioeconomic status, child gender, and age. After accounting for physical abuse history, sexual abuse history was not associated with child internalizing problems either directly or indirectly through maternal depressive symptoms and/or parenting behavior. Thus, mothers' physical abuse history is a risk factor for relatively poor mental health, which is itself predictive of both later parenting behavior and children's internalizing problems. © 2015 Michigan Association for Infant Mental Health.

  14. The 8th International Conference on Laser Ablation (COLA' 05); Journal of Physics: Conference Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Wayne P.; Herman, Peter R.; Bauerle, Dieter W.

    2007-09-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11–16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in amore » unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications.« less

  15. Using history of physics as a media to introduce and internalize characters values in physics instruction

    NASA Astrophysics Data System (ADS)

    Hindarto, N.; Nugroho, S. E.

    2018-03-01

    One important impact in the education process is the formation of one's attitude. A person's attitude is a manifestation of the value of a person's existing character. In the education process at school, the introduction and planting of character values can be integrated with the process of the schooling itself. The history of physics subject can be used in an integrated manner in the formation of attitudes simultaneously with the subject studied, so do inphysics learning. To know the utilization of the history of physics in integrating the character values in line with the process of physics learning, has been done a research to physics teachers at the physics teacher working group (known as MGMP Fisika) in Semarang city. The teachers have various perceptions toward the history of physics, at least the history of physics could be complemented to the physics, but they have not realized the usefulness of the history of physics in relation with the character education. Only about 42% of the physics teachers studied harnessed the history of physics for the development of education character attitudes integrated with the learning of physics itself. To achieve this goal physics teachers should carefully choose the right expression when explaining the phenomena and theories of physics. Recognizing the importance of the history of physics in a comprehensive physics learning, not just only to emphasize in the cognitive aspect, it is necessary to strengthen the mastery of physics history for prospective teachers and physics teachers through various ways.

  16. About one discrete model of splitting by the physical processes of a piezoconductive medium with gas hydrate inclusions

    NASA Astrophysics Data System (ADS)

    Poveshchenko, Yu A.; Podryga, V. O.; Rahimly, P. I.; Sharova, Yu S.

    2018-01-01

    The thermodynamically equilibrium model for splitting by the physical processes of a two-component three-phase filtration fluid dynamics with gas hydrate inclusions is considered in the paper, for which a family of two-layer completely conservative difference schemes of the support operators method with time weights profiled in space is constructed. On the irregular grids of the theory of the support-operators method applied to the specifics of the processes of transfer of saturations and internal energies of water and gas in a medium with gas hydrate inclusions, methods of directwind approximation of these processes are considered. These approximations preserve the continual properties of divergence-gradient operations in their difference form and are related to the velocity field providing saturations transfer and internal energies of fluids. Fluid dynamics with gas hydrate inclusions are also calculated on the basis of the proposed approach, in particular, in areas of severe pressure depression in the collector space.

  17. New Ecuadorian VLF and ELF receiver for study the ionosphere

    NASA Astrophysics Data System (ADS)

    Lopez, Ericson; Montenegro, Jefferson; Vasconez, Michael; Vicente, Klever

    Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory (QAO) of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. As part of this project, in the QAO has been designed a new system for acquisition and processing VLF and ELF signals propagating in the ionosphere. The Labview Software is used to filtering, processing and conditioning the received signals, avoiding in this way 60 percent of the analog components present in a common receiver. The same software have been programmed to create the spectrograms and the amplitude and phase diagrams of the radio signals. The data is stored neatly in files that can be processed even with other applications.

  18. International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials"

    NASA Astrophysics Data System (ADS)

    2015-04-01

    The International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held four times in Tomsk, then in Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), and the island of Cyprus. The tenth conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 14-38-10210 and No. 14-02-20376.

  19. PREFACE: International Scientific Conference on Radiation-Thermal Effects and Processes in Inorganic Materials 2015 (RTEP2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The International Scientific Conference "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held fourfold in Tomsk, Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), the island of Cyprus. The XI conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was also held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 15-02-20616.

  20. Education Financial Management: Weak Internal Controls Led to Instances of Fraud and Other Improper Payments. Testimony before the Subcommittee on Select Education, Committee on Education and the Workforce, House of Representatives.

    ERIC Educational Resources Information Center

    Calbom, Linda

    This testimony summarizes a report generated by the U.S. General Accounting Office concerned with internal control problems found in the U.S. Department of Education. Significant internal control weaknesses in the U.S. Department of Education's payment processes and poor physical control over its computer assets made the department vulnerable to…

  1. 76 FR 74753 - Authority To Manufacture and Distribute Postage Evidencing Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... revision of the rules governing the inventory control processes of Postage Evidencing Systems (PES... destruction or disposal of all Postage Evidencing Systems and their components to enable accurate accounting...) Postage Evidencing System repair process--any physical or electronic access to the internal components of...

  2. Results from the International Heliophysical Year (IHY)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    2010-01-01

    The International Heliophysical Year (IHY) involved the effort of thousands of scientists from over 70 countries, ended in February 2009. The major objectives of the IHY included over 60 collaborative studies of universal physical processes in the solar system, the deployment of arrays of small instruments to observe heliophysical processes, a unique program of educational and public outreach, and the preservation of the history of the IGY, during a two year period. A follow on effort, the International Space Weather Initiative (ISWI) is designed to build on the momentum developed during the IHY to develop the capability to observe, understand, and predict space weather phenomena.

  3. Radiation Physics for Space and High Altitude Air Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  4. Research on information security system of waste terminal disposal process

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Wang, Ziying; Guo, Jing; Guo, Yajuan; Huang, Wei

    2017-05-01

    Informatization has penetrated the whole process of production and operation of electric power enterprises. It not only improves the level of lean management and quality service, but also faces severe security risks. The internal network terminal is the outermost layer and the most vulnerable node of the inner network boundary. It has the characteristics of wide distribution, long depth and large quantity. The user and operation and maintenance personnel technical level and security awareness is uneven, which led to the internal network terminal is the weakest link in information security. Through the implementation of security of management, technology and physics, we should establish an internal network terminal security protection system, so as to fully protect the internal network terminal information security.

  5. Getting Women Into the Physics Leadership Structure Nationally and Internationally

    NASA Astrophysics Data System (ADS)

    Williams, Elvira S.; Diaz, Lilliam Alvarez; Gebbie, Katharine B.; El-Sayed, Karimat

    2005-10-01

    The underrepresentation of women among physicists around the world, especially in leadership positions, has broad implications for industries and government agencies with a strong need for a technologically educated workforce. The dearth of women physicists in academia exacerbates the situation in that female students lack exposure to successful women in the field. Three years ago, an international group of women met for a round table discussion at the First IUPAP International Conference on Women in Physics and discussed the importance of having women in leadership positions. They shared their experiences and successes, and drew up and reported a set of recommendations addressing the preparation of women for leadership, the selection process, and the responsibilities of institutions. They acknowledged that implementation of their recommendations would differ among countries. At the Second IUPAP International Conference on Women in Physics an international group of women met again to review, revise, and move forward on revamped recommendations from the first conference. This is a report on the new set of revamped recommendations, which address why women should be in leadership positions, goal setting, best practices, commitments, and follow-up actions for the attendees of the second conference.

  6. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  7. Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model

    NASA Astrophysics Data System (ADS)

    Lin, Caiyan; Zhang, Zhongfeng; Pu, Zhaoxia; Wang, Fengyun

    2017-10-01

    A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.

  8. Physical Processes Involved In Yellow Sea Solitary Waves

    NASA Astrophysics Data System (ADS)

    Warn-Varnas, A.; Chin-Bing, S.; King, D.; Lamb, K.; Hawkins, J.; Teixeira, M.

    The study area is located south of the Shandong peninsula. In this area, soliton gener- ation and propagation studies are per formed with the Lamb(1994) model. The model is nonhydrostatic and is formulated in 2 1/2 dimensions for terrain following c oordi- nates. In the area, 20 to 30 m topographic variations over distances of 10 to 20 km are found to occur in the digit al atlas of Choi (1999). The area is shallow with maximum depths ranging from 40 m to 70 m. Along the southern boundary of the region the semi-diurnal tidal strength magnitude varies from .6 m/sec to 1.2 m/sec, Fang(1994). We show that, for sum mer conditions, the existing physical processes associated with the semi-diurnal tidal flow over the topographic variations , in the shelfbreak region, lead to the formation of internal bores in the model simulations. Through acting phys- ical proce sses, the internal bores propagate on and off the shelf. A disintegration process of internal bores into solitary waves occ urs through frequency and ampli- tude dispersion. SAR observations of the area show images containing six events con- sisting of internal bores and solitary waves that travel in a well-defined direction for two and a half days. The origin of the trains appeared to be at a point along a steep topo graphic drop. The SAR observations are used for guiding and tuning the model simulations, by comparing spectra of observed and modeled wavelengths. The tuned model yields wavelengths that are within a factor of 2 of the SAR data. The modeled amp litudes are within a factor of 2 of amplitudes obtained with a two-layer model and the SAR data The signature on the acoustical field of ongoing physical processes through the interaction of the resultant oceanic struct ure with the acoustical field is pursued. Internal bore and solitary wave structures interact with the acoustic field. A re distribution of acoustical energy to higher acoustical modes occurs at some fre- quencies. Mode decomposition of the acoustic fields indicate that mode conversions necessary for anomalous signal losses are present. The acoustical process of redistr ibuting acoustical energy to higher modes is coupled to oceanographic processes as- sociated with a propagating solitary wave .

  9. Automated method for the systematic interpretation of resonance peaks in spectrum data

    DOEpatents

    Damiano, B.; Wood, R.T.

    1997-04-22

    A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.

  10. Automated method for the systematic interpretation of resonance peaks in spectrum data

    DOEpatents

    Damiano, Brian; Wood, Richard T.

    1997-01-01

    A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.

  11. Utilizing the "Plan, Do, Study, Act" Framework to Explore the Process of Curricular Assessment and Redesign in a Physical Therapy Education Program in Suriname.

    PubMed

    Audette, Jennifer Gail; Baldew, Se-Sergio; Chang, Tony C M S; de Vries, Jessica; Ho A Tham, Nancy; Janssen, Johanna; Vyt, Andre

    2017-01-01

    To describe how a multinational team worked together to transition a physical therapy (PT) educational program in Paramaribo, Suriname, from a Bachelor level to a Master of Science in Physical Therapy (MSPT) level. The team was made up of PT faculty from Anton De Kom Universiteit van Suriname (AdeKUS), the Flemish Interuniversity Council University Development Cooperation (VLIR-UOS) leadership, and Health Volunteers Overseas volunteers. In this case study, the process for curricular assessment, redesign, and upgrade is described retrospectively using a Plan, Do, Study, Act (PDSA) framework. PT educational programs in developing countries are eager for upgrade to meet international expectations and to better meet community health-care needs. An ongoing process which included baseline assessment of all aspects of the existing bachelor's program in PT, development of a plan for a MSPT, implementation of the master's program, and evaluation following implementation is described. Curricular assessment and upgrade in resource-limited countries requires the implementation of process-oriented methods. The PDSA process is a useful tool to explore curricular development. The international collaboration described in this paper provides an example of the diligence, consistency, and dedication required to see a project through and achieve success while providing adequate support to the host site. This project might provide valuable insights for those involved in curricular redesign in similar settings.

  12. Human Dimensions of Global Environmental Change: Proposals for Research. Report of a Chinese-U.S. Workshop (May 12-16, 1988).

    ERIC Educational Resources Information Center

    1988

    In 1986, the International Council fo Scientific Unions (ICSU) launched the International Geosphere-Biosphere Programme: A Study of Global Change (IGBP). The IGBP seeks to focus attention on the physical, chemical, and biological processes which contribute to understanding the components of the Earth as a system. The research topics presented in…

  13. Overview of the CLIC detector and its physics potential

    NASA Astrophysics Data System (ADS)

    Ström, Rickard

    2017-12-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  14. Health Literacy and the Australian Curriculum for Health and Physical Education: A Marriage of Convenience or a Process of Empowerment?

    ERIC Educational Resources Information Center

    Alfrey, Laura; Brown, Trent D.

    2013-01-01

    The concept of "health literacy" is becoming increasingly prominent internationally, and it has been identified as one of the five key propositions that underpin the forthcoming Australian Curriculum: Health and Physical Education (ACHPE). The ACHPE is one of few national curricula to explicitly refer to health literacy, identifying it…

  15. Preface of 16th International conference on Defects, Recognition, Imaging and Physics in Semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Deren; Xu, Ke

    2016-11-01

    The 16th International conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP-XVI) was held at the Worldhotel Grand Dushulake in Suzhou, China from 6th to 10th September 2015, around the 30th anniversary of the first DRIP conference. It was hosted by the Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences. On this occasion, about one hundred participants from nineteen countries attended the event. And a wide range of subjects were addressed during the conference: physics of point and extended defects in semiconductors: origin, electrical, optical and magnetic properties of defects; diagnostics techniques of crystal growth and processing of semiconductor materials (in-situ and process control); device imaging and mapping to evaluate performance and reliability; defect analysis in degraded optoelectronic and electronic devices; imaging techniques and instruments (proximity probe, x-ray, electron beam, non-contact electrical, optical and thermal imaging techniques, etc.); new frontiers of atomic-scale-defect assessment (STM, AFM, SNOM, ballistic electron energy microscopy, TEM, etc.); new approaches for multi-physic-parameter characterization with Nano-scale space resolution. Within these subjects, there were 58 talks, of which 18 invited, and 50 posters.

  16. Light Microscopy Module: On-Orbit Microscope Planned for the Fluids Integrated Rack on the International Space Station

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable, automated, on-orbit facility, allowing flexible scheduling and control of physical science and biological science experiments within the Fluids Integrated Rack (FIR) on the International Space Station. Initially four fluid physics experiments in the FIR will use the LMM the Constrained Vapor Bubble, the Physics of Hard Spheres Experiment-2, Physics of Colloids in Space-2, and Low Volume Fraction Entropically Driven Colloidal Assembly. The first experiment will investigate heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments will investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties.

  17. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    NASA Astrophysics Data System (ADS)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia, the Austrian Science and Research Liason Offices and the Bulgarian Nuclear Society. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially. E Benova, F M Dias and Yu Lebedev

  18. KSC-2010-4537

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, begin processing the Alpha Magnetic Spectrometer, or AMS, to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  19. KSC-2010-4532

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, awaits processing for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  20. Neurons compute internal models of the physical laws of motion.

    PubMed

    Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David

    2004-07-29

    A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.

  1. X International Conference on Kaon Physics

    NASA Astrophysics Data System (ADS)

    2017-01-01

    The International Conference on Kaon Physics 2016 took place at the University of Birmingham (United Kingdom) on 14-17 September 2016. This conference continued the KAON series, offering an opportunity for theorists and experimentalists from the high-energy physics community to discuss all aspects of kaon physics. The 2016 edition saw a strong participation from theory and phenomenology and the first kaon results from the LHCb experiment at CERN, as well as updates from several experiments around the world including NA62 and KOTO. All papers published in this volume of KAON2016 have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The organizers and the participants wish to thank the University of Birmingham, the European Research Council, CERN, the UK Science and Technology Facility Council and the UK Institute for Particle Physics Phenomenology for their support in the organization of this successful edition. Figure for summary

  2. Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S. (Editor)

    1999-01-01

    This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).

  3. Violation of the 2nd Law of Thermodynamics in the Quantum Microworld

    NASA Astrophysics Data System (ADS)

    Čápek, V.; Frege, O.

    2002-05-01

    For one open quantum system recently reported to work as a perpetuum mobile of the second kind, basic equations providing basis for discussion of physics beyond the system activity are rederived in an appreciably simpler manner. The equations become exact in one specific scaling limit corresponding to the physical regime where internal processes (relaxations) in the system are commensurable or even slower than relaxation processes induced by bath. In the high-temperature (i.e. classical) limit, the system ceases to work, i.e., validity of the second law is reestablished.

  4. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  5. Chapter 4: A policy process and tools for international non-governmental organizations in the health sector using ISPRM as a case in point.

    PubMed

    Reinhardt, Jan D; von Groote, Per M; DeLisa, Joel A; Melvin, John L; Bickenbach, Jerome E; Stucki, Gerold

    2009-09-01

    The politics of international non-governmental organizations (NGOs) such as the International Society of Physical and Rehabilitation Medicine (ISPRM) serve the function of selecting and attaining particular socially valued goals. The selection and attainment of goals as the primary function of political action can be structured along a policy process or cycle comprising the stages of strategic goal setting and planning of strategic pathways, agenda setting, resource mobilization, implementation, evaluation and innovation. At the various stages of this policy process different policy tools or instruments, which can be used to influence citizen and organizational behaviour in the light of defined goals, can be applied. The objective of this paper is to introduce and describe policy tools of potential relevance to ISPRM with regard to different policy functions and stages of the policy process.

  6. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Core: Toward a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2005-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.

  7. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Cores: Towards a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.

  8. Statistical physics of self-replication.

    PubMed

    England, Jeremy L

    2013-09-28

    Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication in a system coupled to a thermal bath. We find that the minimum value for the physically allowed rate of heat production is determined by the growth rate, internal entropy, and durability of the replicator, and we discuss the implications of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating nucleic acids.

  9. Non-communicable diseases and global health governance: enhancing global processes to improve health development

    PubMed Central

    Magnusson, Roger S

    2007-01-01

    This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO), World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control), but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health). The paper assesses the merits of the Millennium Development Goals (MDGs) and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy. PMID:17519005

  10. Non-communicable diseases and global health governance: enhancing global processes to improve health development.

    PubMed

    Magnusson, Roger S

    2007-05-22

    This paper assesses progress in the development of a global framework for responding to non-communicable diseases, as reflected in the policies and initiatives of the World Health Organization (WHO), World Bank and the UN: the institutions most capable of shaping a coherent global policy. Responding to the global burden of chronic disease requires a strategic assessment of the global processes that are likely to be most effective in generating commitment to policy change at country level, and in influencing industry behaviour. WHO has adopted a legal process with tobacco (the WHO Framework Convention on Tobacco Control), but a non-legal, advocacy-based approach with diet and physical activity (the Global Strategy on Diet, Physical Activity and Health). The paper assesses the merits of the Millennium Development Goals (MDGs) and the FCTC as distinct global processes for advancing health development, before considering what lessons might be learned for enhancing the implementation of the Global Strategy on Diet. While global partnerships, economic incentives, and international legal instruments could each contribute to a more effective global response to chronic diseases, the paper makes a special case for the development of international legal standards in select areas of diet and nutrition, as a strategy for ensuring that the health of future generations does not become dependent on corporate charity and voluntary commitments. A broader frame of reference for lifestyle-related chronic diseases is needed: one that draws together WHO's work in tobacco, nutrition and physical activity, and that envisages selective use of international legal obligations, non-binding recommendations, advocacy and policy advice as tools of choice for promoting different elements of the strategy.

  11. Liquid interfacial water and brines in the upper surface of Mars

    NASA Astrophysics Data System (ADS)

    Moehlmann, Diedrich

    2013-04-01

    Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.

  12. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  13. The neural correlates of internal and external comparisons: an fMRI study.

    PubMed

    Wen, Xue; Xiang, Yanhui; Cant, Jonathan S; Wang, Tingting; Cupchik, Gerald; Huang, Ruiwang; Mo, Lei

    2017-01-01

    Many previous studies have suggested that various comparisons rely on the same cognitive and neural mechanisms. However, little attention has been paid to exploring the commonalities and differences between the internal comparison based on concepts or rules and the external comparison based on perception. In the present experiment, moral beauty comparison and facial beauty comparison were selected as the representatives of internal comparison and external comparison, respectively. Functional magnetic resonance imaging (fMRI) was used to record brain activity while participants compared the level of moral beauty of two scene drawings containing moral acts or the level of facial beauty of two face photos. In addition, a physical size comparison task with the same stimuli as the beauty comparison was included. We observed that both the internal moral beauty comparison and external facial beauty comparison obeyed a typical distance effect and this behavioral effect recruited a common frontoparietal network involved in comparisons of simple physical magnitudes such as size. In addition, compared to external facial beauty comparison, internal moral beauty comparison induced greater activity in more advanced and complex cortical regions, such as the bilateral middle temporal gyrus and middle occipital gyrus, but weaker activity in the putamen, a subcortical region. Our results provide novel neural evidence for the comparative process and suggest that different comparisons may rely on both common cognitive processes as well as distinct and specific cognitive components.

  14. Medical physics education from the view of the possible structural changes.

    PubMed

    Ferencova, E; Kukurova, E

    2001-01-01

    Teaching subject physics at the university level represents a specific didactic transformation of the scientific field--physics. The determination of the content, extent, used methods, mutual relation to other subjects of curriculum as well as to the entrance knowledge of students are the most important parts of pedagogical activities in the educational process. Based on own experiences, successes and mistakes in teaching so-called medical physics the authors discuss didactic procedures which should support the interest and creativity of students. Some changes in the structure of physics education are recommended. The usefulness of the international collaboration in the framework of projects such as TEMPUS, ERASMUS is also remembered.

  15. Research priorities and plans for the International Space Station-results of the 'REMAP' Task Force

    NASA Technical Reports Server (NTRS)

    Kicza, M.; Erickson, K.; Trinh, E.

    2003-01-01

    Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  16. PREFACE: Sixth International Conference on Dissociative Recombination: Theory, Experiments and Applications

    NASA Astrophysics Data System (ADS)

    Wolf, Andreas; Lammich, Lutz; Schmelcher, Peter

    2005-01-01

    Dissociative recombination between electrons and molecular ions is an elementary reaction in electron-induced chemistry attracting strong attention across discipline boundaries, from fundamental questions of intramolecular dynamics to astrophysics, plasma science, as well as atmospheric and planetary physics. The process is explored on the level of atomic quantum dynamics both experimentally and theoretically, employing cold collisions at temperatures down to 10 Kelvin involving small molecules or also very large systems ranging up to biomolecules. Dissociative recombination (DR) and related processes, such as dissociative excitation, collisional cooling of vibrations and rotations, photodissociation via high-lying electronic states, resonant electron attachment, and electron-induced processes in large molecules and clusters, are studied by a variety of experimental methods, including stored and trapped molecular ions, plasma techniques such as stationary and flowing afterglow, and laser spectroscopic diagnostic of molecular excitations. The Sixth International Conference on Dissociative Recombination: Theory, Experiments and Applications (DR2004) was organized by the Research Group on Atomic and Molecular Physics with Stored Ions at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany, and held near Heidelberg in the town of Mosbach in July 2004. It was attended by about 90 scientists working in atomic and molecular physics, astrophysics, plasma- and biophysics. International Conferences on Dissociative Recombination and related processes were held before at Lake Louise, Alberta, Canada (1988), Saint Jacut, Brittany, France (1992), Ein Gedi, Israel (1995), Nässlingen, Stockholm Archipelago, Sweden (1999), and last within a symposium at the American Chemical Society meeting in Chicago, USA (2001). The presentations of this conference document a strong development of theoretical ideas towards the understanding of DR in particular in polyatomic systems. Strong attention was given to the elementary triatomic benchmark system H3+, characterized by ambitious, complementary experimental projects. Interaction of experiment and theory improves in particular the understanding of non-adiabatic molecular interactions involving electronic continuum states. New experimental techniques focus on a detailed control of the internal molecular excitation on the level of single quantum states, which gives increasing importance to laser interactions and ion storage at cryogenic temperatures. Apart from its place in the series of "DR conferences", this meeting is also the final assembly of the EU Research Training Network "Electron Transfer Reactions" (ETR) which in the period from 2000 to 2004 helped to establish many invaluable links between 15 experimental and theoretical institutes active in the field of DR and related processes. We express our gratitude to the EU for the support through the Research Training Network Programme, which has made possible the attendance of many students and young researchers. Furthermore, generous financial support for this conference was provided by the Max-Planck Institute for Nuclear Physics in Heidelberg. The efficient support of the conference center "Alte Mälzerei", operated by the city of Mosbach, is gratefully acknowledged. Finally we warmly thank the staff and the students of the Max-Planck Institute for Nuclear Physics for the dedicated help during the conference.

  17. KSC-2010-4536

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lifts the Alpha Magnetic Spectrometer, or AMS, so it can be placed onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  18. KSC-2010-4534

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lifts the Alpha Magnetic Spectrometer, or AMS, so it can be lifted onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  19. Transnational Strategies for the Promotion of Physical Activity and Active Aging: The World Health Organization Model of Consensus Building in International Public Health

    ERIC Educational Resources Information Center

    Chodzko-Zajko, Wojtek; Schwingel, Andiara

    2009-01-01

    In this paper we focus our attention on an examination of the four-step process adopted by the World Health Organization (WHO) in its systematic campaign to promote physically active lifestyles by older adults across the 193 WHO member states. The four steps adopted by the WHO include (1) Building Consensus Among Professionals; (2) Educating the…

  20. Physical modeling of the influence of bedrock topography and ablation on ice flow and meteorite concentration in Antarctica

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio; Belmaggio, Pietro; Folco, Luigi

    2008-03-01

    Three-dimensional laboratory physical experiments have been used to investigate the influence of bedrock topography and ablation on ice flow. Different models were tested in a Plexiglas box, where a transparent silicone simulating ice in nature was allowed to flow. Experimental results show how the flow field (in terms of both flow lines and velocity) and variations in the topography of the free surface and internal layers of the ice are strongly influenced by the presence and height of bedrock obstacles. In particular, the buttressing effect forces the ice to slow down, rise up, and avoid the obstacle; the higher the bedrock barrier, the more pronounced the process. Only limited uplift of internal layers is observed in these experiments. In order to exhume deep material embedded in the ice, ablation (simulated by physically removing portions of silicone from the model surface to maintain a constant topographic depression) must be included in the physical models. In this case, the analogue ice replenishes the area of material removal, thereby allowing deep layers to move vertically to the surface and severely altering the local ice flow pattern. This process is analogous to the ice flow model proposed in the literature for the origin of meteorite concentrations in blue ice areas of the Antarctic plateau.

  1. Laboratory-Scale Internal Wave Apparatus for Studying Copepod Behavior

    NASA Astrophysics Data System (ADS)

    Jung, S.; Webster, D. R.; Haas, K. A.; Yen, J.

    2016-02-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. The objective is to provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in two-layer stratification. Two cases were chosen with density jump of 1 and 1.5 sigma-t units. Analytical analysis of the two-layer system provided guidance to the target forcing frequency needed to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location were used to quantify the wave characteristics. The results show a close match to the target wave parameters. Marine copepod (mixed population of Acartia tonsa, Temora longicornis, and Eurytemora affinis) behavior assays were conducted for three different physical arrangements: (1) no density stratification, (2) stagnant two-layer density stratification, and (3) two-layer density stratification with internal wave motion. Digitized trajectories of copepod swimming behavior indicate that in the control (case 1) the animals showed no preferential motion in terms of direction. In the stagnant density jump treatment (case 2) copepods preferentially moved horizontally, parallel to the density interface. In the internal wave treatment (case 3) copepods demonstrated orbital trajectories near the density interface.

  2. Internal Wave Apparatus for Copepod Behavior Assays

    NASA Astrophysics Data System (ADS)

    Jung, S.; Haas, K. A.; Webster, D. R.

    2015-11-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves are generated through oscillations of the pycnocline in stratified waters and thereby create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. Thus, a coupled quantification of copepod behavior and hydrodynamic cues will provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in a two-layer stratification. Three cases are chosen with density jump ranging between 0.75 - 1.5 kg/m3. Analytical analysis of the two-layer system provides guidance of the target forcing frequency to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location are used to quantify the wave characteristics. A copepod behavior assay is conducted, and sample trajectories are analyzed to identify copepod response to internal wave structure.

  3. Third Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program, present and future areas of emphasis, information on NASA's ground-based and space-based flight research facilities-especially use of the International Space Station, and the process by which future investigators enter the program. An international forum offered participants an opportunity to hear from Russian speakers about their microgravity research programs. Three keynote speakers provided broad technical overviews on the history and future development of the moon and on multiphase flow and complex fluids research. One keynote paper and an extended abstract are included in the proceedings. One hundred and thirty-two technical papers were presented in 28 sessions. Presenters briefed their peers on the scientific results of their ground-based and flight research. One hundred and twenty-two papers are included here.

  4. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  5. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.

  6. 37 CFR 1.433 - Physical requirements of international application.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0×29.7 cm.). (c) Other physical requirements for international...

  7. 37 CFR 1.433 - Physical requirements of international application.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0 × 29.7 cm.). (c) Other physical requirements for international...

  8. 37 CFR 1.433 - Physical requirements of international application.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0×29.7 cm.). (c) Other physical requirements for international...

  9. 37 CFR 1.433 - Physical requirements of international application.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0 × 29.7 cm.). (c) Other physical requirements for international...

  10. 37 CFR 1.433 - Physical requirements of international application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0×29.7 cm.). (c) Other physical requirements for international...

  11. The Importance of Science Policy and its Challenges

    NASA Astrophysics Data System (ADS)

    Preis, Benjamin

    2015-03-01

    I worked for physicist and Congressman Bill Foster (D-IL) as the Mather Public Policy Intern through the American Institute of Physics and the Society of Physics Students during the summer of 2014. This internship is meant to connect undergraduate physics students with the policy process in Washington DC. As a Mather Public Policy Intern, I worked for Congressman Foster researching policy initiatives such as science funding, STEM education, and environmental regulations. This talk will discuss my experience and many of the things that I learned as an undergraduate physicist working on Capitol Hill. For example, through my experience with the internship, I attended lectures and hearings that illuminated for me how members of Congress conceive of scientific research. I also met with many physicists on Capitol Hill working to improve government interest in physics research -- AAAS Fellows, Members of Congress, and Government Relations Specialists -- and I will talk about how I saw physicists impacting governmental policies relating to scientific research and development. This internship is part of the Society of Physics Students internship program and was funded by the John and Jane Mather Foundation for Science and the Arts. This work was part of the Society of Physics Students internship Program.

  12. Editorial

    NASA Astrophysics Data System (ADS)

    Al-Sheikhly, Mohamad; Varca, Gustavo H. C.

    2018-02-01

    We are very proud and delighted to introduce this special issue of Radiation Physics and Chemistry (RPC). It is indeed the fruit of an outstanding, collective effort by radiation chemists and physicists, as well as radiation processing and nuclear engineers, who presented their research at the 18th International Meeting of Radiation Processing (IMRP) 2016 in Vancouver, Canada. This valuable issue covers a wide range of reported new results in the field of radiation chemistry, physics, and processing. Eminent scientists carefully selected these invited papers, followed by a thorough reviewing process. This issue presents the selected sixteen invited papers. These papers cover fundamental radiation chemistry mechanisms and kinetics, radiation-induced polymerization and kinetics, radiation effects on synthetic and natural polymers, radiation processing control and quality assurances, radiation-induced preservation of food, radiation sterilization, radiation dosimetry, and radiation synthesis of various fabrics for remediation of nuclear isotopes such as cesium.

  13. Outlining social physics for modern societies—locating culture, economics, and politics: The Enlightenment reconsidered

    PubMed Central

    Iberall, A. S.

    1985-01-01

    A groundwork is laid for a formulation of the modern human social system as a field continuum. As in a simple material physical field, the independent implied relationships of materials or processes in flux have to be based on local conservations of mass, energy, and momentum. In complex fields, the transport fluctuations of momentum are transformed into action modes (e.g., [unk] pdq = ΣHi = H, a characteristic quantum of action over a characteristic cycle time). In complex living systems, a fourth local conservation of population number, the demographic variable, has to be added as a renormalized variable. Modern man, settled in place via agriculture, urbanized, and engaged largely in trade and war, invents a fifth local conservation—value-in-trade, the economic variable. The potentials that drive these five fluxes are also enumerated. Among the more evident external and internal physical-chemical potentials, the driving potentials include a sheaf of internal potential-like components that represent the command-control system emergent as politics. In toto, culture represents the social solvent with the main processes of economics and politics being driven by a social pressure. PMID:16593594

  14. Physical activity adoption to adherence, lapse, and dropout: a self-determination theory perspective.

    PubMed

    Kinnafick, Florence-Emilie; Thøgersen-Ntoumani, Cecilie; Duda, Joan L

    2014-05-01

    Grounded in Self-Determination Theory, we aimed to explore and identify key motivational processes involved in the transition from a physically inactive to an active lifestyle, and the processes involved in lapse and dropout behavior within a walking program. We implemented a qualitative, longitudinal case study method, using semistructured interviews and theoretical thematic analyses. Fifteen women were interviewed over 10 months and three profiles were generated: (a) nonadherence, (b) lapse/readoption of physical activity, and (c) adherence. Internalization of walking behavior was key to adherence. Satisfaction of the needs for competence and relatedness were central for participation during exercise at the adoption stages, and autonomy was particularly pertinent in facilitating adherence. Those who lapsed and restarted physical activity experienced feelings of autonomy at the point of readoption. Sources of support were driving forces in the adoption and adherence phases.

  15. Approaches to eliminating chlorofluorocarbon use in manufacturing.

    PubMed Central

    Boyhan, W S

    1992-01-01

    Until quite recently, chlorofluorocarbons (CFCs) had been considered the safest and most benign of industrial chemicals. Their physical and chemical properties made them an integral part of manufacturing processes for electronics products. The recognition that CFCs destroy the stratospheric ozone layer, with consequent enormous consequences to all forms of life on earth, has led to international agreements which will end virtually all possibly before. This impending phaseout of CFCs has caused electronics manufacturers to examine alternative chemicals and processing methods. This manuscript documents the steps AT&T has taken to reach its goal of 100% phaseout of CFCs by years-end 1994. These actions include top-down management support with combined bottom-up thrusts, an internal information gathering and dissemination center, internal technology transfer, and external corporate activism. Images PMID:11607258

  16. International Physics Research Internships in an Australian University

    ERIC Educational Resources Information Center

    Choi, Serene Hyun-Jin; Nieminen, Timo A.; Maucort, G.; Gong, Y. X.; Bartylla, C.; Persson, M.

    2013-01-01

    Research student internships in physics is one way that students can gain a broad range of research experience in a variety of research environments, and develop international contacts. We explore international physics research internships, focusing on the academic learning experiences, by interviewing four international research interns in a…

  17. KSC-2010-4533

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, attach an overhead crane to the Alpha Magnetic Spectrometer, or AMS, so it can be lifted onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  18. KSC-2010-4535

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician monitors an overhead crane as it lifts the Alpha Magnetic Spectrometer, or AMS, so it can be placed onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  19. Topical applications of resonance internal conversion in laser produced plasma

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2007-04-01

    Physical aspects of resonance effects arising in plasma due to interactions of nuclei with the electrons are considered. Among them are resonance conversion (TEEN) and the reverse process of NEET. These processes are of great importance for pumping the excited nuclear states (isomers) and for accelerating their decay. Experiment is discussed on studying the unique 3.5-eV 229m Th nuclide.

  20. Comparison of physical activity estimates using International Physical Activity Questionnaire (IPAQ) and accelerometry in fibromyalgia patients: the Al-Andalus study.

    PubMed

    Benítez-Porres, Javier; Delgado, Manuel; Ruiz, Jonatan R

    2013-01-01

    The International Physical Activity Questionnaire (IPAQ) has been widely used to assess physical activity in healthy populations. The present study compared physical activity assessed by the long, self-administrated version of the International Physical Activity Questionnaire with physical activity assessed by accelerometry in patients with fibromyalgia. A total of 99 (five men) participants with fibromyalgia completed the International Physical Activity Questionnaire and wore an accelerometer for nine consecutive days. We analysed the correlations of physical activity expressed as min · day(-1) of light, moderate, vigorous, and moderate to vigorous (MVPA) intensity, as well as time spent sitting, by the International Physical Activity Questionnaire and accelerometry by Spearman correlations. Bland and Altman plots were performed to verify the agreements between both instruments. The results showed weak yet significant correlations (Rs = 0.15-0.39, all P < 0.05) in all physical activity intensities between the two instruments, except for sedentary time. The highest correlations were observed for physical activity at home or in garden (Rs = 0.297, P < 0.01). The results suggest that the long self-administrated International Physical Activity Questionnaire is a questionable instrument to assess physical activity in patients with fibromyalgia. Therefore, physical activity measurement in fibromyalgia patients should not be limited solely to self-reported measures.

  1. PREFACE Turbulent Mixing and Beyond

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.

    2010-12-01

    The goals of the International Conference 'Turbulent Mixing and Beyond', TMB-2009, are to expose the generic problem of non-equilibrium turbulent processes to a broad scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together researchers from different areas, which include but are not limited to fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and Earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and telecommunications, and to have their attention focused on the long-standing formidable task of non-equilibrium processes. Non-equilibrium turbulent processes play a key role in a broad variety of phenomena spanning astrophysical to atomistic scales and high or low energy density regimes. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications, and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or acceleration. Their scaling, spectral and invariant properties differ substantially from those of classical Kolmogorov turbulence. At atomistic and meso-scales, the non-equilibrium dynamics depart dramatically from a standard scenario given by the Gibbs statistic ensemble average and quasi-static Boltzmann equation. The singular aspect and the similarity of the non-equilibrium dynamics at macroscopic scales are interplayed with the fundamental properties of the Euler and compressible Navier-Stokes equations and with the problem sensitivity to the boundary conditions at discontinuities. The state-of-the-art numerical simulations of multi-phase flows suggest new methods for predictive modeling of the multi-scale non-equilibrium dynamics in fluids and plasmas, up to peta-scale level, for error estimate and uncertainty quantification, as well as for novel data assimilation techniques. The Second International Conference and Advanced School 'Turbulent Mixing and Beyond', TMB-2009, was held on 27 July-7 August 2009 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. This was a highly informative and exciting meeting, and it strengthened and reaffirmed the success of TMB-2007. TMB-2009 brought together over 180 participants from five continents, ranging from students to members of National Academies of Sciences and Engineering and including researchers at experienced and early stages of their carriers from leading scientific institutions in academia, national laboratories, corporations and industry, from developed and developing countries. The success of TMB-2009 came from the successful work of all the participants, who were responsible professionals caring for the quality of their research and sharing their scientific vision. The level of presentations was high; about 170 presentations included over 60 invited lectures and 15 tutorials (4500 minutes of talks in total), about 40 posters and two Round Tables. TMB-2009 covered 17 different topics, maintaining the scope and the interdisciplinary character of the meeting while keeping the focus on a fundamental scientific problem of non-equilibrium processes and on the Conference objectives. The abstracts of the 194 accepted presentations of more than 400 authors were published in the Book of Abstracts of the Second International Conference and Advanced School 'Turbulent Mixing and Beyond', 27 July-7 August 2009 , Copyright © 2009, the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy (ISBN 92095003-41-1). This Topical Issue consists of 70 articles accepted for publication in the Conference Proceedings and represents a substantial part of the Conference contributions. The articles are in a broad variety of TMB-2009 themes and are sorted alphabetically by the last name of the first author within each of the following topics: Canonical turbulence and turbulent mixing: invariant, scaling, spectral properties, scalar transports, convection; Wall-bounded flows: structure and fundamentals, non-canonical turbulent boundary layers, including unsteady and transitional flows, supersonic and hypersonic flows, shock-boundary layer interactions; Non-equilibrium processes: unsteady, multiphase and shock-driven turbulent flows, anisotropic non-local dynamics, connection of continuous description at macro-scales to kinetic processes at atomistic scales; Interfacial dynamics: instabilities of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov, Landau-Darrieus, Saffman-Taylor High energy density physics: inertial confinement and heavy-ion fusion, Z-pinches, light-matter and laser-plasma interactions, non-equilibrium heat transfer; Material science: material transformation under high strain rates, equation of state, impact dynamics, mixing at nano- and micro-scales; Astrophysics: supernovae, interstellar medium, star formation, stellar interiors, early Universe, cosmic-microwave background, accretion disks; Magneto-hydrodynamics: magnetic fusion and magnetically confined plasmas, magneto-convection, magneto-rotational instability, dynamo; Canonical plasmas: coupled plasmas, anomalous resistance, ionosphere; Physics of atmosphere: environmental fluid dynamics, weather forecasting, turbulent flows in stratified media and atmosphere, non-Boussinesq convection; Geophysics and Earth science: mantle-lithosphere tectonics, oceanography, turbulent convection under rotation, planetary interiors; Combustion: dynamics of flames and fires, deflagration-to-detonation transition, blast waves and explosions, flows with chemical reactions, flows in jet engines; Mathematical aspects of non-equilibrium dynamics: vortex dynamics, singularities, discontinuities, asymptotic dynamics, weak solutions, well- and ill-posedness, continuous transports out of thermodynamic equilibrium; Stochastic processes and probabilistic description: long-tail distributions and anomalous diffusion, data assimilation and processing methodologies, error estimate and uncertainty quantification, statistically unsteady processes; Advanced numerical simulations: continuous DNS/LES/RANS, molecular dynamics, Monte-Carlo, predictive modeling, validation and verification of numerical models; Experimental diagnostics: model experiments in high energy density and low energy density regimes, plasma diagnostics, fluid flow visualizations and control, opto-fluidics, novel optical methods, holography, advanced technologies. TMB-2009 was organized by the following members of the Organizing Committee: Snezhana I Abarzhi (chairperson, Chicago, USA) Malcolm J Andrews (Los Alamos National Laboratory, USA) Sergei I Anisimov (Landau Institute for Theoretical Physics, Russia) Hiroshi Azechi (Institute of Laser Engineering, Osaka, Japan) Serge Gauthier (Commissariat à l'Energie Atomique, France) Christopher J Keane (Lawrence Livermore National Laboratory, USA) Robert Rosner (Argonne National Laboratory, USA) Katepalli R Sreenivasan (International Centre for Theoretical Physics, Italy) Alexander L Velikovich (Naval Research Laboratory, USA) and the Local Organizing Committee at the International Centre for Theoretical Physics, Italy Joseph J Niemela Katepalli R Sreenivasan with the assistance of Suzie Radosic (administrator and assistant, ICTP) Daniil Ilyin (web-master, University of Chicago Laboratory Schools, Chicago, USA) The Conference and the School were sponsored by several Agencies and Institutions in the USA, Europe and Japan. The Organizing Committee of TMB-2009 gratefully acknowledges the support of International Centre for Theoretical Physics (ICTP), Italy National Science Foundation (NSF), USA Programs: Plasma Physics; Astronomy and Astrophysics; Computational Mathematics; Applied Mathematics; Fluid Dynamics; Combustion, Fire and Plasma Systems; Cyber-Physical Systems; Computer and Network Systems Air Force Office of Scientific Research (AFOSR), US Programs: Hypersonics and Turbulence; Flow Control and Aeroelasticity European Office of Aerospace Research and Development (EOARD) of the AFOSR, UK Programs: Aeronautical Sciences Department of Energy (DOE), USA, DOE Office of Science US Department of Energy Lawrence Livermore National Laboratory (LLNL), USA Programs: National Ignition Facility; Fusion Energy US Department of Energy Los Alamos National Laboratory (LANL), USA US Department of Energy Argonne National Laboratory (ANL), USA Commissariat à l'Energie Atomique (CEA), France Institute for Laser Engineering (ILE), Japan The University of Chicago, USA ASC Alliance Center for Astrophysical Thermonuclear Flashes, USA Photron (Europe) Ltd, UK and thank them for making this event possible. We express our gratitude for the help with the Conference Program to the members of the Scientific Advisory Committee: S I Abarzhi (University of Chicago, USA) Y Aglitskiy (Science Applications International Corporation, USA) H Azechi (Institute for Laser Engineering, Osaka, Japan) M J Andrews (Los Alamos National Laboratory, USA) S I Anisimov (Landau Institute for Theoretical Physics, Russia) E Bodenschatz (Max Plank Institute for Dynamics and Self-Organization, Germany) F Cattaneo (University of Chicago, USA) P Cvitanović (Georgia Institute of Technology, USA) S Cowley (Imperial College, UK) S Dalziel (DAMTP, University of Cambridge, UK) W S Don (Brown University, USA) R Ecke (Los Alamos National Laboratory, USA) H J Fernando (Arizona State University, USA) I Foster (University of Chicago, USA) S Gauthier (Commissariat à l'Energie Atomique, France) G A Glatzmaier (University of California at Santa Cruz, USA) J Glimm (State University of New York at Stony Brook, USA) W A Goddard III (California Institute of Technology, USA) J Jimenez (Universidad Politecnica de Madrid, Spain) L P Kadanoff (The University of Chicago, USA) D Q Lamb (The University of Chicago, USA) D P Lathrop (University of Maryland, USA) S Lebedev (Imperial College, UK) P Manneville (École Polytechnique, France) D I Meiron (California Institute of Technology, USA) P Moin (Stanford University, USA) A Nepomnyashchy (Technion, Israel) J Niemela (International Center for Theoretical Physics, Italy) K Nishihara (Institute for Laser Engineering, Osaka, Japan) S S Orlov (Stanford University, USA) S A Orszag (Yale University, USA) E Ott (University of Maryland, USA) N Peters (RWTH Aachen University, Germany) S B Pope (Cornell, USA) A Pouquet (University Corporation for Atmospheric Research, USA) B A Remington (Lawrence Livermore National Laboratory, USA) R Rosner (Argonne National Laboratory and University of Chicago, USA) A J Schmitt (Naval Research Laboratory, USA) C -W Shu (Brown University, USA) K R Sreenivasan (International Centre for Theoretical Physics, Italy) E Tadmor (University of Maryland, USA) Y C F Thio (US Department of Energy) A L Velikovich (Naval Research Laboratory, USA) V Yakhot (Boston University, USA) P K Yeung (Georgia Institute of Technology, USA) F A Williams (University of California at San Diego, USA) E Zweibel (University of Wisconsin, USA). We deeply appreciate the work of the Selection Committee for applications for the Advanced School: S Gauthier (Commissariat à l'Energie Atomique, France) C J Keane (Lawrence Livermore National Laboratory, USA) J Niemela (International Center for Theoretical Physics, Italy) S S Orlov (Stanford University, USA) A L Velikovich (Naval Research Laboratory, USA) and thank the members of the Committee for the award 'Turbulent Mixing and Beyond for Youth': S I Abarzhi (University of Chicago, USA) M J Andrews (Los Alamos National Laboratory, USA) P Cvitanović (Georgia Institute of Technology, USA) S Gauthier (Commissariat à l'Energie Atomique, France) C J Keane (Lawrence Livermore National Laboratory, USA) S Lebedev (Imperial College, UK) J Niemela (International Center for Theoretical Physics, Italy) S S Orlov (Stanford University, USA) A Pouquet (University Corporation for Atmospheric Research, USA) K R Sreenivasan (International Centre for Theoretical Physics, Italy) A L Velikovich (Naval Research Laboratory, USA) We would like to thank all the authors and the referees for their contributions to this Topical Issue and for offering their expertise, time and effort. The readers are cordially invited to take a look at this Topical Issue for information on the frontiers of theoretical, numerical and experimental research, and state-of-the-art technology. The Organizing Committee hopes the TMB Conference will serve to advance the state-of-the-art in understanding of fundamental physical properties of non-equilibrium turbulent processes and will have an impact on predictive modeling capabilities, physical description and, ultimately, control of these complex processes. Welcome to the Topical Issue 'Turbulent Mixing and Beyond', TMB-2009.

  2. Ratings of perceived exertion by women with internal or external locus of control.

    PubMed

    Hassmén, P; Koivula, N

    1996-10-01

    Ratings of perceived exertion are frequently used to estimate the strain and effort experienced subjectively by individuals during various forms of physical activity. A number of factors, both physiological and psychological in origin, have been suggested to work as modifiers of the exertion perceived by the individual. It has been reported in nonsport-related research that individuals with an internal locus of control seem to pay more attention to relevant information and use the available information more adequately than individuals with an external locus of control. The reputed inferior information-processing abilities of externals compared with internals could possibly also influence the ratings of perceived exertion, with externals being less accurate in their ratings. Whether locus of control might be such a factor was investigated. Fifty women worked on an ergometer cycle at four different work loads. The results showed statistically significant differences in subjective ratings of perceived exertion between externals and internals, especially at heavier work loads. Such differences might be because of unequal information-processing abilities, as the observed discrepancies occurred at higher work intensities, when more cues are available for processing.

  3. Modelling of Molecular Structures and Properties. Proceedings of the International Meeting of Physical Chemistry on Modeling of Molecular Structures and Properties in Physical Chemistry and Biophysics Organized by the Division de Chimie Physique of the Societe Francaise de Chimie Held in Nancy, France on 11-15 September 1989

    DTIC Science & Technology

    1990-01-01

    expert systems, "intelligent" computer-aided instruction , symbolic learning . These aspects will be discussed, focusing on the specific problems the...VLSI chips) according to preliminary specifications. Finally ES are also used in computer-aided instruction (CAI) due to their ability of... instructions to process controllers), academic teaching (for mathematics , physics, foreign language, etc.). Domains of application The different

  4. PREFACE: International Workshop on Multi-Rate Processes and Hysteresis

    NASA Astrophysics Data System (ADS)

    Mortell, Michael P.; O'Malley, Robert E.; Pokrovskii, Alexei; Rachinskii, Dmitrii; Sobolev, Vladimir A.

    2008-07-01

    We are interested in singular perturbation problems and hysteresis as common strongly nonlinear phenomena that occur in many industrial, physical and economic systems. The wording `strongly nonlinear' means that linearization will not encapsulate the observed phenomena. Often these two types of phenomena are manifested for different stages of the same or similar processes. A number of fundamental hysteresis models can be considered as limit cases of time relaxation processes, or admit an approximation by a differential equation which is singular with respect to a particular parameter. However, the amount of interaction between practitioners of theories of systems with time relaxation and systems with hysteresis (and between the `relaxation' and `hysteresis' research communities) is still low, and cross-fertilization is small. In recent years Ireland has become a home for a series of prestigious International Workshops in Singular Perturbations and Hysteresis: International Workshop on Multi-rate Processes and Hysteresis (University College Cork, Ireland, 3-8 April 2006). Proceedings are published in Journal of Physics: Conference Series, volume 55. See further information at http://euclid.ucc.ie/murphys2008.htm International Workshop on Hysteresis and Multi-scale Asymptotics (University College Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series, volume 22. See further information at http://euclid.ucc.ie/murphys2006.htm International Workshop on Relaxation Oscillations and Hysteresis (University College Cork, Ireland, 1-6 April 2002). The related collection of invited lectures, was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. See further information at http://euclid.ucc.ie/hamsa2004.htm International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-5 April 2001). A collection of invited papers has been published as a special issue of Proceedings of the Russian Academy of Natural Sciences: Nonlinear dynamics of laser and reacting systems, and is available online at http://www.ins.ucc.ie/roh2002.htm. See further information at http://www.ins.ucc.ie/roh2002.htm Among the aims of these workshops were to bring together leading experts in singular perturbations and hysteresis phenomena in applied problems; to discuss important problems in areas such as reacting systems, semiconductor lasers, shock phenomena in economic modelling, fluid mechanics, etc with an emphasis on hysteresis and singular perturbations; to learn and to share modern techniques in areas of common interest. The `International Workshop on Multi-Rate Processes and Hysteresis' (University College Cork, Ireland, April 3-8, 2006) brought together more than 70 scientists (including more than 10 students), actively researching in the areas of dynamical systems with hysteresis and singular perturbations, to analyze those phenomena that occur in many industrial, physical and economic systems. The countries represented at the Workshop included Czech Republic, England, France, Germany, Hungary, Ireland, Israel, Italy, Poland, Romania, Russia, Scotland, South Africa, Switzerland and USA. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The Workshop has been sponsored by Science Foundation Ireland (SFI), KE Consulting group, Drexel University, Philadelphia, USA, University College Cork (UCC), Boole Centre for Research in Informatics, UCC, Cork, School of Mathematical Sciences, UCC, Cork, Irish Mathematical Society, Tyndall National Institute, Cork, University of Limerick, Cork Institute of Technology, and Heineken. The supportive affiliation of the European Geophysics Society, International Association of Hydrological Sciences, and Laboratoire Poncelet is gratefully acknowledged. The Editors and the Organizers of the Workshop wish to place on record their sincere gratitude to Mr Andrew Zhezherun and Mr Alexander Pimenov of University College Cork for both the assistance which he provided to all the presenters at the Workshop, and for the careful formatting of all the manuscripts prior to their being forwarded to the Publisher. More information about the Workshop can be found at http://euclid.ucc.ie/murphys2006.htm Michael P Mortell, Robert E O'Malley Jr, Alexei Pokrovskii, Dmitrii Rachinskii and Vladimir Sobolev Editors

  5. The yin and yang of formative research in designing serious (exer-)games

    USDA-ARS?s Scientific Manuscript database

    Despite its relevance, formative research on games may be an undervalued part of the game development process. At the 2014 International Society of Behavioral Nutrition and Physical Activity exergaming preconference satellite meeting, a roundtable discussion was held to assemble experiences and sugg...

  6. Internal processes affecting surfaces of low-density satellites - Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Head, J. W.

    1979-01-01

    Possible significant physical processes on low-density (icy) satellites, particularly Ganymede and Callisto, are outlined, and the relations of these interior processes to the formation and evolution of satellite surfaces are discussed. A variety of mechanisms is shown to lead to interior melting in early satellite history and a configuration characterized by a predominantly water ice lithosphere overlying a mantle containing liquid water. Physical processes capable of affecting the lithosphere of an ice-silicate body and thus creating observable surface features are assessed, including tectonic stresses from tidal deformation and volume changes, gravitational effects on density differences and water volcanism. The residence time of surface features on icy bodies produced by the outlined processes and by impact cratering is considered, and a tentative outline of the geologic history of Ganymede and Callisto is presented. Observations from Voyager and Galileo are expected to provide evidence on the evolution and geologic history of low-density satellites.

  7. The Fate and Impact of Internal Waves in Nearshore Ecosystems

    NASA Astrophysics Data System (ADS)

    Woodson, C. B.

    2018-01-01

    Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.

  8. The Fate and Impact of Internal Waves in Nearshore Ecosystems.

    PubMed

    Woodson, C B

    2018-01-03

    Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.

  9. The Rainbow School of Fundamental Physics and its Applications

    NASA Astrophysics Data System (ADS)

    Darve, Christine; Acharya, Bobby; Assamagan, Ketevi; Ellis, Jonathan; Muanza, Steve; African School of Fundamental Physics; its Applications Team

    2011-04-01

    We have established a biennial school of physics in Africa, on fundamental subatomic physics and its applications. The ``raison d'être'' of the school is to build capacity to harvest, interpret, and exploit the results of current and future physics experiments with particle accelerators, and to increase proficiency in related applications. The school is based on a close interplay between theoretical, experimental, and applied physics. The first school took place in Stellenbosch, South Africa on 1-21 August 2010, with the general aim of fostering sciences in Africa. 65 students were selected to participate to this first school edition in the rainbow country. More than 50 of them had travelled from 17 African countries, fully supported financially to attend the intensive, three-week school. This project was supported by 15 different national & international organizations and institutes. We propose the second edition of the biennial school in Ghana in 2012. The inspirational enthusiasm of the students and supporting institutions at ASP2010, give a shining hope that international Programs, Collaborations and Exchanges for the future of fundamental science and technology can be achieved. We will describe the process and the accomplishments of the first school edition, with emphasize on the lessons learned to establish the future editions.

  10. Surface Ocean-Lower Atmosphere Studies: SOLAS

    NASA Astrophysics Data System (ADS)

    Wanninkhof, R.; Dickerson, R.; Barber, R.; Capone, D. G.; Duce, R.; Erickson, D.; Keene, W. C.; Lenschow, D.; Matrai, P. A.; McGillis, W.; McGillicuddy, D.; Penner, J.; Pszenny, A.

    2002-05-01

    The US Surface Ocean - Lower Atmosphere Study (US SOLAS) is a component of an international program (SOLAS) with an overall goal: to achieve a quantitative understanding of the key biogeochemical-physical interactions between the ocean and atmosphere, and of how this coupled system affects and is affected by climateand environmental change. There is increasing evidence that the biogeochemical cycles containing the building blocks of life such as carbon, nitrogen, and sulfur have been perturbed. These changes result in appreciable impacts and feedbacks in the SOLA region. The exact nature of the impacts and feedbacks are poorly constrained because of sparse observations, in particular relating to the connectivity and interrelationships between the major biogeochemical cycles and their interaction with physical forcing. It is in these areas that the research and the interdisciplinary research approaches advocated in US SOLAS will provide high returns. The research in US SOLAS will be heavily focused on process studies of the natural variability of key processes, anthropogenic perturbation of the processes, and the positive and negative feedbacks the processes will have on the biogeochemical cycles in the SOLA region. A major objective is to integrate the process study findings with the results from large-scale observations and with small and large- scale modeling and remote sensing efforts to improve our mechanistic understanding of large scale biogeochemical and physical phenomena and feedbacks. US SOLAS held an open workshop in May 2001 to lay the groundwork for the SOLAS program in the United States. Resulting highlights and issues will be summarized around 4 major themes: (1) Boundary-layer Physics, (2) Dynamics of long-lived climate relevant compounds, (3) Dynamics of short-lived climate relevant compounds, and (4) Atmospheric effects on marine biogeochemical processes. Comprehensive reports from the working groups of U.S. SOLAS, and the international science plan which served as overall guidance, can be found at We will explore possible dedicated, interdisciplinary ocean-atmosphere projects as examples of the critical interconnectivity of atmospheric, interfacial, and upper ocean processes to study phenomena of critical importance in understanding the earth's system.

  11. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to...the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field

  12. MODIS. Volume 1: MODIS level 1A software baseline requirements

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Fleig, Albert; Ardanuy, Philip; Goff, Thomas; Carpenter, Lloyd; Solomon, Carl; Storey, James

    1994-01-01

    This document describes the level 1A software requirements for the moderate resolution imaging spectroradiometer (MODIS) instrument. This includes internal and external requirements. Internal requirements include functional, operational, and data processing as well as performance, quality, safety, and security engineering requirements. External requirements include those imposed by data archive and distribution systems (DADS); scheduling, control, monitoring, and accounting (SCMA); product management (PM) system; MODIS log; and product generation system (PGS). Implementation constraints and requirements for adapting the software to the physical environment are also included.

  13. Prospects for Interdisciplinary Science Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011, and is now embarking on its first year of the coming decade of use as a laboratory. Two key types of physical science research are enabled by ISS: studies of processes that are normally masked by gravity, and instruments that take advantage of its position as a powerful platform in orbit. The absence of buoyancy-driven convection enables experiments in diverse areas such as fluids near the critical point, Marangoni convection, combustion, and coarsening of metal alloys. The positioning of such a powerful platform in orbit with robotic transfer and instrument support also provides a unique alternative platform for astronomy and physics instruments. Some of the operating or planned instruments related to fundamental physics on the International Space Station include MAXI (Monitoring all-sky X-ray Instrument for ISS), the Alpha Magnetic Spectrometer, CALET (Calorimetric Electron Telescope), and ACES (Atomic Clock Experiment in Space). The presentation will conclude with an overview of pathways for funding different types of experiments from NASA funding to the ISS National Laboratory, and highlights of the streamlining of services to help scientists implement their experiments on ISS.

  14. Mind matters: cognitive and physical effects of aging self-stereotypes.

    PubMed

    Levy, Becca R

    2003-07-01

    In the first part of this article, a wide range of research is drawn upon to describe the process by which aging stereotypes are internalized in younger individuals and then become self-stereotypes when individuals reach old age. The second part consists of a review of the author's cross-cultural, experimental, and longitudinal research that examines the cognitive and physical effects of aging self-stereotypes. The final section presents suggestions for future research relating to aging self-stereotypes.

  15. Asteroid differentiation - Pyroclastic volcanism to magma oceans

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Keil, Klaus; Mccoy, Timothy; Haack, Henning; Scott, Edward R. D.

    1993-01-01

    A summary is presented of theoretical and speculative research on the physics of igneous processes involved in asteroid differentiation. Partial melting processes, melt migration, and their products are discussed and explosive volcanism is described. Evidence for the existence of asteroidal magma oceans is considered and processes which may have occurred in these oceans are examined. Synthesis and inferences of asteroid heat sources are discussed under the assumption that asteroids are heated mainly by internal processes and that the role of impact heating is small. Inferences of these results for earth-forming planetesimals are suggested.

  16. A View of Developmental Education and the "Disadvantaged" in a National Perspective: Implications for International Education

    ERIC Educational Resources Information Center

    Wilson, Thomasyne Lightfoote

    1972-01-01

    After defining developmental education as referring to processes that expand the physical, emotional, educational, artistic, scientific, and political spheres of diverse ethnic and cultural communities within a nation, the author discusses the case of the Loma people of Liberia. (JM)

  17. The Mental Representation of Music Notation: Notational Audiation

    ERIC Educational Resources Information Center

    Brodsky, Warren; Kessler, Yoav; Rubinstein, Bat-Sheva; Ginsborg, Jane; Henik, Avishai

    2008-01-01

    This study investigated the mental representation of music notation. Notational audiation is the ability to internally "hear" the music one is reading before physically hearing it performed on an instrument. In earlier studies, the authors claimed that this process engages music imagery contingent on subvocal silent singing. This study refines the…

  18. Field Dependence-Independence and Physical Activity Engagement among Middle School Students

    ERIC Educational Resources Information Center

    Liu, Wenhao; Chepyator-Thomson, Jepkorir Rose

    2009-01-01

    Background: Field dependence-independence (FDI) is a tendency to rely on external frames (given situations and authoritative people) or internal frames (oneself, including one's own body) for one's information processing and behavior. Literature has constantly reported that field-dependent (FD) individuals, who are less autonomous in…

  19. The Diagnosis of Sensory-Motor Disabilities.

    ERIC Educational Resources Information Center

    Zaeske, Arnold

    The importance of motor and perceptual learning in the educational process is discussed. It is hypothesized that an internalization of sensory-motor learnings is important to the perceptual and cognitive development of a child. Developmental and corrective motor training by physical educationalists is suggested. It is concluded that although the…

  20. Characteristic time scales for diffusion processes through layers and across interfaces

    NASA Astrophysics Data System (ADS)

    Carr, Elliot J.

    2018-04-01

    This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.

  1. Characteristic time scales for diffusion processes through layers and across interfaces.

    PubMed

    Carr, Elliot J

    2018-04-01

    This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.

  2. Psychometric Characteristics of Process Evaluation Measures for a Rural School-based Childhood Obesity Prevention Study: Louisiana Health

    PubMed Central

    Newton, R. L.; Thomson, J. L.; Rau, K.; Duhe’, S.; Sample, A.; Singleton, N.; Anton, S. D.; Webber, L. S.; Williamson, D. A.

    2011-01-01

    Purpose To evaluate the implementation of intervention components of the Louisiana Health study, which was a multi-component childhood obesity prevention program conducted in rural schools. Design Content analysis. Setting Process evaluation assessed implementation in the classrooms, gym classes, and cafeterias. Subjects Classroom teachers (n = 232), physical education teachers (n = 53), food service managers (n = 33), and trained observers (n = 9). Measures Five process evaluation measures were created: Physical Education Questionnaire (PEQ), Intervention Questionnaire (IQ), Food Service Manager Questionnaire (FSMQ), Classroom Observation (CO) and School Nutrition Environment Observation (SNEO). Analysis Inter-rater reliability and internal consistency were conducted on all measures. ANOVA and Chi-square were used to compare differences across study groups on questionnaires and observations. Results The PEQ and one sub-scale from the FSMQ were eliminated because their reliability coefficients fell below acceptable standards. The sub-scale internal consistencies for the IQ, FSMQ, CO, and SNEO (all Cronbach’s α > .60) were acceptable. Conclusions After the initial 4 months of intervention, there was evidence that the Louisiana Health intervention was being implemented as it was designed. In summary, four process evaluation measures were found to be sufficiently reliable and valid for assessing the delivery of various aspects of a school-based obesity prevention program. These process measures could be modified to evaluate the delivery of other similar school-based interventions. PMID:21721969

  3. Psychometric characteristics of process evaluation measures for a rural school-based childhood obesity prevention study: Louisiana Health.

    PubMed

    Newton, Robert L; Thomson, Jessica L; Rau, Kristi K; Ragusa, Shelly A; Sample, Alicia D; Singleton, Nakisha N; Anton, Stephen D; Webber, Larry S; Williamson, Donald A

    2011-01-01

    To evaluate the implementation of intervention components of the Louisiana Health study, which was a multicomponent childhood obesity prevention program conducted in rural schools. Content analysis. Process evaluation assessed implementation in classrooms, gym classes, and cafeterias. Classroom teachers (n  =  232), physical education teachers (n  =  53), food service managers (n  =  33), and trained observers (n  =  9). Five process evaluation measures were created: Physical Education Questionnaire (PEQ), Intervention Questionnaire (IQ), Food Service Manager Questionnaire (FSMQ), Classroom Observation (CO), and School Nutrition Environment Observation (SNEO). Interrater reliability and internal consistency were assessed on all measures. Analysis of variance and χ(2) were used to compare differences across study groups on questionnaires and observations. The PEQ and one subscale from the FSMQ were eliminated because their reliability coefficients fell below acceptable standards. The subscale internal consistencies for the IQ, FSMQ, CO, and SNEO (all Cronbach α > .60) were acceptable. After the initial 4 months of intervention, there was evidence that the Louisiana Health intervention was being implemented as it was designed. In summary, four process evaluation measures were found to be sufficiently reliable and valid for assessing the delivery of various aspects of a school-based obesity prevention program. These process measures could be modified to evaluate the delivery of other similar school-based interventions.

  4. PREFACE: 6th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS2012)

    NASA Astrophysics Data System (ADS)

    Dimian, Mihai; Rachinskii, Dmitrii

    2015-02-01

    The International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS) conference series focuses on multiple scale systems, singular perturbation problems, phase transitions and hysteresis phenomena occurring in physical, biological, chemical, economical, engineering and information systems. The 6th edition was hosted by Stefan cel Mare University in the city of Suceava located in the beautiful multicultural land of Bukovina, Romania, from May 21 to 24, 2012. This continued the series of biennial multidisciplinary conferences organized in Cork, Ireland from 2002 to 2008 and in Pécs, Hungary in 2010. The MURPHYS 2012 Workshop brought together more than 50 researchers in hysteresis and multi-scale phenomena from the United State of America, the United Kingdom, France, Germany, Italy, Ireland, Czech Republic, Hungary, Greece, Ukraine, and Romania. Participants shared and discussed new developments of analytical techniques and numerical methods along with a variety of their applications in various areas, including material sciences, electrical and electronics engineering, mechanical engineering and civil structures, biological and eco-systems, economics and finance. The Workshop was sponsored by the European Social Fund through Sectoral Operational Program Human Resources 2007-2013 (PRO-DOCT) and Stefan cel Mare University, Suceava. The Organizing Committee was co-chaired by Mihai Dimian from Stefan cel Mare University, Suceava (Romania), Amalia Ivanyi from the University of Pecs (Hungary), and Dmitrii Rachinskii from the University College Cork (Ireland). All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The Guest Editors wish to place on record their sincere gratitude to Miss Sarah Toms for the assistance she provided during the publication process. More information about the Workshop can be found at http://www.murphys.usv.ro/ Mihai Dimian and Dmitrii Rachinskii Guest Editors for Journal of Physics: Conference Series Proceedings of the 6th International Workshop on Multi-Rate Processes and Hysteresis

  5. Results from Scotland's 2013 Report Card on Physical Activity for Children and Youth.

    PubMed

    Reilly, John J; Dick, Smita; McNeill, Geraldine; Tremblay, Mark S

    2014-05-01

    The Active Healthy Kids Scotland Report Card aims to consolidate existing evidence, facilitate international comparisons, encourage more evidence-informed physical activity and health policy, and improve surveillance of physical activity. Application of the Active Healthy Kids Canada Report Card process and methodology to Scotland, adapted to Scottish circumstances and availability of data. The Active Healthy Kids Scotland Report Card 2013 consists of indicators of 7 Health Behaviors and Outcomes and 3 Influences on Health Behaviors and Outcomes. Grades of F were assigned to Overall Physical Activity, Sedentary Behavior (recreational screen time), and Obesity Prevalence. A C was assigned to Active Transportation and a D- was assigned to Diet. Two indicators, Active and Outdoor Play and Organized Sport Participation, could not be graded. Among the Influences, Family Influence received a D, while Perceived Safety, Access, and Availability of Spaces for Physical Activity and the National Policy Environment graded more favorably with a B. The Active Healthy Kids Canada process and methodology was readily generalizable to Scotland. The report card illustrated low habitual physical activity and extremely high levels of screen-based sedentary behavior, and highlighted several opportunities for improved physical activity surveillance and promotion strategies.

  6. PREFACE: International Congress on Energy Fluxes and Radiation Effects (EFRE-2014)

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The International Congress on Energy Fluxes and Radiation Effects 2014 (EFRE 2014) was held in Tomsk, Russia, on September 21-26, 2014. The organizers of the Congress were the Institute of High Current Electronics SB RAS and Tomsk Polytechnic University. EFRE 2014 combines three international conferences which are regularly held in Tomsk, Russia: the 18th International Symposium on High-Current Electronics (18th SHCE), the 12th International Conference on Modification of Materials with Particle Beams and Plasma Flows (12th CMM) and the 16th International Conference on Radiation Physics and Chemistry of Condensed Matter (16th RPC). The International Conference on Radiation Physics and Chemistry of Condensed Matter is a traditional representative forum devoted to the discussion of the fundamental problems of physical and chemical non-linear processes in condensed matter (mainly inorganic dielectrics) under the action of particle and photon beams of all types including pulsed power laser radiation. The International Symposium on High-Current Electronics is held biannually in Tomsk, Russia. The program of the conferences covers a wide range of scientific and technical areas including pulsed power technology, ion and electron beams, high-power microwaves, plasma and particle beam sources, modification of materials, and pulsed power applications in chemistry, biology and medicine. The 12th International Conference on Modification of Materials with Particle Beams and Plasma Flows is devoted to the discussion of the fundamental and applied issues in the field of modification of materials properties with particle beams and plasma flows. The six-day Congress brought together more than 250 specialists and scientists from different countries and organizations and provided an excellent opportunity to exchange knowledge, make oral contributions and poster presentations, and initiate discussion on the topics of interest. The proceedings were edited by Victor Lisitsyn, Vladimir Lopatin, and Anna Bogdan. We appreciate the contribution of the invited speakers and all participants, as well as sponsors "Intech Analytics" and "MICROSPLAV" for making the Congress successful.

  7. KSC-2010-4490

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lifts the next section of the Alpha Magnetic Spectrometer, or AMS, toward a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  8. KSC-2010-4492

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lowers the next section of the Alpha Magnetic Spectrometer, or AMS, onto a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  9. KSC-2010-4488

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lowers a section of the Alpha Magnetic Spectrometer, or AMS, onto a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  10. KSC-2010-4491

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane moves the next section of the Alpha Magnetic Spectrometer, or AMS, toward a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-4487

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lifts a section of the Alpha Magnetic Spectrometer, or AMS, toward a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  12. KSC-2010-4496

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, at the Space Station Processing Facility, where it will be processed for launch. AMS arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  13. KSC-2010-4485

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload an Alpha Magnetic Spectrometer, or AMS, section from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  14. KSC-2010-4494

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, is on its way to the Space Station Processing Facility, where it will be processed for launch. AMS arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  15. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP'07)

    NASA Astrophysics Data System (ADS)

    Sobie, Randall; Tafirout, Reda; Thomson, Jana

    2007-07-01

    The 2007 International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held on 2-7 September 2007 in Victoria, British Columbia, Canada. CHEP is a major series of international conferences for physicists and computing professionals from the High Energy and Nuclear Physics community, Computer Science and Information Technology. The CHEP conference provides an international forum to exchange information on computing experience and needs for the community, and to review recent, ongoing, and future activities. The CHEP'07 conference had close to 500 attendees with a program that included plenary sessions of invited oral presentations, a number of parallel sessions comprising oral and poster presentations, and an industrial exhibition. Conference tracks covered topics in Online Computing, Event Processing, Software Components, Tools and Databases, Software Tools and Information Systems, Computing Facilities, Production Grids and Networking, Grid Middleware and Tools, Distributed Data Analysis and Information Management and Collaborative Tools. The conference included a successful whale-watching excursion involving over 200 participants and a banquet at the Royal British Columbia Museum. The next CHEP conference will be held in Prague in March 2009. We would like thank the sponsors of the conference and the staff at the TRIUMF Laboratory and the University of Victoria who made the CHEP'07 a success. Randall Sobie and Reda Tafirout CHEP'07 Conference Chairs

  16. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOEpatents

    Turner, Terry D.; Beller, Laurence S.; Clark, Michael L.; Klingler, Kerry M.

    1997-01-01

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus are also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container.

  17. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOEpatents

    Turner, T.D.; Beller, L.S.; Clark, M.L.; Klingler, K.M.

    1997-10-14

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: (a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; (b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; (c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and (d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus is also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container. 8 figs.

  18. Improving atomic displacement and replacement calculations with physically realistic damage models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less

  19. Improving atomic displacement and replacement calculations with physically realistic damage models

    DOE PAGES

    Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...

    2018-03-14

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less

  20. Improving Higgs coupling measurements through ZZ Fusion at the ILC

    DOE PAGES

    Han, Tao; Liu, Zhen; Qian, Zhuoni; ...

    2015-06-17

    In this study, we evaluate the e -e + → e -e + + h process through the ZZ fusion channel at the International Linear Collider operating at 500 GeV and 1 TeV center-of-mass energies. We perform realistic simulations on the signal process and background processes. With judicious kinematic cuts, we find that the inclusive cross section can be measured to 2.9% after combining the 500 GeV at 500 fb -1 and 1 TeV at 1 ab -1 runs. A multivariate log-likelihood analysis further improves the precision of the cross section measurement to 2.3%. We discuss the overall improvement to model-independent Higgs width andmore » coupling determinations and demonstrate the use of different channels in distinguishing new physics effects in Higgs physics. Our study demonstrates the importance of the ZZ fusion channel to Higgs precision physics, which has often been neglected in the literature.« less

  1. Improving atomic displacement and replacement calculations with physically realistic damage models.

    PubMed

    Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David

    2018-03-14

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.

  2. Future Experiments to Measure Liquid-Gas Phase Change and Heat Transfer Phenomena on the International Space Station

    NASA Astrophysics Data System (ADS)

    Tóth, Balázs; Development; Operations Teams, ESA's Science Management, Payload; Teams, Science; Industry, Space

    2012-06-01

    The article presents the approach of the European Space Agency to promote research in weightlessness and in particular onboard the International Space Station. In order to maximize the return on investments, a strong international scientific collaboration is encouraged. These Science Teams support the preparation and utilisation of the flight hardware and exploit the measurement data. In the domain of physical sciences the topics dealt with at the time of writing the present paper cover fundamental physics, fluid physics, material sciences research and specific preparatory studies in anticipation of space exploration missions. The present article focuses on two-phase (liquid-gas phase change) heat transfer related experiments. These activities cover evaporation driven thermocapillary convection, pool- and flow boiling, evaporation and condensation of films together with wettability realted issues on both reference and structured surfaces, and heat pipe systems. Some hardware are in an advanced state of development, the feasibility of some was studied or is under definition at the time of the preparation of this paper. The objectives of the experiments are described together with their expected capabilities. Beyond the understanding of mostly fundamental physical processes, the data of all the described experiments are intended to be used to validate theoretical approaches and numerical tools, which are often developed by the Science Teams in parallel with the the flight hardware design activities of space industry.

  3. Factors Influencing International PhD Students to Study Physics in Australia

    ERIC Educational Resources Information Center

    Choi, Serene H.-J.; Nieminen, Timo A.; Townson, Peter

    2012-01-01

    Since physics research is an activity of an active international community, international visits are a common way for physicists to share scientific knowledge and skills. International mobility of physicists is also important for PhD physics study and research training. We investigated personal and social factors that influenced the decision for…

  4. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    NASA Astrophysics Data System (ADS)

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-10-01

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general.

  5. Rethinking the Concept of Acculturation

    PubMed Central

    Schwartz, Seth J.; Unger, Jennifer B.; Zamboanga, Byron L.; Szapocznik, José

    2013-01-01

    This article presents an expanded model of acculturation among international migrants and their immediate descendants. Acculturation is proposed as a multidimensional process consisting of the confluence among heritage-cultural and receiving-cultural practices, values, and identifications. The implications of this reconceptualization for the acculturation construct, as well as for its relationship to psychosocial and health outcomes, are discussed. In particular, an expanded operationalization of acculturation is needed to address the “immigrant paradox,” whereby international migrants with more exposure to the receiving cultural context report poorer mental and physical health outcomes. We discuss the role of ethnicity, cultural similarity, and discrimination in the acculturation process, offer an operational definition for context of reception, and call for studies on the role that context of reception plays in the acculturation process. The new perspective on acculturation presented in this article is intended to yield a fuller understanding of complex acculturation processes and their relationships to contextual and individual functioning. PMID:20455618

  6. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  7. Physical basis of destruction of concrete and other building materials

    NASA Astrophysics Data System (ADS)

    Suleymanova, L. A.; Pogorelova, I. A.; Kirilenko, S. V.; Suleymanov, K. A.

    2018-03-01

    In the article the scientifically-grounded views of authors on the physical essence of destruction process of concrete and other materials are stated; it is shown that the mechanism of destruction of materials is similar in its essence during the mechanical, thermal, physical-chemical and combined influences, and that in its basis Newton's third law lays. In all cases destruction consists in decompaction of structures, loosening of the internal bonds in materials, in the further integrity damage and their division into separate loosely-bound (full destruction) and unbound with each other (incomplete destruction) elements, which depends on the kind of external influence and perfection of materials structure.

  8. Factorial validity and internal consistency of the motivational climate in physical education scale.

    PubMed

    Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key PointsThis study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories.The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions.The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate.Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors.

  9. Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale

    PubMed Central

    Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key Points This study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories. The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate. Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors. PMID:24570617

  10. Thermophysics Issues Relevant to High-Speed Earth Entry of Large Asteroids

    NASA Technical Reports Server (NTRS)

    Prabhu, D.; Saunders, D.; Agrawal, P.; Allen, G.; Bauschlicher, C.; Brandis, A.; Chen, Y.-K.; Jaffe, R.; Schulz, J.; Stern, E.; hide

    2016-01-01

    Physics of atmospheric entry of meteoroids was an active area of research at NASA ARC up to the early 1970s (e.g., the oft-cited work of Baldwin and Sheaffer). However, research in the area seems to have ended with the Apollo program, and any ties with an active international meteor physics community seem to have significantly diminished thereafter. In the decades following the 1970s, the focus of entry physics at NASA ARC has been on improvement of the math models of shock-layer physics (especially in chemical kinetics and radiation) and thermal response of ablative materials used for capsule heatshields. With the overarching objectives of understanding energy deposition into the atmosphere and fragmentation, could these modern analysis tools and processes be applied to the problem of atmospheric entry of meteoroids as well? In the presentation we will explore: (i) the physics of atmospheric entries of meteoroids using our current state-of-the-art tools and processes, (ii) how multiple bodies interact, and (iii) the influence of wall blowing on flow dynamics.

  11. Meteor Entry and Breakup Based on Evolution of NASAs Entry Capsule Design Tools

    NASA Technical Reports Server (NTRS)

    Prabku, Dinesh K.; Saunders, D.; Stern, E.; Chen, Y.-K.; Allen, G.; Agrawal, P.; Jaffe, R.; White, S.; Tauber, M.; Bauschlicher, C.; hide

    2015-01-01

    Physics of atmospheric entry of meteoroids was an active area of research at NASA ARC up to the early 1970s (e.g., the oft-cited work of Baldwin and Sheaffer). However, research in the area seems to have ended with the Apollo program, and any ties with an active international meteor physics community seem to have significantly diminished thereafter. In the decades following the 1970s, the focus of entry physics at NASA ARC has been on improvement of the math models of shock-layer physics (especially in chemical kinetics and radiation) and thermal response of ablative materials used for capsule heatshields. With the overarching objectives of understanding energy deposition into the atmosphere and fragmentation, could these modern analysis tools and processes be applied to the problem of atmospheric entry of meteoroids as well? In the presentation we will explore: (i) the physics of atmospheric entries of meteoroids using our current state-of-the-art tools and processes, (ii) the influence of shape (and shape change) on flow characteristics, and (iii) how multiple bodies interact.

  12. ACES MWL data analysis center at SYRTE

    NASA Astrophysics Data System (ADS)

    Meynadier, F.; Delva, P.; le Poncin-Lafitte, C.; Guerlin, C.; Laurent, P.; Wolf, P.

    2017-12-01

    The ACES-PHARAO mission aims at operating a cold-atom caesium clock on board the International Space Station, and performs two-way time transfer with ground terminals, in order to allow highly accurate and stable comparisons of its internal timescale with those found in various metrology institutes. Scientific goals in fundamental physics include tests of the gravitational redshift with unprecedented accuracy, and search for a violation of the Lorentz local invariance. As launch is coming closer we are getting ready to process the data expected to come from ACES Microwave Link (MWL) once on board the International Space Station. Several hurdles have been cleared in our software in the past months, as we managed to implement algorithms that reach target accuracy for ground/space desynchronisation measurement. I will present the current status of data analysis preparation, as well as the activities that will take place at SYRTE in order to set up its data processing center.

  13. [Beginning of the institutionalization of physical therapy in a Swiss canton: 1928-1945].

    PubMed

    Hasler, Véronique

    2013-01-01

    The institutionalization of physical therapy in Switzerland took place in the inter-war period. This article aims to relate the initiation of this process in the Canton of Vaud, as a specific example that will nevertheless be compared with the Swiss and international contexts. This story occurs around three major events between 1928 and 1945: the massage becomes a regulated profession, followed by the emergence of a professional association and a specialized school. The intention is first to identify the social actors, then the interests, issues, and interactions that have contributed to model the modern physical therapy. Finally, the techniques used by the masseurs--the first professional physical therapists--and their working environment are evoked.

  14. Objectively measured physical activity and sedentary time in youth: the International children's accelerometry database (ICAD).

    PubMed

    Cooper, Ashley R; Goodman, Anna; Page, Angie S; Sherar, Lauren B; Esliger, Dale W; van Sluijs, Esther M F; Andersen, Lars Bo; Anderssen, Sigmund; Cardon, Greet; Davey, Rachel; Froberg, Karsten; Hallal, Pedro; Janz, Kathleen F; Kordas, Katarzyna; Kreimler, Susi; Pate, Russ R; Puder, Jardena J; Reilly, John J; Salmon, Jo; Sardinha, Luis B; Timperio, Anna; Ekelund, Ulf

    2015-09-17

    Physical activity and sedentary behaviour in youth have been reported to vary by sex, age, weight status and country. However, supporting data are often self-reported and/or do not encompass a wide range of ages or geographical locations. This study aimed to describe objectively-measured physical activity and sedentary time patterns in youth. The International Children's Accelerometry Database (ICAD) consists of ActiGraph accelerometer data from 20 studies in ten countries, processed using common data reduction procedures. Analyses were conducted on 27,637 participants (2.8-18.4 years) who provided at least three days of valid accelerometer data. Linear regression was used to examine associations between age, sex, weight status, country and physical activity outcomes. Boys were less sedentary and more active than girls at all ages. After 5 years of age there was an average cross-sectional decrease of 4.2% in total physical activity with each additional year of age, due mainly to lower levels of light-intensity physical activity and greater time spent sedentary. Physical activity did not differ by weight status in the youngest children, but from age seven onwards, overweight/obese participants were less active than their normal weight counterparts. Physical activity varied between samples from different countries, with a 15-20% difference between the highest and lowest countries at age 9-10 and a 26-28% difference at age 12-13. Physical activity differed between samples from different countries, but the associations between demographic characteristics and physical activity were consistently observed. Further research is needed to explore environmental and sociocultural explanations for these differences.

  15. The northern global change research program

    Treesearch

    Richard A. Birdsey; John L. Hom; Marla Emery

    1996-01-01

    The Forest Service goal for global change research is to establish a sound scientific basis for making regional, national, and international resource management and policy decisions in the context of global change issues. The objectives of the Northern Global Change Program (NGCP) are to understand: (1) what processes in forest ecosystems are sensitive to physical and...

  16. Academic Venturing in Higher Education: Institutional Effects on Performance of University Technology Transfer. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Powers, Joshua B.

    This study investigated institutional resource factors that may explain differential performance with university technology transfer--the process by which university research is transformed into marketable products. Using multi-source data on 108 research universities, a set of internal resources (financial, physical, human capital, and…

  17. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  18. Maintaining physical activity over time: the importance of basic psychological need satisfaction in developing the physically active self.

    PubMed

    Springer, Judy B; Lamborn, Susie D; Pollard, Diane M

    2013-01-01

    Drawing from self-determination theory, this study investigated adults' perceptions of the process of long-term maintenance of physical activity and how it may relate to their self-identity. Qualitative study included 22 in-depth interviews and participants' recorded personal reflective journals. Health/fitness facility in a Midwestern city. Purposeful sample of 12 adult (age range 29-73 years) members who had engaged in regular physical activity for at least 3 years. Data were collected on participants' perceptions of processes associated with physical activity maintenance. Grounded theory data analysis techniques were used to develop an understanding of participants' long-term physical activity adherence. RESULTS. Analysis revealed three themes organized around basic psychological need satisfaction: (1) Relatedness included receiving and giving support. (2) Competence included challenge and competition, managing weight, and strategies for health management. (3) Autonomy included confidence in the established routine, valuing fitness status, and feeling self-directed. The final theme of physically active self included the personal fit of an active lifestyle, identity as an active person, and attachment to physical activity as life enhancing. Our results suggest that long-term physical activity adherence may be strengthened by promotion of the individual's basic psychological need satisfaction. Adherence is most likely to occur when the value of participation becomes internalized over time as a component of the physically active self.

  19. Building International Research Partnerships in the North Atlantic-Arctic Region

    NASA Astrophysics Data System (ADS)

    Benway, Heather M.; Hofmann, Eileen; St. John, Michael

    2014-09-01

    The North Atlantic-Arctic region, which is critical to the health and socioeconomic well being of North America and Europe, is susceptible to climate-driven changes in circulation, biogeochemistry, and marine ecosystems. The need for strong investment in the study of biogeochemical and ecosystem processes and interactions with physical processes over a range of time and space scales in this region was clearly stated in the 2013 Galway Declaration, an intergovernmental statement on Atlantic Ocean cooperation (http://europa.eu/rapid/press-release_IP-13-459_en.htm). Subsequently, a workshop was held to bring together researchers from the United States, Canada, and Europe with expertise across multiple disciplines to discuss an international research initiative focused on key features, processes, and ecosystem services (e.g., Atlantic Meridional Overturning Circulation, spring bloom dynamics, fisheries, etc.) and associated sensitivities to climate changes.

  20. The International Congress of the International Council on Health, Physical Education, and Recreation (9th, Seoul, Korea, July 28-August 2, 1966).

    ERIC Educational Resources Information Center

    International Council on Health, Physical Education, and Recreation, Washington, DC.

    The theme of the Ninth Annual International Congress of the International Council on Health, Physical Education, and Recreation (ICHPER), where the papers in this collection originated, was "Educational Planning in Health, Physical Education, and Recreation." After greetings from six distinguished Korean leaders and the Presidential address by…

  1. Computation of linear acceleration through an internal model in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562

  2. Generation of internal solitary waves by frontally forced intrusions in geophysical flows.

    PubMed

    Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric

    2016-12-06

    Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.

  3. Causal reports: Context-dependent contributions of intuitive physics and visual impressions of launching.

    PubMed

    Vicovaro, Michele

    2018-05-01

    Everyday causal reports appear to be based on a blend of perceptual and cognitive processes. Causality can sometimes be perceived automatically through low-level visual processing of stimuli, but it can also be inferred on the basis of an intuitive understanding of the physical mechanism that underlies an observable event. We investigated how visual impressions of launching and the intuitive physics of collisions contribute to the formation of explicit causal responses. In Experiment 1, participants observed collisions between realistic objects differing in apparent material and hence implied mass, whereas in Experiment 2, participants observed collisions between abstract, non-material objects. The results of Experiment 1 showed that ratings of causality were mainly driven by the intuitive physics of collisions, whereas the results of Experiment 2 provide some support to the hypothesis that ratings of causality were mainly driven by visual impressions of launching. These results suggest that stimulus factors and experimental design factors - such as the realism of the stimuli and the variation in the implied mass of the colliding objects - may determine the relative contributions of perceptual and post-perceptual cognitive processes to explicit causal responses. A revised version of the impetus transmission heuristic provides a satisfactory explanation for these results, whereas the hypothesis that causal responses and intuitive physics are based on the internalization of physical laws does not. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Monash University Interactive Simple Climate Model

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  5. PREFACE: International Symposium "Nanoscience and Quantum Physics 2011" (nanoPHYS'11)

    NASA Astrophysics Data System (ADS)

    Saito, Susumu; Tanaka, Hidekazu; Nakamura, Takashi; Nakamura, Masaaki

    2011-07-01

    Quantum physics has developed modern views of nature for more than a century. In addition to this traditional role, quantum physics has acquired new significance in the 21st century as the field responsible for driving and supporting nanoscience research, which will have even greater importance in the future because nanoscience will be the academic foundation for new technologies. The Department of Physics, Tokyo Institute of Technology, are now conducting a "Nanoscience and Quantum Physics" project (Physics G-COE project) supported by the Global Center of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) in order to promote research and education in these important academic fields. The International Symposium on Nanoscience and Quantum Physics, held in Tokyo, Japan, 26-28 January 2011 (nanoPHYS'11) was organized by the Physics G-COE project of the Tokyo Institute of Technology to provide an international forum for the open exchange of topical information and for stimulating discussion on novel concepts and future prospects of nanoscience and quantum physics. There were a total of 118 papers including 34 invited papers. This nanoPHYS'11 is the fourth symposium of this kind organized by the Tokyo Institute of Technology. Topics focused on in the symposium included: Category 1: Novel nanostructure (Nanowires, Nanotubes, Spin-related structure, etc) Category 2: Novel transport and electronic properties (Graphene, Topological insulators, Coherent control, etc) Category 3: Electronic and optical properties of nanostructure Category 4: Fundamental physics and new concept in quantum physics Category 5: Quantum Physics - Quantum information Category 6: Quantum Physics - Nuclear and Hadron Physics Category 7: Quantum Physics - Astrophysics, etc All the papers submitted to this issue have been reviewed under a stringent refereeing process, according to the normal rules of this Journal. The editors are grateful to all the authors, the referees, and all the individuals involved in the symposium organization, in particular, all the committee members and secretaries who helped to make this symposium so successful. The organizing committee would like to take this opportunity to thank the invited speakers, the session chairs, and all the attendees for their contribution to the symposium. Susumu Saito, Hidekazu Tanaka, Takashi Nakamura and Masaaki Nakamura, Editors Conference photograph

  6. Dynamics of internal waves on the Southeast Florida shelf: Implications for cross-shelf exchange and turbulent mixing on a barrier reef system

    NASA Astrophysics Data System (ADS)

    Davis, Kristen Alexis

    The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August 2003 suggests that, during the summer months, instabilities in the Florida Current and nonlinear internal waves are the primary mechanisms driving cross-shelf transport on the outer shelf Surface tide, wind, and wave-driven transport were found to be small in comparison. Additionally, this data set highlights the importance of baroclinic processes to cross-shelf transport in this region. In the last phase of my research, I sought to investigate how boundary layer dynamics over a rough coral bed were modified by shoaling internal waves and to understand the implications for mixing and mass transfer to the bed. Results are presented from an observational study of the turbulent bottom boundary layer on the outer Southeast Florida shelf in July and August 2005. Turbulence in the reef bottom boundary layer is highly variable in time and is modified by near bed flow, shear, and stratification driven by shoaling internal waves. We examined turbulence in the bottom boundary layer during a typical internal wave event and found that in addition to the episodic onshore transport of cool, subthermocline water masses, with elevated nutrient concentrations, bottom-intensified currents from shoaling internal waves can increase turbulent dissipation and mixing in the reef bottom boundary layer. Additionally, we show that estimates of flux Richardson number, calculated directly from measurements of dissipation and buoyancy flux, support the dependence of R f on turbulent intensity, epsilon/nuN 2, a relationship that has only been previously shown in laboratory and numerical work. While the importance of surface gravity waves in generating turbulent mixing and controlling mass transfer on coral reefs has been well documented in the literature, this work represents the first time the appropriate field data have been collected for a detailed dynamic analysis of the physical effects and biological implications of internal waves on reef ecosystems. Results from these studies suggest that for reef communities exposed to continental shelf and slope processes, internal waves may play an important role in cross-shelf transport and mass transfer to benthic organisms and may be essential to modeling key biological processes, the connectivity of coral populations, or designing and managing marine reserves and fisheries.

  7. International fieldwork placements in low-income countries: Exploring community perspectives.

    PubMed

    Shields, Megan; Quilty, Jenny; Dharamsi, Shafik; Drynan, Donna

    2016-10-01

    There has been a significant increase in the number of occupational and physical therapy students going on international fieldwork placements in low-income countries. Yet, there has been a lack of research describing this experience from the agencies that host students. The research question was 'how do members of an agency within a low-income country perceive, interpret and give meaning to international fieldwork placements where students from a Canadian university provide occupational and physical therapy services?' Purposive sampling was used to recruit participants from five affiliated international fieldwork sites. Six semi-structured interviews exploring the perspectives of individuals from agency sites in low-income countries facilitated the data collection. Interviews were audiotaped and transcribed verbatim for thematic analysis. Four themes provided insight into the participants' experience of hosting student therapists. Participants emphasised: (i) there was a reciprocity of learning between agency members and students; (ii) they felt responsible for the health and safety of the students, as well as providing an enriching experience; (iii) participants questioned the preparation phase; and (iv) recommendations were made by participants to strengthen partnerships while contemplating sustainable practices. This study highlighted that effective preparation, enhanced communication, reflection and reciprocity is necessary to achieve what hosting agencies view as sustainable international placements. These results provide a platform for stakeholders to question their current processes for fieldwork placement engagement and potential suggestions for improving current international fieldwork partnerships. © 2016 Occupational Therapy Australia.

  8. KSC-2010-4507

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians remove a side panel that protected the Alpha Magnetic Spectrometer, or AMS, during shipment. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  9. 11th International Conference on Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Christian, H. J. (Compiler)

    1999-01-01

    This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAE 99), held June 7-11, 1999. This conference was attended by scientists and researchers from around the world. The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.

  10. KSC-2010-4486

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload a section of the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-4489

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload the next section of the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  12. Editorial

    NASA Astrophysics Data System (ADS)

    Musilek, L.; Dunn, W. L.

    2017-08-01

    The selected proceedings of the 13th International Symposium on Radiation Physics (ISRP-13) are presented here across a broad range of important topics including: Fundamental processes in radiation physics, Theoretical investigations, New radiation sources, techniques & detectors, Absorption and fluorescence spectroscopy (XAFS, XANES, XRF Spectroscopy, Raman, Infrared …), Applications of radiation in material science, nano-science & nanotechnology, Applications of radiation in biology & medical science, Applications of radiation in space, earth, energy & environmental sciences, Applications of radiation in cultural heritage & art and Applications of radiation in industry. In total, 48 papers have been accepted for these proceedings.

  13. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  14. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group.

    PubMed

    Kelaiditi, E; Cesari, M; Canevelli, M; van Kan, G Abellan; Ousset, P-J; Gillette-Guyonnet, S; Ritz, P; Duveau, F; Soto, M E; Provencher, V; Nourhashemi, F; Salvà, A; Robert, P; Andrieu, S; Rolland, Y; Touchon, J; Fitten, J L; Vellas, B

    2013-09-01

    The frailty syndrome has recently attracted attention of the scientific community and public health organizations as precursor and contributor of age-related conditions (particularly disability) in older persons. In parallel, dementia and cognitive disorders also represent major healthcare and social priorities. Although physical frailty and cognitive impairment have shown to be related in epidemiological studies, their pathophysiological mechanisms have been usually studied separately. An International Consensus Group on "Cognitive Frailty" was organized by the International Academy on Nutrition and Aging (I.A.N.A) and the International Association of Gerontology and Geriatrics (I.A.G.G) on April 16th, 2013 in Toulouse (France). The present report describes the results of the Consensus Group and provides the first definition of a "Cognitive Frailty" condition in older adults. Specific aim of this approach was to facilitate the design of future personalized preventive interventions in older persons. Finally, the Group discussed the use of multidomain interventions focused on the physical, nutritional, cognitive and psychological domains for improving the well-being and quality of life in the elderly. The consensus panel proposed the identification of the so-called "cognitive frailty" as an heterogeneous clinical manifestation characterized by the simultaneous presence of both physical frailty and cognitive impairment. In particular, the key factors defining such a condition include: 1) presence of physical frailty and cognitive impairment (CDR=0.5); and 2) exclusion of concurrent AD dementia or other dementias. Under different circumstances, cognitive frailty may represent a precursor of neurodegenerative processes. A potential for reversibility may also characterize this entity. A psychological component of the condition is evident and concurs at increasing the vulnerability of the individual to stressors.

  15. Application of SNMP on CATV

    NASA Astrophysics Data System (ADS)

    Huang, Hong-bin; Liu, Wei-ping; Chen, Shun-er; Zheng, Liming

    2005-02-01

    A new type of CATV network management system developed by universal MCU, which supports SNMP, is proposed in this paper. From the point of view in both hardware and software, the function and method of every modules inside the system, which include communications in the physical layer, protocol process, data process, and etc, are analyzed. In our design, the management system takes IP MAN as data transmission channel and every controlled object in the management structure has a SNMP agent. In the SNMP agent developed, there are four function modules, including physical layer communication module, protocol process module, internal data process module and MIB management module. In the paper, the structure and function of every module are designed and demonstrated while the related hardware circuit, software flow as well as the experimental results are tested. Furthermore, by introducing RTOS into the software programming, the universal MCU procedure can conducts such multi-thread management as fast Ethernet controller driving, TCP/IP process, serial port signal monitoring and so on, which greatly improves efficiency of CPU.

  16. Prediction of Physical Activity Level Using Processes of Change From the Transtheoretical Model: Experiential, Behavioral, or an Interaction Effect?

    PubMed

    Romain, Ahmed Jérôme; Horwath, Caroline; Bernard, Paquito

    2018-01-01

    The purpose of the present study was to compare prediction of physical activity (PA) by experiential or behavioral processes of change (POCs) or an interaction between both types of processes. A cross-sectional study. This study was conducted using an online questionnaire. A total of 394 participants (244 women, 150 men), with a mean age of 35.12 ± 12.04 years and a mean body mass index of 22.97 ± 4.25 kg/m 2 were included. Participants completed the Processes of Change, Stages of Change questionnaires, and the International Physical Activity Questionnaire to evaluate self-reported PA level (total, vigorous, and moderate PA). Hierarchical multiple regression models were used to test the prediction of PA level. For both total PA (β = .261; P < .001) and vigorous PA (β = .297; P < .001), only behavioral POCs were a significant predictor. Regarding moderate PA, only the interaction between experiential and behavioral POCs was a significant predictor (β = .123; P = .017). Our results provide confirmation that behavioral processes are most prominent in PA behavior. Nevertheless, it is of interest to note that the interaction between experiential and behavioral POCs was the only element predicting moderate PA level. Experiential processes were not associated with PA level.

  17. Endodontic Treatment of an Anomalous Anterior Tooth with the Aid of a 3-dimensional Printed Physical Tooth Model.

    PubMed

    Byun, Chanhee; Kim, Changhwan; Cho, Seungryong; Baek, Seung Hoon; Kim, Gyutae; Kim, Sahng G; Kim, Sun-Young

    2015-06-01

    Endodontic treatment of tooth formation anomalies is a challenge to clinicians and as such requires a complete understanding of the aberrant root canal anatomy followed by careful root canal disinfection and obturation. Here, we report the use of a 3-dimensional (3D) printed physical tooth model including internal root canal structures for the endodontic treatment of a challenging tooth anomaly. A 12-year-old boy was referred for endodontic treatment of tooth #8. The tooth showed class II mobility with swelling and a sinus tract in the buccal mucosa and periapical radiolucency. The tooth presented a very narrow structure between the crown and root by distal concavity and a severely dilacerated root. Moreover, a perforation site with bleeding and another ditching site were identified around the cervical area in the access cavity. A translucent physical tooth model carrying the information on internal root canal structures was built through a 3-step process: data acquisition by cone-beam computed tomographic scanning, virtual modeling by image processing, and manufacturing by 3D printing. A custom-made guide jig was then fabricated to achieve a safe and precise working path to the root canal. Endodontic procedures including access cavity preparation were performed using the physical tooth model and the guide jig. At the 7-month follow-up, the endodontically treated tooth showed complete periapical healing with no clinical signs and symptoms. This case report describes a novel method of endodontic treatment of an anomalous maxillary central incisor with the aid of a physical tooth model and a custom-made guide jig via 3D printing technique. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. 75 FR 1301 - Damages Received on Account of Personal Physical Injuries or Physical Sickness; Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 [REG-127270-06] RIN 1545-BF81 Damages Received on Account of Personal Physical Injuries or Physical Sickness; Hearing AGENCY: Internal... from gross income for amounts received on account of personal physical injuries or physical sickness...

  19. Physics Education activities sponsored by LAPEN

    NASA Astrophysics Data System (ADS)

    Mora Ley, Cesar E.

    2007-05-01

    In this work we present the first activities of the Latin-American Physics Education Network (LAPEN) organized by representatives of Brazil, Cuba, Mexico, Argentina, Colombia, Uruguay, Peru and Spain. These activities include Seminars, Congress, Postgraduate Programs on Physics Education and several publications. The creation of LAPEN has been inspired and warranted by members of the International Commission on Physics Education of the International Union of Pure and Applied Physics. LAPEN was constituted in the International Meeting on Teaching Physics and Training Teachers (RIEFEP 2005) which was held in Matanzas, Cuba in November 2005. The creation of LAPEN was also warranted by the General Assembly of the IX Inter-American Conference on Physics Education held in San José, Costa Rica from 3 to 7 July 2006, and by the ICPE Committee in the International Conference on Physics Education 2006 at Tokyo, Japan. LAPEN has a Coordinator Committee integrated by a President, a Vice-president and an Executive Secretary.

  20. Toward a more embedded/extended perspective on the cognitive function of gestures

    PubMed Central

    Pouw, Wim T. J. L.; de Nooijer, Jacqueline A.; van Gog, Tamara; Zwaan, Rolf A.; Paas, Fred

    2014-01-01

    Gestures are often considered to be demonstrative of the embodied nature of the mind (Hostetter and Alibali, 2008). In this article, we review current theories and research targeted at the intra-cognitive role of gestures. We ask the question how can gestures support internal cognitive processes of the gesturer? We suggest that extant theories are in a sense disembodied, because they focus solely on embodiment in terms of the sensorimotor neural precursors of gestures. As a result, current theories on the intra-cognitive role of gestures are lacking in explanatory scope to address how gestures-as-bodily-acts fulfill a cognitive function. On the basis of recent theoretical appeals that focus on the possibly embedded/extended cognitive role of gestures (Clark, 2013), we suggest that gestures are external physical tools of the cognitive system that replace and support otherwise solely internal cognitive processes. That is gestures provide the cognitive system with a stable external physical and visual presence that can provide means to think with. We show that there is a considerable amount of overlap between the way the human cognitive system has been found to use its environment, and how gestures are used during cognitive processes. Lastly, we provide several suggestions of how to investigate the embedded/extended perspective of the cognitive function of gestures. PMID:24795687

  1. Design and Validation of 3D Printed Complex Bone Models with Internal Anatomic Fidelity for Surgical Training and Rehearsal.

    PubMed

    Unger, Bertram J; Kraut, Jay; Rhodes, Charlotte; Hochman, Jordan

    2014-01-01

    Physical models of complex bony structures can be used for surgical skills training. Current models focus on surface rendering but suffer from a lack of internal accuracy due to limitations in the manufacturing process. We describe a technique for generating internally accurate rapid-prototyped anatomical models with solid and hollow structures from clinical and microCT data using a 3D printer. In a face validation experiment, otolaryngology residents drilled a cadaveric bone and its corresponding printed model. The printed bone models were deemed highly realistic representations across all measured parameters and the educational value of the models was strongly appreciated.

  2. Lifetime Occupational Physical Activity and Musculoskeletal Aging in Middle-Aged Men and Women in Denmark: Retrospective Cohort Study Protocol and Methods

    PubMed Central

    Mortensen, Ole Steen; Reventlow, Susanne; Skov, Peder Georg; Andersen, Johan Hviid; Rubak, Tine Steen; Hansen, Åse Marie; Andersen, Lars L; Lund, Rikke; Osler, Merete; Christensen, Ulla; Avlund, Kirsten

    2012-01-01

    Background Physical function is essential for performing most aspects of daily life and musculoskeletal aging leads to a decline in physical function. The onset and rate of this process vary and are influenced by environmental, genetic, and hormonal factors. Although everyone eventually experiences musculoskeletal aging, it is beneficial to study the factors that influence the aging process in order to prevent disability. The role of occupational physical activity in the musculoskeletal aging process is unclear. In the past, hard physical work was thought to strengthen the worker, but current studies in this field fail to find a training effect in jobs with a high level of occupational physical activity. Objective The aim of this study is to examine the influence of lifetime occupational physical activity on physical function in midlife. The study follows the “occupational life-course perspective,” emphasizing the importance of occupational exposures accumulated throughout life on the musculoskeletal aging process taking socioeconomic and lifestyle factors into consideration. Methods This study is a retrospective cohort study including a cross-sectional measurement of physical function in 5000 middle-aged Danes. Data was obtained from the Copenhagen Aging and Midlife Biobank (CAMB) which is based on three existing Danish cohorts. Using questionnaire information about the five longest-held occupations, the job history was coded from the Danish version of the International Standard Classification of Occupations (D-ISCO 88) and a job exposure matrix containing information about occupational physical activity in Danish jobs was applied to the dataset. The primary outcomes are three tests of physical function: handgrip strength, balance, and chair rise. In the analyses, we will compare physical function in midlife according to accumulated exposure to high levels of occupational physical activity. Conclusions We have a unique opportunity to study the influence of work on early musculoskeletal aging taking other factors into account. In this study, the “healthy worker effect” is reduced due to inclusion of people from the working population and people who are already retired or have been excluded from the labor market. However, low participation in the physical tests can lead to selection bias. PMID:23611836

  3. International Perspectives on Adapted Physical Activity. Selected Papers Presented at the International Symposium on Adapted Physical Activity (5th, Toronto, Canada, October 1-4, 1985).

    ERIC Educational Resources Information Center

    Berridge, Mavis E., Ed.; Ward, Graham R., Ed.

    The 36 papers in this book were presented at the Fifth International Symposium on Adapted Physical Activity. Presentations document some of the research findings and new ideas in physical education and recreation programs designed to improve the quality of life for special populations. The collection represents the breadth of the field, from the…

  4. News Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

    NASA Astrophysics Data System (ADS)

    2012-05-01

    Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

  5. WE-E-204-02: Journal of Medical Physics and JACMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  6. Racial Disparities in Health Behaviors and Conditions Among Lesbian and Bisexual Women: The Role of Internalized Stigma

    PubMed Central

    Molina, Yamile; Lehavot, Keren; Beadnell, Blair; Simoni, Jane

    2013-01-01

    There are documented disparities in physical health behaviors and conditions, such as physical activity and obesity, with regard to both race/ethnicity and sexual orientation. However, physical health disparities for lesbian and bisexual (LB) women who are also racial minorities are relatively unexplored. Minority stressors, such as internalized stigma, may account for disparities in such multiply marginalized populations. We sought to (1) characterize inequalities among non-Hispanic white and African American LB women and (2) examine the roles of internalized sexism and homophobia in disparities. Data on health behaviors (diet, physical activity); physical health (hypertension, diabetes, overweight/obesity); internalized sexism; and internalized homophobia were collected via a web-based survey. Recruitment ads were sent electronically to over 200 listservs, online groups, and organizations serving the lesbian, gay, and bisexual community in all 50 U.S. states. The analytic sample consisted of 954 white and 75 African American LB women. African American participants were more likely than white participants to report low fruit/vegetable intake and physical activity, a higher body mass index, and a history of diabetes and hypertension. There were no racial differences in internalized homophobia, but African American women reported higher levels of internalized sexism. Internalized sexism partially mediated racial disparities in physical activity and diabetes, but not in the other outcomes. Findings suggest that African American LB women may be at greater risk than their white counterparts for poor health and that internalized sexism may be a mediator of racial differences for certain behaviors and conditions. PMID:25364769

  7. A novel bedside cardiopulmonary physical diagnosis curriculum for internal medicine postgraduate training.

    PubMed

    Garibaldi, Brian Thomas; Niessen, Timothy; Gelber, Allan Charles; Clark, Bennett; Lee, Yizhen; Madrazo, Jose Alejandro; Manesh, Reza Sedighi; Apfel, Ariella; Lau, Brandyn D; Liu, Gigi; Canzoniero, Jenna VanLiere; Sperati, C John; Yeh, Hsin-Chieh; Brotman, Daniel J; Traill, Thomas A; Cayea, Danelle; Durso, Samuel C; Stewart, Rosalyn W; Corretti, Mary C; Kasper, Edward K; Desai, Sanjay V

    2017-10-06

    Physicians spend less time at the bedside in the modern hospital setting which has contributed to a decline in physical diagnosis, and in particular, cardiopulmonary examination skills. This trend may be a source of diagnostic error and threatens to erode the patient-physician relationship. We created a new bedside cardiopulmonary physical diagnosis curriculum and assessed its effects on post-graduate year-1 (PGY-1; interns) attitudes, confidence and skill. One hundred five internal medicine interns in a large U.S. internal medicine residency program participated in the Advancing Bedside Cardiopulmonary Examination Skills (ACE) curriculum while rotating on a general medicine inpatient service between 2015 and 2017. Teaching sessions included exam demonstrations using healthy volunteers and real patients, imaging didactics, computer learning/high-fidelity simulation, and bedside teaching with experienced clinicians. Primary outcomes were attitudes, confidence and skill in the cardiopulmonary physical exam as determined by a self-assessment survey, and a validated online cardiovascular examination (CE). Interns who participated in ACE (ACE interns) by mid-year more strongly agreed they had received adequate training in the cardiopulmonary exam compared with non-ACE interns. ACE interns were more confident than non-ACE interns in performing a cardiac exam, assessing the jugular venous pressure, distinguishing 'a' from 'v' waves, and classifying systolic murmurs as crescendo-decrescendo or holosystolic. Only ACE interns had a significant improvement in score on the mid-year CE. A comprehensive bedside cardiopulmonary physical diagnosis curriculum improved trainee attitudes, confidence and skill in the cardiopulmonary examination. These results provide an opportunity to re-examine the way physical examination is taught and assessed in residency training programs.

  8. Rumination in Patients with Binge-Eating Disorder and Obesity: Associations with Eating-Disorder Psychopathology and Weight-bias Internalization.

    PubMed

    Wang, Shirley B; Lydecker, Janet A; Grilo, Carlos M

    2017-03-01

    Overvaluation of shape and weight in binge-eating disorder (BED) is associated with greater eating-disorder psychopathology and greater weight-bias internalization, which are-in turn-associated with poorer mental and physical health. Little is known, however, about the significance of other cognitive processes, such as rumination, in BED. This study examined rumination and overvaluation of shape/weight with eating-disorder psychopathology and weight-bias internalization among 237 treatment-seeking patients with BED and comorbid obesity. Hierarchical multiple regressions indicated that rumination was associated with eating-disorder psychopathology and weight-bias internalization above and beyond the influence of overvaluation of shape/weight. Findings suggest that, among patients with BED/obesity, rumination is an important cognitive process associated with severity of eating-disorder psychopathology even after accounting for overvaluation of shape/weight. Patients with greater rumination might be more likely to dwell on weight-based discrimination experiences and internalize these negative attitudes. Additional controlled examination could determine whether rumination represents another potential target for BED/obesity treatment. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  9. Understanding the Value of a Computer Emergency Response Capability for Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasper, Peter Donald; Rodriguez, Julio Gallardo

    The international nuclear community has a great understanding of the physical security needs relating to the prevention, detection, and response of malicious acts associated with nuclear facilities and radioactive material. International Atomic Energy Agency (IAEA) Nuclear Security Recommendations (INFCIRC_225_Rev 5) outlines specific guidelines and recommendations for implementing and maintaining an organization’s nuclear security posture. An important element for inclusion into supporting revision 5 is the establishment of a “Cyber Emergency Response Team (CERT)” focused on the international communities cybersecurity needs to maintain a comprehensive nuclear security posture. Cybersecurity and the importance of nuclear cybersecurity require that there be a specificmore » focus on developing an International Nuclear CERT (NS-CERT). States establishing contingency plans should have an understanding of the cyber threat landscape and the potential impacts to systems in place to protect and mitigate malicious activities. This paper will outline the necessary components, discuss the relationships needed within the international community, and outline a process by which the NS-CERT identifies, collects, processes, and reports critical information in order to establish situational awareness (SA) and support decision-making« less

  10. Impact of stress and mitigating information on evaluations, attributions, affect, disciplinary choices, and expectations of compliance in mothers at high and low risk for child physical abuse.

    PubMed

    De Paúl, Joaquín; Asla, Nagore; Pérez-Albéniz, Alicia; de Cádiz, Bárbara Torres-Gómez

    2006-08-01

    The objective is to know if high-risk mothers for child physical abuse differ in their evaluations, attributions, negative affect, disciplinary choices for children's behavior, and expectations of compliance. The effect of a stressor and the introduction of mitigating information are analyzed. Forty-seven high-risk and 48 matched low-risk mothers participated in the study. Mothers' information processing and disciplinary choices were examined using six vignettes depicting a child engaging in different transgressions. A four-factor design with repeated measures on the last two factors was used. High-risk mothers reported more hostile intent, global and internal attributions, more use of power assertion discipline, and less induction. A risk group by child transgression interaction and a risk group by mitigating information interaction were found. Results support the social information-processing model of child physical abuse, which suggests that high-risk mothers process child-related information differently and use more power assertive and less inductive disciplinary techniques.

  11. Adoption: biological and social processes linked to adaptation.

    PubMed

    Grotevant, Harold D; McDermott, Jennifer M

    2014-01-01

    Children join adoptive families through domestic adoption from the public child welfare system, infant adoption through private agencies, and international adoption. Each pathway presents distinctive developmental opportunities and challenges. Adopted children are at higher risk than the general population for problems with adaptation, especially externalizing, internalizing, and attention problems. This review moves beyond the field's emphasis on adoptee-nonadoptee differences to highlight biological and social processes that affect adaptation of adoptees across time. The experience of stress, whether prenatal, postnatal/preadoption, or during the adoption transition, can have significant impacts on the developing neuroendocrine system. These effects can contribute to problems with physical growth, brain development, and sleep, activating cascading effects on social, emotional, and cognitive development. Family processes involving contact between adoptive and birth family members, co-parenting in gay and lesbian adoptive families, and racial socialization in transracially adoptive families affect social development of adopted children into adulthood.

  12. Testing two process models of religiosity and sexual behavior

    PubMed Central

    Vasilenko, Sara A.; Duntzee, Christina I.; Zheng, Yao; Lefkowitz, Eva S.

    2013-01-01

    Adolescents who are more religious are less likely to have sex, but the process by which religiosity impacts sexual behavior is not well established. We tested two potential processes, involving: (1) whether religiosity suppressed individuals’ motivations to have sex for physical pleasure, and (2) whether individuals internalized their religions’ teachings about sex for pleasure. College students (N=610, 53.8% female, M age=18.5, 26.1% Hispanic Latino [HL], 14.9% non-HL African American, 23.8% non-HL Asian American/Pacific Islander, 26.3% non-HL European American and 8.9% non-HL multiracial) completed web surveys during their first three semesters. Religiosity did not moderate the association between students’ motivations for sex for pleasure and sexual behavior. Motivations mediated the association between religiosity and sexual behavior, suggesting that religion does not override adolescents’ existing motivations, but instead, religious adolescents internalize norms about sexual behavior. PMID:23849661

  13. Registration factors that limit international mobility of people holding physiotherapy qualifications: A systematic review.

    PubMed

    Foo, Jonathan S; Storr, Michael; Maloney, Stephen

    2016-06-01

    There is no enforced international standardisation of the physiotherapy profession. Thus, registration is used in many countries to maintain standards of care and to protect the public. However, registration may also limit international workforce mobility. What is known about the professional registration factors that may limit the international mobility of people holding physiotherapy qualifications? Systematic review using an electronic database search and hand searching of the World Confederation for Physical Therapy and International Network of Physiotherapy Regulatory Authorities websites. Analysis was conducted using thematic analysis. 10 articles and eight websites were included from the search strategy. Data is representative of high-income English speaking countries. Four themes emerged regarding limitations to professional mobility: practice context, qualification recognition, verification of fitness to practice, and incidental limitations arising from the registration process. Professional mobility is limited by differences in physiotherapy education programmes, resulting in varying standards of competency. Thus, it is often necessary to verify clinical competencies through assessments, as well as determining professional attributes and ability to apply competencies in a different practice context, as part of the registration process. There has been little evaluation of registration practices, and at present, there is a need to re-evaluate current registration processes to ensure they are efficient and effective, thereby enhancing workforce mobility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. The home hemodialysis hub: physical infrastructure and integrated governance structure.

    PubMed

    Marshall, Mark R; Young, Bessie A; Fox, Sally J; Cleland, Calli J; Walker, Robert J; Masakane, Ikuto; Herold, Aaron M

    2015-04-01

    An effective home hemodialysis program critically depends on adequate hub facilities and support functions and on transparent and accountable organizational processes. The likelihood of optimal service delivery and patient care will be enhanced by fit-for-purpose facilities and implementation of a well-considered governance structure. In this article, we describe the required accommodation and infrastructure for a home hemodialysis program and a generic organizational structure that will support both patient-facing clinical activities and business processes. © 2015 International Society for Hemodialysis.

  15. Internal tidal mixing as a control on continental margin ecosystems

    NASA Astrophysics Data System (ADS)

    Sharples, Jonathan; Moore, C. Mark; Hickman, Anna E.; Holligan, Patrick M.; Tweddle, Jacqueline F.; Palmer, Matthew R.; Simpson, John H.

    2009-12-01

    We show that a breaking internal tide at a shelf edge is a fundamental control on the structural and functional properties of ecosystems. Contrasts in vertical mixing of nitrate between the shelf and the open ocean correspond with horizontal and vertical changes in phytoplankton communities, with largest cells found in surface waters at the shelf edge. Intense fishing activity is commonly seen at continental shelf edges, targeting spawning fish stocks. We suggest that the internal tide, a globally ubiquitous physical process at steep shelf edge bathymetry, supports shelf edge fisheries by providing large-celled phytoplankton for first-feeding fish larvae. The repeatability of the internal tide removes fish from the need to time spawning with a spring bloom. Also, with large phytoplankton cells dominating particulate organic carbon export, the internal tides could be an important influence on spatial and temporal variability in patterns of global carbon sequestration in deep water and sediments.

  16. Chemistry and Star Formation: A Love-Hate Relationship

    NASA Astrophysics Data System (ADS)

    Jiménez-Serra, Izaskun; Zhang, Qizhou; Patel, Nimesh; Lu, Xing; Wang, Ke; Testi, Leonardo; Caselli, Paola; Martin-Pintado, Jesus

    2014-06-01

    The development of the broad bandwidth receivers at the Submillimeter Array (SMA) a decade ago opened up the possibility to observe tens of molecular lines at high angular resolution simultaneously. The unprecedented wealth of molecular line data provided by the SMA allowed for the first time detailed studies of the chemistry in star-forming regions. These studies have revealed that chemistry is a useful tool to pin down the internal physical structure and the physical processes involved in the process of low-mass and high-mass star formation. In this talk, I will review the most important advances in our understanding of the star-formation process through chemistry thanks to the SMA, and I will present the challenges that will be faced in the next decade in this field of research thanks to the advent of new instrumentation such as the Atacama Large Millimeter/Submillimeter Array and the Square Kilometer Array.

  17. Theoretical model to explain the problem-solving process in physics

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos

    2011-03-01

    This work reports a theoretical model developed with the aim to explain the mental mechanisms of knowledge building during the problem-solving process in physics using a hybrid approach of assimilation- formation of concepts. The model has been termed conceptual chains and represents graphic diagrams of conceptual dependency, which have yielded information about the background knowledge required during the learning process, as well as about the formation of diverse structures that correspond to distinct forms of networking concepts Additionally, the conceptual constructs of the model have been classified according to five types of knowledge. Evidence was found about the influence of these structures, as well as of the distinct types of knowledge about the degree of difficulty of the problems. I want to be grateful to Laureate International Universities, Baltimore M.D., USA, for the financing granted for the accomplishment of this work.

  18. PREFACE: XVIII International Youth Scientific School "Coherent Optics and Optical Spectroscopy"

    NASA Astrophysics Data System (ADS)

    Salakhov, M. Kh; Samartsev, V. V.; Gainutdinov, R. Kh

    2015-05-01

    Kazan Federal University has held the annual International Youth School "Coherent Optics and Optical Spectroscopy" since 1997. The choice of the topic is not accidental. Kazan is the home of photon echo which was predicted at Kazan Physical-Technical Institute in 1963 by Prof. U.G. Kopvil'em and V.R. Nagibarov and observed in Columbia University by N.A. Kurnit, I.D. Abella, and S.R. Hartmann in 1964. Since then, photon echo has become a powerful tool of coherent optical spectroscopy and optical information processing, which have been developed here in Kazan in close collaboration between Kazan Physical-Technical Institute and Kazan Federal University. The main subjects of the XVIII International Youth School are: Nonlinear and coherent optics; Atomic and molecular spectroscopy; Coherent laser spectroscopy; Problems of quantum optics; Quantum theory of radiation; and Nanophotonics and Scanning Probe Microscopy. The unchallenged organizers of that school are Kazan Federal University and Kazan E.K. Zavoisky Physical-Technical Institute. The rector of the School is Professor Myakzyum Salakhov, and the vice-rector is Professor Vitaly Samartsev. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" follows the global pattern of comprehensive studies of matter properties and their interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from the USA, Germany, Ukraine, Belarus and Russia have given plenary lecture presentations. Here over 1000 young scientists had an opportunity to participate in lively discussions about the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the fullsize papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" was greatly supported by The Optical Society of America, the Russian Foundation for Basic Research, the non-profit Dynasty Foundation, the Tatarstan Academy of Science, and the Ministry of Education and Science of the Russian Federation. It is a pleasure to thank the sponsors and all the participants and contributors who made the International School meeting possible and interesting.

  19. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 2 [Review on morphology and nanostructure characterization of nano-particle emission from internal combustion engines

    DOE PAGES

    Choi, Seungmok; Myung, C. L.; Park, S.

    2014-03-05

    This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less

  20. Improving the analysis of biogeochemical patterns associated with internal waves in the strait of Gibraltar using remote sensing images

    NASA Astrophysics Data System (ADS)

    Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda

    2018-05-01

    High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.

  1. International Space Station Research: Accomplishments and Pathways for Exploration and Fundamental Research

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    Beginning with the launch of the European Columbus module planned for December 2007, we approach a transition in the assembly of the International Space Station (ISS) that is of great importance for the sciences. During the following 18 months, we will operate the first experiments in Columbus physical science resource facilities and also launch and commission the Japanese Kibo module. In addition, two Multi-purpose Logistics Module (MPLM) flights will deliver the U.S. Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR) along with their first science experiments. These facilities provide significant new capabilities for basic and applied physical science research in microgravity. New life support technologies will come online throughout 2008, and we will reach the milestone of a 6-person crew planned for April 2009. A larger crew enables significant more scientific use of all the facilities for the life of ISS. Planning for the use of the International Space Station as a national laboratory is also maturing as we near the completion of assembly, enabling access to ISS as a research platform for other government agencies and the private sector. The latest updates on National Laboratory implementation will also be provided in this presentation. At the same time as these significant increases in scientific capability, there have been significant ongoing accomplishments in NASA's early ISS research both exploration related and fundamental research. These accomplishments will be reviewed in context as harbingers of the capabilities of the International Space Station when assembly is complete. The Vision for Space Exploration serves to focus NASA's applied investigations in the physical sciences. However, the broader capability of the space station as a National Laboratory and as a nexus for international collaboration will also influence the study of gravity-dependent processes by researchers around the world.

  2. Lesbian, gay, & bisexual older adults: linking internal minority stressors, chronic health conditions, and depression.

    PubMed

    Hoy-Ellis, Charles P; Fredriksen-Goldsen, Karen I

    2016-11-01

    This study aims to: (1) test whether the minority stressors disclosure of sexual orientation; and (2) internalized heterosexism are predictive of chronic physical health conditions; and (3) depression; (4) to test direct and indirect relationships between these variables; and (5) whether chronic physical health conditions are further predictive of depression, net of disclosure of sexual orientation and internalized heterosexism. Secondary analysis of national, community-based surveys of 2349 lesbian, gay, and bisexual adults aged 50 and older residing in the US utilizing structural equation modeling. Congruent with minority stress theory, disclosure of sexual orientation is indirectly associated with chronic physical health conditions and depression, mediated by internalized heterosexism with a suppressor effect. Internalized heterosexism is directly associated with chronic physical health conditions and depression, and further indirectly associated with depression mediated by chronic physical health conditions. Finally, chronic physical health conditions have an additional direct relationship with depression, net of other predictor variables. Minority stressors and chronic physical health conditions independently and collectively predict depression, possibly a synergistic effect. Implications for depression among older sexual minority adults are discussed.

  3. Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)

    2002-01-01

    During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.

  4. Assessment of environmental correlates of physical activity: development of a European questionnaire.

    PubMed

    Spittaels, Heleen; Foster, Charlie; Oppert, Jean-Michel; Rutter, Harry; Oja, Pekka; Sjöström, Michael; De Bourdeaudhuij, Ilse

    2009-07-06

    Research on the influence of the physical environment on physical activity is rapidly expanding and different measures of environmental perceptions have been developed, mostly in the US and Australia. The purpose of this paper is to (i) provide a literature review of measures of environmental perceptions recently used in European studies and (ii) develop a questionnaire for population monitoring purposes in the European countries. This study was done within the framework of the EU-funded project 'Instruments for Assessing Levels of Physical Activity and Fitness (ALPHA)', which aims to propose standardised instruments for physical activity and fitness monitoring across Europe. Quantitative studies published from 1990 up to November 2007 were systematically searched in Pubmed, Web of Science, TRIS and Geobase. In addition a survey was conducted among members of the European network for the promotion of Health-Enhancing Physical Activity (HEPA Europe) and European members of the International Physical Activity and Environment Network (IPEN) to identify published or ongoing studies. Studies were included if they were conducted among European general adult population (18+y) and used a questionnaire to assess perceptions of the physical environment. A consensus meeting with an international expert group was organised to discuss the development of a European environmental questionnaire. The literature search resulted in 23 European studies, 15 published and 8 unpublished. In these studies, 13 different environmental questionnaires were used. Most of these studies used adapted versions of questionnaires that were developed outside Europe and that focused only on the walkability construct: The Neighborhood Environment Walkability Scale (NEWS), the abbreviated version of the NEWS (ANEWS) and the Neighborhood Quality of Life Study (NQLS) questionnaire have been most commonly used. Based on the results of the literature review and the output of the meeting with international experts, a European environmental questionnaire with 49 items was developed. There is need for a greater degree of standardization in instruments/methods used to assess environmental correlates of physical activity, taking into account the European-specific situation. A first step in this process is taken by the development of a European environmental questionnaire.

  5. Childhood physical maltreatment, perceived social isolation, and internalizing symptoms: a longitudinal, three-wave, population-based study.

    PubMed

    Sheikh, Mashhood Ahmed

    2018-04-01

    A number of cross-sectional studies have consistently shown a correlation between childhood physical maltreatment, perceived social isolation and internalizing symptoms. Using a longitudinal, three-wave design, this study sought to assess the mediating role of perceived social isolation in adulthood in the association between childhood physical maltreatment and internalizing symptoms in adulthood. The study has a three-wave design. We used data collected from 1994 to 2008 within the framework of the Tromsø Study (N = 4530), a representative prospective cohort study of men and women. Perceived social isolation was measured at a mean age of 54.7 years, and internalizing symptoms were measured at a mean age of 61.7 years. The difference-in-coefficients method was used to assess the indirect effects and the proportion (%) of mediated effects. Childhood physical maltreatment was associated with an up to 68% [relative risk (RR) = 1.68, 95% confidence interval (CI): 1.33-2.13] higher risk of perceived social isolation in adulthood. Childhood physical maltreatment and perceived social isolation in adulthood were associated with greater levels of internalizing symptoms in adulthood (p < 0.01). A dose-response association was observed between childhood physical maltreatment and internalizing symptoms in adulthood (p < 0.001). Perceived social isolation in adulthood mediated up to 14.89% (p < 0.05) of the association between childhood physical maltreatment and internalizing symptoms in adulthood. The results of this study indicate the need to take perceived social isolation into account when considering the impact of childhood physical maltreatment on internalizing symptoms.

  6. International Physics Olympiad still alive

    NASA Astrophysics Data System (ADS)

    Polma, Richard; Kříž, Jan

    2017-01-01

    The International Physics Olympiad (IPhO) is an annual physics competition for high school students. In our article, we will discuss its development and results of research among former contestants from Czechoslovakia, resp. from Czech Republic.

  7. Dissemination, analysis, and implementation of the World Report on Disability: the roadmap of the International Society for Physical and Rehabilitation Medicine.

    PubMed

    Gutenbrunner, Christoph; Bethge, Matthias; Stucki, Gerold; Li, Jianan; Lains, Jorge; Olver, John; Frontera, Walter; von Groote, Per; Giustini, Alessandro; Imamura, Marta

    2014-01-01

    The International Society for Physical and Rehabilitation Medicine has recognized the World Report on Disability as a guide for its future activities and endorsed its responsibility to disseminate, to analyze, and to implement the report's recommendations. The activities of the International Society for Physical and Rehabilitation Medicine on the global stage are embedded in a strategy that includes national and regional associations. This article reports on recent and forthcoming activities of the International Society for Physical and Rehabilitation Medicine regarding the World Report on Disability and identifies five major challenges that will impact future International Society for Physical and Rehabilitation Medicine activities. These challenges relate to (1) education and training, (2) the support of strong role models, (3) disaster management, (4) the development of innovative rehabilitation services, and (5) rehabilitation research.

  8. Report on IUPAP's International Conference on Women in Physics

    NASA Astrophysics Data System (ADS)

    Karplus Hartline, Beverly

    2002-03-01

    Teams of physicists from more than 60 countries are expected to participate in IUPAP's International Conference on Women in Physics in Paris, France from 7-9 March 2002. Discussions and resolutions will focus on (1) Attracting Girls into Physics, (2) Launching a Successful Physics Career, (3) Improving the Institutional Structure and Climate for Women in Physics, (4) Getting Women into the Power Structure of Physics, Nationally and Internationally, (5) Learning from Regional Differences, and (6) Balancing Family and Career. This talk will summarize the results and insights from the conference, with an emphasis on followup actions and strategies applicable to the United States.

  9. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    NASA Technical Reports Server (NTRS)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  10. PREFACE AND CONFERENCE INFORMATION: Eighth International Conference on Laser Ablation

    NASA Astrophysics Data System (ADS)

    Hess, Wayne P.; Herman, Peter R.; Bäuerle, Dieter; Koinuma, Hideomi

    2007-04-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11-16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in a unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications. Laser ablation continues to grow and evolve, touching forefront areas in science and driving new technological trends in laser processing applications. Please enjoy the collection of papers in this proceeding. Also, please join us for COLA 2007, to be held in the Canary Islands, Spain (http://www.io.csic.es/cola07/index.php). Conference on Laser Ablation (COLA'05) September 11-16, 2005 Banff, Canada Supported by University of Toronto, Canada (UT) Pacific Northwest National Laboratory (PNNL) Sponsors Sponsorship from the following companies is gratefully acknowledged and appreciated AMBP Tech Corporation GSI Lumonics Amplitude Systèmes IMRA America, Inc. Andor Technologies Journal of Physics D: Applied Physics North Canadian Institute for Photonic Innovations LUMERA LASER GmbH Clark-MXR, Inc. Pascal Coherent, Lamdbda Physik, TuiLaser PVD Products, Inc. Continuum Staib Instruments, Inc. Cyber Laser Inc. Surface GAM LASER, Inc. International Steering Committee C. Afonso (Spain)W. Husinsky (Austria) D. Bäuerle (Austria)W. Kautek (Germany) I.W. Boyd (UK) H. Koinuma (Japan) E.B. Campbell (Sweden) H.U. Krebs (Germany) J.T. Dickinson (USA) D.H. Lowndes (USA) M. Dinescu (Romania) J.G. Lunney (Ireland) J.J. Dubowski (Canada) W. Marine (France) E. Fogarassy (France) K. Murakami (Japan) C. Fotakis (Greece) T. Okada (Japan) D. Geohegan (USA) R.E. Russo (USA) M. Gower (UK) J. Schou (Denmark) R.H. Haglund Jr. (USA) M. Stuke (Germany) R.R. Herman (Canada) K. Sugioka (Japan) W.P. Hess (USA) F. Traeger (Germany) J.S Horwitz (USA) A. Yabe (Japan) Local Organizing Committee Nikki Avery Pacific Northwest National Laboratory Ken Beck Pacific Northwest National Laboratory Jan J. Dubowski University of Alberta Robert Fedosejevs Université de Sherbrooke Alan Joly Pacific Northwest National Laboratory Michel Meunier École Polytechnique de Montréal Suwas Nikumb National Research Council Canada Ying Tsui University of Alberta Conference photograph.

  11. KSC-2010-4504

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida an overhead crane moves the Alpha Magnetic Spectrometer, or AMS, to an area for technicians to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  12. KSC-2010-4502

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida an overhead crane lifts the Alpha Magnetic Spectrometer, or AMS, off of the tractor-trailer that delivered it. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  13. KSC-2010-4498

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, arrives at the Space Station Processing Facility, where it will be prepared for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  14. KSC-2010-4501

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida an overhead crane is poised above the floor of the Space Station Processing Facility to lift the Alpha Magnetic Spectrometer, or AMS, from the tractor-trailer that delivered it. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  15. KSC-2010-4505

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida an overhead crane lowers the Alpha Magnetic Spectrometer, or AMS, onto to floor for technicians to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  16. KSC-2010-4500

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media are on hand as the Alpha Magnetic Spectrometer, or AMS, is delivered to the Space Station Processing Facility, where it will be prepared for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  17. Competitive internal transfers in metastable decay of cluster ions

    NASA Astrophysics Data System (ADS)

    Buonomo, E.; Gianturco, F. A.; Delgado-Barrio, G.; Miret-Artés, S.; Villarreal, P.

    1994-05-01

    In a previous study of fragmentation patterns of (Ar)+3 clusters [G. Delgado-Barrio, S. Miret-Artés, P. Villarreal, and F. A. Gianturco, Z. Phys. D 27, 354 (1993)] it was found that overall rotations control the lifetimes of the occupied metastable states of the cluster and that a spherical, effective interaction was sufficient to describe the dynamical process. In the present study, the strong anisotropy of a more realistic three-particle interaction is introduced and its effects on metastable decay are examined. By separating internal rotations from internal vibrations of the diatomic ion, it is possible to show that internal predissociation pathways are very efficient and lead to very short lifetimes. The latter can be lengthened only when overall rotational states are directly included, thus confirming the physical picture of the earlier work.

  18. A Case Study of International Students' Social Adjustment, Friendship Development, and Physical Activity

    ERIC Educational Resources Information Center

    Li, Shuang; Zizzi, Sam

    2018-01-01

    Previous literature has focused on international student's social transition and monocultural and bicultural ties. Little research has explored international students' multicultural friendship development and the role that physical activity plays in their social interaction. The current case study explored a group of international students'…

  19. The calculation of theoretical chromospheric models and the interpretation of the solar spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.

    1994-01-01

    Since the early 1970s we have been developing the extensive computer programs needed to construct models of the solar atmosphere and to calculate detailed spectra for use in the interpretation of solar observations. This research involves two major related efforts: work by Avrett and Loeser on the Pandora computer program for non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed synthesis of the solar spectrum based on opacity data for over 58 million atomic and molecular lines. Our goals are to determine models of the various features observed on the sun (sunspots, different components of quiet and active regions, and flares) by means of physically realistic models, and to calculate detailed spectra at all wavelengths that match observations of those features. These two goals are interrelated: discrepancies between calculated and observed spectra are used to determine improvements in the structure of the models, and in the detailed physical processes used in both the model calculations and the spectrum calculations. The atmospheric models obtained in this way provide not only the depth variation of various atmospheric parameters, but also a description of the internal physical processes that are responsible for nonradiative heating, and for solar activity in general.

  20. The calculation of theoretical chromospheric models and the interpretation of solar spectra from rockets and spacecraft

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.

    1993-01-01

    Since the early 1970s we have been developing the extensive computer programs needed to construct models of the solar atmosphere and to calculate detailed spectra for use in the interpretation of solar observations. This research involves two major related efforts: work by Avrett and Loeser on the Pandora computer program for non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed synthesis of the solar spectrum based on opacity data for over 58 million atomic and molecular lines. Our goals are to determine models of the various features observed on the Sun (sunspots, different components of quiet and active regions, and flares) by means of physically realistic models, and to calculate detailed spectra at all wavelengths that match observations of those features. These two goals are interrelated: discrepancies between calculated and observed spectra are used to determine improvements in the structure of the models, and in the detailed physical processes used in both the model calculations and the spectrum calculations. The atmospheric models obtained in this way provide not only the depth variation of various atmospheric parameters, but also a description of the internal physical processes that are responsible for non-radiative heating, and for solar activity in general.

  1. Cognitive Constructs and the Sensemaking Process

    DTIC Science & Technology

    2006-06-01

    Tenth International Command and Control Research and Technology Symposium, McLean, VA, 13-16 June 2005 Neisser , U . ( 1967). Cognitive Psychology...based on experience ( Neisser , 1967). • Clusters of knowledge landmarks and routes that form minimaps (Sternberg, 1999). • All elements of physical...1988) of the situation. Reflective cognition is the term used in cognitive psychology ( Neisser , 1967) to describe conscious and thoughtful reaction to

  2. Durability as integral characteristic of concrete

    NASA Astrophysics Data System (ADS)

    Suleymanova, L. A.; Pogorelova, I. A.; Suleymanov, K. A.; Kirilenko, S. V.; Marushko, M. V.

    2018-03-01

    The carried-out research provides insight into the internal bonds energy in material as the basis of its durability, deformability, integrity and resistance to different factors (combined effects of external loadings and (or) environment), into the limits of technical possibilities, durability and physical reality of the process of concrete deterioration, which allows designing reliable and cost-effective ferroconcrete constructions for different purposes.

  3. International Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; andmore » (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.« less

  4. Plasma Physics Network Newsletter, no. 5

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.

  5. Preface

    NASA Astrophysics Data System (ADS)

    Jakovics, A.

    2007-06-01

    The International Scientific Colloquium "Modelling for Material Processing" took place last year on June 8-9. It was the fourth time the colloquium was organized. The first colloquium took place in 1999. All colloquia were organized by the University of Latvia together with Leibniz University of Hannover (Germany) that signifies a long-term tradition (since 1988) of scientific cooperation between researchers of these two universities in the field of electrothermal process modelling. During the last colloquium scientific reports in the field of mathematical modelling in industrial electromagnetic applications for different materials (liquid metals, semiconductor technology, porous materials, melting of oxides and inductive heating) were presented. 70 researchers from 10 countries attended the colloquium. The contributions included about 30 oral presentations and 12 posters. The most illustrative presentations (oral and poster) in the field of MHD were selected for publication in a special issue of the international journal "Magnetohydrodynamics". Traditionally, many reports of the colloquium discuss the problems of MHD methods and devices applied to the metallurgical technologies and processes of semiconductor crystal growth. The new results illustrate the influence of combined electromagnetic fields on the hydrodynamics and heat/mass transfer in melts. The presented reports demonstrate that the models for simulation of turbulent liquid metal flows in melting furnaces, crystallization of alloys and single crystal growth in electromagnetic fields have become much more complex. The adequate description of occurring physical phenomena and the use of high performance computer and clusters allow to reduce the number of experiments in industrial facilities. The use of software and computers for modelling technological and environmental processes has a very long history at the University of Latvia. The first modelling activities in the field of industrial MHD applications had led to the establishment of the chair of Electrodynamics and Continuum Mechanics in 1970, the first head of which was professor Juris Mikelsons. In the early 90's, when all research institutions in our country underwent dramatic changes, not all research directions and institutions managed to adapt successfully to the new conditions. Fortunately, the people who were involved in computer modelling of physical processes were among the most successful. First, the existing and newly established contacts in Western Europe were used actively to reorient the applied researches in the directions actively studied at the universities and companies, which were the partners of the University of Latvia. As a result, research groups involved in these activities successfully joined the international effort related to the application of computer models to industrial processes, and the scientific laboratory for Mathematical Modelling of Environmental and Technological Processes was founded in 1994. The second direction of modelling development was related to the application of computer-based models for the environmental and technological processes (e.g., sediment transport in harbours, heat transfer in building constructions) that were important for the companies and state institutions in Latvia. Currently, the field of engineering physics, the core of which is the computer modelling of technological and environmental processes, is one of the largest and most successfully developing parts of researches and educational programs at the Department of Physics of the University of Latvia with very good perspectives in the future for the development of new technologies and knowledge transfer.

  6. Processes of Internal and International Migration from Chitwan, Nepal.

    PubMed

    Bohra, Pratikshya; Massey, Douglas S

    2009-01-01

    In this study we examine which factors predict internal and international migration from Chitwan, a flat valley located in the South-Central region of Nepal, seeking to measure the effect of theoretically specified variables such as human capital, social capital, physical capital, and neighborhood socioeconomic conditions while controlling for demographic variables. We use data from the Chitwan Valley Family Study (CVFS) to estimate a series of discrete time event history models of first and repeat migration to three competing destinations: other locations within Chitwan, other districts within Nepal, and places outside of Nepal. Results support hypotheses derived from neoclassical economics, the theory of new economics of migration, social capital theory, and cumulative causation theory. Our results underscore the need for a synthetic theoretical model that incorporates factors operating at the individual, household, and community levels. The use of multiple explanatory models yields a clearer picture of the forces driving internal and international migration from rural districts in developing nations such as Nepal.

  7. Processes of Internal and International Migration from Chitwan, Nepal

    PubMed Central

    Bohra, Pratikshya; Massey, Douglas S.

    2011-01-01

    In this study we examine which factors predict internal and international migration from Chitwan, a flat valley located in the South-Central region of Nepal, seeking to measure the effect of theoretically specified variables such as human capital, social capital, physical capital, and neighborhood socioeconomic conditions while controlling for demographic variables. We use data from the Chitwan Valley Family Study (CVFS) to estimate a series of discrete time event history models of first and repeat migration to three competing destinations: other locations within Chitwan, other districts within Nepal, and places outside of Nepal. Results support hypotheses derived from neoclassical economics, the theory of new economics of migration, social capital theory, and cumulative causation theory. Our results underscore the need for a synthetic theoretical model that incorporates factors operating at the individual, household, and community levels. The use of multiple explanatory models yields a clearer picture of the forces driving internal and international migration from rural districts in developing nations such as Nepal. PMID:21423821

  8. WE-E-19A-01: Globalization of Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehani, M; Meghzifene, A; Tsapaki, V

    Following successful 2012–2013 International Professional Symposiums as a part of Annual AAPM meetings, representatives of AAPM and International Organization of Medical Physics (IOMP) suggested to make this tradiational Symposium a permanent part of Annual AAPM meetings in future. Following the tradition, this session includes presentations of representatives of AAPM, IOMP, European Federation of Medical Physics (EFOMP), International Atomic Energy Agency (IAEA) and International Center for Theoretical Physics (ICTP). The speakers will cover various aspects of International collaboration such as educational, professional, and scientific issues, as well as help to developing countries. With further developments of medicine and technology and increasedmore » communication with our colleagues overseas, Medical Physics becomes more and more global profession. Use of the same technology, significant progress in medical physics research and developing practical regulations worldwide makes it increasingly useful to organize global collaboration of medical physicists. Several international organizations are tasked to promote such collaboration and provide help to developing countries. Not all AAPM members are fully aware of these international efforts. It is very useful for medical physicists to know about success of our profession in other countries. Different schools present different approaches to the same problem, which allows to find the best solution. By communicating with colleagues overseas, one can learn more than from just reading scientific publications. At this session the attendees will receive a glimpse of International Medical Physics activities. Learning Objectives: Understand the globalization of Medical Physics profession and advantages of collaboration with foreign colleagues. See what role AAPM is playing in establishing contacts with colleagues overseas. Understand the role of IOMP and main directions of its activity. Learn about IAEA and how it helps developing countries. Learn about activity of EFOMP and how can help the global development of Medical Physics. Find out about ICTP and its educational programs.« less

  9. PREFACE: Statistical Physics of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Golestanian, R.; Khajehpour, M. R. H.; Kolahchi, M. R.; Rouhani, S.

    2005-04-01

    The field of complex fluids is a rapidly developing, highly interdisciplinary field that brings together people from a plethora of backgrounds such as mechanical engineering, chemical engineering, materials science, applied mathematics, physics, chemistry and biology. In this melting pot of science, the traditional boundaries of various scientific disciplines have been set aside. It is this very property of the field that has guaranteed its richness and prosperity since the final decade of the 20th century and into the 21st. The C3 Commission of the International Union of Pure and Applied Physics (IUPAP), which is the commission for statistical physics that organizes the international STATPHYS conferences, encourages various, more focused, satellite meetings to complement the main event. For the STATPHYS22 conference in Bangalore (July 2004), Iran was recognized by the STATPHYS22 organizers as suitable to host such a satellite meeting and the Institute for Advanced Studies in Basic Sciences (IASBS) was chosen to be the site of this meeting. It was decided to organize a meeting in the field of complex fluids, which is a fairly developed field in Iran. This international meeting, and an accompanying summer school, were intended to boost international connections for both the research groups working in Iran, and several other groups working in the Middle East, South Asia and North Africa. The meeting, entitled `Statistical Physics of Complex Fluids' was held at the Institute for Advanced Studies in Basic Sciences (IASBS) in Zanjan, Iran, from 27 June to 1 July 2004. The main topics discussed at the meeting included: biological statistical physics, wetting and microfluidics, transport in complex media, soft and granular matter, and rheology of complex fluids. At this meeting, 22 invited lectures by eminent scientists were attended by 107 participants from different countries. The poster session consisted of 45 presentations which, in addition to the main topics of the meeting, covered some of the various areas in statistical physics currently active in Iran. About half of the participants came from countries other than Iran, with a relatively broad geographic distribution. The meeting benefited greatly from the excellent administrative assistance of the conference secretary Ms Ashraf Moosavi and the IASBS staff. We are grateful to Professor Yousef Sobouti, the Director of IASBS, and Professor Reza Mansouri, the Head of the Physical Society of Iran, for their support. We also thank the organizers of STATPHYS22, Professor Rahul Pandit and his colleagues, for their suggestions and support. The conference was supported by donations from the Center for International Research and Collaboration (ISMO) and the Institute for Research and Planning in Higher Education (IRPHE) of the Iranian Ministry of Science, Research and Technology, the Islamic Development Bank, the Abdus Salam International Centre for Theoretical Physics (ICTP), the Tehran Cluster Office of the United Nations Educational, Scientific and Cultural Organization (UNESCO), the Research and Development Directorate of the National Iranian Oil Company, the Physical Society of Iran, the Iranian Meteorological Organization, and the Zanjan City Water and Waste Water Company. Finally, we would like to express our gratitude to Institute of Physics Publishing, and in particular to Professor Alexei Kornyshev and Dr Richard Palmer for suggesting publishing the proceedings of the meeting and carrying through the editorial processes with the utmost efficiency. Participants

  10. WE-E-204-00: Where to Send My Manuscript

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  11. WE-E-204-01: ASTRO Based Journals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, E.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  12. TU-B-16A-01: To Which Journal Should I Submit My Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J; Mills, M; Klein, E

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given the large number (about 100) competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose ofmore » this symposium is to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. The senior editors for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase chances of acceptance To help decipher which journal is appropriate for a given work.« less

  13. WE-E-204-03: Radiology and Other Imaging Journals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karellas, A.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  14. A new approach to quantifying physical demand in rugby union.

    PubMed

    Lacome, Mathieu; Piscione, Julien; Hager, Jean-Philippe; Bourdin, Muriel

    2014-01-01

    The objective of the study was to describe an original approach to assessing individual workload during international rugby union competitions. The difference between positional groups and between the two halves was explored. Sixty-seven files from 30 French international rugby union players were assessed on a computerised player-tracking system (Amisco Pro(®), Sport Universal Process, Nice, France) during five international games. Each player's action was split up into exercise and recovery periods according to his individual velocity threshold. Exercise-to-recovery (E:R) period ratios and acceleration were calculated. Results indicated that about 65% of exercise periods lasted less than 4 s; half of the E:Rs were less than 1:4, and about one-third ranged between 1 and 1:4 and about 40% of exercise periods were classified as medium intensity. Most acceleration values were less than 3 m·s(-2) and started from standing or walking activity. Back row players showed the highest mean acceleration values over the game (P < 0.05). No significant decrease in physical performance was seen between the first and second halves of the games except for back rows, who showed a significant decrease in mean acceleration (P < 0.05). The analysis of results emphasised the specific activity of back rows and tended to suggest that the players' combinations of action and recovery times were optimal for preventing large decrease in the physical performance.

  15. Gas Loss by Ram Pressure Stripping and Internal Feedback from Low-mass Milky Way Satellites

    NASA Astrophysics Data System (ADS)

    Emerick, Andrew; Mac Low, Mordecai-Mark; Grcevich, Jana; Gatto, Andrea

    2016-08-01

    The evolution of dwarf satellites in the Milky Way (MW) is affected by a combination of ram pressure stripping (RPS), tidal stripping, and internal feedback from massive stars. We investigate gas loss processes in the smallest satellites of the MW using three-dimensional, high-resolution, idealized wind tunnel simulations, accounting for gas loss through both ram pressure stripping and expulsion by supernova feedback. Using initial conditions appropriate for a dwarf galaxy like Leo T, we investigate whether or not environmental gas stripping and internal feedback can quench these low-mass galaxies on the expected timescales, shorter than 2 Gyr. We find that supernova feedback contributes negligibly to the stripping rate for these low star formation rate galaxies. However, we also find that RPS is less efficient than expected in the stripping scenarios we consider. Our work suggests that although RPS can eventually completely strip these galaxies, other physics is likely at play to reconcile our computed stripping times with the rapid quenching timescales deduced from observations of low-mass MW dwarf galaxies. We discuss the roles additional physics may play in this scenario, including host-satellite tidal interactions, cored versus cuspy dark matter profiles, reionization, and satellite preprocessing. We conclude that a proper accounting of these physics together is necessary to understand the quenching of low-mass MW satellites.

  16. GAS LOSS BY RAM PRESSURE STRIPPING AND INTERNAL FEEDBACK FROM LOW-MASS MILKY WAY SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerick, Andrew; Low, Mordecai-Mark Mac; Grcevich, Jana

    The evolution of dwarf satellites in the Milky Way (MW) is affected by a combination of ram pressure stripping (RPS), tidal stripping, and internal feedback from massive stars. We investigate gas loss processes in the smallest satellites of the MW using three-dimensional, high-resolution, idealized wind tunnel simulations, accounting for gas loss through both ram pressure stripping and expulsion by supernova feedback. Using initial conditions appropriate for a dwarf galaxy like Leo T, we investigate whether or not environmental gas stripping and internal feedback can quench these low-mass galaxies on the expected timescales, shorter than 2 Gyr. We find that supernovamore » feedback contributes negligibly to the stripping rate for these low star formation rate galaxies. However, we also find that RPS is less efficient than expected in the stripping scenarios we consider. Our work suggests that although RPS can eventually completely strip these galaxies, other physics is likely at play to reconcile our computed stripping times with the rapid quenching timescales deduced from observations of low-mass MW dwarf galaxies. We discuss the roles additional physics may play in this scenario, including host-satellite tidal interactions, cored versus cuspy dark matter profiles, reionization, and satellite preprocessing. We conclude that a proper accounting of these physics together is necessary to understand the quenching of low-mass MW satellites.« less

  17. Remotely controlled fusion of selected vesicles and living cells: a key issue review

    NASA Astrophysics Data System (ADS)

    Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.

    2018-03-01

    Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.

  18. Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Huber, Matthew S.; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B.

    2018-04-01

    Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

  19. Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing.

    PubMed

    Mueller, Sebastian B; Kueppers, Ulrich; Huber, Matthew S; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B

    2018-01-01

    Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

  20. Gulf of Mexico physical-oceanography program final report: years 1 and 2. Volume 1. Executive summary. Technical report, 1983-1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In 1982, Minerals Management Service (MMS) initiated a multi-year program under contract with Science Applications International Corp. (SAIC) to study the physical oceanography of the Gulf of Mexico as part of its outer continental shelf environmental-studies programs. This particular program, called the Gulf of Mexico Physical Oceanography Program (GOMPOP), has two primary goals: (1) develop a better understanding and description of conditions and processes governing Gulf circulation; and (2) establish a data base that could be used as initial and boundary conditions by a companion MMS-funded numerical circulation-modeling program. The report presents results from the first two of three yearsmore » of observations in the eastern Gulf.« less

  1. Proceedings of the International Conference on Physics Education. (Nanjing, The People's Republic of China, August 31-September 5, 1986).

    ERIC Educational Resources Information Center

    International Union of Pure and Applied Physics.

    This document contains 65 papers presented at the International Conference on Physics Education. Included are papers dealing with: (1) physics education in China; (2) the evaluation of physics courses in engineering colleges; (3) climate and weather; (4) the implications of physics education research for the classroom; (5) university physics…

  2. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  3. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  4. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  5. KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  6. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  7. Temperature metrology

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Fellmuth, B.

    2005-05-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national units. For the base unit kelvin, this procedure is described in the sections on practical temperature scales, practical thermometry and reference standards. Testing experimentally the fundamental laws of physics means in practice the precise determination of the fundamental constants appearing in the laws. The essence of current activities is that prototypes, which may vary uncontrollably with time and location, are replaced by abstract experimental prescriptions that relate the units to the constants. This approach is shown for the definition of the kelvin and the Boltzmann constant. Dedicated to the occasion of the 60th birthday of Wolfgang Buck.

  8. ic-cmtp3: 3rd International Conference on Competitive Materials and Technology Processes

    NASA Astrophysics Data System (ADS)

    2016-04-01

    Competitiveness is one of the most important factors in our lives and it plays a key role in the efficiency both of organizations and societies. The more scientifically advanced and prepared organizations develop more competitive materials with better physical, chemical, and biological properties, and the leading companies apply more competitive equipment and technological processes. The aims of the 3rd International Conference on Competitive Materials and Technology Processes (ic-cmtp3), and the 1st International Symposium on Innovative Carbons and Carbon Based Materials (is-icbm1) and the 1st International Symposium on Innovative Construction Materials (is-icm1) organized alongside are the following: —Promote new methods and results of scientific research in the fields of material, biological, environmental and technological sciences; —Exchange information between the theoretical and applied sciences as well as technical and technological implementations; —Promote communication and collaboration between the scientists, researchers and engineers of different nations, countries and continents. Among the major fields of interest are advanced and innovative materials with competitive characteristics, including mechanical, physical, chemical, biological, medical and thermal, properties and extreme dynamic strength. Their crystalline, nano - and micro-structures, phase transformations as well as details of their technological processes, tests and measurements are also in the focus of the ic-cmtp3 conference and the is-scbm1 and is-icm1 symposia. Multidisciplinary applications of material science and the technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industries, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance with the program of the ic-cmtp3 conference and is-icbm1 and is-icm1 symposia we have received more than 350 enquiries and registrations from different organizations. More than 240 abstracts were accepted for presentation. From them 12 were plenary lectures and 112 oral presentations. Researchers from 41 countries in Asia, Europe, Africa, North and South America travelled to Miskolc-Lillafüred (Hungary) and participated in the conference events. Including co-authors, the research work of more than 700 scientists were presented in the sessions and symposia of the ic-cmtp3 conference.

  9. Status of Participation in Physical Activity among International Students Attending Colleges and Universities in the United States

    ERIC Educational Resources Information Center

    Yoh, Taeho; Yang, Heewon; Gordon, Brian

    2008-01-01

    This study examined the status of participation in physical activity among international students attending colleges and universities in the United States. Participants for the study were 521 international students from five universities in the Midwestern part of the United States. Descriptive statistics revealed that international college…

  10. Selective Effect of Physical Fatigue on Motor Imagery Accuracy

    PubMed Central

    Di Rienzo, Franck; Collet, Christian; Hoyek, Nady; Guillot, Aymeric

    2012-01-01

    While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001) were observed during the posttest for internal visual imagery. A significant correlation (r = 0.64; p<0.05) was observed between motor imagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary feedback originating from actual motor practice under fatigue. These findings provide insights to the co-dependent relationship between mental and motor processes. PMID:23082148

  11. Selective effect of physical fatigue on motor imagery accuracy.

    PubMed

    Di Rienzo, Franck; Collet, Christian; Hoyek, Nady; Guillot, Aymeric

    2012-01-01

    While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001) were observed during the posttest for internal visual imagery. A significant correlation (r=0.64; p<0.05) was observed between motor imagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary feedback originating from actual motor practice under fatigue. These findings provide insights to the co-dependent relationship between mental and motor processes.

  12. Age-related decrease in physical activity and functional fitness among elderly men and women.

    PubMed

    Milanović, Zoran; Pantelić, Saša; Trajković, Nebojša; Sporiš, Goran; Kostić, Radmila; James, Nic

    2013-01-01

    To determine differences in physical activity level and functional fitness between young elderly (60-69 years) and old elderly (70-80 years) people with the hypothesis that an age-related decline would be found. A total of 1288 participants' level of physical activity was evaluated using the International Physical Activity Questionnaire: 594 were male (mean ± standard deviation: body height 175.62 ± 9.78 cm; body weight 82.26 ± 31.33 kg) and 694 female (mean ± standard deviation: body height 165.17 ± 23.12 cm; body weight 69.74 ± 12.44 kg). Functional fitness was also estimated using the Senior Fitness Test: back scratch, chair sit and reach, 8-foot up and go, chair stand up for 30 seconds, arm curl, and 2-minute step test. Significant differences (P < 0.05) were found for all Senior Fitness tests between young elderly (60-69 years) and old elderly (70-80) men. Similar results were found for the women, except no significant differences were found for the chair sit and reach and the 2-minute step test. From the viewpoint of energy consumption estimated by the International Physical Activity Questionnaire, moderate physical activity is dominant. In addition, with aging, among men and women older than 60 years, the value of the Metabolic Equivalent of Task in total physical activity significantly reduces (P < 0.05). This study found that the reduction in physical activity level and functional fitness was equal for both men and women and was due to the aging process. These differences between young and old elderly people were due to the reduction of muscle strength in both upper and lower limbs and changes in body-fat percentage, flexibility, agility, and endurance.

  13. Interventions to improve physical activity during pregnancy: a systematic review on issues of internal and external validity using the RE-AIM framework.

    PubMed

    Craike, M; Hill, B; Gaskin, C J; Skouteris, H

    2017-03-01

    Physical activity (PA) during pregnancy has significant health benefits for the mother and her child; however, many women reduce their activity levels during pregnancy and most are not sufficiently active. Given the important health benefits of PA during pregnancy, evidence that supports research translation is vital. To determine the extent to which physical activity interventions for pregnant women report on internal and external validity factors using the RE-AIM framework (reach, efficacy/effectiveness, adoption, implementation, and maintenance). Ten databases were searched up to 1 June 2015. Eligible published papers and unpublished/grey literature were identified using relevant search terms. Studies had to report on physical activity interventions during pregnancy, including measures of physical activity during pregnancy at baseline and at least one point post-intervention. Randomised controlled trials and quasi-experimental studies that had a comparator group were included. Reporting of RE-AIM dimensions were summarised and synthesised across studies. The reach (72.1%) and efficacy/effectiveness (71.8%) dimensions were commonly reported; however, the implementation (28.9%) and adoption (23.2%) dimensions were less commonly reported and no studies reported on maintenance. This review highlights the under-reporting of issues of contextual factors in studies of physical activity during pregnancy. The translation of physical activity interventions during pregnancy could be improved through reporting of representativeness of participants, clearer reporting of outcomes, more detail on the setting and staff who deliver interventions, costing of interventions and the inclusion of process evaluations and qualitative data. The systematic review highlights the under-reporting of contextual factors in studies of physical activity during pregnancy. © 2016 Royal College of Obstetricians and Gynaecologists.

  14. Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS): ACCESS Accommodation Study Report

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L. (Editor); Wefel, John P. (Editor)

    1999-01-01

    In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.

  15. Why Social Pain Can Live on: Different Neural Mechanisms Are Associated with Reliving Social and Physical Pain

    PubMed Central

    Meyer, Meghan L.; Williams, Kipling D.; Eisenberger, Naomi I.

    2015-01-01

    Although social and physical pain recruit overlapping neural activity in regions associated with the affective component of pain, the two pains can diverge in their phenomenology. Most notably, feelings of social pain can be re-experienced or “relived,” even when the painful episode has long passed, whereas feelings of physical pain cannot be easily relived once the painful episode subsides. Here, we observed that reliving social (vs. physical) pain led to greater self-reported re-experienced pain and greater activity in affective pain regions (dorsal anterior cingulate cortex and anterior insula). Moreover, the degree of relived pain correlated positively with affective pain system activity. In contrast, reliving physical (vs. social) pain led to greater activity in the sensory-discriminative pain system (primary and secondary somatosensory cortex and posterior insula), which did not correlate with relived pain. Preferential engagement of these different pain mechanisms may reflect the use of different top-down neurocognitive pathways to elicit the pain. Social pain reliving recruited dorsomedial prefrontal cortex, often associated with mental state processing, which functionally correlated with affective pain system responses. In contrast, physical pain reliving recruited inferior frontal gyrus, known to be involved in body state processing, which functionally correlated with activation in the sensory pain system. These results update the physical-social pain overlap hypothesis: while overlapping mechanisms support live social and physical pain, distinct mechanisms guide internally-generated pain. PMID:26061877

  16. Proceedings of the International Congress of the International Council on Health, Physical Education, and Recreation (16th, Sanur/Denpasar, Indonesia, July 29-August 3, 1973).

    ERIC Educational Resources Information Center

    Sie, Swanpo, Ed.; Sie, Mary Windorski, Ed.

    This report contains a selected compilation of the proceedings of the 1973 Congress of the International Council on Health, Physical Education, and Recreation (ICHPER). The report contains opening addresses and a variety of speeches discussing present trends in health, physical education, and recreation throughout the world. A major portion of the…

  17. Linking Local Scale Ecosystem Science to Regional Scale Management

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Tenhunen, J.; Peiffer, S.

    2012-04-01

    Ecosystem management with respect to sufficient water yield, a quality water supply, habitat and biodiversity conservation, and climate change effects requires substantial observational data at a range of scales. Complex interactions of local physical processes oftentimes vary over space and time, particularly in locations with extreme meteorological conditions. Modifications to local conditions (ie: agricultural land use changes, nutrient additions, landscape management, water usage) can further affect regional ecosystem services. The international, inter-disciplinary TERRECO research group is intensively investigating a variety of local processes, parameters, and conditions to link complex physical, economic, and social interactions at the regional scale. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. The data are used to parameterize suite of models describing local to landscape level water, sediment, nutrient, and monetary relationships. We focus on using the agricultural and hydrological SWAT model to synthesize the experimental field data and local-scale models throughout the catchment. The approach of our study was to describe local scientific processes, link potential interrelationships between different processes, and predict environmentally efficient management efforts. The Haean catchment case study shows how research can be structured to provide cross-disciplinary scientific linkages describing complex ecosystems and landscapes that can be used for regional management evaluations and predictions.

  18. HOW TO WRITE A SCIENTIFIC ARTICLE

    PubMed Central

    Manske, Robert C.

    2012-01-01

    Successful production of a written product for submission to a peer‐reviewed scientific journal requires substantial effort. Such an effort can be maximized by following a few simple suggestions when composing/creating the product for submission. By following some suggested guidelines and avoiding common errors, the process can be streamlined and success realized for even beginning/novice authors as they negotiate the publication process. The purpose of this invited commentary is to offer practical suggestions for achieving success when writing and submitting manuscripts to The International Journal of Sports Physical Therapy and other professional journals. PMID:23091783

  19. Deep Space Network equipment performance, reliability, and operations management information system

    NASA Technical Reports Server (NTRS)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  20. Abstracts of the International Conference (INFOS 83) on Insulating Films on Semiconductors Held at the University of Technology. Eindhoven (The Netherlands) on 11-13 April 1983.

    DTIC Science & Technology

    1983-04-13

    progressed at the same pace. Initially the analogy with conventional well-known ion sensors, such as the glass membrane electrode, led to the...chemical and physical treatments. The standard etching processing using bromine in methanol can deplete cations and produce a surface layer of TeO2 .(l

  1. Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard

    Treesearch

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    The main objective of this study was to evaluate the effect of oxalic acid (OA) wood chips pretreatment prior to refining, which is done to reduce energy used during the refining process. Selected mechanical and physical performances of medium-density fiberboard (MDF) – internal bonding (IB), modulus of elasticity (MOE), modulus of rupture (MOR), water absorption (WA)...

  2. Physical and Chemical Processes Opacity Project: an Overview and Some Preliminary Results

    NASA Astrophysics Data System (ADS)

    Mendoza, C.

    1990-11-01

    RESUMEN. El Proyecto de la Opacidad es un esfuerzo internacional dedicado a calcular con precisi6n la gran cantidad de datos at6micos que se necesitan para estimar opacidades en los envolventes estelares. Describimos el panorama general del proyecto incluyendo aspectos astrofisicos, flsico-at6micos y computacionales. El volumen y calidad de los datos que se estan generando se puede apreciar en los resultados preliminares que se presentan. ABSTRACT The Opacity Project is an international effort dedicated to the calculation of the vast, accurate, atomic data required to estimate stellar envelope opacities. We give an overview of the project including astrophysical, atomic-physical and computational aspects. The volume and quality of the data which are being generated can be appreciated in the preliminary results that are presented. }% words: ATOMIC PROCESSES - OPACITIES - STARS-INThRIORS

  3. INTRODUCTION: The 8th International Conference on Vacuum Ultraviolet Radiation Physics

    NASA Astrophysics Data System (ADS)

    Nilsson, Per Olof; Hedin, Lars

    1987-01-01

    The VUV conferences series The international conferences on vacuum ultraviolet radiation physics started in 1962, and are now being held every third year. VUV-8 took place at Lund University, August 4-8, 1986. VUV-9 will be arranged at the University of Hawaii, USA, August 14-18, 1989, with Prof. C S Fadley as conference chairman. Chairman of the international advisory board for the period 1986-89 is Prof. L Hedin. The theme of the series can be summarized as experimental and theoretical progress in research fields utilizing the interaction of VUV radiation with matter. The topics cover broad areas within atomic and molecular physics, solid state physics and VUV instrumentation. The conferences emphasize interdisciplinary aspects. To these belong common experimental techniques as, e.g., synchrotron radiation instrumentation, and common theoretical foundations for the description of photon interactions with matter. The VUV-8 conference The VUV-8 conference in Lund was attended by 300 participants from 26 countries. An address list of the participants is given at the end of this volume. There were 33 invited papers given as plenary or key-note talks. As many as 229 posters were presented; 49 of them were also given orally. These numbers are typical for the VUV conferences, except for the number of posters, which was unusually large. In the conference planning the poster sessions were stressed, and particular care was taken to provide a good atmosphere at these sessions. Thus the posters were kept up during the whole conference, coffee was served in the hail with the posters and there were convenient places to sit down close to the posters. Considering the wide scope of the conference it was necessary to emphasize a limited number of topics of high current interest and importance. Thus besides traditional topics, several rapidly expanding fields were discussed in special sessions. At VUV-8 there were the following sessions. Theory of atoms and molecules photoabsorption and -ionization of atoms and molecules and related phenomena multiphoton and other dynamical processes plasma physics VUV lasers time resolved spectroscopy instrumentation for VUV radiation synchrotron radiation centres solid state spectroscopy dynamical processes involving localized levels fundamental aspects of photoemission spin-polarized photoemission inverse photoemission semiconductors organic materials adsorbates Proceedings of VUV-8 The present volume contains most of the invited papers (28 out of 33). Regarding the contributed papers, over 50 are now being published in regular issues of PHYSICA SCRIPTA. These papers will also appear in a reprint volume, PHYSICA SCRIPTA RS4, which soon will be available. Abstracts of invited and contributed papers appeared in three conference volumes as follows: Volume I: Atomic and molecular physics. Instrumentation. Volume II: Solid state physics. Volume III: Post deadline papers. These books have been registered in an international data base and can thus be cited as published documents. Copies may be received from the conference secretary.* Acknowledgements We would like to thank our sponsors, which are listed on the following page, the members of the international program committee, and all others who helped in the planning of the program. Above all we like to thank those who worked with the local organization. Due to their dedicated efforts the conference ran very smoothly with a pleasant atmosphere.

  4. Toward a Stress Process Model of Children’s Exposure to Physical Family and Community Violence

    PubMed Central

    Brooks-Gunn, Jeanne

    2011-01-01

    Theoretically informed models are required to further the comprehensive understanding of children’s ETV. We draw on the stress process paradigm to forward an overall conceptual model of ETV (ETV) in childhood and adolescence. Around this conceptual model, we synthesize research in four dominant areas of the literature which are detailed but often disconnected including: (1) exposure to three forms of physical violence (e.g., child physical maltreatment, interparental violence, and community ETV); (2) the multilevel correlates and causes of ETV (e.g., neighborhood characteristics including concentrated disadvantage; family characteristics including socio-economic status and family stressors); (3) a range of consequences of ETV (e.g., internalizing and externalizing mental health problems, role transitions, and academic outcomes); and (4) multilevel and cross domain mediators and moderators of ETV influences (e.g., school and community factors, family social support, and individual coping resources). We highlight the range of interconnected processes through which violence exposures may influence children and suggest opportunities for prevention and intervention. We further identify needed future research on children’s ETV including coping resources as well as research on cumulative contributions of violence exposure, violence exposure modifications, curvilinearity, and timing of exposure. PMID:19434492

  5. Knowledge, attitudes, and practices of Turkish intern nurses regarding physical restraints.

    PubMed

    Karagozoglu, Serife; Ozden, Dilek; Yildiz, Fatma Tok

    2013-01-01

    This study was carried out to determine knowledge, attitudes, and practices of intern nurses who completed the nursing internship program on the use of physical restraints. This research was conducted using descriptive and cross-sectional research design. The study sample comprises 91 fourth-grade students who took an integrated curriculum and completed the nursing internship program. The data were collected with the Demographic Characteristics Questionnaire and the Levels of Knowledge, Attitudes and Practices of Staff Regarding Physical Restraints Questionnaire. For the assessment of the data, percentages, the arithmetic mean, and t test were used. The findings indicated that, of the intern nurses, 95.6% observed the use of physical restraints during their education, and 69.2% applied physical restraints. The mean knowledge, attitude, and practice scores of the nurses for physical restraint were 9.38 ± 1.19 (0-11 points), 34.70 ± 5.62 (12-48 points), and 37.95 ± 2.32 (14-42 points), respectively. Intern nurses' knowledge about how to use physical restraints was at a very good level; they displayed positive attitudes, and they used their knowledge and attitudes in their practices to a great extent. Although there are studies on the knowledge, attitudes, and practices of nurses working in the fields of elderly care, rehabilitation, and psychiatry in acute care units, there are no studies investigating intern nurses and other nursing students. However, intern nurses about to begin their careers should make accurate decisions regarding the use of physical restrains if they are to ensure patient safety and to fulfill this application effectively in their professional lives.

  6. Burnout and Physical Activity in Minnesota Internal Medicine Resident Physicians

    PubMed Central

    Olson, Shawn M.; Odo, Nnaemeka U.; Duran, Alisa M.; Pereira, Anne G.; Mandel, Jeffrey H.

    2014-01-01

    Background Regular physical activity plays an important role in the amelioration of several mental health disorders; however, its relationship with burnout has not yet been clarified. Objective To determine the association between achievement of national physical activity guidelines and burnout in internal medicine resident physicians. Methods A Web-based survey of internal medicine resident physicians at the University of Minnesota and Hennepin County Medical Center was conducted from September to October 2012. Survey measures included the Maslach Burnout Inventory-Human Services Survey and the International Physical Activity Questionnaire. Results Of 149 eligible residents, 76 (51.0%) completed surveys, which were used in the analysis. Burnout prevalence, determined by the Maslach Burnout Inventory, was 53.9% (41 of 76). Prevalence of failure to achieve US Department of Health and Human Services physical activity guidelines was 40.8% (31 of 76), and 78.9% (60 of 76) of residents reported that their level of physical activity has decreased since they began medical training. Residents who were able to meet physical activity guidelines were less likely to be burned out than their fellow residents (OR, 0.38, 95% CI 0.147–0.99). Conclusions Among internal medicine resident physicians, achievement of national physical activity guidelines appears to be inversely associated with burnout. Given the high national prevalence of burnout and inactivity, additional investigation of this relationship appears warranted. PMID:26140116

  7. PREFACE: International Workshop on Multi-Rate processes and Hysterisis

    NASA Astrophysics Data System (ADS)

    Mortell, Michael P.; O'Malley, Robert E.; Pokrovskii, Alexei V.; Sobolev, Vladimir A.

    2006-12-01

    We are interested in singular perturbation problems and hysteresis as common strongly nonlinear phenomena that occur in many industrial, physical and economic systems. The wording `strongly nonlinear' means that linearization will not encapsulate the observed phenomena. Often these two types of phenomena are manifested for different stages of the same or similar processes. A number of fundamental hysteresis models can be considered as limit cases of time relaxation processes, or admit an approximation by a differential equation which is singular with respect to a particular parameter. However, the amount of interaction between practitioners of theories of systems with time relaxation and systems with hysteresis (and between the `relaxation' and `hysteresis' research communities) is still low. In recent years Ireland has become a home for a series of prestigious International Workshops in Singular Perturbations and Hysteresis: International Workshop on Hysteresis and Multi-scale Asymptotics (University College Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series 22. International Workshop on Relaxation Oscillations and Hysteresis (University College Cork, Ireland, 1-6 April 2002). The related collection of invited lectures, was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-5 April 2001). A collection of invited papers has been published as a special issue of Proceedings of the Russian Academy of Natural Sciences: Nonlinear dynamics of laser and reacting systems. Among the aims of these workshops were to bring together leading experts in time relaxation and hysteresis phenomena in applied problems; to discuss important problems in areas such as reacting systems, semiconductor lasers, shock phenomena in economic modelling, fluid mechanics, etc with an emphasis on hysteresis and singular perturbations; to learn and to share modern techniques in areas of common interest. The `International Workshop on Multi-Rate Processes and Hysteresis' (University College Cork, Ireland, April 3-8, 2006) brought together more than 50 scientists, actively researching in the areas of dynamical systems with hysteresis and singular perturbations, to analyze these phenomena that occur in many industrial, physical and economic systems. The Workshop has been sponsored by the University College Cork (UCC), the Boole Centre for Research in Informatics, UCC, Cork, the School of Mathematical Sciences UCC, Cork, Science Foundation Ireland and the Irish Mathematical Society. The supportive affiliation of the UK and Republic of Ireland SIAM Section is gratefully acknowledged. The Editors and the Organizers of the Workshop wish to place on record their sincere gratitude to Mr Andrew Zhezherun of University College Cork for both the assistance which he provided to all the presenters at the Workshop, and for the careful formatting of all the manuscripts prior to their being forwarded to the Publisher. More information about the Workshop can be found at http://euclid.ucc.ie/murphys2006.htm Michael P Mortell, Robert E O'Malley, Alexei Pokrovskii and Vladimir Sobolev Editors From left to right: M P Mortell, V Sobolev, R E O'Malley and A Pokrovskii.

  8. Predicting Physical Activity-Related Outcomes in Overweight and Obese Adults: A Health Action Process Approach.

    PubMed

    Hattar, Anne; Pal, Sebely; Hagger, Martin S

    2016-03-01

    We tested the adequacy of a model based on the Health Action Process Approach (HAPA) in predicting changes in psychological, body composition, and cardiovascular risk outcomes with respect to physical activity participation in overweight and obese adults. Measures of HAPA constructs (action and maintenance self-efficacy, outcome expectancies, action planning, risk perceptions, intentions, behaviour), psychological outcomes (quality of life, depression, anxiety, stress symptoms), body composition variables (body weight, body fat mass), cardiovascular risk measures (total cholesterol, low density lipoprotein), and self-reported physical activity behaviour were administered to participants (N = 74) at baseline, and 6 and 12 weeks later. Data were analysed using variance-based structural equation modelling with residualised change scores for HAPA variables. The model revealed effects of action self-efficacy and outcome expectancies on physical activity intentions, action self-efficacy on maintenance self-efficacy, and maintenance self-efficacy and intentions on action planning. Intention predicted psychological and body composition outcomes indirectly through physical activity behaviour. Action planning was a direct predictor of psychological, cardiovascular, and body composition outcomes. Data supported HAPA hypotheses in relation to intentions and behaviour, but not the role of action planning as a mediator of the intention-behaviour relationship. Action planning predicted outcomes independent of intentions and behaviour. © 2016 The International Association of Applied Psychology.

  9. Student performance of the general physical examination in internal medicine: an observational study.

    PubMed

    Haring, Catharina M; Cools, Bernadette M; van der Meer, Jos Wm; Postma, Cornelis T

    2014-04-08

    Many practicing physicians lack skills in physical examination. It is not known whether physical examination skills already show deficiencies after an early phase of clinical training. At the end of the internal medicine clerkship students are expected to be able to perform a general physical examination in every new patient encounter. In a previous study, the basic physical examination items that should standardly be performed were set by consensus. The aim of the current observational study was to assess whether medical students were able to correctly perform a general physical examination regarding completeness as well as technique at the end of the clerkship internal medicine. One hundred students who had just finished their clerkship internal medicine were asked to perform a general physical examination on a standardized patient as they had learned during the clerkship. They were recorded on camera. Frequency of performance of each component of the physical examination was counted. Adequacy of performance was determined as either correct or incorrect or not assessable using a checklist of short descriptions of each physical examination component. A reliability analysis was performed by calculation of the intra class correlation coefficient for total scores of five physical examinations rated by three trained physicians and for their agreement on performance of all items. Approximately 40% of the agreed standard physical examination items were not performed by the students. Students put the most emphasis on examination of general parameters, heart, lungs and abdomen. Many components of the physical examination were not performed as was taught during precourses. Intra-class correlation was high for total scores of the physical examinations 0.91 (p <0.001) and for agreement on performance of the five physical examinations (0.79-0.92 p <0.001). In conclusion, performance of the general physical examination was already below expectation at the end of the internal medicine clerkship. Possible causes and suggestions for improvement are discussed.

  10. Student performance of the general physical examination in internal medicine: an observational study

    PubMed Central

    2014-01-01

    Background Many practicing physicians lack skills in physical examination. It is not known whether physical examination skills already show deficiencies after an early phase of clinical training. At the end of the internal medicine clerkship students are expected to be able to perform a general physical examination in every new patient encounter. In a previous study, the basic physical examination items that should standardly be performed were set by consensus. The aim of the current observational study was to assess whether medical students were able to correctly perform a general physical examination regarding completeness as well as technique at the end of the clerkship internal medicine. Methods One hundred students who had just finished their clerkship internal medicine were asked to perform a general physical examination on a standardized patient as they had learned during the clerkship. They were recorded on camera. Frequency of performance of each component of the physical examination was counted. Adequacy of performance was determined as either correct or incorrect or not assessable using a checklist of short descriptions of each physical examination component. A reliability analysis was performed by calculation of the intra class correlation coefficient for total scores of five physical examinations rated by three trained physicians and for their agreement on performance of all items. Results Approximately 40% of the agreed standard physical examination items were not performed by the students. Students put the most emphasis on examination of general parameters, heart, lungs and abdomen. Many components of the physical examination were not performed as was taught during precourses. Intra-class correlation was high for total scores of the physical examinations 0.91 (p <0.001) and for agreement on performance of the five physical examinations (0.79-0.92 p <0.001). Conclusions In conclusion, performance of the general physical examination was already below expectation at the end of the internal medicine clerkship. Possible causes and suggestions for improvement are discussed. PMID:24712683

  11. 3rd International Conference on Turbulent Mixing and Beyond

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.

    2013-07-01

    1. Introduction 'Turbulent Mixing and Beyond' (TMB) is the programme established for scientists, by scientists. It is merit-based, and is shaped by requirements of academic credentials, and novelty and quality of information. The goals of this programme are to expose the generic problem of non-equilibrium turbulent processes to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in application of novel approaches in a broad range of phenomena, in which the turbulent processes occur, and to have a potential impact on technology. The programme was founded in 2007 with the support of the international scientific community and of the US National Science Foundation, the US Air Force Office of the Scientific Research and its European Office for Research and Development in the UK, the UNESCO-IAEA International Centre for Theoretical Physics in Italy, the Commissariat l'Energie Atomique in France, the US Department of Energy and the Department of Energy National Laboratories, the Institute for Laser Engineering in Japan, and the University of Chicago in the USA. The International Conference on Turbulent Mixing and Beyond provides opportunities to bring together researchers from the areas, which include but are not limited to, fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and communications, and to have their attention focused on the long-standing formidable task of non-equilibrium turbulent processes. 2. Non-equilibrium turbulent processes Non-equilibrium turbulent processes play a key role in a wide variety of phenomena, ranging from astrophysical to atomistic scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion discs, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples to list. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or acceleration. Their scaling, spectral and invariant properties differ substantially from those of classical Kolmogorov turbulence. At atomistic and meso-scales, the non-equilibrium dynamics depart dramatically from a standard scenario given by Gibbs statistic ensemble average and quasi-static Boltzmann equation. The singular aspect and the similarity of the non-equilibrium dynamics at macroscopic scales are interplayed with the fundamental properties of the Euler and compressible Navier-Stokes equations and with the problem sensitivity to the boundary conditions at discontinuities. The state-of-the-art numerical simulations of multi-phase flows suggest new methods for predictive modelling of the multi-scale non-equilibrium dynamics in fluids and plasmas, for error estimates and uncertainty quantifications, as well as for novel data assimilation techniques. 3. International Conference 'Turbulent Mixing and Beyond' The First and Second International Conferences on Turbulent Mixing and Beyond found that: (i) TMB-related problems have in common a set of outstanding research issues; (ii) their solution has a potential to significantly advance a variety of disciplines in science, technology and mathematics; (iii) TMB participants conduct highly innovative research and their interactions strengthen the community's might. Based on the success of the first and second conferences and on the recommendations of the conference round table discussions, and in response to the inquiry of the community, the Third International Conference on Turbulent Mixing and Beyond was organized. The Third International Conference on Turbulent Mixing and Beyond, TMB-2011, was held on 21-28 August 2011 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. This was a highly informative and exciting meeting, and it strengthened and reaffirmed the success of TMB-2009 and 2007. The objectives of the Third International Conference on Turbulent Mixing and Beyond were to: (i) focus the integration of theory, experiments, large-scale numerical simulations and state-of-the-art technologies on the exploration of physical mechanisms of non-equilibrium dynamics, from micro to macro-scales, in both high and low energy density regimes; (ii) foster the application of innovative approaches for tackling the fundamental aspects of turbulent mixing problems and for understanding and further extending the range of applicability of canonical considerations; (iii) encourage the development of new approaches and stimulate the application of advanced data analysis techniques for unified characterization of experimental and numerical data sets, for estimation of their quality and information capacity, and for transforming data to knowledge; (iv) further develop the 'Turbulent Mixing and Beyond' community via organizing a positive and constructive collaborative environment, maintaining the quality of information flux in the community and sharing research methodologies, tools and data among the community members. The objectives were accomplished at TMB-2011. 4. Programme of TMB-2011 TMB-2011 brought together 150 participants, ranging from students to members of National Academies of Sciences and Engineering, and including researchers at experienced and early stages of their careers from leading scientific institutions in academia, national laboratories, corporations and industry, from developed and developing countries across five continents. The success of TMB-2011 consisted from the successful work of the conference participants, who were responsible professionals caring for the quality of their research and sharing their scientific vision. The level of presentations was high, and 205 presentations included about 50 invited lectures, nearly 70 oral talks (3500 min of talks in total), some 90 posters and one round table. The special course on 'Turbulence and Waves' was organized at TMB-2011 with the support of the US Office of Naval Research Global, and included nearly 40 lectures and talks (960 minutes of talks in total). TMB-2011 covered 16 different topics, maintaining the scope and the interdisciplinary character of the meeting and at the same time keeping the focus on a fundamental scientific problem of non-equilibrium processes and on the conference objectives. The topics included: • Canonical turbulent and turbulent mixing: invariant, scaling, spectral properties, scalar transports, convection. • Wall-bounded flows: structure and fundamentals, non-canonical turbulent boundary layers, including unsteady and transitional flows, supersonic and hypersonic flows, shock-boundary layer interactions. • Non-equilibrium processes: unsteady, multiphase and shock-driven turbulent flows, anisotropic non-local dynamics, connection of continuous description at macro-scales to kinetic processes at atomistic scales. • Interfacial dynamics: the instabilities of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov, Landau-Darrieus, Saffmann-Taylor. • High energy density physics: inertial confinement and heavy-ion fusion, Z-pinches, light-material and laser-plasma interaction, non-equilibrium heat transfer. • Material science: material transformation under high strain rates, equation of state, impact dynamics, mixing at nano- and micro-scales. • Astrophysics: supernovae, interstellar medium, star formation, stellar interiors, early Universe, cosmic-microwave background, accretion discs. • Magneto-hydrodynamics: magnetic fusion and magnetically confined plasmas, magneto-convection, magneto-rotational instability, dynamo. • Canonical plasmas: coupled plasmas, anomalous resistance, ionosphere. • Physics of atmosphere: environmental fluid dynamics, forecasting, turbulent flows in stratified media and atmosphere. • Geophysics and Earth science: mantle-lithosphere tectonics, oceanography, turbulent convection under rotation, planetary interiors. • Combustion: dynamics of flames and fires, deflagration-to-detonation transition, blast waves and explosions, flows with chemical reactions, reactive flows in jet engines. • Theoretical aspects of non-equilibrium dynamics: vortex dynamics, singularities, discontinuities, asymptotic dynamics, weak solutions, well- and ill-posedness, continuous transports out of thermodynamic equilibrium. • Stochastic processes and probabilistic description: long-tail distributions and anomalous diffusion, data assimilation and processing methodologies, error estimate and uncertainty quantification, statistically unsteady processes. • Advanced numerical simulations: continuous DNS/LES/RANS, molecular dynamics, Monte-Carlo, predictive modelling, validation and verification of numerical models. • Experiments and experimental diagnostics: model experiments in high energy density and low energy density regimes, plasma diagnostics, fluid flow visualizations and control, opto-fluidics, novel optical method, holography, advanced technologies. The abstracts of the 207 accepted presentations of 443 authors were published in Proceedings. Abstracts. The Third International Conference 'Turbulent Mixing and Beyond', 21 -28 August 2011. Copyright (ISBN 92-95003-45-4). All the accepted contributions have been reviewed by the international team of 27 members of the Scientific Committee, with every contribution considered by four to eleven experts. In the majority of cases, the opinions of referees with diverse backgrounds and expertise converged. In 2011, the award 'Turbulent Mixing and Beyond for Youth' was issued to Gregory P Bewley (Max Plank Institute for Dynamics and Self-Organization, Germany) and Robert Zimmermann (Ecole Normale Superieure de Lyon, France) in recognition of their contributions to TMB-related scientific problems. The Best Poster Award was issued by Physica Scripta to Michael Winkler (University of Potsdam, Germany) in recognition of their poster presentation at TMB-2011. 5. Organization and acknowledgments The Third International Conference on Turbulent Mixing and Beyond was organized by the following members of the Organizing Committee: • Snezhana I Abarzhi (Chairperson, University of Chicago, USA) • Malcolm J Andrews (Los Alamos National Laboratory, USA) • Hiroshi Azechi (Institute for Laser Engineering, Osaka, Japan) • Vladimir E Fortov (Institute for High Energy Density, Russia) • Boris Galperin (Organizer of the Special Course, University of South Florida, USA) • Serge Gauthier (Commissariat à l'Energie Atomique, France) • Christopher J Keane (Lawrence Livermore National Laboratory, USA) • Joseph J Niemela (Local Organizer, International Centre for Theoretical Physics, Italy) • Katepalli R Sreenivasan (New York University, USA) The conference and course were sponsored by several agencies and institutions in the USA, Europe, Russia and Japan. The Organizing Committee of the TMB-2011 gratefully acknowledges support of the: • National Science Foundation (NSF), USA. Programmes: Plasma Physics; Physics Education and Interdisciplinary Research; Astronomy and Astrophysics; Applied Mathematics; Particulate and Multiphase Processes; Combustion, Fire and Plasma Systems • European Office of Aerospace Research and Development (EOARD), UK, of the Air Force Office of Scientific Research (AFOSR), USA • Office of Naval Research Global, UK • Department of Energy, Office of Science, USA • US Department of Energy Lawrence Livermore National Laboratory (LLNL), USA. Programme: National Ignition Facility (NIF) • US Department of Energy Argonne National Laboratory (ANL), USA • US Department of Energy Los Alamos National Laboratory (LANL), USA • The UNESCO- IAEA International Centre for Theoretical Physics (ICTP), Italy • Commissariat à l'Énergie Atomique et aux énergies Alternatives (CEA), France • The University of Chicago, USA • Institute for Laser Engineering (ILE), Japan • Joint Institute for High Temperatures (JIHT) of the Academy of Sciences, Russia • Institute of Physics Publishing (IOP), UK • Physica Scripta , the journal of the Royal Swedish Academy of Sciences for the Science Academies and the Physical Societies of the Nordic Countries and thank them for making this event possible. We express our gratitude to the members of the Scientific Advisory Committee: • S I Abarzhi (University of Chicago, USA) • Y Aglitskiy (Science Applications International Corporation, USA) • H Azechi (Institute for Laser Engineering, Osaka, Japan) • M J Andrews (Los Alamos National Laboratory, USA) • S I Anisimov (Landau Institute for Theoretical Physics, Russia) • E Bodenschatz (Max Plank Institute, Germany) • F Cattaneo (University of Chicago, USA) • P Cvitanović (Georgia Institute of Technology, USA) • S Cowley (Imperial College, UK) • S Dalziel (DAMTP, Cambridge, UK) • R Ecke (Los Alamos National Laboratory, USA) • H J Fernando (University of Notre Dame, USA) • Y Fukumoto (Kyushu University, Japan) • B Galperin (University of South Floorida, USA) • S Gauthier (Commissariat à l'Energie Atomique, France) • W Gekelman (University of California, Los Angeles, USA) • G A Glatzmaier (University of California at Santa Cruz, USA) • J Glimm (State University of New York at Stony Brook, USA) • W A Goddard III (California Institute of Technology, USA) • F Grinstein (Los Alamos National Laboratory, USA) • J Jimenez (Universidad Politecnica de Madrid, Spain) • L P Kadanoff (The University of Chicago, USA) • D Q Lamb (The University of Chicago, USA) • D P Lathrop (University of Maryland, USA) • S Lebedev (Imperial College, UK) • P Manneville (Ecole Polytechnique, France) • D I Meiron (California Institute of Technology, USA) • P Moin (Stanford University, USA) • A Nepomnyashchy (Technion, Israel) • J Niemela (International Center for Theoretical Physics, Italy) • K Nishihara (Institute for Laser Engineering, Osaka, Japan) • S S Orlov (Physical Optics Corporation, USA) • N Peters (RWTS, Aachen, Germany) • S B Pope (Cornell, USA) • A Pouquet (University Corporation for Atmospheric Research, USA) • B A Remington (Lawrence Livermore National Laboratory, USA) • R R Rosales (Massachusetts Institute of Technology, USA) • R Rosner (Argonne National Laboratory and University of Chicago, USA) • A J Schmitt (Naval Research Laboratory, USA) • C-W Shu (Brown University, USA) • K R Sreenivasan (New York University, USA) • E Tadmor (University of Maryland, USA) • A L Velikovich (Naval Research Laboratory, USA) • V Yakhot (Boston University, USA) • P K Yeung (Georgia Institute of Technology, USA) • F A Williams (University of California at San Diego, USA) • E Zweibel (University of Wisconsin, USA) We deeply appreciate the work of the Members of Steering Committee for Financial Support: • Snezhana I Abarzhi (University of Chicago, USA) • Serge Gauthier (Commissariat à l'Energie Atomique, France) • Joseph J Niemela (International Centre for Theoretical Physics, Italy) • Walter Gekelman (University of California, Los Angeles, USA) We thank the members of the Committee for the award 'Turbulent Mixing and Beyond for Youth': • Boris Galperin (University of South Florida, USA) • Serge Gauthier (Commissariat à l'Energie Atomique, France) • Joseph J Niemela (International Centre for Theoretical Physics, Italy) • Katsunobu Nishihara (Institute for Laser Engineering, Osaka, Japan) • Katepalli R Sreenivasan (New York University, USA) We greatly acknowledge the effort and dedication of the members of the Committee for Best Poster Award: • Serge Gauthier (Commissariat à l'Energie Atomique, France) • Katsunobu Nishihara (Institute for Laser Engineering, Osaka, Japan) • Annick Pouquet (National Center for Atmospheric Research, USA) • Walter Gekelman (University of California, Los Angeles, USA) • Graeme Watt (Institute of Physics, UK) We greatly appreciate the work of conference web-master Daniil V Ilyin (University of Chicago, USA). We thank for technical support: • Bhanesh Akula (Texas A & M University, USA) • Ahmad Qamar (University of Chicago, USA) We warmly acknowledge the logistics assistance of the offices and officers of the Abdus Salam International Centre for Theoretical Physics: • Conference Support Office, and Ms Katrina Danforth and Ms Daniela Giombi • Financial Office, and Mr Andrej Michelcich and Ms Alessandra Ricci • Visa Office, and Mr Erich Jost and Mr Adriano Maggio • Housing Office, and Ms Tiziana Bottazzi and Ms Dora Photiou • Publications Office, and Mr Guido Comar and Mr Raffaele Corona • Computer Office, and Dr Johannes Grassberger • Science Dissemination Unit, and Dr Enrique Canessa, Dr. Carlo Fonda and Dr Marco Zennaro We gratefully appreciate the support of the members of the Programme Coordination Board: • Snezhana I Abarzhi (University of Chicago, USA) • Malcolm J Andrews (Los Alamos National Laboratory, USA) • Sergei I Anisimov (Landau Institute for Theoretical Physics, Russia) • Hiroshi Azechi (Institute for Laser Engineering, Osaka, Japan) • Vladimir E Fortov (Institute for High Energy Density, Russia) • Serge Gauthier (Commissariat à l'Energie Atomique, France) • Christopher J Keane (Lawrence Livermore National Laboratory, USA) • Joseph J Niemela (International Centre for Theoretical Physics, Italy) • Katsunobu Nishihara (Institute for Laser Engineering, Osaka, Japan) • Sergei S Orlov (Physical Optics Corporation, USA) • Bruce Remington (Lawrence Livermore National Laboratory, USA) • Robert Rosner (University of Chicago, USA) • Katepalli R Sreenivasan (New York University, USA) • Alexander L Velikovich (Naval Research Laboratory, USA) 6. The Topical Issue This Topical Issue consists of over 70 articles accepted for publication and represents a substantial part of the Conference contributions, including research papers, research briefs and review papers. The papers are in a broad variety of TMB-2011 themes and are sorted alphabetically by the last name of the first author within each topic. The review papers are published as 'Comments' articles in Physica Scripta . We thank all the authors and the referees for their contributions to this Topical Issue and for offering their expertise, time and effort. To conclude, the TMB programme was organized to serve to advance the state-of-the-art in understanding of fundamental physical properties of non-equilibrium turbulent processes and to have an impact on predictive modelling capabilities, physical description and, ultimately, control of these complex processes. The readers are cordially invited to take a look at this Topical Issue for information on the frontiers of theoretical, numerical and experimental research, and state-of-the-art technology. Welcome to 'Turbulent Mixing and Beyond'.

  12. Research Opportunities on the Low Temperature Microgravity Physics Facility (LTMPF) on the International Space Station

    NASA Technical Reports Server (NTRS)

    Liu, Feng-Chuan; Adriaans, Mary Jayne; Pensinger, John; Israelsson, Ulf

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is a state-of-the-art facility for long duration science Investigations whose objectives can only be achieved in microgravity and at low temperature. LTMPF consists of two reusable, cryogenic facilities with self-contained electronics, software and communication capabilities. The Facility will be first launched by Japanese HIIA Rocket in 2003 and retrieved by the Space Shuttle, and will have at least five months cryogen lifetime on the Japanese Experiment Module Exposed Facility (JEM EF) of the International Space Station. A number of high precision sensors of temperature, pressure and capacitance will be available, which can be further tailored to accommodate a wide variety of low temperature experiments. This paper will describe the LTMPF and its goals and design requirements. Currently there are six candidate experiments in the flight definition phase to fly on LTMPF. Future candidate experiments will be selected through the NASA Research Announcement process. Opportunities for utilization and collaboration with international partners will also be discussed. This work is being carried out by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. The work was funded by NASA Microgravity Research Division.

  13. KSC-2010-4503

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- Workers in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, monitor the progress of an overhead crane as it moves the Alpha Magnetic Spectrometer, or AMS, to an area for technicians to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  14. KSC-2010-4508

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the protective panels that covered the Alpha Magnetic Spectrometer, or AMS, have been removed so that the technicians can begin preparing it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  15. KSC-2010-4499

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- Workers and media at NASA's Kennedy Space Center in Florida, monitor the arrival of a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, to the Space Station Processing Facility, where it will be prepared for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  16. Associations of physical activity with driving-related cognitive abilities in older drivers: an exploratory study.

    PubMed

    Marmeleira, José; Ferreira, Inês; Melo, Filipe; Godinho, Mário

    2012-10-01

    The purpose of this study was to examine the associations between hysical activity and driving-related cognitive abilities of older drivers. Thirty-eight female and male drivers ages 61 to 81 years (M = 70.2, SD = 5.0) responded to the International Physical Activity Questionnaire and were assessed on a battery of neuropsychological tests, which included measures of visual attention, executive functioning, mental status, visuospatial ability, and memory. A higher amount of reported physical activity was significantly correlated with better scores on tests of visual processing speed and divided visual attention. Higher amounts of physical activity was significantly associated with a better composite score for visual attention, but its correlation with the composite score for executive functioning was not significant. These findings support the hypothesis that pzhysical activity is associated with preservation of specific driving-related cognitive abilities of older adults.

  17. International Students: A Comparison of Health Status and Physical Health before and after Coming to the United States

    ERIC Educational Resources Information Center

    Msengi, Clementine M.; Msengi, Israel G.; Harris, Sandra; Hopson, Michael

    2011-01-01

    The purpose of this study was to assess the health status and physical health of international students at five American universities. International students in the United States were asked to compare the status of their health before and after coming to the United States. Findings suggested that health status of international students declined…

  18. Theoretical analysis of optical poling and frequency doubling effect based on classical model

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo

    2018-03-01

    Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.

  19. Comparison of basic physical fitness, aerobic capacity, and isokinetic strength between national and international level high school freestyle swimmers

    PubMed Central

    Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min

    2016-01-01

    [Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer. PMID:27134379

  20. Enrolment, Content and Assessment: A Review of Examinable Senior Secondary (16-19 Year Olds) Physical Education Courses: An International Perspective

    ERIC Educational Resources Information Center

    Whittle, Rachael Jayne; Benson, Amanda Clare; Telford, Amanda

    2017-01-01

    Senior secondary physical education courses for certification continue to attract increasing student enrolments amidst international concerns for the state and status of physical education in schools. Curricula analysis of senior secondary physical education has typically focussed on courses in local contexts. This review aims to contribute to the…

  1. The Physical Effects of Detonation in a Closed Cylindrical Chamber

    NASA Technical Reports Server (NTRS)

    Draper, C S

    1935-01-01

    Detonation in the internal-combustion engine is studied as a physical process. It is shown that detonation is accompanied by pressure waves within the cylinder charge. Sound theory is applied to the calculation of resonant pressure-wave frequencies. Apparatus is described for direct measurement of pressure-wave frequencies. Frequencies determined from two engines of different cylinder sizes are shown to agree with the values calculated from sound theory. An outline of the theoretically possible modes of vibration in a right circular cylinder with flat ends is included. An appendix by John P. Elting gives a method of calculating pressure in the sound wave following detonation.

  2. PREFACE: 26th Summer School and International Symposium on the Physics of Ionized Gases (SPIG 2012)

    NASA Astrophysics Data System (ADS)

    Kuraica, Milorad; Mijatovic, Zoran

    2012-11-01

    This volume of Journal of Physics: Conference Series contains the general invited lectures, topical invited lectures and progress reports presented at the 26th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2012. The conference was held in Zrenjanin, Serbia, from 27-31 August. The SPIG conference has a 52 year long tradition. The structure of the papers in this volume cover the following sections: atomic collision processes, particle and laser beam interactions with solids, low temperature plasmas and general plasmas. As these four topics often overlap and merge in numerous fundamental studies and, more importantly applications, SPIG in general serves as a venue for exchanging ideas in the related fields. We hope that this volume will be an important source of information about progress in plasma physics and will be useful, first of all, for students, but also for plasma physics scientists. The Editors would like to thank the invited speakers for their participation at SPIG 2012 and for their efforts writing contributions for this volume. We also express our gratitude to the members of Scientific and Organizing committees for their efforts in organizing this SPIG. Especially we would like to thank the Ministry of Education, Science and Technological Development of Republic of Serbia, Provincial Secretariat for Science and Techonological Development, Province of Vojvodina, Institute Français de Serbie and Biser Zrenjanin for financial support as well as the European Physical Society (EPS) for supporting the award for the best poster of a young scientist and American Elements, USA. Milorad Kuraica Zoran Mijatovic October 2012 Editors

  3. Terminator field-aligned current system: A new finding from model-assimilated data set (MADS)

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Gardner, L. C.; Eccles, J. V.; Rice, D.

    2013-12-01

    Physics-based data assimilation models have been recognized by the space science community as the most accurate approach to specify and forecast the space weather of the solar-terrestrial environment. The model-assimilated data sets (MADS) produced by these models constitute an internally consistent time series of global three-dimensional fields whose accuracy can be estimated. Because of its internal consistency of physics and completeness of descriptions on the status of global systems, the MADS has also been a powerful tool to identify the systematic errors in measurements, reveal the missing physics in physical models, and discover the important dynamical physical processes that are inadequately observed or missed by measurements due to observational limitations. In the past years, we developed a data assimilation model for the high-latitude ionospheric plasma dynamics and electrodynamics. With a set of physical models, an ensemble Kalman filter, and the ingestion of data from multiple observations, the data assimilation model can produce a self-consistent time-series of the complete descriptions of the global high-latitude ionosphere, which includes the convection electric field, horizontal and field-aligned currents, conductivity, as well as 3-D plasma densities and temperatures, In this presentation, we will show a new field-aligned current system discovered from the analysis of the MADS produced by our data assimilation model. This new current system appears and develops near the ionospheric terminator. The dynamical features of this current system will be described and its connection to the active role of the ionosphere in the M-I coupling will be discussed.

  4. [The physical activity level of people working at a regional health office in Lima, Peru].

    PubMed

    Sanabria-Rojas, Hernán; Tarqui-Mamani, Carolina; Portugal-Benavides, Walter; Pereyra-Zaldívar, Héctor; Mamani-Castillo, Lorenzo

    2014-01-01

    Determining the prevalence of physical activity for health workers from a regional health office in Lima; their nutritional status and history of non-communicable diseases is also described. The study was cross-sectional and observations were made between August and November 2012. The study population involved 172 health workers working at a regional health office in Lima (DIRESA) according to the inclusion criteria and their acceptance of the offer to participate. Workers were excluded who had some kind of physical limitation regarding physical exercise. Their physical activity level was determined by using the International Physical Activity Questionnaire (IPAQ) which measures physical activity domains: work, home, transport and leisure. SPSS-19 was used for processed the data and nutritional status was evaluated using the body mass index (BMI), according to WHO classification. 88.0 % of DIRESA workers had a low level of physical activity and 64.0 % were overweight. Among the most common non-communicable diseases, it was found that 4.7 % had diabetes, 15.6 % hypertension, 32.6 % dyslipidaemia and 15.0 % smoked. DIRESA workers had a high prevalence of physical inactivity and excess weight, so it is advisable to implement healthy policies helping to improve their health.

  5. Processes, barriers and facilitators to implementation of a participatory ergonomics program among eldercare workers.

    PubMed

    Rasmussen, Charlotte Diana Nørregaard; Lindberg, Naja Klærke; Ravn, Marie Højbjerg; Jørgensen, Marie Birk; Søgaard, Karen; Holtermann, Andreas

    2017-01-01

    This study aimed to investigate the processes of a participatory ergonomics program among 594 eldercare workers with emphasis on identified risk factors for low back pain and solutions, and reveal barriers and facilitators for implementation. Sixty-nine per cent of the identified risk factors were physical ergonomic, 24% were organisational and 7% were psychosocial risk factors. Most solutions were organisational (55%), followed by physical (43%) and psychosocial solutions (2%). Internal factors (e.g. team or management) constituted 47% of the barriers and 75% of the facilitators. External factors (e.g. time, financial resources, collaboration with resident or relatives) constituted 53% of the barriers and 25% of the facilitators. This study revealed the processes and implementation of a participatory ergonomics program among eldercare workers. The findings can be transferred to workers, workplaces, health and safety professionals, and researchers to improve future participatory ergonomics programs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Exploring the role of music therapy in cardiac rehabilitation after cardiothoracic surgery: a qualitative study using the Bonny method of guided imagery and music.

    PubMed

    Short, Alison; Gibb, Heather; Fildes, Jennifer; Holmes, Colin

    2013-01-01

    Cardiac rehabilitation integrates physical, psychological, and vocational strategies to restore and sustain optimal health. An innovative study using music therapy (Bonny Method of Guided Imagery and Music [BMGIM]) explored the experiences of cardiac rehabilitation participants in an outpatient setting at 2 major metropolitan teaching hospitals. Commencing 6 to 15 weeks after cardiothoracic surgery, 6 study participants were recruited for 6 weekly music therapy (BMGIM) sessions. Qualitative analysis of the patient narrative within a semiotic framework demonstrated that patients used music therapy to spontaneously explore their recovery process. Five grand themes emerged: (1) looking through the frame, (2) feeling the impact, (3) spiralling into the unexpected, (4) sublime plateau, and (5) rehearsing new steps. The themes related to physical changes, adjustment after surgery, and anticipated lifestyle. This study demonstrates that music therapy (BMGIM) may be used to access and understand the internal recovery process of postcardiothoracic surgical patients, providing an additional clinical tool to augment the external rehabilitation process.

  7. Droplet Breakup Mechanisms in Air-blast Atomizers

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  8. Global Matrix 2.0: Report Card Grades on the Physical Activity of Children and Youth Comparing 38 Countries.

    PubMed

    Tremblay, Mark S; Barnes, Joel D; González, Silvia A; Katzmarzyk, Peter T; Onywera, Vincent O; Reilly, John J; Tomkinson, Grant R

    2016-11-01

    The Active Healthy Kids Global Alliance organized the concurrent preparation of Report Cards on the physical activity of children and youth in 38 countries from 6 continents (representing 60% of the world's population). Nine common indicators were used (Overall Physical Activity, Organized Sport Participation, Active Play, Active Transportation, Sedentary Behavior, Family and Peers, School, Community and the Built Environment, and Government Strategies and Investments), and all Report Cards were generated through a harmonized development process and a standardized grading framework (from A = excellent, to F = failing). The 38 Report Cards were presented at the International Congress on Physical Activity and Public Health in Bangkok, Thailand on November 16, 2016. The consolidated findings are summarized in the form of a Global Matrix demonstrating substantial variation in grades both within and across countries. Countries that lead in certain indicators often lag in others. Average grades for both Overall Physical Activity and Sedentary Behavior around the world are D (low/poor). In contrast, the average grade for indicators related to supports for physical activity was C. Lower-income countries generally had better grades on Overall Physical Activity, Active Transportation, and Sedentary Behaviors compared with higher-income countries, yet worse grades for supports from Family and Peers, Community and the Built Environment, and Government Strategies and Investments. Average grades for all indicators combined were highest (best) in Denmark, Slovenia, and the Netherlands. Many surveillance and research gaps were apparent, especially for the Active Play and Family and Peers indicators. International cooperation and cross-fertilization is encouraged to address existing challenges, understand underlying determinants, conceive innovative solutions, and mitigate the global childhood inactivity crisis. The paradox of higher physical activity and lower sedentary behavior in countries reporting poorer infrastructure, and lower physical activity and higher sedentary behavior in countries reporting better infrastructure, suggests that autonomy to play, travel, or chore requirements and/or fewer attractive sedentary pursuits, rather than infrastructure and structured activities, may facilitate higher levels of physical activity.

  9. Testing two process models of religiosity and sexual behavior.

    PubMed

    Vasilenko, Sara A; Duntzee, Christina I; Zheng, Yao; Lefkowitz, Eva S

    2013-08-01

    Adolescents who are more religious are less likely to have sex, but the process by which religiosity impacts sexual behavior is not well established. We tested two potential processes, involving: (1) whether religiosity suppressed individuals' motivations to have sex for physical pleasure, and (2) whether individuals internalized their religions' teachings about sex for pleasure. College students (N = 610, 53.8% female, M age = 18.5, 26.1% Hispanic Latino [HL], 14.9% non-HL African American, 23.8% non-HL Asian American/Pacific Islander, 26.3% non-HL European American and 8.9% non-HL multiracial) completed web surveys during their first three semesters. Religiosity did not moderate the association between students' motivations for sex for pleasure and sexual behavior. Motivations mediated the association between religiosity and sexual behavior, suggesting that religion does not override adolescents' existing motivations, but instead, religious adolescents internalize norms about sexual behavior. Testing Two Process Models of Religiosity and Sexual Behavior. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  10. Does cost-benefit analysis or self-control predict involvement in two forms of aggression?

    PubMed

    Archer, John; Fernández-Fuertes, Andrés A; Thanzami, Van Lal

    2010-01-01

    The main aim of this research was to assess the relative association between physical aggression and (1) self-control and (2) cost-benefit assessment, these variables representing the operation of impulsive and reflective processes. Study 1 involved direct and indirect aggression among young Indian men, and Study 2 physical aggression to dating partners among Spanish adolescents. In Study 1, perceived benefits and costs but not self-control were associated with direct aggression at other men, and the association remained when their close association with indirect aggression was controlled. In Study 2, benefits and self-control showed significant and independent associations (positive for benefits, negative for self-control) with physical aggression at other-sex partners. Although being victimized was also correlated in the same direction with self-control and benefits, perpetration and being victimized were highly correlated, and there was no association between being victimized and these variables when perpetration was controlled. These results support the theory that reflective (cost-benefit analyses) processes and impulsive (self-control) processes operate in parallel in affecting aggression. The finding that male adolescents perceived more costs and fewer benefits from physical aggression to a partner than female adolescents did is consistent with findings indicating greater social disapproval of men hitting women than vice versa, rather than with the view that male violence to women is facilitated by internalized patriarchal values. (c) 2010 Wiley-Liss, Inc.

  11. PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-07-01

    The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in the journal Science and Technology of Advanced Materials. All articles have been refereed by experts in the field. Both of these journals are fully accessible electronically and can be cited and referenced in the usual way. It is our hope that the reader will enjoy and profit from the MAP3 Proceedings. Hitoshi Wada (Kashiwa, Japan) Chair Eric Beaugon (Grenoble, France) Hans J Schneider-Muntau (Tallahassee, USA) Co-chair Advisory Board Shigeo Asai (Nagoya, Japan) Koichi Kitazawa (Tokyo, Japan) Mitsuhiro Motokawa (Sendai, Japan) Shoogo Ueno (Fukuoka, Japan) Robert Tournier (Grenoble, France) Justin Schwartz (Tallahassee, USA) J C Maan (Nijmegen, Netherland) Scientific Committee Yoshifumi Tanimoto (Hiroshima, Japan) Masuhiro Yamaguchi (Yokohama, Japan) Tsunehisa Kimura (Kyoto, Japan) Yoshio Sakka (Tsukuba Japan) Ryoichi Aogaki (Tokyo, Japan) Jyunji Miyakoshi (Hirosaki, Japan) Kazuo Watanabe (Sendai, Japan) James M Valles Jr. (Providence, USA) Joon Pyo Park (Pohang, Korea) Qiang Wang (Shenyang, China) Nicole Pamme (Hull, UK) Sophie Rivoirard (Grenoble, France) P C M Christianen (Nijmegen, Netherland) Local Organizing Committee Isao Yamamoto Masafumi Yamato Shigeru Horii Norihito Sogoshi Masateru Ikehata Noriyuki Hirota Tsutomu Ando Proceedings Editorial Board Yoshio Sakka Noriyuki Hirota Shigeru Horii Tsutomu Ando Conference photograph

  12. Maternal and paternal physical abuse: Unique and joint associations with child behavioral problems.

    PubMed

    Cui, Naixue; Deatrick, Janet A; Liu, Jianghong

    2018-02-01

    Although there is a substantial amount of literature documenting the relationship between child abuse and behavioral problems in China, there is, on the other hand, a limited number of studies on the joint and unique associations of maternal and paternal physical abuse with child behaviors within the Chinese context. The present study, using the family systems theory as the theoretical framework, aims to examine these joint and the unique associations of maternal and paternal physical abuse with externalizing and internalizing behaviors among a community sample of Chinese children. A total of 296 children (54.7% boys, mean age 12.31±0.56years) from two-parent families participated in the study, and they reported their physical abuse experience by their mother and father in the previous year using the Chinese version of the Parent-Child Conflict Tactics Scale. Participants, using the Youth Self Report, reported personal externalizing and internalizing behaviors, and, similarly, their mothers, using the Child Behavior Checklist, assessed children's externalizing and internalizing behaviors. Linear mixed effect models with random intercept and slope were used to examine the joint and unique associations of maternal and paternal physical abuse with child externalizing and internalizing behaviors. Results revealed that physically abused children were more likely to be simultaneously abused by both mothers and fathers. Furthermore, when compared with their non-abused counterparts, children with physical abuse that was carried out solely by mothers (externalizing behaviors: β=6.71, 95% CI=2.45-10.98, p<0.01; internalizing behaviors: β=4.52, 95% CI=0.37-8.66, p<0.05) or by both mothers and fathers (externalizing behaviors: β=4.52, 95% CI=1.80-7.24, p<0.001; internalizing behaviors: β=2.98, 95% CI=0.34-5.61, p<0.05) reported more externalizing and internalizing behaviors. Externalizing and internalizing behaviors of children who were physically abused solely by fathers did not significantly differ from those of their non-abused counterparts, which may result from the small sample size. The present findings suggest that maternal physical abuse may have a dominant and unique association with child behaviors, regardless of whether paternal physical abuse occurs within the family. Implications for future research and practice within the Chinese context regarding the subject of child behaviors and parental abuse are discussed. Copyright © 2017. Published by Elsevier Ltd.

  13. PREFACE: 7th International Symposium on Large TPCs for Low-Energy Rare Event Detection

    NASA Astrophysics Data System (ADS)

    Colas, P.; Giomataris, I.; Irastorza, I.; Patzak, Th

    2015-11-01

    The seventh "International Symposium on Large TPCs for Low-Energy Rare Event Detection", took place in Paris between the 15th and 17th of December 2014 at the Institute of Astroparticle Physics (APC) campus - Paris Diderot University. As usual the conference was organized during the week before Christmas, which seems to be convenient for most of the people and occurs every two years with almost 120 participants attending. Many people contributed to the success of the conference, but the organizers would particularly like to thank the management of APC for providing the nice Buffon auditorium and infrastructure. We also acknowledge the valuable support of DSM-Irfu and the University of Zaragoza. The scientific program consisted of plenary sessions including the following topics with theoretical and experimental lectures: • Low energy neutrino physics • Neutrinoless double beta decay process • Dark matter searches • Axion and especially solar axion searches • Space experiments and gamma-ray polarimetry • New detector R&D and future experiments

  14. Physical Activity and Psychological Benefits. International Society of Sport Psychology Position Statement.

    ERIC Educational Resources Information Center

    Physician and Sportsmedicine, 1992

    1992-01-01

    International Society of Sport Psychology clarifies the psychological benefits of physical activity, noting the positive relationship between physical activity level and mental health. Exercise can reduce anxiety, decrease depression levels, reduce neuroticism and anxiety, reduce stress, and have beneficial emotional effects for both sexes across…

  15. The physics of bacterial decision making.

    PubMed

    Ben-Jacob, Eshel; Lu, Mingyang; Schultz, Daniel; Onuchic, Jose' N

    2014-01-01

    The choice that bacteria make between sporulation and competence when subjected to stress provides a prototypical example of collective cell fate determination that is stochastic on the individual cell level, yet predictable (deterministic) on the population level. This collective decision is performed by an elaborated gene network. Considerable effort has been devoted to simplify its complexity by taking physics approaches to untangle the basic functional modules that are integrated to form the complete network: (1) A stochastic switch whose transition probability is controlled by two order parameters-population density and internal/external stress. (2) An adaptable timer whose clock rate is normalized by the same two previous order parameters. (3) Sensing units which measure population density and external stress. (4) A communication module that exchanges information about the cells' internal stress levels. (5) An oscillating gate of the stochastic switch which is regulated by the timer. The unique circuit architecture of the gate allows special dynamics and noise management features. The gate opens a window of opportunity in time for competence transitions, during which the circuit generates oscillations that are translated into a chain of short intervals with high transition probability. In addition, the unique architecture of the gate allows filtering of external noise and robustness against variations in circuit parameters and internal noise. We illustrate that a physics approach can be very valuable in investigating the decision process and in identifying its general principles. We also show that both cell-cell variability and noise have important functional roles in the collectively controlled individual decisions.

  16. The physics of bacterial decision making

    PubMed Central

    Ben-Jacob, Eshel; Lu, Mingyang; Schultz, Daniel; Onuchic, Jose' N.

    2014-01-01

    The choice that bacteria make between sporulation and competence when subjected to stress provides a prototypical example of collective cell fate determination that is stochastic on the individual cell level, yet predictable (deterministic) on the population level. This collective decision is performed by an elaborated gene network. Considerable effort has been devoted to simplify its complexity by taking physics approaches to untangle the basic functional modules that are integrated to form the complete network: (1) A stochastic switch whose transition probability is controlled by two order parameters—population density and internal/external stress. (2) An adaptable timer whose clock rate is normalized by the same two previous order parameters. (3) Sensing units which measure population density and external stress. (4) A communication module that exchanges information about the cells' internal stress levels. (5) An oscillating gate of the stochastic switch which is regulated by the timer. The unique circuit architecture of the gate allows special dynamics and noise management features. The gate opens a window of opportunity in time for competence transitions, during which the circuit generates oscillations that are translated into a chain of short intervals with high transition probability. In addition, the unique architecture of the gate allows filtering of external noise and robustness against variations in circuit parameters and internal noise. We illustrate that a physics approach can be very valuable in investigating the decision process and in identifying its general principles. We also show that both cell-cell variability and noise have important functional roles in the collectively controlled individual decisions. PMID:25401094

  17. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    NASA Astrophysics Data System (ADS)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ, Otwock, Poland—Chairman Dimitri Batani, Universite Bordeaux, France Sergio Ciattaglia, ITER, Cadarache, France Michael Dudeck, UPMC, Paris, France Igor E Garkusha, NSC KIPT, Kharkov, Ukraine Zbigniew Kłos, CBK PAN, Warsaw Giorgio Maddaluno, ENEA Frascati, Italy Andrea Murari, EFDA JET, Culham, UK Józef Musielok, University of Opole, Poland Svetlana Ratynskaia, RIT, Stockholm, Sweden Karel Rohlena, IP CAS, Prague, Czech Republic Valentin Smirnov, Rosatom, Moscow, Russia Francisco Tabares, CIEMAT, Madrid, Spain Lorenzo Torrisi, University of Messina, Messina, Italy Jerzy Wołowski, IFPiLM, Warsaw, Poland Urszula Woźnicka, IFJ PAN, Cracow, Poland Local Organizing Committee Jerzy Wołowski—Chairman Paweł Gąsior—Secretary Zofia Kalinowska Ewa Kowalska-Strzęciwilk Monika Kubkowska Anita Pokorska Ryszard Panfil Joanna Dziak-Beme Conference website: http://plasma2013.ipplm.pl/

  18. III Potsdam-V Kiev International Workshop on Nonlinear Processes in Physics. Held in Potsdam, New York on August 1-11, 1991

    DTIC Science & Technology

    1991-08-01

    Bona, Burke, Grundbaum, Hasagawa, Horton, Krichever, Kruskal, Kuznetsov , Lax, McLaughlin, Mikhailov., Rubenchik, Sabatier, Tabor, Zabusky) for their...British Telecom Lab., GB Fibers Oleg Bogoyavlenskij Breaking Solitons Steklov Mathematical Institute USSR Marco Boiti Real and Virtual Multidimensional...Beyond Rutgers University, USA Boris Kupershmidt Relativistic Analogs of Lax Equations Tennessee Space Institute, USA E.A. Kuznetsov Weak MHD Turbulence

  19. Lightning Observations from the International Space Station (ISS) for Science Research and Operational Applications

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.

  20. Thank You to All JOSPT Contributors for 2016.

    PubMed

    Abbott, J Haxby

    2016-12-01

    On behalf of the many stakeholders in the Journal of Orthopaedic & Sports Physical Therapy (JOSPT), including the Sections and international partners, readers, Editorial Board, and authors, Editor-in-Chief J. Haxby Abbott gives thanks and recognizes all of the many individuals who have contributed to the editorial process and content of JOSPT this past year. J Orthop Sports Phys Ther 2016;46(12):1018-1020. doi:10.2519/jospt.2016.0116.

  1. Thank You to All JOSPT Contributors for 2017.

    PubMed

    Abbott, J Haxby

    2017-12-01

    On behalf of the many stakeholders in the Journal of Orthopaedic & Sports Physical Therapy (JOSPT), including the Sections and international partners, readers, Editorial Board, and authors, Editor-in-Chief J. Haxby Abbott gives thanks and recognizes all of the many individuals who have contributed to the editorial process and content of JOSPT this past year. J Orthop Sports Phys Ther 2017;47(12):889-891. doi:10.2519/jospt.2017.0110.

  2. Frontiers in Applied and Computational Mathematics 05’

    DTIC Science & Technology

    2005-03-01

    dynamics, forcing subsets to have the same oscillation numbers and interleaving spiking times . Our analysis follows the theory of coupled systems of...continuum is described by a continuous- time stochastic process, as are their internal dynamics. Soluble factors, such as cytokines, are represent- ed...scale of a partide pas- sage time through the reaction zone. Both are realistic for many systems of physical interest. A higher order theory includes

  3. Nanostructures: Physics and Technology International Symposium (9th), St. Petersburg, Russia, June 18-22, 2001 Proceedings

    DTIC Science & Technology

    2001-06-22

    detection: SThM operates because of heat extending into the microfabricated thermocouple. Therefore, the nature of the thermal contact between tip and...local heating phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 ix NC.05 Yu. V. Dubrovskii, A. Patane, P. N... heating . During the growth process the rotation of the samples is used, temperature field inhomogenity across the surface is about ∼ 5%. In order to

  4. Studies of land-cover, land-use, and biophysical properties of vegetation in the Large Scale Biosphere Atmosphere experiment in Amazonia.

    Treesearch

    Dar A. Robertsa; Michael Keller; Joao Vianei Soares

    2003-01-01

    We summarize early research on land-cover, land-use, and biophysical properties of vegetation from the Large Scale Biosphere Atmosphere (LBA) experiment in Amazoˆnia. LBA is an international research program developed to evaluate regional function and to determine how land-use and climate modify biological, chemical and physical processes there. Remote sensing has...

  5. Pedometer-Determined Physical Activity and Its Comparison with the International Physical Activity Questionnaire in a Sample of Belgian Adults

    ERIC Educational Resources Information Center

    De Cocker, Katrien; Cardon, Greet; De Bourdeaudhuij, Ilse

    2007-01-01

    Pedometer-determined physical activity (PA) levels in Belgian adults were provided and compared to PA scores reported in the International Physical Activity Questionnaire (IPAQ). The representative sample (N = 1,239) of the Belgian population took on average 9,655 (4,526) steps/day. According to pedometer indices 58.4% were insufficiently active.…

  6. Influence of physical activity, sedentary behavior, and diet quality in childhood on the incidence of internalizing and externalizing disorders during adolescence: a population-based cohort study.

    PubMed

    Wu, XiuYun; Bastian, Kerry; Ohinmaa, Arto; Veugelers, Paul

    2018-02-01

    Studies among youth suggest that physical inactivity, sedentary behaviors, and poor diet quality are associated with poor mental health. Few population-based studies have investigated these relationships longitudinally. We examined the association between physical activity, sedentary behaviors, and diet quality in childhood and the incidence of internalizing and externalizing disorders throughout adolescence. We linked health behavior survey data from 2003 among 10- to 11-year-old children across Nova Scotia, Canada, with administrative health care data from 2003 to 2011. Students' diet quality was assessed using the Harvard Food Frequency Questionnaire. Physical activity and sedentary behaviors were self-reported, and internalizing and externalizing disorders were diagnosed by a physician. We applied Cox regression to examine the associations of the health behaviors with the incidence of internalizing and externalizing disorders between 2003 and 2011. Of the 4861 participating students, 23.7% and 9.4% had a diagnosis of internalizing and externalizing disorders, respectively. The incidences of internalizing and externalizing disorders were higher among students who were less physically active and spent more time using computers and video games. These findings suggest that promoting an active lifestyle in childhood may contribute to the prevention of both internalizing and externalizing disorders during adolescence. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Detector Outline Document for the Fourth Concept Detector ("4th") at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbareschi, Daniele; et al.

    We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less

  8. PREFACE Preface

    NASA Astrophysics Data System (ADS)

    Ivanyi, Amalia; Iványi, Péter; Rachinskii, Dmitrii; Sobolev, Vladimir A.

    2011-02-01

    The International Workshop on Multi-Rate Processes and Hysteresis conference series focuses on singular perturbation problems and hysteresis as common strongly nonlinear phenomena occurring in mathematical, physical, economical, engineering and information systems. The term 'strongly nonlinear' means, in particular, that linearization will not encapsulate the observed phenomena. Singular perturbation problems and hysteresis can be manifested at different stages of the same or similar processes. Furthermore, a number of fundamental hysteresis models can be considered as a limit of time relaxation processes, or admit an approximation by a differential equation, which is singular with respect to a particular parameter. However, interaction between researchers in the areas of systems with time relaxation and systems with hysteresis (and between the 'multi-rate' and 'hysteresis' research communities) has so far been limited, and there is little cross-fertilization of ideas. It is the aim of the conference series to fill this gap. The 5th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS 2010) was hosted by the Pollack Mihály Faculty of Engineering, University of Pécs, Hungary, from 31 May to 3 June 2010, on the occasion of Pécs being the Cultural Capital of Europe in 2010. The workshop was organized in cooperation with University College Cork, Ireland, which hosted all of the previous Workshops: International Workshop on Multi-rate Processes and Hysteresis (University College, Cork, Ireland, 31 March-5 April 2008). Proceedings are published in Journal of Physics: Conference Series volume 138. See http://euclid.ucc.ie/appliedmath/murphys2008/murphys2008.htm; International Workshop on Multi-rate Processes and Hysteresis (University College, Cork, Ireland, 3-8 April 2006). Proceedings are published in Journal of Physics: Conference Series volume 55. Further information is available at http://Euclid.ucc.ie/murphys2006.htm; International Workshop on Hysteresis and Multi-scale Asymptotic (University College, Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series volume 22. Further details are available at http://Euclid.ucc.ie/hamsa2004.htm; International Workshop on Relaxation Oscillations and Hysteresis (University College, Cork, Ireland, 1-6 April 2002). The related collection of invited lectures was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-6 April 2001). A collection of invited papers has been published as a special issue of Proceedings of the Russian Academy of Natural Sciences: Nonlinear dynamics of laser and reacting system, available at http://euclid.ucc.ie/appliedmath/gmna2001/ProcGMNA2001p1.pdf. Among the aims of this and previous workshops were: to bring together the leading experts in singular perturbation and hysteresis phenomena in applied problems; to discuss important problems in the areas of reacting systems, semiconductor lasers, shock phenomena, economic modelling, fluid mechanics, electrical engineering and modelling biological systems with emphasises on hysteresis and singular perturbations; to learn and share modern techniques in areas of common interest. The International Workshop on Multi-rate Processes and Hysteresis (Pollack Mihály Faculty of Engineering, University of Pécs, Hungary, 31 May-3 June 2010) brought together about 50 scientists who are actively researching the areas of dynamical systems with hysteresis and singular perturbations with applications to physical, engineering and economic systems. The countries represented at the Workshop included the Czech Republic, Germany, Hungary, Ireland, Israel, Italy, Poland, Romania, Russia, the United Kingdom and USA. Workshop photo Workshop photo 31 May 2010 Sponsorship of the Workshop by the Pollack Mihály Faculty of Engineering, University of Pécs (Hungary), University College Cork (Ireland), University of Pécs (Hungary), The University of Texas at Dallas (USA), and the Cultural Capital of Europe 2010, Pécs (Hungary), is gratefully acknowledged. The Editors and Organizers of the Workshop are sincerely grateful to Dr Géza Várady, Ms Andrea Zseni and Mr Ádám Schiffer of the Pollack Mihály Faculty of Engineering, University of Pécs, and Dr Alexander Pimenov of University College Cork for managing the organization of the conference and for the assistance in formatting of all the manuscripts. More information about the workshop can be found at http://murphys5.pmmk.pte.hu/ Amalia Ivanyi, Péter Iványi, Dmitrii Rachinskii and Vladimir A SobolevEditors MURPHYS 2010, PMMK PTE, 31 May - 3 June 2010 Sponsored by Pollack Mihály logo POLLACK MIHÁLY FACULTY OF ENGINEERING, UNIVERSITY OF PÉCS UCC logo PÉCSI TUDOMÁNYEGYETEM logo PÉCSI TUDOMÁNYEGYETEM UNIVERSITY OF PÉCS UTD logo Cultural capital logo Cultural Capital of Europe 2010, Pécs, Hungary International Steering Committee Z I BalanovIsrael M BrokateGermany R CrossUK K DahmenUSA M DimianRomania G FriedmanUSA A Ivanyi (Co-Chairman)Hungary P Iványi (Co-Chairman)Hungary L KalachevUSA P KrejčíCzech Republic R O'Malley (Co-Chairman)USA A Pokrovskii (Co-Chairman)Ireland N PopovicUK D Rachinskii (Co-Chairman)Ireland S S SazhinUK V Sobolev (Co-Chairman)Russia S SzabóHungary C VisoneItaly International Program Committee G AlmásiHungary Z BalanovIsrael M BrokateGermany R CrossUK K DahmenUSA M DimianRomania G FriedmanUSA A Ivanyi (Co-Chairman)Hungary P Iványi (Co-Chairman)Hungary S JeneiHungary G KádárHungary L KalachevUSA R KersnerHungary G KovácsHungary P KrejčíCzech Republic P M KuczmannHungary P P O'KaneIreland R O'Malley (Co-Chairman)USA A Pokrovskii (Co-Chairman)Ireland N PopovicUK D Rachinskii (Co-Chairman)Ireland B V H ToppingUK V C VisoneItaly

  9. Self-reported musculoskeletal complaints and injuries and exposure of physical workload in Swedish soldiers serving in Afghanistan

    PubMed Central

    Hagman, Ingela; Tegern, Matthias; Broman, Lisbet; Larsson, Helena

    2018-01-01

    Background Musculoskeletal complaints and injuries (MSCI) are common in military populations. However, only a limited number of studies have followed soldiers during international deployments and investigated the prevalence of MSCI during and at the end of their deployment. The aim was to describe the prevalence of MSCI in different military occupational specialties and categorise their most common tasks in terms of exposures to physical workloads during a six-month long international deployment in Afghanistan. Methods Cross-sectional survey, including 325 soldiers (300 men), aged 20–62 participating in an international deployment in Afghanistan during the spring of 2012. Soldiers were clustered into different military occupational specialties: Infantry, Administration, Logistics, Logistics/Camp, Medical and Other. Data were collected through the use of the Musculoskeletal Screening Protocol at the end of the international mission. Results Forty-seven percent reported MSCI during deployment, with 28% at the end. The most common locations of MSCI during the mission were lower back, knee, shoulders, upper back, neck and foot, while the knee and lower back prevailed at the end of the mission. Almost half of the soldiers who had MSCI reported affected work ability. The most common duties during the mission were vehicle patrolling, staff duties, guard/security duties, foot patrols and transportation. Soldiers reported that vehicle patrolling, staff duties and transportation were demanding with respect to endurance strength, guard/security duties challenged both maximum and endurance strength while foot patrolling challenged maximum and endurance strength, aerobic and anaerobic endurance and speed. Conclusions MSCI during international deployment are common among Swedish soldiers. The results indicate the need to further develop strategies focusing on matching the soldiers’ capacity to the job requirements, with relevant and fair physical selection-tests during the recruitment process and proactive interventions targeting MSCI before and during deployment, in order to enhance soldiers’ readiness and promote operational readiness. PMID:29621324

  10. FOREWORD: International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media. Sponsored by the ICTP (Trieste) and the European Union (Brussels)

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Bingham, R.; Stenflo, L.; Dawson, J. M.

    1996-01-01

    Starting in 1989 we have created a forum at the International Centre for Theoretical Physics, Trieste, where scientists from different parts of the world can meet and exchange information in the frontier areas of physics. In the three previous meetings, we focused on large amplitude waves and fields in plasmas, the physics of dusty plasmas, and wave-particle interactions and energization in plasmas. In 1995, we came up with a fresh idea of organizing somewhat enlarged but still well focused research topics that are cross-disciplinary. Thus, the usual 'fourth-week activity' of the Plasma Physics College at the ICTP was replaced by an International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media, which was held at the ICTP during the period 16-20 October, 1995. This provided us an opportunity to draw eminent speakers from many closely related fields such as plasma physics, fluid dynamics, nonlinear optics, and astrophysics. The Workshop was attended by 82 delegates from 34 countries, and the participation from the industrial and the developing countries was about half each. The programme included 4 review and 29 topical invited lectures. In addition, about 30 contributed papers were presented as posters in two sessions. The latter were created in order to give opportunities to younger physicists for displaying the results of their recent work and to obtain constructive comments from the other participants. During the five days at the ICTP, we focused on almost all the various aspects of nonlinear phenomena that are common in different branches of science. The review and topical lectures as well as the posters dealt with the most recent advances in coherent nonlinear processes in space and astrophysical plasmas, in fluids and optics, in low temperature dusty plasmas, as well as in laser produced and magnetically confined laboratory plasmas. The focus was on the physics of various types of waves and their generation mechanisms, the development of turbulence and the formation of coherent structures, particle and heat transport, plasma based charged particle acceleration by intense electrostatic waves that are created by powerful short laser beams, etc. Specifically, the review talks presented the general picture of the subject matter at hand and the underlying physics, whereas the remaining topical talks and the posters described the present state-of-the-art in the field. Instead of presenting the technical details, the speakers kept a good balance in injecting both the physics and the mathematical techniques to their audience. It was noted that despite the diversity of the physical problems, the mathematical equations governing particular phenomena and their solutions remain somewhat similar. Most contributions from the Trieste meeting appear in the form of a collection of articles in this Topical Issue of Physica Scripta, which will be distributed to all the delegates. We are grateful to the ICTP director Professor M A Virasoro and the deputy director Professor L Bertocchi for their generous support and warm hospitality at the ICTP. Thanks are also due to Professor G Denardo of the ICTP and Professor M H A Hassan of the Third World Academy of Sciences (TWAS, ICTP) for their constant and wholehearted support in our endeavours. We would like to express our gratitude to the ICTP and the Commission of the European Union (through the HCM networks on Dusty Plasmas and Nonlinear Phenomena in the Microphysics of Collisionless Plasmas) for providing partial financial support to our activities at Trieste. Finally, our cordial thanks are extended to the speakers and the attendees for their contributions which resulted in the success of this workshop. Specifically, we appreciate the speakers for delivering excellent talks, supplying well prepared manuscripts for publication, and enhancing the plasma physics activity at the ICTP. The excellent work of MS Ave Lusenti is gratefully acknowledged.

  11. Physical characterization of uranium oxide pellets and powder applied in the Nuclear Forensics International Technical Working Group Collaborative Materials Exercise 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Grant; Keegan, E.; Young, E.

    Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less

  12. Physical characterization of uranium oxide pellets and powder applied in the Nuclear Forensics International Technical Working Group Collaborative Materials Exercise 4

    DOE PAGES

    Griffiths, Grant; Keegan, E.; Young, E.; ...

    2018-01-06

    Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less

  13. Hardware device to physical structure binding and authentication

    DOEpatents

    Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.

    2013-08-20

    Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.

  14. Time rescaling and pattern formation in biological evolution.

    PubMed

    Igamberdiev, Abir U

    2014-09-01

    Biological evolution is analyzed as a process of continuous measurement in which biosystems interpret themselves in the environment resulting in changes of both. This leads to rescaling of internal time (heterochrony) followed by spatial reconstructions of morphology (heterotopy). The logical precondition of evolution is the incompleteness of biosystem's internal description, while the physical precondition is the uncertainty of quantum measurement. The process of evolution is based on perpetual changes in interpretation of information in the changing world. In this interpretation the external biospheric gradients are used for establishment of new features of organization. It is concluded that biological evolution involves the anticipatory epigenetic changes in the interpretation of genetic symbolism which cannot generally be forecasted but can provide canalization of structural transformations defined by the existing organization and leading to predictable patterns of form generation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Updating irradiated graphite disposal: Project 'GRAPA' and the international decommissioning network.

    PubMed

    Wickham, Anthony; Steinmetz, Hans-Jürgen; O'Sullivan, Patrick; Ojovan, Michael I

    2017-05-01

    Demonstrating competence in planning and executing the disposal of radioactive wastes is a key factor in the public perception of the nuclear power industry and must be demonstrated when making the case for new nuclear build. This work addresses the particular waste stream of irradiated graphite, mostly derived from reactor moderators and amounting to more than 250,000 tonnes world-wide. Use may be made of its unique chemical and physical properties to consider possible processing and disposal options outside the normal simple classifications and repository options for mixed low or intermediate-level wastes. The IAEA has an obvious involvement in radioactive waste disposal and has established a new project 'GRAPA' - Irradiated Graphite Processing Approaches - to encourage an international debate and collaborative work aimed at optimising and facilitating the treatment of irradiated graphite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Determination of the solubility and size distribution of radioactive aerosols in the uranium processing plant at NRCN.

    PubMed

    Kravchik, T; Oved, S; Paztal-Levy, O; Pelled, O; Gonen, R; German, U; Tshuva, A

    2008-01-01

    Inhalation is the main route of internal exposure to radioactive aerosols in the nuclear industry. To assess the radiation dose from the intake of these aerosols, it is necessary to know their physical (aerodynamic diameter distribution) and chemical (dissolution rate in extracellular lung fluid) characteristics. Air samples were taken from the uranium processing plant at the Nuclear Research Center, Negev. Measurements of aerodynamic diameter distribution using a cascade impactor indicated an average activity median aerodynamic diameter value close to 5 microm, in accordance with the recent recommended values of International Commission on Radiological Protection (ICRP) model. Solubility profiles of these aerosols were determined by performing in vitro solubility tests over 100 d in a simultant solution of the extracellular fluid. The tests indicated that the uranium aerosols should be assigned to an absorption between Types M and S (as defined by the ICRP Publication 66 model).

  17. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  18. Physical Conditions and Exobiology Potential of Icy Satellites of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.

    2017-05-01

    All giant planets of the Solar system have a big number of satellites. A small part of them consist very large bodies, quite comparable to planets of terrestrial type, but including very significant share of water ice. Galileo spacecraft has given indications, primarily from magnetometer and gravity data, of the possibility that three of Jupiter's four large moons, Europa, Ganymede and Callisto have internal oceans. Formation of such satellites is a natural phenomenon, and satellite systems definitely should exist at extrasolar planets. The most recent models of the icy satellites interior lead to the conclusion that a substantial liquid layer exists today under relatively thin ice cover inside. The putative internal water ocean provide some exobiological niches on these bodies. We can see all conditions needed for origin and evolution of biosphere - liquid water, complex organic chemistry and energy sources for support of biological processes - are on the moons. The existing of liquid water ocean within icy world can be consequences of the physical properties of water ice, and they neither require the addition of antifreeze substances nor any other special conditions. On Earth life exists in all niches where water exists in liquid form for at least a portion of the year. Possible metabolic processes, such as nitrate/nitrite reduction, sulfate reduction and methanogenesis could be suggested for internal oceans of Titan and Jovanian satellites. Excreted products of the primary chemoautotrophic organisms could serve as a source for other types of microorganisms (heterotrophes). Subglacial life may be widespread among such planetary bodies as satellites of extrasolar giant planets, detected in our Galaxy.

  19. Promoting Physical Activity among International Students in Higher Education: A Peer-Education Approach

    ERIC Educational Resources Information Center

    Yan, Zi; Cardinal, Bradley J.

    2013-01-01

    International students have become an important and growing group in U.S. higher education. Although many universities offer various types of support to international students, little attention is given to preventive health services or health promotion efforts, such as the promotion of physical activity. This article outlines a theory-based…

  20. FOREWORD: The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) (Pine Mountain, Georgia, USA, 19-23 April 2009) The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) (Pine Mountain, Georgia, USA, 19-23 April 2009)

    NASA Astrophysics Data System (ADS)

    Orlando, Thomas M.; Diebold, Ulrike

    2010-03-01

    The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) took place from 19-23 April 2009 in Pine Mountain, Georgia, USA. This was the 12th conference in a strong and vibrant series, which dates back to the early 1980s. DIET XII continued the tradition of exceptional interdisciplinary science and focused on the study of desorption and dynamics induced by electronic excitations of surfaces and interfaces. The format involved invited lectures, contributed talks and a poster session on the most recent developments and advances in this area of surface physics. The Workshop International Steering Committee and attendees wish to dedicate DIET XII to the memory of the late Professor Theodore (Ted) Madey. Ted was one of the main pioneers of this field and was one of the primary individuals working to keep this area of science exciting and adventurous. His overall contributions to surface science were countless and his contributions to the DIET field and community were enormous. He is missed and remembered by many friends and colleagues throughout the world. The papers collected in this issue cover many of the highlights of DIET XII. Topics include ultrafast electron transfer at surfaces and interfaces, quantum and spatially resolved mapping of surface dynamics and desorption, photon-, electron- and ion-beam induced processes at complex interfaces, the role of non-thermal desorption in astrochemistry and astrophysics and laser-/ion-based methods of examining soft matter and biological media. Although the workshop attracted many scientists active in the general area of non-thermal surface processes, DIET XII also attracted many younger scientists (i.e., postdoctoral fellows, advanced graduate students, and a select number of advanced undergraduate students). This field has had an impact in a number of areas including nanoscience, device physics, astrophysics, and now biophysics. We believe that this special issue of Journal of Physics: Condensed Matter will help foster further progress in the study of DIET processes. Since the field remains vibrant and exciting, the workshop series will continue with DIET XIII. Professor Richard Palmer (University of Birmingham, UK) will chair DIET XIII in the UK in early summer 2012. We gratefully acknowledge financial support from SPECS, HIDEN Analytical, BRUKER, The United States National Science Foundation, Georgia Institute of Technology and The State University of New Jersey, Rutgers.

  1. Describing the clinical reasoning process: application of a model of enablement to a pediatric case.

    PubMed

    Furze, Jennifer; Nelson, Kelly; O'Hare, Megan; Ortner, Amanda; Threlkeld, A Joseph; Jensen, Gail M

    2013-04-01

    Clinical reasoning is a core tenet of physical therapy practice leading to optimal patient care. The purpose of this case was to describe the outcomes, subjective experience, and reflective clinical reasoning process for a child with cerebral palsy using the International Classification of Functioning, Disability, and Health (ICF) model. Application of the ICF framework to a 9-year-old boy with spastic triplegic cerebral palsy was utilized to capture the interwoven factors present in this case. Interventions in the pool occurred twice weekly for 1 h over a 10-week period. Immediately post and 4 months post-intervention, the child made functional and meaningful gains. The family unit also developed an enjoyment of exercising together. Each individual family member described psychological, emotional, or physical health improvements. Reflection using the ICF model as a framework to discuss clinical reasoning can highlight important factors contributing to effective patient management.

  2. On-line estimation of nonlinear physical systems

    USGS Publications Warehouse

    Christakos, G.

    1988-01-01

    Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.

  3. Description of the process used to create 1992 Hanford Morality Study database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, E.S.; Buchanan, J.A.; Holter, N.A.

    1992-12-01

    An updated and expanded database for the Hanford Mortality Study has been developed by PNL`s Epidemiology and Biometry Department. The purpose of this report is to document this process. The primary sources of data were the Occupational Health History (OHH) files maintained by the Hanford Environmental Health Foundation (HEHF) and including demographic data and job histories; the Hanford Mortality (HMO) files also maintained by HEHF and including information of deaths of Hanford workers; the Occupational Radiation Exposure (ORE) files maintained by PNL`s Health Physics Department and containing data on external dosimetry; and a file of workers with confirmed internal depositionsmore » of radionuclides also maintained by PNL`s Health Physics Department. This report describes each of these files in detail, and also describes the many edits that were performed to address the consistency and accuracy of data within and between these files.« less

  4. Description of the process used to create 1992 Hanford Morality Study database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, E. S.; Buchanan, J. A.; Holter, N. A.

    1992-12-01

    An updated and expanded database for the Hanford Mortality Study has been developed by PNL's Epidemiology and Biometry Department. The purpose of this report is to document this process. The primary sources of data were the Occupational Health History (OHH) files maintained by the Hanford Environmental Health Foundation (HEHF) and including demographic data and job histories; the Hanford Mortality (HMO) files also maintained by HEHF and including information of deaths of Hanford workers; the Occupational Radiation Exposure (ORE) files maintained by PNL's Health Physics Department and containing data on external dosimetry; and a file of workers with confirmed internal depositionsmore » of radionuclides also maintained by PNL's Health Physics Department. This report describes each of these files in detail, and also describes the many edits that were performed to address the consistency and accuracy of data within and between these files.« less

  5. Medical physics is alive and well and growing in South East Asia.

    PubMed

    Ng, K; Pirabul, R; Peralta, A; Soejoko, D

    1997-03-01

    In recent years there has been a significant economic growth in South East Asia, along with it a concurrent development of medical physics. The status of four countries--Malaysia, Thailand, the Philippines and Indonesia are presented. Medical physicists in these countries have been experiencing the usual problems of lack of recognition, low salaries, and insufficient facilities for education and training opportunities. However the situation has improved recently through the initiative of local enthusiastic medical physicists who have started MS graduate programs in medical physics and begun organizing professional activities to raise the profile of medical physics. The tremendous support and catalytic roles of the American Association of Physicists in Medicine (AAPM) and international organizations such as International Organization for Medical Physics (IOMP), International Atomic Energy Agency (IAEA), World Health Organization (WHO), and International Center for Theoretical Physics (ICTP) have been instrumental in achieving progress. Contributions by these organizations include co-sponsorship of workshops and conferences, travel grants, medical physics libraries programs, and providing experts and educators. The demand for medical physicists is expected to rise in tandem with the increased emphasis on innovative technology for health care, stringent governmental regulation, and acceptance by the medical community of the important role of medical physicists.

  6. Examination to assess the clinical examination and documentation of spine pathology among orthopedic residents.

    PubMed

    Haglin, Jack M; Zeller, John L; Egol, Kenneth A; Phillips, Donna P

    2017-12-01

    The Accreditation Council for Graduate Medical Education (ACGME) guidelines requires residency programs to teach and evaluate residents in six overarching "core competencies" and document progress through educational milestones. To assess the progress of orthopedic interns' skills in performing a history, physical examination, and documentation of the encounter for a standardized patient with spinal stenosis, an objective structured clinical examination (OSCE) was conducted for 13 orthopedic intern residents, following a 1-month boot camp that included communications skills and curriculum in history and physical examination. Interns were objectively scored based on their performance of the physical examination, communication skills, completeness and accuracy of their electronic medical record (EMR), and their diagnostic conclusions gleaned from the patient encounter. The purpose of this study was to meaningfully assess the clinical skills of orthopedic post-graduate year (PGY)-1 interns. The findings can be used to develop a standardized curriculum for documenting patient encounters and highlight common areas of weakness among orthopedic interns with regard to the spine history and physical examination and conducting complete and accurate clinical documentation. A major orthopedic specialty hospital and academic medical center. Thirteen PGY-1 orthopedic residents participated in the OSCE with the same standardized patient presenting with symptoms and radiographs consistent with spinal stenosis. Videos of the encounters were independently viewed and objectively evaluated by one investigator in the study. This evaluation focused on the completeness of the history and the performance and completion of the physical examination. The standardized patient evaluated the communication skills of each intern with a separate objective evaluation. Interns completed these same scoring guides to evaluate their own performance in history, physical examination, and communications skills. The interns' documentation in the EMR was then scored for completeness, internal consistency, and inaccuracies. The independent review revealed objective deficits in both the orthopedic interns' history and the physical examination, as well as highlighted trends of inaccurate and incomplete documentation in the corresponding medical record. Communication skills with the patient did not meet expectations. Further, interns tended to overscore themselves, especially with regard to their performance on the physical examination (p<.0005). Inconsistencies, omissions, and inaccuracies were common in the corresponding medical notes when compared with the events of the patient encounter. Nine of the 13 interns (69.2%) documented at least one finding that was not assessed or tested in the clinical encounter, and four of the 13 interns (30.8%) included inaccuracies in the medical record, which contradicted the information collected at the time of the encounter. The results of this study highlighted significant shortcomings in the completeness of the interns' spine history and physical examination, and the accuracy and completeness oftheir EMR note. The study provides a valuable exercise for evaluating residents in a multifaceted, multi-milestone manner that more accurately documents residents' clinical strengths and weaknesses. The study demonstrates that orthopedic residents require further instruction on the complexities of the spinal examination. It validates a need for increased systemic support for improving resident documentation through comprehensive education and evaluation modules. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Recruitment of Secondary School Physics Teachers--An International Viewpoint.

    ERIC Educational Resources Information Center

    Mayfield, M. R.

    This report of the findings of the working group on "recruitment" of the International Congress on the Education of Secondary School Physics Teachers held in Hungary in September, 1970, includes reasons for the shortage of physics teachers (low salaries, excessive class load, lack of prestige, and inadequate programs of teacher preparation),…

  8. New Governance and Physical Education and School Sport Policy: A Case Study of School to Club Links

    ERIC Educational Resources Information Center

    Phillpots, Lesley; Grix, Jonathan

    2014-01-01

    Background: International concern regarding the marginalisation of physical education in school curricula worldwide led to international calls for the establishment and strengthening of national, regional and local networks to integrate physical education into education, sports, health and related policies. The subsequent introduction of the…

  9. Women Physicists Speak: The 2001 International Study of Women in Physics

    NASA Astrophysics Data System (ADS)

    Ivie, Rachel; Czujko, Roman; Stowe, Katie

    2002-09-01

    The Working Group on Women in Physics of the International Union of Pure and Applied Physics (IUPAP) subcontracted with the Statistical Research Center of the American Institute of Physics (AIP) to conduct an international study on women in physics. This study had two parts. First, we conducted a benchmarking study to identify reliable sources and collect data on the representation of women in physics in as many IUPAP member countries as possible. Second, we conducted an international survey of individual women physicists. The survey addressed issues related to both education and employment. On the education side, we asked about experiences and critical incidents from secondary school through the highest degree earned. On the employment side, we asked about how the respondents' careers had evolved and their self-assessment of how well their careers had progressed. In addition, the questionnaire also addressed issues that cut across education and employment, such as the impact of marriage and children, the factors that contributed the most toward the success they had achieved to date, and suggestions for what could be done to improve the situation of women physicists.

  10. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  11. The Third Tibetan Plateau Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L. P.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; Zhong, L. Z.; Ma, Y.; Tang, S. H.; Liu, Y.; Liu, H.; Li, Y. H.; Zhang, Q.; Hu, Z.; Sun, J. H.; Zhang, S.; Dong, L.; Zhang, H.; Zhao, Y.; Yan, X.; Xiao, A.; Wan, W.; Zhou, X.

    2016-12-01

    The Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III) was initiated jointly by the China Meteorological Administration, the National Natural Scientific Foundation, and the Chinese Academy of Sciences. This paper presents the background, scientific objectives, and overall experimental design of TIPEX-III. It was designed to conduct an integrated observation of the earth-atmosphere coupled system over the Tibetan Plateau (TP) from land surface, planetary boundary layer (PBL), troposphere, and stratosphere for eight to ten years by coordinating ground- and air-based measurement facilities for understanding spatial heterogeneities of complex land-air interactions, cloud-precipitation physical processes, and interactions between troposphere and stratosphere. TIPEX-III originally began in 2014, and is ongoing. It established multiscale land-surface and PBL observation networks over the TP and a tropospheric meteorological radiosonde network over the western TP, and executed an integrated observation mission for cloud-precipitation physical features using ground-based radar systems and aircraft campaigns and an observation task for atmospheric ozone, aerosol, and water vapor. The archive, management, and share policy of the observation data are also introduced herein. Some TIPEX-III data have been preliminarily applied to analyze the features of surface sensible and latent heat fluxes, cloud-precipitation physical processes, and atmospheric water vapor and ozone over the TP, and to improve the local precipitation forecast. Furthermore, TIPEX-III intends to promote greater scientific and technological cooperation with international research communities and broader organizations. Scientists working internationally are invited to participate in the field campaigns and to use the TIPEX-III data for their own research.

  12. A systematic policy approach to changing the food system and physical activity environments to prevent obesity.

    PubMed

    Sacks, Gary; Swinburn, Boyd A; Lawrence, Mark A

    2008-06-05

    As obesity prevention becomes an increasing health priority in many countries, including Australia and New Zealand, the challenge that governments are now facing is how to adopt a systematic policy approach to increase healthy eating and regular physical activity. This article sets out a structure for systematically identifying areas for obesity prevention policy action across the food system and full range of physical activity environments. Areas amenable to policy intervention can be systematically identified by considering policy opportunities for each level of governance (local, state, national, international and organisational) in each sector of the food system (primary production, food processing, distribution, marketing, retail, catering and food service) and each sector that influences physical activity environments (infrastructure and planning, education, employment, transport, sport and recreation). Analysis grids are used to illustrate, in a structured fashion, the broad array of areas amenable to legal and regulatory intervention across all levels of governance and all relevant sectors. In the Australian context, potential regulatory policy intervention areas are widespread throughout the food system, e.g., land-use zoning (primary production within local government), food safety (food processing within state government), food labelling (retail within national government). Policy areas for influencing physical activity are predominantly local and state government responsibilities including, for example, walking and cycling environments (infrastructure and planning sector) and physical activity education in schools (education sector). The analysis structure presented in this article provides a tool to systematically identify policy gaps, barriers and opportunities for obesity prevention, as part of the process of developing and implementing a comprehensive obesity prevention strategy. It also serves to highlight the need for a coordinated approach to policy development and implementation across all levels of government in order to ensure complementary policy action.

  13. The 3^rd International Conference on Women in Physics: Global Perspectives, Common Concerns, Worldwide Views

    NASA Astrophysics Data System (ADS)

    Zastavker, Yevgeniya V.

    2009-03-01

    The 3^rd International Conference on Women in Physics (ICWIP), held in Seoul, Korea, in October 2008, brought together 300 participants from 57 countries, including a diverse 22-member U.S. Delegation, for a 3-day summit of stimulating discussions, thought-provoking presentations, inspirational posters, and networking. Held under the auspices of the Working Group on Women in Physics of the International Union of Pure and Applied Physics (IUPAP), this meeting built on the successes of the 1^st (Paris, 2002) and 2^nd (Rio de Janeiro, 2005) Conferences and further clarified the importance of diversifying the field of physics worldwide. Although considerable progress has been made since 2002, it was clear that the global scientific workforce is still under-utilizing a large percentage of the available female talent pool. If human society is to benefit to its fullest from various contributions that the field of physics can offer in addressing global issues of economic crisis, energy, environment, water, health, poverty, and hunger, women of all races and nationalities need to become fully included and engaged in the national and international physical community. To address these and many other issues, the ICWIP unanimously approved a five-part resolution to IUPAP recommending actions to promote the recruitment, retention, and advancement of women in physics and related fields.

  14. Do They Enter the Workforce? Career Choices after an Undergrad Research Experience

    NASA Astrophysics Data System (ADS)

    Greco, S.; Wissel, S.; Zwicker, A.; Ortiz, D.; Dominguez, A.

    2015-11-01

    Students in undergrad research internships go on to grad school at rates of 50-75% (Lopatto, 2007;Russell, 2005). NSF studied its undergrad program and found that 74% of physics interns (67% for engineering) go to grad school. PPPL undergrad interns were tracked for 10 years. Only 3% of physics PhD candidates are studying plasma physics, but 23% of our alumni that entered grad school did so in plasma. AIP reports that 60% of physics majors go to grad school (AIP, 2012), but 95% of PPPL interns have gone on to grad schools. Several programs track enrollment in grad school. AIP compiles statistics of undergrads who enter grad school and PhD students who work in the field. There has been no study of interns that follows the path from undergrad to grad school and then on to employment. Our tracking shows that most not only complete their advanced degrees but also stay in STEM fields following their academic careers. 88% of them become part of the STEM workforce, higher than the 82% of all physics PhDs employed in physics after obtaining their degree (AIP, 2014). PPPL puts more students in grad school in physics, and specifically plasma physics, and a higher percentage of those grad students stay in the STEM workforce.

  15. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Falcini, Federico; Martorelli, Eleonora; Salusti, Ettore; Sannino, Gianmaria; Santoleri, Rosalia; Chiocci, Francesco

    2015-04-01

    In the last decade joint marine geology and physical oceanography studies are demonstrating the inherited connection between deep-water sedimentary processes and dynamics of water masses in a fruitful exchange in which bedforms type and geometry highlight slow or periodic bottom current processes or event of and oceanography explains and predicts morphological and sedimentary pattern at the seafloor. We investigate the presence of an intriguing up-slope migrating and rotating sand waves observed off the north entrance of the Messina Strait by taking into account the main oceanographic process occurring in the Strait, namely the presence of tidal induced internal solitary waves (ISWs). We hypothesize that the observed deflected pattern of these sand waves is due to refraction of wave occurring at the LIW-MAW interface and that the motion of the grains is due to the increased particle velocity field during the passage of ISWs. We modeled their formations and compared the results with the observed geometries of the dune field. Our findings suggest an intrinsic relationship between the dune filed and the presence of internal solitary waves, and provide some insights about their dynamics and migration rate as in accordance with previous measurements and analysis. We believe that our work represents an innovative and promising link between the geological and oceanographic communities, and gives some insights on the role of ISWs on sedimentary process.

  16. KSC-2011-2201

    NASA Image and Video Library

    2011-03-10

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, processing continues for the Alpha Magnetic Spectrometer-2 (AMS). AMS is a particle physics detector, designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson

  17. Report and recommendations on multimedia materials for teaching and learning electricity and magnetism

    NASA Astrophysics Data System (ADS)

    Dȩbowska, E.; Girwidz, R.; Greczyło, T.; Kohnle, A.; Mason, B.; Mathelitsch, L.; Melder, T.; Michelini, M.; Ruddock, I.; Silva, J.

    2013-05-01

    This paper presents the results of a peer review of multimedia materials for teaching and learning electricity and magnetism prepared as a part of the annual activities undertaken by an international group of scientists associated with Multimedia Physics in Teaching and Learning. The work promotes the use of valuable and freely accessible information technology materials for different levels of teaching, mostly higher education. The authors discuss the process of selecting resources and the rubrics used in the rating process. The reviews of high-quality learning resources are presented along with descriptions of valuable didactical features.

  18. KSC-2010-4497

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, arrives at the Space Station Processing Facility, where it will be processed for launch. The state-of-the-art particle physics detector arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. It will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  19. Analysis of physical-chemical processes governing SSME internal fluid flows

    NASA Technical Reports Server (NTRS)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Keeton, L. W.; Prakash, C.; Przekwas, A. J.

    1984-01-01

    The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated.

  20. PREFACE: 3rd International Symposium ''Optics and its Applications''

    NASA Astrophysics Data System (ADS)

    Calvo, M. L.; Dolganova, I. N.; Gevorgyan, N.; Guzman, A.; Papoyan, A.; Sarkisyan, H.; Yurchenko, S.

    2016-01-01

    The SPIE.FOCUS Armenia: 3rd International Symposium ''Optics and its Applications'' (OPTICS-2015) http://rau.am/optics2015/ was held in Yerevan, Armenia, in the period October 1 - 5, 2015. The symposium was organized by the International Society for Optics and Photonics (SPIE), the Armenian SPIE student chapter with collaboration of the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-PYRKAL, and the Yerevan State University (YSU). The Symposium was co-organized by the SPIE & OSA student chapters of BMSTU, the Armenian OSA student chapter, and the SPIE student chapters of Lund University and Wroclaw University of Technology. The symposium OPTICS-2015 was dedicated to the International Year of Light and Light-Based Technologies. OPTICS-2015 was devoted to modern topics and optical technologies such as: optical properties of nanostructures, silicon photonics, quantum optics, singular optics & its applications, laser spectroscopy, strong field optics, biomedical optics, nonlinear & ultrafast optics, photonics & fiber optics, and mathematical methods in optics. OPTICS-2015 was attended by 100 scientists and students representing 17 countries: Armenia, China, Czech Republic, France, Georgia, Germany, India, Iran, Italy, Latvia, Mexico, Poland, Russia, Saudi Arabia, Sweden, Ukraine, and USA. Such a broad international community confirmed the important mission of science to be a uniting force between different countries, religions, and nations. We hope that OPTICS-2015 inspired and motivated students and young scientists to work in optics and in science in general. The present volume of Journal of Physics: Conference Series includes proceedings of the symposium covering various aspects of modern problems in optics. We are grateful to all people who were involved in the organization process. We gratefully acknowledge support from SPIE under the Federation of Optics College and University Students (FOCUS) conference grant, as well as contributions from other organizations: the Abdus Salam International Center for Theoretical Physics (ICTP), the Optical Society (OSA), the Laboratory of Terahertz Technology of Bauman Moscow State Technical University (BMSTU), the RAU, the LT-Pyrkal, the King Abdullah University of Science and Technology (KAUST), IPR of NAS, and Ritea.

  1. KSC-2010-4934

    NASA Image and Video Library

    2010-09-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians begin the process of attaching an overhead hoist to the Alpha Magnetic Spectrometer (AMS) for its move to a rotation stand to begin processing for flight. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  2. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  3. KSC-2010-4543

    NASA Image and Video Library

    2010-09-01

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane is poised over the Alpha Magnetic Spectrometer, or AMS, to lift the Payload Attach System, or PAS, up to the AMS. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  4. Message from the Conference Chairs

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay; Perera, Unil

    2015-05-01

    We were very excited to host the 8th International Workshop on Quantum Structure Infrared Photodetectors (QSIP 2014), in picturesque Santa Fe, New Mexico from June 29th-July 3rd, 2014. This followed successful QSIP conferences at Dana Point (2000), Torino (2002), Kananaskis (2004), Kandy (2006), Yosimite (2009), Istanbul (2010) and Corsica (2012). The QSIP workshop is a high level scientific conference that aims to bring together scientists, engineers, industrial organizations, students and users in order to discuss recent advances, and to share the "State of the Art" in this field. QSIP conferences provide an international forum for attendees to present and discuss progress in infrared device physics and modeling, materials growth and processing issues, focal plane array development and characterization.

  5. Arctic Research and Writing: A Lasting Legacy of the International Polar Year

    ERIC Educational Resources Information Center

    Englert, Karl; Coon, Brian; Hinckley, Matt; Pruis, Matt

    2009-01-01

    Recently, senior-level physics students joined thousands of scientists from over 60 nations to examine a wide range of physical, biological, and social research topics as part of the International Polar Year (IPY). Through a National Science Foundation (NSF)-funded research project, these students applied physics concepts to the study of Arctic…

  6. Deception Detection Process and Accuracy: An Examination of How International Military Officers Detect Deception in the Workplace

    DTIC Science & Technology

    2015-03-01

    selected by matching on sex , race, and approximate physical appearance. Thus, there were two honest non-cheaters and two lying cheaters, all of whom...immediate family member (brother, sister, mom , dad), peer/friend, teacher/caregiver, senior in rank (but no command relationship), and other. Relationship...Please tell us about yourself (circle the correct answer or fill in the blank): Sex : Male Female Age

  7. Sediment Scaling for Mud Mountain Fish Barrier Structure

    DTIC Science & Technology

    2017-06-28

    2nd Int. Conf. on the Application of Physical Modeling to Port and Coastal Protection – Coastlab ’08, International Association for Hydro...Structure by Jeremy A. Sharp, Gary L. Brown, and Gary L. Bell PURPOSE: This Coastal and Hydraulics Laboratory technical note describes the process of... Coastal and Hydraulics Laboratory. Questions about this technical note can be addressed to Mr. Sharp at 601-634-4212 or Jeremy.A.Sharp@usace.army.mil

  8. "It's gym, like g-y-m not J-i-m": Exploring the role of place in the gendering of physical activity.

    PubMed

    Coen, Stephanie E; Rosenberg, Mark W; Davidson, Joyce

    2018-01-01

    Physical activity is a highly gendered health behaviour, with women less likely than men to meet internationally accepted physical activity guidelines. In this article, we take up recent arguments on the potential of indoor spaces to illuminate processes shaping health, together with social theories of gender, to conceptualize the place of the gym as a window into understanding and intervening in wider gender disparities in physical activity. Using a triangulated strategy of qualitative methods, including semi-structured interviews, drawing, and journaling with men and women in a mid-sized Canadian city, we examine how gender influences exercise practices and mobilities in gym environments. Results of our thematic analysis reveal three socio-spatial processes implicated in the gendering of physical activity: 1) embodying gender ideals, 2) policing gender performance, and 3) spatializing gender relations. A fourth theme illustrates the situated agency some individuals enact to disrupt gendered divisions. Although women were unduly disadvantaged, both women and men experienced significant limitations on their gym participation due to the presiding gendered social context of the gym. Gender-transformative interventions that go beyond engaging women to comprehensively contend with the place-based gender relations that sustain gender hegemony are needed. While gyms are potentially sites for health promotion, they are also places where gendered inequities in health opportunities emerge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS)

    NASA Astrophysics Data System (ADS)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.

    2017-12-01

    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  10. Discrimination, Internalized Homonegativity, and Attitudes Toward Children of Same-Sex Parents: Can Secure Attachment Buffer Against Stigma Internalization?

    PubMed

    Trub, Leora; Quinlan, Ella; Starks, Tyrel J; Rosenthal, Lisa

    2017-09-01

    With increasing numbers of same-sex couples raising children in the United States, discriminatory attitudes toward children of same-sex parents (ACSSP) are of increasing concern. As with other forms of stigma and discrimination, lesbian, gay, and bisexual (LGB) individuals are at risk for internalizing these societal attitudes, which can negatively affect parenting-related decisions and behaviors and the mental and physical health of their children. Secure attachment is characterized by positive views of the self as loveable and worthy of care that are understood to develop in early relationships with caregivers. Secure attachment has been associated with positive mental and physical health, including among LGB individuals and couples. This study aimed to test the potential buffering role of secure attachment against stigma internalization by examining associations among secure attachment, discrimination, internalized homonegativity (IH), and ACSSP in an online survey study of 209 U.S. adults in same-sex relationships. Bootstrap analyses supported our hypothesized moderated mediation model, with secure attachment being a buffer. Greater discrimination was indirectly associated with more negative ACSSP through greater IH for individuals with mean or lower levels, but not for individuals with higher than average levels of secure attachment, specifically because among those with higher levels of secure attachment, discrimination was not associated with IH. These findings build on and extend past research, with important implications for future research and clinical work with LGB individuals, same-sex couples, and their families, including potential implementation of interventions targeting attachment security. © 2016 Family Process Institute.

  11. Half a Century of Physical Review Letters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garisto, Robert

    2008-10-15

    Fifty years ago, Sam Goudsmit started an experiment: the journal Physical Review Letters.  Since 1958, the experiment has thrived. PRL has gone through many changes, published many important papers, and become a leader in international scientific publication.  I will trace the rise of PRL from its early 20th century roots as "Letters to the Editor," through changes in editorial process and advents of new technology. Along the way I'll show what has gone on behind the scenes, and give a glimpse of our plans for the future.  I'll also give some advice to would-be authors and referees, illustrated with interestingmore » correspondence we've received.« less

  12. Half a Century of Physical Review Letters

    ScienceCinema

    Garisto, Robert

    2018-04-17

    Fifty years ago, Sam Goudsmit started an experiment: the journal Physical Review Letters.  Since 1958, the experiment has thrived. PRL has gone through many changes, published many important papers, and become a leader in international scientific publication.  I will trace the rise of PRL from its early 20th century roots as "Letters to the Editor," through changes in editorial process and advents of new technology. Along the way I'll show what has gone on behind the scenes, and give a glimpse of our plans for the future.  I'll also give some advice to would-be authors and referees, illustrated with interesting correspondence we've received.

  13. Influence of the workplace on learning physical examination skills

    PubMed Central

    2014-01-01

    Background Hospital clerkships are considered crucial for acquiring competencies such as diagnostic reasoning and clinical skills. The actual learning process in the hospital remains poorly understood. This study investigates how students learn clinical skills in workplaces and factors affecting this. Methods Six focus group sessions with 32 students in Internal Medicine rotation (4–9 students per group; sessions 80–90 minutes). Verbatim transcripts were analysed by emerging themes and coded independently by three researchers followed by constant comparison and axial coding. Results Students report to learn the systematics of the physical examination, gain agility and become able to recognise pathological signs. The learning process combines working alongside others and working independently with increasing responsibility for patient care. Helpful behaviour includes making findings explicit through patient files or during observation, feedback by abnormal findings and taking initiative. Factors affecting the process negatively include lack of supervision, uncertainty about tasks and expectations, and social context such as hierarchy of learners and perceived learning environment. Conclusion Although individual student experiences vary greatly between different hospitals, it seems that proactivity and participation are central drivers for learning. These results can improve the quality of existing programmes and help design new ways to learn physical examination skills. PMID:24678562

  14. Microwave quantum logic gates for trapped ions.

    PubMed

    Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J

    2011-08-10

    Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.

  15. Social and physical aggression trajectories from childhood through late adolescence: Predictors of psychosocial maladjustment at age 18.

    PubMed

    Ehrenreich, Samuel E; Beron, Kurt J; Underwood, Marion K

    2016-03-01

    This research examined whether following social and physical aggression trajectories across Grades 3-12 predicted psychological maladjustment. Teachers rated participants' (n = 287, 138 boys) aggressive behavior at the end of each school year. Following the 12th grade, psychosocial outcomes were measured: rule-breaking behaviors, internalizing symptoms, and narcissistic and borderline personality features. Following the highest social aggression trajectory predicted rule-breaking behavior; the medium social aggression trajectory was not a significant predictor of any outcome. Following the highest physical aggression trajectory predicted rule-breaking, internalizing symptoms, and narcissism, whereas the medium physical aggression trajectory predicted rule-breaking and internalizing symptoms. (c) 2016 APA, all rights reserved).

  16. Social and physical aggression trajectories from childhood through late adolescence: Predictors of psychosocial maladjustment at age 18

    PubMed Central

    Ehrenreich, Samuel E.; Beron, Kurt J.; Underwood, Marion K.

    2016-01-01

    This research examined whether following social and physical aggression trajectories across grades 3–12 predicted psychological maladjustment. Teachers rated participants’ (n=287, 138 boys) aggressive behavior at the end of each school year. Following the 12th grade, psychosocial outcomes were measured: rule-breaking behaviors, internalizing symptoms, and narcissistic and borderline personality features. Following the highest social aggression trajectory predicted rule-breaking behavior; the medium social aggression trajectory was not a significant predictor of any outcome. Following the highest physical aggression trajectory predicted rule-breaking, internalizing symptoms and narcissism, whereas the medium physical aggression trajectory predicted rule-breaking and internalizing symptoms. PMID:26891018

  17. [Validity and reliability of a scale to assess self-efficacy for physical activity in elderly].

    PubMed

    Borges, Rossana Arruda; Rech, Cassiano Ricardo; Meurer, Simone Teresinha; Benedetti, Tânia Rosane Bertoldo

    2015-04-01

    This study aimed to analyze the confirmatory factor validity and reliability of a self-efficacy scale for physical activity in a sample of 118 elderly (78% women) from 60 to 90 years of age. Mplus 6.1 was used to evaluate the confirmatory factor analysis. Reliability was tested by internal consistency and temporal stability. The original scale consisted of five items with dichotomous answers (yes/no), independently for walking and moderate and vigorous physical activity. The analysis excluded the item related to confidence in performing physical activities when on vacation. Two constructs were identified, called "self-efficacy for walking" and "self-efficacy for moderate and vigorous physical activity", with a factor load ≥ 0.50. Internal consistency was adequate both for walking (> 0.70) and moderate and vigorous physical activity (> 0.80), and temporal stability was adequate for all the items. In conclusion, the self-efficacy scale for physical activity showed adequate validity, reliability, and internal consistency for evaluating this construct in elderly Brazilians.

  18. A model teaching session for the hypothesis-driven physical examination.

    PubMed

    Nishigori, Hiroshi; Masuda, Kozo; Kikukawa, Makoto; Kawashima, Atsushi; Yudkowsky, Rachel; Bordage, Georges; Otaki, Junji

    2011-01-01

    The physical examination is an essential clinical competence for all physicians. Most medical schools have students who learn the physical examination maneuvers using a head-to-toe approach. However, this promotes a rote approach to the physical exam, and it is not uncommon for students later on to fail to appreciate the meaning of abnormal findings and their contribution to the diagnostic reasoning process. The purpose of the project was to develop a model teaching session for the hypothesis-driven physical examination (HDPE) approach in which students could practice the physical examination in the context of diagnostic reasoning. We used an action research methodology to create this HDPE model by developing a teaching session, implementing it over 100 times with approximately 700 students, conducting internal reflection and external evaluations, and making adjustments as needed. A model nine-step HDPE teaching session was developed, including: (1) orientation, (2) anticipation, (3) preparation, (4) role play, (5) discussion-1, (6) answers, (7) discussion-2, (8) demonstration and (9) reflection. A structured model HDPE teaching session and tutor guide were developed into a workable instructional intervention. Faculty members are invited to teach the physical examination using this model.

  19. PREFACE: 7th Asian International Seminar on Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Deshmukh, Pranawa C.; Chakraborty, Purushottam; Williams, Jim F.

    2007-09-01

    These proceedings arose from the 7th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the Indian Institute of Technology, Madras from 4-7 December 2006. The history of the AISAMP has been reviewed by Takayanagi http://www.physics.iitm.ac.in/~aisamp7/history.html. This international seminar/conference series grew out of the Japan-China meetings which were launched in 1985, the fourth of which was held in 1992 and carried a second title: The First Asian International Seminar on Atomic and Molecular Physics (AISAMP), thus providing a formal medium for scientists in this part of the world to report periodically and exchange their scientific thoughts. The founding nations of Japan and China were joined subsequently by Korea, Taiwan, India and Australia. The aims of the symposia included bringing together leading experts and students of atomic and molecular physics, the discussion of important problems, learning and sharing modern techniques and expanding the horizons of modern atomic and molecular physics. The fields of interest ranged from atomic and molecular structure and dynamics to photon, electron and positron scattering, to quantum information processing, the effects of symmetry and many body interactions, laser cooling, cold traps, electric and magnetic fields and to atomic and molecular physics with synchrotron radiation. Particular interest was evident in new techniques and the changes of the physical properties from atomic to condensed matter. Details of the 7th AISAMP, including the topics for the special sessions and the full programme, are available online at the conference website http://www.physics.iitm.ac.in/~aisamp7/. In total, 95 presentations were made at the 7th AISAMP, these included the Invited Talks and Contributed Poster Presentations, of which 52 appear in the present Proceedings after review by expert referees, refereed to the usual standard of the Institute of Physics journal: Journal of Physics B: Atomic, Molecular and Optical Physics. We received extensive support from the Journal of Physics: Conference Series staff; Graham Douglas, in particular, has been of tremendous help. The 7th AISAMP was very well attended and was sponsored primarily by the host Indian Institute of Technology, Madras (Chennai), the Board of Research in Nuclear Sciences, (Department of Atomic Energy, Government of India), the Department of Science and Technology, (Government of India), and the Asian Office of Aerospace Research and Development (AOARD) of the US Air Force. There was support from various quarters—each was invaluable and added to the success of the 7th AISAMP. We are very grateful to all the sponsors. It is superfluous to add that guidance and active participation from several colleagues within the host Institute was the primary source of strength for the actual organization of the conference and the multitude of arrangements for the organization came from the young graduate students at the IIT-Madras. We hope that this volume of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between various countries in the region in and around Asia, and also of course to all scientists in this field the world over. Pranawa C Deshmukh, Purushottam Chakraborty and Jim F Williams Editors Conference photograph

  20. Physical activity in climacteric women: comparison between self-reporting and pedometer.

    PubMed

    Colpani, Verônica; Spritzer, Poli Mara; Lodi, Ana Paula; Dorigo, Guilherme Gustavo; Miranda, Isabela Albuquerque Severo de; Hahn, Laiza Beck; Palludo, Luana Pedroso; Pietroski, Rafaela Lazzari; Oppermann, Karen

    2014-04-01

    To compare two methods of assessing physical activity in pre-, peri- and postmenopausal women. Cross-sectional study nested in a cohort of pre-, peri- and postmenopausal women in a city in Southern Brazil. The participants completed a questionnaire that included sociodemographic and clinical data. Physical activity was assessed using a digital pedometer and the International Physical Activity Questionnaire, short version. The participants were classified into strata of physical activity according to the instrument used. For statistical analysis, the Spearman correlation test, Kappa index, concordance coefficient and Bland-Altman plots were used. The concordance (k = 0110; p = 0.007) and the correlation (rho = 0.136, p = 0.02) between the International Physical Activity Questionnaire, short version, and pedometer were weak. In Bland-Altman plots, it was observed that differences deviate from zero value whether the physical activity is minimal or more intense. Comparing the two methods, the frequency of inactive women is higher when assessed by pedometer than by the International Physical Activity Questionnaire--short version, and the opposite occurs in active women. Agreement between the methods was weak. Although easy to use, Physical Activity Questionnaire--short version overestimates physical activity compared with assessment by pedometer.

  1. International Interdisciplinary Research Institute Project in Senegal

    NASA Astrophysics Data System (ADS)

    Gueye, Paul

    2010-02-01

    The project of an interdisciplinary research institute in Senegal was initiated in 1993 in Senegal (West Africa) and became a template for a similar project in the US in 1999. Since then, numerous meetings and presentations have been held at various national and international institutions, workshops and conferences. The current development of this partnership includes drafts for a full design of all systems at each facility, as well as the physics, applied health and educational programs to be implemented. The Senegal facility was conceived for scientific capacity building and equally to act as a focal point aimed at using the local scientific expertise. An anticipated outcome would be a contribution to the reduction of an ever-growing brain drain process suffered by the country, and the African continent in general. The development of the project led also to a strong African orientation of the facility: built for international collaboration, it is to be a pan-African endeavor and to serve primarily African countries. The facility received a presidential approval in a 2003 meeting and will develop an interdisciplinary program centered on a strong materials science research which will also allow for the establishment of an advanced analytical (physical chemistry) laboratory. A central part of the facility will be linked to state-of-the art accelerator mass spectrometry, cyclotron and low energy electromagnetic accelerator systems. )

  2. The priority of internal symmetries in particle physics

    NASA Astrophysics Data System (ADS)

    Kantorovich, Aharon

    2003-12-01

    In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.

  3. Construct validity and internal consistency in the Leisure Practices Scale (EPL) for adults.

    PubMed

    Andrade, Rubian Diego; Schwartz, Gisele Maria; Tavares, Giselle Helena; Pelegrini, Andreia; Teixeira, Clarissa Stefani; Felden, Érico Pereira Gomes

    2018-02-01

    This study proposes and analyzes the construct validity and internal consistency of the Leisure Practices Scale (EPL). This survey seeks to identify the preferences and involvement in in different leisure practices in adults. The instrument was formed based on the cultural leisure content (artistic, manual, physical, sports, intellectual, social, tourist, virtual and contemplation/leisure). The validation process was conducted with: a) content analysis by leisure experts, who evaluated the instrument for clarity of language and practical relevance, which allowed the calculation of the content validity coefficient (CVC); b) reproducibility test-retest with 51 subjects to calculate the temporal variation coefficient; c) internal consistency analysis with 885 participants. The evaluation presented appropriate coefficients, both with respect to language clarity (CVCt = 0.883) and practical relevance (CVCt = 0.879). The reproducibility coefficients were moderate to excellent. The scale showed adequate internal consistency (0.72). The EPL has psychometric quality and acceptable values in its structure, and can be used to investigate adult involvement in leisure activities.

  4. Contemporary Cuban Physics Through Scientific Publications: An Insider’s View

    NASA Astrophysics Data System (ADS)

    Altshuler, Ernesto

    In a previous paper, the author reached some conclusions on the tendencies of the publications by Cuban physicists in international journals (Altshuler, Rev Cub Fís 22(2):173-182, 2005) and called for a systematic bibliometric study of the subject. Such a study has now been undertaken (a contribution to this volume entitled "Physics in Cuba from the Perspective of Bibliometrics" by Werner Marx and Manuel Cardona, referred to in this paper as Marx and Cardona) and supports the main conclusions of the former work. The scenario of Cuban physics since 1995 has been conditioned by two main facts interacting in a nontrivial way: the serious material shortages affecting local physics laboratories and bibliographic resources, and an increase in the country's international collaboration. As a positive result, the total volume of Cuban publications in international physics journals has increased since 1995, perhaps reaching a peak around the year 2000, while the number of citations of Cuban papers and the impact of the journals in which they were published have continued to increase since the mid-1990s. Theoretical work produced by physicists from a number of Cuban institutions in international collaborations strongly contribute to those numbers. In the last years, international publications suggest a `self-organized' opening of Cuban physics towards interdisciplinary subjects, which is increasing the `bibliometric visibility' of autochthonous experimental work.

  5. Match Physical Performance of Elite Female Soccer Players During International Competition.

    PubMed

    Datson, Naomi; Drust, Barry; Weston, Matthew; Jarman, Ian H; Lisboa, Paulo J; Gregson, Warren

    2017-09-01

    Datson, N, Drust, B, Weston, M, Jarman, IH, Lisboa, P, and Gregson, W. Match physical performance of elite female soccer players during international competition. J Strength Cond Res 31(9): 2379-2387, 2017-The purpose of this study was to provide a detailed analysis of the physical demands of competitive international female soccer match play. A total of 148 individual match observations were undertaken on 107 outfield players competing in competitive international matches during the 2011-2012 and 2012-2013 seasons, using a computerized tracking system (Prozone Sports Ltd., Leeds, England). Total distance and total high-speed running distances were influenced by playing position, with central midfielders completing the highest (10,985 ± 706 m and 2,882 ± 500 m) and central defenders the lowest (9,489 ± 562 m and 1,901 ± 268 m) distances, respectively. Greater total very high-speed running distances were completed when a team was without (399 ± 143 m) compared to with (313 ± 210 m) possession of the ball. Most sprints were over short distances with 76% and 95% being less than 5 and 10 m, respectively. Between half reductions in physical performance were present for all variables, independent of playing position. This study provides novel findings regarding the physical demands of different playing positions in competitive international female match play and provides important insights for physical coaches preparing elite female players for competition.

  6. Physical family violence and externalizing and internalizing behaviors among children and adolescents.

    PubMed

    Renner, Lynette M; Boel-Studt, Shamra

    2017-01-01

    Family violence has been associated with various negative outcomes among children and adolescents. Yet, less is known about how unique forms of physical family violence contribute to externalizing and internalizing behaviors based on a child's developmental stage. Using data from the Illinois Families Study and administrative Child Protective Services data, we explored the relation between 3 types of physical family violence victimization and externalizing and internalizing behaviors among a sample of 2,402 children and adolescents. After including parent and family level covariates in Poisson regressions, we found that a unique form of family violence victimization was associated with increased externalizing behaviors among children at each age group: exposure to physical intimate partner violence (IPV) among children ages 3-5, exposure to the physical abuse of a sibling among children ages 6-12, and child physical abuse among adolescents ages 13-18. No form of physical family violence was significantly associated with internalizing behaviors for children in any age group. Including exposure to the child maltreatment of a sibling is crucial when attempting to contextualize children's responses to family violence and providing comprehensive services in an effort to enhance the well-being of all children in a family. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Utilization and Harmonization of Adult Accelerometry Data: Review and Expert Consensus.

    PubMed

    Wijndaele, Katrien; Westgate, Kate; Stephens, Samantha K; Blair, Steven N; Bull, Fiona C; Chastin, Sebastien F M; Dunstan, David W; Ekelund, Ulf; Esliger, Dale W; Freedson, Patty S; Granat, Malcolm H; Matthews, Charles E; Owen, Neville; Rowlands, Alex V; Sherar, Lauren B; Tremblay, Mark S; Troiano, Richard P; Brage, Søren; Healy, Genevieve N

    2015-10-01

    This study aimed to describe the scope of accelerometry data collected internationally in adults and to obtain a consensus from measurement experts regarding the optimal strategies to harmonize international accelerometry data. In March 2014, a comprehensive review was undertaken to identify studies that collected accelerometry data in adults (sample size, n ≥ 400). In addition, 20 physical activity experts were invited to participate in a two-phase Delphi process to obtain consensus on the following: unique research opportunities available with such data, additional data required to address these opportunities, strategies for enabling comparisons between studies/countries, requirements for implementing/progressing such strategies, and value of a global repository of accelerometry data. The review identified accelerometry data from more than 275,000 adults from 76 studies across 36 countries. Consensus was achieved after two rounds of the Delphi process; 18 experts participated in one or both rounds. The key opportunities highlighted were the ability for cross-country/cross-population comparisons and the analytic options available with the larger heterogeneity and greater statistical power. Basic sociodemographic and anthropometric data were considered a prerequisite for this. Disclosure of monitor specifications and protocols for data collection and processing were deemed essential to enable comparison and data harmonization. There was strong consensus that standardization of data collection, processing, and analytical procedures was needed. To implement these strategies, communication and consensus among researchers, development of an online infrastructure, and methodological comparison work were required. There was consensus that a global accelerometry data repository would be beneficial and worthwhile. This foundational resource can lead to implementation of key priority areas and identification of future directions in physical activity epidemiology, population monitoring, and burden of disease estimates.

  8. PREFACE: 2nd International Conference on Competitive Materials and Technological Processes (IC-CMTP2)

    NASA Astrophysics Data System (ADS)

    László, Gömze A.

    2013-12-01

    Competitiveness is one of the most important factors in our life and it plays a key role in the efficiency both of organizations and societies. The more scientifically supported and prepared organizations develop more competitive materials with better physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Competitive Materials and Technology Processes (ic-cmtp2) are the following: Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication between the scientist of different nations, countries and continents. Among the major fields of interest are materials with extreme physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of materials science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance to the program of the conference ic-cmtp2, more than 250 inquiries and registrations from different organizations were received. Researchers from 36 countries in Asia, Europe, Africa, North and South America arrived at the venue of conference. Including co-authors, the research work of more than 500 scientists are presented in this volume. Professor Dr Gömze A László Chair, ic-cmtp2 The PDF also contains lists of the boards, session chairs and sponsors.

  9. [Spanish version of Adonis Complex Questionnaire. A questionnaire to test the muscle dimorphism and vigorexy].

    PubMed

    Latorre-Román, Pedro Ángel; Garrido-Ruiz, Antonio; García-Pinillos, Felipe

    2014-11-08

    To validate the Spanish version of Adonis Complex Questionnaire in bodybuilders. Participants included 99 bodybuilders who train regularly (age: 25.45±5.19 y; BMI=24.53±1.89). In order to test the discriminant and concurrent validity the Exercise Dependence Scale-Revised (EDS-R) and the Eating Attitudes Test (EAT-26) were used. The scale's psychometric properties were obtained through a concurrent validity process, factorial analysis of principal components, internal consistency, and test-retest reliability. The internal consistency of this questionnaire was high (Cronbach's Alpha= 0.880) in total scale. The intraclass correlation coefficient (ICC) to test the temporal consistency of the questionnaire was 0.707 (95% IC=0.336- 0.871). The questionnaire obtained concurrent validity with the EDS-R (r=0.613, p<0.001), and EAT-26 (r=0.422, p<0.001). The results have shown a three-factor structure Factor 1: psychosocial effect of physical appearance, Factor 2: control of physical appearance, Factor 3: concern about physical appearance which explain 65.29% of variance. The Adonis Complex Questionnaire shows a proper psychometric properties and it is a valid and reliable measure of vigorexy and muscle dimorphism in bodybuilders. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  10. IUPESM: the international umbrella organisation for biomedical engineering and medical physics.

    PubMed

    Nagel, Jh

    2007-07-01

    An account of the development, aims and activities of the International Union for Physical and Engineering Sciences in Medicine (IUPESM) is presented. Associations with the International Council of Science (ICSU) and the World Health Organization (WHO) are leading to exciting new projects towards improving global health, healthcare, quality of life and support of health technologies in developing countries.

  11. Teaching outside of the Box: A Short-Term International Internship for Pre-Service and In-Service Physical Education Teachers

    ERIC Educational Resources Information Center

    Robinson, Daniel B.; Barrett, Joe; Robinson, Ingrid

    2017-01-01

    This article reports on results from a qualitative study of a two-week international internship for pre-service and in-service physical education (PE) teachers in a developing nation (Belize). Relying upon data from questionnaires that were administered before and after the short-term international internship, participants' perspectives related to…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, R. E.

    An accurate representation of the scattering of neutrons by the materials used to build cold sources at neutron scattering facilities is important for the initial design and optimization of a cold source, and for the analysis of experimental results obtained using the cold source. In practice, this requires a good representation of the physics of scattering from the material, a method to convert this into observable quantities (such as scattering cross sections), and a method to use the results in a neutron transport code (such as the MCNP Monte Carlo code). At Los Alamos, the authors have been developing thesemore » capabilities over the last ten years. The final set of cold-moderator evaluations, together with evaluations for conventional moderator materials, was released in 1994. These materials have been processed into MCNP data files using the NJOY Nuclear Data Processing System. Over the course of this work, they were able to develop a new module for NJOY called LEAPR based on the LEAP + ADDELT code from the UK as modified by D.J. Picton for cold-moderator calculations. Much of the physics for methane came from Picton`s work. The liquid hydrogen work was originally based on a code using the Young-Koppel approach that went through a number of hands in Europe (including Rolf Neef and Guy Robert). It was generalized and extended for LEAPR, and depends strongly on work by Keinert and Sax of the University of Stuttgart. Thus, their collection of cold-moderator scattering kernels is truly an international effort, and they are glad to be able to return the enhanced evaluations and processing techniques to the international community. In this paper, they give sections on the major cold moderator materials (namely, solid methane, liquid methane, and liquid hydrogen) using each section to introduce the relevant physics for that material and to show typical results.« less

  13. Consortium of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) Science Plan: A Community-based Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Wilson, J. L.; Dressler, K.; Hooper, R. P.

    2005-12-01

    The river basin is a fundamental unit of the landscape and water in that defined landscape plays a central role in shaping the land surface, in dissolving minerals, in transporting chemicals, and in determining species distribution. Therefore, the river basin is a natural observatory for examining hydrologic phenomena and the complex interaction of physical, chemical, and biological processes that control them. CUAHSI, incorporated in 2001, is a community-based research infrastructure initiative formed to mobilize the hydrologic community through addressing key science questions and leveraging nationwide hydrologic resources from its member institutions and collaborative partners. Through an iterative community-based process, it has been previously proposed to develop a network of hydrologic infrastructure that organizes around scales on the order of 10,000 km2 to examine critical interfaces such as the land-surface, atmosphere, and human impact. Data collection will characterize the stores, fluxes, physical pathways, and residence time distributions of water, sediment, nutrients, and contaminants coherently at nested scales. These fundamental properties can be used by a wide range of scientific disciplines to address environmental questions. This more complete characterization will enable new linkages to be identified and hypotheses to be tested more incisively. With such a research platform, hydrologic science can advance beyond measuring streamflow or precipitation input to understanding how the river basin functions in both its internal processes and in responding to environmental stressors. That predictive understanding is needed to make informed decisions as development and even natural pressures stress existing water supplies and competing demands for water require non-traditional solutions that take into consideration economic, environmental, and social factors. Advanced hydrologic infrastructure will enable research for a broad range of multidisciplinary science questions. The CUAHSI science agenda has evolved through community input and research into several unifying theme areas, or categories. Three example categories are: forcing, internal processing, and evolution. Within each category, coherent (integrated in space and time) physical, chemical and biological data are needed to answer specific science questions. For example, in the case of "forcing": How do patterns in rainfall influence predictability of floods and droughts? Floods and droughts have long been considered random events. However, we now know that there are decadal patterns in rainfall and that rainfall recycles within the basin thereby intensifying floods and droughts. How does the internal state of the system combine with external forcing to determine the occurrence of hydrologic extremes?

  14. Nonlinear Internal Waves on the Inner Shelf: Observations Using a Distributed Temperature Sensing (DTS) System.

    NASA Astrophysics Data System (ADS)

    Davis, K. A.; Reid, E. C.; Cohen, A. L.

    2016-02-01

    Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.

  15. Accounting for the Physical and Mental Health Benefits of Entry Into Marriage: A Genetically Informed Study of Selection and Causation

    PubMed Central

    Horn, Erin E.; Xu, Yishan; Beam, Christopher R.; Turkheimer, Eric; Emery, Robert E.

    2013-01-01

    Married adults show better psychological adjustment and physical health than their separated/divorced or never-married counterparts. However, this apparent “marriage benefit” may be due to social selection, social causation, or both processes. Genetically informed research designs offer critical advantages for helping to disentangle selection from causation by controlling for measured and unmeasured genetic and shared environmental selection. Using young-adult twin and sibling pairs from the National Longitudinal Study of Adolescent Health (Harris, 2009), we conducted genetically informed analyses of the association between entry into marriage, cohabitation, or singlehood and multiple indices of psychological and physical health. The relation between physical health and marriage was completely explained by nonrandom selection. For internalizing behaviors, selection did not fully explain the benefits of marriage or cohabitation relative to being single, whereas for externalizing symptoms, marriage predicted benefits over cohabitation. The genetically informed approach provides perhaps the strongest nonexperimental evidence that these observed effects are causal. PMID:23088795

  16. Thermal Evolution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Geppert, Ulrich R. M. E.

    The thermal evolution of neutron stars is a subject of intense research, both theoretical and observational. The evolution depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission. The evolution depends, too, on the structure of the stellar outer layers which control the photon emission. Various internal heating processes and the magnetic field strength and structure will influence the thermal evolution. Of great importance for the cooling processes is also whether, when, and where superfluidity and superconductivity appear within the neutron star. This article describes and discusses these issues and presents neutron star cooling calculations based on a broad collection of equations of state for neutron star matter and internal magnetic field geometries. X-ray observations provide reliable data, which allow conclusions about the surface temperatures of neutron stars. To verify the thermal evolution models, the results of model calculations are compared with the body of observed surface temperatures and their distribution. Through these comparisons, a better understanding can be obtained of the physical processes that take place under extreme conditions in the interior of neutron

  17. KSC-04PD-0008

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  18. Modelling social interaction as perceptual crossing: an investigation into the dynamics of the interaction process

    NASA Astrophysics Data System (ADS)

    Froese, Tom; Di Paolo, Ezequiel A.

    2010-03-01

    This paper continues efforts to establish a mutually informative dialogue between psychology and evolutionary robotics in order to investigate the dynamics of social interaction. We replicate a recent simulation model of a minimalist experiment in perceptual crossing and confirm the results with significantly simpler artificial agents. A series of psycho-physical tests of their behaviour informs a hypothetical circuit model of their internal operation. However, a detailed study of the actual internal dynamics reveals this circuit model to be unfounded, thereby offering a tale of caution for those hypothesising about sub-personal processes in terms of behavioural observations. In particular, it is shown that the behaviour of the agents largely emerges out of the interaction process itself rather than being an individual achievement alone. We also extend the original simulation model in two novel directions in order to test further the extent to which perceptual crossing between agents can self-organise in a robust manner. These modelling results suggest new hypotheses that can become the basis for further psychological experiments.

  19. THE AIMS AND ACTIVITIES OF THE INTERNATIONAL NETWORK OF NUCLEAR STRUCTURE AND DECAY DATA EVALUATORS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NICHOLS,A.L.; TULI, J.K.

    International Network of Nuclear Structure and Decay Data (NSDD) Evaluators consists of a number of evaluation groups and data service centers in several countries that appreciate the merits of working together to maintain and ensure the quality and comprehensive content of the ENSDF database (Evaluated Nuclear Structure Data File). Biennial meetings of the network are held under the auspices of the International Atomic Energy Agency (IAEA) to assign evaluation responsibilities, monitor progress, discuss improvements and emerging difficulties, and agree on actions to be undertaken by individual members. The evaluated data and bibliographic details are made available to users via variousmore » media, such as the journals ''Nuclear Physics A'' and ''Nuclear Data Sheets'', the World Wide Web, on CD-ROM, wall charts of the nuclides and ''Nuclear Wallet Cards''. While the ENSDF master database is maintained by the US National Nuclear Data Center at the Brookhaven National Laboratory, these data are also available from other nuclear data centers including the IAEA Nuclear Data Section. The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, in cooperation with the IAEA, organizes workshops on NSDD at regular intervals. The primary aims of these particular workshops are to provide hands-on training in the data evaluation processes, and to encourage new evaluators to participate in NSDD activities. The technical contents of these NSDD workshops are described, along with the rationale for the inclusion of various topics.« less

  20. PREFACE: NUBA Conference Series 1: Nuclear Physics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Boztosun, I.; Balantekin, A. B.; Kucuk, Y.

    2015-04-01

    The international conference series ''NUBA Conference Series 1: Nuclear Physics and Astrophysics'' was held on September 14-21 2014 in Antalya-Turkey. Akdeniz University hosted the conference and the Adrasan Training and Application Centre was chosen as a suitable venue to bring together scientists from all over the world as well as from different parts of Turkey. The conference was supported by the Scientific and Technological Research Council of Turkey (TÜBìTAK) and Akdeniz University Nuclear Sciences Application and Research Center (NUBA). Based on the highly positive remarks received from the participants both during and after the conference, we believe that the event has proven to be a fulfilling experience for all those who took part. The conference provided an opportunity for the participants to share their ideas and experiences in addition to exploring possibilities for future collaborations. Participants of the conference focused on: • Nuclear Structure and Interactions • Nuclear Reactions, • Photonuclear Reactions and Spectroscopy • Nuclear and Particle Astrophysics • Nuclear Processes in Early Universe • Nuclear Applications • New Facilities and Instrumentation Participants included a number of distinguished invited speakers. There was significant interest from the international nuclear physics community and numerous abstracts and papers were submitted. The scientific committee conducted a careful and rigorous selection process, as a result of which 75 contributions were accepted. Of those, 65 of them were given as oral and 10 as poster presentations. The superb quality of the papers ensured fruitful discussion sessions. We thank all the participants for their efforts and also for promptly sending in their papers for publication. This issue of the Journal of Physics: Conference Series was peer-reviewed by expert referees and we also thank them for peer-reviewing the papers. The national and international advisory committee also deserve appreciation for their involvement in the shaping of the conference programme. The local organizing committee, Mesut Karakoç, Haris Djapo, Fatih Ozmen and Deniz Kaya worked diligently and ensured that the programme ran smoothly. We sincerely thank them all. Our final thanks go to IOP for publishing the proceedings in a most timely and meticulous manner. We hope to see the participants again in Turkey, in the second conference of this series.

  1. PREFACE: 19th International Conference on the Application of High Magnetic Fields in Semiconductor Physics and Nanotechnology (HMF-19)

    NASA Astrophysics Data System (ADS)

    Muraki, Koji; Takeyama, Shojiro

    2011-12-01

    This volume contains invited and contributed papers from the 19th International Conference on the Application of High Magnetic Fields in Semiconductor Physics and Nanotechnology (HMF-19) held in Fukuoka, Japan, from 1-6 August 2010. This conference was mainly sponsored by the Tokyo University-'Horiba International fund', which was donated by Dr Masao Horiba, the founder of Horiba Ltd. The scientific program of HMF-19 consisted of 37 invited talks, 24 contributed talks, and 83 posters, which is available from the conference homepage http://www.hmf19.iis.u-tokyo.ac.jp/index.html. Each manuscript submitted for publication in this volume has been independently reviewed. The Editor is very grateful to all the reviewers for their quick responses and helpful reports and to all the authors for their submissions and patience for the delay in the editorial process. Finally, the Editor would like to express his sincere gratitude to all the individuals involved in the conference organization and all the attendees, who made this conference so successful. Koji Muraki Conference photograph Committees Chair Conference chairS Takeyama(ISSP-UT) Conference secretary T Machida (IIS-UT) Program chair K Muraki (NTT) Local organizing chair K Oto (Chiba Univ.) Advisory Committee International Domestic L Brey (ES) T Ando (TIT) Z H Chen (CN) Y Hirayama (Tohoku Univ.) S Das Sarma (US) G Kido (NIMS) L Eaves (GB) N Miura (JP) J P Eisenstein (US) J Nitta (Tohoku Univ.) K Ensslin (CH) T Takamasu (NIMS) J Furdyna (US) G M Gusev (BR) I Kukushkin (RU) Z D Kvon (RU) G Landwehr (DE) J C Maan (NL) A H MacDonald (US) N F Oliveira Jr (BR) A Pinczuk (US) J C Portal (FR) A Sachrajda (CA) M K Sanyal(IN) R Stepniewski(PL) Program Committee Chair: K Muraki(NTT) International Domestic G Bauer (AU) H Ajiki (Osaka Univ.) G Boebinger (US) H Aoki (Hongo, UT) S Ivanov (RU) K Nomura (RIKEN) K von Klitzing (DE) T Okamoto (Hongo, UT) R Nicholas (GB) T Osada (ISSP-UT ) M Potemski (FR) N Studart (BR) U Zeitler (NL) Local Organizing Committee Chair: K Oto(Chiba Univ.) Y H Matsuda (ISSP-UT) H Yokoi (Kumamoto Univ.) M Itoh (IIS-UT) M Noda (ISSP-UT) H Sawabe (ISSP-UT) Sponsors Horiba International Conference (Dr Masao Horiba's Donation) The University of Tokyo Fukuoka City The Institute for Solid State Physics, The University of Tokyo The Global Center of Excellence for Physical Sciences Frontier, The University of Tokyo

  2. Two radars for AIM mission: A direct observation of the asteroid's structure from deep interior to regolith

    NASA Astrophysics Data System (ADS)

    Herique, A.; Ciarletti, V.

    2015-10-01

    Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. What are the bulk properties of the regolith and deep interior? And what are the physical processes that shape their internal structures? Direct measurements are needed to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) for the benefit of science as well as for planetary defense or exploration. Radar tomography is the only technique to characterize internal structure from decimetric scale to global scale. This paper reviews the benefits of direct measurement of the asteroid interior. Then the radar concepts for both deep interior and shallow subsurface are presented and the radar payload proposed for the AIDA/AIM mission is outlined.

  3. Glitches as probes of neutron star internal structure and dynamics: Effects of the superfluid-superconducting core

    NASA Astrophysics Data System (ADS)

    Gügercinoğlu, Erbil

    2017-12-01

    Glitches, sudden spin-up of pulsars with subsequent recovery, provide us with a unique opportunity to investigate various physical processes, including the crust-core coupling, distribution of reservoir angular momentum within different internal layers, spin-up in neutral and charged superfluids and constraining the equation of state of the neutron star (NS) matter. In this work, depending on the dynamic interaction between the vortex lines and the nuclei in the inner crust, and between the vortex lines and the magnetic flux tubes in the outer core, various types of relaxation behavior are obtained and confronted with the observations. It is shown that the glitches have strong potential to deduce information about the cooling behavior and interior magnetic field configuration of NSs. Some implications of the relative importance of the external spin-down torques and the superfluid internal torques for recently observed unusual glitches are also discussed.

  4. A Study of Energy Partitioning Using A Set of Related Explosive Formulations

    NASA Astrophysics Data System (ADS)

    Lieber, Mark; Foster, Joseph C., Jr.; Stewart, D. Scott

    2011-06-01

    Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to kinetic energy during the detonation process. This energy is manifest in the internal thermodynamic energy and the translational flow of the products. Historically, the explosive design problem has focused on intramolecular stoichiometry providing prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employee intermolecular ingredients to alter the spatial and temporal distribution of energy release. CHEETA has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and flow energy in the detonation. The equation of state information from CHEETA has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.

  5. Microgravity Platforms

    NASA Technical Reports Server (NTRS)

    Del Basso, Steve

    2000-01-01

    The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.

  6. ANNOUNCEMENT: Greetings from the Editor and Publisher

    NASA Astrophysics Data System (ADS)

    Wäppling, Roger; Williams, Sarah

    2006-01-01

    Physica Scripta is an international physics journal published for the Royal Swedish Academy of Sciences on behalf of the Nordic Science Academies and Physical Societies. This issue marks the beginning of the partnership between the Royal Swedish Academy of Sciences and Institute of Physics Publishing (IOP). We look forward to a fruitful relationship in which Physica Scripta can profit from the international reach of IOP. Authors and readers will benefit from advance publication of articles on the web prior to receiving each month's journal issue. The peer-review system will continue to be managed by Professor Roger Wäppling who will assess each paper before assigning it to an external editor or sending it for refereeing. IOP will receive new article submissions and generate electronic documents suitable for use in the refereeing process. The editorial office in Sweden will then be responsible for these manuscripts up to the final publication decision. Accepted articles will be sent to IOP for copy-editing, typesetting, production and distribution. We aim to provide our authors, referees and readers with an enhanced service for this well-established journal. IOP will maintain and augment Physica Scripta's record in publishing a broad range of high-quality research papers and we will continue to publish Topical Issues as supplements to the regular 12 issues. The popular Comments articles will continue to be published in conjunction with regular papers under this new partnership. We hope that our subscribers will continue to enjoy reading Physica Scripta as a valuable resource for general physics research.

  7. Earthquake Source Mechanics

    NASA Astrophysics Data System (ADS)

    The past 2 decades have seen substantial progress in our understanding of the nature of the earthquake faulting process, but increasingly, the subject has become an interdisciplinary one. Thus, although the observation of radiated seismic waves remains the primary tool for studying earthquakes (and has been increasingly focused on extracting the physical processes occurring in the “source”), geological studies have also begun to play a more important role in understanding the faulting process. Additionally, defining the physical underpinning for these phenomena has come to be an important subject in experimental and theoretical rock mechanics.In recognition of this, a Maurice Ewing Symposium was held at Arden House, Harriman, N.Y. (the former home of the great American statesman Averill Harriman), May 20-23, 1985. The purpose of the meeting was to bring together the international community of experimentalists, theoreticians, and observationalists who are engaged in the study of various aspects of earthquake source mechanics. The conference was attended by more than 60 scientists from nine countries (France, Italy, Japan, Poland, China, the United Kingdom, United States, Soviet Union, and the Federal Republic of Germany).

  8. Heat and moisture fluxes within a nighttime maritime stratus cloud during CASP II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gultepe, I.; Issac, G.

    Stratus clouds in the lower part of the atmosphere over the ocean or land can play an important role in boundary layer processes and in climate change. Physical, dynamical, and radiative processes within marine stratus clouds on both cloud and regional scale are studied for the first time during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) (Albrecht et al., 1988). These clouds can effect the nowcasting, pollution transfer, and radiative processes (Nicholls and Leighton, 1986). Similar to the FIRE stratus project, the Canadian Atlantic Storms Program (CASP) II field project was planned to obtain a bettermore » understanding of cloud physical, dynamical, radiative characteristics, and mesoscale structure of Canadian east coast storms. Here the dynamical and microphysical data, and a radiative transfer model are used to better understand a developing nighttime stratus cloud over the ocean during CASP II which took place over Atlantic Canada. Observations collected by the Convair aircraft of the National Research Council (NRC) of Canada during the CASP II field project on February 6, 1991 are presented.« less

  9. A core physical examination in internal medicine: what should students do and how about their supervisors?

    PubMed

    Haring, Catharina M; van der Meer, Jos W M; Postma, Cornelis T

    2013-09-01

    Performance of a focused physical examination will induce a high cognitive load for medical students in the early phase of the clinical clerkships. To come to a workable and clinically applicable standard physical examination for medical students to be used in every new patient in the daily clinical practice of internal medicine. A questionnaire held among physicians that supervise students during the clerkship of internal medicine in one Dutch training region. Of the complete list of physical examination 55 items were considered to be an integral part of the standard general physical examination for medical students. Most emphasized were elements of the physical examination aimed at general parameters, thorax and abdomen, vascular status, lymph nodes, spinal column, skin and some parts of the neurological examination. The standard physical examinations performed by supervisors themselves contain fewer items than they expected from the students. The expectations a supervisor has towards the student correlates with the frequency with which they apply the various components in their own physical examination. This study provides us with a 'core' physical examination for medical students that can be applied in the early phase of the clinical clerkships.

  10. Report from the Third IUPAP International Conference on Women in Physics

    NASA Astrophysics Data System (ADS)

    Freeland, Emily E.; Murphy, N.; Jang-Condell, H.; Gomez Maqueo Chew, Y.

    2009-12-01

    The Third IUPAP (International Union of Pure and Applied Physics) International Conference on Women in Physics was held in Seoul, South Korea from October 8-10, 2008 with 283 participants from 57 countries. Topics discussed included personal and professional development, attracting girls to physics, site visits for assessing and improving the climate for women, fundraising and leadership, and organizing women in physics working groups. Resolutions unanimously passed by the conference assembly recommend (1) the formation of additional regional or national working groups for women in physics, (2) promotion of site visits as an effective tool for improving the climate of the physics workplace, (3) increased professional development opportunities and outreach activities associated with conferences, and (4) a global survey of physicists in 2009 to assess the status of women in physics. See http://www.icwip2008.org/ for the text of the resolutions and the conference program. In this poster, AAS members who participated will report on this conference as well as resolutions from the first (Paris, 2002) and second (Rio de Janeiro, 2005) conferences. The next IUPAP Conference on Women in Physics is expected to occur in South Africa in 2011.

  11. 32nd International Conference on the Physics of Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelikowsky, James

    The International Conference on the Physics of Semiconductors (ICPS) continues a series of biennial conferences that began in the 1950's. ICPS is the premier meeting for reporting all aspects of semiconductor physics including electronic, structural, optical, magnetic and transport properties with an emphasis on new materials and their applications. The meeting will reflect the state of art in the semiconductor physics field and will serve as a forum where scholars, researchers, and specialists can interact to discuss future research directions and technological advancements. The conference typically draws 1,000 international physicists, scientists, and students. This is one of the largest sciencemore » meetings on semiconductors and related materials to be held in the United States.« less

  12. The transition of young adults with lifelong urological needs from pediatric to adult services: An international children's continence society position statement.

    PubMed

    Bower, Wendy F; Christie, Deborah; DeGennaro, Mario; Latthe, Pallavi; Raes, Ann; Romao, Rodrigo L P; Taghizadeh, Arash; Wood, Dan; Woodhouse, Christopher R J; Bauer, Stuart B

    2017-03-01

    Children with urinary tract disorders managed by teams, or individual pediatricians, urologists, nephrologists, gastroenterologists, neurologists, psychologists, and nurses at some point move from child-centered to adult-centered health systems. The actual physical change is referred to as the transfer whilst the process preceding this move constitutes transition of care. Our aims are twofold: to identify management and health-service problems related to children with congenital or acquired urological conditions who advance into adulthood and the clinical implications this has for long-term health and specialist care; and, to understand the issues facing both pediatric and adult-care clinicians and to develop a systems-approach model that meets the needs of young adults, their families and the clinicians working within adult services. Information was gleaned from presentations at an International Children's Continence Society meeting with collaboration from the International Continence Society, that discussed problems of transfer and transitioning such children. Several specialists attending this conference finalized this document identifying issues and highlighting ways to ease this transition and transfer of care for both patients and practitioners. The consensus was, urological patients with congenital or other lifelong care needs, are now entering adulthood in larger numbers than previously, necessitating new planning processes for tailored transfer of management. Adult teams must become familiar with new clinical problems in multiple organ systems and anticipate issues provoked by adolescence and physical growth. During this period of transitional care the clinician or team assists young patients to build attitudes, skills and understanding of processes needed to maximize function of their urinary tract-thus taking responsibility for their own healthcare needs. Preparation must also address, negotiating adult health care systems, psychosocial, educational or vocational issues, and mental wellbeing. Transitioning and transfer of children with major congenital anomalies to clinicians potentially unfamiliar with their conditions requires improved education both for receiving doctors and children's families. Early initiation of the transition process should allow the transference to take place at appropriate times based on the child's development, and environmental and financial factors. Neurourol. Urodynam. 36:811-819, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  14. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  15. Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes

    DTIC Science & Technology

    2014-09-30

    dependence of the energy conversion on the ratio of the IW beam slope to the topographic slope, SIW /Stopo. The top panel of Fig. 8 illustrates that...in the abyssal oceans, where typically SIW /Stopo > 1 for tall seamounts and ridges, the entire bottom topography contributes to the generation of...internal waves. In contrast, for (a) (b) 18 moderate ocean depths (say less than 4 km), where typically SIW /Stopo < 1 for seamounts and ridges, the

  16. IUPAP Chair's Report

    NASA Astrophysics Data System (ADS)

    Urry, Meg

    2002-03-01

    The International Union of Pure and Applied Physics (IUPAP) held an international conference on women in physics in early March 2002, in Paris. A diverse delegation from U.S. institutions was selected to attend, to present information about the status of women physicists in this country and to learn more about the international situation. An overview of the activities of this delegation and of the results of the conference will be presented.

  17. Astronomers Travel in Time and Space with Light

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2016-01-01

    This is an excerpt of John Mather's in a book titled: INSPIRED BY LIGHT, Reflections from the International Year of Light 2015. It was produced in January 2016 by SPIE, the European Physical Society (EPS), and The Abdus Salam International Centre for Theoretical Physics (ICTP) to commemorate the International Year of Light and Light-based Technologies 2015. The excerpt discusses how astronomers use light.

  18. Evidence for the role of self-priming in epistemic action: expertise and the effective use of memory.

    PubMed

    Maglio, Paul P; Wenger, Michael J; Copeland, Angelina M

    2008-01-01

    Epistemic actions are physical actions people take to simplify internal problem solving rather than to move closer to an external goal. When playing the video game Tetris, for instance, experts routinely rotate falling shapes more than is strictly needed to place the shapes. Maglio and Kirsh [Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18, 513-549; Maglio, P. P. (1995). The computational basis of interactive skill. PhD thesis, University of California, San Diego] proposed that such actions might serve the purpose of priming memory by external means, reducing the need for internal computation (e.g., mental rotation), and resulting in performance improvements that exceed the cost of taking additional actions. The present study tests this priming hypothesis in a set of four experiments. The first three explored precisely the conditions under which priming produces benefits. Results showed that presentation of multiple orientations of a shape led to faster responses than did presentation of a single orientation, and that this effect depended on the interval between preview and test. The fourth explored whether the benefit of seeing shapes in multiple orientations outweighs the cost of taking the extra actions to rotate shapes physically. Benefits were measured using a novel statistical method for mapping reaction-time data onto an estimate of the increase in processing capacity afforded by seeing multiple orientations. Cost was measured using an empirical estimate of time needed to take action in Tetris. Results showed that indeed the increase in internal processing capacity obtained from seeing shapes in multiple orientations outweighed the time to take extra actions.

  19. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.

  20. Quality profile of litchi ( Litchi chinensis) cultivars from India and effect of radiation processing

    NASA Astrophysics Data System (ADS)

    Hajare, Sachin N.; Saxena, Sudhanshu; Kumar, Sanjeev; Wadhawan, Surbhi; More, Varsha; Mishra, B. B.; Narayan Parte, Madan; Gautam, Satyendra; Sharma, Arun

    2010-09-01

    Litchi ( Litchi chinensis) is a non-climacteric tropical fruit. The fruit has a short shelf-life making its marketing difficult. Physical, biochemical, microbiological, and organoleptic properties of two major commercially grown Indian cultivars of litchi, 'Shahi' and 'China' were studied. The effect of gamma radiation processing and low temperature storage on the above parameters was evaluated to standardize the optimal process parameters for shelf-life extension of litchi. Physical and biochemical parameters analyzed included weight, moisture, pH, titratable acidity, texture, color, total and reducing sugar, total soluble solids, vitamin C, and flavonoid content. Weight, moisture content, and pH in the fresh fruit ranged between 21-26 g, 74-77%, and 3.7-4.4, respectively, whereas, total and reducing sugar ranged 10-15, and 10-13 g%, respectively. In 'Shahi' vitamin C content was found to be around 17-19 mg%, whereas, in 'China' it was 22-28 mg%. Flavonoid content was in the range of 26-34 μg catechin equivalents/g of fresh fruit. Total surface and internal bacterial load was around 4 and 3 log cfu/g, respectively. Surface yeast-mold count (YMC) was ˜3 log cfu/g whereas internal YMC was ˜2 log cfu/g. Radiation treatment reduced microbial load in a dose dependent manner. Treatment at 0.5 kGy did not significantly affect the quality parameters of the fruit. Treated fruits retained the "good" organoleptic rating during storage. Thus, radiation treatment (0.5 kGy) in combination with low temperature (4 °C) storage achieved a shelf-life of 28 days for litchi fruit.

  1. The Imaging X-Ray Polarimetry Explorer (IXPE)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Ramsey, Brian; O’Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffita, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; hide

    2016-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  2. Active Healthy Kids Canada's Position on Active Video Games for Children and Youth.

    PubMed

    Chaput, Jean-Philippe; Leblanc, Allana G; McFarlane, Allison; Colley, Rachel C; Thivel, David; Biddle, Stuart Jh; Maddison, Ralph; Leatherdale, Scott T; Tremblay, Mark S

    2013-12-01

    The effect of active video games (AVGs) on acute energy expenditure has previously been reported; however, the influence of AVGs on other health-related lifestyle indicators remains unclear. To address this knowledge gap, Active Healthy Kids Canada (AHKC) convened an international group of researchers to conduct a systematic review to understand whether AVGs should be promoted to increase physical activity and improve health indicators in children and youth (zero to 17 years of age). The present article outlines the process and outcomes of the development of the AHKC's position on active video games for children and youth. In light of the available evidence, AHKC does not recommend AVGs as a strategy to help children be more physically active. However, AVGs may exchange some sedentary time for light- to moderate-intensity physical activity, and there may be specific situations in which AVGs provide benefit (eg, motor skill development in special populations and rehabilitation).

  3. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    NASA Astrophysics Data System (ADS)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  4. Study of energy partitioning using a set of related explosive formulations

    NASA Astrophysics Data System (ADS)

    Lieber, Mark; Foster, Joseph C.; Stewart, D. Scott

    2012-03-01

    Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to high power output during the detonation process. Historically, the explosive design problem has focused on intramolecular energy storage. The molecules of interest are derived via molecular synthesis providing near stoichiometric balance on the physical scale of the molecule. This approach provides prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employ intermolecular ingredients to alter the spatial and temporal distribution of energy release. State of the art continuum methods have been used to study this approach to the materials design. Cheetah has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and kinetic energy in the detonation. The equation of state information from Cheetah has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.

  5. The Origins of Plasmas in the Earth's Neighborhood (OPEN) program

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1984-01-01

    The nature and objectives of the OPEN program are overviewed. The Origins of Plasmas in the Earth's Neighborhood program was conceived in 1979 and proposed as a major new initiative to study the energetics of the earth's space environment by the end of the 1980s. The objectives of OPEN have been integrated into the Global Geospace Study (GGS) segment to the International Solar-Terrestrial Physics (ISTP) program now being planned jointly by NASA, ESA, and Japan. The goals will be to develop a global understanding of the flow of energy from the sun through the earth's space environment above the neutral atmosphere and to define the cause and effect relationships between the plasma physics processes that link different regions of this dynamic environment. A network of four spacecraft will be used, each one carrying an instrument complement to characterize the composition and behavior of the upstream solar wind, the high-altitude polar magnetosphere, the equatorial magnetosphere, and the comet-like geomagnetic tail. Multispectral cameras will also be carried to image polar auroras at ultraviolet, visible and X-ray wavelengths. Experimentalists and theorists on the international team will participate.

  6. The International Linear Collider Technical Design Report - Volume 2: Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Howard; Barklow, Tim; Fujii, Keisuke

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  7. Marie Curie's contribution to Medical Physics.

    PubMed

    Jean-Claude, Rosenwald; Nüsslin, Fridtjof

    2013-09-01

    On occasion of its 50th anniversary, the International Organization for Medical Physics (IOMP) from now on is going to celebrate annually an International Day of Medical Physics for which the 7th November, the birthday of Marie Sklodowska Curie, a most exceptional character in science at all and a pioneer of medical physics, has been chosen. This article briefly outlines her outstanding personality, sketches her fundamental discovery of radioactivity and emphasizes the impact of her various achievements on the development of medical physics at large. © 2013 Published by Elsevier Ltd on behalf of Associazione Italiana di Fisica Medica.

  8. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.

    2015-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.

  9. A framework for evaluating community-based physical activity promotion programmes in Latin America.

    PubMed

    Schmid, Thomas L; Librett, John; Neiman, Andrea; Pratt, Michael; Salmon, Art

    2006-01-01

    A growing interest in promoting physical activity through multi-sectoral community-based programmes has highlighted the need for effective programme evaluation. Meeting in Rio de Janeiro, an international workgroup of behavioural, medical, public health and other scientists and practitioners endorsed the principle of careful evaluation of all programmes and in a consensus process developed the Rio de Janeiro Recommendations for Evaluation of Physical Activity Interventions". Among these recommendations and principles were that when possible, evaluation should 'built into' the programme from the beginning. The workgroup also called for adequate funding for evaluation, setting a goal of about 10% of programme resources for evaluation. The group also determined that evaluations should be developed in conjunction with and the results shared with all appropriate stakeholders in the programme; evaluations should be guided by ethical standards such as those proposed by the American Evaluation Association and should assess programme processes as well as outcomes; evaluation outcomes should be used to revise and refine ongoing programmes and guide decisions about programme continuation or expansion. It was also recognised that additional training in programme evaluation is needed and the Centers for Disease Control and Prevention's Physical Activity Evaluation Handbook could be easily adapted for use in culturally diverse communities, especially in Latin America. This paper describes a 6-step evaluation process and provides the full set of recommendations from the Rio de Janeiro Workgroup. The handbook has been translated and additional case studies from Colombia and Brazil have been added. Spanish and Portuguese language editions of the Evaluation Handbook are available from the Centers for Disease Control and Prevention, Physical Activity and Health Branch.

  10. Characterization of Beryllium Windows for Coherent X-ray Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji

    2007-01-19

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications.

  11. Modeling Common-Sense Decisions

    NASA Astrophysics Data System (ADS)

    Zak, Michail

    This paper presents a methodology for efficient synthesis of dynamical model simulating a common-sense decision making process. The approach is based upon the extension of the physics' First Principles that includes behavior of living systems. The new architecture consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolution of the corresponding knowledge-base and incorporating it in the form of information flows into the motor dynamics. The autonomy of the decision making process is achieved by a feedback from mental to motor dynamics. This feedback replaces unavailable external information by an internal knowledgebase stored in the mental model in the form of probability distributions.

  12. A Recipe for Soft Fluidic Elastomer Robots

    PubMed Central

    Marchese, Andrew D.; Katzschmann, Robert K.

    2015-01-01

    Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes. PMID:27625913

  13. A Recipe for Soft Fluidic Elastomer Robots.

    PubMed

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  14. Mechanics of Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  15. Women's Participation in Physics Internationally: the IUPAP Working Group on Women

    NASA Astrophysics Data System (ADS)

    Franz, Judy

    2001-04-01

    In 1999 the General Assembly of the International Union of Pure and Applied Physics (IUPAP) voted to establish a Working Group on Women in Physics with the following charge: to survey the situation for women in physics in IUPAP member countries; to analyze and report the data collected along with suggestions on how to improve the situation; to suggest ways that women can become more involved in IUPAP, including the Liaison Committees, the Commissions, the Council, and the General Assemblies; and to report all findings at the next General Assembly in 2002. The Working Group was established in 2000 with 11 members representing North and South America, Europe, Asia and the Middle East/Africa. The Group has been gathering data on women in physics and is planning to hold an International Conference on Women in Physics at UNESCO Headquarters in Paris in March, 2002. I will discuss some of the findings and the plans for the future.

  16. Contribution of underlying processes to improved visuospatial working memory associated with physical activity.

    PubMed

    Ji, Qingchun; Wang, Yingying; Guo, Wei; Zhou, Chenglin

    2017-01-01

    Working memory is critical for various cognitive processes and can be separated into two stages: short-term memory storage and manipulation processing. Although previous studies have demonstrated that increased physical activity (PA) improves working memory and that males outperform females on visuospatial working memory tasks, few studies have determined the contribution of the two underlying stages to the visuospatial working memory improvement associated with PA. Thus, the aims of the present study were to verify the relationship between physical activity and visuospatial working memory, determine whether one or both stages were affected by PA, and investigate any sex differences. A total of 56 undergraduate students were recruited for this study. Their scores on the International Physical Activity Questionnaire (IPAQ) were used to separate them into either a lower PA ( n  = 26; IPAQ score ≤3,000 metabolic equivalent [MET]-min/week) or higher PA ( n  = 30; IPAQ score >3,000 MET-min/week) group. Participants were required to complete three tasks: a visuospatial working memory task, a task that examines the short-term memory storage stage, and a mental rotation task that examines the active manipulation stage. Participants in the higher PA group maintained similar accuracy but displayed significantly faster reaction times (RT) than those in the lower PA group on the visuospatial working memory and manipulation tasks. By contrast, no difference was observed between groups on the short-term memory storage task. In addition, no effects of sex were detected. Our results confirm that PA was positively to visuospatial working memory and that this positive relationship was associated with more rapid cognitive processing during the manipulation stage, with little or no relationship between PA and the memory storage stage of visuospatial working memory.

  17. National policy on physical activity: the development of a policy audit tool.

    PubMed

    Bull, Fiona C; Milton, Karen; Kahlmeier, Sonja

    2014-02-01

    Physical inactivity is a leading risk factor for noncommunicable disease worldwide. Increasing physical activity requires large scale actions and relevant, supportive national policy across multiple sectors. The policy audit tool (PAT) was developed to provide a standardized instrument to assess national policy approaches to physical activity. A draft tool, based on earlier work, was developed and pilot-tested in 7 countries. After several rounds of revisions, the final PAT comprises 27 items and collects information on 1) government structure, 2) development and content of identified key policies across multiple sectors, 3) the experience of policy implementation at both the national and local level, and 4) a summary of the PAT completion process. PAT provides a standardized instrument for assessing progress of national policy on physical activity. Engaging a diverse international group of countries in the development helped ensure PAT has applicability across a wide range of countries and contexts. Experiences from the development of the PAT suggests that undertaking an audit of health enhancing physical activity (HEPA) policy can stimulate greater awareness of current policy opportunities and gaps, promote critical debate across sectors, and provide a catalyst for collaboration on policy level actions. The final tool is available online.

  18. Some current themes in physical hydrology of the land-atmosphere interface

    USGS Publications Warehouse

    Milly, P.C.D.

    1991-01-01

    Certain themes arise repeatedly in current literature dealing with the physical hydrology of the interface between the atmosphere and the continents. Papers contributed to the 1991 International Association of Hydrological Sciences Symposium on Hydrological Interactions between Atmosphere, Soil and Vegetation echo these themes, which are discussed in this paper. The land-atmosphere interface is the region where atmosphere, soil, and vegetation have mutual physical contact, and a description of exchanges of matter or energy among these domains must often consider the physical properties and states of the entire system. A difficult family of problems is associated with the reconciliation of the wide range of spatial scales that arise in the course of observational, theoretical, and modeling activities. These scales are determined by some of the physical elements of the interface, by patterns of natural variability of the physical composition of the interface, by the dynamics of the processes at the interface, and by methods of measurement and computation. Global environmental problems are seen by many hydrologists as a major driving force for development of the science. The challenge for hydrologists will be to respond to this force as scientists rather than problem-solvers.

  19. Plasma Physics Network Newsletter, No. 3

    NASA Astrophysics Data System (ADS)

    1991-02-01

    This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the 'Buenos Aires Memorandum' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a 'Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research'; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 to October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article 'Long Term Physics R and D Planning (for ITER)' by F. Engelmann; in the planned sequence of 'Reports on National Fusion Programs' contributions on the Chinese and Yugoslav programs; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International physics Group-A sub unit of the American Physical Society) Newsletter.

  20. KSC-2010-4545

    NASA Image and Video Library

    2010-09-01

    CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, check the progress of the Payload Attach System, or PAS, as it is lifted up to the Alpha Magnetic Spectrometer, where it will be attached to the bottom of the AMS. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  1. KSC-2010-4546

    NASA Image and Video Library

    2010-09-01

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician monitors the progress of the Payload Attach System, or PAS, as it is lifted up to the Alpha Magnetic Spectrometer, or AMS, where it will be attached to the bottom of the AMS. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  2. KSC-2010-4544

    NASA Image and Video Library

    2010-09-01

    CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, monitor the guide wires of the overhead crane as it lifts the Payload Attach System, or PAS, up to the Alpha Magnetic Spectrometer, or AMS, for installation. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  3. KSC-2010-4547

    NASA Image and Video Library

    2010-09-01

    CAPE CANAVERAL, Fla. -- A technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, check the progress of the Payload Attach System, or PAS, as it is lifted up to the Alpha Magnetic Spectrometer, or AMS, where it will be attached to the bottom of the AMS. The PAS provides a method of securely connecting the payload to the International Space Station. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  4. Research of movement process of fiber suspension in accelerating unit of wet grinding disintegrator

    NASA Astrophysics Data System (ADS)

    Mykhaylichenko, S. A.; Dubinin, N. N.; Kachaev, A. E.; Goncharov, S. I.; Farafonov, A. A.

    2018-03-01

    At the present stage of development of building material science, products reinforced with fibers of various origin (mineral, organic, metal and others) are commonly used. Determination of the optimal structure and the chemical composition of the fiber depends on a number of requirements for filler, binder, and other miscellaneous additives, etc. The rational combination of physical and chemical composition of the primary matrix of the product (e.g., binders, cement) with dispersion of anisotropic fiber of filler not only contributes to the strength of products, but also stabilizes their internal structure: prevents the occurrence of internal stress of the cement stone, increases the adhesive interaction of particles of cement at the contact boundary with fibers, etc.

  5. Atmospheric footprint of the recent warming slowdown

    PubMed Central

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013; however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability. PMID:28084457

  6. Longitudinal study of self-regulation, positive parenting, and adjustment problems among physically abused children.

    PubMed

    Kim-Spoon, Jungmeen; Haskett, Mary E; Longo, Gregory S; Nice, Rachel

    2012-02-01

    Research using normative and high-risk samples indicates a significant link between problems with self-regulation and child maladjustment. Nevertheless, little is known about the processes that may modify the link between self-regulation and maladjustment. This longitudinal study examined the joint contributions of child self-regulation and positive parenting behaviors to the development of externalizing and internalizing symptomatology spanning from preschool to 1st grade. Data were collected on a total of 95 physically abused children (58% boys); our longitudinal analyses involved 43 children at Time 1 (preschool), 63 children at Time 2 (kindergarten), and 54 children at Time 3 (1st grade). Children's self-regulation was measured by parent report, and their externalizing and internalizing symptomatology was evaluated by teachers. Parents completed self-report measures of positive parenting. Our structural equation modeling analyses revealed positive parenting as a protective factor that attenuated the concurrent association between low self-regulation and externalizing symptomatology among physically abused children. Our findings regarding longitudinal changes in children's externalizing symptomatology supported the differential susceptibility hypothesis: Physically abused children who were at greater risk due to low levels of self-regulation were more susceptible to the beneficial effects of positive parenting, compared to those with high levels of self-regulation. Findings suggest that although physical abuse presents formidable challenges that interfere with the development of adaptive self-regulation, positive parenting behaviors may ameliorate the detrimental effects of maladaptive self-regulation on the development of externalizing symptomatology. In addition, the positive and negative effects of caregiving behaviors were more prominent among physically abused children at great risk due to low self-regulation. Findings from the present study highlight the importance of attending to positive parenting behaviors and child self-regulation when working with physically abused children who are exhibiting externalizing symptomatology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Longitudinal study of self-regulation, positive parenting, and adjustment problems among physically abused children

    PubMed Central

    Kim, Jungmeen; Haskett, Mary E.; Longo, Gregory S.; Nice, Rachel

    2012-01-01

    Objective Research using normative and high-risk samples indicates a significant link between problems with self-regulation and child maladjustment. Nevertheless, little is known about the processes that may modify the link between self-regulation and maladjustment. This longitudinal study examined the joint contributions of child self-regulation and positive parenting behaviors to the development of externalizing and internalizing symptomatology spanning from preschool to 1st grade. Methods Data were collected on a total of 95 physically abused children (58% boys); our longitudinal analyses involved 43 children at Time 1 (preschool), 63 children at Time 2 (kindergarten), and 54 children at Time 3 (1st grade). Children's self-regulation was measured by parent report, and their externalizing and internalizing symptomatology was evaluated by teachers. Parents completed self-report measures of positive parenting. Results Our structural equation modeling analyses revealed positive parenting as a protective factor that attenuated the concurrent association between low self-regulation and externalizing symptomatology among physically abused children. Our findings regarding longitudinal changes in children's externalizing symptomatology supported the differential susceptibility hypothesis: Physically abused children who were at greater risk due to low levels of self-regulation were more susceptible to the beneficial effects of positive parenting, compared to those with high levels of self-regulation. Conclusions Findings suggest that although physical abuse presents formidable challenges that interfere with the development of adaptive self-regulation, positive parenting behaviors may ameliorate the detrimental effects of maladaptive self-regulation on the development of externalizing symptomatology. In addition, the positive and negative effects of caregiving behaviors were more prominent among physically abused children at great risk due to low self-regulation. Practice Implications Findings from the present study highlight the importance of attending to positive parenting behaviors and child self-regulation when working with physically abused children who are exhibiting externalizing symptomatology. PMID:22398303

  8. The Use of Classroom Assessment to Explore Problem Solving Skills Based on Pre-Service Teachers’ Cognitive Style Dimension in Basic Physics Course

    NASA Astrophysics Data System (ADS)

    Rahmawati; Rustaman, Nuryani Y.; Hamidah, Ida; Rusdiana, Dadi

    2017-02-01

    The aim of this study was to explore the use of assessment strategy which can measure problem solving skills of pre-service teachers based on their cognitive style in basic physics course. The sample consisted of 95 persons (male = 15, female = 75). This study used an exploratory research with observation techniques by interview, questionnaire, and test. The results indicated that the lecturer only used paper-pencil test assessment strategy to measure pre-service teachers’ achievement and also used conventional learning strategy. It means that the lecturer did not measure pre-services’ thinking process in learning, like problem solving skills. One of the factors which can influence student problem solving skills is cognitive style as an internal factor. Field Dependent (FD) and Field Independent (FI) are two cognitive styles which were measured with using Group Embedded Figure Test (GEFT) test. The result showed that 82% of pre-service teachers were FD cognitive style and only 18% of pre-service teachers had FI cognitive style. Furthermore, these findings became the fundamental design to develop a problem solving assessment model to measure pre-service teachers’ problem solving skills and process in basic physics course.

  9. Internal Catchment Process Simulation in a Snow-Dominated Basin: Performance Evaluation with Spatiotemporally Variable Runoff Generation and Groundwater Dynamics

    NASA Astrophysics Data System (ADS)

    Kuras, P. K.; Weiler, M.; Alila, Y.; Spittlehouse, D.; Winkler, R.

    2006-12-01

    Hydrologic models have been increasingly used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models, however, are also plagued by uncertainty stemming from a limited understanding of hydrological processes in forested catchments and parameter equifinality is a common concern. This has created the necessity to improve our understanding of how hydrological systems work, through the development of hydrological measures, analyses and models that address the question: are we getting the right answers for the right reasons? Hence, physically-based, spatially-distributed hydrologic models should be validated with high-quality experimental data describing multiple concurrent internal catchment processes under a range of hydrologic regimes. The distributed hydrology soil vegetation model (DHSVM) frequently used in forest management applications is an example of a process-based model used to address the aforementioned circumstances, and this study takes a novel approach at collectively examining the ability of a pre-calibrated model application to realistically simulate outlet flows along with the spatial-temporal variation of internal catchment processes including: continuous groundwater dynamics at 9 locations, stream and road network flow at 67 locations for six individual days throughout the freshet, and pre-melt season snow distribution. Model efficiency was improved over prior evaluations due to continuous efforts in improving the quality of meteorological data in the watershed. Road and stream network flows were very well simulated for a range of hydrological conditions, and the spatial distribution of the pre-melt season snowpack was in general agreement with observed values. The model was effective in simulating the spatial variability of subsurface flow generation, except at locations where strong stream-groundwater interactions existed, as the model is not capable of simulating such processes and subsurface flows always drain to the stream network. The model has proven overall to be quite capable in realistically simulating internal catchment processes in the watershed, which creates more confidence in future model applications exploring the effects of various forest management scenarios on the watershed's hydrological processes.

  10. Preface

    NASA Astrophysics Data System (ADS)

    Makabe, Toshiaki; Samukawa, Seiji

    2007-06-01

    Twenty-first century will be the era of the design technology on a firm basis of physics and chemistry under circumstances of a prospective high-speed computing along the line of environmentally friendly and economically saving society. The 4th International Workshop on Basic Aspects of Nonequilibrium Plasmas Interacting with Surfaces (BANPIS); Negative ions, their function & designability, and the 4th EU-Japan Joint Symposium on Plasma Processes (JSPP) were held at Hotel Highland Resort close to Mt. Fuji in Japan on January 30 - February 1, 2006. The joint conference was organized by the 21st century Center of Excellence (COE) for ;Optical & Electronic Device Technology for Access Networks; in Keio University, and co-operated by the Center for ;Atomic and Molecular Engineering,; in Open University, and by The Japan Society of Applied Physics.

  11. Chasing the Rainbow: The Non-conscious Nature of Being.

    PubMed

    Oakley, David A; Halligan, Peter W

    2017-01-01

    Despite the compelling subjective experience of executive self-control, we argue that "consciousness" contains no top-down control processes and that "consciousness" involves no executive, causal, or controlling relationship with any of the familiar psychological processes conventionally attributed to it. In our view, psychological processing and psychological products are not under the control of consciousness. In particular, we argue that all "contents of consciousness" are generated by and within non-conscious brain systems in the form of a continuous self-referential personal narrative that is not directed or influenced in any way by the "experience of consciousness." This continuously updated personal narrative arises from selective "internal broadcasting" of outputs from non-conscious executive systems that have access to all forms of cognitive processing, sensory information, and motor control. The personal narrative provides information for storage in autobiographical memory and is underpinned by constructs of self and agency, also created in non-conscious systems. The experience of consciousness is a passive accompaniment to the non-conscious processes of internal broadcasting and the creation of the personal narrative. In this sense, personal awareness is analogous to the rainbow which accompanies physical processes in the atmosphere but exerts no influence over them. Though it is an end-product created by non-conscious executive systems, the personal narrative serves the powerful evolutionary function of enabling individuals to communicate (externally broadcast) the contents of internal broadcasting. This in turn allows recipients to generate potentially adaptive strategies, such as predicting the behavior of others and underlies the development of social and cultural structures, that promote species survival. Consequently, it is the capacity to communicate to others the contents of the personal narrative that confers an evolutionary advantage-not the experience of consciousness (personal awareness) itself.

  12. Chasing the Rainbow: The Non-conscious Nature of Being

    PubMed Central

    Oakley, David A.; Halligan, Peter W.

    2017-01-01

    Despite the compelling subjective experience of executive self-control, we argue that “consciousness” contains no top-down control processes and that “consciousness” involves no executive, causal, or controlling relationship with any of the familiar psychological processes conventionally attributed to it. In our view, psychological processing and psychological products are not under the control of consciousness. In particular, we argue that all “contents of consciousness” are generated by and within non-conscious brain systems in the form of a continuous self-referential personal narrative that is not directed or influenced in any way by the “experience of consciousness.” This continuously updated personal narrative arises from selective “internal broadcasting” of outputs from non-conscious executive systems that have access to all forms of cognitive processing, sensory information, and motor control. The personal narrative provides information for storage in autobiographical memory and is underpinned by constructs of self and agency, also created in non-conscious systems. The experience of consciousness is a passive accompaniment to the non-conscious processes of internal broadcasting and the creation of the personal narrative. In this sense, personal awareness is analogous to the rainbow which accompanies physical processes in the atmosphere but exerts no influence over them. Though it is an end-product created by non-conscious executive systems, the personal narrative serves the powerful evolutionary function of enabling individuals to communicate (externally broadcast) the contents of internal broadcasting. This in turn allows recipients to generate potentially adaptive strategies, such as predicting the behavior of others and underlies the development of social and cultural structures, that promote species survival. Consequently, it is the capacity to communicate to others the contents of the personal narrative that confers an evolutionary advantage—not the experience of consciousness (personal awareness) itself. PMID:29184516

  13. Influence of Individual Determinants on Physical Activity at Work and During Leisure Time in Soldiers: A Prospective Surveillance Study.

    PubMed

    Schulze, Christoph; Lindner, Tobias; Goethel, Pauline; Müller, Marie; Mittelmeier, Wolfram; Bader, Rainer

    2016-01-01

    Quantified physical activity is an important parameter for evaluating the risk of the incidence of internal and musculoskeletal disorders. The objective of this study was to evaluate the physical activity of German Soldiers on duty and during leisure time with regard to individual determinants and to evaluate if factors associated with the risk of the incidence of internal or musculoskeletal disorders are of relevance for physical activity. For this purpose, we conducted activity measurements on 169 subjects. The accelerometer-based activity sensor was worn for 7 consecutive days. The number of steps taken was evaluated as an activity marker.We observed that a high body mass index and a large waist circumference were associated with a low activity level. Women were found to be more active than men, particularly during leisure time. Personnel under 25 years of age were more physically active than those between 25 and 50 years of age. Subjects with underlying musculoskeletal disorders were less active than those who had internal disorders or were healthy. Men and overweight people run a higher risk of developing musculoskeletal and internal disorders. Health promotion should focus on raising the physical activity level with the aim of exerting a positive influence on the associated risk factors.

  14. Rural settlements transition (RST) in a suburban area of metropolis: Internal structure perspectives.

    PubMed

    Ma, Wenqiu; Jiang, Guanghui; Wang, Deqi; Li, Wenqing; Guo, Hongquan; Zheng, Qiuyue

    2018-02-15

    Rural settlements transition (RST) is one of the most significant indices for understanding the phenomena of rural reconstruction and urban-rural transformation in China. However, a systematic overview of RST is missing, and there is a lack of evidence regarding its characteristics from the internal structure perspectives. In this paper, we systematically explore the RST regarding spatio-temporal change characteristics of internal structure, patterns and impacts on rural environment and development by using practical survey internal land-use data from 2005 to 2015. The results show that the temporal change characteristics of the internal structure of rural settlements demonstrate a tendency for housing land to decrease and other land-use types to increase. The spatial change characteristics reveal that the structure inclines to more complexity and diversity from an exurban area to an urban-rural fringe area. Based on this finding, we identify that rapid development of rural industrialization, more agglomerate and effective industrial land-use, and improved public infrastructure construction are the general RST patterns. Spatially, there exists a physical decay pattern in the exurban area, thereby resulting in the hollowing-out of rural industries and of the population. In addition, the extensive and disorderly pattern in the suburban area causes low efficiency output and serious environmental pollution. The RST pattern in the urban hinterland promoted the "men-environment" compatible development. The study concludes that regional differentiation in patterns and impacts are significant in the process of RST. Future adaptive strategies for rural settlements adjustment should be conducted according to regional characteristics, including socio-economic status, physical geography condition and economic location to improve the rural environmental sustainability. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Epiphanies, velcro balls and McDonaldization: highlights from the 5th Meeting of the International Society for Behavioral Nutrition and Physical Activity

    PubMed Central

    Ball, Kylie

    2006-01-01

    This commentary provides an overview and selected highlights from the scientific program of the 5th Annual Meeting of the International Society for Behavioral Nutrition and Physical Activity. PMID:16987427

  16. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  17. First Results from the iSTAR International STudy on Astronomy Reasoning

    NASA Astrophysics Data System (ADS)

    Tatge, Coty B.; Slater, Stephanie J.; Slater, Timothy F.

    2015-01-01

    Our best efforts in the United States to dramatically improve teaching and learning in astronomy courses has been less than satisfactory despite Herculean efforts. A possible solution is to expand our view beyond our own culture's borders and presumptions in order to bring our shortcomings in discipline-based astronomy education research to light. Before we can begin the process of international comparisons of student conceptual understanding, we need to better understand how different citizens of different countries position astronomy culturally. Under the banner of the International STudy on Astronomy Reasoning Project, iSTAR, we are now carefully observing how foreign experts in teaching astronomy and the science of astronomy translate the Test Of Astronomy STandards - TOAST multiple-choice assessment instrument to look for subtle clues revealed during the translation process. The TOAST is the widely used standard to evaluate students' gains in the United States' Astronomy classrooms. We hope that the process of translation itself will help us comprehend how other cultures think differently about astronomical concepts and eventually we are looking to obtain useful data of how other cultures develop their society's understanding of particular astronomy aspects where we may fall short. Several of the iSTAR Project's bilingual speakers are documenting their thoughts and insights as they translate the TOAST. The end-goal is to collect a comprehensible, well-defined, and logical translation in various languages that are culturally sensitive and linguistically accurate. This project is sponsored and managed by the CAPER Center for Astronomy & Physics Education Research at CAPERTeam.com in collaboration with members of the International Astronomical Union-Commission 46.

  18. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  19. KSC-04PD-0003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  20. KSC-04PD-0007

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  1. KSC-04PD-0002

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  2. KSC-04PD-0001

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  3. Preface: Special issue featuring papers from the International Conference on Nonequilibrium Carrier Dynamics in Semiconductors

    NASA Astrophysics Data System (ADS)

    Reggiani, L.; Bordone, P.; Brunetti, R.

    2004-02-01

    The International Conference on Nonequilibrium Carrier Dynamics in Semiconductors (HCIS-13) celebrates 30 years since it first took place in Modena. Nonequilibrium dynamics of charge carriers, pioneered by the hot-electron concept, is an important issue for understanding electro-optic transport properties in semiconductor materials and structures. In these 30 years several topics have matured, and new ones have emerged thus fertilizing the field with a variety of physical problems and new ideas. The history of the conference is summarized in the opening paper `30 years of HCIS'. The future of the conference seems secure considering the continued lively interest of the participants. The conference addressed eleven major topics which constitute the backbone of the proceedings and are summarized as follows: carrier transport in low dimensional and nanostructure systems, nonequilibrium carriers in superlattices and devices, small devices and related phenomena, carrier dynamics and fluctuations, carrier quantum dynamics, coherent/incoherent carrier dynamics of optical excitations and ultra-fast optical phenomena, nonlinear optical effects, transport in organic matter, semiconductor-based spintronics, coherent dynamics in solid state systems for quantum processing and communication, novel materials and devices. Nanometric space scale and femtosecond time scale represent the ultimate domains of theoretical, experimental and practical interest. Traditional fields such as bulk properties, quantum transport, fluctuations and chaotic phenomena, etc, have received thorough and continuous attention. Emerging fields from previous conferences, such as quantum processing and communication, have been better assessed. New fields, such as spintronics and electron transport in organic matter, have appeared for the first time. One plenary talk, 11 invited talks, 230 submitted abstracts covering all these topics constituted a single-session conference. Following scientific selection through the Advisory and Program Committees and peer review, 162 papers were selected for publication by the Institute of Physics Publishing in this special issue of Semiconductor Science and Technology. The financial support that allowed conference organization and helped researchers with budget difficulties to attend came from the following institutions which are gratefully acknowledged: Office of Naval Research (ONR), Defense Advanced Research Project Agency (DARPA), Office of Naval Research International Field Office (ONRIFO), International Union of Pure and Applied Physics (IUPAP), Italian Ministry of Education University and Research (MIUR), National Institute for the Physics of Matter (INFM), University of Modena and Reggio Emilia, Dipartimento di Ingegneria dell’ Innovazione of the Lecce University. Finally, sincere thanks are addressed to the technical staff who provided assistance during the conference: G Angelone, M Benassi, F Grossi, M Leuzzi, A Magnani, S Montanto, L Zagni and D Zanfi. The staff of the University Press Office together with F Goggi and N Minto are acknowledged for their excellent job in printing the conference documents.

  4. Effects of internal displacement and resettlement on the mental health of Turkish children and adolescents.

    PubMed

    Erol, Neşe; Simşek, Zeynep; Oner, Ozgür; Munir, Kerim

    2005-03-01

    To evaluate the effects of internal displacement and resettlement within Turkey on the emotional and behavioral profile of children, age 5-18 after controlling for possible confounding and demographic variables. We conducted a national population survey using a self-weighted, equal probability sample. We compared the CBCL, TRF and YSR responses regarding children with (n = 1644) and without (n = 1855) experience of internal displacement. We examined the effects of gender, age, paternal employment, resettlement, urban residence and physical illness. The children and adolescents with internal displacement had significantly higher internalizing, externalizing and total problem scores on the CBCL and YSR, and higher internalizing scores on the TRF. The effect of displacement was related to higher internalizing problems when factors like physical illness, child age, child gender and urban residence were accounted. The overall effect was small explaining only 0.1-1.5% of the total variance by parent reports, and not evident by teacher reports. To our knowledge the present study is the first to examine Turkish children and adolescents with and without experience of internal displacement. The results are consistent with previous immigration studies: child age, gender, presence of physical illness and urban residence were more important predictors of internalization and externalization problem scores irrespective of informant source.

  5. 14th High-Tech Plasma Processes Conference (HTPP 14)

    NASA Astrophysics Data System (ADS)

    2017-04-01

    Preface The High-Tech Plasma Processes Conference (HTPP) is a bi-annual international conference based in Europe with topics encompassing the whole area of plasma processing science. This conference is open to all the international community in the world involved in plasma science and plasma technology. The aim of the conference is to bring different scientific communities together, facilitate the contacts between science, technology and industry and provide a platform for the exploration of both fundamental topics and new applications of plasmas. For this edition of HTPP, as was the case for the last, we have achieved a well balanced participation from the communities of both thermal and non-thermal plasma researchers. 75 people from 17 countries attended the conference with the total number of contributions being 74, consisting of 19 invited talks and 55 poster contributions. As a HTPP tradition a poster competition has been carried out during the conference. The winner of the poster competition was Fabrice Mavier from Université de Limoges, France with his paper “Pulsed arc plasma jet synchronized with drop-on-demand dispenser” All the participants also ejoyed the social program including an “unconventional” tour of the city, the visit to the famous Hofbräuhaus and the dinner at the Blutenburg, a beautiful inner-city castle. We have received papers corresponding to the contributions of HTPP-2014 that have been submitted for publication in this volume of Journal of Physics: Conference Series. Each submitted contribution has been peer reviewed and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In total, 18 manuscripts have been accepted for publication covering a range of topics of plasma processing science from plasma fundamentals to process applications through to experiments, diagnostics and modelling. We deeply thank the authors for their enthusiastic and high-grade contributions and we are convinced that this volume of Journal of Physics: Conference Series will be interesting for our community. Finally, we would like to thank the conference chairmen, the members of the steering committee, the international scientific committee, the local organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of HTPP-2016. The Editors of the HTPP-2016 Proceedings Dr. Dirk Uhrlandt, head of the ISC Prof. Philippe Teulet Prof. Jochen Schein Neubiberg, 6th of March 2017

  6. Overview of the 2014 Edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; Jim Gulliford

    2014-10-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.

  7. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes

    PubMed Central

    Brangwynne, Clifford P.; Mitchison, Timothy J.; Hyman, Anthony A.

    2011-01-01

    For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of < 1 min. We use these dynamics to determine an apparent nucleolar viscosity, and we show that this viscosity is ATP-dependent, suggesting a role for active processes in fluidizing internal contents. Nucleolar surface tension and fluidity cause their restructuring into spherical droplets upon imposed mechanical deformations. Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales. PMID:21368180

  8. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes.

    PubMed

    Brangwynne, Clifford P; Mitchison, Timothy J; Hyman, Anthony A

    2011-03-15

    For most intracellular structures with larger than molecular dimensions, little is known about the connection between underlying molecular activities and higher order organization such as size and shape. Here, we show that both the size and shape of the amphibian oocyte nucleolus ultimately arise because nucleoli behave as liquid-like droplets of RNA and protein, exhibiting characteristic viscous fluid dynamics even on timescales of < 1 min. We use these dynamics to determine an apparent nucleolar viscosity, and we show that this viscosity is ATP-dependent, suggesting a role for active processes in fluidizing internal contents. Nucleolar surface tension and fluidity cause their restructuring into spherical droplets upon imposed mechanical deformations. Nucleoli exhibit a broad distribution of sizes with a characteristic power law, which we show is a consequence of spontaneous coalescence events. These results have implications for the function of nucleoli in ribosome subunit processing and provide a physical link between activity within a macromolecular assembly and its physical properties on larger length scales.

  9. Numerical study on electronic and optical properties of organic light emitting diodes.

    PubMed

    Kim, Kwangsik; Hwang, Youngwook; Won, Taeyoung

    2013-08-01

    In this paper, we present a finite element method (FEM) study of space charge effects in organic light emitting diodes. Our model includes a Gaussian density of states to account for the energetic disorder in organic semiconductors and the Fermi-Dirac statistics to account for the charge hopping process between uncorrelated sites. The physical model cover all the key physical processes in OLEDs, namely charge injection, transport and recombination, exciton diffusion, transfer and decay as well as light coupling, and thin-film-optics. The exciton model includes generation, diffusion, and energy transfer as well as annihilation. We assumed that the light emission originates from oscillating and thus embodied as excitons and embedded in a stack of multilayer. The out-coupled emission spectrum has been numerically calculated as a function of viewing angle, polarization, and dipole orientation. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution.

  10. A longitudinal examination of mothers' and fathers' social information processing biases and harsh discipline in nine countries.

    PubMed

    Lansford, Jennifer E; Woodlief, Darren; Malone, Patrick S; Oburu, Paul; Pastorelli, Concetta; Skinner, Ann T; Sorbring, Emma; Tapanya, Sombat; Tirado, Liliana Maria Uribe; Zelli, Arnaldo; Al-Hassan, Suha M; Alampay, Liane Peña; Bacchini, Dario; Bombi, Anna Silvia; Bornstein, Marc H; Chang, Lei; Deater-Deckard, Kirby; Di Giunta, Laura; Dodge, Kenneth A

    2014-08-01

    This study examined whether parents' social information processing was related to their subsequent reports of their harsh discipline. Interviews were conducted with mothers (n = 1,277) and fathers (n = 1,030) of children in 1,297 families in nine countries (China, Colombia, Italy, Jordan, Kenya, the Philippines, Sweden, Thailand, and the United States), initially when children were 7 to 9 years old and again 1 year later. Structural equation models showed that parents' positive evaluations of aggressive responses to hypothetical childrearing vignettes at Time 1 predicted parents' self-reported harsh physical and nonphysical discipline at Time 2. This link was consistent across mothers and fathers, and across the nine countries, providing support for the universality of the link between positive evaluations of harsh discipline and parents' aggressive behavior toward children. The results suggest that international efforts to eliminate violence toward children could target parents' beliefs about the acceptability and advisability of using harsh physical and nonphysical forms of discipline.

  11. A Longitudinal Examination of Mothers’ and Fathers’ Social Information Processing Biases and Harsh Discipline in Nine Countries

    PubMed Central

    Lansford, Jennifer E.; Woodlief, Darren; Malone, Patrick S.; Oburu, Paul; Pastorelli, Concetta; Skinner, Ann T.; Sorbring, Emma; Tapanya, Sombat; Uribe Tirado, Liliana Maria; Zelli, Arnaldo; Al-Hassan, Suha M.; Alampay, Liane Peña; Bacchini, Dario; Bombi, Anna Silvia; Bornstein, Marc H.; Chang, Lei; Deater-Deckard, Kirby; Di Giunta, Laura; Dodge, Kenneth A.

    2014-01-01

    This study examined whether parents’ social information processing was related to their subsequent reports of their harsh discipline. Interviews were conducted with mothers (n = 1277) and fathers (n = 1030) of children in 1297 families in nine countries (China, Colombia, Italy, Jordan, Kenya, Philippines, Sweden, Thailand, United States), initially when children were 7- to 9-years-old and again one year later. Structural equation models showed that parents’ positive evaluations of aggressive responses to hypothetical childrearing vignettes at Time 1 predicted parents’ self-reported harsh physical and nonphysical discipline at Time 2. This link was consistent across mothers and fathers and across the nine countries, providing support for the universality of the link between positive evaluations of harsh discipline and parents’ aggressive behavior toward children. The results suggest that international efforts to eliminate violence toward children could target parents’ beliefs about the acceptability and advisability of using harsh physical and nonphysical forms of discipline. PMID:24762321

  12. a Study on the Effect of Annealing Process on Sound Velocity and Internal Friction Using the Vibrating Reed Technique

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, P. K.; Kumar, Uday; Badawi, Emad

    Al has unique intrinsic characteristics, which are of interest to scientists as well as engineers. Al and its alloys are slightly paramagnetic materials. Al has very low cross section for thermal neutrons of 0.23 barn, hence Al can be used in nuclear fields as a structural material which is virtually transparent to neutrons. We report VRT as a new technique to study material problems. We also discuss, the results of sound velocity and internal friction, and resonance frequency as a function of temperature range for a pure aluminum sample under investigation. By using VRT, we found that the annealing temperature (450°C) is sufficient to remove the type of defects introduced in the materials under study. The activation energy to remove point defect for Al samples was calculated and found to be about 0.0624 eV. Also, we could easily observe that Q-1 is a function of annealing time. From these measurements of sound velocity and internal friction we can conclude that VRT is a powerful tool for detecting and probing the physical properties of the material under study. Internal friction is a microscopic property for the indication of the purity of the sample. Sound velocity depends on the state of the materials (which depends on the process of treatment).

  13. Evolutionary preferences for physical formidability in leaders.

    PubMed

    Murray, Gregg R

    2014-01-01

    This research uses evolutionary theory to evaluate followers' preferences for physically formidable leaders and to identify conditions that stimulate those preferences. It employs a population-based survey experiment (N ≥ 760), which offers the advantages to internal validity of experiments and external validity of a highly heterogeneous sample drawn from a nationally representative subject pool. The theoretical argument proffered here is followers tend to prefer leaders with greater physical formidability because of evolutionary adaptations derived from humans' violent ancestral environment. In this environment, individuals who allied with and ultimately followed physically powerful partners were more likely to acquire and retain important resources necessary for survival and reproduction because the presence of the physically powerful partner cued opponents to avoid a challenge for the resources or risk a costly confrontation. This argument suggests and the results indicate that threatening (war) and nonthreatening (peace, cooperation, and control) stimuli differentially motivate preferences for physically formidable leaders. In particular, the findings suggest threatening conditions lead to preferences for leaders with more powerful physical attributes, both anthropometric (i.e., weight, height, and body mass index) and perceptual (i.e., attributes of being "physically imposing or intimidating" and "physically strong"). Overall, this research offers a theoretical framework from which to understand this otherwise seemingly irrational phenomenon. Further, it advances the emerging but long-neglected investigation of biological effects on political behavior and has implications for a fundamental process in democratic society, leader selection.

  14. Indicators of activity-friendly communities: an evidence-based consensus process.

    PubMed

    Brennan Ramirez, Laura K; Hoehner, Christine M; Brownson, Ross C; Cook, Rebeka; Orleans, C Tracy; Hollander, Marla; Barker, Dianne C; Bors, Philip; Ewing, Reid; Killingsworth, Richard; Petersmarck, Karen; Schmid, Thomas; Wilkinson, William

    2006-12-01

    Regular physical activity, even at modest intensities, is associated with many health benefits. Most Americans, however, do not engage in the recommended levels. As practitioners seek ways to increase population rates of physical activity, interventions and advocacy efforts are being targeted to the community level. Yet, advocates, community leaders, and researchers lack the tools needed to assess local barriers to and opportunities for more active, healthy lifestyles. Investigators used a systematic review process to identify key indicators of activity-friendly communities that can assess and improve opportunities for regular physical activity. Investigators conducted a comprehensive literature review of both peer-reviewed literature and fugitive information (e.g., reports and websites) to generate an initial list of indicators for review (n=230). The review included a three-tiered, modified Delphi consensus-development process that incorporated input of international, national, state, and local researchers and practitioners from academic institutions, federal and state government agencies, nonprofit organizations, and funding agencies in public health, transportation, urban planning, parks and recreation, and public policy. Ten promising indicators of activity-friendly communities were identified: land use environment, access to exercise facilities, transportation environment, aesthetics, travel patterns, social environment, land use economics, transportation economics, institutional and organizational policies, and promotion. Collaborative, multidisciplinary approaches are underway to test, refine, and expand this initial list of indicators and to develop measures that communities, community leaders, and policymakers can use to design more activity-friendly community environments.

  15. [Prospects in getting accordance between chemical analytic control means and medical technical requirements to safety system concerning chemical weapons destruction].

    PubMed

    Rembovskiĭ, V R; Mogilenkova, L A; Savel'eva, E I

    2005-01-01

    The major unit monitoring chemical weapons destruction objects is a system of chemical analyticcontrol over the technologic process procedures and possibility of environment and workplace pollution withtoxicchemicals and their destruction products. At the same time, physical and chemical control means meet sanitary and hygienic requirements incompletely. To provide efficient control, internationally recognized approaches should be adapted to features of Russian system monitoring pollution of chemical weapons destruction objects with toxic chemicals.

  16. Department of the Air Force Supporting Data for Fiscal Year 1990/91 Biennial Budget Estimates Submitted to Congress January 1989. Descriptive Summaries, Research, Development, Test and Evaluation

    DTIC Science & Technology

    1989-01-01

    determine whether they can predict relationships between solar radio emissions and coronal mass ejections. (U) FY 1990 Planned Program: - (U) Generate...physical relationships of objects. - (U) Continue research on how humans process visual and auditory information and on cognitive functions. (U...duplication within the Air Force or DoD. (U) Other Appropriation Funds: Not Applicable. (U) International Cooperative Agreements: Contractor relationship

  17. KSC-06pd0971

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane settles the Columbus module onto a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  18. KSC-06pd0970

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  19. International Conference/Workshop on Small Fatigue Cracks (2nd) Held in Santa Barbara, California on 5-10 January 1986.

    DTIC Science & Technology

    1986-03-31

    critical issues thus pertain to the determination of crack tip conditions, as a function of crack length, in terms of the coupled processes of fluid...transport and chemical/electrochemical reactions within the crack, and the determination of the origin of the environmentally-enhanced cracking rates in...Depth in Determining Crack Electrochemistry and Crack Growth" A. Turnbull, National Physical Laboratory, U.K., and R. C. Newmann, UMIST, U.K. 7:30 p.m.-7

  20. Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Perkins, A. Louise; Scroggs, Jeffrey S.

    1991-01-01

    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups.

  1. International Conference on Defects-Recognition, Imaging and Physics in Semiconductors (13th), held at Wheeling, West Virginia, on 13-17 September 2009

    DTIC Science & Technology

    2010-06-01

    Jansson, Y. Leterrier, and J.A.E. Manson, Engi- neering Fracture Mechanics . 37 (2006), pp. 2614-2626. 43. N.E. Jansson et al., Thin Solid Films, 515...ceremony in Octo- ber. Apelian is the Howmet Professor of Mechanical Engineering and direc- tor of the Metal Processing Institute at Worcester... mechanical engineering to mate- rials as an undergraduate student at the Indian Institute of Technology Kanpur. "I realized that major changes in

  2. A Cluster Randomized Controlled Trial on the Effects of Technology-aided Testing and Feedback on Physical Activity and Biological Age Among Employees in a Medium-sized Enterprise.

    PubMed

    Liukkonen, Mika; Nygård, Clas-Håkan; Laukkanen, Raija

    2017-12-01

    It has been suggested that engaging technology can empower individuals to be more proactive about their health and reduce their health risks. The aim of the present intervention was to study the effects of technology-aided testing and feedback on physical activity and biological age of employees in a middle-sized enterprise. In all, 121 employees (mean age 42 ± 10 years) participated in the 12-month three-arm cluster randomized trial. The fitness measurement process (Body Age) determined the participants' biological age in years. Physical activity was measured with the International Physical Activity Questionnaire Short Form. Physical activity did not change during the intervention. Biological age (better fitness) improved in all groups statistically significantly ( p  < 0.001), but with no interaction effects. The mean changes (years) in the groups were -2.20 for the controls, -2.83 for the group receiving their biological age and feedback, and -2.31 for the group receiving their biological age, feedback, and a training computer. Technology-aided testing with feedback does not seem to change the amount of physical activity but may enhance physical fitness measured by biological age.

  3. Medical students' perceptions of their housestaffs' ability to teach physical examination skills.

    PubMed

    Smith, Miriam A; Gertler, Tracy; Freeman, Katherine

    2003-01-01

    To evaluate the amount of time housestaff spent at the bedside on physical examination skills with third-year medical students and whether housestaff enhanced physical examination skills. All Albert Einstein College of Medicine students who completed the third-year medicine inpatient clerkship at one of five participating sites evaluated housestaff (interns and residents) with whom they spent at least ten days. The students quantified the amount of time housestaff spent with them at the bedside and used a modified five-point Likert scale to evaluate housestaff's enhancement of students' physical examination skills. Data were analyzed separately for interns, but pooled for residents (years two and three). Differences between groups were tested using Wilcoxon rank-sum and by Mantel-Haenszel chi-square tests. Totals of 191 responses for interns and 166 responses for residents were collected from October 1999 to October 2000. Fifteen (8%) of the intern group and 59 (36%) of the resident group spent no time at the bedside (p <.0001). Students were most satisfied with enhancement of pulmonary, cardiovascular, and gastrointestinal skills and least satisfied with enhancement of ENT, eye, and genitourinary skills (p <.0001). Interns spent more time with students than did residents. Almost one third of the residents spent no time on physical examination skills with students. Training programs should re-emphasize the importance of housestaff's teaching at the bedside and address areas of deficiency.

  4. Conference Resolution

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Since the first IUPAP International Conference on Women in Physics (Paris, March 2002) and the Second Conference (Rio de Janeiro, May 2005), progress has continued in most countries and world regions to attract girls to physics and advance women into leadership roles, and many working groups have formed. The Third Conference (Seoul, October 2008), with 283 attendees from 57 countries, was dedicated to celebrating the physics achievements of women throughout the world, networking toward new international collaborations, building each participant's capacity for career success, and aiding the formation of active regional working groups to advance women in physics. Despite the progress, women remain a small minority of the physics community in most countries.

  5. Medical physics in Europe following recommendations of the International Atomic Energy Agency.

    PubMed

    Casar, Bozidar; Lopes, Maria do Carmo; Drljević, Advan; Gershkevitsh, Eduard; Pesznyak, Csilla

    2016-03-01

    Medical physics is a health profession where principles of applied physics are mostly directed towards the application of ionizing radiation in medicine. The key role of the medical physics expert in safe and effective use of ionizing radiation in medicine was widely recognized in recent European reference documents like the European Union Council Directive 2013/59/EURATOM (2014), and European Commission Radiation Protection No. 174, European Guidelines on Medical Physics Expert (2014). Also the International Atomic Energy Agency (IAEA) has been outspoken in supporting and fostering the status of medical physics in radiation medicine through multiple initiatives as technical and cooperation projects and important documents like IAEA Human Health Series No. 25, Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (2013) and the International Basic Safety Standards, General Safety Requirements Part 3 (2014). The significance of these documents and the recognition of the present insufficient fulfilment of the requirements and recommendations in many European countries have led the IAEA to organize in 2015 the Regional Meeting on Medical Physics in Europe, where major issues in medical physics in Europe were discussed. Most important outcomes of the meeting were the recommendations addressed to European member states and the survey on medical physics status in Europe conducted by the IAEA and European Federation of Organizations for Medical Physics. Published recommendations of IAEA Regional Meeting on Medical Physics in Europe shall be followed and enforced in all European states. Appropriate qualification framework including education, clinical specialization, certification and registration of medical physicists shall be established and international recommendation regarding staffing levels in the field of medical physics shall be fulfilled in particular. European states have clear legal and moral responsibility to effectively transpose Basic Safety Standards into national legislation in order to ensure high quality and safety in patient healthcare.

  6. Medical physics in Europe following recommendations of the International Atomic Energy Agency

    PubMed Central

    Lopes, Maria do Carmo; Drljević, Advan; Gershkevitsh, Eduard; Pesznyak, Csilla

    2016-01-01

    Background Medical physics is a health profession where principles of applied physics are mostly directed towards the application of ionizing radiation in medicine. The key role of the medical physics expert in safe and effective use of ionizing radiation in medicine was widely recognized in recent European reference documents like the European Union Council Directive 2013/59/EURATOM (2014), and European Commission Radiation Protection No. 174, European Guidelines on Medical Physics Expert (2014). Also the International Atomic Energy Agency (IAEA) has been outspoken in supporting and fostering the status of medical physics in radiation medicine through multiple initiatives as technical and cooperation projects and important documents like IAEA Human Health Series No. 25, Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (2013) and the International Basic Safety Standards, General Safety Requirements Part 3 (2014). The significance of these documents and the recognition of the present insufficient fulfilment of the requirements and recommendations in many European countries have led the IAEA to organize in 2015 the Regional Meeting on Medical Physics in Europe, where major issues in medical physics in Europe were discussed. Most important outcomes of the meeting were the recommendations addressed to European member states and the survey on medical physics status in Europe conducted by the IAEA and European Federation of Organizations for Medical Physics. Conclusions Published recommendations of IAEA Regional Meeting on Medical Physics in Europe shall be followed and enforced in all European states. Appropriate qualification framework including education, clinical specialization, certification and registration of medical physicists shall be established and international recommendation regarding staffing levels in the field of medical physics shall be fulfilled in particular. European states have clear legal and moral responsibility to effectively transpose Basic Safety Standards into national legislation in order to ensure high quality and safety in patient healthcare. PMID:27069451

  7. Physical Activity, Health, and Well-Being: An International Scientific Consensus Conference. Proceedings.

    ERIC Educational Resources Information Center

    Bouchard, Claude; And Others

    1995-01-01

    Presents eight papers: "Physical Activity and Health"; "Exercise and Physical Health"; "Exercise and Physical Health: Cancer and Immune Function"; "Exercise and Psychosocial Health"; "Physical Activity, Health, and Wellbeing at Different Life Stages"; "Descriptive Epidemiology of…

  8. Support for the 38th International Conference on High Energy Physics, 3-10 August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Kee

    The 38th International Conference on High Energy Physics (ICHEP) held in Chicago from August 3 to 10, 2016 was for physicists from around the world to gather to share the latest advancements in particle physics, astrophysics/cosmology, and accelerator science and to discuss plans for major future facilities. DOE funding provided partial support for space rental audio-visual services for scientific presentations at the conference.

  9. Fifth International Conference on High Energy Density Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, Farhat

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  10. PREFACE: 1st International Conference on Rheology and Modeling of Materials

    NASA Astrophysics Data System (ADS)

    Gömze, László A.

    2015-04-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive knowledge, materials, equipment and technology processes. The idea to organize in Hungary the 1st International Conference on Rheology and Modeling of Materials we have received from prospective scientists, physicists, chemists, mathematicians and engineers from Asia, Europe, North and South America including India, Korea, Russia, Turkey, Estonia, France, Italy, United Kingdom, Chile, Mexico and USA. The goals of ic-rmm1 the 1st International Conference on Rheology and Modeling of Materials are the following: • Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications. • Change information between the theoretical and applied sciences as well as technical and technological implantations. • Promote the communication between the scientists of different disciplines, nations, countries and continents. The international conference ic-rmm1 provides a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among the major fields of interest are the influences of material structures, mechanical stresses temperature and deformation speeds on rheological and physical properties, phase transformation of foams, foods, polymers, plastics and other competitive materials like ceramics, nanomaterials, medical- and biomaterials, cosmetics, coatings, light metals, alloys, glasses, films, composites, hetero-modulus, hetero-viscous, hetero-plastic complex materials, petrochemicals and hybrid materials, ...etc. Multidisciplinary applications of rheology and rheological modeling in material science and technology encountered in sectors like alloys, ceramics, glasses, thin films, polymers, clays, construction materials, energy, aerospace, automotive and marine industry. Rheology in food, chemistry, medicine, biosciences and environmental sciences are of particular interests. In accordance to the program of the conference ic-rmm1 more than 160 inquiries and registrations were received from 51 countries. Finally the scientists and researchers have arrived to our conference from 42 countries. Including co-authors, the research work of more than 300 scientists are presented in this book.

  11. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  12. PREFACE: The International Conference on Science of Friction

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.:

  13. Superlubricity and friction
  14. Electronic and phononic contributions to friction
  15. Friction on the atomic and molecular scales
  16. van der Waals friction and Casimir force
  17. Molecular motor and friction
  18. Friction and adhesion in soft matter systems
  19. Wear and crack on the nanoscale
  20. Theoretical studies on the atomic scale friction and energy dissipation
  21. Friction and chaos
  22. Mechanical properties of nanoscale contacts
  23. Friction of powder
  24. The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  25. Facility design consideration for continuous mix production of class 1.3 propellant

    NASA Technical Reports Server (NTRS)

    Williamson, K. L.; Schirk, P. G.

    1994-01-01

    In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.

  26. Defining Adapted Physical Activity: International Perspectives

    ERIC Educational Resources Information Center

    Hutzler, Yeshayahu; Sherrill, Claudine

    2007-01-01

    The purpose of this study was to describe international perspectives concerning terms, definitions, and meanings of adapted physical activity (APA) as (a) activities or service delivery, (b) a profession, and (c) an academic field of study. Gergen's social constructionism, our theory, guided analysis of multiple sources of data via qualitative…

  27. Articulated Multimedia Physics, Lesson 13, Internal Energy, Heat, and Temperature.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the thirteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to internal energy, heat, and temperature. The topics are concerned with collisions, thermometers, friction forces, degrees Centigrade and Fahrenheit, calories, Brownian motion, and state changes. The…

  28. Physics at the International Science and Engineering Fair.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1979-01-01

    A judge for the physics projects for the 1979 International Science and Engineering Fair describes many of the more popular science projects. Projects described include the following: carbon dioxide and helium-neon lasers, reverse flame investigations, holography, construction of a magnetic bottle to confine plasma, and aerodynamic drag. (BT)

  29. Inactivation of Vibrio parahaemolyticus in hard clams (Mercanaria mercanaria) by high hydrostatic pressure (HHP) and the effect of HHP on the physical characteristics of hard clam meat.

    PubMed

    Mootian, Gabriel K; Flimlin, George E; Karwe, Mukund V; Schaffner, Donald W

    2013-02-01

    Shellfish may internalize dangerous pathogens during filter feeding. Traditional methods of depuration have been found ineffective against certain pathogens. The objective was to explore high hydrostatic pressure (HHP) as an alternative to the traditional depuration process. The effect of HHP on the survival of Vibrio parahaemolyticus in live clams (Mercanaria mercanaria) and the impact of HHP on physical characteristics of clam meat were investigated. Clams were inoculated with up to 7 log CFU/g of a cocktail of V. parahaemolyticus strains via filter feeding. Clams were processed at pressures ranging from 250 to 552 MPa for hold times ranging between 2 and 6 min. Processing conditions of 450 MPa for 4 min and 350 MPa for 6 min reduced the initial concentration of V. parahaemolyticus to a nondetectable level (<10(1) CFU/g), achieving >5 log reductions. The volume of clam meat (processed in shell) increased with negligible change in mass after exposure to pressure at 552 MPa for 3 min, while the drip loss was reduced. Clams processed at 552 MPa were softer compared to those processed at 276 MPa. However, all HHP processed clams were found to be harder compared to unprocessed. The lightness (L*) of the meat increased although the redness (a*) decreased with increasing pressure. Although high pressure-processed clams may pose a significantly lower risk from V. parahaemolyticus, the effect of the accompanied physical changes on the consumer's decision to purchase HHP clams remains to be determined. Shellfish may contain dangerous foodborne pathogens. Traditional methods of removing those pathogen have been found ineffective against certain pathogens. The objective of this research was to determine the effect of high hydrostatic pressure on V. parahaemolyticus in clams. Processing conditions of 450 MPa for 4 min and 350 MPa for 6 min reduced the initial concentration of V. parahaemolyticus to a nondetectable level, achieving >5 log reductions. © 2013 Institute of Food Technologists®

  30. Lateralization of spatial information processing in response monitoring

    PubMed Central

    Stock, Ann-Kathrin; Beste, Christian

    2014-01-01

    The current study aims at identifying how lateralized multisensory spatial information processing affects response monitoring and action control. In a previous study, we investigated multimodal sensory integration in response monitoring processes using a Simon task. Behavioral and neurophysiologic results suggested that different aspects of response monitoring are asymmetrically and independently allocated to the hemispheres: while efference-copy-based information on the motor execution of the task is further processed in the hemisphere that originally generated the motor command, proprioception-based spatial information is processed in the hemisphere contralateral to the effector. Hence, crossing hands (entering a “foreign” spatial hemifield) yielded an augmented bilateral activation during response monitoring since these two kinds of information were processed in opposing hemispheres. Because the traditional Simon task does not provide the possibility to investigate which aspect of the spatial configuration leads to the observed hemispheric allocation, we introduced a new “double crossed” condition that allows for the dissociation of internal/physiological and external/physical influences on response monitoring processes. Comparing behavioral and neurophysiologic measures of this new condition to those of the traditional Simon task setup, we could demonstrate that the egocentric representation of the physiological effector's spatial location accounts for the observed lateralization of spatial information in action control. The finding that the location of the physical effector had a very small influence on response monitoring measures suggests that this aspect is either less important and/or processed in different brain areas than egocentric physiological information. PMID:24550855

  31. Towards a physically-based multi-scale ecohydrological simulator for semi-arid regions

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; Josefik, Zoltan; Hinz, Christoph

    2017-04-01

    The use of numerical models as tools for describing and understanding complex ecohydrological systems has enabled to test hypothesis and propose fundamental, process-based explanations of the system system behaviour as a whole as well as its internal dynamics. Reaction-diffusion equations have been used to describe and generate organized pattern such as bands, spots, and labyrinths using simple feedback mechanisms and boundary conditions. Alternatively, pattern-matching cellular automaton models have been used to generate vegetation self-organization in arid and semi-arid regions also using simple description of surface hydrological processes. A key question is: How much physical realism is needed in order to adequately capture the pattern formation processes in semi-arid regions while reliably representing the water balance dynamics at the relevant time scales? In fact, redistribution of water by surface runoff at the hillslope scale occurs at temporal resolution of minutes while the vegetation development requires much lower temporal resolution and longer times spans. This generates a fundamental spatio-temporal multi-scale problem to be solved, for which high resolution rainfall and surface topography are required. Accordingly, the objective of this contribution is to provide proof-of-concept that governing processes can be described numerically at those multiple scales. The requirements for a simulating ecohydrological processes and pattern formation with increased physical realism are, amongst others: i. high resolution rainfall that adequately captures the triggers of growth as vegetation dynamics of arid regions respond as pulsed systems. ii. complex, natural topography in order to accurately model drainage patterns, as surface water redistribution is highly sensitive to topographic features. iii. microtopography and hydraulic roughness, as small scale variations do impact on large scale hillslope behaviour iv. moisture dependent infiltration as temporal dynamics of infiltration affects water storage under vegetation and in bare soil Despite the volume of research in this field, fundamental limitations still exist in the models regarding the aforementioned issues. Topography and hydrodynamics have been strongly simplified. Infiltration has been modelled as dependent on depth but independent of soil moisture. Temporal rainfall variability has only been addressed for seasonal rain. Spatial heterogenity of the topography as well as roughness and infiltration properties, has not been fully and explicitly represented. We hypothesize that physical processes must be robustly modelled and the drivers of complexity must be present with as much resolution as possible in order to provide the necessary realism to improve transient simulations, perhaps leading the way to virtual laboratories and, arguably, predictive tools. This work provides a first approach into a model with explicit hydrological processes represented by physically-based hydrodynamic models, coupled with well-accepted vegetation models. The model aims to enable new possibilities relating to spatiotemporal variability, arbitrary topography and representation of spatial heterogeneity, including sub-daily (in fact, arbitrary) temporal variability of rain as the main forcing of the model, explicit representation of infiltration processes, and various feedback mechanisms between the hydrodynamics and the vegetation. Preliminary testing strongly suggests that the model is viable, has the potential of producing new information of internal dynamics of the system, and allows to successfully aggregate many of the sources of complexity. Initial benchmarking of the model also reveals strengths to be exploited, thus providing an interesting research outlook, as well as weaknesses to be addressed in the immediate future.

  32. Competency-Based Medical Education in the Internal Medicine Clerkship: A Report From the Alliance for Academic Internal Medicine Undergraduate Medical Education Task Force.

    PubMed

    Fazio, Sara B; Ledford, Cynthia H; Aronowitz, Paul B; Chheda, Shobhina G; Choe, John H; Call, Stephanie A; Gitlin, Scott D; Muntz, Marty; Nixon, L James; Pereira, Anne G; Ragsdale, John W; Stewart, Emily A; Hauer, Karen E

    2018-03-01

    As medical educators continue to redefine learning and assessment across the continuum, implementation of competency-based medical education in the undergraduate setting has become a focus of many medical schools. While standards of competency have been defined for the graduating student, there is no uniform approach for defining competency expectations for students during their core clerkship year. The authors describe the process by which an Alliance for Academic Internal Medicine task force developed a paradigm for competency-based assessment of students during their inpatient internal medicine (IM) clerkship. Building on work at the resident and fellowship levels, the task force focused on the development of key learning outcomes as defined by entrustable professional activities (EPAs) that were specific to educational experiences on the IM clerkship, as well as identification of high-priority assessment domains. The work was informed by a national survey of clerkship directors.Six key EPAs emerged: generating a differential diagnosis, obtaining a complete and accurate history and physical exam, obtaining focused histories and clinically relevant physical exams, preparing an oral presentation, interpreting the results of basic diagnostic studies, and providing well-organized clinical documentation. A model for assessment was proposed, with descriptors aligned to the scale of supervision and mapped to Accreditation Council for Graduate Medical Education domains of competence. The proposed paradigm offers a standardized template that may be used across IM clerkships, and which would effectively bridge competency evaluation in the clerkship to fourth-year assessment as well as eventual postgraduate training.

  1. Quality of life assessment in cosmetics: specificity and interest of the international BeautyQol instrument.

    PubMed

    Beresniak, Ariel; Auray, Jean-Paul; Duru, Gérard; Aractingi, Selim; Krueger, Gerald G; Talarico, Sergio; Tsutani, Kiichiro; Dupont, Danielle; de Linares, Yolaine

    2015-09-01

    The wide use of cosmetics and their perceived benefits upon well-being imply objective descriptions of their effects upon the different dimensions contributing to the quality of life (QoL). Such a goal pleas for using relevant and validated scientific instruments with robust measurement methods. This paper discusses the interest of the new validated questionnaire BeautyQoL specifically designed to assess the effect of cosmetic products on physical appearance and QoL. After conducting a review of skin appearance and QoL, three phases of the international codevelopment have been carried out in the following sequence: semi-directed interviews (Phase 1), acceptability study (Phase 2), and validation study (Phase 3). Data collection and validation process have been carried out in 16 languages. This review confirms that QoL instruments developed in dermatology are not suitable to assess cosmetic products, mainly because of their lack of sensitivity. General acceptability of BeautyQol was very good. Forty-two questions have been structured in five dimensions that explained 76.7% of the total variance: Social Life, Self-confidence, Mood, Vitality, and Attractiveness. Cronbach's alpha coefficients are between 0.932 and 0.978, confirming the good internal consistency of the results. The BeautyQol questionnaire is the first international instrument specific to cosmetic products and physical appearance that has been validated in 16 languages and could be used in a number of clinical trials and descriptive studies to demonstrate the added value of these products on the QoL. © 2015 Wiley Periodicals, Inc.

  2. Session Introduction

    NASA Astrophysics Data System (ADS)

    Eliane Lessner, Co-Chair:

    2009-03-01

    A panel discussion session providing a worldwide assessment of the status and experiences of women in physics, paying attention to the different cultures and environments they work in and to how the age of the physicist affects their perspective. We will hear about women physicists in Korea in particular and Asia in general, in Egypt in particular and Africa in general, and in the Caribbean. Six invited speakers will present analyses of the progress being made in promoting women in physics from their personal experiences and as assessed from their participation in the Third International Conference on Women In Physics (ICWIP2008) convened in Seoul, Korea in October 2008. From Albania to Zimbabwe, with representation of all the continents, ICWIP2008 congregated 283 women and men physicists from 57 countries to share the participants' scientific accomplishments and evaluate international progress in improving the status of women in physics. This three-hour session is organized jointly by the Committee on the Status of Women in Physics of the APS (CSWP) and the Forum on International Physics of the APS (FIP). Audience participation in the panel discussion will be strongly encouraged.

  3. Vietnamese women love physics

    NASA Astrophysics Data System (ADS)

    Anh, Kim Tran; Vu, Thi Bich; Nguyen, Ngoc Toan; Do, Tran Cat; Vo, Thach Son

    2013-03-01

    More and more females are studying physics and applying their physics knowledge in Vietnam. Women are well represented in physics in Vietnam, occupy high positions in the field, and win many national and international science awards. Overwhelmingly, women in physics in Vietnam have happy families with children who love physics.

  4. Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties.

    PubMed

    Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit

    2018-06-01

    Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap tides modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal tides might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.

    2017-09-01

    The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.

  6. Useful and Usable Climate Science: Frameworks for Bridging the Social and Physical domains.

    NASA Astrophysics Data System (ADS)

    Buja, L.

    2016-12-01

    Society is transforming the Earth's system in unprecedented ways, often with significant variations across space and time. In turn, the impacts of climate change on the human system vary dramatically due to differences in cultural, socioeconomic, institutional, and physical processes at the local level. The Climate Science and Applications Program (CSAP) at the National Center for Atmospheric Research in Boulder Colorado addresses societal vulnerability, impacts and adaptation to climate change through the development of frameworks and methods for analyzing current and future vulnerability, and integrated analyses of climate impacts and adaptation at local, regional and global scales. CSAP relies heavily on GIS-based scientific data and knowledge systems to bridge social and physical science approaches in its five focus areas: Governance of inter-linked natural and managed resource systems. The role of urban areas in driving emissions of climate change Weather, climate and global human health, GIS-based science data & knowledge systems. Regional Climate Science and Services for Adaptation Advanced methodologies and frameworks for assessing current and future risks to environmental hazards through the integration of physical and social science models, research results, and remote sensing data are presented in the context of recent national and international projects on climate change and food/water security, urban carbon emissions, metropolitan extreme heat and global health. In addition, innovative CSAP international capacity building programs teaching interdisciplinary approaches for using geospatial technologies to integrate multi-scale spatial information of weather, climate change into important sectors such as disaster reduction, agriculture, tourism and society for decision-making are discussed.

  7. Doing things my way: teaching physical education with a disability.

    PubMed

    Grenier, Michelle A; Horrell, Andrew; Genovese, Bryan

    2014-10-01

    Having a disability and being a teacher can be a critical site for examining practices associated with ability, competence, and pedagogy. While there is a growing literature base that examines the experiences of students with disabilities in physical education, there is virtually no research that examines the experiences of physical education teachers with disabilities. Using the capability approach, this article explores the experiences of a physical education teaching intern with a physical disability, significant school members, and the students he interacted with through interviews and documents. The results yielded 3 primary themes. The first, "the fluid nature of the disability discourse," demonstrated the complexity of disability and explored the contrast between static tendencies that stereotype disability and the disability experience. The second theme, "doing things my way," reflected the intern's need to distinguish himself as a teacher by defining contexts for experiencing competence. The third and final theme, "agent of change," explored how the intern's experiences as a teacher with a disability informed his educational narrative.

  8. The International System of Units (SI) in Oceanography. Report of IAPSO Working Group on Symbols, Units and Nomenclature in Physical Oceanography (SUN). Unesco Technical Papers in Marine Science 45. IAPSO Publication Scientifique No. 32.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    This report introduces oceanographers to the International System of Units (SI) in physical oceanography. The SI constitutes a universal language, designed to be understood by all scientists. It facilitates their mutual comprehension and exchange of views and results of their work. The first part of the report is devoted to physical quantities,…

  9. Medical physics practice and training in Ghana.

    PubMed

    Amuasi, John H; Kyere, Augustine K; Schandorf, Cyril; Fletcher, John J; Boadu, Mary; Addison, Eric K; Hasford, Francis; Sosu, Edem K; Sackey, Theophilus A; Tagoe, Samuel N A; Inkoom, Stephen; Serfor-Armah, Yaw

    2016-06-01

    Medical physics has been an indispensable and strategic stakeholder in the delivery of radiological services to the healthcare system of Ghana. The practice has immensely supported radiation oncology and medical imaging facilities over the years, while the locally established training programme continues to produce human resource to feed these facilities. The training programme has grown to receive students from other African countries in addition to local students. Ghana has been recognised by the International Atomic Energy Agency as Regional Designated Centre for Academic Training of Medical Physicists in Africa. The Ghana Society for Medical Physics collaborates with the School of Nuclear and Allied Sciences of the University of Ghana to ensure that training offered to medical physicists meet international standards, making them clinically qualified. The Society has also worked together with other bodies for the passage of the Health Profession's Regulatory Bodies Act, giving legal backing to the practice of medical physics and other allied health professions in Ghana. The country has participated in a number of International Atomic Energy Agency's projects on medical physics and has benefited from its training courses, fellowships and workshops, as well as those of other agencies such as International Organization for Medical Physics. This has placed Ghana's medical physicists in good position to practice competently and improve healthcare. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Report on the 4th International IUPAP Women in Physics Conference

    NASA Astrophysics Data System (ADS)

    Correa, Cynthia

    2011-10-01

    Stellenbosch, South Africa was the site of the 4^th International Union of Pure and Applied Physics (IUPAP) International Conference on Women in Physics, which took place on April 5^th-8^th. This conference brought together the diverse contributions of 250 female physicist attendees from nearly 60 countries worldwide to dissect the challenges faced by female physicists worldwide and to propose strategies to attract and retain more girls and women to the field. Having served as a member of the U.S. Delegation, I will discuss the resolutions reached and highlight the most important results of Global Survey of Physicists, where nearly 15,000 physicists shine light on how gender affects their lives and careers.

  11. Modelling of the rotational moulding process for the manufacture of plastic products

    NASA Astrophysics Data System (ADS)

    Khoon, Lim Kok

    The present research is mainly focused on two-dimensional non-linear thermal modelling, numerical procedures and software development for the rotational moulding process. The RotoFEM program is developed for the rotational moulding process using finite element procedures. The program is written in the MATLAB environment. The research includes the development of new slip flow models, phase change study, warpage study and process analyses. A new slip flow methodology is derived for the heat transfer problem inside the enclosed rotating mould during the heating stage of the tumbling powder. The methodology enables the discontinuous powder to be modelled by the continuous-based finite element method. The Galerkin Finite Element Method is incorporated with the lumped-parameter system and the coincident node technique in finding the multi-interacting heat transfer solutions inside the mould. Two slip flow models arise from the slip flow methodology; they are SDM (single-layered deposition method) and MDM (multi-layered deposition method). These two models have differences in their thermal description for the internal air energy balance and the computational procedure for the deposition of the molten polymer. The SDM model assumes the macroscopic deposition of the molten polymer bed exists only between the bed and the inner mould surface. On the other hand, the MDM model allows the layer-by-layer deposition of the molten polymer bed macroscopically. In addition, the latter has a more detailed heat transfer description for the internal air inside the mould during the powder heating cycle. In slip flow models, the semi-implicit approach has been introduced to solve the final quasi-equilibrium internal air temperature during the heating cycle. A notable feature of this slip flow methodology is that the slip flow models are capable of producing good results for the internal air at the heating powder stage, without the consideration of the powder movement and changeable powder mass. This makes the modelling of the rotational moulding process much simpler. In the simulation of the cooling stage in rotational moulding, the thermal aspects of the inherent warpage problem and external-internal cooling method have been explored. The predicted internal air temperature profiles have shown that the less apparent crystallization plateau in the experimental internal air in practice could be related to warpage. Various phase change algorithms have been reviewed and compared, and thus the most convenient and considerable effective algorithm is proposed. The dimensional analysis method, expressed by means of dimensionless combinations of physical, boundary, and time variables, is utilized to study the dependence of the key thermal parameters on the processing times of rotational moulding. Lastly, the predicted results have been compared with the experimental results from two different external resources. The predicted temperature profiles of the internal air, oven times and other process conditions are consistent with the available data.

  12. Perspective on IUPAP-ICWIP conferences and USA Participation

    NASA Astrophysics Data System (ADS)

    White, Herman

    2015-04-01

    Starting in 1999, the (International Union of Pure and Applied Physics) IUPAP, General Assembly, passed a resolution to form an IUPAP Working Group on Women in Physics. This lead to a number of international conferences that focused on analyzing the then current status of and progress in promoting women in physics for each country and world wide as well as sharing physics research progress and participation. I was twice a member of the USA delegation and participated in two of the last three of these conferences. I will present a perspective on the USA participation and contribution to the efforts of the conferences.

  13. Effects of internal displacement and resettlement on the mental health of Turkish children and adolescents

    PubMed Central

    Erol, Neşe; Şimşek, Zeynep; Öner, Özgür; Munir, Kerim

    2011-01-01

    Aims To evaluate the effects of internal displacement and resettlement within Turkey on the emotional and behavioral profile of children, age 5–18 after controlling for possible confounding and demographic variables. Method We conducted a national population survey using a self-weighted, equal probability sample. We compared the CBCL, TRF and YSR responses regarding children with (n = 1644) and without (n = 1855) experience of internal displacement. We examined the effects of gender, age, paternal employment, resettlement, urban residence and physical illness. Results The children and adolescents with internal displacement had significantly higher internalizing, externalizing and total problem scores on the CBCL and YSR, and higher internalizing scores on the TRF. The effect of displacement was related to higher internalizing problems when factors like physical illness, child age, child gender and urban residence were accounted. The overall effect was small explaining only 0.1–1.5% of the total variance by parent reports, and not evident by teacher reports. Discussion To our knowledge the present study is the first to examine Turkish children and adolescents with and without experience of internal displacement. The results are consistent with previous immigration studies: child age, gender, presence of physical illness and urban residence were more important predictors of internalization and externalization problem scores irrespective of informant source. PMID:15797700

  14. Preface: The International Reference Ionosphere (IRI) at equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Bilitza, Dieter

    2017-07-01

    This issue of Advances in Space Research includes papers that report and discuss improvements of the International Reference Ionosphere (IRI). IRI is the international standard for the representation of the plasma in Earth's ionosphere and recognized as such by the Committee on Space Research (COSPAR), the International Union of Radio Science (URSI), the International Telecommunication Union (ITU), and the International Standardization Organization (ISO). As requested, particularly by COSPAR and URSI, IRI is an empirical model relying on most of the available and reliable ground and space observations of the ionosphere. As new data become available and as older data sources are fully exploited the IRI model undergoes improvement cycles to stay as close to the existing data record as possible. The latest episode of this process is documented in the papers included in this issue using data from the worldwide network of ionosondes, from a few of the incoherent scatter radars, from the Alouette and ISIS topside sounders, and from the Global Navigation Satellite Systems (GNSS). The focus of this issue is on the equatorial and low latitude region that is of special importance for ionospheric physics because it includes the largest densities and steep density gradients in the double hump latitudinal structure, the Equatorial Ionization Anomaly (EIA), which is characteristic for this region.

  15. KSC-2010-4937

    NASA Image and Video Library

    2010-09-30

    CAPE CANAVERAL, Fla. -- High overhead in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer (AMS) hovers over a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  16. A Service Architecture Solution for Mobile Enterprise Resources: A Case Study in the Banking Industry

    NASA Astrophysics Data System (ADS)

    Garcia-Gonzalez, Juan P.; Gacitua-Decar, Geronica; Pahl, Claus

    Providing mobility to participants of business processes is an increasing trend in the banking sector. Independence of a physical place to interact with clients, while been able to use the information managed in the banking applications is one, of the benefits of mobile business processes. Challenges arising from this approach include to deal with a scenario of occasionally connected communication; security issues regarding the exposition of internal information on devices-that could be lost-; and restrictions on the capacity of mobile devices. This paper presents our experience in implementing a service-based architecture solution to extend centralised resources from a financial institution to a mobile platform.

  17. Pulsed Inductive Thruster (PIT): Modeling and Validation Using the MACH2 Code

    NASA Technical Reports Server (NTRS)

    Schneider, Steven (Technical Monitor); Mikellides, Pavlos G.

    2003-01-01

    Numerical modeling of the Pulsed Inductive Thruster exercising the magnetohydrodynamics code, MACH2 aims to provide bilateral validation of the thruster's measured performance and the code's capability of capturing the pertinent physical processes. Computed impulse values for helium and argon propellants demonstrate excellent correlation to the experimental data for a range of energy levels and propellant-mass values. The effects of the vacuum tank wall and massinjection scheme were investigated to show trivial changes in the overall performance. An idealized model for these energy levels and propellants deduces that the energy expended to the internal energy modes and plasma dissipation processes is independent of the propellant type, mass, and energy level.

  18. KSC-98pc1133

    NASA Image and Video Library

    1998-09-18

    KENNEDY SPACE CENTER, FLA. -- The Spartan solar-observing deployable spacecraft is placed inside the payload canister in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. The objective of the observations is to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  19. KSC-98pc1132

    NASA Image and Video Library

    1998-09-18

    KENNEDY SPACE CENTER, FLA. -- The Spartan solar-observing deployable spacecraft is suspended above the payload canister in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. The objective of the observations is to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  20. Production of Space-rocket Technique: Psychological Factor

    NASA Astrophysics Data System (ADS)

    Vashchuk, S. P.; Sviderskiy, O. A.; Ezhova, O. N.; Rovenskaya, V. V.

    2018-01-01

    The article is devoted to the issues of studying the mental and physical condition of the shop workers who assemble carrier rockets and ways of processing their internal conflicts. It is shown that the complexity of the ongoing labor processes, the intensity of production activities and the responsibility for its end result lead to a high level of neurotic workers. The tendency to a long experience of a stressful situation helps them to increase the level of various forms of aggression and create a negative assessment of their official capabilities and successes. It is established that the duration of experiencing a stressful situation depends on coping strategies in the behavioral and emotional spheres.

Top