Hardware device to physical structure binding and authentication
Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.
2013-08-20
Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.
Report on IUPAP's International Conference on Women in Physics
NASA Astrophysics Data System (ADS)
Karplus Hartline, Beverly
2002-03-01
Teams of physicists from more than 60 countries are expected to participate in IUPAP's International Conference on Women in Physics in Paris, France from 7-9 March 2002. Discussions and resolutions will focus on (1) Attracting Girls into Physics, (2) Launching a Successful Physics Career, (3) Improving the Institutional Structure and Climate for Women in Physics, (4) Getting Women into the Power Structure of Physics, Nationally and Internationally, (5) Learning from Regional Differences, and (6) Balancing Family and Career. This talk will summarize the results and insights from the conference, with an emphasis on followup actions and strategies applicable to the United States.
Optoelectronics Research Center
1992-05-16
dot structures in Si and related materials. External cavity operation of diode lasers has provided a wealth of information on internal device physics...new class of optical information processing. A major feature of the AFOSR OERC has been interactions with the Air Force Phillips Laboratory and with...structures in Si and related materials. External cavity operation of diode lasers has provided a wealth of information on internal device physics and
Going global in physical therapist education: International Service-Learning in US-based programmes.
Pechak, Celia; Thompson, Mary
2011-12-01
Internationalization is expanding its presence in higher education in the United States. Reflecting this trend that includes incorporating global perspectives in the curricula, physical therapist education programmes increasingly offer international opportunities such as International Service-Learning (ISL) to their students. Service-learning, a teaching strategy that integrates community service with structured learning activities, has gained broad acceptance in health professions education including physical therapy, and is therefore the focus of this paper. The specific purposes of this paper were to identify and analyse the commonalities that existed among established ISL programmes within physical therapist education programmes in terms of structures and processes, and to consider its broader implications for physical therapist education. A descriptive, exploratory study was performed using grounded theory. Snowball and purposive, theoretical sampling yielded 14 faculty members with experience in international service, international learning or ISL in physical therapist education programmes. Faculty were interviewed by phone. Interview transcriptions and course documents were analysed applying grounded theory methodology. Data from eight programmes which met the operational definition of established ISL were used to address the purposes of this paper. Five phases of establishing an ISL programme were identified: development, design, implementation, evaluation, and enhancement. Although no single model exists for ISL in physical therapist education; commonalities in structures and processes were identified in each phase. However, attention to service objectives and outcomes is lacking. While analysis revealed that each programme shared commonalities and demonstrated differences in structures and processes compared with the other programmes, the study demonstrated a general lack of focus on formal community outcomes which raises ethical concerns. Future research and dialogue is warranted to explore ethics and good practice in ISL and other global health initiatives in physical therapy. This study may facilitate reflections and creative solutions by individual faculty and the profession. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.
The priority of internal symmetries in particle physics
NASA Astrophysics Data System (ADS)
Kantorovich, Aharon
2003-12-01
In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.
NASA Astrophysics Data System (ADS)
Lievana, A.; Ladah, L. B.; Lavin, M. F.; Filonov, A. E.; Tapia, F. J.; Leichter, J.; Valencia Gasti, J. A.
2016-02-01
Physical transport processes, such as nonlinear internal waves, operating within the coastal ocean of Baja California, Mexico, are diverse, variable and operate on a variety of temporal and spatial scales. Understanding the influence of nonlinear internal waves, in part responsible for the exchange of water properties between coastal and offshore environments, on the structure of intertidal communities is important for the generation of working ecological models. The relationship between the supply of ecological subsidies associated with physical transport processes that operate on relatively short spatial and temporal scales, such as the internal tide, and intertidal community structure must be understood as processes that operate on distinct spatial and temporal scales may be prone to react uniquely as the climate changes. We designed an experiment to quantify recruitment and adult survivorship of Chthamalus sp. whose settlement was associated with internal wave activity in the nearby ocean and found that the number of settlers was a robust predictor of the number of adults observed, indicating that post-settlement processes such as competition and predation are not likely to significantly affect the structure of the intertidal barnacle community resulting from internal-wave forced settlement.
Hoy-Ellis, Charles P; Fredriksen-Goldsen, Karen I
2016-11-01
This study aims to: (1) test whether the minority stressors disclosure of sexual orientation; and (2) internalized heterosexism are predictive of chronic physical health conditions; and (3) depression; (4) to test direct and indirect relationships between these variables; and (5) whether chronic physical health conditions are further predictive of depression, net of disclosure of sexual orientation and internalized heterosexism. Secondary analysis of national, community-based surveys of 2349 lesbian, gay, and bisexual adults aged 50 and older residing in the US utilizing structural equation modeling. Congruent with minority stress theory, disclosure of sexual orientation is indirectly associated with chronic physical health conditions and depression, mediated by internalized heterosexism with a suppressor effect. Internalized heterosexism is directly associated with chronic physical health conditions and depression, and further indirectly associated with depression mediated by chronic physical health conditions. Finally, chronic physical health conditions have an additional direct relationship with depression, net of other predictor variables. Minority stressors and chronic physical health conditions independently and collectively predict depression, possibly a synergistic effect. Implications for depression among older sexual minority adults are discussed.
Forbes-Lorman, Robin M; Harris, Michelle A; Chang, Wesley S; Dent, Erik W; Nordheim, Erik V; Franzen, Margaret A
2016-07-08
Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure-function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3-dimensional mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2-dimensional representations. We used a controlled, backward design approach to investigate how hand-held physical molecular model use affected students' ability to logically predict structure-function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self-reported higher learning gains in their understanding of context-specific protein function. Gender differences in spatial visualization may explain the gender-specific benefits of physical model use observed. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 44(4):326-335, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
32nd International Conference on the Physics of Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelikowsky, James
The International Conference on the Physics of Semiconductors (ICPS) continues a series of biennial conferences that began in the 1950's. ICPS is the premier meeting for reporting all aspects of semiconductor physics including electronic, structural, optical, magnetic and transport properties with an emphasis on new materials and their applications. The meeting will reflect the state of art in the semiconductor physics field and will serve as a forum where scholars, researchers, and specialists can interact to discuss future research directions and technological advancements. The conference typically draws 1,000 international physicists, scientists, and students. This is one of the largest sciencemore » meetings on semiconductors and related materials to be held in the United States.« less
XXV International Workshop on Deep-Inelastic Scattering and Related Subjects
NASA Astrophysics Data System (ADS)
DIS2017 is the 25th in an annual series of international workshops covering an eclectic mixture of material related to Quantum Chromodynamics and Deep Inelastic Scattering as well as a general survey of the hottest current topics in high energy physics. Much of the program is devoted to the most recent results from large experiments at BNL, CERN, DESY, FNAL, JLab, and KEK. Relevant theoretical advances are also covered in detail. The meeting is organised around seven working groups: WG1) Structure Functions and Parton Densities; WG2) Low x and Diffractive Physics; WG3) Higgs and BSM Physics in Hadron Collisions; WG4) Hadronic and Electroweak Observables; WG5) Physics with Heavy Flavours; WG6) Spin and 3D Structure; WG7) Future of DIS. Please note that a number of contributions are listed but downloadable files have not been provided: please check the DIS2017 webpage for the slides and information therein.
Computing the Ediz eccentric connectivity index of discrete dynamic structures
NASA Astrophysics Data System (ADS)
Wu, Hualong; Kamran Siddiqui, Muhammad; Zhao, Bo; Gan, Jianhou; Gao, Wei
2017-06-01
From the earlier studies in physical and chemical sciences, it is found that the physico-chemical characteristics of chemical compounds are internally connected with their molecular structures. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. In our article, we study the physico-chemical properties of certain molecular structures via computing the Ediz eccentric connectivity index from mathematical standpoint. The results we yielded mainly apply to the techniques of distance and degree computation of mathematical derivation, and the conclusions have guiding significance in physical engineering.
Penelo, Eva; Estévez-Guerra, Gabriel J; Fariña-López, Emilio
2018-03-01
To study the internal structure and measurement invariance of the Physical Restraint Use Questionnaire and to compare perceptions, experience and training, regarding use of physical restraint on the older people between nursing staff working in hospitals and nursing homes. Physical restraint of patients is still common in many countries, and thus, it is important to study the attitudes of nursing staff. One of the most common tools used to assess perceptions regarding its use is the Physical Restraint Use Questionnaire. However, gaps exist in its internal structure and measurement invariance across different groups of respondents. Cross-sectional multicentre survey. Data were collected from nurses working in eight Spanish hospitals and 19 nursing homes. All registered nurses and nurse assistants (N = 3,838) were contacted, of whom 1,635 agreed to participate. Confirmatory factor analysis was performed to determine internal structure and measurement invariance of Physical Restraint Use Questionnaire, after which scale scores and other measures of experience and training were compared between hospital-based (n = 855) and nursing homes-based (n = 780) nurses. The Physical Restraint Use Questionnaire showed three invariant factors across type of facility, and also professional category and sex. Nursing staff working in both types of facility scored similarly; prevention of therapy disruption and prevention of falls were rated more important. Nurses working in nursing homes reported using restraint "many times" more frequently (52.9% vs. 38.6%), less severe lack of training (18.2% vs. 58.7%) being perceived as more adequate (33.4% vs. 17.7%), than hospital-based nurses. These findings support Physical Restraint Use Questionnaire as a valid and reliable tool for assessing the importance given to the use of physical restraint in the older people by nursing professionals, regardless of the setting being studied. The information would help design more specifically the physical restraint training of nursing staff and to plan institutional interventions aimed at reducing its use. © 2018 John Wiley & Sons Ltd.
Medical physics education from the view of the possible structural changes.
Ferencova, E; Kukurova, E
2001-01-01
Teaching subject physics at the university level represents a specific didactic transformation of the scientific field--physics. The determination of the content, extent, used methods, mutual relation to other subjects of curriculum as well as to the entrance knowledge of students are the most important parts of pedagogical activities in the educational process. Based on own experiences, successes and mistakes in teaching so-called medical physics the authors discuss didactic procedures which should support the interest and creativity of students. Some changes in the structure of physics education are recommended. The usefulness of the international collaboration in the framework of projects such as TEMPUS, ERASMUS is also remembered.
On the spottedness, magnetism and internal structure of stars
NASA Astrophysics Data System (ADS)
Gershberg, R. E.
Kinematical structures within stellar interiors that are the result of a self-organization of these interiors as thermodynamically open nonlinear systems are proposed as the physical basis for stellar magnetism. It is noted that the ubiquitousness of stellar magnetism that follows from the hypothesis is not in contradiction with observations. These kinematical structures may be energy reservoirs, and changes in these structures may be connected with variations of an energy flux emergent from a stellar surface, while its internal energy sources remain constant, explaining the radiation deficit from sunspots and starspots.
CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop
NASA Astrophysics Data System (ADS)
Garbet, X.; Sauter, O.
2010-12-01
The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolás
2013-07-01
The exterior gravitational field of a slowly rotating neutron star can be characterized by its multipole moments, the first few being the neutron star mass, moment of inertia, and quadrupole moment to quadratic order in spin. In principle, all of these quantities depend on the neutron star’s internal structure, and thus, on unknown nuclear physics at supranuclear energy densities, all of which is usually parametrized through an equation of state. We here find relations between the moment of inertia, the Love numbers and the quadrupole moment (I-Love-Q relations) that do not depend sensitively on the neutron star’s internal structure. Such universality may arise for two reasons: (i) these relations depend most sensitively on the internal structure far from the core, where all realistic equations of state mostly approach each other; (ii) as the neutron star compactness increases, the I-Love-Q trio approaches that of a black hole, which does not have an internal-structure dependence. Three important consequences derive from these I-Love-Q relations. On an observational astrophysics front, the measurement of a single member of the I-Love-Q trio would automatically provide information about the other two, even when the latter may not be observationally accessible. On a gravitational-wave front, the I-Love-Q relations break the degeneracy between the quadrupole moment and the neutron star spins in binary inspiral waveforms, allowing second-generation ground-based detectors to determine the (dimensionless) averaged spin to O(10)%, given a sufficiently large signal-to-noise ratio detection. On a fundamental physics front, the I-Love-Q relations allow for tests of general relativity in the neutron star strong field that are both theory and internal-structure independent. As an example, by combining gravitational-wave and electromagnetic observations, one may constrain dynamical Chern-Simons gravity in the future by more than six orders of magnitude more stringently than Solar System and table-top constraints.
Psychometric Properties of the “Sport Motivation Scale (SMS)” Adapted to Physical Education
Granero-Gallegos, Antonio; Baena-Extremera, Antonio; Gómez-López, Manuel; Sánchez-Fuentes, José Antonio; Abraldes, J. Arturo
2014-01-01
The aim of this study was to investigate the factor structure of a Spanish version of the Sport Motivation Scale adapted to physical education. A second aim was to test which one of three hypothesized models (three, five and seven-factor) provided best model fit. 758 Spanish high school students completed the Sport Motivation Scale adapted for Physical Education and also completed the Learning and Performance Orientation in Physical Education Classes Questionnaire. We examined the factor structure of each model using confirmatory factor analysis and also assessed internal consistency and convergent validity. The results showed that all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model (χ2/gl = 2.73; ECVI = 1.38) as it produces better values when adapted to physical education, that five-factor model (χ2/gl = 2.82; ECVI = 1.44) and three-factor model (χ2/gl = 3.02; ECVI = 1.53). Key Points Physical education research conducted in Spain has used the version of SMS designed to assess motivation in sport, but validity reliability and validity results in physical education have not been reported. Results of the present study lend support to the factorial validity and internal reliability of three alternative factor structures (3, 5, and 7 factors) of SMS adapted to Physical Education in Spanish. Although all three models in Spanish produce good indicators of fitness, but we suggest using the seven-factor model. PMID:25435772
Internal consistency and validity of a new physical workload questionnaire
Bot, S; Terwee, C; van der Windt, D A W M; Feleus, A; Bierma-Zeinstra, S; Knol, D; Bouter, L; Dekker, J
2004-01-01
Aims: To examine the dimensionality, internal consistency, and construct validity of a new physical workload questionnaire in employees with musculoskeletal complaints. Methods: Factor analysis was applied to the responses in three study populations with musculoskeletal disorders (n = 406, 300, and 557) on 26 items related to physical workload. The internal consistency of the resulting subscales was examined. It was hypothesised that physical workload would vary among different occupational groups. The occupations of all subjects were classified into four groups on the basis of expected workload (heavy physical load; long lasting postures and repetitive movements; both; no physical load). Construct validity of the subscales created was tested by comparing the subscale scores among these occupational groups. Results: The pattern of the factor loadings of items was almost identical for the three study populations. Two interpretable factors were found: items related to heavy physical workload loaded highly on the first factor, and items related to static postures or repetitive work loaded highly on the second factor. The first constructed subscale "heavy physical work" had a Cronbach's α of 0.92 to 0.93 and the second subscale "long lasting postures and repetitive movements", of 0.86 to 0.87. Six of eight hypotheses regarding the construct validity of the subscales were confirmed. Conclusions: The results support the internal structure, internal consistency, and validity of the new physical workload questionnaire. Testing this questionnaire in non-symptomatic employees and comparing its performance with objective assessments of physical workload are important next steps in the validation process. PMID:15550603
The Structure of Language. The Bobbs-Merrill Series in Composition and Rhetoric.
ERIC Educational Resources Information Center
Thomas, Owen, Ed.
Articles represent four schools of thought in the field of linguistics: structural, behavioral, transformational, and tagmemic. Summarizing structural linguistics before 1956, John Lotz emphasizes the importance of spoken language and the "internal order" imposed upon "physical and behavioral phenomena," and indicates some of the basic beliefs of…
Shock and Impact Response of Naval Composite Structures
2010-08-09
elucidating physical mechanisms that control the survivability of composite structures under blast and impact. TECHNICAL APPROACH The Principal...the Proceedings of the 16th International Conference on Composite Structures , Kyoto, Japan, July 8-13, 2007. D. ONR Solid Mechanics Program...ONR Solid Mechanics Program Review, Marine Composites and Sandwich Structures , University of Maryland University College, Adelphi, MD, September 21
Barannikov, V G; Kirichenko, L V; Rusanova, E A; Dement'ev, S V; Vaĭsman, Ia I
2015-01-01
The performed comparative physiological-hygienic assessment of the conditions of the internal environment of salt sylvinite structures allowed to establish the complex of physical factors that have a favorable influence on the functional condition of the basic systems of the organism of patients.
ERIC Educational Resources Information Center
Cellarius, Richard A.; Platt, John
1972-01-01
Discusses the role of national or international coordinating councils in focusing research on solutions of major human problems. Presents a taxonomy of 25 areas under the major heading: Physical Technology and Engineering; Biotechnology; Behavior and Personal Relations; National Social Structures; World Structure; and Channels of Effectiveness.…
Lattimer, J M; Prakash, M
2004-04-23
Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions.
NASA Astrophysics Data System (ADS)
Bulyzhenkov, I. E.
2018-02-01
Translational ordering of the internal kinematic chaos provides the Special Relativity referents for the geodesic motion of warm thermodynamical bodies. Taking identical mathematics, relativistic physics of the low speed transport of time-varying heat-energies differs from Newton's physics of steady masses without internal degrees of freedom. General Relativity predicts geodesic changes of the internal heat-energy variable under the free gravitational fall and the geodesic turn in the radial field center. Internal heat variations enable cyclic dynamics of decelerated falls and accelerated takeoffs of inertial matter and its structural self-organization. The coordinate speed of the ordered spatial motion takes maximum under the equipartition of relativistic internal and translational kinetic energies. Observable predictions are discussed for verification/falsification of the principle of equipartition as a new basic for the ordered motion and self-organization in external fields, including gravitational, electromagnetic, and thermal ones.
1990-01-01
expert systems, "intelligent" computer-aided instruction , symbolic learning . These aspects will be discussed, focusing on the specific problems the...VLSI chips) according to preliminary specifications. Finally ES are also used in computer-aided instruction (CAI) due to their ability of... instructions to process controllers), academic teaching (for mathematics , physics, foreign language, etc.). Domains of application The different
Rodriguez, Christina M
2006-05-01
This study examined a model wherein children's attributional style mediates the relationship between parental physical child-abuse risk and children's internalizing problems. Using structural equation modeling, three indices of abuse risk were selected (child abuse potential, physical discipline use, and dysfunctional parenting style) and two indices of children's internalizing problems (depression and anxiety). The sample included 75 parent-child dyads, in which parents reported on their abuse risk and children independently completed measures of depressive and anxious symptomatology and a measure on their attributional style. Findings supported the model that children's attributional style for positive events (but not negative events) partially mediated the relationship between abuse risk and internalizing symptoms, with significant direct and indirect effects of abuse risk on internalizing symptomatology. Future directions to continue evaluating additional mediators and other possible contextual variables are discussed.
ERIC Educational Resources Information Center
Eamon, Mary Keegan
2000-01-01
Identifies the parenting practices that mediate relations between persistent, recent, and transitional poverty and the externalizing and internalizing behaviors of children four to five years old. Results reveal that lower-quality physical environment, maternal emotional unresponsiveness, and fewer stimulating experiences contribute significantly…
2016-06-05
have attended and made presen- tations at the annual APS Division of Plasma Physics Meeting, the bi-annual High Energy Laboratory Astrophysics meeting...the AFOSR Space Science Pro- gram Review, the SHINE solar physics meeting, the International Astrophysics Conference, and the workshop “Complex plasma...tor k and Resolving Space-time Ambiguity. GR-Space Physics . submitted. Bellan, P. M., Zhai, X., Chai, K. B., & Ha, B. N. 2015. Complex astrophysical
Ma, Wenqiu; Jiang, Guanghui; Wang, Deqi; Li, Wenqing; Guo, Hongquan; Zheng, Qiuyue
2018-02-15
Rural settlements transition (RST) is one of the most significant indices for understanding the phenomena of rural reconstruction and urban-rural transformation in China. However, a systematic overview of RST is missing, and there is a lack of evidence regarding its characteristics from the internal structure perspectives. In this paper, we systematically explore the RST regarding spatio-temporal change characteristics of internal structure, patterns and impacts on rural environment and development by using practical survey internal land-use data from 2005 to 2015. The results show that the temporal change characteristics of the internal structure of rural settlements demonstrate a tendency for housing land to decrease and other land-use types to increase. The spatial change characteristics reveal that the structure inclines to more complexity and diversity from an exurban area to an urban-rural fringe area. Based on this finding, we identify that rapid development of rural industrialization, more agglomerate and effective industrial land-use, and improved public infrastructure construction are the general RST patterns. Spatially, there exists a physical decay pattern in the exurban area, thereby resulting in the hollowing-out of rural industries and of the population. In addition, the extensive and disorderly pattern in the suburban area causes low efficiency output and serious environmental pollution. The RST pattern in the urban hinterland promoted the "men-environment" compatible development. The study concludes that regional differentiation in patterns and impacts are significant in the process of RST. Future adaptive strategies for rural settlements adjustment should be conducted according to regional characteristics, including socio-economic status, physical geography condition and economic location to improve the rural environmental sustainability. Copyright © 2017 Elsevier B.V. All rights reserved.
SIPEX--Exploring the Antarctic Sea Ice Zone
ERIC Educational Resources Information Center
Zicus, Sandra; Dobson, Jane; Worby, Anthony
2008-01-01
Sea ice in the polar regions plays a key role in both regulating global climate and maintaining marine ecosystems. The international Sea Ice Physics and Ecosystem eXperiment (SIPEX) explored the sea ice zone around Antarctica in September and October 2007, investigating relationships between the physical sea ice environment and the structure of…
PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)
NASA Astrophysics Data System (ADS)
Williams, Jim F.; Buckman, Steve; Bieske, Evan J.
2009-09-01
These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of the Institute of Physics. The support from the IOPCS staff made this publication possible. The 8th AISAMP was sponsored primarily by the University of Western Australia and Curtin University of Technology, both in Perth, Western Australia, and by Journal of Physics: Conference Series. Support was also received from the International Council of Science, ICSU. Guidance and active participation from colleagues, particularly from the University of Western Australia, and Curtin University, and from the Australian National University and Melbourne University were sources of strength for the actual organization of the conference. Dr Elena Semidelova receives special thanks for her organizing abilities. We hope that this issue of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between all scientists and their countries. Evan Bieske, Stephen Buckman and Jim F Williams Guest Editors
Phobos and Deimos: Satellites of Mars
NASA Technical Reports Server (NTRS)
Zharkov, V. M.; Kozenko, A. V.
1986-01-01
The physical characteristics of Phobos and Deimos, satellites of Mars, are discussed. Phobos and Deimos are used as an example to discuss the probable internal structure of objects of this type and the structural formations on their surfaces. The history of astronomical observations of Mars is also described.
NASA Astrophysics Data System (ADS)
Hotta, Takashi
2016-02-01
This volume of Journal of Physics: Conference Series contains both invited and contributed papers presented at the International Symposium on "New Quantum Phases Emerging from Novel Crystal Structure", which was held from 24-25 September 2015 at the Minami-Osawa Campus of Tokyo Metropolitan University (TMU). The Graduate School of Science and Engineering of TMU is now promoting a research project on "New Quantum Phases Emerging from Novel Crystal Structure" with the support of the university. This is the cooperative project involving the electrical and electronic engineering and physics departments to discover new quantum phases in strongly correlated electron systems on novel crystal structures, with geometrically characteristic properties such as cage, layered, and geometrical frustrated structures. In this international symposium, we have mainly picked up BiS2-based layered superconductors, cage-structure materials such as 1-2-20 and filled skutterudites, geometrically frustrated systems such as pyrochlore compounds, and noncentrosymmetric materials. Topics on other materials with exotic crystal structure have been also discussed. I believe that this symposium provides a good opportunity to present recent research results on magnetism and superconductivity in such materials, and to discuss future directions of research on strongly correlated electron systems with novel crystal structure. I would like to give thanks, on behalf of the organizing committee, to all participants of the TMU International Symposium and all members of the Advisory Committee, who have contributed to the success of this symposium. I further thank the TMU Research Organization for the financial support of this symposium.
The Internal Structure of Jupiter Family Comet Nuclei: The Talps or Layered Pile Model
NASA Astrophysics Data System (ADS)
Belton, Michael J.; Members of theDeep Impact Science Team
2006-09-01
The characteristics of layered structures seen on the nucleus of Tempel 1 in the Deep Impact images, and also seen on Wild 2 and Borrelly are noted. We consider the implications of the hypothesis that such structures are ubiquitous on Jupiter Family Comets and is an essential element of their internal stucture. If correct this hypothesis implies that the internal structure of JFCs are primordial remnants of the early agglomeration phase and that the physical structure of their interiors, except for possible compositional changes, is essentially as it was when they were formed. This hypothesis has implications for their place of origin and their subsequent collisional evolution. Current models of the latter are in conflict with this hypothesis. Possible resolutions of this conflict are noted. A new conceptual model of the interior of a typical JFC called the Talps or "layered pile" model is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abriola, D.; Tuli, J.
The IAEA Nuclear Data Section convened the 18th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 23 to 27 March 2009. This meeting was attended by 22 scientists from 14 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. The International Network of Nuclear Structure and Decay Data (NSDD) Evaluators holds biennial meetings under the auspices of themore » IAEA, and consists of evaluation groups and data service centres in several countries. This network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration is included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS).« less
Internal kinematic and physical properties in a BCD galaxy: Haro 15 in detail
NASA Astrophysics Data System (ADS)
Firpo, V.; Bosch, G.; Hägele, G. F.; Díaz, A. I.; Morrell, N.
2011-11-01
We present a detailed study of the kinematic and physical properties of the ionized gas in multiple knots of the blue compact dwarf galaxy Haro 15. Using echelle and long slit spectroscopy data, obtained with different instruments at Las Campanas Observatory, we study the internal kinematic and physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions and in their different components. On the other hand, our echelle spectra show complex kinematics in several conspicuous knots within the galaxy. To perform an in-depth 2D spectroscopic study we complete this work with high spatial and spectral resolution spectroscopy using the Integral Field Unit mode on the Gemini Multi-Object Spectrograph instrument at the Gemini South telescope. With these data we are able to resolve the complex kinematical structure within star forming knots in Haro 15 galaxy.
Physical basis of destruction of concrete and other building materials
NASA Astrophysics Data System (ADS)
Suleymanova, L. A.; Pogorelova, I. A.; Kirilenko, S. V.; Suleymanov, K. A.
2018-03-01
In the article the scientifically-grounded views of authors on the physical essence of destruction process of concrete and other materials are stated; it is shown that the mechanism of destruction of materials is similar in its essence during the mechanical, thermal, physical-chemical and combined influences, and that in its basis Newton's third law lays. In all cases destruction consists in decompaction of structures, loosening of the internal bonds in materials, in the further integrity damage and their division into separate loosely-bound (full destruction) and unbound with each other (incomplete destruction) elements, which depends on the kind of external influence and perfection of materials structure.
Scale Development for Measuring and Predicting Adolescents’ Leisure Time Physical Activity Behavior
Ries, Francis; Romero Granados, Santiago; Arribas Galarraga, Silvia
2009-01-01
The aim of this study was to develop a scale for assessing and predicting adolescents’ physical activity behavior in Spain and Luxembourg using the Theory of Planned Behavior as a framework. The sample was comprised of 613 Spanish (boys = 309, girls = 304; M age =15.28, SD =1.127) and 752 Luxembourgish adolescents (boys = 343, girls = 409; M age = 14.92, SD = 1.198), selected from students of two secondary schools in both countries, with a similar socio-economic status. The initial 43-items were all scored on a 4-point response format using the structured alternative format and translated into Spanish, French and German. In order to ensure the accuracy of the translation, standardized parallel back-translation techniques were employed. Following two pilot tests and subsequent revisions, a second order exploratory factor analysis with oblimin direct rotation was used for factor extraction. Internal consistency and test-retest reliabilities were also tested. The 4-week test-retest correlations confirmed the items’ time stability. The same five factors were obtained, explaining 63.76% and 63.64% of the total variance in both samples. Internal consistency for the five factors ranged from α = 0.759 to α = 0. 949 in the Spanish sample and from α = 0.735 to α = 0.952 in the Luxembourgish sample. For both samples, inter-factor correlations were all reported significant and positive, except for Factor 5 where they were significant but negative. The high internal consistency of the subscales, the reported item test-retest reliabilities and the identical factor structure confirm the adequacy of the elaborated questionnaire for assessing the TPB-based constructs when used with a population of adolescents in Spain and Luxembourg. The results give some indication that they may have value in measuring the hypothesized TPB constructs for PA behavior in a cross-cultural context. Key points When using the structured alternative format, weak internal consistency was obtained. Rephrasing the items and scoring items on a Likert-type scale enhanced greatly the subscales reliability. Identical factorial structure was extracted for both culturally different samples. The obtained factors, namely perceived physical competence, parents’ physical activity, perceived resources support, attitude toward physical activity and perceived parental support were hypothesized as for the original TPB constructs. PMID:24149606
Scale development for measuring and predicting adolescents' leisure time physical activity behavior.
Ries, Francis; Romero Granados, Santiago; Arribas Galarraga, Silvia
2009-01-01
The aim of this study was to develop a scale for assessing and predicting adolescents' physical activity behavior in Spain and Luxembourg using the Theory of Planned Behavior as a framework. The sample was comprised of 613 Spanish (boys = 309, girls = 304; M age =15.28, SD =1.127) and 752 Luxembourgish adolescents (boys = 343, girls = 409; M age = 14.92, SD = 1.198), selected from students of two secondary schools in both countries, with a similar socio-economic status. The initial 43-items were all scored on a 4-point response format using the structured alternative format and translated into Spanish, French and German. In order to ensure the accuracy of the translation, standardized parallel back-translation techniques were employed. Following two pilot tests and subsequent revisions, a second order exploratory factor analysis with oblimin direct rotation was used for factor extraction. Internal consistency and test-retest reliabilities were also tested. The 4-week test-retest correlations confirmed the items' time stability. The same five factors were obtained, explaining 63.76% and 63.64% of the total variance in both samples. Internal consistency for the five factors ranged from α = 0.759 to α = 0. 949 in the Spanish sample and from α = 0.735 to α = 0.952 in the Luxembourgish sample. For both samples, inter-factor correlations were all reported significant and positive, except for Factor 5 where they were significant but negative. The high internal consistency of the subscales, the reported item test-retest reliabilities and the identical factor structure confirm the adequacy of the elaborated questionnaire for assessing the TPB-based constructs when used with a population of adolescents in Spain and Luxembourg. The results give some indication that they may have value in measuring the hypothesized TPB constructs for PA behavior in a cross-cultural context. Key pointsWhen using the structured alternative format, weak internal consistency was obtained. Rephrasing the items and scoring items on a Likert-type scale enhanced greatly the subscales reliability.Identical factorial structure was extracted for both culturally different samples.The obtained factors, namely perceived physical competence, parents' physical activity, perceived resources support, attitude toward physical activity and perceived parental support were hypothesized as for the original TPB constructs.
NASA Astrophysics Data System (ADS)
Delion, D. S.; Zamfir, N. V.; Raduta, A. R.; Gulminelli, F.
2013-02-01
This proceedings volume contains the invited lectures and contributions presented at the International Summer School on Nuclear Physics held at Trei Brazi, a summer resort of the Bioterra University, near the city of Predeal, Romania, on 9-20 July 2012. The long tradition of International Summer Schools on Nuclear Physics in Romania dates as far back as 1964, with the event being scheduled every two years. During this period of almost 50 years, many outstanding nuclear scientists have lectured on various topics related to nuclear physics and particle physics. This year we celebrate the 80th birthday of Aureliu Sandulescu, one of the founders of the Romanian school of theoretical nuclear physics. He was Serban Titeica's PhD student, one of Werner Heisenberg's PhD students, and he organized the first edition of this event. Aureliu Sandulescu's major contributions to the field of theoretical nuclear physics are related in particular to the prediction of cluster radioactivity, the physics of open quantum systems and the innovative technique of detecting superheavy nuclei using the double magic projectile 48Ca (Calcium), nowadays a widely used method at the JINR—Dubna and GSI—Darmstadt laboratories. The title of the event, 'Dynamics of Open Nuclear Systems', is in recognition of Aureliu Sandulescu's great personality. The lectures were attended by Romanian and foreign Master and PhD students and young researchers in nuclear physics. About 25 reputable professors and researchers in nuclear physics delivered lectures during this period. According to a well-established tradition, an interval of two hours was allotted for each lecture (including discussions). Therefore we kept a balance between the school and conference format. Two lectures were held during the morning and afternoon sessions. After lecture sessions, three or four oral contributions were given by young scientists. This was a good opportunity for them to present the results of their research in front of renowned professors and researchers in nuclear physics. This proceedings volume is organized into four chapters, which reflects the traditional chapter structure of nuclear physics textbooks, but seen from the perspective of open quantum systems: INuclear structure IIDecay processes IIINuclear reactions and astrophysics IVContributions The lectures and contributions are listed alphabetically by author within each chapter. The volume contains many comprehensive reviews related to the topics of the School. The first week of the School was focused on nuclear structure and decay phenomena, considering the nucleus as an open system. Experts in these fields lectured on cluster radioactivity, the stability of superheavy nuclei, alpha-decay fine structure, fission versus fusion, beta and double beta decay and pairing versus alpha-clustering. New experimental results related to the nuclear stability of low-lying and high spin states were also presented. Recent developments at JINR—Dubna and GSI—Darmstadt international laboratories were also reported by their current or former directors. The second week of the event was dedicated to the physics of exotic nuclei, heavy ion reactions and multi-fragmentation, symmetries and phase transitions of open quantum systems. The stability of the atomic nucleus is an important and always interesting discussion point, especially in the context of newly discovered nuclear systems close to the stability line, such as proton/neutron rich or superheavy nuclei. Several lectures and contributions were focused on nuclear structure models describing low-lying states. This includes the status of density functional theory, new developments in Bohr-Mottelsohn Hamiltonian and shell-model theory, proton-neutron correlations, shape coexistence, back-bending phenomena and the thermodynamics of open quantum systems. Open systems in astrophysics, such as supernovae and neutron stars, were presented in detail by several lecturers. Important topics connected to the status of the equation of state, hyperonic and quark matter and neutrino physics, as well as the applications of nuclear structure in astrophysics, were also on the School's agenda. There were many discussions and questions both during and after presentations. An open and friendly atmosphere characterized our School, although different opinions quite often divided the participants. Many discussions continued during coffee breaks and excursions organized in the beautiful surroundings. We hope that this proceedings volume will be useful for future reference to both young scientists and senior researchers working in various fields of nuclear physics. We cannot end without expressing our many thanks to the National Authority for Scientific Research and the Romanian Academy (Elias Foundation) for their financial support. We acknowledge the Horia Hulubei National Institute of Physics and Nuclear Engineering and Bioterra University for their important contribution in organizing the School. Guest Editors D S Delion, N V Zamfir, A R Raduta and F Gulminelli First Week International Summer School on Nuclear Physics: First Week Second Week International Summer School on Nuclear Physics: Second Week Sponsors Sponsor logoSponsor logoSponsor logoSponsor logoSponsor logo
NASA Technical Reports Server (NTRS)
Kerstman, Eric
2011-01-01
International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballouz, Ronald-Louis; Richardson, Derek C.; Morishima, Ryuji
We study the B ring’s complex optical depth structure. The source of this structure may be the complex dynamics of the Keplerian shear and the self-gravity of the ring particles. The outcome of these dynamic effects depends sensitively on the collisional and physical properties of the particles. Two mechanisms can emerge that dominate the macroscopic physical structure of the ring: self-gravity wakes and viscous overstability. Here we study the interplay between these two mechanisms by using our recently developed particle collision method that allows us to better model the inter-particle contact physics. We find that for a constant ring surfacemore » density and particle internal density, particles with rough surfaces tend to produce axisymmetric ring features associated with the viscous overstability, while particles with smoother surfaces produce self-gravity wakes.« less
von Groote, Per M; Reinhardt, Jan D; Gutenbrunner, Christoph; DeLisa, Joel A; Melvin, John L; Bickenbach, Jerome E; Stucki, Gerold
2009-09-01
International non-governmental organizations (NGOs) in official relation with the World Health Organization (WHO) face organizational challenges against the background of legitimate representation of their membership and accountable procedures within the organization. Moreover, challenges arise in the light of such an international NGO's civil societal mandate to help reach the "health-for-all" goals as defined by WHO and to facilitate the implementation of the United Nations (UN) Convention on the Rights of Persons with Disabilities. The objective of this paper is to examine how such an international NGO using the International Society of Physical and Rehabilitation Medicine (ISPRM) as a case in point can address these challenges. The specific aims are to analyse ISPRM's structures and procedures of internal organs and external relations and to develop solutions. These possible solutions will be presented as internal organizational scenarios and a yearly schedule of meetings closely aligned to that of WHO to facilitate an efficient internal and external interaction.
Basics of Sterile Compounding: Manipulating Peptides and Proteins.
Akers, Michael J
2017-01-01
Biopharmaceuticals contain primary and secondary structure, which offer few problems. It is the tertiary structure that causes problems, resulting in both physical and chemical stability issues. The thrust of this article is to share briefly what can be done to minimize these problems. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
The value of the physical examination in clinical practice: an international survey.
Elder, Andrew T; McManus, I Chris; Patrick, Alan; Nair, Kichu; Vaughan, Louella; Dacre, Jane
2017-12-01
A structured online survey was used to establish the views of 2,684 practising clinicians of all ages in multiple countries about the value of the physical examination in the contemporary practice of internal medicine. 70% felt that physical examination was 'almost always valuable' in acute general medical referrals. 66% of trainees felt that they were never observed by a consultant when undertaking physical examination and 31% that consultants never demonstrated their use of the physical examination to them. Auscultation for pulmonary wheezes and crackles were the two signs most likely to be rated as frequently used and useful, with the character of the jugular venous waveform most likely to be rated as -infrequently used and not useful. Physicians in contemporary hospital general medical practice continue to value the contribution of the physical examination to assessment of outpatients and inpatients, but, in the opinion of trainees, teaching and demonstration could be improved. © Royal College of Physicians 2017. All rights reserved.
Zarei, Sahar; Memari, Amir-Hossein; Moshayedi, Pouria; Mosayebi, Fatolla; Mansournia, Mohammad Ali; Khoo, Selina; Morris, Tony
2016-10-01
Given the importance of regular physical activity, it is crucial to evaluate the factors favoring participation in physical activity. We aimed to report the psychometric analysis of the Farsi version of the Physical Activity and Leisure Motivation Scale (PALMS). The Farsi version of PALMS was completed by 406 healthy adult individuals to test its factor structure and concurrent validity and reliability. Conducting the exploratory factor analysis revealed nine factors that accounted for 64.6% of the variances. The PALMS reliability was supported with a high internal consistency of 0.91 and a high test-retest reliability of 0.97 (95% CI: 0.97-0.98). The association between the PALMS and its previous version Recreational Exercise Motivation Measure scores was strongly significant (r= 0.86, P < 0.001). We have shown that the Farsi version of the PALMS appears to be a valuable instrument to measure motivation for physical activity and leisure.
NASA Astrophysics Data System (ADS)
Herique, A.; Ciarletti, V.
2015-10-01
Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. What are the bulk properties of the regolith and deep interior? And what are the physical processes that shape their internal structures? Direct measurements are needed to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) for the benefit of science as well as for planetary defense or exploration. Radar tomography is the only technique to characterize internal structure from decimetric scale to global scale. This paper reviews the benefits of direct measurement of the asteroid interior. Then the radar concepts for both deep interior and shallow subsurface are presented and the radar payload proposed for the AIDA/AIM mission is outlined.
Internal structure of vortices in a dipolar spinor Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Borgh, Magnus O.; Lovegrove, Justin; Ruostekoski, Janne
2017-04-01
We demonstrate how dipolar interactions (DI) can have pronounced effects on the structure of vortices in atomic spinor Bose-Einstein condensates and illustrate generic physical principles that apply across dipolar spinor systems. We then find and analyze the cores of singular non-Abelian vortices in a spin-3 52Cr condensate. Using a simpler spin-1 model system, we analyze the underlying dipolar physics and show how a dipolar healing length interacts with the hierarchy of healing lengths of the contact interaction and leads to simple criteria for the core structure: vortex core size is restricted to the shorter spin-dependent healing length when the interactions both favor the ground-state spin condition, but can conversely be enlarged by DI when interactions compete. We further demonstrate manifestations of spin-ordering induced by the DI anisotropy, including DI-dependent angular momentum of nonsingular vortices, as a result of competition with adaptation to rotation, and potentially observable internal vortex-core spin textures. We acknowledge financial support from the EPSRC.
Hübner, Claudia; Baldofski, Sabrina; Zenger, Markus; Tigges, Wolfgang; Herbig, Beate; Jurowich, Christian; Kaiser, Stefan; Dietrich, Arne; Hilbert, Anja
2015-01-01
Physical activity (PA) seems to be important for long-term weight loss after bariatric surgery; however, studies provide evidence for insufficient PA levels in bariatric patients. Research found self-efficacy to be associated with PA and weight bias internalization, for which an influence on mental and physical health has been shown in recent studies. The purpose of the present study was to investigate the influence of general self-efficacy on PA, mediated by weight bias internalization. In 179 bariatric surgery candidates, general self-efficacy, weight bias internalization, and different intensities of PA were assessed by self-report questionnaires. Structural equation modeling was used to analyze the assumed mediational relationship. After controlling for sociodemographic variables, weight bias internalization fully mediated the association between general self-efficacy and moderate-intense as well as vigorous-intense PA. Lower general self-efficacy predicted greater weight bias internalization, which in turn predicted lower levels of moderate-intense and vigorous-intense PA. The results suggest an influence of weight bias internalization on preoperative PA in bariatric surgery candidates. Subsequently, implementation of interventions addressing weight bias internalization in the usual treatment of bariatric surgery candidates might enhance patients' preoperative PA, while longitudinal analyses are needed to further examine its predictive value on PA after bariatric surgery. Copyright © 2015 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Finsler Geometry of Nonlinear Elastic Solids with Internal Structure
2017-01-01
should enable regularized numerical solutions with discretization -size independence for representation of materials demonstrating softening, e.g...additional possibility of a discrete larger void/cavity forming at the core of the sphere. In the second case, comparison with the classical...core of the domain. This hollow sphere physically represents a discrete cavity, while the constant field ξH physically represents a continuous
Getting Women Into the Physics Leadership Structure Nationally and Internationally
NASA Astrophysics Data System (ADS)
Williams, Elvira S.; Diaz, Lilliam Alvarez; Gebbie, Katharine B.; El-Sayed, Karimat
2005-10-01
The underrepresentation of women among physicists around the world, especially in leadership positions, has broad implications for industries and government agencies with a strong need for a technologically educated workforce. The dearth of women physicists in academia exacerbates the situation in that female students lack exposure to successful women in the field. Three years ago, an international group of women met for a round table discussion at the First IUPAP International Conference on Women in Physics and discussed the importance of having women in leadership positions. They shared their experiences and successes, and drew up and reported a set of recommendations addressing the preparation of women for leadership, the selection process, and the responsibilities of institutions. They acknowledged that implementation of their recommendations would differ among countries. At the Second IUPAP International Conference on Women in Physics an international group of women met again to review, revise, and move forward on revamped recommendations from the first conference. This is a report on the new set of revamped recommendations, which address why women should be in leadership positions, goal setting, best practices, commitments, and follow-up actions for the attendees of the second conference.
Unger, Bertram J; Kraut, Jay; Rhodes, Charlotte; Hochman, Jordan
2014-01-01
Physical models of complex bony structures can be used for surgical skills training. Current models focus on surface rendering but suffer from a lack of internal accuracy due to limitations in the manufacturing process. We describe a technique for generating internally accurate rapid-prototyped anatomical models with solid and hollow structures from clinical and microCT data using a 3D printer. In a face validation experiment, otolaryngology residents drilled a cadaveric bone and its corresponding printed model. The printed bone models were deemed highly realistic representations across all measured parameters and the educational value of the models was strongly appreciated.
Montazeri, Ali; Vahdaninia, Mariam; Mousavi, Sayed Javad; Omidvari, Speideh
2009-01-01
Background The 12-item Short Form Health Survey (SF-12) as a shorter alternative of the SF-36 is largely used in health outcomes surveys. The aim of this study was to validate the SF-12 in Iran. Methods A random sample of the general population aged 15 years and over living in Tehran, Iran completed the SF-12. Reliability was estimated using internal consistency and validity was assessed using known groups comparison and convergent validity. In addition, the factor structure of the questionnaire was extracted by performing both exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). Results: In all, 5587 individuals were studied (2721 male and 2866 female). The mean age and formal education of the respondents were 35.1 (SD = 15.4) and 10.2 (SD = 4.4) years respectively. The results showed satisfactory internal consistency for both summary measures, that are the Physical Component Summary (PCS) and the Mental Component Summary (MCS); Cronbach's α for PCS-12 and MCS-12 was 0.73 and 0.72, respectively. Known-groups comparison showed that the SF-12 discriminated well between men and women and those who differed in age and educational status (P < 0.001). In addition, correlations between the SF-12 scales and single items showed that the physical functioning, role physical, bodily pain and general health subscales correlated higher with the PCS-12 score, while the vitality, social functioning, role emotional and mental health subscales more correlated with the MCS-12 score lending support to its good convergent validity. Finally the principal component analysis indicated a two-factor structure (physical and mental health) that jointly accounted for 57.8% of the variance. The confirmatory factory analysis also indicated a good fit to the data for the two-latent structure (physical and mental health). Conclusion In general the findings suggest that the SF-12 is a reliable and valid measure of health related quality of life among Iranian population. However, further studies are needed to establish stronger psychometric properties for this alternative form of the SF-36 Health Survey in Iran. PMID:19758427
Montazeri, Ali; Vahdaninia, Mariam; Mousavi, Sayed Javad; Omidvari, Speideh
2009-09-16
The 12-item Short Form Health Survey (SF-12) as a shorter alternative of the SF-36 is largely used in health outcomes surveys. The aim of this study was to validate the SF-12 in Iran. A random sample of the general population aged 15 years and over living in Tehran, Iran completed the SF-12. Reliability was estimated using internal consistency and validity was assessed using known groups comparison and convergent validity. In addition, the factor structure of the questionnaire was extracted by performing both exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). In all, 5587 individuals were studied (2721 male and 2866 female). The mean age and formal education of the respondents were 35.1 (SD = 15.4) and 10.2 (SD = 4.4) years respectively. The results showed satisfactory internal consistency for both summary measures, that are the Physical Component Summary (PCS) and the Mental Component Summary (MCS); Cronbach's alpha for PCS-12 and MCS-12 was 0.73 and 0.72, respectively. Known-groups comparison showed that the SF-12 discriminated well between men and women and those who differed in age and educational status (P < 0.001). In addition, correlations between the SF-12 scales and single items showed that the physical functioning, role physical, bodily pain and general health subscales correlated higher with the PCS-12 score, while the vitality, social functioning, role emotional and mental health subscales more correlated with the MCS-12 score lending support to its good convergent validity. Finally the principal component analysis indicated a two-factor structure (physical and mental health) that jointly accounted for 57.8% of the variance. The confirmatory factory analysis also indicated a good fit to the data for the two-latent structure (physical and mental health). In general the findings suggest that the SF-12 is a reliable and valid measure of health related quality of life among Iranian population. However, further studies are needed to establish stronger psychometric properties for this alternative form of the SF-36 Health Survey in Iran.
Reinhardt, Jan D; von Groote, Per M; DeLisa, Joel A; Melvin, John L; Bickenbach, Jerome E; Li, Leonard S W; Stucki, Gerold
2009-09-01
Using the International Society of Physical and Rehabilitation Medicine (ISPRM) as a case in point, the paper describes the complex world societal situation within which non-governmental organizations that address health issues have to operate.This paper describes the complex world societal situation within which non-governmental organizations (NGOs), that are addressing health issues have to operate. In particular, as an international organization in official relation with the World Health Organization (WHO), ISPRM is confronted with a variety of responsibilities and a true world health political mandate. The accompanying rights need to be played out in relation to its own internal member organization and external allies. The theory of the world society and the current situation are briefly reviewed. The role of international NGOs within the world health polity, rehabilitation and Physical and Rehabilitation Medicine (PRM) is highlighted, whilst special emphasis is placed on NGOs in official relation with WHO. Functions, dysfunctions and challenges of international NGOs operating in the health sector are discussed. Against this background, key approaches to enhance ISPRM's political role are analysed. These include transparent and accountable development of the organization, the differentiation between internal and external policy relations, the harmonization of organizational structures and procedures, the consequential use of political structures available to influence WHO's agenda, and the identification of other policy players of major relevance to PRM in order to build strategic alliances with external partners and to enhance ISPRM's membership base.
Health physics division annual progress report for period ending June 30, 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-01
This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.
Analysing hierarchy in the organization of biological and physical systems.
Jagers op Akkerhuis, Gerard A J M
2008-02-01
A structured approach is discussed for analysing hierarchy in the organization of biological and physical systems. The need for a structured approach follows from the observation that many hierarchies in the literature apply conflicting hierarchy rules and include ill-defined systems. As an alternative, we suggest a framework that is based on the following analytical steps: determination of the succession stage of the universe, identification of a specific system as part of the universe, specification of external influences on a system's creation and analysis of a system's internal organization. At the end, the paper discusses practical implications of the proposed method for the analysis of system organization and hierarchy in biology, ecology and physics.
Ali Morowatisharifabad, Mohammad; Abdolkarimi, Mahdi; Asadpour, Mohammad; Fathollahi, Mahmood Sheikh; Balaee, Parisa
2018-04-15
Theory-based education tailored to target behaviour and group can be effective in promoting physical activity. The purpose of this study was to examine the predictive power of Protection Motivation Theory on intent and behaviour of Physical Activity in Patients with Type 2 Diabetes. This descriptive study was conducted on 250 patients in Rafsanjan, Iran. To examine the scores of protection motivation theory structures, a researcher-made questionnaire was used. Its validity and reliability were confirmed. The level of physical activity was also measured by the International Short - form Physical Activity Inventory. Its validity and reliability were also approved. Data were analysed by statistical tests including correlation coefficient, chi-square, logistic regression and linear regression. The results revealed that there was a significant correlation between all the protection motivation theory constructs and the intention to do physical activity. The results showed that the Theory structures were able to predict 60% of the variance of physical activity intention. The results of logistic regression demonstrated that increase in the score of physical activity intent and self - efficacy increased the chance of higher level of physical activity by 3.4 and 1.5 times, respectively OR = (3.39, 1.54). Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour.
NASA Technical Reports Server (NTRS)
Motil, Susan M.
2002-01-01
The Light Microscopy Module (LMM) is planned as a remotely controllable, automated, on-orbit facility, allowing flexible scheduling and control of physical science and biological science experiments within the Fluids Integrated Rack (FIR) on the International Space Station. Initially four fluid physics experiments in the FIR will use the LMM the Constrained Vapor Bubble, the Physics of Hard Spheres Experiment-2, Physics of Colloids in Space-2, and Low Volume Fraction Entropically Driven Colloidal Assembly. The first experiment will investigate heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments will investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties.
Karpowicz, Krzysztof; Krych, Katarzyna; Karpowicz, Małgorzata; Nowak, Witold; Gronek, Piotr
2018-01-01
The map of candidate genes that can potentially affect physical fitness becomes larger every year, and they are associated with such aspects as respiratory and cardiovascular stability; body build and composition - especially muscle mass and strength; carbohydrate and lipid metabolism; response to training; and exercise intolerance.The aim of this study was to analyze the relationship between the CA repeat polymorphism of the P1 promoter of the IGF1 gene and the structure of motor skills in the two groups of Polish young athletes in 2007-2009. In this study, 350 young sportsmen representing different sports disciplines were examined (age = 15.5 ± 0.5 years), by genotyping the IGF1 gene and determining the structure of motor skills using the International Physical Fitness Test (IPFT) battery. The multiple stepwise regression was used to determine the impact of the investigated motor skills on the indicator of the overall physical fitness, measured by the total score of the International Physical Fitness Test (IPFT). The analysis showed some regularity related to the character of the IGF1 gene polymorphism. It can be concluded that the two groups of young boys athletes practicing various sports disciplines (kinds of physical exercise) displayed similar associations between CA repeat polymorphism of the P1 promoter of the IGF1 gene and the level of motor effects. Our results suggest that this polymorphism may be a genetic marker of the physical performance phenotype. We demonstrated that CA repeat polymorphism of the P1 promoter of the IGF1 gene was associated with strength predispositions in the homozygous and non-carriers groups. In the group who were heterozygous it was speed-strength aptitudes.
Weigl, Martin; Wild, Heike
2017-09-15
To validate the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis from the patient perspective in Europe. This multicenter cross-sectional study involved 375 patients with knee or hip osteoarthritis. Trained health professionals completed the Comprehensive Core Set, and patients completed the Short-Form 36 questionnaire. Content validity was evaluated by calculating prevalences of impairments in body function and structures, limitations in activities and participation and environmental factors, which were either barriers or facilitators. Convergent construct validity was evaluated by correlating the International Classification of Functioning, Disability and Health categories with the Short-Form 36 Physical Component Score and the SF-36 Mental Component Score in a subgroup of 259 patients. The prevalences of all body function, body structure and activities and participation categories were >40%, >32% and >20%, respectively, and all environmental factors were relevant for >16% of patients. Few categories showed relevant differences between knee and hip osteoarthritis. All body function categories and all but two activities and participation categories showed significant correlations with the Physical Component Score. Body functions from the ICF chapter Mental Functions showed higher correlations with the Mental Component Score than with the Physical Component Score. This study supports the validity of the International Classification of Functioning, Disability and Health Comprehensive Core Set for Osteoarthritis. Implications for Rehabilitation Comprehensive International Classification of Functioning, Disability and Health Core Sets were developed as practical tools for application in multidisciplinary assessments. The validity of the Comprehensive International Classification of Functioning, Disability and Health Core Set for Osteoarthritis in this study supports its application in European patients with osteoarthritis. The differences in results between this Europe validation study and a previous Singaporean validation study underscore the need to validate the International Classification of Functioning, Disability and Health Core Sets in different regions of the world.
2002-12-12
These are video microscope images of magnetorheological (MR) fluids, illuminated with a green light. Those on Earth, left, show the MR fluid forming columns or spikes structures. On the right, the fluids in microgravity aboard the International Space Station (ISS), formed broader columns.
Steenson, Sharalyn; Özcebe, Hilal; Arslan, Umut; Konşuk Ünlü, Hande; Araz, Özgür M; Yardim, Mahmut; Üner, Sarp; Bilir, Nazmi; Huang, Terry T-K
2018-01-01
Childhood obesity rates have been rising rapidly in developing countries. A better understanding of the risk factors and social context is necessary to inform public health interventions and policies. This paper describes the validation of several measurement scales for use in Turkey, which relate to child and parent perceptions of physical activity (PA) and enablers and barriers of physical activity in the home environment. The aim of this study was to assess the validity and reliability of several measurement scales in Turkey using a population sample across three socio-economic strata in the Turkish capital, Ankara. Surveys were conducted in Grade 4 children (mean age = 9.7 years for boys; 9.9 years for girls), and their parents, across 6 randomly selected schools, stratified by SES (n = 641 students, 483 parents). Construct validity of the scales was evaluated through exploratory and confirmatory factor analysis. Internal consistency of scales and test-retest reliability were assessed by Cronbach's alpha and intra-class correlation. The scales as a whole were found to have acceptable-to-good model fit statistics (PA Barriers: RMSEA = 0.076, SRMR = 0.0577, AGFI = 0.901; PA Outcome Expectancies: RMSEA = 0.054, SRMR = 0.0545, AGFI = 0.916, and PA Home Environment: RMSEA = 0.038, SRMR = 0.0233, AGFI = 0.976). The PA Barriers subscales showed good internal consistency and poor to fair test-retest reliability (personal α = 0.79, ICC = 0.29, environmental α = 0.73, ICC = 0.59). The PA Outcome Expectancies subscales showed good internal consistency and test-retest reliability (negative α = 0.77, ICC = 0.56; positive α = 0.74, ICC = 0.49). Only the PA Home Environment subscale on support for PA was validated in the final confirmatory model; it showed moderate internal consistency and test-retest reliability (α = 0.61, ICC = 0.48). This study is the first to validate measures of perceptions of physical activity and the physical activity home environment in Turkey. Our results support the originally hypothesized two-factor structures for Physical Activity Barriers and Physical Activity Outcome Expectancies. However, we found the one-factor rather than two-factor structure for Physical Activity Home Environment had the best model fit. This study provides general support for the use of these scales in Turkey in terms of validity, but test-retest reliability warrants further research.
PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)
NASA Astrophysics Data System (ADS)
Stoyanov, Chavdar; Dimitrova, Sevdalina
2014-09-01
The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in nuclear waste treatment. Nuclear methods for applications. A special session in honor of the late Mario Stoitsov, was also part of the program. Many colleagues of Mario from all over the world came to Varna to pay tribute to this prominent scientist and loyal friend. Several colleagues contributed to the organization of the School. We would like to thank them and especially the Scientific Secretary of the School Dr Elena Stefanova and the members of the Organizing Committee Dr Dimitar Tarpanov and Peter Zivkov for their cordiality and high level assistance. We are also grateful to Dr Jacek Dobaczewski, who reached out to the collaborators of Mario Stoitsov on behalf of the conference. Sofia, 20 March 2014 Co-chair persons of the Organizing Committee Prof Dr Sc Ch Stoyanov Prof Dr Sc S Dimitrova Details of the committees are available in the PDF.
THE AIMS AND ACTIVITIES OF THE INTERNATIONAL NETWORK OF NUCLEAR STRUCTURE AND DECAY DATA EVALUATORS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NICHOLS,A.L.; TULI, J.K.
International Network of Nuclear Structure and Decay Data (NSDD) Evaluators consists of a number of evaluation groups and data service centers in several countries that appreciate the merits of working together to maintain and ensure the quality and comprehensive content of the ENSDF database (Evaluated Nuclear Structure Data File). Biennial meetings of the network are held under the auspices of the International Atomic Energy Agency (IAEA) to assign evaluation responsibilities, monitor progress, discuss improvements and emerging difficulties, and agree on actions to be undertaken by individual members. The evaluated data and bibliographic details are made available to users via variousmore » media, such as the journals ''Nuclear Physics A'' and ''Nuclear Data Sheets'', the World Wide Web, on CD-ROM, wall charts of the nuclides and ''Nuclear Wallet Cards''. While the ENSDF master database is maintained by the US National Nuclear Data Center at the Brookhaven National Laboratory, these data are also available from other nuclear data centers including the IAEA Nuclear Data Section. The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, in cooperation with the IAEA, organizes workshops on NSDD at regular intervals. The primary aims of these particular workshops are to provide hands-on training in the data evaluation processes, and to encourage new evaluators to participate in NSDD activities. The technical contents of these NSDD workshops are described, along with the rationale for the inclusion of various topics.« less
Modelling the Interior Structure of Enceladus Based on the 2014's Cassini Gravity Data.
Taubner, R-S; Leitner, J J; Firneis, M G; Hitzenberger, R
2016-06-01
We present a model for the internal structure of Saturn's moon Enceladus. This model allows us to estimate the physical conditions at the bottom of the satellite's potential subsurface water reservoir and to determine the radial distribution of pressure and gravity. This leads to a better understanding of the physical and chemical conditions at the water/rock boundary. This boundary is the most promising area on icy moons for astrobiological studies as it could serve as a potential habitat for extraterrestrial life similar to terrestrial microbes that inhabit rocky mounds on Earth's sea floors.
Polarized targets in high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cates, G.D. Jr.
1994-12-01
Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, anmore » experiment to measure the spin structure function of the neutron, and is described in detail.« less
Ali Morowatisharifabad, Mohammad; Abdolkarimi, Mahdi; Asadpour, Mohammad; Fathollahi, Mahmood Sheikh; Balaee, Parisa
2018-01-01
INTRODUCTION: Theory-based education tailored to target behaviour and group can be effective in promoting physical activity. AIM: The purpose of this study was to examine the predictive power of Protection Motivation Theory on intent and behaviour of Physical Activity in Patients with Type 2 Diabetes. METHODS: This descriptive study was conducted on 250 patients in Rafsanjan, Iran. To examine the scores of protection motivation theory structures, a researcher-made questionnaire was used. Its validity and reliability were confirmed. The level of physical activity was also measured by the International Short - form Physical Activity Inventory. Its validity and reliability were also approved. Data were analysed by statistical tests including correlation coefficient, chi-square, logistic regression and linear regression. RESULTS: The results revealed that there was a significant correlation between all the protection motivation theory constructs and the intention to do physical activity. The results showed that the Theory structures were able to predict 60% of the variance of physical activity intention. The results of logistic regression demonstrated that increase in the score of physical activity intent and self - efficacy increased the chance of higher level of physical activity by 3.4 and 1.5 times, respectively OR = (3.39, 1.54). CONCLUSION: Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour. PMID:29731945
Haglin, Jack M; Zeller, John L; Egol, Kenneth A; Phillips, Donna P
2017-12-01
The Accreditation Council for Graduate Medical Education (ACGME) guidelines requires residency programs to teach and evaluate residents in six overarching "core competencies" and document progress through educational milestones. To assess the progress of orthopedic interns' skills in performing a history, physical examination, and documentation of the encounter for a standardized patient with spinal stenosis, an objective structured clinical examination (OSCE) was conducted for 13 orthopedic intern residents, following a 1-month boot camp that included communications skills and curriculum in history and physical examination. Interns were objectively scored based on their performance of the physical examination, communication skills, completeness and accuracy of their electronic medical record (EMR), and their diagnostic conclusions gleaned from the patient encounter. The purpose of this study was to meaningfully assess the clinical skills of orthopedic post-graduate year (PGY)-1 interns. The findings can be used to develop a standardized curriculum for documenting patient encounters and highlight common areas of weakness among orthopedic interns with regard to the spine history and physical examination and conducting complete and accurate clinical documentation. A major orthopedic specialty hospital and academic medical center. Thirteen PGY-1 orthopedic residents participated in the OSCE with the same standardized patient presenting with symptoms and radiographs consistent with spinal stenosis. Videos of the encounters were independently viewed and objectively evaluated by one investigator in the study. This evaluation focused on the completeness of the history and the performance and completion of the physical examination. The standardized patient evaluated the communication skills of each intern with a separate objective evaluation. Interns completed these same scoring guides to evaluate their own performance in history, physical examination, and communications skills. The interns' documentation in the EMR was then scored for completeness, internal consistency, and inaccuracies. The independent review revealed objective deficits in both the orthopedic interns' history and the physical examination, as well as highlighted trends of inaccurate and incomplete documentation in the corresponding medical record. Communication skills with the patient did not meet expectations. Further, interns tended to overscore themselves, especially with regard to their performance on the physical examination (p<.0005). Inconsistencies, omissions, and inaccuracies were common in the corresponding medical notes when compared with the events of the patient encounter. Nine of the 13 interns (69.2%) documented at least one finding that was not assessed or tested in the clinical encounter, and four of the 13 interns (30.8%) included inaccuracies in the medical record, which contradicted the information collected at the time of the encounter. The results of this study highlighted significant shortcomings in the completeness of the interns' spine history and physical examination, and the accuracy and completeness oftheir EMR note. The study provides a valuable exercise for evaluating residents in a multifaceted, multi-milestone manner that more accurately documents residents' clinical strengths and weaknesses. The study demonstrates that orthopedic residents require further instruction on the complexities of the spinal examination. It validates a need for increased systemic support for improving resident documentation through comprehensive education and evaluation modules. Copyright © 2017 Elsevier Inc. All rights reserved.
Obesity: the new childhood disability?
Tsiros, M D; Coates, A M; Howe, P R C; Grimshaw, P N; Buckley, J D
2011-01-01
This review addresses the impact of obesity on paediatric physical functioning utilizing the World Health Organization International Classification of Functioning, Disability and Health Framework (ICF). The ICF encompasses functioning (as it relates to all body functions and structures), activities (undertaking a particular task) and participation (in a life situation) with disability referring to impairments in body functions/structures, activity restrictions or participation limitations. Electronic databases were searched for peer-reviewed studies published in English prior to May 2009 that examined aspects of physical functioning in children (≤18 years). Eligible studies (N = 104) were ranked by design and synthesized descriptively. Childhood obesity was found to be associated with deficits in function, including impaired cardiorespiratory fitness and performance of motor tasks; and there was some limited evidence of increased musculoskeletal pain and decrements in muscle strength, gait and balance. Health-related quality of life and the subset of physical functioning was inversely related to weight status. However, studies investigating impacts of obesity on wider activity and participation were lacking. Further research utilizing the ICF is required to identify and better characterize the effects of paediatric obesity on physical function, activity and participation, thereby improving targets for intervention to reduce disability in this population. © 2010 The Authors. obesity reviews © 2010 International Association for the Study of Obesity.
Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.
2002-01-01
The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.
The internal caustic structure of illuminated liquid droplets
NASA Technical Reports Server (NTRS)
Lock, James A.; Hovenac, Edward A.
1991-01-01
The internal electric field of an illuminated liquid droplet is studied in detail using both wave theory and ray theory. The internal field obtains its maximum values on the caustics within the droplet. Ray theory is used to determine the equations of these caustics and the density of rays on them. The Debye series expansion of the interior field Mie amplitudes is used to calculate the wave theory version of these caustics. The physical interpretation of the sources of stimulated Raman scattering and fluorescence emission within a liquid droplet is then given.
Fate of internal waves on a shallow shelf
NASA Astrophysics Data System (ADS)
Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne
2017-11-01
Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.
Meinck, Franziska; Cosma, Alina Paula; Mikton, Christopher; Baban, Adriana
2017-10-01
Child abuse is a major public health problem. In order to establish the prevalence of abuse exposure among children, measures need to be age-appropriate, sensitive, reliable and valid. This study aimed to investigate the psychometric properties of the Adverse Childhood Experiences Questionnaire Abuse Short Form (ACE-ASF). The ACE-ASF is an 8-item, retrospective self-report questionnaire measuring lifetime physical, emotional and sexual abuse. Data from a nationally representative sample of 15-year-old, school-going adolescents (n=1733, 55.5% female) from the Romanian Health Behavior in School-Based Children Study 2014 (HBSC) were analyzed. The factorial structure of the ACE-ASF was tested with Exploratory Factor Analysis (EFA) and confirmed using Confirmatory Factor Analysis (CFA). Measurement invariance was examined across sex, and internal reliability and concurrent criterion validity were established. Violence exposure was high: 39.7% physical, 32.2% emotional and 13.1% sexual abuse. EFA established a two-factor structure: physical/emotional abuse and sexual abuse. CFA confirmed this model fitted the data well [χ2(df)=60.526(19); RMSEA=0.036; CFI/TLI=0.990/0.986]. Metric invariance was supported across sexes. Internal consistency was good (0.83) for the sexual abuse scale and poor (0.57) for the physical/emotional abuse scale. Concurrent criterion validity confirmed hypothesized relationships between childhood abuse and health-related quality of life, life satisfaction, self-perceived health, bullying victimization and perpetration, externalizing and internalizing behaviors, and multiple health complaints. Results support the ACE-ASF as a valid measure of physical, emotional and sexual abuse in school-aged adolescents. However, the ACE-ASF combines spanking with other types of physical abuse when this should be assessed separately instead. Future research is needed to replicate findings in different youth populations and across age groups. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Determinants of physical activity in middle-aged woman in Isfahan using the health belief model.
Hosseini, Habibollah; Moradi, Razieh; Kazemi, Ashraf; Shahshahani, Maryam Sadat
2017-01-01
Nowadays with respect to the automation of the lifestyle, immobility statistics in middle-aged women has increased and they are at risk for complications of immobility. One of the models used to identify factors associated with physical activity is Health Belief Model utilized in different age and different cultural backgrounds and different results have been obtained from those studies. The purpose of this study was to investigate the factors affecting on physical activity in middle-aged women using Health Belief Model. This descriptive-correlation study was conducted on 224 middle-aged women referring to health centers in Isfahan. Health Belief Model structures including perceived susceptibility and severity, perceived barriers and benefits, and self-efficacy were measured by questionnaire and physical activity was assessed using the international physical activity questionnaire. Collected data were analyzed using descriptive statistics and Pearson correlation coefficient test and regression analysis. There wasn't significant correlation between perceived susceptibility ( P = 0.263, r = 0.075) and perceived severity with physical activity duration ( P = 0.127, r = 0.058) but there was positive and weak correlation between physical activity duration with perceived benefits ( P = 0.001 and r = 0.26) and perceived self-efficacy ( P = 0.001, r = 0.54) and had weak and inverse correlation with perceived barriers ( P = 0.001, r = -0.25). Regression analysis also showed that from among all the Health Belief Model structures just self-efficacy structure has influenced on behavior independently and other structures are affected by it. The obtained results implied on a correlation between benefits, barriers and perceived self-efficacy with and moderate physical activity. Therefore it is necessary to develop appropriate educational programs with emphasis on structures of Health Belief Model that has the maximum impact on physical activity in middle-aged women.
Byun, Chanhee; Kim, Changhwan; Cho, Seungryong; Baek, Seung Hoon; Kim, Gyutae; Kim, Sahng G; Kim, Sun-Young
2015-06-01
Endodontic treatment of tooth formation anomalies is a challenge to clinicians and as such requires a complete understanding of the aberrant root canal anatomy followed by careful root canal disinfection and obturation. Here, we report the use of a 3-dimensional (3D) printed physical tooth model including internal root canal structures for the endodontic treatment of a challenging tooth anomaly. A 12-year-old boy was referred for endodontic treatment of tooth #8. The tooth showed class II mobility with swelling and a sinus tract in the buccal mucosa and periapical radiolucency. The tooth presented a very narrow structure between the crown and root by distal concavity and a severely dilacerated root. Moreover, a perforation site with bleeding and another ditching site were identified around the cervical area in the access cavity. A translucent physical tooth model carrying the information on internal root canal structures was built through a 3-step process: data acquisition by cone-beam computed tomographic scanning, virtual modeling by image processing, and manufacturing by 3D printing. A custom-made guide jig was then fabricated to achieve a safe and precise working path to the root canal. Endodontic procedures including access cavity preparation were performed using the physical tooth model and the guide jig. At the 7-month follow-up, the endodontically treated tooth showed complete periapical healing with no clinical signs and symptoms. This case report describes a novel method of endodontic treatment of an anomalous maxillary central incisor with the aid of a physical tooth model and a custom-made guide jig via 3D printing technique. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
2015-02-01
The 11th International Seminar on Nuclear Physics was held in Ischia from May 12 to May 16, 2014. This Seminar was dedicated to Aldo Covello, who has been the promoter of this series of meetings, which started in Sorrento in 1986 and continued with meetings held every two or three years in the Naples area. Aldo's idea was to offer to a group of researchers, actively working in selected fields of Nuclear Physics, the opportunity to confront their points of view in a lively and informal way. The choice for the period of the year, Spring, as well as the sites chosen reflected this intent. The first meeting was of a purely theoretical nature, but it was immediately clear that the scope of these conferences needed to be enlarged calling into play the experimental community. Then, starting from the second meeting, all the following ones have been characterized by fruitful discussion between theoretical and experimental researchers on current achievements and future developments of nuclear structure. This may be read, in fact, as one of the motivating factors for Aldo's election as Fellow of the American Physical Society in 2008 "... for his outstanding contributions to the international nuclear physics community by providing, for over two decades, a venue for theorists and experimentalists to share their latest ideas." The present meeting, organized by Aldo's former students and with the benefit of his suggestions, has maintained this tradition. The title "Shell model and nuclear structure: achievements of the past two decades" recalls that of the 2nd International Spring Seminar "Shell Model and Nuclear Structure: where do we stand?". The main aim of this 11th Seminar was, in fact, to discuss the changes of the past two decades on our view of nuclei in terms of shell structure as well as the perspectives of the shell model, which has been one of the key points in Aldo's research. This point is well accounted by the Opening Speech of Igal Talmi, one of the fathers of the shell model. Then, as usual, the program of the meeting consisted of general talks and more specialized contributions, which covered five main topics: i) From nuclear forces to nuclear structure; ii) Exploring nuclear structure toward the drip line; iii) Role of the shell model in the study of exotic nuclei; iv) Nuclear structure aspects outside the shell model; and v) Special topics. The main conclusions were drawn in two keynote talks given by Amand Faessler and Franco Iachello. The Conference had about 90 participants from some 20 countries [please see the list of participants]. This is well in line with the tradition of these meetings, as is the fact that more than 50% of the present participants attended one or more of the previous Seminars. We received 58 manuscripts out of the 73 invited papers and contributions presented at the Seminar. All of these have been peer reviewed and are collected in this volume. We would like to thank all the colleagues who have acted as referees to assess the suitability of the various articles for publication in the Journal of Physics: Conference Series. We are confident that the high quality of both invited and contributed papers contained in these Proceedings will be appreciated by the nuclear physics community. We gratefully acknowledge the members of the Advisory Committee for their valuable cooperation in preparing the scientific program as well as the financial support of the Istituto Nazionale di Fisica Nucleare, the University of Naples Federico II, and the Dipartimento di Fisica who helped make the Seminar possible. Angela Gargano Luigi Coraggio Nunzio Itaco Editors
Component analysis and initial validity of the exercise fear avoidance scale.
Wingo, Brooks C; Baskin, Monica; Ard, Jamy D; Evans, Retta; Roy, Jane; Vogtle, Laura; Grimley, Diane; Snyder, Scott
2013-01-01
To develop the Exercise Fear Avoidance Scale (EFAS) to measure fear of exercise-induced discomfort. We conducted principal component analysis to determine component structure and Cronbach's alpha to assess internal consistency of the EFAS. Relationships between EFAS scores, BMI, physical activity, and pain were analyzed using multivariate regression. The best fit was a 3-component structure: weight-specific fears, cardiorespiratory fears, and musculoskeletal fears. Cronbach's alpha for the EFAS was α=.86. EFAS scores significantly predicted BMI, physical activity, and PDI scores. Psychometric properties of this scale suggest it may be useful for tailoring exercise prescriptions to address fear of exercise-related discomfort.
Güeita-Rodríguez, Javier; García-Muro, Francisco; Cano-Díez, Beatriz; Rodríguez-Fernández, Ángel L; Lambeck, Johan; Palacios-Ceña, Domingo
To identify intervention categories encountered by physical therapists working in aquatic therapy with disabled children, using the International Classification of Functioning, Disability and Health-Children and Youth (ICF-CY). Aquatic physical therapists were asked to describe concepts related to the functioning of disabled children and their contextual factors. Data were collected in three rounds using the Delphi technique. All answers were translated ('linked') to the ICF-CY and analyzed to determine the degree of consensus. Answers were linked and organized into four diagnostic groups. Overall, in the four groups, 41 Body Functions, 8 Body Structures, 36 Activities and Participation, and 6 Environmental Factors categories were identified as intervention targets. In addition, 8 Environmental Factors that influence aquatic physical therapy were identified. This study highlights the variety of intervention categories available to aquatic physical therapists when treating children in the water. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Internal Wave Apparatus for Copepod Behavior Assays
NASA Astrophysics Data System (ADS)
Jung, S.; Haas, K. A.; Webster, D. R.
2015-11-01
Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves are generated through oscillations of the pycnocline in stratified waters and thereby create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. Thus, a coupled quantification of copepod behavior and hydrodynamic cues will provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in a two-layer stratification. Three cases are chosen with density jump ranging between 0.75 - 1.5 kg/m3. Analytical analysis of the two-layer system provides guidance of the target forcing frequency to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location are used to quantify the wave characteristics. A copepod behavior assay is conducted, and sample trajectories are analyzed to identify copepod response to internal wave structure.
Ultrasound for internal medicine physicians: the future of the physical examination.
Dulohery, Megan M; Stoven, Samantha; Kurklinsky, Andrew K; Kurklinksy, Andrew; Halvorsen, Andrew; McDonald, Furman S; Bhagra, Anjali
2014-06-01
With the advent of compact ultrasound (US) devices, it is easier for physicians to enhance their physical examinations through the use of US. However, although this new tool is widely available, few internal medicine physicians have US training. This study sought to understand physicians' baseline knowledge and skill, provide education in US principles, and demonstrate that proper use of compact US devices is a skill that can be quickly learned. Training was performed at the Mayo Clinic in June 2010 and June 2011. The participants consisted of internal medicine residents. The workshop included didactics and hands-on US experiences with human and cadaver models in a simulation center. Pretests and posttests of residents' knowledge, attitudes, and skills with US were completed. We reassessed the 2010 group in the spring of 2012 with a long-term retention survey for knowledge and confidence in viewing images. A total of 136 interns completed the workshop. Thirty-nine residents completed the long-term retention survey. Posttest assessments showed a statistically significant improvement in the knowledge of US imaging, confidence in identifying structures, image identification, and image acquisition (P < .0001). In the long-term retention study, knowledge of US imaging and confidence in identifying structures did decline. This educational intervention resulted in improvement in US knowledge and image acquisition. However, the knowledge diminished over time, suggesting that further education is needed if US is to become an important component of internal medicine training and practice. © 2014 by the American Institute of Ultrasound in Medicine.
2018-04-01
In the context of the White Book of Physical and Rehabilitation Medicine (PRM) in Europe, this paper addresses the structure, organization and activities of PRM bodies in Europe. There are four main bodies, the Section of Physical and Rehabilitation Medicine of the European Union of Medical Specialists (UEMS) very close to the European Union and is committed to define the professional competencies of PRM, the quality management and accreditation and with the Board the educational matters. The European College of PRM is served by the UEMS PRM Board and its main activities are analyzed below in the description of the Board of the UEMS PRM Section. The European Society of Physical and Rehabilitation Medicine (ESPRM) mainly dedicated to promoting research in rehabilitation and create a network of knowledge of PRM across the Europe. The European Academy of Rehabilitation Medicine mainly dedicated to defining the ethical issues in rehabilitation and finding strategies for better educational approaches in rehabilitation. There are 2 further bodies (the regional Fora) aimed to create bridges across the Mediterranean area (Mediterranean Forum of PRM) and across the northern Europe including the eastern countries such as Russia, Belarus and Ukraine (Baltic and North Sea Forum of PRM). To support the knowledge, we have in Europe 7 main journals dedicated to Rehabilitation with a growing impact factor. Last but not least the PRM bodies have an important role across the world with a connection with the International Society of PRM and WHO. The UEMS Section approved motion of international collaboration. In conclusion, PRM activity in Europe is not limited to the official border but in the network included eastern countries and Mediterranean area. The European extended network is strongly connected with the international PRM bodies, first of all the International Society of PRM.
Father's and Mother's Psychological Violence and Adolescent Behavioral Adjustment
ERIC Educational Resources Information Center
Melancon, Claudiane; Gagne, Marie-Helene
2011-01-01
Maternal and paternal psychological violence were examined as potential risk factors for internalized and externalized behavior problems displayed by adolescents. Childhood family violence (physical and psychological parental violence), current extrafamily violence (bullying and dating violence), and family structure were taken into account. A…
Introscopy in nano- and mesoscopic physics: Single electronics and quantum ballistics
NASA Astrophysics Data System (ADS)
Tkachenko, V. A.; Tkachenko, O. A.; Kvon, Z. D.; Latyshev, A. V.; Aseev, A. L.
2016-09-01
A method is presented to be used in a computational experiment aimed at studying the internal structure of nano- and mesoscopic objects, i.e., conducting subsystems and quantum phenomena in solid submicron objects, which demonstrate an individual behavior of low-temperature resistance.
Material science and Condensed matter Physics. 8th International Conference. Abstracts.
NASA Astrophysics Data System (ADS)
Kulyuk, L. L.; Paladi, Florentin; Canter, Valeriu; Nikorich, Valentina; Filippova, Irina
2016-08-01
The book includes the abstracts of the communications presented at the 8th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), a traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP).A total of 346 abstracts has been included in the book. The Conference programm included plenary lectures, topical keynote lectures, contributed oral and poster presentations distributed into 7 sections: * Condensed Matter Theory; * Advanced Bulk Materials; * Design and Structural Characterization of Materials; * Solid State Nanophysics and Nanotechnology; * Energy Conversion and Storage. Solid State Devices; * Surface Engineering and Applied Electrochemistry; * Digital and Optical holography: Materials and Methods. The abstracts are arranged according to the sections mentioned above. The Abstracts book includes a table of matters at the beginning of the book and an index of authors at the finish of the book.
Beresniak, Ariel; de Linares, Yolaine; Krueger, Gerald G; Talarico, Sergio; Tsutani, Kiichiro; Duru, Gérard; Berger, Geneviève
2012-11-01
To develop a new quality-of-life (QoL) instrument with international validity that specifically assesses cosmetic products and physical appearance. In the first phase, semidirected interviews involved 309 subjects. In the second stage, an acceptability study was performed on 874 subjects. Thereafter, we recruited a total of 3231 subjects, each of whom completed the BeautyQoL questionnaire, a clinical checklist for the skin, the generic QoL 36-Item Short Form Health Survey, and a sociodemographic questionnaire. A retest was performed 8 days later on a subgroup of 652 subjects. Populations in France, the United Kingdom, Germany, Spain, Sweden, Italy, Russia, the United States, Brazil, Japan, India, China, and South Africa, representing 16 languages. The general adult healthy population, including women and men. Psychometric properties, construct validity, reproducibility, and internal and external consistency. General acceptability was very good in the 16 languages, with a very low rate of no answers. The validation phase reduced the questionnaire to 42 questions structured in the following 5 dimensions that explained 76.7% of the total variance: social life, self-confidence, mood, energy, and attractiveness. Internal consistency was high (Cronbach α coefficients, 0.93-0.98). Reproducibility at 8 days was satisfactory in all dimensions. Results of external validity testing revealed that BeautyQoL scores correlated significantly with all 36-Item Short Form Health Survey scores except for physical function. These results demonstrate the validity and reliability of the BeautyQoL questionnaire as the very first international instrument specific to cosmetic products and physical appearance.
Bright-field electron tomography of individual inorganic fullerene-like structures
NASA Astrophysics Data System (ADS)
Bar Sadan, Maya; Wolf, Sharon G.; Houben, Lothar
2010-03-01
Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS2 or MoS2 fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties.Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS2 or MoS2 fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties. Electronic supplementary information (ESI) available: Figs. S1 and S2 and movies S1-S6. See DOI: 10.1039/b9nr00251k
The home hemodialysis hub: physical infrastructure and integrated governance structure.
Marshall, Mark R; Young, Bessie A; Fox, Sally J; Cleland, Calli J; Walker, Robert J; Masakane, Ikuto; Herold, Aaron M
2015-04-01
An effective home hemodialysis program critically depends on adequate hub facilities and support functions and on transparent and accountable organizational processes. The likelihood of optimal service delivery and patient care will be enhanced by fit-for-purpose facilities and implementation of a well-considered governance structure. In this article, we describe the required accommodation and infrastructure for a home hemodialysis program and a generic organizational structure that will support both patient-facing clinical activities and business processes. © 2015 International Society for Hemodialysis.
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
Measuring Perceived Barriers to Physical Activity in Adolescents.
Gunnell, Katie E; Brunet, Jennifer; Wing, Erin K; Bélanger, Mathieu
2015-05-01
Perceived barriers to moderate-to-vigorous physical activity (PA) may contribute to the low rates of moderate-to-vigorous PA in adolescents. We examined the psychometric properties of scores from the perceived barriers to moderate-to-vigorous PA scale (PB-MVPA) by examining composite reliability and validity evidence based on the internal structure of the PB-MVPA and relations with other variables. This study was a cross-sectional analysis of data collected in 2013 from adolescents (N = 507; Mage = 12.40, SD = .62) via self-report scales. Using exploratory and confirmatory factor analyses, we found that perceived barriers were best represented as two factors representing internal (e.g., "I am not interested in physical activity") and external (e.g., "I need equipment I don't have") dimensions. Composite reliability was over .80. Using multiple regression to examine the relationship between perceived barriers and moderate-to-vigorous PA, we found that perceived internal barriers were inversely related to moderate-to-vigorous PA (β = -.32, p < .05). Based on results of the analysis of variances, there were no known-group sex differences for perceived internal and external barriers (p > .26). The PB-MVPA scale demonstrated evidence of score reliability and validity. To improve the understanding of the impact of perceived barriers on moderate-to- vigorous PA in adolescents, researchers should examine internal and external barriers separately.
Application of Natural Mineral Additives in Construction
NASA Astrophysics Data System (ADS)
Linek, Malgorzata; Nita, Piotr; Wolka, Paweł; Zebrowski, Wojciech
2017-12-01
The article concerns the idea of using selected mineral additives in the pavement quality concrete composition. The basis of the research paper was the modification of cement concrete intended for airfield pavements. The application of the additives: metakaolonite and natural zeolite was suggested. Analyses included the assessment of basic physical properties of modifiers. Screening analysis, assessment of micro structure and chemical microanalysis were conducted in case of these materials. The influence of the applied additives on the change of concrete mix parameters was also presented. The impact of zeolite and metakaolinite on the mix density, oxygen content and consistency class was analysed. The influence of modifiers on physical and mechanical changes of the hardened cement concrete was discussed (concrete density, compressive strength and bending strength during fracturing) in diversified research periods. The impact of the applied additives on the changes of internal structure of cement concrete was discussed. Observation of concrete micro structure was conducted using the scanning electron microscope. According to the obtained lab test results, parameters of the applied modifiers and their influence on changes of internal structure of cement concrete are reflected in the increase of mechanical properties of pavement quality concrete. The increase of compressive and bending strength in case of all analysed research periods was proved.
I-Love-Q: unexpected universal relations for neutron stars and quark stars.
Yagi, Kent; Yunes, Nicolás
2013-07-26
Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.
I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolás
2013-07-01
Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star’s internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star’s internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.
Multicomponent patterned ultrathin carbon nanomembranes by laser ablation
NASA Astrophysics Data System (ADS)
Frese, Natalie; Scherr, Julian; Beyer, André; Terfort, Andreas; Gölzhäuser, Armin; Hampp, Norbert; Rhinow, Daniel
2018-01-01
Carbon nanomembranes (CNMs) are a class of two-dimensional materials, which are obtained by electron beam-induced crosslinking of aromatic self-assembled monolayers (SAMs) on solid substrates. CNMs made from a single type of precursor molecule are uniform with homogeneous chemical and physical properties. We have developed a method for the fabrication of internally patterned CNMs resembling a key feature of biological membranes. Direct laser patterning is used to obtain multicomponent patterned SAMs on gold, which are subsequently crosslinked by electron irradiation. We demonstrate that the structure of internally patterned CNMs is preserved upon transfer to different substrates. The method enables rapid fabrication of patterned 2D materials with local variations in chemical and physical properties on the micrometer to centimeter scale.
Li, Kaigang; Iannotti, Ronald J; Haynie, Denise L; Perlus, Jessamyn G; Simons-Morton, Bruce G
2014-03-21
More than half of U.S. high-school students do not meet the moderate and vigorous physical activity (MVPA) 5 hours per week recommendation. The purpose of this study was to determine how individual dimensions (motivation and planning) mediate the relationship of social context with physical activity by integrating available measures of personal characteristic including internal/external motivations (derived from Self-Determination Theory -SDT]) for MVPA, MVPA planning, peer MVPA, and parental support to better understand adolescent MVPA. Survey responses of a nationally representative cohort of 11th graders (N=2439) in the NEXT Generation Health Study were analyzed with structural equation modeling. Adolescent MVPA was directly, significantly associated with MVPA planning (β=0.17), peer MVPA (β=0.21), and internal motivation (β=0.50). Internal motivation was associated with peer MVPA (β=0.31), parental support for MVPA (β=0.16), and external motivation (β=0.40). A significant relation between parental support and external motivation (β=0.31) was also found. Adolescents with higher internal motivation and more active friends were more likely to engage in MVPA. The results are consistent with SDT and suggest that planning is an important construct for adolescent MVPA.
NASA Astrophysics Data System (ADS)
King, David, Jr.; Manson, Russell; Trout, Joseph; Decicco, Nicholas; Rios, Manny
2015-04-01
Wake vortices are generated by airplanes in flight. These vortices decay slowly and may persist for several minutes after their creation. These vortices and associated smaller scale turbulent structures present a hazard to incoming flights. It is for this reason that incoming flights are timed to arrive after these vortices have dissipated. Local weather conditions, mainly prevailing winds, can affect the transport and evolution of these vortices; therefore, there is a need to fully understand localized wind patterns at the airport-sized mircoscale. Here we have undertaken a computational investigation into the impacts of localized wind flows and physical structures on the velocity field at Atlantic City International Airport. The simulations are undertaken in OpenFOAM, an open source computational fluid dynamics software package, using an optimized geometric mesh of the airport. Initial conditions for the simulations are based on historical data with the option to run simulations based on projected weather conditions imported from the Weather Research & Forcasting (WRF) Model. Sub-grid scale turbulence is modeled using a Large Eddy Simulation (LES) approach. The initial results gathered from the WRF Model simulations and historical weather data analysis are presented elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schadmand, Susan
2010-12-28
The WASA detector facility is an internal experiment at the COoler SYnchrotron COSY in Juelich, Germany. The COSY accelerator provides proton and deuteron beams with momenta up to 3.7 GeV/c giving access to hadron physics including the strange quark sector. The WASA-at-COSY physics program focuses on light meson decays where rare decays are used to scrutinize symmetries and symmetry breaking. The structure of hadrons is probed with transition form factors and hadron spectroscopy while hadron dynamics is studied via reaction dynamics and few body reactions. Goals and status are reported with special emphasis on the meson Dalitz decays.
PREFACE: XXXVI Symposium on Nuclear Physics (Cocoyoc 2013)
NASA Astrophysics Data System (ADS)
Barrón-Palos, Libertad; Morales-Agiss, Irving; Martínez-Quiroz, Enrique
2014-03-01
logo The XXXVI Symposium on Nuclear Physics, organized by the Division of Nuclear Physics of the Mexican Physical Society, took place from 7-10 January, 2013. As it is customary, the Symposium was held at the Hotel Hacienda Cocoyoc, in the state of Morelos, Mexico. Conference photograph This international venue with many years of tradition was attended by outstanding physicists, some of them already regulars to this meeting and others who joined us for the first time; a total of 45 attendees from different countries (Argentina, Brazil, Canada, China, Germany, Italy, Japan, Mexico and the United States). A variety of topics related to nuclear physics (nuclear reactions, radioactive beams, nuclear structure, fundamental neutron physics, sub-nuclear physics and nuclear astrophysics, among others) were presented in 26 invited talks and 10 contributed posters. Local Organizing Committee Libertad Barrón-Palos (IF-UNAM)) Enrique Martínez-Quíroz (ININ)) Irving Morales-Agiss (ICN-UNAM)) International Advisory Committee Osvaldo Civitarese (UNLP, Argentina) Jerry P Draayer (LSU, USA)) Alfredo Galindo-Uribarri (ORNL, USA)) Paulo Gomes (UFF, Brazil)) Piet Van Isacker (GANIL, France)) James J Kolata (UND, USA)) Reiner Krücken (TRIUMF, Canada)) Jorge López (UTEP, USA)) Stuart Pittel (UD, USA)) W Michael Snow (IU, USA)) Adam Szczepaniak (IU, USA)) Michael Wiescher (UND, USA)) A list of participants is available in the PDF
USDA-ARS?s Scientific Manuscript database
Toxoplasma gondii is a common parasite of humans and domestic animals, which is transmitted via oocysts in cat faeces or tissue cysts in contaminated meat. The oocyst and sporocyst walls are multilayered polymeric structures that protect the infective sporozoites from deleterious physical and chemic...
Atkinson, Kaitlin; Lowe, Samantha; Moore, Spencer
2015-01-01
This study aimed to (a) assess the relationship between a person's occupational category and their physical inactivity, and (b) analyze the association among country-level variables and physical inactivity. The World Health Survey (WHS) was administered in 2002–2003 among 47 low- and middle-income countries (n = 196,742). The International Physical Activity Questionnaire (IPAQ) was used to collect verbal reports of physical activity and convert responses into measures of physical inactivity. Economic development (GDP/c), degree of urbanization, and the Human Development Index (HDI) were used to measure country-level variables and physical inactivity. Multilevel logistic regression analysis was used to examine the association among country-level factors, individual occupational status, and physical inactivity. Overall, the worldwide prevalence of physical inactivity in 2002–2003 was 23.7%. Individuals working in the white-collar industry compared to agriculture were 84% more likely to be physically inactive (OR: 1.84, CI: 1.73–1.95). Among low- and middle-income countries increased HDI values were associated with decreased levels of physical inactivity (OR: 0.98, CI: 0.97–0.99). This study is one of the first to adjust for within-country differences, specifically occupation while analyzing physical inactivity. As countries experience economic development, changes are also seen in their occupational structure, which result in increased countrywide physical inactivity levels. PMID:26844185
Atkinson, Kaitlin; Lowe, Samantha; Moore, Spencer
2016-06-01
This study aimed to (a) assess the relationship between a person's occupational category and their physical inactivity, and (b) analyze the association among country-level variables and physical inactivity. The World Health Survey (WHS) was administered in 2002-2003 among 47 low- and middle-income countries (n = 196,742). The International Physical Activity Questionnaire (IPAQ) was used to collect verbal reports of physical activity and convert responses into measures of physical inactivity. Economic development (GDP/c), degree of urbanization, and the Human Development Index (HDI) were used to measure country-level variables and physical inactivity. Multilevel logistic regression analysis was used to examine the association among country-level factors, individual occupational status, and physical inactivity. Overall, the worldwide prevalence of physical inactivity in 2002-2003 was 23.7%. Individuals working in the white-collar industry compared to agriculture were 84% more likely to be physically inactive (OR: 1.84, CI: 1.73-1.95). Among low- and middle-income countries increased HDI values were associated with decreased levels of physical inactivity (OR: 0.98, CI: 0.97-0.99). This study is one of the first to adjust for within-country differences, specifically occupation while analyzing physical inactivity. As countries experience economic development, changes are also seen in their occupational structure, which result in increased countrywide physical inactivity levels.
Method for making devices having intermetallic structures and intermetallic devices made thereby
Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli
2004-01-06
A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.
1995-12-02
The Solar Heliospheric Observatory (SOHO) is launched atop an ATLAS-IIAS expendable launch vehicle. Liftoff from launch complex 36B at Cape Canaveral Air Station marked the 10th Atlas launch from the Eastern range for 1995. SOHO is a cooperative effort involving NASA and the European Space Agency (ESA) within the framework of the International Solar-Terrestrial Physics Program. During its 2-year mission, the SOHO spacecraft gathered data on the internal structure of the Sun, its extensive outer atmosphere and the origin of the solar wind.
Sediment Scaling for Mud Mountain Fish Barrier Structure
2017-06-28
2nd Int. Conf. on the Application of Physical Modeling to Port and Coastal Protection – Coastlab ’08, International Association for Hydro...Structure by Jeremy A. Sharp, Gary L. Brown, and Gary L. Bell PURPOSE: This Coastal and Hydraulics Laboratory technical note describes the process of... Coastal and Hydraulics Laboratory. Questions about this technical note can be addressed to Mr. Sharp at 601-634-4212 or Jeremy.A.Sharp@usace.army.mil
Musculoskeletal education in medical school: deficits in knowledge and strategies for improvement.
Murphy, Robert F; LaPorte, Dawn M; Wadey, Veronica M R
2014-12-03
➤ Improvements in medical student physical examination skills and performance on validated musculoskeletal competency examinations correspond with undergraduate curricular reform.➤ Curricular reform success in the United States has been achieved by multidisciplinary collaboration.➤ International efforts are focused on improving medical student physical examination skills through patient partners and structured clinical examinations.➤ Technologies such as simulators and online learning tools are effective and well received. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Bright-field electron tomography of individual inorganic fullerene-like structures.
Bar Sadan, Maya; Wolf, Sharon G; Houben, Lothar
2010-03-01
Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS(2) or MoS(2) fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties.
Two-step FEM-based Liver-CT registration: improving internal and external accuracy
NASA Astrophysics Data System (ADS)
Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan
2014-03-01
To know the exact location of the internal structures of the organs, especially the vasculature, is of great importance for the clinicians. This information allows them to know which structures/vessels will be affected by certain therapy and therefore to better treat the patients. However the use of internal structures for registration is often disregarded especially in physical based registration methods. In this paper we propose an algorithm that uses finite element methods to carry out a registration of liver volumes that will not only have accuracy in the boundaries of the organ but also in the interior. Therefore a graph matching algorithm is used to find correspondences between the vessel trees of the two livers to be registered. In addition to this an adaptive volumetric mesh is generated that contains nodes in the locations in which correspondences were found. The displacements derived from those correspondences are the input for the initial deformation of the model. The first deformation brings the internal structures to their final deformed positions and the surfaces close to it. Finally, thin plate splines are used to refine the solution at the boundaries of the organ achieving an improvement in the accuracy of 71%. The algorithm has been evaluated in CT clinical images of the abdomen.
Xia, Xianping; Wang, Yun; Cai, Shuizhou; Xie, Changsheng; Zhu, Changhong
2009-01-01
Copper/low-density polyethylene (Cu/LDPE) nanocomposite intrauterine device (IUD) is an implanted medicinal device that must be sterilized before use. Sterilization processes act either chemically or physically, leading to a lethal change in the structure or function of organic macromolecules in microorganisms. Given the nature of their action, sterilization might also attack the macromolecules of polymers by the same mechanisms, resulting in changes in surface functional groups and in the internal structure of the polymer. If sterilization leads to changes in surface functional groups and in the internal structure of the LDPE matrix, which will influence the mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs, potential clinical application will be limited. Therefore, it is necessary to study the influence of ethylene oxide sterilization on the potential clinical application of novel Cu/LDPE nanocomposite IUDs. The influence of ethylene oxide sterilization on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs was studied using differential scanning calorimetry, attenuated total reflection Fourier transform infrared spectroscopy, tensile testing and absorbance measurement. Ethylene oxide sterilization did not have any influence on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite intrauterine devices. Ethylene oxide sterilization will not affect the potential application of novel Cu/LDPE nanocomposite IUDs.
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Griffin, DeVon W.
2001-01-01
The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties.
Three-dimensional study of the vector potential of magnetic structures.
Phatak, Charudatta; Petford-Long, Amanda K; De Graef, Marc
2010-06-25
The vector potential is central to a number of areas of condensed matter physics, such as superconductivity and magnetism. We have used a combination of electron wave phase reconstruction and electron tomographic reconstruction to experimentally measure and visualize the three-dimensional vector potential in and around a magnetic Permalloy structure. The method can probe the vector potential of the patterned structures with a resolution of about 13 nm. A transmission electron microscope operated in the Lorentz mode is used to record four tomographic tilt series. Measurements for a square Permalloy structure with an internal closure domain configuration are presented.
NASA Astrophysics Data System (ADS)
Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2017-11-01
Severe plastic deformation by equal channel angular pressing has been performed to produce light aluminum and magnesium alloy billets with ultrafine-grained structure. The physical and mechanical properties of the processed alloys are examined by studying their microstructure, measuring microhardness, yield strength, and uniaxial tensile strength. A nondestructive testing technique using three-dimensional X-ray tomography is proposed for detecting internal structural defects and monitoring damage formation in the structure of alloys subjected to severe plastic deformation. The investigation results prove the efficiency of the chosen method and selected mode of producing ultrafine-grained light alloys.
K M Tanaka, Hiroyuki; Yokoyama, Izumi
2008-01-01
Lava domes are one of the conspicuous topographic features on volcanoes. The subsurface structure of the lava dome is important to discuss its formation mechanism. In the 1944 eruption of Volcano Usu, Hokkaido, a new lava dome was formed at its eastern foot. After the completion of the lava dome, various geophysical methods were applied to the dome to study its subsurface structure, but resulted in a rather ambiguous conclusion. Recently, from the results of the levelings, which were repeated during the eruption, "pseudo growth curves" of the lava dome were obtained. The curves suggest that the lava dome has a bulbous shape. In the present work, muon radiography, which previously proved effective in imaging the internal structure of Volcano Asama, has been applied to the Usu lava dome. The muon radiography measures the distribution of the "density length" of volcanic bodies when detectors are arranged properly. The result obtained is consistent with the model deduced from the pseudo growth curves. The measurement appears to afford useful method to clarify the subsurface structure of volcanoes and its temporal changes, and in its turn to discuss volcanic processes. This is a point of contact between high-energy physics and volcano physics.
Ruaro, João A; Ruaro, Marinêz B; Guerra, Ricardo O
2014-01-01
To facilitate a systematic, comprehensive description of functioning and to enable the use of the International Classification of Functioning, Disability and Health (ICF) in clinical practice and research, core sets have been developed. The aim of this study was to propose a version of the ICF core set to classify the physical health of older adults. The proposition of the ICF core set was based on the Delphi technique. The panel of experts included 8 Brazilian researchers (physical therapists, medical doctors, nurses, and physical educators). The communication was wholly electronic. In total, there were 5 rounds of interactivity between the participants to arrive at the final version of the construct. The ICF core set presented 30 categories (14 on body functions, 4 on body structures, 9 on activities or participation, and 3 on environmental factors) and had a Cronbach α of 0.964. The presented core set is a secure, fast, and accurate instrument for assessing the physical health and engagement of older adults. It defines points related to functioning and health that are relevant when evaluating this population, as well as when reevaluating it and monitoring changes.
Ecotechnology: basis of a new immission concept in water pollution control.
Benndorf, J
2005-01-01
Beyond the traditional load reduction also an ecosystem-internal mechanism can be used to minimise the effects of water pollution. The control of the internal mechanisms is achieved through the optimisation of the ecosystem structure. This ecotechnology principle is based on the idea to reduce as much as possible the gap between the current (suboptimal) structural status and the optimum structure by intentional manipulations. The spectrum of such manipulations is very broad. A few examples are demonstrated. They comprise physical (e.g. stream morphology), chemical (e.g. enhancing the redox potential at the sediment-water interface) and biological (e.g. enhancing stocks of predatory fishes) control measures. It can be supposed that a new immission concept including the ecotechnology principle could be much more adequate to the demand of modern water pollution control than the traditional emission and imission concepts.
NASA Astrophysics Data System (ADS)
Wang, Wei; Liu, Ying; Gao, Zhong-yue; Zhao, Xue-ru; Yang, Yi; Yang, Sen
2018-07-01
Compensation temperature Tcomp and transition temperature TC have significant applications for the experimental realization of magnetic nanotube structure in the field of thermal magnetic recording. In this work, we use the Monte Carlo simulation to investigate the phase diagrams, magnetizations, susceptibilities, internal energies, specific heats and hysteresis behaviors of a cylindrical ferrimagnetic nanotube with core-shell structure. The effects of the single-ion anisotropies (DC, DS) and the exchange couplings (Jint, JS) on the magnetic and thermodynamic properties of the system are examined. A number of characteristic behaviors are discovered in the thermal variations, depending on different physical parameters. In particular, the triple hysteresis loops behavior has been found for appropriate physical parameters. These findings are qualitatively in good agreement with related experimental and the other theoretical results.
A theory of viscoplasticity accounting for internal damage
NASA Technical Reports Server (NTRS)
Freed, A. D.; Robinson, D. N.
1988-01-01
A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation.
37 CFR 1.433 - Physical requirements of international application.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0×29.7 cm.). (c) Other physical requirements for international...
37 CFR 1.433 - Physical requirements of international application.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0 × 29.7 cm.). (c) Other physical requirements for international...
37 CFR 1.433 - Physical requirements of international application.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0×29.7 cm.). (c) Other physical requirements for international...
37 CFR 1.433 - Physical requirements of international application.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0 × 29.7 cm.). (c) Other physical requirements for international...
37 CFR 1.433 - Physical requirements of international application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Physical requirements of... Provisions The International Application § 1.433 Physical requirements of international application. (a) The... must be on A4 size paper (21.0×29.7 cm.). (c) Other physical requirements for international...
2011-01-01
Background The SF-12v2 is the improved version of the SF-12v1. This study aimed to validate the SF-12v2 in Iran. Methods A random sample of the general population aged 18 years and over living in Tehran, Iran completed the instrument. Reliability was estimated using internal consistency and validity was assessed using known-groups comparison and convergent validity. In addition the factor structure of the questionnaire was extracted by performing both exploratory and confirmatory factor analyses (EFA and CFA). Results In all, 3685 individuals were studied (1887male and 1798 female). Internal consistency for both summary measures was satisfactory. Cronbach's α for the Physical Component Summary (PCS-12) was 0.87 and for the Mental Component Summary (MCS-12) it was 0.82. Known-groups comparison showed that the SF-12v2 discriminated well between men and women and those who differed in age and educational status (P < 0.05). Furthermore, as hypothesized the physical functioning, role physical, bodily pain and general health subscales correlated higher with the PCS-12, while the vitality, social functioning, role emotional and mental health subscales correlated higher with the MCS-12. Finally the exploratory factor analysis indicated a two-factor structure (physical and mental health) that jointly accounted for 59.9% of the variance. The confirmatory factory analysis also indicated a good fit to the data for the two-latent structure (physical and mental health). Conclusion Although the findings could not be generalized to the Iranian population, overall the findings suggest that the SF-12v2 is a reliable and valid measure of health related quality of life among Iranians and now could be used in future health outcome studies. However, further studies are recommended to establish its stability, responsiveness to change, and concurrent validity for this health survey in Iran. PMID:21385359
Montazeri, Ali; Vahdaninia, Mariam; Mousavi, Sayed Javad; Asadi-Lari, Mohsen; Omidvari, Sepideh; Tavousi, Mahmoud
2011-03-07
The SF-12v2 is the improved version of the SF-12v1. This study aimed to validate the SF-12v2 in Iran. A random sample of the general population aged 18 years and over living in Tehran, Iran completed the instrument. Reliability was estimated using internal consistency and validity was assessed using known-groups comparison and convergent validity. In addition the factor structure of the questionnaire was extracted by performing both exploratory and confirmatory factor analyses (EFA and CFA). In all, 3685 individuals were studied (1887 male and 1798 female). Internal consistency for both summary measures was satisfactory. Cronbach's α for the Physical Component Summary (PCS-12) was 0.87 and for the Mental Component Summary (MCS-12) it was 0.82. Known-groups comparison showed that the SF-12v2 discriminated well between men and women and those who differed in age and educational status (P < 0.05). Furthermore, as hypothesized the physical functioning, role physical, bodily pain and general health subscales correlated higher with the PCS-12, while the vitality, social functioning, role emotional and mental health subscales correlated higher with the MCS-12. Finally the exploratory factor analysis indicated a two-factor structure (physical and mental health) that jointly accounted for 59.9% of the variance. The confirmatory factory analysis also indicated a good fit to the data for the two-latent structure (physical and mental health). Although the findings could not be generalized to the Iranian population, overall the findings suggest that the SF-12v2 is a reliable and valid measure of health related quality of life among Iranians and now could be used in future health outcome studies. However, further studies are recommended to establish its stability, responsiveness to change, and concurrent validity for this health survey in Iran.
Neonatal physical therapy. Part II: Practice frameworks and evidence-based practice guidelines.
Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette; Dusing, Stacey C
2010-01-01
(1) To outline frameworks for neonatal physical therapy based on 3 theoretical models, (2) to describe emerging literature supporting neonatal physical therapy practice, and (3) to identify evidence-based practice recommendations. Three models are presented as a framework for neonatal practice: (1) dynamic systems theory including synactive theory and the theory of neuronal group selection, (2) the International Classification of Functioning, Disability and Health, and (3) family-centered care. Literature is summarized to support neonatal physical therapists in the areas of examination, developmental care, intervention, and parent education. Practice recommendations are offered with levels of evidence identified. Neonatal physical therapy practice has a theoretical and evidence-based structure, and evidence is emerging for selected clinical procedures. Continued research to expand the science of neonatal physical therapy is critical to elevate the evidence and support practice recommendations.
Scientific explanations in Greek upper secondary physics textbooks
NASA Astrophysics Data System (ADS)
Velentzas, Athanasios; Halkia, Krystallia
2018-01-01
In this study, an analysis of the structure of scientific explanations included in physics textbooks of upper secondary schools in Greece was completed. In scientific explanations for specific phenomena found in the sample textbooks, the explanandum is a logical consequence of the explanans, which in all cases include at least one scientific law (and/or principle, model or rule) previously presented, as well as statements concerning a specific case or specific conditions. The same structure is also followed in most of the cases in which the textbook authors explain regularities (i.e. laws, rules) as consequences of one or more general law or principle of physics. Finally, a number of the physics laws and principles presented in textbooks are not deduced as consequences from other, more general laws, but they are formulated axiomatically or inductively derived and the authors argue for their validity. Since, as it was found, the scientific explanations presented in the textbooks used in the study have similar structures to the explanations in internationally known textbooks, the findings of the present work may be of interest not only to science educators in Greece, but also to the community of science educators in other countries.
Supersonic Beam Observations of Semiconductor Clusters.
1987-08-31
laser vaporization C 6 0 molecule, soccerball structure contains cenLrai cavity 20, ASIT"RACT’ (Contms an .evse &I if rvcwumV sodIdwnttY by block...Brucat, S. Yang, C.L. Pettiette, M.J. Craycraft, and R.E. Smalley, Proc. of the International Symposium on the Physics and Chemistry of Small Clusters
Big Policies and a Small World: An Analysis of Policy Problems and Solutions in Physical Education
ERIC Educational Resources Information Center
Penney, Dawn
2017-01-01
This paper uses Ball's [1998. Big policies/small world: An introduction to international perspectives in education policy. "Comparative Education," 34(2), 119-130] policy analysis and Bernstein's [1990. "The structuring of pedagogic discourse. Volume IV class, codes and control". London: Routledge; 2000, "Pedagogy,…
ERIC Educational Resources Information Center
Kuwabara, Ko; Willer, Robb; Macy, Michael W.; Mashima, Rie; Terai, Shigeru; Yamagishi, Toshio
2007-01-01
Cross-cultural trust and cooperation are important concerns for international markets, political cooperation, and cultural exchange. Until recently, this problem was difficult to study under controlled conditions due to the inability to conduct experiments involving interaction between participants located in physically distant locations. We…
The Composition and Thermal State of Mars
NASA Astrophysics Data System (ADS)
Khan, A.; Connolly, J.
Previous studies concerning the internal composition and constitution of Mars are essentially limited to forward modeling of some relatively simple models of the martian internal structure and therefore provide little information on what we can actually learn from the data. In view of the limitations inherent in forward models, we propose to invert a number of geophysical data to directly constrain the martian composition and thermal state. The inverse method employed here is general and provides through the unified description of phase equilibria a way of constructing planetary models where the radial variation of mineralogy and physical structure with pressure and temperature is naturally specified, allowing us to directly invert for chemical composition and temperature. Given these parameters mineralogy, Mg# (MgO/(MgO+FeO)) and bulk physical properties can be calculated. The approach used here has recently been applied successfully to the Moon and Earth in analyses of both eletromagnetic sounding as well as seismic data. The data used in the inversion are, mean moment of inertia, mean density, second degree tidal Love number, tidal dissipation factor and of course mean radius.
Nuclear and radiological emergencies: Building capacity in medical physics to support response.
Berris, Theocharis; Nüsslin, Fridtjof; Meghzifene, Ahmed; Ansari, Armin; Herrera-Reyes, Eduardo; Dainiak, Nicholas; Akashi, Makoto; Gilley, Debbie; Ohtsuru, Akira
2017-10-01
Medical physicists represent a valuable asset at the disposal of a structured and planned response to nuclear or radiological emergencies (NREs), especially in the hospital environment. The recognition of this fact led the International Atomic Energy Agency (IAEA) and the International Organization for Medical Physics (IOMP) to start a fruitful collaboration aiming to improve education and training of medical physicists so that they may support response efforts in case of NREs. Existing shortcomings in specific technical areas were identified through international consultations supported by the IAEA and led to the development of a project aiming at preparing a specific and standardized training package for medical physicists in support to NREs. The Project was funded through extra-budgetary contribution from Japan within the IAEA Nuclear Safety Action Plan. This paper presents the work accomplished through that project and describes the current steps and future direction for enabling medical physicists to better support response to NREs. Copyright © 2017 Associazione Italiana di Fisica Medica. All rights reserved.
Loong, Claudine; Leo, Latasha; Goh, Danielle; Lim, Pei Sin; Loke, Wai Mun
2018-01-13
Limited data are available on the effectiveness of the school-based structured fitness and wellness program to influence dietary quality and physical activity levels in Singaporean adolescents. The study examined if a 20-h (over 10 weeks) school-based structured fitness and wellness module affects the diet quality indices, energy intakes, physical activity levels and the associated energy expenditures in a group of healthy, male adolescents with low diet quality and physical activity levels. Participant demography, anthropometry, dietary intake and daily physical activity were obtained at the beginning, mid-point and end of the 10-week program. Physical activity levels were assessed accelerometrically over a 1-weekday period. Dietary intake were taken using a structured 7-day food diary, and diet quality assessed using the Diet Quality Index-International (DQI-I). The 31 enrolled participants (age 19.8 ± 0.6 years) with body mass index (BMI) (19.8 ± 0.6 kg/m2) followed diets of low diet quality scores (48.3 ± 9.6 out of 100) and engaged in 3.87 ± 2.00 h of physical activity daily before the start of the intervention. Their dietary quality and physical activity levels did not change significantly throughout the intervention period. They scored poorly in the moderation and overall balance components of the diet quality assessment. The physical activity duration correlated inversely to the diet quality scores. Our results suggest that the prescribed school-based fitness and wellness module was ineffective in influencing the diet quality and physical activity levels of Singaporean male adolescents with low diet quality and physical activity levels.
2014-01-01
Background More than half of U.S. high-school students do not meet the moderate and vigorous physical activity (MVPA) 5 hours per week recommendation. The purpose of this study was to determine how individual dimensions (motivation and planning) mediate the relationship of social context with physical activity by integrating available measures of personal characteristic including internal/external motivations (derived from Self-Determination Theory -SDT]) for MVPA, MVPA planning, peer MVPA, and parental support to better understand adolescent MVPA. Methods Survey responses of a nationally representative cohort of 11th graders (N = 2439) in the NEXT Generation Health Study were analyzed with structural equation modeling. Results Adolescent MVPA was directly, significantly associated with MVPA planning (β = 0.17), peer MVPA (β = 0.21), and internal motivation (β = 0.50). Internal motivation was associated with peer MVPA (β = 0.31), parental support for MVPA (β = 0.16), and external motivation (β = 0.40). A significant relation between parental support and external motivation (β = 0.31) was also found. Conclusions Adolescents with higher internal motivation and more active friends were more likely to engage in MVPA. The results are consistent with SDT and suggest that planning is an important construct for adolescent MVPA. PMID:24656181
Research of movement process of fiber suspension in accelerating unit of wet grinding disintegrator
NASA Astrophysics Data System (ADS)
Mykhaylichenko, S. A.; Dubinin, N. N.; Kachaev, A. E.; Goncharov, S. I.; Farafonov, A. A.
2018-03-01
At the present stage of development of building material science, products reinforced with fibers of various origin (mineral, organic, metal and others) are commonly used. Determination of the optimal structure and the chemical composition of the fiber depends on a number of requirements for filler, binder, and other miscellaneous additives, etc. The rational combination of physical and chemical composition of the primary matrix of the product (e.g., binders, cement) with dispersion of anisotropic fiber of filler not only contributes to the strength of products, but also stabilizes their internal structure: prevents the occurrence of internal stress of the cement stone, increases the adhesive interaction of particles of cement at the contact boundary with fibers, etc.
Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza
2015-01-01
Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.
NASA Astrophysics Data System (ADS)
Tóth, Balázs; Development; Operations Teams, ESA's Science Management, Payload; Teams, Science; Industry, Space
2012-06-01
The article presents the approach of the European Space Agency to promote research in weightlessness and in particular onboard the International Space Station. In order to maximize the return on investments, a strong international scientific collaboration is encouraged. These Science Teams support the preparation and utilisation of the flight hardware and exploit the measurement data. In the domain of physical sciences the topics dealt with at the time of writing the present paper cover fundamental physics, fluid physics, material sciences research and specific preparatory studies in anticipation of space exploration missions. The present article focuses on two-phase (liquid-gas phase change) heat transfer related experiments. These activities cover evaporation driven thermocapillary convection, pool- and flow boiling, evaporation and condensation of films together with wettability realted issues on both reference and structured surfaces, and heat pipe systems. Some hardware are in an advanced state of development, the feasibility of some was studied or is under definition at the time of the preparation of this paper. The objectives of the experiments are described together with their expected capabilities. Beyond the understanding of mostly fundamental physical processes, the data of all the described experiments are intended to be used to validate theoretical approaches and numerical tools, which are often developed by the Science Teams in parallel with the the flight hardware design activities of space industry.
Chung, Eva Yin-Han; Lam, Gigi
2018-05-29
The World Health Organization has asserted the importance of enhancing participation of people with disabilities within the International Classification of Functioning, Disability and Health framework. Participation is regarded as a vital outcome in community-based rehabilitation. The actualization of the right to participate is limited by social stigma and discrimination. To date, there is no validated instrument for use in Chinese communities to measure participation restriction or self-perceived stigma. This study aimed to translate and validate the Participation Scale and the Explanatory Model Interview Catalogue (EMIC) Stigma Scale for use in Chinese communities with people with physical disabilities. The Chinese versions of the Participation Scale and the EMIC stigma scale were administered to 264 adults with physical disabilities. The two scales were examined separately. The reliability analysis was studied in conjunction with the construct validity. Reliability analysis was conducted to assess the internal consistency and item-total correlation. Exploratory factor analysis was conducted to investigate the latent patterns of relationships among variables. A Rasch model analysis was conducted to test the dimensionality, internal validity, item hierarchy, and scoring category structure of the two scales. Both the Participation Scale and the EMIC stigma scale were confirmed to have good internal consistency and high item-total correlation. Exploratory factor analysis revealed the factor structure of the two scales, which demonstrated the fitting of a pattern of variables within the studied construct. The Participation Scale was found to be multidimensional, whereas the EMIC stigma scale was confirmed to be unidimensional. The item hierarchies of the Participation Scale and the EMIC stigma scale were discussed and were regarded as compatible with the cultural characteristics of Chinese communities. The Chinese versions of the Participation Scale and the EMIC stigma scale were thoroughly tested in this study to demonstrate their robustness and feasibility in measuring the participation restriction and perceived stigma of people with physical disabilities in Chinese communities. This is crucial as it provides valid measurements to enable comprehensive understanding and assessment of the participation and stigma among people with physical disabilities in Chinese communities.
NASA Astrophysics Data System (ADS)
Brugués, Jan; Needleman, Daniel J.
2010-02-01
Metaphase spindles are highly dynamic, nonequilibrium, steady-state structures. We study the internal fluctuations of spindles by computing spatio-temporal correlation functions of movies obtained from quantitative polarized light microscopy. These correlation functions are only physically meaningful if corrections are made for the net motion of the spindle. We describe our image registration algorithm in detail and we explore its robustness. Finally, we discuss the expression used for the estimation of the correlation function in terms of the nematic order of the microtubules which make up the spindle. Ultimately, studying the form of these correlation functions will provide a quantitative test of the validity of coarse-grained models of spindle structure inspired from liquid crystal physics.
Physical and chemical controls on the critical zone
Anderson, S.P.; Von Blanckenburg, F.; White, A.F.
2007-01-01
Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.
International Physics Research Internships in an Australian University
ERIC Educational Resources Information Center
Choi, Serene Hyun-Jin; Nieminen, Timo A.; Maucort, G.; Gong, Y. X.; Bartylla, C.; Persson, M.
2013-01-01
Research student internships in physics is one way that students can gain a broad range of research experience in a variety of research environments, and develop international contacts. We explore international physics research internships, focusing on the academic learning experiences, by interviewing four international research interns in a…
NASA Astrophysics Data System (ADS)
Fang, W.; Quan, S. H.; Xie, C. J.; Ran, B.; Li, X. L.; Wang, L.; Jiao, Y. T.; Xu, T. W.
2017-05-01
The majority of the thermal energy released in an automotive internal combustion cycle is exhausted as waste heat through the tail pipe. This paper describes an automobile exhaust thermoelectric generator (AETEG), designed to recycle automobile waste heat. A model of the output characteristics of each thermoelectric device was established by testing their open circuit voltage and internal resistance, and combining the output characteristics. To better describe the relationship, the physical model was transformed into a topological model. The connection matrix was used to describe the relationship between any two thermoelectric devices in the topological structure. Different topological structures produced different power outputs; their output power was maximised by using an iterative algorithm to optimize the series-parallel electrical topology structure. The experimental results have shown that the output power of the optimal topology structure increases by 18.18% and 29.35% versus that of a pure in-series or parallel topology, respectively, and by 10.08% versus a manually defined structure (based on user experience). The thermoelectric conversion device increased energy efficiency by 40% when compared with a traditional car.
ERIC Educational Resources Information Center
Foster, Bruce E., Ed.
Volume 1 contains all the invited papers accepted for the symposium. The subject matter covered in the papers includes physiological, anthropometrical, psychological, sociological, and economic human requirements and methods of evaluation; physical requirements and methods of evaluation in mechanical, acoustical, thermal, dimensional stability,…
1995-12-01
The reflection of the Atlas IIAS expendable launch vehicle with the Solar Heliospheric Observatory (SOHO) inside its payload fairing can be seen on the surface of a retention pond at Launch Pad 36B on Cape Canaveral Air Station just hours before liftoff. SOHO is a cooperative effort involving NASA and the European Space Agency (ESA) within the framework of the International Solar-Terrestrial Physics Program. During its 2-year mission, the SOHO spacecraft will gather data on the internal structure of the Sun, its extensive outer atmosphere and the origin of the solar wind.
NASA Astrophysics Data System (ADS)
Bashkanov, M.; Skorodko, T.; Clement, H.; Watts, D. P.
Several new findings in the four, five and six quark systems reheat the interest in the field of multiquark states (beyond the trivial qq¯ and qqq). A lot of progress has recently been made in the 6q sector, on both the theoretical and experimental side. A resonance like structure observed in double-pionic fusion to the deuteron, at M = 2.38 GeV with Γ = 70 MeV and I(JP) = 0(3+) has been consistently observed in a wealth of reaction channels, supporting the existence of a resonant dibaryon state - the d∗(2380). These studies include measurement of all the principle strong decay channels in pn collisions in the quasifree mode by the WASA-at-COSY and HADES collaborations. The internal structure of the d∗(2380) is largely unknown. It can contain various ”hidden color” 6q configurations, ΔΔ molecular states with angular momentum L = 0,2,4,6 as well as meson-assisted dressed dibaryon structures. The large set of experimental data obtained to date gives some constraints on the internal structure of the d∗(2380) dibaryon, but does not settle the issue. The d∗ is the only multiquark state which can be produced copiously at current facilities, offering unique access to information beyond its basic quantum numbers, particularly its physical size and internal structure.
Benítez-Porres, Javier; Delgado, Manuel; Ruiz, Jonatan R
2013-01-01
The International Physical Activity Questionnaire (IPAQ) has been widely used to assess physical activity in healthy populations. The present study compared physical activity assessed by the long, self-administrated version of the International Physical Activity Questionnaire with physical activity assessed by accelerometry in patients with fibromyalgia. A total of 99 (five men) participants with fibromyalgia completed the International Physical Activity Questionnaire and wore an accelerometer for nine consecutive days. We analysed the correlations of physical activity expressed as min · day(-1) of light, moderate, vigorous, and moderate to vigorous (MVPA) intensity, as well as time spent sitting, by the International Physical Activity Questionnaire and accelerometry by Spearman correlations. Bland and Altman plots were performed to verify the agreements between both instruments. The results showed weak yet significant correlations (Rs = 0.15-0.39, all P < 0.05) in all physical activity intensities between the two instruments, except for sedentary time. The highest correlations were observed for physical activity at home or in garden (Rs = 0.297, P < 0.01). The results suggest that the long self-administrated International Physical Activity Questionnaire is a questionable instrument to assess physical activity in patients with fibromyalgia. Therefore, physical activity measurement in fibromyalgia patients should not be limited solely to self-reported measures.
Generation of internal solitary waves by frontally forced intrusions in geophysical flows.
Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric
2016-12-06
Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.
Dark-field X-ray microscopy for multiscale structural characterization
NASA Astrophysics Data System (ADS)
Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Snigireva, I.; Snigirev, A.; Poulsen, H. F.
2015-01-01
Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three-dimensional mapping of orientations and stresses on lengths scales from 100 nm to 1 mm within embedded sampling volumes. The technique, which allows ‘zooming’ in and out in both direct and angular space, is demonstrated by an annealing study of plastically deformed aluminium. Facilitating the direct study of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements (for example, positioned at interfaces) is crucial to the performance and lifetime of macro-scale devices and components thereof.
Rational design of reconfigurable prismatic architected materials
NASA Astrophysics Data System (ADS)
Bertoldi, Katia; Overvelde, Johannes; Hoberman, Chuck; Weaver, James
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. While most of these materials are characterized by a fixed geometry,an intriguing avenue is to incorporate internal mechanisms capable of recon_guring their spatial architecture, therefore enabling tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami-technique, here we introduce a robust design strategy based on space-filling polyhedra to create 3D reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively di_erent deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to design the next generation of reconfigurable structures and materials, ranging from transformable meter-scale architectures to nanoscale tunable photonic systems..
NASA Astrophysics Data System (ADS)
Lu, Haibao; Wang, Xiaodong; Yao, Yongtao; Qing Fu, Yong
2018-06-01
Phenomenological models based on frozen volume parameters could well predict shape recovery behavior of shape memory polymers (SMPs), but the physical meaning of using the frozen volume parameters to describe thermomechanical properties has not been well-established. In this study, the fundamental working mechanisms of the shape memory effect (SME) in amorphous SMPs, whose temperature-dependent viscoelastic behavior follows the Eyring equation, have been established with the considerations of both internal stress and its resulted frozen volume. The stress-strain constitutive relation was initially modeled to quantitatively describe effects of internal stresses at the macromolecular scale based on the transient network theory. A phenomenological ‘frozen volume’ model was then established to characterize the macromolecule structure and SME of amorphous SMPs based on a two-site stress-relaxation model. Effects of the internal stress, frozen volume and strain rate on shape memory behavior and thermomechanical properties of the SMP were investigated. Finally, the simulation results were compared with the experimental results reported in the literature, and good agreements between the theoretical and experimental results were achieved. The novelty and key differences of our newly proposed model with respect to the previous reports are (1). The ‘frozen volume’ in our study is caused by the internal stress and governed by the two-site model theory, thus has a good physical meaning. (2). The model can be applied to characterize and predict both the thermal and thermomechanical behaviors of SMPs based on the constitutive relationship with internal stress parameters. It is expected to provide a power tool to investigate the thermomechanical behavior of the SMPs, of which both the macromolecular structure characteristics and SME could be predicted using this ‘frozen volume’ model.
International Conference on Phonon Physics, 31 August-3 September 1981. Bloomington, Indiana,
1981-12-01
sics.Dept., Bloomington, IN 565, Japan. 47405, U.S.A. IWASA, I.- Dept. of Physics, Univ. of Tokyo, 7-3-1 Bongo , Bunkyo- ku, 113 Tokyo, Japan...electron phonon interaction in IV compounds (4). In IV compounds with NaCl structure the phonons mostly affected by the coupling to the RE ion are those...photo-Induced bend edge shift which io on the order of 0.1 *Y towardI the red.* None of the phoson parameters discussed In this paper were affected by
Material model for physically based rendering
NASA Astrophysics Data System (ADS)
Robart, Mathieu; Paulin, Mathias; Caubet, Rene
1999-09-01
In computer graphics, a complete knowledge of the interactions between light and a material is essential to obtain photorealistic pictures. Physical measurements allow us to obtain data on the material response, but are limited to industrial surfaces and depend on measure conditions. Analytic models do exist, but they are often inadequate for common use: the empiric ones are too simple to be realistic, and the physically-based ones are often to complex or too specialized to be generally useful. Therefore, we have developed a multiresolution virtual material model, that not only describes the surface of a material, but also its internal structure thanks to distribution functions of microelements, arranged in layers. Each microelement possesses its own response to an incident light, from an elementary reflection to a complex response provided by its inner structure, taking into account geometry, energy, polarization, . . ., of each light ray. This model is virtually illuminated, in order to compute its response to an incident radiance. This directional response is stored in a compressed data structure using spherical wavelets, and is destined to be used in a rendering model such as directional radiosity.
Smartphones as portable oscilloscopes for physics labs
NASA Astrophysics Data System (ADS)
Forinash, Kyle; Wisman, Raymond F.
2012-04-01
Given that today's smartphones are mobile and have more computing power and means to measure the external world than early PCs, they may also revolutionize data collection, both in structured physics laboratory settings and in less predictable situations, outside the classroom. Several examples using the internal sensors available in a smartphone were presented in earlier papers in this column.1, 2 But data collection is not limited only to the phone's internal sensors since most also have a headphone port for connecting an external microphone and speakers. This port can be used to connect to external equipment in much the same way as the game port on the early Apple II was used in school labs. Below is an illustration using the headphone port to receive data from an external circuit: smartphones as a portable oscilloscope using commercially available hardware and applications.
Constraining the Bulk Density of 10m-Class Near-Earth Asteroid 2012 LA
NASA Astrophysics Data System (ADS)
Mommert, Michael; Hora, Joseph; Farnocchia, Davide; Trilling, David; Chesley, Steve; Harris, Alan; Mueller, Migo; Smith, Howard
2016-08-01
The physical properties of near-Earth asteroids (NEAs) provide important hints on their origin, as well as their past physical and orbital evolution. Recent observations seem to indicate that small asteroids are different than expected: instead of being monolithic bodies, some of them instead resemble loose conglomerates of smaller rocks, so called 'rubble piles'. This is surprising, since self-gravitation is practically absent in these bodies. Hence, bulk density measurements of small asteroids, from which their internal structure can be estimated, provide unique constraints on asteroid physical models, as well as models for asteroid evolution. We propose Spitzer Space Telescope observations of 10 m-sized NEA 2012 LA, which will allow us to constrain the diameter, albedo, bulk density, macroporosity, and mass of this object. We require 30 hrs of Spitzer time to detect our target with a minimum SNR of 3 in CH2. In order to interpret our observational results, we will use the same analysis technique that we used in our successful observations and analyses of tiny asteroids 2011 MD and 2009 BD. Our science goal, which is the derivation of the target's bulk density and its internal structure, can only be met with Spitzer. Our observations will produce only the third comprehensive physical characterization of an asteroid in the 10m size range (all of which have been carried out by our team, using Spitzer). Knowledge of the physical properties of small NEAs, some of which pose an impact threat to the Earth, is of importance for understanding their evolution and estimating the potential of destruction in case of an impact, as well as for potential manned missions to NEAs for either research or potential commercial uses.
A New Direction for the NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.
A New Direction for NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)
2001-01-01
NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.
Practice of leisure-time physical activities and episodes of mood alteration amongst men and women.
Branco, Jerônimo Costa; Jansen, Karen; Oses, Jean Pierre; de Mattos Souza, Luciano Dias; da Silva Alves, Giovanna Del Grande; Lara, Diogo Rizzato; da Silva, Ricardo Azevedo
2014-12-01
To evaluate the prevalence of leisure-time physical activity and episodes of mood alteration in a population-based sample of adults, and its relation with gender. This is a cross-sectional population-based study with young adults aged between 18 and 35 years old. Sample selection was performed by clusters. The practice of physical activity was evaluated through the International Physical Activity Questionnaire (IPAQ), whereas mood disorders were evaluated using a short structured diagnostic interview-the Mini International Neuropsychiatric Interview (MINI) for DSM-IV and ICD-10 psychiatric disorders. Causal inferences are limited due the study׳s design. Sample consisted of 1953 young adults. The prevalence of leisure-time physical activity and of depressive episodes in the total sample was 25.3% and 17.2%, respectively. The prevalence of activity amongst men was 1.18 (CI 95% 1.18-1.32) times higher than in the women׳s group, whereas depression was 1.87 (CI 95% 1.41-2.47) times more prevalent amongst women than men. The prevalence of physical activity was not different between women (p=0.287), nor between men (p=0.895) regarding the presence of mania/hypomania episode. The prevalence of physical activity and depression was different concerning gender. The prevalence of physical activity is lower amongst women, whereas the prevalence of depression is higher amongst women when compared to men. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Sung-Eun; Kim, Jin-Woo; Jee, Yong-Seok
2015-01-01
Background and Aims Excessive usage of smartphones may induce social problems, such as depression and impairment of social and emotional functioning. Moreover, its usage can impede physical activity, but the relationship between smartphone addiction and physical activity is obscure. Therefore, we examined the relationship and the impact of excessive smartphone use on physical activity. Methods This study collected data through the structured questionnaire consisting of general characteristics, the number and hours of smartphone usage, and the Smartphone Addiction Proneness Scale (SAPS) from 110 Chinese international students in Korea. The body composition and physical activity, such as the total daily number of steps and consumed calories, were measured. Results In this study, high-risk smartphone users showed less physical activity, such as the total number of steps taken and the average consumed calories per day. Moreover, their body composition, such as muscle mass and fat mass, was significantly different. Among these factors, the hours of smartphone use revealed the proportional relationship with smartphone addiction (β = 0.209, p = 0.026), while the average number of walking steps per day showed a significant reverse proportional tendency in participants with smartphone addiction (β = –0.883, p < 0.001). Conclusions Participants with smartphone addiction were less likely to walk for each day. Namely, smartphone addiction may negatively influence physical health by reducing the amount of physical activity, such as walking, resulting in an increase of fat mass and a decrease of muscle mass associated with adverse health consequences. PMID:26551911
Kim, Sung-Eun; Kim, Jin-Woo; Jee, Yong-Seok
2015-09-01
Excessive usage of smartphones may induce social problems, such as depression and impairment of social and emotional functioning. Moreover, its usage can impede physical activity, but the relationship between smartphone addiction and physical activity is obscure. Therefore, we examined the relationship and the impact of excessive smartphone use on physical activity. This study collected data through the structured questionnaire consisting of general characteristics, the number and hours of smartphone usage, and the Smartphone Addiction Proneness Scale (SAPS) from 110 Chinese international students in Korea. The body composition and physical activity, such as the total daily number of steps and consumed calories, were measured. In this study, high-risk smartphone users showed less physical activity, such as the total number of steps taken and the average consumed calories per day. Moreover, their body composition, such as muscle mass and fat mass, was significantly different. Among these factors, the hours of smartphone use revealed the proportional relationship with smartphone addiction (β = 0.209, p = 0.026), while the average number of walking steps per day showed a significant reverse proportional tendency in participants with smartphone addiction (β = -0.883, p < 0.001). Participants with smartphone addiction were less likely to walk for each day. Namely, smartphone addiction may negatively influence physical health by reducing the amount of physical activity, such as walking, resulting in an increase of fat mass and a decrease of muscle mass associated with adverse health consequences.
The Mission Accessible Near-Earth Objects Survey (MANOS): photometric results
NASA Astrophysics Data System (ADS)
Thirouin, Audrey; Moskovitz, Nicholas; Binzel, Richard; Christensen, Eric J.; DeMeo, Francesca; Person, Michael J.; Polishook, David; Thomas, Cristina; Trilling, David E.; Willman, Mark; Hinkle, Mary L.; Burt, Brian; Avner, Dan
2016-10-01
The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of Near-Earth Objects (NEOs) to provide physical data for several hundred mission accessible NEOs across visible and near-infrared wavelengths. Using a variety of 1-m to 8-m class telescopes, we observe 5 to 10 newly discovered sub-km NEOs per month in order to derive their rotational properties and taxonomic class.Rotational data can provide useful information about physical properties, like shape, surface heterogeneity/homogeneity, density, internal structure, and internal cohesion. Here, we present results of the MANOS photometric survey for more than 200 NEOs. We report lightcurves from our first three years of observing and show objects with rotational periods from a couple of hours down to a few seconds. MANOS found the three fastest rotators known to date with rotational periods below 20s. A physical interpretation of these ultra-rapid rotators is that they are bound through a combination of cohesive and/or tensile strength rather than gravity. Therefore, these objects are important to understand the internal structure of NEOs. Rotational properties are used for statistical study to constrain overall properties of the NEO population. We also study rotational properties according to size, and dynamical class. Finally, we report a sample of NEOs that are fully characterized (lightcurve and visible spectra) as the most suitable candidates for a future robotic or human mission. Viable mission targets are objects with a rotational period >1h, and a delta-v lower than 12 km/s. Assuming the MANOS rate of object characterization, and the current NEO population estimates by Tricarico (2016), and by Harris and D'Abramo (2015), 10,000 to 1,000,000 NEOs with diameters between 10m and 1km are expected to be mission accessible. We acknowledge funding support from NASA NEOO grant number NNX14AN82G, and NOAO survey program.
Evaluating the compatibility of American and Mexican national forest inventory data
Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen
2012-01-01
The international border region between the United States and Mexico represents a point of discontinuity in forest policy, land use management and resource utilization practices. These differences along with physical barriers which separate the two countries can interact to alter the structure and functioning of forest vegetation. One valuable source of information for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grison, E.
1961-01-01
A discussion is given on physical properties of plutonium, allotropic variations; kinetics of transformation; electrica; and magnetic properties; and electronic structure of the external layers of the atom. Plutonium can be used only as nuclear fuel; it is very expensive and toxic. (auth)
Use of Advanced Spectroscopic Techniques for Predicting the Mechanical Properties of Wood Composites
Timothy G. Rials; Stephen S. Kelley; Chi-Leung So
2002-01-01
Near infrared (NIR) spectroscopy was used to characterize a set of medium-density fiberboard (MDF) samples. This spectroscopic technique, in combination with projection to latent structures (PLS) modeling, effectively predicted the mechanical strength of MDF samples with a wide range of physical properties. The stiffness, strength, and internal bond properties of the...
ERIC Educational Resources Information Center
Olmsted, Patricia P., Ed.; Montie, Jeanne, Ed.
This is the second of four monographs reporting the findings of Phase 2 of the International Association for the Evaluation of Educational Achievement (IEA) Preprimary Project, which presents data on the physical characteristics of children's early childhood settings. Early childhood settings were documented in the following 15 countries: (1)…
Probabilistic Solution of Inverse Problems.
1985-09-01
AODRESSIl differentI from Conat.oildun 0111C*) It. SECURITY CLASS (ofll ~e vport) Office of Naval Research UCASFE Information Systems ...report describes research done within the Laboratory for Information and Decision Systems and the Artificial Intelligence Laboratory at the Massachusetts...analysis of systems endowed with perceptual abilities is the construction of internal representations of the physical structures in the external world
NASA Technical Reports Server (NTRS)
Longair, M. S.; Warner, J. W.
1979-01-01
The application of the space telescope for extragalactic astronomy, planetary research, and stellar, interstellar, and galactic structural problems is discussed. Topics include investigations of small solar system objects, the physical characteristics of ionized gaseous nebulae, the central regions of active galaxies and quasars, problems of cosmology, and the distribution and composition of interstellar matter.
Pierce, H.A.; Murray, J.B.
2009-01-01
The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.
Rostamian, Marzieh; Kazemi, Ashraf
2016-01-01
Physical activities among adolescents affects health during pubescence and adolescence and decrease in physical activities among adolescents has become a global challenge. The aim of the present study was to define the relation between the level of physical activity among adolescent girls and their health beliefs as personal factor and level of observational learning as environmental factor. The present study was a cross-sectional study that was conducted on 400 students aged from 11 to 19 years in Isfahan, Iran. Information regarding the duration of physical activity with moderate/severe intensity was measured in four dimensions of leisure time (exercising and hiking), daily activities, and transportation-related activities using the International Physical Activity questionnaire. Health belief structures included perceived sensitivity, intensity of perceived threat, perceived benefits, and barriers and self-efficacy; observational learning was measured using a researcher-made questionnaire. Results showed that perceived barriers, observational learning, and level of self-efficacy were related to the level of physical activity in all dimensions. In addition, the level of physical activity at leisure time, transportation, and total physical activity were dependent on the intensity of perceived threats ( P < 0.05). This study showed that the intensity of perceived threats, perceived barriers and self-efficacy structures, and observational learning are some of the factors related to physical activity among adolescent girls, and it is possible that by focusing on improving these variables through interventional programs physical activity among adolescent girls can be improved.
International fieldwork placements in low-income countries: Exploring community perspectives.
Shields, Megan; Quilty, Jenny; Dharamsi, Shafik; Drynan, Donna
2016-10-01
There has been a significant increase in the number of occupational and physical therapy students going on international fieldwork placements in low-income countries. Yet, there has been a lack of research describing this experience from the agencies that host students. The research question was 'how do members of an agency within a low-income country perceive, interpret and give meaning to international fieldwork placements where students from a Canadian university provide occupational and physical therapy services?' Purposive sampling was used to recruit participants from five affiliated international fieldwork sites. Six semi-structured interviews exploring the perspectives of individuals from agency sites in low-income countries facilitated the data collection. Interviews were audiotaped and transcribed verbatim for thematic analysis. Four themes provided insight into the participants' experience of hosting student therapists. Participants emphasised: (i) there was a reciprocity of learning between agency members and students; (ii) they felt responsible for the health and safety of the students, as well as providing an enriching experience; (iii) participants questioned the preparation phase; and (iv) recommendations were made by participants to strengthen partnerships while contemplating sustainable practices. This study highlighted that effective preparation, enhanced communication, reflection and reciprocity is necessary to achieve what hosting agencies view as sustainable international placements. These results provide a platform for stakeholders to question their current processes for fieldwork placement engagement and potential suggestions for improving current international fieldwork partnerships. © 2016 Occupational Therapy Australia.
Iannotti, Ronald J; Chen, Rusan; Kololo, Hania; Petronyte, Gintare; Haug, Ellen; Roberts, Chris
2013-01-01
Although there are substantial international differences in adolescent physical activity (PA), cross-country motivational differences have received limited attention, perhaps due to the lack of measures applicable internationally. Identical self-report measures assessing PA and motivations for PA were used to survey students ages 11, 13, and 15 from 7 countries participating in the 2005-2006 Health Behavior in School-Aged Children (HBSC) study representing 3 regions: Eastern Europe, Western Europe and North America. Multigroup comparisons with Confirmatory Factor Analysis and Structural Equation Modeling examined the stability of factors across regions and regional differences in relations between PA and motives for PA. Three PA motivation factors were identified as suitable for assessing international populations. There were significant regional, gender, and age differences in relations between PA and each of the 3 PA motives. Social and achievement motives were positively related to PA. However, the association of PA with health motivations varied significantly by region and gender. The patterns suggest the importance of social motives for PA and the possibility that health may not be a reliable motivator for adolescent PA. Programs to increase PA in adolescence need to determine which motives are effective for the particular population being targeted.
Brown, Lorraine; Edwards, John; Hartwell, Heather
2010-02-01
Using findings from semi-structured interviews with international postgraduate students in England, this paper explores the meanings attached to the food they eat in a new culture. Our study, using interviews, aimed to uncover student responses to both the food they eat whilst abroad and to the food they have left behind. Many students criticised local English food as bland, fattening, and unhealthy; nevertheless, most showed an openness to new foods, trying not only local food but also dishes prepared by their international friends, but this sat alongside a strong attachment to their home country dishes. Eating together was a popular leisure activity, and food of the origin country or region was the most popular cuisine. Eating home country food offered emotional and physical sustenance; students felt comforted by familiar taste, and that their physical health was stabilised by the consumption of healthier food than was available locally. Despite acknowledgement of the importance of food to cultural identity and overall quality of life in the anthropology and nutrition literatures, there is a dearth of research into this aspect of the international student experience; this study, therefore, marks an important beginning. 2009 Elsevier Ltd. All rights reserved.
Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?
NASA Astrophysics Data System (ADS)
Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.
2017-06-01
Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.
de Vries, Janneke E; Dekker, Carolien; Bastiaenen, Carolien H G; Goossens, Mariëlle E J B; Engelbert, Raoul H H; Verbunt, Jeanine A M C F
2017-11-29
To assess the factor structure, related constructs and internal consistency of the Child Activity Limitation Interview 21-Child version for use in Dutch-language countries. Cross-sectional validation study: After forward and back translation of the Dutch version of the Child Activity Limitation Interview 21-Child adolescents (11-21 years old) with chronic musculoskeletal pain completed an assessment. The assessment contained the Dutch Child Activity Limitation Interview, and questionnaires about demographics, pain intensity, functional disability, anxiety and depression. Internal consistency and construct validity were evaluated through exploratory factor analysis (principal axis factoring with oblique rotation) and hypotheses testing using pain intensity, activity limitations, anxiety and depression as comparative constructs. Seventy-four adolescents completed the assessment. Exploratory factor analysis resulted in a two-factor structure, explaining 50% of the variance. Internal consistency was good (Cronbach's α = 0.91 total scale, α = 0.90 Factor 1, α = 0.80 Factor 2). All nine hypotheses were confirmed. The Dutch version can be used to assess pain-related disability in Dutch-speaking adolescents comparable to the study sample. Scores on both subscales provide insight into the severity of the pain-related disability in both daily routine and more physically vigorous activities. Implications for Rehabilitation Chronic pain is a disabling disorder which not only impacts physically but restricts quality of life. This study provides clinicians a questionnaire to measure pain-related disability and quantify the impact of pain on the daily living of adolescents. The advantage of the Dutch version of the Child Activity and Limitations Interview over other measurements is that it can distinguish limitations in daily activities from more physically vigorous activities.
Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10
NASA Technical Reports Server (NTRS)
Holland, Scott D.
1995-01-01
A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.
Physical and mechanical properties of icebergs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammon, P.H.; Bobby, W.; Gagnon, R.E.
1983-05-01
Physical and mechanical characteristics of iceberg ice were studied from samples collected near the shores of eastern Newfoundland. Although the physical characteristics show considerable diversity, iceberg ice has some common features and is generally porous, lacks significant concentrations of dissolved materials, contains internal cracks and has an irregular interlocking grain structure. A review of mechanical testing of ice was carried out and an experimental setup was devised to reduce effects of improper contact between specimen and loading apparatus. Uniaxial compressive strength for iceberg ice was determined and compared with that for lake ice. The strength of iceberg ice was highermore » than that of lake ice but Young's Modulus for lake ice was higher.« less
A clean self reduces bribery intent.
Li, Chao; Liu, Li; Zheng, Wenwen; Dang, Jianning; Liang, Yuan
2017-08-14
The present research aimed at investigating the effect of physical cleanliness on bribery intent and the moderating role of personal need for structure (PNS) on this relationship. In Study 1, we used questionnaires to establish the correlation between bodily cleanliness and bribery intent. In Study 2, we examined the effect by priming sense of self-cleanliness. Study 3 was conducted outside a public bath to test our finding that physical purity decreases bribery intent again; we further found that individuals with high PNS showed no reduction in bribery intent even after cleaning themselves. We thus connected physical cleanliness with the corruption field and improved our understanding of its underlying moderating mechanism. © 2017 International Union of Psychological Science.
NASA Astrophysics Data System (ADS)
Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L.; Avera, John; Reguera, David; Douglas, Trevor; Pablo, Pedro J. De; Castón, José R.
2016-04-01
Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers.Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers. Electronic supplementary information (ESI) available: 6 figures, 3 tables and theory. See DOI: 10.1039/c6nr01007e
NASA Astrophysics Data System (ADS)
Posnansky, Oleg P.
2018-05-01
The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.
PREFACE: International Symposium "Nanoscience and Quantum Physics 2011" (nanoPHYS'11)
NASA Astrophysics Data System (ADS)
Saito, Susumu; Tanaka, Hidekazu; Nakamura, Takashi; Nakamura, Masaaki
2011-07-01
Quantum physics has developed modern views of nature for more than a century. In addition to this traditional role, quantum physics has acquired new significance in the 21st century as the field responsible for driving and supporting nanoscience research, which will have even greater importance in the future because nanoscience will be the academic foundation for new technologies. The Department of Physics, Tokyo Institute of Technology, are now conducting a "Nanoscience and Quantum Physics" project (Physics G-COE project) supported by the Global Center of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) in order to promote research and education in these important academic fields. The International Symposium on Nanoscience and Quantum Physics, held in Tokyo, Japan, 26-28 January 2011 (nanoPHYS'11) was organized by the Physics G-COE project of the Tokyo Institute of Technology to provide an international forum for the open exchange of topical information and for stimulating discussion on novel concepts and future prospects of nanoscience and quantum physics. There were a total of 118 papers including 34 invited papers. This nanoPHYS'11 is the fourth symposium of this kind organized by the Tokyo Institute of Technology. Topics focused on in the symposium included: Category 1: Novel nanostructure (Nanowires, Nanotubes, Spin-related structure, etc) Category 2: Novel transport and electronic properties (Graphene, Topological insulators, Coherent control, etc) Category 3: Electronic and optical properties of nanostructure Category 4: Fundamental physics and new concept in quantum physics Category 5: Quantum Physics - Quantum information Category 6: Quantum Physics - Nuclear and Hadron Physics Category 7: Quantum Physics - Astrophysics, etc All the papers submitted to this issue have been reviewed under a stringent refereeing process, according to the normal rules of this Journal. The editors are grateful to all the authors, the referees, and all the individuals involved in the symposium organization, in particular, all the committee members and secretaries who helped to make this symposium so successful. The organizing committee would like to take this opportunity to thank the invited speakers, the session chairs, and all the attendees for their contribution to the symposium. Susumu Saito, Hidekazu Tanaka, Takashi Nakamura and Masaaki Nakamura, Editors Conference photograph
Study on interfacial stability and internal flow of a droplet levitated by ultrasonic wave.
Abe, Yutaka; Yamamoto, Yuji; Hyuga, Daisuke; Awazu, Shigeru; Aoki, Kazuyoshi
2009-04-01
For a microgravity environment, new and high-quality material is expected to be manufactured. However, the effect of surface instability and the internal flow become significant when the droplet becomes large. Elucidation of internal flow and surface instability on a levitated droplet is required for the quality improvement of new material manufacturing in a microgravity environment. The objectives of this study are to clarify the interfacial stability and internal flow of a levitated droplet. Surface instability and internal flow are investigated with a large droplet levitated by the ultrasonic acoustic standing wave. The experiment with a large droplet is conducted both under normal gravity and microgravity environments. In the experiment, at first, the characteristics of the levitated droplet are investigated; that is, the relationships among the levitated droplet diameter, the droplet aspect ratio, the displacement of the antinode of the standing wave, and the sound pressure are experimentally measured. As a result, it is clarified that the levitated droplet tends to be located at an optimal position with an optimal shape and diameter. Second, the border condition between the stable and the unstable levitation of the droplet is evaluated by using the existing stability theory. The experimental results qualitatively agree with the theory. It is suggested that the stability of the droplet can be evaluated with the stability theory. Finally, multidimensional visual measurement is conducted to investigate the internal flow structure in a levitated droplet. It is suggested that complex flow with the vortex is generated in the levitated droplet. Moreover, the effect of physical properties of the test fluid on the internal flow structure of the levitated droplet is investigated. As a result, the internal flow structure of the levitated droplet is affected by the surface tension and viscosity.
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Chirstopher O.; Kleb, Bil
2010-01-01
This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem-dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the FUN3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, William L.
2013-01-01
This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintain ability by eliminating the requirement for problem dependent recompilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the Fun3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil
2011-01-01
This users manual provides in-depth information concerning installation and execution of Laura, version 5. Laura is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 Laura code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, Laura now shares gas-physics modules, MPI modules, and other low-level modules with the Fun3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.
Self-organization and feedback effects in the shock compressed media
NASA Astrophysics Data System (ADS)
Khantuleva, Tatyana
2005-07-01
New theoretical approach to the transport in condensed matter far from equilibrium combines methods of statistical mechanics and cybernetic physics in order to construct closed mathematical model of a system with self-organization and self-regulation. Mesoscopic effects are considered as a result of the structure formation and the feedback effects in an open system under dynamic loading. Nonequilibrium state equations had been involved to incorporate the velocity dispersion. Integrodifferential balance equations describe both wave and dissipative transport properties. Boundary conditions determine the internal scale spectra. The model is completed by the feedback that introduces the structure evolution basing the methods of cybernetic physics. The obtained results open a wide prospective for the control methods in applications to new technologies, intellectual systems and prediction of catastrophic phenomena.
Analysing the magnetopause internal structure: new possibilities offered by MMS
NASA Astrophysics Data System (ADS)
Belmont, G.; Rezeau, L.; Manuzzo, R.; Aunai, N.; Dargent, J.
2017-12-01
We explore the structure of the magnetopause using a crossing observed by the MMS spacecraft on October 16th, 2015. Several methods (MVA, BV, CVA) are first applied to compute the normal to the magnetopause considered as a whole. The different results obtained are not identical and we show that the whole boundary is not stationary and not planar, so that basic assumptions of these methods are not well satisfied. We then analyse more finely the internal structure for investigating the departures from planarity. Using the basic mathematical definition of what is a one-dimensional physical problem, we introduce a new method, called LNA (Local Normal Analysis) for determining the varying normal, and we compare the results so obtained with those coming from the MDD tool developed by [Shi et al., 2005]. This method gives the dimensionality of the magnetic variations from multi-point measurements and allows estimating the direction of the local normal using the magnetic field. On the other hand, LNA is a single-spacecraft method which gives the local normal from the magnetic field and particle data. This study shows that the magnetopause does include approximate one-dimensional sub-structures but also two and three dimensional intervals. It also shows that the dimensionality of the magnetic variations can differ from the variations of the other fields so that, at some places, the magnetic field can have a 1D structure although all the plasma variations do not verify the properties of a global one-dimensional problem. Finally a generalisation and a systematic application of the MDD method to the physical quantities of interest is shown.
Internal tidal mixing as a control on continental margin ecosystems
NASA Astrophysics Data System (ADS)
Sharples, Jonathan; Moore, C. Mark; Hickman, Anna E.; Holligan, Patrick M.; Tweddle, Jacqueline F.; Palmer, Matthew R.; Simpson, John H.
2009-12-01
We show that a breaking internal tide at a shelf edge is a fundamental control on the structural and functional properties of ecosystems. Contrasts in vertical mixing of nitrate between the shelf and the open ocean correspond with horizontal and vertical changes in phytoplankton communities, with largest cells found in surface waters at the shelf edge. Intense fishing activity is commonly seen at continental shelf edges, targeting spawning fish stocks. We suggest that the internal tide, a globally ubiquitous physical process at steep shelf edge bathymetry, supports shelf edge fisheries by providing large-celled phytoplankton for first-feeding fish larvae. The repeatability of the internal tide removes fish from the need to time spawning with a spring bloom. Also, with large phytoplankton cells dominating particulate organic carbon export, the internal tides could be an important influence on spatial and temporal variability in patterns of global carbon sequestration in deep water and sediments.
Factors Influencing International PhD Students to Study Physics in Australia
ERIC Educational Resources Information Center
Choi, Serene H.-J.; Nieminen, Timo A.; Townson, Peter
2012-01-01
Since physics research is an activity of an active international community, international visits are a common way for physicists to share scientific knowledge and skills. International mobility of physicists is also important for PhD physics study and research training. We investigated personal and social factors that influenced the decision for…
The Assessment of Intimate Partner Violence in Spanish Women: The Index of Spouse Abuse
ERIC Educational Resources Information Center
Plazaola-Castano, Juncal; Ruiz-Perez, Isabel; Escriba-Aguir, Vicenta; Montero-Pinar, Isabel; Vives-Cases, Carmen
2011-01-01
We aimed to analyze the internal consistency and construct validity of the Spanish version of the Index of Spouse Abuse (ISA) in a representative sample of 8,995 women attending general practice in Spain in 2006-2007. The factor structure analysis shows that the ISA measures four intimate partner violence (IPV) dimensions: emotional, physical, and…
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer
2009-01-01
This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.
Loinaz, Ismael; Echeburúa, Enrique; Ortiz-Tallo, Margarita; Amor, Pedro J
2012-02-01
Intimate partner violence is a complex problem that requires the update of the available assessment tools. The aim of the study is to test the revised Conflict Tactics Scales (CTS-2) in partner-violent men. Its structure and other psychometric properties are analyzed in 173 convicted offenders from Brians-2 and Alhaurín de la Torre penitentiaries. Discriminant validity is also assessed by comparing offenders with 108 males from the general population. The internal consistency for the 39 items of perpetration is .88 (varying from .59 to .83 among the subscales). The validity data indicate that the scale is useful to discriminate between batterers and general population in physical and psychological violence, although there is an overlap between different types of violence, and it is difficult to compare self-reports with external criteria such court decisions. The results of confirmatory factorial analysis do not support the original five-factor structure. Using exploratory factorial analysis, four components with good internal consistency were identified: Physical (.86), Sexual (.75), and Psychological Violence (.82), and Negotiation (.83). Recommendations for use and a reference guide of rating scores in samples of offenders are suggested.
A multi-scale ''soil water structure'' model based on the pedostructure concept
NASA Astrophysics Data System (ADS)
Braudeau, E.; Mohtar, R. H.; El Ghezal, N.; Crayol, M.; Salahat, M.; Martin, P.
2009-02-01
Current soil water models do not take into account the internal organization of the soil medium and, a fortiori, the physical interaction between the water film surrounding the solid particles of the soil structure, and the surface charges of this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil water-structure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local physical conditions, namely the pedo-climate, for biological and geo-chemical processes in soil, is not defined in these models. The omission of soil structure from soil characterization and modeling does not allow for coupling disciplinary models for these processes with soil water models. This article presents a soil water structure model, Kamel®, which was developed based on a new paradigm in soil physics where the hierarchical soil structure is taken into account allowing for defining its thermodynamic properties. After a review of soil physics principles which forms the basis of the paradigm, we describe the basic relationships and functionality of the model. Kamel® runs with a set of 15 soil input parameters, the pedohydral parameters, which are parameters of the physically-based equations of four soil characteristic curves that can be measured in the laboratory. For cases where some of these parameters are not available, we show how to estimate these parameters from commonly available soil information using published pedotransfer functions. A published field experimental study on the dynamics of the soil moisture profile following a pounded infiltration rainfall event was used as an example to demonstrate soil characterization and Kamel® simulations. The simulated soil moisture profile for a period of 60 days showed very good agreement with experimental field data. Simulations using input data calculated from soil texture and pedotransfer functions were also generated and compared to simulations of the more ideal characterization. The later comparison illustrates how Kamel® can be used and adapt to any case of soil data availability. As physically based model on soil structure, it may be used as a standard reference to evaluate other soil-water models and also pedotransfer functions at a given location or agronomical situation.
Hudait, Arpa; Molinero, Valeria
2014-06-04
Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by solution. We predict that micrometer-sized particles and nanoparticles have the same equilibrium internal structure. The variation of liquid-vapor surface tension with solute concentration is a key factor in determining whether a solution-embedded ice core or vapor-exposed ice cap is the equilibrium structure of the aerosols. In agreement with experiments, we predict that the structure of mixed-phase HNO3-water particles, representative of polar stratospheric clouds, consists of an ice core surrounded by freeze-concentrated solution. The results of this work are important to determine the phase state and internal structure of sea spray ultrafine aerosols and other mixed-phase particles under atmospherically relevant conditions.
TANAKA, Hiroyuki K. M.; YOKOYAMA, Izumi
2008-01-01
Lava domes are one of the conspicuous topographic features on volcanoes. The subsurface structure of the lava dome is important to discuss its formation mechanism. In the 1944 eruption of Volcano Usu, Hokkaido, a new lava dome was formed at its eastern foot. After the completion of the lava dome, various geophysical methods were applied to the dome to study its subsurface structure, but resulted in a rather ambiguous conclusion. Recently, from the results of the levelings, which were repeated during the eruption, “pseudo growth curves” of the lava dome were obtained. The curves suggest that the lava dome has a bulbous shape. In the present work, muon radiography, which previously proved effective in imaging the internal structure of Volcano Asama, has been applied to the Usu lava dome. The muon radiography measures the distribution of the “density length” of volcanic bodies when detectors are arranged properly. The result obtained is consistent with the model deduced from the pseudo growth curves. The measurement appears to afford useful method to clarify the subsurface structure of volcanoes and its temporal changes, and in its turn to discuss volcanic processes. This is a point of contact between high-energy physics and volcano physics. PMID:18941290
SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilly, Simon J.; Carollo, C. Marcella
2016-12-10
There are very strong observed correlations between the specific star formation rates (sSFRs) of galaxies and their mean surface mass densities, Σ, as well as other aspects of their internal structure. These strong correlations have often been taken to argue that the internal structure of a galaxy must play a major physical role, directly or indirectly, in the control of star formation. In this paper we show by means of a very simple toy model that these correlations can arise naturally without any such physical role once the observed evolution of the size–mass relation for star-forming galaxies is taken intomore » account. In particular, the model reproduces the sharp threshold in Σ between galaxies that are star-forming and those that are quenched and the evolution of this threshold with redshift. Similarly, it produces iso-quenched-fraction contours in the f {sub Q}( m , R {sub e}) plane that are almost exactly parallel to lines of constant Σ for centrals and shallower for satellites. It does so without any dependence on quenching on size or Σ and without invoking any differences between centrals and satellites, beyond the different mass dependences of their quenching laws. The toy model also reproduces several other observations, including the sSFR gradients within galaxies and the appearance of inside-out build-up of passive galaxies. Finally, it is shown that curvature in the main-sequence sSFR–mass relation can produce curvature in the apparent B / T ratios with mass. Our analysis therefore suggests that many of the strong correlations that are observed between galaxy structure and sSFR may well be a consequence of things unrelated to quenching and should not be taken as evidence of the physical processes that drive quenching.« less
UHPC and NSFRC in Severe Environmental Conditions
NASA Astrophysics Data System (ADS)
Rehacek, S.; Citek, D.; Kolisko, J.
2017-10-01
Structure and properties of cement composite are time-varying characteristics, depending among others on environmental conditions. The key idea is a struggle for complex research of joint effect of physical, chemical and dynamic loads on the internal structure of cement composite and understanding the correlation between changes in microstructure and macro-scale properties. During the experimental program, specimens will be exposed to combined influence of freeze-thaw cycles, aggressive chemical agents and dynamic loading. The aim is to create a theoretical basis for design of effective cement composites meant to be used in severe environmental conditions.
1989-09-01
pyridone).Previous work on, py/ridimum, pyrazinjumn or pyrimidi im salts Koon 2 -pyrimloone and 2 - pyrimidone salts [43j have shown that some...forces. Acct . r ~[U... •K;.i. LJ , ’ 0, ’’ .t_I ..- .It . ( :.. 2 A VIBRATIONAL MOLECULAR FORCE FIELD FOR .ACROMOLECULA-R MODELLI= Gerard VERGOTENi...microscopic point of view are (1) understanding, ( 2 ) interpretation of experimental results, (3) semiquantitative estimates of experimental results and (4
Rostamian, Marzieh; Kazemi, Ashraf
2016-01-01
Background: Physical activities among adolescents affects health during pubescence and adolescence and decrease in physical activities among adolescents has become a global challenge. The aim of the present study was to define the relation between the level of physical activity among adolescent girls and their health beliefs as personal factor and level of observational learning as environmental factor. Materials and Methods: The present study was a cross-sectional study that was conducted on 400 students aged from 11 to 19 years in Isfahan, Iran. Information regarding the duration of physical activity with moderate/severe intensity was measured in four dimensions of leisure time (exercising and hiking), daily activities, and transportation-related activities using the International Physical Activity questionnaire. Health belief structures included perceived sensitivity, intensity of perceived threat, perceived benefits, and barriers and self-efficacy; observational learning was measured using a researcher-made questionnaire. Results: Results showed that perceived barriers, observational learning, and level of self-efficacy were related to the level of physical activity in all dimensions. In addition, the level of physical activity at leisure time, transportation, and total physical activity were dependent on the intensity of perceived threats (P < 0.05). Conclusions: This study showed that the intensity of perceived threats, perceived barriers and self-efficacy structures, and observational learning are some of the factors related to physical activity among adolescent girls, and it is possible that by focusing on improving these variables through interventional programs physical activity among adolescent girls can be improved. PMID:28194200
Complex deformation associated with anhydrite layers in the Tromsø Basin, SW Barents Sea.
NASA Astrophysics Data System (ADS)
Marfo, George; Olakunle Omosanya, Kamaldeen; Johansen, Ståle Emil; Zervas, Ioannis
2017-04-01
Internal and external deformation associated with salt structures is of prime interest due to their economic importance as hydrocarbon seals, reservoirs, repositories for chemical waste and their implication on drilling. Salt structures are often associated with anhydrites, which may 'cap' or are enclosed within the allochthonous salt structures. Despite their economic importance, the internal and external structures of evaporites remain poorly studied from field and seismic data due to the sparse outcrops of evaporites and poor seismic imaging. The zero-phased, normal polarity, high resolution multiple 2D seismic data, in combination with detailed interpretation of wireline logs provide an excellent study into the salt structures, and offers a good opportunity to investigate the dynamics, geometries and mechanisms driving deformation of internal and external salt layers associated with the Late Carboniferous to Early Permian Salt structures in the Tromsø Basin. The methods include seismic interpretation and the application of multiple seismic attributes to map stratigraphic units and discontinuities. Our results show that the anhydrite layers are marked by high amplitude reflections at the crests and flanks or fully enclosed within the salt diapirs. Crestal and lateral anhydrite caprocks represent external salt structures whilst the entrained anhydrites or stringers are intrasalt structures. Anhydrite caprocks generally show structural styles such as faults and large-scale folds which are harmonic to the top salt structure. In contrast, anhydrite stringers show folds of varying scale, which are harmonic to disharmonic to the top salt structure. Boudins and steeply dipping stringer fragments are also interpreted within the stringers. Caprock deformation is attributed to salt upwelling. Folding and boudinaging of originally horizontal and continuous stringer layers formed from a multiphase superimposed sequence of ductile and brittle deformation in response to complex multi-dimensional salt flow. Internal salt flow involves radial and tangential compression, which leads to dominant fold structures near the margins. Boudins on the lower flanks of the diapir formed due radial extension. Our study further demonstrates that differential geometries exhibited by the different anhydrite groups imply that the mechanisms deforming internal and external salt structures are different. The results from this study are comparable to observations from salt mines, field exposures, scaled physical and numerical models.
KÖLLER, OLAF
2016-01-01
ABSTRACT National and international large‐scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students’ achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory‐driven two‐dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments. PMID:27818532
Kampa, Nele; Köller, Olaf
2016-09-01
National and international large-scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students' achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory-driven two-dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments.
2014-01-01
Background To frame interventions, it is useful to understand context- and time-specific correlates of children’s physical activity. To do this, we need accurate assessment of these correlates. There are currently no measures that assess correlates at all levels of the social ecological model, contain items that are specifically worded for the lunchtime and/or after-school time periods, and assess correlates that have been conceptualised and defined by children. The aim of this study was to develop and evaluate the psychometric properties of the lunchtime and after-school Youth Physical Activity Survey for Specific Settings (Y-PASS) questionnaires. Methods The Y-PASS questionnaire was administered to 264 South Australian children (146 boys, 118 girls; mean age = 11.7 ± 0.93 years). Factorial structure and internal consistency of the intrapersonal, sociocultural and physical environmental/policy lunchtime and after-school subscales were examined through an exploratory factor analysis. The test-retest reliability of the Y-PASS subscales was assessed over a one-week period on a subsample of children (lunchtime Y-PASS: n = 12 boys, 12 girls, mean age of 11.6 ± 0.8 years; after-school Y-PASS: n = 9 boys, 13 girls; mean age = 11.4 ± 0.9 years). Results For the lunchtime Y-PASS, three factors were identified under each of the intrapersonal, sociocultural and physical environmental/policy subscales. For the after-school Y-PASS, six factors were identified in the intrapersonal subscale, four factors in the sociocultural subscale and seven factors in the physical environmental/policy subscale. Following item reduction, all subscales demonstrated acceptable internal consistency (Cronbach alpha = 0.78 – 0.85), except for the lunchtime sociocultural subscale (Cronbach alpha = 0.55). The factors and items demonstrated fair to very high test-retest reliability (ICC = 0.26 – 0.93). Conclusion The preliminary reliability and factorial structure evidence suggests the Y-PASS correlate questionnaires are robust tools for measuring correlates of context-specific physical activity in children. The multi-dimensional factor structure provides justification for exploring physical activity correlates from a social ecological perspective and demonstrates the importance of developing items that are context specific. Further development and refinement of the Y-PASS questionnaires is recommended, including a confirmatory factor analysis and exploring the inclusion of additional items. PMID:24885601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmoke, M. A.; Rexroad, R. E.; Tiller, H. J.
1963-06-15
The experiment described constitutes part of the shielding program conducted by Army Nuclear Defense Laboratory and was designed to experimentally verify theoretical calculations used to predict the amount of radiation protection afforded by above-ground structures in a fallout radiation field. This method requires the knowledge of some physical parameters of a structure such as mass thickness of the walls and the geometric orientation of the detectors within the structure. From this information, a reduction factor for any given structure may be calculated. This Laboratory's experimental program was initially begun by measuring the attenuation of a simple structure with no complicatingmore » internal or external geometries and will proceed to more complex structures with basements, interior partitions, and upper floors. (auth)« less
The Physics Entrepreneurship Program at Case Western Reserve University
NASA Astrophysics Data System (ADS)
Taylor, Cyrus
2001-10-01
The Physics Entrepreneurship Program is a new, two-year Master's Program designed to empower physicists as entrepreneurs. Launched by the Dept. of Physics at Case Western Reserve University in close cooperation with the Weatherhead School of Management, the program is now in its second year. This innovative new program has already attracted important attention from the business community, including seed funding of a student launched venture, international press coverage, including an article in Business Week, and government interest, including an invitation to brief the Advisory Board of the Mathematical and Physical Sciences Division of the National Science Foundation. This talk will discuss the structure and content of the program, the lessons we are learning, and early indicators of success including a student-launched new business venture that has already secured more than $ 250,000 in seed funding.
Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M
2017-04-01
The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.
The International Postal Network and Other Global Flows as Proxies for National Wellbeing.
Hristova, Desislava; Rutherford, Alex; Anson, Jose; Luengo-Oroz, Miguel; Mascolo, Cecilia
2016-01-01
The digital exhaust left by flows of physical and digital commodities provides a rich measure of the nature, strength and significance of relationships between countries in the global network. With this work, we examine how these traces and the network structure can reveal the socioeconomic profile of different countries. We take into account multiple international networks of physical and digital flows, including the previously unexplored international postal network. By measuring the position of each country in the Trade, Postal, Migration, International Flights, IP and Digital Communications networks, we are able to build proxies for a number of crucial socioeconomic indicators such as GDP per capita and the Human Development Index ranking along with twelve other indicators used as benchmarks of national well-being by the United Nations and other international organisations. In this context, we have also proposed and evaluated a global connectivity degree measure applying multiplex theory across the six networks that accounts for the strength of relationships between countries. We conclude by showing how countries with shared community membership over multiple networks have similar socioeconomic profiles. Combining multiple flow data sources can help understand the forces which drive economic activity on a global level. Such an ability to infer proxy indicators in a context of incomplete information is extremely timely in light of recent discussions on measurement of indicators relevant to the Sustainable Development Goals.
The International Postal Network and Other Global Flows as Proxies for National Wellbeing
Rutherford, Alex; Anson, Jose; Luengo-Oroz, Miguel; Mascolo, Cecilia
2016-01-01
The digital exhaust left by flows of physical and digital commodities provides a rich measure of the nature, strength and significance of relationships between countries in the global network. With this work, we examine how these traces and the network structure can reveal the socioeconomic profile of different countries. We take into account multiple international networks of physical and digital flows, including the previously unexplored international postal network. By measuring the position of each country in the Trade, Postal, Migration, International Flights, IP and Digital Communications networks, we are able to build proxies for a number of crucial socioeconomic indicators such as GDP per capita and the Human Development Index ranking along with twelve other indicators used as benchmarks of national well-being by the United Nations and other international organisations. In this context, we have also proposed and evaluated a global connectivity degree measure applying multiplex theory across the six networks that accounts for the strength of relationships between countries. We conclude by showing how countries with shared community membership over multiple networks have similar socioeconomic profiles. Combining multiple flow data sources can help understand the forces which drive economic activity on a global level. Such an ability to infer proxy indicators in a context of incomplete information is extremely timely in light of recent discussions on measurement of indicators relevant to the Sustainable Development Goals. PMID:27248142
ERIC Educational Resources Information Center
International Council on Health, Physical Education, and Recreation, Washington, DC.
The theme of the Ninth Annual International Congress of the International Council on Health, Physical Education, and Recreation (ICHPER), where the papers in this collection originated, was "Educational Planning in Health, Physical Education, and Recreation." After greetings from six distinguished Korean leaders and the Presidential address by…
Finsler geometry of nonlinear elastic solids with internal structure
NASA Astrophysics Data System (ADS)
Clayton, J. D.
2017-02-01
Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal structure. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement fields-i.e., a multiscale representation-whereby the latter are represented mathematically by the director vector of pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient. A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary conditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar, strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a description of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies. For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith's fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For the cavitation problem, the Finsler theory is able to accurately reproduce the vacancy formation energy at a nanoscale resolution, and various solutions describe localized cavitation at the core of the body and/or distributed dilatation and softening associated with amorphization as observed in atomic simulations, with relative stability of solutions depending on the regularization length.
Gobbi, Erica; Elliot, Catherine; Varnier, Maurizio; Carraro, Attilio
2016-01-01
The purpose of this research was to assess an Italian version of the Physical Activity Questionnaire for Older Children (PAQ-C-It). Three separate studies were conducted, whereby testing general psychometric properties, construct validity, concurrent validity and the factor structure of the PAQ-C-It among general and clinical pediatric population. Study 1 (n = 1170) examined the psychometric properties, internal consistency, factor structure (exploratory factor analysis, EFA) and construct validity with enjoyment perception during physical activity. Study 2 (n = 59) reported on reliability, construct validity with enjoyment and BMI, and on cross-sectional concurrent validity with objectively measured MVPA (tri-axial accelerometry) over the span of seven consecutive days. Study 3 (n = 58) examined the PAQ-C-It reliability, construct validity with BMI and VO2max as the objective measurement among a population of children with congenital heart defects (CHD). In study 2 and 3, the factor structure of the PAQ-C-It was then re-examined with an EFA. The PAQ-C-It showed acceptable to good reliability (alpha .70 to .83). Results on construct validity showed moderate but significant association with enjoyment perception (r = .30 and .36), with BMI (r = -.30 and -.79 for CHD simple form), and with the VO2max (r = .55 for CHD simple form). Significant concurrent validity with the objectively measured MVPA was reported (rho = .30, p < .05). Findings of the EFA suggested a two-factor structure for the PAQ-C-It, with items 2, 3, and 4 contributing little to the total score. This study supports the PAQ-C-It as an appropriate instrument to assess the MVPA levels of Italian children, including children with simple forms of CHD. Support is given to the possible instrument effectiveness on a large international perspective in order to level out data gathering across the globe.
Gobbi, Erica; Elliot, Catherine; Varnier, Maurizio; Carraro, Attilio
2016-01-01
The purpose of this research was to assess an Italian version of the Physical Activity Questionnaire for Older Children (PAQ-C-It). Three separate studies were conducted, whereby testing general psychometric properties, construct validity, concurrent validity and the factor structure of the PAQ-C-It among general and clinical pediatric population. Study 1 (n = 1170) examined the psychometric properties, internal consistency, factor structure (exploratory factor analysis, EFA) and construct validity with enjoyment perception during physical activity. Study 2 (n = 59) reported on reliability, construct validity with enjoyment and BMI, and on cross-sectional concurrent validity with objectively measured MVPA (tri-axial accelerometry) over the span of seven consecutive days. Study 3 (n = 58) examined the PAQ-C-It reliability, construct validity with BMI and VO2max as the objective measurement among a population of children with congenital heart defects (CHD). In study 2 and 3, the factor structure of the PAQ-C-It was then re-examined with an EFA. The PAQ-C-It showed acceptable to good reliability (alpha .70 to .83). Results on construct validity showed moderate but significant association with enjoyment perception (r = .30 and .36), with BMI (r = -.30 and -.79 for CHD simple form), and with the VO2max (r = .55 for CHD simple form). Significant concurrent validity with the objectively measured MVPA was reported (rho = .30, p < .05). Findings of the EFA suggested a two-factor structure for the PAQ-C-It, with items 2, 3, and 4 contributing little to the total score. This study supports the PAQ-C-It as an appropriate instrument to assess the MVPA levels of Italian children, including children with simple forms of CHD. Support is given to the possible instrument effectiveness on a large international perspective in order to level out data gathering across the globe. PMID:27228050
Martínez, Pablo; Rojas, Graciela; Fritsch, Rosemarie; Martínez, Vania; Vöhringer, Paul A; Castro, Ariel
2017-01-01
International evidence has shown the complex interaction between depression and chronic physical diseases. Depression in scenarios involving multiple comorbidities has not received enough attention in Chile. To characterize the depressed people who consult at Primary Health Care Centers (PHCCs), taking into account the presence of chronic physical or psychiatric comorbidity. A secondary analysis of databases used in a clinical trial. Two hundred fifty six adults seeking professional help were recruited in four PHCCs located in the Metropolitan Region. These people had a major depressive episode, identified with a structured psychiatric interview (MINI), and gave their informed consent to participate. Socio-demographic information was collected, depressive symptomatology was measured with the patient health questionnaire 9 (PHQ-9), psychiatric morbidity was assessed using the Mini International Neuropsychiatric Interview (MINI), and chronic physical diseases were self-reported by the patients. Descriptive analyses of all the variables were conducted. Seventy percent of patients had a history of depression, with a median of two prior depressive episodes. Depressive symptoms were mostly considered as moderate to severe and severe and 31% of the patients had high suicide risk. Seventy eight percent displayed a physical or psychiatric comorbidity. Of these patients, 29% only had a chronic physical comorbidity, while 46% suffered from an additional psychiatric disorder. Depressed individuals who seek help at PHCCs constitute an especially complex population that must be treated taking into account multiple comorbidities.
Pollard, Shawn D.; Garlow, Joseph A.; Yu, Jiawei; ...
2017-03-10
Néel skyrmions are of high interest due to their potential applications in a variety of spintronic devices, currently accessible in ultrathin heavy metal/ferromagnetic bilayers and multilayers with a strong Dzyaloshinskii–Moriya interaction. Here in this paper we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature with Lorentz transmission electron microscopy, a high-resolution technique previously suggested to exhibit no Néel skyrmion contrast. Phase retrieval methods allow us to map the internal spin structure of the skyrmion core, identifying a 25 nm central region of uniform magnetization followed by a larger regionmore » characterized by rotation from in- to out-of-plane. The formation and resolution of the internal spin structure of room temperature skyrmions without a stabilizing out-of-plane field in thick magnetic multilayers opens up a new set of tools and materials to study the physics and device applications associated with chiral ordering and skyrmions.« less
Rational design of reconfigurable prismatic architected materials.
Overvelde, Johannes T B; Weaver, James C; Hoberman, Chuck; Bertoldi, Katia
2017-01-18
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
Rational design of reconfigurable prismatic architected materials
NASA Astrophysics Data System (ADS)
Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia
2017-01-01
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
NASA Astrophysics Data System (ADS)
Moon, C.; Mitchell, S. A.; Callor, N.; Dewers, T. A.; Heath, J. E.; Yoon, H.; Conner, G. R.
2017-12-01
Traditional subsurface continuum multiphysics models include useful yet limiting geometrical assumptions: penny- or disc-shaped cracks, spherical or elliptical pores, bundles of capillary tubes, cubic law fracture permeability, etc. Each physics (flow, transport, mechanics) uses constitutive models with an increasing number of fit parameters that pertain to the microporous structure of the rock, but bear no inter-physics relationships or self-consistency. Recent advances in digital rock physics and pore-scale modeling link complex physics to detailed pore-level geometries, but measures for upscaling are somewhat unsatisfactory and come at a high computational cost. Continuum mechanics rely on a separation between small scale pore fluctuations and larger scale heterogeneity (and perhaps anisotropy), but this can break down (particularly for shales). Algebraic topology offers powerful mathematical tools for describing a local-to-global structure of shapes. Persistent homology, in particular, analyzes the dynamics of topological features and summarizes into numeric values. It offers a roadmap to both "fingerprint" topologies of pore structure and multiscale connectedness as well as links pore structure to physical behavior, thus potentially providing a means to relate the dependence of constitutive behaviors of pore structures in a self-consistent way. We present a persistence homology (PH) analysis framework of 3D image sets including a focused ion beam-scanning electron microscopy data set of the Selma Chalk. We extract structural characteristics of sampling volumes via persistence homology and fit a statistical model using the summarized values to estimate porosity, permeability, and connectivity—Lattice Boltzmann methods for single phase flow modeling are used to obtain the relationships. These PH methods allow for prediction of geophysical properties based on the geometry and connectivity in a computationally efficient way. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli
2015-01-01
The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574
Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli
2015-01-01
The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.
The influence of porosity and structural parameters on different kinds of gas hydrate dissociation
Misyura, S. Y.
2016-01-01
Methane hydrate dissociation at negative temperatures was studied experimentally for different artificial and natural samples, differing by macro- and micro-structural parameters. Four characteristic dissociation types are discussed in the paper. The internal kinetics of artificial granule gas hydrates and clathrate hydrates in coal is dependent on the porosity, defectiveness and gas filtration rate. The density of pores distribution in the crust of formed ice decreases by the several orders of magnitude and this change significantly the rate of decay. Existing models for describing dissociation at negative temperatures do not take into account the structural parameters of samples. The dissociation is regulated by internal physical processes that must be considered in the simulation. Non-isothermal dissociation with constant external heat flux was simulated numerically. The dissociation is simulated with consideration of heat and mass transfer, kinetics of phase transformation and gas filtering through a porous medium of granules for the negative temperatures. It is shown that the gas hydrate dissociation in the presence of mainly microporous structures is fundamentally different from the disintegration of gas hydrates containing meso and macropores. PMID:27445113
NASA Astrophysics Data System (ADS)
Wagner, Albrecht
2006-04-01
Over the past century, physicists have sought to explain the character of the matter and energy in our universe, to show how the basic forces of nature and the building blocks of matter come about, and to explore the fabric of space and time. In the past three decades, experiments at laboratories around the world have given us a precise confirmation of the underlying theory called the standard model. These particle physics advances have a direct impact for our understanding of the structure of the universe, both at its inception in the Big Bang, and in its evolution to the present and future. The final synthesis is not yet fully clear, but we know with confidence that major discoveries expanding the standard model framework will occur at the next generation of accelerators. The Large Hadron Collider (LHC) being built at CERN will take us into the discovery realm. The proposed International Linear Collider (ILC) will extend the discoveries and provide a wealth of precision measurements that are essential for giving deeper understanding of their meaning, and pointing the way to further evolution of particle physics in the future. A world-wide consensus has formed for a baseline ILC project at energies of 500 GeV and beyond. The choice of the superconducting technology as basis for the ILC has paved the way for a global design effort which has now taken full speed.
PREFACE: 1982 International Conference on Plasma Physics
NASA Astrophysics Data System (ADS)
Wilhelmsson, Hans
1982-01-01
Invited Papers: The Physics of Hot Plasmas During the last decade a dramatic evolution of plasma physics has occurred. Not only have gigantic fusion plasma machines been planned, and are now being built, and elaborate spaceships and antenna systems been constructed to explore remote parts of the cosmos; new observations have revealed fascinating structures in space, ranging from pulsar plasmas under extreme conditions in very strong magnetic fields to large-scale magnetic field and electric current systems in cosmic plasmas. X-rays from very distant sources as well as radio-waves from the plasma in the magnetosphere and in the Aurora have recently been studied with new observational techniques. Ingenious laboratory experiments are continuously being carried out to exploit new fundamental processes in plasmas. These are of great interest for the basic understanding of plasmas and also have immediate consequences for applications, like plasma heating and diagnostics. The theoretical description of new plasma phenomena, and of the plasma state in general poses challenging problems, particularly in situations where high concentration of energy is located in the plasmas. Nonlinear wave analysis and turbulence theory have accordingly been extensively developed to describe in particular the collective plasma phenomena. New concepts have been envisaged like plasma solitons, which may be thought of as excitations of local concentrations of longitudinal plasma waves which turn out to be particularly stable. More and more sophisticated structures of nonlinear nature are being revealed by means of high capacity computer facilities. Simulation experiments allow for studies of chaotic behaviour of plasma particles. Related fields of activity form new trends in the development of plasma theory. The programme of the 1982 International Conference on Plasma Physics, which was held in Göteborg, Sweden, stressed the role of the Physics of Hot Plasmas. Studies of such plasmas are essential, not only for fusion energy development, but also for astro- and space research. Plasmas in different situations often have important features in common. Results obtained under various conditions, in the laboratory or in space, should therefore be compared and interrelated. The Göteborg conference emphasized more than the previous one, which was held in Nagoya, Japan, the astro- and space aspects, but there were still more contributions from the fusion and laboratory research. The fundamental plasma theory part was, however, the most extensive one in the programme. At the conference there were seventy invited talks, including six comprehensive talks addressed to all participants. The remaining sixtyfour invited talks were topical talks. Besides, we had received about 450 contributed papers. About 300 of them were given as posters, and most of the remaining ones were presented as orals. The set of one page abstracts of these contributed papers as well as the titles of the invited talks were collected in two volumes, which were sent to all participants a month before the conference. Another set, the four page papers, which had been carefully prepared by the authors for photoreproduction to one page papers, were published in a volume of proceedings of some 460 pages available at the conference. When trying to classify the contributions, it turned out that they fell naturally into four main categories, namely: General Theory Space and Astro Plasmas Fusion Laboratory Plasmas For practical reasons we had to divide the Abstracts into two Volumes, the first one including categories (1) and (2), and the second one the two remaining categories (3) and (4). In publishing the invited talks from the conference we had to handle a great number of extensive papers. It turned out to be natural to have also the invited papers published in two parts, as two separate numbers of Physica Scripta, the first one devoted to (1) General Theory, and (2) Space and Astro Plasmas, whereas the second one to (3) Fusion and (4) Laboratory Plasmas. The 1982 International Conference on Plasma Physics was organized by Chalmers University of Technology. It gathered about 500 participants from 40 countries. Large delegations came from the USA, France, West Germany, Japan, the USSR, and India, the number of participants from these countries ranging from 100 to 20. Sweden had about 50 participating scientists. There were a total of about 20 from the other Scandinavian countries. The principal sponsor of the conference was IUPAP, the International Union of Pure and Applied Physics. The conference also had a number of co-sponsors like IAU, the International Astronomical Union, URSI, the International Union of Radio Science, EPS, the European Physical Society, and EURATOM-FUSION. The conference was supported by Swedish Industry and Swedish Research Boards. The previous ICPP, held in Nagoya two years ago, was the first attempt to combine two types of conferences: the Plasma Theory Conference, first held in Kiev in the Soviet Union in 1971, and the Waves and Instabilities Congress, held for the first time in Innsbruck, Austria in 1973. As a consequence of the success of the Nagoya conference it was decided by the International Organizing Committee of the ICPP that the 1982 conference should also be of the combined type. The 1982 ICPP in Göteborg was thus a Joint Conference of the Fifth Kiev International Conference in Plasma Theory and the Fifth International Congress on Waves and Instabilities in Plasmas. During the conference in Göteborg the International Organizing Committee had a meeting and it was decided that also the next International Conference on Plasma Physics will be of the combined type. It will be held in Lausanne, Switzerland in 1984. The International Organizing Committee on the 1982 International Conference on Plasma Physics comprised about 40 plasma physics scientists from all over the world, who represented various sections of plasma physics. I would like to thank the active members of the IOC for an efficient and friendly co-operation in deciding about the program of invited speakers and for discussions on the general structure of the conference. Our most cordial thanks are extended to the invited speakers for coming to the conference to deliver such excellent talks and to provide us in good time for printing with so beautifully prepared manuscripts. Symposium on Plasma Theory: Preface Several satellite meetings were arranged following the 1982 International Conference on Plasma Physics in Göteborg. Among them a Symposium on Plasma Theory was held at Aspenäsgården outside Göteborg during three days, June 16-18, 1982. The purpose of the symposium was to discuss problems of current interest in plasma theory with applications to space and astrophysical plasmas as well as to fusion plasmas. A total of fifteen talks were given during the three days, and some very lively discussions arose, notably in the area of plasma turbulence. There were around 30 invited scientists present, about one third from the United States, one third from the Soviet Union, and the rest from England, Japan, and various other countries. This volume of Physica Scripta (2B, 506-595) includes some of the talks which were given at Aspenäsgården. Several of the authors of contributed papers to the 1982 International Conference on Plasma Physics were encouraged to write extended versions of their contributions, and these are also included in this number, as are furthermore some papers, which were prepared during prolonged stays of visiting scientists at our institute in connection with the 1982 ICPP. It is expected that the collection of papers thus assembled will give a general picture of the activities accompanying the main conference and that it will elucidate some trends in the development of plasma theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BUNCE, G.; VIGDOR, S.
2001-03-15
International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international naturemore » of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce.« less
75 FR 1301 - Damages Received on Account of Personal Physical Injuries or Physical Sickness; Hearing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 [REG-127270-06] RIN 1545-BF81 Damages Received on Account of Personal Physical Injuries or Physical Sickness; Hearing AGENCY: Internal... from gross income for amounts received on account of personal physical injuries or physical sickness...
Physics Education activities sponsored by LAPEN
NASA Astrophysics Data System (ADS)
Mora Ley, Cesar E.
2007-05-01
In this work we present the first activities of the Latin-American Physics Education Network (LAPEN) organized by representatives of Brazil, Cuba, Mexico, Argentina, Colombia, Uruguay, Peru and Spain. These activities include Seminars, Congress, Postgraduate Programs on Physics Education and several publications. The creation of LAPEN has been inspired and warranted by members of the International Commission on Physics Education of the International Union of Pure and Applied Physics. LAPEN was constituted in the International Meeting on Teaching Physics and Training Teachers (RIEFEP 2005) which was held in Matanzas, Cuba in November 2005. The creation of LAPEN was also warranted by the General Assembly of the IX Inter-American Conference on Physics Education held in San José, Costa Rica from 3 to 7 July 2006, and by the ICPE Committee in the International Conference on Physics Education 2006 at Tokyo, Japan. LAPEN has a Coordinator Committee integrated by a President, a Vice-president and an Executive Secretary.
What is life? Bio-physical perspectives.
Gladyshev, G P
2009-01-01
Life arises and develops in gravitationally bound atomic systems, under certain conditions, in the presence of the inflow of energy. A condition of structural dynamic reactivity to the energy inflow qualifies what are anthropomorphically considered as "alive objects". Alive objects, in this perspective, include such rudimentary animate atomic structures as the retinal molecule C20H28o to the herpes simplex virus C102H152N26o29 to the human being, a twenty-six element atomic structure, which can be quantified further as thermodynamic quasi-closed supramolecular systems, which are part of natural open systems. These systems appear and evolve in periodic conditions near to internal equilibrium. This systems attribute of dynamic life can be understood further by the determination and use of mathematical "state functions", which are functions that quantify the state of a system defined by the ensemble of physical quantities: temperature, pressure, composition, etc., which characterize the system, but neither by its surroundings nor by its history. In this view, the phenomenon of a life is easily understood as a general consequence of the laws of the universe, in particular, the laws of thermodynamics, which in the geocentric perspective translate to a formulation of "hierarchical thermodynamics" and a "principle of substance stability". The formation of living thermodynamic structures, in short, arises on the nanolevel by a constantly varying environment that causes variety of living forms. The definition of a life as the bio-chemical-physical phenomenon can thus be given on the basis of the exact sciences, i. e. chemistry, physics, and thermodynamics, without mention of numerous private attributes of a living substance and without physically baseless models of mathematical modeling, such as Prigoginean thermodynamics.
NASA Astrophysics Data System (ADS)
Petrov, Minko; Reynolds, Steve
2014-12-01
Professor Nikolay Kirov Nikolov graduated in Chemistry from Sofia University 'St. Kliment Ohridski', Bulgaria, in 1968. He received his Ph.D. degree in 1973, D.Sc. in 1988 and was appointed to the position of Professor of Physics in the Institute of Solid State Physics (ISSP), Bulgarian Academy of Sciences (BAS), in 1989. Prof. Kirov rose to become an international authority in the area of molecular spectroscopy, and in particular in the vibrational spectroscopy of thermotropic liquid crystals. Prof. Kirov was a scientist of high reputation both in Bulgaria and globally. His scientific papers, numbering some 150, focus on the physics of liquid crystals. His systematic investigations of the vibrational spectroscopy of a wide class of thermotropic liquid crystals were collected in the monograph Vibrational spectroscopy of liquid crystals (1984), in which the molecular structure and properties of various liquid crystals, vibrational assignments, orientational order parameters and their calculation by molecular dynamics are presented. A range of liquid crystal materials was categorised and reported in his second book Atlas of vibrational spectra of liquid crystals (1988). Both publications remain a valuable source of information for specialists in the field of molecular spectroscopy. The outstanding contributions and growing reputation of Prof. Kirov led to periods as Visiting Scientist in the Universities of Parma, Calabria and Wroclaw. His abilities as a scientific organizer and leader were also notable, and led to a long and distinguished period of service in the Institute of Solid State Physics, being first appointed in 1980 as Scientific Secretary, and subsequently as Head of the Laboratory of Optics and Spectroscopy (1990-1998) and Director of the Institute (1991-1999). He was Chairman of the Scientific Council of ISSP over this period, and a member of the Specialized Scientific Council on Condensed Matter Physics. Prof. Kirov was a member of the High Testimonial Committee of the Republic of Bulgaria during 1996. Nikolay Kirov was a key figure in the organization, promotion and success of the International School on Condensed Matter Physics (ISCMP), where he was able to use his network of international contacts to excellent effect. He served as Scientific Secretary (1988-1990), Chairman and Editor of the ISCMP Proceedings (1992-1998), and as Chairman Emeritus (2002-2012). Prof. Kirov is an Honorary Member of the Institute of Solid State Physics. He received the Honorary Diploma 'Nicola Obreshkov' in 1986 and the "Marin Drinov" Sign of Honour BAS (on a ribbon) in 1998, for achievements in the physical and mathematical sciences. He was also honoured outside his native Bulgaria, receiving a Gold Medal from Wroclaw University, Poland, in recognition of successful scientific collaborations in the area of molecular structure.
Broström, Anders; Pakpour, A H; Ulander, Martin; Nilsen, Per
2018-05-18
To develop and validate a Swedish questionnaire to measure propensity for behaviour change regarding food habits, physical activity and weight reduction in patients with hypertension. Cross-sectional design. A total of 270 consecutive patients with hypertension diagnosed at 4 primary care centres in Sweden were included. The 6-item Swedish version of the Propensity to Achieve Healthy Lifestyle Scale (PAHLS) was developed to measure propensity for behaviour change regarding food habits, physical activity and weight reduction. The PAHLS (i.e., including 3 items for preparedness and 3 items for capacity) was developed by 3 multi-professional researchers inspired by the Transtheoretical Model of Behaviour Change in collaboration with clinically active nurses. Data were collected by questionnaires on food habits (i.e., the Food Frequency Questionnaire), physical activity (the International Physical Activity Questionnaire), propensity for a healthy lifestyle (the PHLQ), as well as during a clinical examination. Exploratory (EFA) and confirmatory factor analyses (CFA), as well as Rasch analysis, were used. Of the 270 patients (50% women), 27% scored low levels of physical activity on the International Physical Activity Questionnaire, and 34% of the patients were obese (body mass index ≥30 kg/m 2 ). The EFA (explaining 54% of the variance) showed unidimensionality for the PAHLS that was supported by both CFA and Rasch analyses. No floor and 1.9% ceiling effects were found. Multiple group CFA (an extension of structural equation modelling) showed that the PAHLS operated equivalently across both male and female patients. Internal consistency (Cronbach's alpha 0.83) and composite reliability (0.89) were good. The initial testing of PAHLS provided good validity and reliability scores to measure propensity for behaviour change in patients with hypertension. The PAHLS can be used by nurses as a tool to simplify shared decision making in relation to behavioural changes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
ERIC Educational Resources Information Center
Berridge, Mavis E., Ed.; Ward, Graham R., Ed.
The 36 papers in this book were presented at the Fifth International Symposium on Adapted Physical Activity. Presentations document some of the research findings and new ideas in physical education and recreation programs designed to improve the quality of life for special populations. The collection represents the breadth of the field, from the…
NASA Astrophysics Data System (ADS)
2012-05-01
Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events
Physical Education Students' Ownership, Empowerment, and Satisfaction With PE and Physical Activity.
Moore, E Whitney G; Fry, Mary D
2017-12-01
Individuals experiencing a highly caring, task-involving, and low ego-involving exercise climate have reported greater ownership in exercise class and empowerment to exercise in general. This study examined the relationship between ownership and empowerment in exercise, with 2 context-specific outcomes, satisfaction with physical education (PE) and physical activity, respectively. Given the mission of PE to foster individuals' lifelong physical activity habit, the perceptions of high school students were collected for this study. Ownership in exercise was hypothesized to be significantly, positively correlated with students reporting satisfaction in PE more than their satisfaction in physical activity, whereas empowerment in exercise was hypothesized to be more strongly, positively correlated with students' physical activity satisfaction. A second purpose of this study was to test the measurement quality of the updated Empowerment in Exercise Scale (EES; now 13 items). High school students (N = 502, 43% female) in a Midwestern U.S. school district completed a survey. Confirmatory factor analysis supported the internal measurement structure of the EES (λ = .62-.91; McDonald's omega = .89) across student gender (strong invariance). Additionally, the structural equation modeling analysis revealed only 1 parameter moderated by the students' gender (latent mean of ownership). The hypotheses were supported, such that ownership in exercise was more strongly correlated with PE satisfaction (r = .87) and empowerment in exercise had a stronger correlation with physical activity satisfaction (r = .92). These results support the beneficial effect a satisfying experience in PE can have on students' satisfaction with physical activity outside of school.
Crema, M D; Guermazi, A; Sayre, E C; Roemer, F W; Wong, H; Thorne, A; Singer, J; Esdaile, J M; Marra, M D; Kopec, J A; Nicolaou, S; Cibere, J
2011-12-01
Osteoarthritis (OA) is the most common arthropathy of the knee joint(1). Symptoms reported by patients and signs noted during physical examination guide clinicians in identifying subjects with knee OA(2-4). Pain is one of the most important symptoms reported by subjects with knee OA(2,3). Although very common, pain is a non-specific symptom, related to pathology in several structures within the knee joint, and includes synovitis(5), subchondral bone marrow lesions(6), and joint effusion(7). Further, pain is a subjective symptom that cannot be directly measured or assessed during physical examination. Crepitus or crepitation in association with arthritis is defined as a crackling or grinding sound on joint movement with a sensation in the joint. Crepitus may occur with or without pain and is a common finding during physical examination in subjects with knee OA(2-4,8,9). It is not known whether crepitus is related to pathology in various structures within the knee. The aim of our study was to determine the cross-sectional associations of structural pathologies within the knee with crepitus in a population-based cohort with knee pain, using magnetic resonance imaging (MRI). Subjects with knee pain were recruited as a random population sample, with crepitus assessed in each compartment of the knee using a validated and standardized approach during physical examination(10). MRI of the knee was performed to assess cartilage morphology, meniscal morphology, osteophytes, cruciate ligaments, and collateral ligaments. For both compartment-specific and whole-knee analyses, a multiple logistic regression analysis was performed to assess the associations of MRI-detected structural pathology with crepitus, adjusting for potential confounders. Variables were selected by backwards elimination within each compartment and in the overall knee models, and only statistically significant variables remained in the "selected" models; remaining variables in these models are adjusted for each other. An increased risk for compartment-specific crepitus was associated with osteophytes at the patellofemoral (PF) and lateral tibiofemoral (LTF) joints. Crepitus was associated with osteophytes and medial collateral ligament (MCL) pathology at the medial tibiofemoral (MTF) compartment, but cartilage damage was negatively associated with crepitus at this compartment. In the selected whole-knee model, only meniscal tears were associated with an increased risk for general crepitus. Thus, it seems that crepitus may be associated with pathology in several internal structures. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Communications among data and science centers
NASA Technical Reports Server (NTRS)
Green, James L.
1990-01-01
The ability to electronically access and query the contents of remote computer archives is of singular importance in space and earth sciences; the present evaluation of such on-line information networks' development status foresees swift expansion of their data capabilities and complexity, in view of the volumes of data that will continue to be generated by NASA missions. The U.S.'s National Space Science Data Center (NSSDC) manages NASA's largest science computer network, the Space Physics Analysis Network; a comprehensive account is given of the structure of NSSDC international access through BITNET, and of connections to the NSSDC available in the Americas via the International X.25 network.
European Science Notes, volume 40, number 2
NASA Astrophysics Data System (ADS)
Shaffer, L. E.
1986-02-01
ESN is a monthly publication with brief articles on recent developments in European scientific research. Its partial contents are: Biotechnology Research at GBF, and at the Inst. of Technical Chemistry, Univ. of Hanover, West Germany; 7th European Immunology Congress; Biotechnia '85 - First International Congress for Biotechnology; Acoustic Cavitation Generated by Clinical Ultrasound; Advances in Chemical Reaction Dynamics; Geophysics Research in Israel; Fiber Composite Research at Paisley College of Technology, Scotland; A review of International Research on the Physical Metallurgy of Welding; Silicon Metallurgy at the Helsinki Technical Univ.; A Conference on Guided Optical Structures and Their Applications; Optoelectronics Research at Oxford Univ.; and Fractal Conferences in Europe.
Bauman, Adrian; Finegood, Diane T; Matsudo, Victor
2009-10-01
Many programs to increase physical activity have been evaluated in developed countries, where 'leisure time physical activity' is the most frequent domain for interventions. In developing countries, and also with reference to global obesity prevention, different kinds of interventions targeting 'total physical activity' are needed. This requires efforts across agencies and sectors, and in the domains of work, active transport, reduced sitting time, as well as leisure time physical activity promotion. In considering possible solutions, this commentary examined the use of complex systems, where integrated efforts across sectors and agencies might, in combination, contribute to increasing total physical activity. The key sets of actions required globally to increase physical activity were, in our opinion, [i] efforts to disseminate individual-level behavior change programs to reach much larger populations rather than volunteers, [ii] social marketing and mass communication campaigns to change social norms in the community and among professionals and policymakers, [iii] efforts to influence the social and physical environment to make them more conducive to physical activity, and [iv] the development and implementation of national physical activity plans and strategies, with sufficient timelines and resources to achieve measurable change.
Paulus, Christoph J; Haouchine, Nazim; Kong, Seong-Ho; Soares, Renato Vianna; Cazier, David; Cotin, Stephane
2017-03-01
Locating the internal structures of an organ is a critical aspect of many surgical procedures. Minimally invasive surgery, associated with augmented reality techniques, offers the potential to visualize inner structures, allowing for improved analysis, depth perception or for supporting planning and decision systems. Most of the current methods dealing with rigid or non-rigid augmented reality make the assumption that the topology of the organ is not modified. As surgery relies essentially on cutting and dissection of anatomical structures, such methods are limited to the early stages of the surgery. We solve this shortcoming with the introduction of a method for physics-based elastic registration using a single view from a monocular camera. Singularities caused by topological changes are detected and propagated to the preoperative model. This significantly improves the coherence between the actual laparoscopic view and the model and provides added value in terms of navigation and decision-making, e.g., by overlaying the internal structures of an organ on the laparoscopic view. Our real-time augmentation method is assessed on several scenarios, using synthetic objects and real organs. In all cases, the impact of our approach is demonstrated, both qualitatively and quantitatively ( http://www.open-cas.org/?q=PaulusIJCARS16 ). The presented approach tackles the challenge of localizing internal structures throughout a complete surgical procedure, even after surgical cuts. This information is crucial for surgeons to improve the outcome for their surgical procedure and avoid complications.
Fluidic origami cellular structure -- combining the plant nastic movements with paper folding art
NASA Astrophysics Data System (ADS)
Li, Suyi; Wang, K. W.
2015-04-01
By combining the physical principles behind the nastic plant movements and the rich designs of paper folding art, we propose a new class of multi-functional adaptive structure called fluidic origami cellular structure. The basic elements of this structure are fluid filled origami "cells", made by connecting two compatible Miura-Ori stripes along their crease lines. These cells are assembled seamlessly into a three dimensional topology, and their internal fluid pressure or volume are strategically controlled just like in plants for nastic movements. Because of the unique geometry of the Miura-Ori, the relationships among origami folding, internal fluid properties, and the crease bending are intricate and highly nonlinear. Fluidic origami can exploit such relationships to provide multiple adaptive functions concurrently and effectively. For example, it can achieve actuation or morphing by actively changing the internal fluid volume, and stillness tuning by constraining the fluid volume. Fluidic origami can also be bistable because of the nonlinear correlation between folding and crease material bending, and such bistable character can be altered significantly by fluid pressurization. These functions are natural and essential companions with respect to each other, so that fluidic origami can holistically exhibit many attractive characteristics of plants and deliver rapid and efficient actuation/morphing while maintaining a high structural stillness. The purpose of this paper is to introduce the design and working principles of the fluidic origami, as well as to explore and demonstrate its performance potential.
Molina, Yamile; Lehavot, Keren; Beadnell, Blair; Simoni, Jane
2013-01-01
There are documented disparities in physical health behaviors and conditions, such as physical activity and obesity, with regard to both race/ethnicity and sexual orientation. However, physical health disparities for lesbian and bisexual (LB) women who are also racial minorities are relatively unexplored. Minority stressors, such as internalized stigma, may account for disparities in such multiply marginalized populations. We sought to (1) characterize inequalities among non-Hispanic white and African American LB women and (2) examine the roles of internalized sexism and homophobia in disparities. Data on health behaviors (diet, physical activity); physical health (hypertension, diabetes, overweight/obesity); internalized sexism; and internalized homophobia were collected via a web-based survey. Recruitment ads were sent electronically to over 200 listservs, online groups, and organizations serving the lesbian, gay, and bisexual community in all 50 U.S. states. The analytic sample consisted of 954 white and 75 African American LB women. African American participants were more likely than white participants to report low fruit/vegetable intake and physical activity, a higher body mass index, and a history of diabetes and hypertension. There were no racial differences in internalized homophobia, but African American women reported higher levels of internalized sexism. Internalized sexism partially mediated racial disparities in physical activity and diabetes, but not in the other outcomes. Findings suggest that African American LB women may be at greater risk than their white counterparts for poor health and that internalized sexism may be a mediator of racial differences for certain behaviors and conditions. PMID:25364769
Garibaldi, Brian Thomas; Niessen, Timothy; Gelber, Allan Charles; Clark, Bennett; Lee, Yizhen; Madrazo, Jose Alejandro; Manesh, Reza Sedighi; Apfel, Ariella; Lau, Brandyn D; Liu, Gigi; Canzoniero, Jenna VanLiere; Sperati, C John; Yeh, Hsin-Chieh; Brotman, Daniel J; Traill, Thomas A; Cayea, Danelle; Durso, Samuel C; Stewart, Rosalyn W; Corretti, Mary C; Kasper, Edward K; Desai, Sanjay V
2017-10-06
Physicians spend less time at the bedside in the modern hospital setting which has contributed to a decline in physical diagnosis, and in particular, cardiopulmonary examination skills. This trend may be a source of diagnostic error and threatens to erode the patient-physician relationship. We created a new bedside cardiopulmonary physical diagnosis curriculum and assessed its effects on post-graduate year-1 (PGY-1; interns) attitudes, confidence and skill. One hundred five internal medicine interns in a large U.S. internal medicine residency program participated in the Advancing Bedside Cardiopulmonary Examination Skills (ACE) curriculum while rotating on a general medicine inpatient service between 2015 and 2017. Teaching sessions included exam demonstrations using healthy volunteers and real patients, imaging didactics, computer learning/high-fidelity simulation, and bedside teaching with experienced clinicians. Primary outcomes were attitudes, confidence and skill in the cardiopulmonary physical exam as determined by a self-assessment survey, and a validated online cardiovascular examination (CE). Interns who participated in ACE (ACE interns) by mid-year more strongly agreed they had received adequate training in the cardiopulmonary exam compared with non-ACE interns. ACE interns were more confident than non-ACE interns in performing a cardiac exam, assessing the jugular venous pressure, distinguishing 'a' from 'v' waves, and classifying systolic murmurs as crescendo-decrescendo or holosystolic. Only ACE interns had a significant improvement in score on the mid-year CE. A comprehensive bedside cardiopulmonary physical diagnosis curriculum improved trainee attitudes, confidence and skill in the cardiopulmonary examination. These results provide an opportunity to re-examine the way physical examination is taught and assessed in residency training programs.
Physical activity promotion in general practice--patient attitudes.
Elley, Carolyn Raina; Dean, Sarah; Kerse, Ngaire
2007-12-01
Long term adherence to primary care physical activity intervention is poor. This study explored attitudes and subjective experiences of those who received such an intervention. Nested qualitative study within mixed methods approach, involving 15 sedentary adults from urban and rural general practices in New Zealand. Semistructured telephone interviews were conducted, transcribed, and analysed using an inductive approach to identify themes. Four themes emerged including: tailoring of advice given; barriers to physical activity such as weather, physical environment, time, health and psychological limitations; internal motivators such as immediate or long term psychological, health or spiritual benefits, commitment, and guilt; and the role of significant others such as health and exercise professionals in initiating advice and continuing support, social interaction and commitment or contracts made to others. This study highlights the need for a personalised approach, continued structured external support and the need to focus on barriers and facilitators.
Physics opportunities with a fixed target experiment at the LHC (AFTER@LHC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjidakis, Cynthia; Anselmino, Mauro; Arnaldi, R.
By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments (AFTER@LHC) and to study p+p and p+A collisions at \\sqrt{s_NN}=115 GeV and Pb+p and Pb+A collisions at \\sqrt{s_NN}=72 GeV. Such studies would address open questions in the domain of the nucleon and nucleus partonic structure at high-x, quark-gluon plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper, we discuss the physics opportunities of a fixed-target experiment at the LHC and we report on themore » possible technical implementations of a high-luminosity experiment. We finally present feasibility studies for Drell-Yan, open heavy-flavour and quarkonium production, with an emphasis on high-x and spin physics.« less
3D Printing and Digital Rock Physics for Geomaterials
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Yoon, H.; Dewers, T. A.
2015-12-01
Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Vibroacoustic optimization using a statistical energy analysis model
NASA Astrophysics Data System (ADS)
Culla, Antonio; D`Ambrogio, Walter; Fregolent, Annalisa; Milana, Silvia
2016-08-01
In this paper, an optimization technique for medium-high frequency dynamic problems based on Statistical Energy Analysis (SEA) method is presented. Using a SEA model, the subsystem energies are controlled by internal loss factors (ILF) and coupling loss factors (CLF), which in turn depend on the physical parameters of the subsystems. A preliminary sensitivity analysis of subsystem energy to CLF's is performed to select CLF's that are most effective on subsystem energies. Since the injected power depends not only on the external loads but on the physical parameters of the subsystems as well, it must be taken into account under certain conditions. This is accomplished in the optimization procedure, where approximate relationships between CLF's, injected power and physical parameters are derived. The approach is applied on a typical aeronautical structure: the cabin of a helicopter.
NASA Technical Reports Server (NTRS)
vanderWall, Berend G.; Lim, Joon W.; Smith, Marilyn J.; Jung, Sung N.; Bailly, Joelle; Baeder, James D.; Boyd, D. Douglas, Jr.
2013-01-01
Significant advancements in computational fluid dynamics (CFD) and their coupling with computational structural dynamics (CSD, or comprehensive codes) for rotorcraft applications have been achieved recently. Despite this, CSD codes with their engineering level of modeling the rotor blade dynamics, the unsteady sectional aerodynamics and the vortical wake are still the workhorse for the majority of applications. This is especially true when a large number of parameter variations is to be performed and their impact on performance, structural loads, vibration and noise is to be judged in an approximate yet reliable and as accurate as possible manner. In this article, the capabilities of such codes are evaluated using the HART II International Workshop database, focusing on a typical descent operating condition which includes strong blade-vortex interactions. A companion article addresses the CFD/CSD coupled approach. Three cases are of interest: the baseline case and two cases with 3/rev higher harmonic blade root pitch control (HHC) with different control phases employed. One setting is for minimum blade-vortex interaction noise radiation and the other one for minimum vibration generation. The challenge is to correctly predict the wake physics-especially for the cases with HHC-and all the dynamics, aerodynamics, modifications of the wake structure and the aero-acoustics coming with it. It is observed that the comprehensive codes used today have a surprisingly good predictive capability when they appropriately account for all of the physics involved. The minimum requirements to obtain these results are outlined.
Strangeness Photoproduction at the BGO-OD Experiment
NASA Astrophysics Data System (ADS)
Jude, T. C.; Alef, S.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Boese, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.; Zimmermann, T.
BGO-OD is a newly commissioned experiment to investigate the internal structure of the nucleon, using an energy tagged bremsstrahlung photon beam at the ELSA electron facility. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating meson photoproduction. The extensive physics programme for open strangeness photoproduction is introduced, and preliminary analysis presented.
Modeling the Effects of Transbasin Nonlinear Internal Waves Through the South China Sea Basin
2013-06-01
sound propagation through the SCS needs to be developed to help maintain tactical superiority. This model will provide valuable information for...METHODOLOGY A. ACOUSTIC MODEL 1. Ray Trace Theory Modeling of sound propagation through the ocean requires solving the governing spherical wave equation...arrival structure simulation code. The model permits the study of the physics and phenomenology of sound propagation though the SCS
A new fitting law of rovibrationally inelastic rate constants for rapidly rotating molecules
NASA Astrophysics Data System (ADS)
Strekalov, M. L.
2005-04-01
Semiclassical scattering of a particle from a three-dimensional ellipsoid with internal structure is used to model vibration-rotation-translation (VRT) collisional transfer between atoms and diatomic molecules. The result is a very simple analytical expression containing two variable parameters that have a clear physical meaning. Predictions of the model for the Li 2 + Ne system are in reasonably good agreement with experimental results.
NASA Astrophysics Data System (ADS)
Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.
Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.
Internal motions of HII regions and giant HII regions
NASA Technical Reports Server (NTRS)
Chu, You-Hua; Kennicutt, Robert C., Jr.
1994-01-01
We report new echelle observations of the kinematics of 30 HII regions in the Large Magellanic Clouds (LMC), including the 30 Doradus giant HII region. All of the HII regions possess supersonic velocity dispersions, which can be attributed to a combination of turbulent motions and discrete velocity splitting produced by stellar winds and/or embedded supernova remnants (SNRs). The core of 30 Dor is unique, with a complex velocity structure that parallels its chaotic optical morphology. We use our calibrated echelle data to measure the physical properties and energetic requirements of these velocity structures. The most spectacular structures in 30 Dor are several fast expanding shells, which appear to be produced at least partially by SNRs.
N* Experiments and Their Impact on Strong QCD Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkert, Volker D.
Here, I give a brief overview of experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes and their dependence on the size of the four-momentum transfer $Q^2$, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.
N^* Experiments and Their Impact on Strong QCD Physics
NASA Astrophysics Data System (ADS)
Burkert, Volker D.
2018-07-01
I give a brief report on experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes an their dependence on the size of the four-momentum transfer Q^2, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.
N* Experiments and Their Impact on Strong QCD Physics
Burkert, Volker D.
2018-04-23
Here, I give a brief overview of experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes and their dependence on the size of the four-momentum transfer $Q^2$, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.
Significance of modeling internal damping in the control of structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Inman, D. J.
1992-01-01
Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.
Undergraduate Student Involvement in International Research - The IRES Program at MAX-lab, Sweden
NASA Astrophysics Data System (ADS)
Briscoe, William; O'Rielly, Grant; Fissum, Kevin
2014-03-01
Undergraduate students associated with The George Washington University and UMass Dartmouth have had the opportunity to participate in nuclear physics research as a part of the PIONS@MAXLAB Collaboration performing experiments at MAX-lab at Lund University in Sweden. This project has supported thirteen undergraduate students during 2009 - 2011. The student researchers are involved with all aspects of the experiments performed at the laboratory, from set-up to analysis and presentation at national conferences. These experiments investigate the dynamics responsible for the internal structure of the nucleon through the study of pion photoproduction off the nucleon and high-energy Compton scattering. Along with the US and Swedish project leaders, members of the collaboration (from four different countries) have contributed to the training and mentoring of these students. This program provides students with international research experiences that prepare them to operate successfully in a global environment and encourages them to stay in areas of science, technology, engineering and math (STEM) that are crucial for our modern, technology-dependent society. We will present the history, goals and outcomes in both physics results and student success that have come from this program. This work supported by NSF OISE/IRES award 0553467.
Precision Muonium Spectroscopy
NASA Astrophysics Data System (ADS)
Jungmann, Klaus P.
2016-09-01
The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.
Heat capacity reveals the physics of a frustrated spin tube.
Ivanov, Nedko B; Schnack, Jürgen; Schnalle, Roman; Richter, Johannes; Kögerler, Paul; Newton, Graham N; Cronin, Leroy; Oshima, Yugo; Nojiri, Hiroyuki
2010-07-16
We report on theoretical and experimental results concerning the low-temperature specific heat of the frustrated spin-tube material [(CuCl(2)tachH(3)Cl]Cl(2) (tach denotes 1,3,5-triaminocyclohexane). This substance turns out to be an unusually perfect spin-tube system which allows to study the physics of quasi-one-dimensional antiferromagnetic structures in rather general terms. An analysis of the specific-heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, around 2 K the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.
Heat Capacity Reveals the Physics of a Frustrated Spin Tube
NASA Astrophysics Data System (ADS)
Ivanov, Nedko B.; Schnack, Jürgen; Schnalle, Roman; Richter, Johannes; Kögerler, Paul; Newton, Graham N.; Cronin, Leroy; Oshima, Yugo; Nojiri, Hiroyuki
2010-07-01
We report on theoretical and experimental results concerning the low-temperature specific heat of the frustrated spin-tube material [(CuCl2tachH)3Cl]Cl2 (tach denotes 1,3,5-triaminocyclohexane). This substance turns out to be an unusually perfect spin-tube system which allows to study the physics of quasi-one-dimensional antiferromagnetic structures in rather general terms. An analysis of the specific-heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, around 2 K the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.
NASA Astrophysics Data System (ADS)
Raymond, Arnold
2000-04-01
The talk will present the story of a series of experiments, beginning in 1973 and continuing today, that have measured the internal structure of nuclei and the nucleons using high energy beams of electrons and photons at the Stanford Linear Accelerator Center. These experiments have probed nuclear and nucleon structure in the energy and momentum transfer region where the meson-nucleon description merges with the quark-gluon picture. The experiments have worked at the border between nuclear and particle physics, and were conducted by large collaborative teams. Some were carried out in the context of a special program, called NPAS (Nuclear Physics at SLAC). The early results from these measurements helped stimulate the ideas and helped train and motivate the physicists who went on to build the Jefferson Laboratory. A brief summary of some highlights from the early measurements and updates on recent results will be given.
Theoretical model to explain the problem-solving process in physics
NASA Astrophysics Data System (ADS)
Lopez, Carlos
2011-03-01
This work reports a theoretical model developed with the aim to explain the mental mechanisms of knowledge building during the problem-solving process in physics using a hybrid approach of assimilation- formation of concepts. The model has been termed conceptual chains and represents graphic diagrams of conceptual dependency, which have yielded information about the background knowledge required during the learning process, as well as about the formation of diverse structures that correspond to distinct forms of networking concepts Additionally, the conceptual constructs of the model have been classified according to five types of knowledge. Evidence was found about the influence of these structures, as well as of the distinct types of knowledge about the degree of difficulty of the problems. I want to be grateful to Laureate International Universities, Baltimore M.D., USA, for the financing granted for the accomplishment of this work.
Fast flexible modeling of RNA structure using internal coordinates.
Flores, Samuel Coulbourn; Sherman, Michael A; Bruns, Christopher M; Eastman, Peter; Altman, Russ Biagio
2011-01-01
Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense.
The Ampere and Electrical Standards
Elmquist, Randolph E.; Cage, Marvin E.; Tang, Yi-hua; Jeffery, Anne-Marie; Kinard, Joseph R.; Dziuba, Ronald F.; Oldham, Nile M.; Williams, Edwin R.
2001-01-01
This paper describes some of the major contributions to metrology and physics made by the NIST Electricity Division, which has existed since 1901. It was one of the six original divisions of the National Bureau of Standards. The Electricity Division provides dc and low-frequency calibrations for industrial, scientific, and research organizations, and conducts research on topics related to electrical metrology and fundamental constants. The early work of the Electricity Division staff included the development of precision standards, such as Rosa and Thomas standard resistors and the ac-dc thermal converter. Research contributions helped define the early international system of measurement units and bring about the transition to absolute units based on fundamental principles and physical and dimensional measurements. NIST research has helped to develop and refine electrical standards using the quantum Hall effect and the Josephson effect, which are both based on quantum physics. Four projects covering a number of voltage and impedance measurements are described in detail. Several other areas of current research at NIST are described, including the use of the Internet for international compatibility in metrology, determination of the fine-structure and Planck constants, and construction of the electronic kilogram. PMID:27500018
Sacks, Gary; Swinburn, Boyd A; Lawrence, Mark A
2008-06-05
As obesity prevention becomes an increasing health priority in many countries, including Australia and New Zealand, the challenge that governments are now facing is how to adopt a systematic policy approach to increase healthy eating and regular physical activity. This article sets out a structure for systematically identifying areas for obesity prevention policy action across the food system and full range of physical activity environments. Areas amenable to policy intervention can be systematically identified by considering policy opportunities for each level of governance (local, state, national, international and organisational) in each sector of the food system (primary production, food processing, distribution, marketing, retail, catering and food service) and each sector that influences physical activity environments (infrastructure and planning, education, employment, transport, sport and recreation). Analysis grids are used to illustrate, in a structured fashion, the broad array of areas amenable to legal and regulatory intervention across all levels of governance and all relevant sectors. In the Australian context, potential regulatory policy intervention areas are widespread throughout the food system, e.g., land-use zoning (primary production within local government), food safety (food processing within state government), food labelling (retail within national government). Policy areas for influencing physical activity are predominantly local and state government responsibilities including, for example, walking and cycling environments (infrastructure and planning sector) and physical activity education in schools (education sector). The analysis structure presented in this article provides a tool to systematically identify policy gaps, barriers and opportunities for obesity prevention, as part of the process of developing and implementing a comprehensive obesity prevention strategy. It also serves to highlight the need for a coordinated approach to policy development and implementation across all levels of government in order to ensure complementary policy action.
Topological interface physics in spinor Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Borgh, Magnus; Ruostekoski, Janne
2013-05-01
We present an experimentally viable scheme whereby the physics of coherent interfaces between topologically distinct regions can be studied in an atomic quantum gas. The interface engineering is achieved using the internal spin structures of atoms together with local control over interaction strengths. We consider a coherent interface between polar and ferromagnetic regions of a spin-1 Bose-Einstein condensate and show that defects representing different topologies can connect continuously across the boundary. We show that energy minimization leads to nontrivial interface-crossing defect structures, demonstrating how the method can be used to study stability properties of field-theoretical solitons. We demonstrate, e.g., the formation of a half-quantum vortex arch, an Alice arch, on the interface, exhibiting the topological charge of a point defect. We also demonstrate an energetically stable connection of a coreless vortex to two half-quantum vortices. Our method can be extended to study interface physics in spin-2 and spin-3 BECs with richer phenomenology, or in strongly correlated optical-lattice systems. We acknowledge financial support from the Leverhulme Trust.
Physical health and well-being: Experiences and perspectives of young adult mental health consumers.
McCloughen, Andrea; Foster, Kim; Kerley, David; Delgado, Cynthia; Turnell, Adrienne
2016-08-01
Compromised physical health and raised levels of morbidity and mortality are experienced by young people (16-24 years) with mental illness, and are compounded by psychotropic medication. How this group conceives and experiences physical health is not well understood. We investigated the meanings, beliefs, and endeavours of young people that impact their physical health understandings and behaviours. The present study formed the qualitative phase of a sequential mixed-methods study, and incorporated semistructured interviews with 12 hospitalized young people. Qualitative content analysis was used to analyse data. Participants held a holistic ideal of physical health that they did not meet. Weight change, poor sleep, and limited exercise adversely impacted their lives and self-image. Sedentary behaviour, reduced energy, and limited health literacy compromised effective management of physical health. Young people needed structure and support to assist them in addressing their physical health needs when amotivation overwhelmed their internal resources. Nurses are well placed to help young people increase their competency for health management. Individualized information and methods to promote good physical health are required for this group in jeopardy from physical morbidity and mortality. © 2016 Australian College of Mental Health Nurses Inc.
NASA Astrophysics Data System (ADS)
Cho, Nam Hyun; Lee, Jang Woo; Cho, Jin-ho; Kim, Jeehyun; Jang, Jeong Hun; Jung, Woonggyu
2015-03-01
Optical coherence tomography (OCT) has advanced significantly over the past two decades and is currently used extensively to monitor the internal structures of organs, particularly in ophthalmology and dermatology. We used ethylenediamine tetra-acetic acid (EDTA) to decalcify the bony walls of the cochlea and investigated the inner structures by deep penetration of light into the cochlear tissue using OCT on a guinea pig model of endolymphatic hydrops (EH), induced by surgical obliteration of the endolymphatic duct. The structural and functional changes associated with EH were identified using OCT and auditory brainstem response tests, respectively. We also evaluated structural alterations in the cochlea using three-dimensional reconstruction of the OCT images, which clearly showed physical changes in the cochlear structures. Furthermore, we found significant anatomical variations in the EH model and conducted graphical analysis by strial atrophy for comparison. The physical changes included damage to and flattening of the organ of Corti-evidence of Reissner's membrane distention-and thinning of the lateral wall. These results indicate that observation of EDTA-decalcified cochlea using OCT is significant in examination of gradual changes in the cochlear structures that are otherwise not depicted by hematoxylin and eosin staining.
Sheikh, Mashhood Ahmed
2018-04-01
A number of cross-sectional studies have consistently shown a correlation between childhood physical maltreatment, perceived social isolation and internalizing symptoms. Using a longitudinal, three-wave design, this study sought to assess the mediating role of perceived social isolation in adulthood in the association between childhood physical maltreatment and internalizing symptoms in adulthood. The study has a three-wave design. We used data collected from 1994 to 2008 within the framework of the Tromsø Study (N = 4530), a representative prospective cohort study of men and women. Perceived social isolation was measured at a mean age of 54.7 years, and internalizing symptoms were measured at a mean age of 61.7 years. The difference-in-coefficients method was used to assess the indirect effects and the proportion (%) of mediated effects. Childhood physical maltreatment was associated with an up to 68% [relative risk (RR) = 1.68, 95% confidence interval (CI): 1.33-2.13] higher risk of perceived social isolation in adulthood. Childhood physical maltreatment and perceived social isolation in adulthood were associated with greater levels of internalizing symptoms in adulthood (p < 0.01). A dose-response association was observed between childhood physical maltreatment and internalizing symptoms in adulthood (p < 0.001). Perceived social isolation in adulthood mediated up to 14.89% (p < 0.05) of the association between childhood physical maltreatment and internalizing symptoms in adulthood. The results of this study indicate the need to take perceived social isolation into account when considering the impact of childhood physical maltreatment on internalizing symptoms.
IGSN e.V.: Registration and Identification Services for Physical Samples in the Digital Universe
NASA Astrophysics Data System (ADS)
Lehnert, K. A.; Klump, J.; Arko, R. A.; Bristol, S.; Buczkowski, B.; Chan, C.; Chan, S.; Conze, R.; Cox, S. J.; Habermann, T.; Hangsterfer, A.; Hsu, L.; Milan, A.; Miller, S. P.; Noren, A. J.; Richard, S. M.; Valentine, D. W.; Whitenack, T.; Wyborn, L. A.; Zaslavsky, I.
2011-12-01
The International Geo Sample Number (IGSN) is a unique identifier for samples and specimens collected from our natural environment. It was developed by the System for Earth Sample Registration SESAR to overcome the problem of ambiguous naming of samples that has limited the ability to share, link, and integrate data for samples across Geoscience data systems. Over the past 5 years, SESAR has made substantial progress in implementing the IGSN for sample and data management, working with Geoscience researchers, Geoinformatics specialists, and sample curators to establish metadata requirements, registration procedures, and best practices for the use of the IGSN. The IGSN is now recognized as the primary solution for sample identification and registration, and supported by a growing user community of investigators, repositories, science programs, and data systems. In order to advance broad disciplinary and international implementation of the IGSN, SESAR organized a meeting of international leaders in Geoscience informatics in 2011 to develop a consensus strategy for the long-term operations of the registry with approaches for sustainable operation, organizational structure, governance, and funding. The group endorsed an internationally unified approach for registration and discovery of physical specimens in the Geosciences, and refined the existing SESAR architecture to become a modular and scalable approach, separating the IGSN Registry from a central Sample Metadata Clearinghouse (SESAR), and introducing 'Local Registration Agents' that provide registration services to specific disciplinary or organizational communities, with tools for metadata submission and management, and metadata archiving. Development and implementation of the new IGSN architecture is underway with funding provided by the US NSF Office of International Science and Engineering. A formal governance structure is being established for the IGSN model, consisting of (a) an international not-for-profit organization, the IGSN e.V. (e.V. = 'Eingetragener Verein', legal status for a registered voluntary association in Germany), that defines the IGSN scope and syntax and maintains the IGSN Handle system, and (b) a Science Advisory Board that guides policies, technology, and best practices of the SESAR Sample Metadata Clearinghouse and Local Registration Agents. The IGSN e.V. is being incorporated in Germany at the GFZ Potsdam, a founding event is planned for the AGU Fall Meeting.
International Physics Olympiad still alive
NASA Astrophysics Data System (ADS)
Polma, Richard; Kříž, Jan
2017-01-01
The International Physics Olympiad (IPhO) is an annual physics competition for high school students. In our article, we will discuss its development and results of research among former contestants from Czechoslovakia, resp. from Czech Republic.
Fernandez-Reche, Andres; Cobos, Eva S; Luque, Irene; Ruiz-Sanz, Javier; Martinez, Jose C
2018-01-04
In 1972 Christian B. Anfinsen received the Nobel Prize in Chemistry for "…his work on ribonuclease, especially concerning the connection between the amino acid sequence and the biologically active conformation." The understanding of this principle is crucial for physical biochemistry students, since protein folding studies, bio-computing sciences and protein design approaches are founded on such a well-demonstrated connection. Herein, we describe a detailed and easy-to-follow experiment to reproduce the most relevant assays carried out at Anfinsen's laboratory in the 60s. This experiment provides students with a platform to interpret by themselves the structural and kinetic experiments conceived to understand the protein folding problem. In addition, this three-day experiment brings students a nice opportunity for protein manipulation as well as for the setting up of spectroscopic and chromatographic techniques. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.
EML indoor radon workshop, 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, A.C.; Lowder, W.; Fisenne, I.
1983-07-01
A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniquesmore » for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs.« less
Gutenbrunner, Christoph; Bethge, Matthias; Stucki, Gerold; Li, Jianan; Lains, Jorge; Olver, John; Frontera, Walter; von Groote, Per; Giustini, Alessandro; Imamura, Marta
2014-01-01
The International Society for Physical and Rehabilitation Medicine has recognized the World Report on Disability as a guide for its future activities and endorsed its responsibility to disseminate, to analyze, and to implement the report's recommendations. The activities of the International Society for Physical and Rehabilitation Medicine on the global stage are embedded in a strategy that includes national and regional associations. This article reports on recent and forthcoming activities of the International Society for Physical and Rehabilitation Medicine regarding the World Report on Disability and identifies five major challenges that will impact future International Society for Physical and Rehabilitation Medicine activities. These challenges relate to (1) education and training, (2) the support of strong role models, (3) disaster management, (4) the development of innovative rehabilitation services, and (5) rehabilitation research.
Van der Wees, Philip J; Hendriks, Erik JM; Custers, Jan WH; Burgers, Jako S; Dekker, Joost; de Bie, Rob A
2007-01-01
Background Clinical guidelines are considered important instruments to improve quality in health care. Since 1998 the Royal Dutch Society for Physical Therapy (KNGF) produced evidence-based clinical guidelines, based on a standardized program. New developments in the field of guideline research raised the need to evaluate and update the KNGF guideline program. Purpose of this study is to compare different guideline development programs and review the KNGF guideline program for physical therapy in the Netherlands, in order to update the program. Method Six international guideline development programs were selected, and the 23 criteria of the AGREE Instrument were used to evaluate the guideline programs. Information about the programs was retrieved from published handbooks of the organizations. Also, the Dutch program for guideline development in physical therapy was evaluated using the AGREE criteria. Further comparison the six guideline programs was carried out using the following elements of the guideline development processes: Structure and organization; Preparation and initiation; Development; Validation; Dissemination and implementation; Evaluation and update. Results Compliance with the AGREE criteria of the guideline programs was high. Four programs addressed 22 AGREE criteria, and two programs addressed 20 AGREE criteria. The previous Dutch program for guideline development in physical therapy lacked in compliance with the AGREE criteria, meeting only 13 criteria. Further comparison showed that all guideline programs perform systematic literature searches to identify the available evidence. Recommendations are formulated and graded, based on evidence and other relevant factors. It is not clear how decisions in the development process are made. In particular, the process of translating evidence into practice recommendations can be improved. Conclusion As a result of international developments and consensus, the described processes for developing clinical practice guidelines have much in common. The AGREE criteria are common basis for the development of guidelines, although it is not clear how final decisions are made. Detailed comparison of the different guideline programs was used for updating the Dutch program. As a result the updated KNGF program complied with 22 AGREE criteria. International discussion is continuing and will be used for further improvement of the program. PMID:18036215
Van der Wees, Philip J; Hendriks, Erik J M; Custers, Jan W H; Burgers, Jako S; Dekker, Joost; de Bie, Rob A
2007-11-23
Clinical guidelines are considered important instruments to improve quality in health care. Since 1998 the Royal Dutch Society for Physical Therapy (KNGF) produced evidence-based clinical guidelines, based on a standardized program. New developments in the field of guideline research raised the need to evaluate and update the KNGF guideline program. Purpose of this study is to compare different guideline development programs and review the KNGF guideline program for physical therapy in the Netherlands, in order to update the program. Six international guideline development programs were selected, and the 23 criteria of the AGREE Instrument were used to evaluate the guideline programs. Information about the programs was retrieved from published handbooks of the organizations. Also, the Dutch program for guideline development in physical therapy was evaluated using the AGREE criteria. Further comparison the six guideline programs was carried out using the following elements of the guideline development processes: Structure and organization; Preparation and initiation; Development; Validation; Dissemination and implementation; Evaluation and update. Compliance with the AGREE criteria of the guideline programs was high. Four programs addressed 22 AGREE criteria, and two programs addressed 20 AGREE criteria. The previous Dutch program for guideline development in physical therapy lacked in compliance with the AGREE criteria, meeting only 13 criteria. Further comparison showed that all guideline programs perform systematic literature searches to identify the available evidence. Recommendations are formulated and graded, based on evidence and other relevant factors. It is not clear how decisions in the development process are made. In particular, the process of translating evidence into practice recommendations can be improved. As a result of international developments and consensus, the described processes for developing clinical practice guidelines have much in common. The AGREE criteria are common basis for the development of guidelines, although it is not clear how final decisions are made. Detailed comparison of the different guideline programs was used for updating the Dutch program. As a result the updated KNGF program complied with 22 AGREE criteria. International discussion is continuing and will be used for further improvement of the program.
PREFACE: 26th Summer School and International Symposium on the Physics of Ionized Gases (SPIG 2012)
NASA Astrophysics Data System (ADS)
Kuraica, Milorad; Mijatovic, Zoran
2012-11-01
This volume of Journal of Physics: Conference Series contains the general invited lectures, topical invited lectures and progress reports presented at the 26th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2012. The conference was held in Zrenjanin, Serbia, from 27-31 August. The SPIG conference has a 52 year long tradition. The structure of the papers in this volume cover the following sections: atomic collision processes, particle and laser beam interactions with solids, low temperature plasmas and general plasmas. As these four topics often overlap and merge in numerous fundamental studies and, more importantly applications, SPIG in general serves as a venue for exchanging ideas in the related fields. We hope that this volume will be an important source of information about progress in plasma physics and will be useful, first of all, for students, but also for plasma physics scientists. The Editors would like to thank the invited speakers for their participation at SPIG 2012 and for their efforts writing contributions for this volume. We also express our gratitude to the members of Scientific and Organizing committees for their efforts in organizing this SPIG. Especially we would like to thank the Ministry of Education, Science and Technological Development of Republic of Serbia, Provincial Secretariat for Science and Techonological Development, Province of Vojvodina, Institute Français de Serbie and Biser Zrenjanin for financial support as well as the European Physical Society (EPS) for supporting the award for the best poster of a young scientist and American Elements, USA. Milorad Kuraica Zoran Mijatovic October 2012 Editors
Fekete, Christine; Rauch, Alexandra
2012-07-01
Participation in physical activity (PA) decreases after the onset of a spinal cord injury (SCI) and is generally low in persons with SCI. To provide an overview of findings on correlates/determinants of PA in persons with SCI applying the International Classification of Functioning, Disability and Health (ICF) to analyze and report results. A systematic literature review using the databases MEDLINE, PsycINFO, SSCI, and CINHAL was conducted. Independent variables were extracted and linked to ICF codes. Quality of evidence was rated using internationally accepted standards. Overall, evidence quality of the 25 included studies is low. Environmental Factors were consistently found as correlates of PA, whereas Personal Factors (socio-demographics and psychological constructs) were weakly associated with PA in the SCI population. Associations with Body Functions, Body Structures, Activities and Participation and Health Conditions were less frequently studied. Although quality of evidence of reviewed literature is low, results indicate that rather environmental barriers than the 'classical' socio-demographic factors known from social epidemiology correlate with PA in persons with SCI. There is insufficient evidence to draw conclusions concerning the association of Body Functions and Structures and Activity and Participation with PA. Future research is encouraged to better understand the interplay between functioning, contextual factors, health conditions and PA in SCI to establish a sound basis for intervention planning in this special needs population. In addition, our experience showed that linking study results to the ICF facilitates data analysis and reporting. Copyright © 2012 Elsevier Inc. All rights reserved.
Jin, Yifei; Liu, Chengcheng; Chai, Wenxuan; Compaan, Ashley; Huang, Yong
2017-05-24
Three dimensional (3D) bioprinting technology enables the freeform fabrication of complex constructs from various hydrogels and is receiving increasing attention in tissue engineering. The objective of this study is to develop a novel self-supporting direct hydrogel printing approach to extrude complex 3D hydrogel composite structures in air without the help of a support bath. Laponite, a member of the smectite mineral family, is investigated to serve as an internal scaffold material for the direct printing of hydrogel composite structures in air. In the proposed printing approach, due to its yield-stress property, Laponite nanoclay can be easily extruded through a nozzle as a liquid and self-supported after extrusion as a solid. Its unique crystal structure with positive and negative charges enables it to be mixed with many chemically and physically cross-linked hydrogels, which makes it an ideal internal scaffold material for the fabrication of various hydrogel structures. By mixing Laponite nanoclay with various hydrogel precursors, the hydrogel composites retain their self-supporting capacity and can be printed into 3D structures directly in air and retain their shapes before cross-linking. Then, the whole structures are solidified in situ by applying suitable cross-linking stimuli. The addition of Laponite nanoclay can effectively improve the mechanical and biological properties of hydrogel composites. Specifically, the addition of Laponite nanoclay results in a significant increase in the Young's modulus of each hydrogel-Laponite composite: 1.9-fold increase for the poly(ethylene glycol) diacrylate (PEGDA)-Laponite composite, 7.4-fold increase for the alginate-Laponite composite, and 3.3-fold increase for the gelatin-Laponite composite.
Oliveira, Sandra E H; Carvalho, Helena; Esteves, Francisco
2016-01-01
People with mental illness who internalize stigma often experience reduced self-esteem and impaired quality of life (QOL). To propose a theoretical model in which self-esteem mediates the effects of internalized stigma on the multidimensional domains comprising QOL. In 403 inpatients and outpatients (DSM-IV, American Psychiatric Association, 1994), from hospital-based and community mental health facilities, self-report measures of internalized stigma (ISMI), self-esteem (RSES) and QOL (WHOQOL-Bref) were administrated. Structural equation modeling results supported the proposed model. Self-esteem fully mediated the relation between internalized stigma and the physical and the social relationships domains, and partially mediated the relationship between internalized stigma and psychological, environment and level of independence QOL domains. Such results provided empirical support and shed light upon previous research. Specifically the results emphasize the mediating role that self-esteem plays in the degree to which internalized stigma exerts a negative effect on specific QOL domains. Self-esteem appears to be a core element in reducing the negative effects of internalized stigma on aspects of QOL among people with mental illness. These findings suggest there is a crucial impact regarding clinical mental health interventions along with important theoretical implications.
ERIC Educational Resources Information Center
Li, Shuang; Zizzi, Sam
2018-01-01
Previous literature has focused on international student's social transition and monocultural and bicultural ties. Little research has explored international students' multicultural friendship development and the role that physical activity plays in their social interaction. The current case study explored a group of international students'…
NASA Astrophysics Data System (ADS)
Vilella, K.; Deschamps, F.
2016-12-01
Recently, the New Horizons spacecraft obtained high resolution pictures of Pluto's surface, and revealed, among other surface features, a large nitrogen ice glacier. The surface of this glacier, informally named Sputnik Planum, is separated into a network of polygonal cells with a wavelength of about 30 km. Recent studies (McKinnon et al. 2016, Trowbridge et al. 2016) interpreted this network to the surface expression of thermal convection drives by the heat coming from the icy mantle and constrain the properties of the glacier, including its thickness. Here, we first show that such a bottom heated convective system is not able to produce a polygonal structure as observed on Sputnik Planum. We therefore consider an internally heated system that, for a certain range of parameters, does produce a similar surface planform, which in turn constrains the possible parameters of the glacier. Combining scaling laws, published in earlier studies with the observation of the surface planform, we establish relationships between the critical parameters of Sputnik Planum. In particular, for reasonable temperature jump across the glacier (2-10 K) and nitrogen ice viscosities (1013-5 1014 Pa.s), our calculations indicate that the glacier thickness and the surface heat flux are in the ranges 2-13 km and 0.1-10 mW.m2, respectively. The fact that only internal heating seems able to reproduce the polygonal structure found on Sputnik Planum raises the question of what physical processes produce the internal heating.
Tremblay, Mark S; Barnes, Joel D; González, Silvia A; Katzmarzyk, Peter T; Onywera, Vincent O; Reilly, John J; Tomkinson, Grant R
2016-11-01
The Active Healthy Kids Global Alliance organized the concurrent preparation of Report Cards on the physical activity of children and youth in 38 countries from 6 continents (representing 60% of the world's population). Nine common indicators were used (Overall Physical Activity, Organized Sport Participation, Active Play, Active Transportation, Sedentary Behavior, Family and Peers, School, Community and the Built Environment, and Government Strategies and Investments), and all Report Cards were generated through a harmonized development process and a standardized grading framework (from A = excellent, to F = failing). The 38 Report Cards were presented at the International Congress on Physical Activity and Public Health in Bangkok, Thailand on November 16, 2016. The consolidated findings are summarized in the form of a Global Matrix demonstrating substantial variation in grades both within and across countries. Countries that lead in certain indicators often lag in others. Average grades for both Overall Physical Activity and Sedentary Behavior around the world are D (low/poor). In contrast, the average grade for indicators related to supports for physical activity was C. Lower-income countries generally had better grades on Overall Physical Activity, Active Transportation, and Sedentary Behaviors compared with higher-income countries, yet worse grades for supports from Family and Peers, Community and the Built Environment, and Government Strategies and Investments. Average grades for all indicators combined were highest (best) in Denmark, Slovenia, and the Netherlands. Many surveillance and research gaps were apparent, especially for the Active Play and Family and Peers indicators. International cooperation and cross-fertilization is encouraged to address existing challenges, understand underlying determinants, conceive innovative solutions, and mitigate the global childhood inactivity crisis. The paradox of higher physical activity and lower sedentary behavior in countries reporting poorer infrastructure, and lower physical activity and higher sedentary behavior in countries reporting better infrastructure, suggests that autonomy to play, travel, or chore requirements and/or fewer attractive sedentary pursuits, rather than infrastructure and structured activities, may facilitate higher levels of physical activity.
WE-E-19A-01: Globalization of Medical Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehani, M; Meghzifene, A; Tsapaki, V
Following successful 2012–2013 International Professional Symposiums as a part of Annual AAPM meetings, representatives of AAPM and International Organization of Medical Physics (IOMP) suggested to make this tradiational Symposium a permanent part of Annual AAPM meetings in future. Following the tradition, this session includes presentations of representatives of AAPM, IOMP, European Federation of Medical Physics (EFOMP), International Atomic Energy Agency (IAEA) and International Center for Theoretical Physics (ICTP). The speakers will cover various aspects of International collaboration such as educational, professional, and scientific issues, as well as help to developing countries. With further developments of medicine and technology and increasedmore » communication with our colleagues overseas, Medical Physics becomes more and more global profession. Use of the same technology, significant progress in medical physics research and developing practical regulations worldwide makes it increasingly useful to organize global collaboration of medical physicists. Several international organizations are tasked to promote such collaboration and provide help to developing countries. Not all AAPM members are fully aware of these international efforts. It is very useful for medical physicists to know about success of our profession in other countries. Different schools present different approaches to the same problem, which allows to find the best solution. By communicating with colleagues overseas, one can learn more than from just reading scientific publications. At this session the attendees will receive a glimpse of International Medical Physics activities. Learning Objectives: Understand the globalization of Medical Physics profession and advantages of collaboration with foreign colleagues. See what role AAPM is playing in establishing contacts with colleagues overseas. Understand the role of IOMP and main directions of its activity. Learn about IAEA and how it helps developing countries. Learn about activity of EFOMP and how can help the global development of Medical Physics. Find out about ICTP and its educational programs.« less
NASA Astrophysics Data System (ADS)
Sternberg, Andris; Grinberga, Liga; Sarakovskis, Anatolijs; Rutkis, Martins
2015-03-01
The joint International Symposium RCBJSF-2014-FM&NT successfully has united two international events - 12th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity (RCBJSF-12) and 9th International Conference Functional Materials and Nanotechnologies (FM&NT-2014). The RCBJSF symposium is a continuation of series of meetings on ferroelectricity, the first of which took place in Novosibirsk (USSR) in 1976. FM&NT conferences started in 2006 and have been organized by Institute of Solid State Physics, University of Latvia in Riga. In 2012 the International program committee decided to transform this conference into a traveling Baltic State conference and the FM&NT-2013 was organized by the Institute of Physics, University of Tartu, Estonia. In 2014 the joint international symposium RCBJSF-2014-FM&NT was organized by the Institute of Solid State Physics, University of Latvia and was part of Riga - 2014, the European Capital of Culture event. The purpose of the joint Symposium was to bring together scientists, students and high-level experts in solid state physics, materials science, engineering and related disciplines. The number of the registered participants from 26 countries was over 350. During the Symposium 128 high quality scientific talks (5 plenary, 42 invited, 81 oral) and over 215 posters were presented. All presentations were divided into 4 parallel sessions according to 4 main topics of the Symposium: Ferroelectricity, including ferroelectrics and multiferroics, pyroelectrics, piezoelectrics and actuators, integrated ferroelectrics, relaxors, phase transitions and critical phenomena. Multifunctional Materials, including theory, multiscale and multiphenomenal material modeling and simulation, advanced inorganic, organic and hybrid materials. Nanotechnologies, including progressive methods, technologies and design for production, investigation of nano- particles, composites, structures, thin films and coatings. Energy, including perspective materials and technologies for renewable and hydrogen energy, fuel cells, photovoltaics, LEDs, OLEDs. Based on these reports, 48 papers are included in this volume of IOP Conference Series: Materials Science and Engineering. Additional information about RCBJSF-2014-FM&NT is available at the homepage http://www.fmnt.lu.lv. The Organizing Committee would like to thank all the speakers, contributors, session chairs, referees and other involved staff for their efforts in making the RCBJSF-2014-FM&NT successful. Sincerely, organizers of the event Andris Sternberg Liga Grinberga Anatolijs Sarakovskis Martins Rutkis
NASA Astrophysics Data System (ADS)
Janik, Grzegorz; Dawid, Małgorzata; Walczak, Amadeusz; Słowińska-Osypiuk, Joanna; Skierucha, Wojciech; Wilczek, Andrzej; Daniel, Anna
2017-03-01
Failures of earthen flood protection structures cause enormous material loss. Despite this, in the majority these are structures that were built decades ago. As an example, in Poland, the time of operation of approximately three quarters of existing levees and embankments is over 40 years. A similar situation exists in many other European countries. In the period 1998-2009 the economic losses caused by floods amounted to over 60 thousand million Euro. This accounts for approximately one third of the total losses caused by environmental factors. Ruptures of embankments or levees occur as a result of long-lasting elevated water levels in rivers, and such events are always preceded by changes in their internal structure. Such changes cannot be detected from the outside. This paper presents a new method, never used before, for the determination of changes in the internal structure of the body of a levee. The dynamics of the displacements is described by means of new mathematical formulae. The input data necessary for their application include the dynamics of changes in the value of volumetric moisture that is measured with a freely selected short time step by means of the time-domain-reflectrometry technique. The formulae were created on the basis of hitherto unnoticed and uninterpreted drops in moisture a moment before and a moment after the saturation of inner spaces of the levee body. The results obtained from calculations were compared with data from measurements on a physical model of a levee. The settlement values calculated using the method proposed are convergent with those of the true settlement. The maximum relative error was as low as 19%. The method proposed permits the location of changes in the internal structure of a levee before its rupture. Its application is the main component of a system of early warning against floods.
Physics in Argentina: The Case of Nanoscience and Nanotecnology
NASA Astrophysics Data System (ADS)
Balseiro, Carlos A.
2013-03-01
Since the creation of the Ministry of Science and Technology in 2008 the science budget has increased and new programs have been launch. After a brief introduction describing general aspects, including the structure of the Ministry and the role of the National Research Council, I will focus on the case of nanoscience and nanotechnology in our country: The main actors and their activities, new programs and facilities, international cooperation and technology oriented projects.
Technical accomplishments of the NASA Lewis Research Center, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.
ERIC Educational Resources Information Center
International Union of Pure and Applied Physics.
This document contains 65 papers presented at the International Conference on Physics Education. Included are papers dealing with: (1) physics education in China; (2) the evaluation of physics courses in engineering colleges; (3) climate and weather; (4) the implications of physics education research for the classroom; (5) university physics…
Young, Andrew L.
2015-01-01
Internal derangements of the temporomandibular joint are conditions in which the articular disc has become displaced from its original position the condylar head. Relevant anatomic structures and their functional relationships are briefly discussed. The displacement of the disc can result in numerous presentations, with the most common being disc displacement with reduction (with or without intermittent locking), and disc displacement without reduction (with or without limited opening). These are described in this article according to the standardized Diagnostic Criteria for Temporomandibular Disorders, as well as the less common posterior disc displacement. Appropriate management usually ranges from patient education and monitoring to splints, physical therapy, and medications. In rare and select cases, surgery may be necessary. However, in for the majority of internal derangements, the prognosis is good, particularly with conservative care. PMID:26929478
Young, Andrew L
2015-01-01
Internal derangements of the temporomandibular joint are conditions in which the articular disc has become displaced from its original position the condylar head. Relevant anatomic structures and their functional relationships are briefly discussed. The displacement of the disc can result in numerous presentations, with the most common being disc displacement with reduction (with or without intermittent locking), and disc displacement without reduction (with or without limited opening). These are described in this article according to the standardized Diagnostic Criteria for Temporomandibular Disorders, as well as the less common posterior disc displacement. Appropriate management usually ranges from patient education and monitoring to splints, physical therapy, and medications. In rare and select cases, surgery may be necessary. However, in for the majority of internal derangements, the prognosis is good, particularly with conservative care.
Microwave quantum logic gates for trapped ions.
Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J
2011-08-10
Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.
Development of students' interest in particle physics as effect of participating in a Masterclass
NASA Astrophysics Data System (ADS)
Gedigk, Kerstin; Pospiech, Gesche
2016-05-01
The International Hands On Particle Physics Masterclasses are enjoying increasing popularity worldwide every year. In Germany a national program was brought to live in 2010, which offers these appreciated events to whole classes or courses of high school students all over the year. These events were evaluated concerning the issues of students' interest in particle physics and their perception of the events. How several interest variables interact with each other and the perception of the events is answered by structural equation modelling (sect. 5.2). The results give information about the events' effects on the students' interest development in particle physics, show which event features are important ( e.g. the authenticity) and give information about practical approaches to improve the effects of the Masterclasses. Section 5.3 deals with a group of participants which have a high interest in particle physics 6-8 weeks after the participation. The number of these students is remarkable large, with 26% of all participants. The investigation of this group shows that the Masterclass participation has the same positive effect on both sexes and all levels of physics education.
The performance environment of the England youth soccer teams.
Pain, Matthew A; Harwood, Chris
2007-10-01
In the present study, we examined the performance environment of the England youth soccer teams. Using a semi-structured protocol with a prospective sample, national coaches (n = 6), sport scientists (n = 3), and players (n = 4) were interviewed directly following international tournaments about the factors that positively and negatively influenced performance. Qualitative content analysis revealed the following factors as major positive influences on performance: adhering to a consistent tournament strategy, player understanding, strong team cohesion, organized entertainment activities, detailed knowledge of opposition, an effective physical rest/recovery strategy, and previous tournament experience. Major factors perceived to have negatively influenced performance included: over-coaching, player boredom, player anxiety, physical superiority of the opposition, physical fatigue over the tournament, problems sleeping, and lack of information on the opposition. Eight overall dimensions emerged to describe the performance environment: planning and organization, physical environment, tactical factors, development and performance philosophy, psychological factors, physical factors, social factors, and coaching. The findings support recent work that suggests the performance environment is multifaceted, with performance being contingent upon a broad range of interacting factors that go beyond the traditional psychosocial and physical domains.
NASA Astrophysics Data System (ADS)
Dalguer, Luis A.; Fukushima, Yoshimitsu; Irikura, Kojiro; Wu, Changjiang
2017-09-01
Inspired by the first workshop on Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI) conducted by the International Atomic Energy Agency (IAEA) on 18-20 November, 2015 in Vienna (http://www-pub.iaea.org/iaeameetings/50896/BestPSHANI), this PAGEOPH topical volume collects several extended articles from this workshop as well as several new contributions. A total of 17 papers have been selected on topics ranging from the seismological aspects of earthquake cycle simulations for source-scaling evaluation, seismic source characterization, source inversion and ground motion modeling (based on finite fault rupture using dynamic, kinematic, stochastic and empirical Green's functions approaches) to the engineering application of simulated ground motion for the analysis of seismic response of structures. These contributions include applications to real earthquakes and description of current practice to assess seismic hazard in terms of nuclear safety in low seismicity areas, as well as proposals for physics-based hazard assessment for critical structures near large earthquakes. Collectively, the papers of this volume highlight the usefulness of physics-based models to evaluate and understand the physical causes of observed and empirical data, as well as to predict ground motion beyond the range of recorded data. Relevant importance is given on the validation and verification of the models by comparing synthetic results with observed data and empirical models.
Marfeo, Elizabeth E.; Haley, Stephen M.; Jette, Alan M.; Eisen, Susan V.; Ni, Pengsheng; Bogusz, Kara; Meterko, Mark; McDonough, Christine M.; Chan, Leighton; Brandt, Diane E.; Rasch, Elizabeth K.
2014-01-01
Physical and mental impairments represent the two largest health condition categories for which workers receive Social Security disability benefits. Comprehensive assessment of physical and mental impairments should include aspects beyond medical conditions such as a person’s underlying capabilities as well as activity demands relevant to the context of work. The objective of this paper is to describe the initial conceptual stages of developing new measurement instruments of behavioral health and physical functioning relevant for Social Security work disability evaluation purposes. To outline a clear conceptualization of the constructs to be measured, two content models were developed using structured and informal qualitative approaches. We performed a structured literature review focusing on work disability and incorporating aspects of the International Classification of Functioning, Disability, and Health (ICF) as a unifying taxonomy for framework development. Expert interviews provided advice and consultation to enhance face validity of the resulting content models. The content model for work-related behavioral health function identifies five major domains (1) Behavior Control, (2) Basic Interactions, (3) Temperament and Personality, (4) Adaptability, and (5) Workplace Behaviors. The content model describing physical functioning includes three domains (1) Changing and Maintaining Body Position, (2) Whole Body Mobility, and (3) Carrying, Moving and Handling Objects. These content models informed subsequent measurement properties including item development, measurement scale construction, and provided conceptual coherence guiding future empirical inquiry. The proposed measurement approaches show promise to comprehensively and systematically assess physical and behavioral health functioning relevant to work. PMID:23548543
Physics of Colloids in Space: Flight Hardware Operations on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor
2002-01-01
The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.
Understanding multi-scale structural evolution in granular systems through gMEMS
NASA Astrophysics Data System (ADS)
Walker, David M.; Tordesillas, Antoinette
2013-06-01
We show how the rheological response of a material to applied loads can be systematically coded, analyzed and succinctly summarized, according to an individual grain's property (e.g. kinematics). Individual grains are considered as their own smart sensor akin to microelectromechanical systems (e.g. gyroscopes, accelerometers), each capable of recognizing their evolving role within self-organizing building block structures (e.g. contact cycles and force chains). A symbolic time series is used to represent their participation in such self-assembled building blocks and a complex network summarizing their interrelationship with other grains is constructed. In particular, relationships between grain time series are determined according to the information theory Hamming distance or the metric Euclidean distance. We then use topological distance to find network communities enabling groups of grains at remote physical metric distances in the material to share a classification. In essence grains with similar structural and functional roles at different scales are identified together. This taxonomy distills the dissipative structural rearrangements of grains down to its essential features and thus provides pointers for objective physics-based internal variable formalisms used in the construction of robust predictive continuum models.
SESAME: science for intercultural dialogue
NASA Astrophysics Data System (ADS)
Paolucci, Giorgio
2015-04-01
SESAME is an international research organization located in Jordan, in the Middle-East. Based on a synchrotron radiation source, it will allow scientist from the region to access a world-class research infrastructure to boost their research and scientific knowledge. At the same time its international nature will allow scientists with different cultures, different religions and different experiences to interact with each other. It is therefore an excellent opportunity for the regional development. The talk will introduce synchrotron radiation as a method to study matter, with examples in various disciplines, from physics to life sciences. The organisational structure of SESAME will be described, emphasising how this project is expected to enhance cooperation and mutual comprehension in the Middle East.
Message from the Conference Chairs
NASA Astrophysics Data System (ADS)
Krishna, Sanjay; Perera, Unil
2015-05-01
We were very excited to host the 8th International Workshop on Quantum Structure Infrared Photodetectors (QSIP 2014), in picturesque Santa Fe, New Mexico from June 29th-July 3rd, 2014. This followed successful QSIP conferences at Dana Point (2000), Torino (2002), Kananaskis (2004), Kandy (2006), Yosimite (2009), Istanbul (2010) and Corsica (2012). The QSIP workshop is a high level scientific conference that aims to bring together scientists, engineers, industrial organizations, students and users in order to discuss recent advances, and to share the "State of the Art" in this field. QSIP conferences provide an international forum for attendees to present and discuss progress in infrared device physics and modeling, materials growth and processing issues, focal plane array development and characterization.
ERIC Educational Resources Information Center
Yoh, Taeho; Yang, Heewon; Gordon, Brian
2008-01-01
This study examined the status of participation in physical activity among international students attending colleges and universities in the United States. Participants for the study were 521 international students from five universities in the Midwestern part of the United States. Descriptive statistics revealed that international college…
Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L.; Avera, John; Reguera, David; Douglas, Trevor
2016-01-01
Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers’ stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo–shell and cargo–cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo–cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers. PMID:27091107
NATO Advanced Study Institute on Spectroscopy
NASA Technical Reports Server (NTRS)
DiBartolo, Baldassare; Barnes, James (Technical Monitor)
2001-01-01
This booklet presents an account of the course 'Spectroscopy of Systems with Spatially Confined Structures' held in Erice-Sicily, Italy, from June 15 to June 30, 2001. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the 'Ettore Majorana' Centre for Scientific Culture. The purpose of this course was to present and discuss nanometer-scale physics, a rapidly progressing field. The top-down approach of semiconductor technology will soon meet the scales of the bottom-up approaches of supramolecular chemistry and of spatially localized excitations in ionic crystals. This course dealt with the fabrication, measurement and understanding of the relevant structures and brought together the scientific communities responsible for these development. The advances in this area of physics have already let to applications in optoelectronics and will likely lead to many more. The subjects of the course included spatially resolved structures such as quantum wells, quantum wires and quantum dots, single atoms and molecules, clusters, fractal systems, and the development of related techniques like near-field spectroscopy and confocal microscopy to study such systems.
Blom, Rianne M; van Wingen, Guido A; van der Wal, Sija J; Luigjes, Judy; van Dijk, Milenna T; Scholte, H Steven; Denys, Damiaan
2016-01-01
Body Integrity Identity Disorder (BIID) is a condition in which individuals perceive a mismatch between their internal body scheme and physical body shape, resulting in an absolute desire to be either amputated or paralyzed. The condition is hypothesized to be of congenital nature, but evidence for a neuro-anatomical basis is sparse. We collected T1-weighted structural magnetic resonance imaging scans on a 3T scanner in eight individuals with BIID and 24 matched healthy controls, and analyzed the data using voxel-based morphometry. The results showed reduced grey matter volume in the left dorsal and ventral premotor cortices and larger grey matter volume in the cerebellum (lobule VIIa) in individuals with BIID compared to controls. The premotor cortex and cerebellum are thought to be crucial for the experience of body-ownership and the integration of multisensory information. Our results suggest that BIID is associated with structural brain anomalies and might result from a dysfunction in the integration of multisensory information, leading to the feeling of disunity between the mental and physical body shape.
Chinese research on underwater acoustics
NASA Astrophysics Data System (ADS)
Qian, Zhengxu; Ding, Dong
1992-09-01
The monograph provides a baseline assessment of Chinese literature in research on the physics and technology of underwater acoustics during the last decade in China. However, developments prior to 1980 are also briefly covered, as they provide background and context for recent developments. This report will provide the following: (1) a description of research organizations and their administrative structure, professional societies, conferences, researchers, and engineers; (2) a technical review of the physics and engineering of underwater acoustics; (3) a list of underwater acoustics experts from the United States and Europe who visited China; (4) a list of underwater acoustics monography written by Chinese authors; and (5) a brief assessment of the Chinese research at the international level.
High Resolution Infrared Spectroscopy of Molecules of Terrestrial and Planetary Interest
NASA Technical Reports Server (NTRS)
Freedman, Richard S.
2001-01-01
In collaboration with the laboratory spectroscopy group of the Ames Atmospheric Physics Research Branch (SGP), high resolution infrared spectra of molecules that are of importance for the dynamics of the earth's and other planets' atmospheres were acquired using the SGP high resolution Fourier transform spectrometer and gas handling apparatus. That data, along with data acquired using similar instrumentation at the Kitt Peak National Observatory was analyzed to determine the spectral parameters for each of the rotationally resolved transitions for each molecule. Those parameters were incorporated into existing international databases (e.g. HITRANS and GEISA) so that field measurements could be converted into quantitative information regarding the physical and chemical structures of earth and planetary atmospheres.
Evaluation of the neighborhood environment walkability scale in Nigeria.
Oyeyemi, Adewale L; Sallis, James F; Deforche, Benedicte; Oyeyemi, Adetoyeje Y; De Bourdeaudhuij, Ilse; Van Dyck, Delfien
2013-03-21
The development of reliable and culturally sensitive measures of attributes of the built and social environment is necessary for accurate analysis of environmental correlates of physical activity in low-income countries, that can inform international evidence-based policies and interventions in the worldwide prevention of physical inactivity epidemics. This study systematically adapted the Neighborhood Environment Walkability Scale (NEWS) for Nigeria and evaluated aspects of reliability and validity of the adapted version among Nigerian adults. The adaptation of the NEWS was conducted by African and international experts, and final items were selected for NEWS-Nigeria after a cross-validation of the confirmatory factor analysis structure of the original NEWS. Participants (N = 386; female = 47.2%) from two cities in Nigeria completed the adapted NEWS surveys regarding perceived residential density, land use mix - diversity, land use mix - access, street connectivity, infrastructure and safety for walking and cycling, aesthetics, traffic safety, and safety from crime. Self-reported activity for leisure, walking for different purposes, and overall physical activity were assessed with the validated International Physical Activity Questionnaire (long version). The adapted NEWS subscales had moderate to high test-retest reliability (ICC range 0.59 -0.91). Construct validity was good, with residents of high-walkable neighborhoods reporting significantly higher residential density, more land use mix diversity, higher street connectivity, more traffic safety and more safety from crime, but lower infrastructure and safety for walking/cycling and aesthetics than residents of low-walkable neighborhoods. Concurrent validity correlations were low to moderate (r = 0.10 -0.31) with residential density, land use mix diversity, and traffic safety significantly associated with most physical activity outcomes. The NEWS-Nigeria demonstrated acceptable measurement properties among Nigerian adults and may be useful for evaluation of the built environment in Nigeria. Further adaptation and evaluation in other African countries is needed to create a version that could be used throughout the African region.
NASA Astrophysics Data System (ADS)
Statsenko, Elena; Ostrovaia, Anastasia; Pigurin, Andrey
2018-03-01
This article considers the influence of the building's tallness and the presence of mounting grooved lines on the parameters of heat transfer in the gap of a hinged ventilated facade. A numerical description of the processes occurring in a heat-gravitational flow is given. The average velocity and temperature of the heat-gravitational flow of a structure with open and sealed rusts are determined with unchanged geometric parameters of the gap. The dependence of the parameters influencing the thermomechanical characteristics of the enclosing structure is derived depending on the internal parameters of the system. Physical modeling of real multistory structures is performed by projecting actual parameters onto a reduced laboratory model (scaling).
The Effects of Internal Rotation and 14N Quadrupole Coupling in N-Methyldiacetamide
NASA Astrophysics Data System (ADS)
Kannengießer, Raphaela; Eibl, Konrad; Nguyen, Ha Vinh Lam; Stahl, Wolfgang
2015-06-01
Acetyl- and nitrogen containing substances play an important role in chemical, physical, and especially biological systems. This applies in particular for acetamides, which are structurally related to peptide bonds. In this work, N-methyldiacetamide, CH_3N(COCH_3)_2, was investigated by a combination of molecular beam Fourier transform microwave spectroscopy and quantum chemical calculations. In N-methyldiacetamide, at least three large amplitude motions are possible: (1) the internal rotation of the methyl group attached to the nitrogen atom and (2, 3) the internal rotations of both acetyl methyl groups. This leads to a rather complicated torsional fine structure of all rotational transitions with additional quadrupole hyperfine splittings caused by the 14N nucleus. Quantum chemical calculations were carried out at the MP2/6-311++G(d,p) level of theory to support the spectral assignment. Conformational analysis was performed by calculating a full potential energy surface depending on the orientation of the two acetyl groups. This yielded three stable conformers with a maximum energy difference of 35.2 kJ/mol. The spectrum of the lowest energy conformer was identified in the molecular beam. The quadrupole hyperfine structure as well as the internal rotation of two methyl groups could be assigned. For the N-methyl group and for one of the two acetyl methyl groups, barriers to internal rotation of 147 cm-1 and of 680 cm-1, respectively, were determined. The barrier of the last methyl group seems to be so high that no additional splittings could be resolved. Using the XIAM program, a global fit with a standard deviation on the order of our experimental accuracy could be achieved.
Pattiselanno, Kim; Dijkstra, Jan Kornelis; Steglich, Christian; Vollebergh, Wilma; Veenstra, René
2015-12-01
Peer cliques form an important context for the social development of adolescents. Although clique members are often similar in social status, also within cliques, status differences exist. How differences in social status between clique members are related to behaviors of its individual members is rather unknown. This study examined to what extent the relationship of individual social status (i.e., perceived popularity) with aggression and prosocial behavior depends on the level of internal clique hierarchy. The sample consists of 2674 adolescents (49.8% boys), with a mean age of 14.02. We focused specifically on physical and relational aggression, and practical and emotional support, because these behaviors have shown to be of great importance for social relationships and social standing among adolescents. The internal status hierarchy of cliques was based on the variation in individual social status between clique members (i.e., clique hierarchization) and the structure of status scores within a clique (pyramid shape, inverted pyramid, or equal distribution of social status scores) (i.e., clique status structure). The results showed that differences in aggressive and prosocial behaviors were particularly moderated by clique status structure: aggression was stronger related to individual social status in (girls') cliques where the clique status structure reflected an inverted pyramid with relatively more high status adolescents within the clique than low status peers, and prosocial behavior showed a significant relationship with individual social status, again predominantly in inverted pyramid structured (boys' and girls') cliques. Furthermore, these effects differed by types of gender cliques: the associations were found in same gender but not mixed-gender cliques. The findings stress the importance of taking into account internal clique characteristics when studying adolescent social status in relationship to aggression and prosociality.
ERIC Educational Resources Information Center
Sie, Swanpo, Ed.; Sie, Mary Windorski, Ed.
This report contains a selected compilation of the proceedings of the 1973 Congress of the International Council on Health, Physical Education, and Recreation (ICHPER). The report contains opening addresses and a variety of speeches discussing present trends in health, physical education, and recreation throughout the world. A major portion of the…
Engaging undergraduate students in hadron physics research and instrumentation
NASA Astrophysics Data System (ADS)
Horn, Tanja
2017-09-01
Nuclear physics research is fundamental to our understanding of the visible universe and at the same time intertwined with our daily life. Nuclear physics studies the origin and structure of the atomic nuclei in terms of their basic constituents, the quarks and gluons. Atoms and molecules would not exist without underlying quark-gluon interactions, which build nearly all the mass of the visible universe from an assembly of massless gluons and nearly-massless quarks. The study of hadron structure with electromagnetic probes through exclusive and semi-inclusive scattering experiments carried out at the 12 GeV Jefferson Laboratory plays an important role in this effort. In particular, planned precision measurements of pion and kaon form factors and longitudinal-transverse separated deep exclusive pion and kaon electroproduction cross sections to the highest momentum transfers achievable play an important role in understanding hadron structure and masses and provide essential constraints for 3D hadron imaging. While a growing fraction of nuclear physics research is carried out at large international laboratories, individual university research groups play critical roles in the success of that research. These include data analysis projects and the development of state-of-the-art instrumentation demanded by increasingly sophisticated experiments. These efforts are empowered by the creativity of university faculty, staff, postdocs, and provide students with unique hands-on experience. As an example, an aerogel Cherenkov detector enabling strangeness physics research in Hall C at Jefferson Lab was constructed at the Catholic University of America with the help of 16 undergraduate and high school students. The ''Conference Experience for Undergraduates'' (CEU) provides a venue for these students who have conducted research in nuclear physics. This presentation will present the experiences of one of the participants in the first years of the CEU, her current research program in hadronic physics, and her current and former students who have been participating in more recent CEU events. Supported in part by NSF Grants PHY1714133, PHY1306227 and PHY1306418.
De Silva Weliange, Shreenika H; Fernando, Dulitha; Gunatilake, Jagath
2014-05-03
Environmental characteristics are known to be associated with patterns of physical activity (PA). Although several validated tools exist, to measure the environment characteristics, these instruments are not necessarily suitable for application in all settings especially in a developing country. This study was carried out to develop and validate an instrument named the "Physical And Social Environment Scale--PASES" to assess the physical and social environmental factors associated with PA. This will enable identification of various physical and social environmental factors affecting PA in Sri Lanka, which will help in the development of more tailored intervention strategies for promoting higher PA levels in Sri Lanka. The PASES was developed using a scientific approach of defining the construct, item generation, analysis of content of items and item reduction. Both qualitative and quantitative methods of key informant interviews, in-depth interviews and rating of the items generated by experts were conducted. A cross sectional survey among 180 adults was carried out to assess the factor structure through principal component analysis. Another cross sectional survey among a different group of 180 adults was carried out to assess the construct validity through confirmatory factor analysis. Reliability was assessed with test re-test reliability and internal consistency using Spearman r and Cronbach's alpha respectively. Thirty six items were selected after the expert ratings and were developed into interviewer administered questions. Exploration of factor structure of the 34 items which were factorable through principal component analysis with Quartimax rotation extracted 8 factors. The 34 item instrument was assessed for construct validity with confirmatory factor analysis which confirmed an 8 factor model (x2 = 339.9, GFI = 0.90). The identified factors were infrastructure for walking, aesthetics and facilities for cycling, vehicular traffic safety, access and connectivity, recreational facilities for PA, safety, social cohesion and social acceptance of PA with the two non-factorable factors, residential density and land use mix. The PASES also showed good test re-test reliability and a moderate level of internal consistency. The PASES is a valid and reliable tool which could be used to assess the physical and social environment associated with PA in Sri Lanka.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horstemeyer, Mark R.; Chaudhuri, Santanu
2015-09-30
A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.
Lisk, Kristina; Flannery, John F; Loh, Eldon Y; Richardson, Denyse; Agur, Anne M R; Woods, Nicole N
2014-01-01
To address the need for more clinical anatomy training in residency education, many postgraduate programs have implemented structured anatomy courses into their curriculum. Consensus often does not exist on specific content and level of detail of the content that should be included in such curricula. This article describes the use of the Delphi method to identify clinically relevant content to incorporate in a musculoskeletal anatomy curriculum for Physical Medicine and Rehabilitation (PM&R) residents. A two round modified Delphi involving PM&R experts was used to establish the curricular content. The anatomical structures and clinical conditions presented to the expert group were compiled using multiple sources: clinical musculoskeletal anatomy cases from the PM&R residency program at the University of Toronto; consultation with PM&R experts; and textbooks. In each round, experts rated the importance of each curricular item to PM&R residency education using a five-point Likert scale. Internal consistency (Cronbach's alpha) was used to determine consensus at the end of each round and agreement scores were used as an outcome measure to determine the content to include in the curriculum. The overall internal consistency in both rounds was 0.99. A total of 37 physiatrists from across Canada participated and the overall response rate over two rounds was 97%. The initial curricular list consisted of 361 items. After the second iteration, the list was reduced by 44%. By using a national consensus method we were able to objectively determine the relevant anatomical structures and clinical musculoskeletal conditions important in daily PM&R practice. © 2013 American Association of Anatomists.
NASA Astrophysics Data System (ADS)
Mueller, Sebastian B.; Kueppers, Ulrich; Huber, Matthew S.; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B.
2018-04-01
Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.
Mueller, Sebastian B; Kueppers, Ulrich; Huber, Matthew S; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B
2018-01-01
Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.
A model teaching session for the hypothesis-driven physical examination.
Nishigori, Hiroshi; Masuda, Kozo; Kikukawa, Makoto; Kawashima, Atsushi; Yudkowsky, Rachel; Bordage, Georges; Otaki, Junji
2011-01-01
The physical examination is an essential clinical competence for all physicians. Most medical schools have students who learn the physical examination maneuvers using a head-to-toe approach. However, this promotes a rote approach to the physical exam, and it is not uncommon for students later on to fail to appreciate the meaning of abnormal findings and their contribution to the diagnostic reasoning process. The purpose of the project was to develop a model teaching session for the hypothesis-driven physical examination (HDPE) approach in which students could practice the physical examination in the context of diagnostic reasoning. We used an action research methodology to create this HDPE model by developing a teaching session, implementing it over 100 times with approximately 700 students, conducting internal reflection and external evaluations, and making adjustments as needed. A model nine-step HDPE teaching session was developed, including: (1) orientation, (2) anticipation, (3) preparation, (4) role play, (5) discussion-1, (6) answers, (7) discussion-2, (8) demonstration and (9) reflection. A structured model HDPE teaching session and tutor guide were developed into a workable instructional intervention. Faculty members are invited to teach the physical examination using this model.
Construct validity and internal consistency in the Leisure Practices Scale (EPL) for adults.
Andrade, Rubian Diego; Schwartz, Gisele Maria; Tavares, Giselle Helena; Pelegrini, Andreia; Teixeira, Clarissa Stefani; Felden, Érico Pereira Gomes
2018-02-01
This study proposes and analyzes the construct validity and internal consistency of the Leisure Practices Scale (EPL). This survey seeks to identify the preferences and involvement in in different leisure practices in adults. The instrument was formed based on the cultural leisure content (artistic, manual, physical, sports, intellectual, social, tourist, virtual and contemplation/leisure). The validation process was conducted with: a) content analysis by leisure experts, who evaluated the instrument for clarity of language and practical relevance, which allowed the calculation of the content validity coefficient (CVC); b) reproducibility test-retest with 51 subjects to calculate the temporal variation coefficient; c) internal consistency analysis with 885 participants. The evaluation presented appropriate coefficients, both with respect to language clarity (CVCt = 0.883) and practical relevance (CVCt = 0.879). The reproducibility coefficients were moderate to excellent. The scale showed adequate internal consistency (0.72). The EPL has psychometric quality and acceptable values in its structure, and can be used to investigate adult involvement in leisure activities.
Costa, Raquel; Probst, Michel; Bastos, Tânia; Vilhena, Estela; Seabra, André; Corredeira, Rui
2017-06-22
People with schizophrenia have low physical activity levels that can be explained by the restriction in motivation. The Behavioural Regulation in Exercise Questionnaire-2 is a 19-item scale commonly used to assess five different motivational subtypes for physical activity. However, there are limited psychometric analyses of this version in the schizophrenia context. Moreover, there is a lack of information related to the psychometric properties of version 3 of this questionnaire, with 24 items and six different motivational subtypes. The aim of this study was to examine the construct validity of both Portuguese versions in people with schizophrenia. A total of 118 persons with schizophrenia were included (30 women). Cronbach's alpha was used for internal consistency, Pearson's correlation for the retained motivation-types, confirmatory factor analysis for the structural validity of version 2 and exploratory factor analysis for the factor structure of version 3. Analyses of version 2 provided an adequate fit index for the structure of the five factors. Exploratory analyses suggested retaining 2 factors of version 3. The results of this study suggest that version 3 was an appropriate measure to assess controlled and autonomous motivation for physical activity in people with schizophrenia and support its use in clinical practice and research. Implications for Rehabilitation This study supports the need to identify the reasons why people with schizophrenia practice physical activity. For that purpose, it is important to use valid and cost-effective instruments. The Portuguese version of BREQ-2 confirmed a 5-factor model and showed adequate fit for the application in people with schizophrenia. However, the incremental indices values were lower than expected. The Portuguese version of BREQ-3 showed acceptable psychometric properties to assess controlled and autonomous motivation for physical activity in people with schizophrenia.
Combustion Integration Rack (CIR) Testing
2015-02-18
Fluids and Combustion Facility (FCF), Combustion Integration Rack (CIR) during testing in the Structural Dynamics Laboratory (SDL). The Fluids and Combustion Facility (FCF) is a set of two International Space Station (ISS) research facilities designed to support physical and biological experiments in support of technology development and validation in space. The FCF consists of two modular, reconfigurable racks called the Combustion Integration Rack (CIR) and the Fluids Integration Rack (FIR). The CIR and FIR were developed at NASAʼs Glenn Research Center.
2014-06-01
incremental increase in contamination and pollution, construction of unsafe structures in flood-prone areas, adverse effects of income gap and poverty...them claim that climate change, contamination , ozone depletion, and biodiversity loss are major factors, others believe that the real causes for the...the international arena, as well as the host country, while the second one has very little physical protection and is often faced with food , water
Knowledge, attitudes, and practices of Turkish intern nurses regarding physical restraints.
Karagozoglu, Serife; Ozden, Dilek; Yildiz, Fatma Tok
2013-01-01
This study was carried out to determine knowledge, attitudes, and practices of intern nurses who completed the nursing internship program on the use of physical restraints. This research was conducted using descriptive and cross-sectional research design. The study sample comprises 91 fourth-grade students who took an integrated curriculum and completed the nursing internship program. The data were collected with the Demographic Characteristics Questionnaire and the Levels of Knowledge, Attitudes and Practices of Staff Regarding Physical Restraints Questionnaire. For the assessment of the data, percentages, the arithmetic mean, and t test were used. The findings indicated that, of the intern nurses, 95.6% observed the use of physical restraints during their education, and 69.2% applied physical restraints. The mean knowledge, attitude, and practice scores of the nurses for physical restraint were 9.38 ± 1.19 (0-11 points), 34.70 ± 5.62 (12-48 points), and 37.95 ± 2.32 (14-42 points), respectively. Intern nurses' knowledge about how to use physical restraints was at a very good level; they displayed positive attitudes, and they used their knowledge and attitudes in their practices to a great extent. Although there are studies on the knowledge, attitudes, and practices of nurses working in the fields of elderly care, rehabilitation, and psychiatry in acute care units, there are no studies investigating intern nurses and other nursing students. However, intern nurses about to begin their careers should make accurate decisions regarding the use of physical restrains if they are to ensure patient safety and to fulfill this application effectively in their professional lives.
Burnout and Physical Activity in Minnesota Internal Medicine Resident Physicians
Olson, Shawn M.; Odo, Nnaemeka U.; Duran, Alisa M.; Pereira, Anne G.; Mandel, Jeffrey H.
2014-01-01
Background Regular physical activity plays an important role in the amelioration of several mental health disorders; however, its relationship with burnout has not yet been clarified. Objective To determine the association between achievement of national physical activity guidelines and burnout in internal medicine resident physicians. Methods A Web-based survey of internal medicine resident physicians at the University of Minnesota and Hennepin County Medical Center was conducted from September to October 2012. Survey measures included the Maslach Burnout Inventory-Human Services Survey and the International Physical Activity Questionnaire. Results Of 149 eligible residents, 76 (51.0%) completed surveys, which were used in the analysis. Burnout prevalence, determined by the Maslach Burnout Inventory, was 53.9% (41 of 76). Prevalence of failure to achieve US Department of Health and Human Services physical activity guidelines was 40.8% (31 of 76), and 78.9% (60 of 76) of residents reported that their level of physical activity has decreased since they began medical training. Residents who were able to meet physical activity guidelines were less likely to be burned out than their fellow residents (OR, 0.38, 95% CI 0.147–0.99). Conclusions Among internal medicine resident physicians, achievement of national physical activity guidelines appears to be inversely associated with burnout. Given the high national prevalence of burnout and inactivity, additional investigation of this relationship appears warranted. PMID:26140116
Haring, Catharina M; Cools, Bernadette M; van der Meer, Jos Wm; Postma, Cornelis T
2014-04-08
Many practicing physicians lack skills in physical examination. It is not known whether physical examination skills already show deficiencies after an early phase of clinical training. At the end of the internal medicine clerkship students are expected to be able to perform a general physical examination in every new patient encounter. In a previous study, the basic physical examination items that should standardly be performed were set by consensus. The aim of the current observational study was to assess whether medical students were able to correctly perform a general physical examination regarding completeness as well as technique at the end of the clerkship internal medicine. One hundred students who had just finished their clerkship internal medicine were asked to perform a general physical examination on a standardized patient as they had learned during the clerkship. They were recorded on camera. Frequency of performance of each component of the physical examination was counted. Adequacy of performance was determined as either correct or incorrect or not assessable using a checklist of short descriptions of each physical examination component. A reliability analysis was performed by calculation of the intra class correlation coefficient for total scores of five physical examinations rated by three trained physicians and for their agreement on performance of all items. Approximately 40% of the agreed standard physical examination items were not performed by the students. Students put the most emphasis on examination of general parameters, heart, lungs and abdomen. Many components of the physical examination were not performed as was taught during precourses. Intra-class correlation was high for total scores of the physical examinations 0.91 (p <0.001) and for agreement on performance of the five physical examinations (0.79-0.92 p <0.001). In conclusion, performance of the general physical examination was already below expectation at the end of the internal medicine clerkship. Possible causes and suggestions for improvement are discussed.
Student performance of the general physical examination in internal medicine: an observational study
2014-01-01
Background Many practicing physicians lack skills in physical examination. It is not known whether physical examination skills already show deficiencies after an early phase of clinical training. At the end of the internal medicine clerkship students are expected to be able to perform a general physical examination in every new patient encounter. In a previous study, the basic physical examination items that should standardly be performed were set by consensus. The aim of the current observational study was to assess whether medical students were able to correctly perform a general physical examination regarding completeness as well as technique at the end of the clerkship internal medicine. Methods One hundred students who had just finished their clerkship internal medicine were asked to perform a general physical examination on a standardized patient as they had learned during the clerkship. They were recorded on camera. Frequency of performance of each component of the physical examination was counted. Adequacy of performance was determined as either correct or incorrect or not assessable using a checklist of short descriptions of each physical examination component. A reliability analysis was performed by calculation of the intra class correlation coefficient for total scores of five physical examinations rated by three trained physicians and for their agreement on performance of all items. Results Approximately 40% of the agreed standard physical examination items were not performed by the students. Students put the most emphasis on examination of general parameters, heart, lungs and abdomen. Many components of the physical examination were not performed as was taught during precourses. Intra-class correlation was high for total scores of the physical examinations 0.91 (p <0.001) and for agreement on performance of the five physical examinations (0.79-0.92 p <0.001). Conclusions In conclusion, performance of the general physical examination was already below expectation at the end of the internal medicine clerkship. Possible causes and suggestions for improvement are discussed. PMID:24712683
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
2002-01-01
The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.
Validating the Physical Activity and Leisure Motivation Scale (PALMS).
Molanorouzi, Keyvan; Khoo, Selina; Morris, Tony
2014-09-03
Although there is abundant evidence to recommend a physically active lifestyle, adult physical activity (PA) levels have declined over the past two decades. In order to understand why this happens, numerous studies have been conducted to uncover the reasons for people's participation in PA. Often, the measures used were not broad enough to reflect all the reasons for participation in PA. The Physical Activity and Leisure Motivation Scale (PALMS) was created to be a comprehensive tool measuring motives for participating in PA. This 40-item scale related to participation in sport and PA is designed for adolescents and adults. Five items constitute each of the eight sub-scales (mastery, enjoyment, psychological condition, physical condition, appearance, other's expectations, affiliation, competition/ego) reflecting motives for participation in PA that can be categorized as features of intrinsic and extrinsic motivation based on self-determination theory. The aim of the current study was to validate the PALMS in the cultural context of Malaysia, including to assess how well the PALMS captures the same information as the Recreational Exercise Motivation Measure (REMM). To do so, 502 Malaysian volunteer participants, aged 18 to 67 years (mean ± SD; 31.55 ± 11.87 years), from a variety of PA categories, including individual sports, team sports, martial arts and exercise, completed the study. The hypothesized 8-factor model demonstrated a good fit with the data (CMIN/DF = 2.820, NFI = 0.90, CFI = 0.91, RMSEA = 0.06). Cronbach's alpha coefficient (α = 0.79) indicated good internal consistency for the overall measure. Internal consistency for the PALMS subscales was sound, ranging from 0.78 to 0.82. The correlations between each PALMS sub-scale and the corresponding sub-scale on the validated REMM (the 73-item questionnaire from which the PALMS was developed) were also high and varied from 0.79 to 0.95. Also, test-retest reliability for the questionnaire sub-scales was between 0.78 and 0.94 over a 4-week period. In this sample, the PALMS demonstrated acceptable factor structure, internal consistency, test-retest reliability, and criterion validity. It was applicable to diverse physical activity contexts.
ERIC Educational Resources Information Center
Msengi, Clementine M.; Msengi, Israel G.; Harris, Sandra; Hopson, Michael
2011-01-01
The purpose of this study was to assess the health status and physical health of international students at five American universities. International students in the United States were asked to compare the status of their health before and after coming to the United States. Findings suggested that health status of international students declined…
Latorre-Román, Pedro Ángel; Garrido-Ruiz, Antonio; García-Pinillos, Felipe
2014-11-08
To validate the Spanish version of Adonis Complex Questionnaire in bodybuilders. Participants included 99 bodybuilders who train regularly (age: 25.45±5.19 y; BMI=24.53±1.89). In order to test the discriminant and concurrent validity the Exercise Dependence Scale-Revised (EDS-R) and the Eating Attitudes Test (EAT-26) were used. The scale's psychometric properties were obtained through a concurrent validity process, factorial analysis of principal components, internal consistency, and test-retest reliability. The internal consistency of this questionnaire was high (Cronbach's Alpha= 0.880) in total scale. The intraclass correlation coefficient (ICC) to test the temporal consistency of the questionnaire was 0.707 (95% IC=0.336- 0.871). The questionnaire obtained concurrent validity with the EDS-R (r=0.613, p<0.001), and EAT-26 (r=0.422, p<0.001). The results have shown a three-factor structure Factor 1: psychosocial effect of physical appearance, Factor 2: control of physical appearance, Factor 3: concern about physical appearance which explain 65.29% of variance. The Adonis Complex Questionnaire shows a proper psychometric properties and it is a valid and reliable measure of vigorexy and muscle dimorphism in bodybuilders. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Morris, Meg E; Perry, Alison; Bilney, Belinda; Curran, Andrea; Dodd, Karen; Wittwer, Joanne E; Dalton, Gregory W
2006-09-01
This article describes a systematic review and critical evaluation of the international literature on the effects of physical therapy, speech pathology, and occupational therapy for people with motor neuron disease (PwMND). The results were interpreted using the framework of the International Classification of Functioning, Disability and Health. This enabled us to summarize therapy outcomes at the level of body structure and function, activity limitations, participation restrictions, and quality of life. Databases searched included MEDLINE, PUBMED, CINAHL, PSYCInfo, Data base of Abstracts of Reviews of Effectiveness (DARE), The Physiotherapy Evidence data base (PEDro), Evidence Based Medicine Reviews (EMBASE), the Cochrane database of systematic reviews, and the Cochrane Controlled Trials Register. Evidence was graded according to the Harbour and Miller classification. Most of the evidence was found to be at the level of "clinical opinion" rather than of controlled clinical trials. Several nonrandomized small group and "observational studies" provided low-level evidence to support physical therapy for improving muscle strength and pulmonary function. There was also some evidence to support the effectiveness of speech pathology interventions for dysarthria. The search identified a small number of studies on occupational therapy for PwMND, which were small, noncontrolled pre-post-designs or clinical reports.
Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min
2016-01-01
[Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer. PMID:27134379
ERIC Educational Resources Information Center
Whittle, Rachael Jayne; Benson, Amanda Clare; Telford, Amanda
2017-01-01
Senior secondary physical education courses for certification continue to attract increasing student enrolments amidst international concerns for the state and status of physical education in schools. Curricula analysis of senior secondary physical education has typically focussed on courses in local contexts. This review aims to contribute to the…
Reinhardt, Jan D; von Groote, Per M; DeLisa, Joel A; Melvin, John L; Bickenbach, Jerome E; Stucki, Gerold
2009-09-01
The politics of international non-governmental organizations (NGOs) such as the International Society of Physical and Rehabilitation Medicine (ISPRM) serve the function of selecting and attaining particular socially valued goals. The selection and attainment of goals as the primary function of political action can be structured along a policy process or cycle comprising the stages of strategic goal setting and planning of strategic pathways, agenda setting, resource mobilization, implementation, evaluation and innovation. At the various stages of this policy process different policy tools or instruments, which can be used to influence citizen and organizational behaviour in the light of defined goals, can be applied. The objective of this paper is to introduce and describe policy tools of potential relevance to ISPRM with regard to different policy functions and stages of the policy process.
NASA Astrophysics Data System (ADS)
Gügercinoğlu, Erbil
2017-12-01
Glitches, sudden spin-up of pulsars with subsequent recovery, provide us with a unique opportunity to investigate various physical processes, including the crust-core coupling, distribution of reservoir angular momentum within different internal layers, spin-up in neutral and charged superfluids and constraining the equation of state of the neutron star (NS) matter. In this work, depending on the dynamic interaction between the vortex lines and the nuclei in the inner crust, and between the vortex lines and the magnetic flux tubes in the outer core, various types of relaxation behavior are obtained and confronted with the observations. It is shown that the glitches have strong potential to deduce information about the cooling behavior and interior magnetic field configuration of NSs. Some implications of the relative importance of the external spin-down torques and the superfluid internal torques for recently observed unusual glitches are also discussed.
10. international mouse genome conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisler, M.H.
Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mousemore » in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.« less
A Study of Energy Partitioning Using A Set of Related Explosive Formulations
NASA Astrophysics Data System (ADS)
Lieber, Mark; Foster, Joseph C., Jr.; Stewart, D. Scott
2011-06-01
Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to kinetic energy during the detonation process. This energy is manifest in the internal thermodynamic energy and the translational flow of the products. Historically, the explosive design problem has focused on intramolecular stoichiometry providing prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employee intermolecular ingredients to alter the spatial and temporal distribution of energy release. CHEETA has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and flow energy in the detonation. The equation of state information from CHEETA has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.
NASA Astrophysics Data System (ADS)
Moon, Russell; Calvo, Fabian; Vasiliev, Victor
2006-04-01
Using the principles of the Vortex Theory, it was discovered that when the gamma ray strikes a nucleon, the positively charged pentaquark [and the K^- meson] had to be created by the collision with neutron. This discovery further reveals that if the gamma ray strikes a proton it can create a Neutral Pentaquark [and a D^+ meson]. The neutral pentaquark will consist of an up, up, down, down, and an anti-charm quark, while the D^+ meson will consist of a charm and an anti-down quark. The neutral pentaquark will later decay into a neutron and D^0 meson. Because the vortex theory also reveals that the strong force couples a proton to a neutron, the neutron that was coupled to the proton in the nucleus will also be found amid the debris particles. 1. R. G. Moon, The Vortex Theory, The Beginning. Gordons Publications of Fort Lauderdale Fla., 2003, 184 pp. 2. R. G. Moon, The Vortex Theory Explains the Quark Theory. Gordons Publications of Fort Lauderdale Fla., 2005, 205 pp. 3. R.G. Moon, V.V. Vasiliev, The bases of the vortex theory, Book of abstracts The 53 International Meeting on Nuclear Spectroscopy and Nuclear structure, NUCLEUS-2003, October 7-10, 2003, Moscow, St.-Petersburg, Russia, 2003, p.251 4. R.G. Moon, V.V. Vasiliev, The Vortex Theory and Some Interaction in Nuclear Physics, Book of abstracts The 54 International Meeting on Nuclear Spectroscopy and Nuclear Structure, NUCLEUS-2004, June 22-25, 2004, Belgorod, Russia, 2004, p.259 5. R.G. Moon, V.V. Vasiliev. Explanation of the Conservation of Lepton Number, Book of abstracts LV National Conference on Nuclear Physics, Frontiers in the Physics of Nucleus, June 28-July 1, 2005, Saint-Petersburg, Russia, 2005, p. 347
A geographical analysis of trafficking on a popular darknet market.
Broséus, Julian; Rhumorbarbe, Damien; Morelato, Marie; Staehli, Ludovic; Rossy, Quentin
2017-08-01
Cryptomarkets are online marketplaces, located on the darknet, that facilitate the trading of a variety of illegal goods, mostly drugs. While the literature essentially focus on drugs, various other goods and products related to financial or identity fraud, firearms, counterfeit goods, as well as doping products are also offered on these marketplaces. Through the analysis of relevant data collected on a popular marketplace in 2014-2015, Evolution, this research provides an analysis of the structure of trafficking (types and proportions of products, number of vendors and shipping countries). It also aims at highlighting geographical patterns in the trafficking of these products (e.g. trafficking flows, specialisation of vendors and assessment of their role in the distribution chain). The analysis of the flow of goods between countries emphasises the role of specific countries in the international and domestic trafficking, potentially informing law enforcement agencies to target domestic mails or international posts from specific countries. The research also highlights the large proportion of licit and illicit drug listings and vendors on Evolution, followed by various fraud issues (in particular, financial fraud), the sharing of knowledge (tutorials) and finally goods, currencies and precious metals (principally luxury goods). Looking at the shipping country, there seems to be a clear division between digital and physical products, with more specific information for physical goods. This reveals that the spatial analysis of trafficking is particularly meaningful in the case of physical products (such as illicit drugs) and to a lesser extent for digital products. Finally, the geographical analysis reveals that spatial patterns on Evolution tend to reflect the structure of the traditional illicit market. However, regarding illicit drugs, country-specificity has been observed and are presented in this article. Copyright © 2017 Elsevier B.V. All rights reserved.
The 26th International Nuclear Physics Conference
NASA Astrophysics Data System (ADS)
It was a pleasure to welcome all delegates and accompanying persons to Adelaide for the 26th International Conference in Nuclear Physics, INPC2016. As the major meeting in our field, it was a wonderful opportunity to catch up with colleagues from around the world, learn about the very latest developments and share ideas. We were grateful for the support of the Commission on Nuclear Physics, C12, of the International Union of Pure and Applied Physics (IUPAP), which chose Adelaide to host this meeting. We were also honoured that the President of IUPAP, Prof. Bruce McKellar was present at the meeting to welcome delegates and participate in the proceedings. We acknowledge the financial support for the conference which was made available by a number of organisations. We were especially grateful to the major sponsors, the Adelaide Convention Bureau, the University of Adelaide, the Australian National University and ANSTO, as well as IUPAP, the ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP) and several of the world's major nuclear physics laboratories, BNL, GSI, JLab and TRIUMF. As a result of these contributions we were able to offer support to attend the conference to more than 50 international students. Not only did we have a superb scientific program but, consistent with IUPAP guidelines, more than 40% of the invited plenary talks were presented by women. In order to reach out to the local community, Cynthia Keppel (from JLab) presented a public lecture on Hadron Beam Therapy on Tuesday evening, September 13th. As presenting a talk is now often a condition for financial support to attend an international conference, there were 11 simultaneous parallel sessions with more than 350 presentations. We are especially grateful to the International Advisory Committee, the Program Committee and the Conveners whose advice and hard work made it possible for all this to come together. I would also like to acknowledge the work of the Local Organising Committee and the conference management organisation, Arinex. I am especially grateful to Sharon Johnson and Silvana Santucci at the Centre for the Subatomic Structure of Matter (CSSM) who carried much of the responsibility for the complex task of bringing the conference together. Given that INPC is held only once every three years and rotates between Europe, North America and the rest of the world, it was a rare honour to have the opportunity to stage it in the Southern Hemisphere. This was the first time that it had been held in Australia and we were pleased that delegates had the opportunity to experience some of the delights of our country, from its remarkable scenery and wildlife to the great cities and food and wine. Heartfelt thanks to everyone who took part for a successful conference. Anthony Thomas Chair INPC2016
NASA Astrophysics Data System (ADS)
Davis, K. A.; Reid, E. C.; Cohen, A. L.
2016-02-01
Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.
Incerti, S; Kyriakou, I; Bernal, M A; Bordage, M C; Francis, Z; Guatelli, S; Ivanchenko, V; Karamitros, M; Lampe, N; Lee, S B; Meylan, S; Min, C H; Shin, W G; Nieminen, P; Sakata, D; Tang, N; Villagrasa, C; Tran, H; Brown, J M C
2018-06-14
This Special Report presents a description of Geant4-DNA user applications dedicated to the simulation of track structures (TS) in liquid water and associated physical quantities (e.g. range, stopping power, mean free path…). These example applications are included in the Geant4 Monte Carlo toolkit and are available in open access. Each application is described and comparisons to recent international recommendations are shown (e.g. ICRU, MIRD), when available. The influence of physics models available in Geant4-DNA for the simulation of electron interactions in liquid water is discussed. Thanks to these applications, the authors show that the most recent sets of physics models available in Geant4-DNA (the so-called "option4″ and "option 6″ sets) enable more accurate simulation of stopping powers, dose point kernels and W-values in liquid water, than the default set of models ("option 2″) initially provided in Geant4-DNA. They also serve as reference applications for Geant4-DNA users interested in TS simulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
From Vesalius to virtual reality: How embodied cognition facilitates the visualization of anatomy
NASA Astrophysics Data System (ADS)
Jang, Susan
This study examines the facilitative effects of embodiment of a complex internal anatomical structure through three-dimensional ("3-D") interactivity in a virtual reality ("VR") program. Since Shepard and Metzler's influential 1971 study, it has been known that 3-D objects (e.g., multiple-armed cube or external body parts) are visually and motorically embodied in our minds. For example, people take longer to rotate mentally an image of their hand not only when there is a greater degree of rotation, but also when the images are presented in a manner incompatible with their natural body movement (Parsons, 1987a, 1994; Cooper & Shepard, 1975; Sekiyama, 1983). Such findings confirm the notion that our mental images and rotations of those images are in fact confined by the laws of physics and biomechanics, because we perceive, think and reason in an embodied fashion. With the advancement of new technologies, virtual reality programs for medical education now enable users to interact directly in a 3-D environment with internal anatomical structures. Given that such structures are not readily viewable to users and thus not previously susceptible to embodiment, coupled with the VR environment also affording all possible degrees of rotation, how people learn from these programs raises new questions. If we embody external anatomical parts we can see, such as our hands and feet, can we embody internal anatomical parts we cannot see? Does manipulating the anatomical part in virtual space facilitate the user's embodiment of that structure and therefore the ability to visualize the structure mentally? Medical students grouped in yoked-pairs were tasked with mastering the spatial configuration of an internal anatomical structure; only one group was allowed to manipulate the images of this anatomical structure in a 3-D VR environment, whereas the other group could only view the manipulation. The manipulation group outperformed the visual group, suggesting that the interactivity that took place among the manipulation group promoted visual and motoric embodiment, which in turn enhanced learning. Moreover, when accounting for spatial ability, it was found that manipulation benefits students with low spatial ability more than students with high spatial ability.
Lemon, Stephenie C; Rosal, Milagros C; Welch, Garry
2011-11-01
This study assessed the psychometric properties of the Audit of Diabetes-Dependent Quality of Life (ADDQoL) modified for low-income, low-education, Spanish-speaking Puerto Ricans with type 2 diabetes residing in the northeastern United States. Cross-sectional data from 226 patients were analyzed. Scale modifications included simplification of instructions, question wording and response format, and oral administration. Reliability was assessed with Cronbach's alpha coefficient and internal structure by exploratory factor analysis. Criterion validity was assessed using correlation analysis and linear and logistic regression models assessing the association of the ADDQoL with standardized physical health status, mental health status, depression, and comorbidity indices. Two ADDQoL items were dropped. The modified scale had excellent internal consistency and supported the original scale factor structure. Criterion validity results supported the validity of this measure. The modified ADDQoL showed psychometric properties that support its use in low-income, Spanish-speaking Puerto Ricans with type 2 diabetes who reside in mainland U.S.
Bifurcated helical core equilibrium states in tokamaks
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.
2013-07-01
Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.
NASA Astrophysics Data System (ADS)
Wagner, F.
2003-12-01
The Hannes Alfvén Prize of the European Physical Society for Outstanding Contributions to Plasma Physics (2003) has been awarded to Vladimir Evgenievitch Fortov `for his seminal contributions in the area of non-ideal plasmas and strongly coupled Coulomb systems, and for his pioneering work on the generation and investigation of plasmas under extreme conditions'. Vladimir Evgenievitch Fortov was born on 23 January 1946 in Noginsk, Russia. He studied physics at the Moscow Institute of Physics and Technology (PhD in 1976). In 1978 he was made a Professor and in 1991 he was awarded the Chair of the Moscow Institute of Physics and Technology. In the same year he became a Member of the Russian Academy of Sciences and was its vice-chairman from 1996 to 2001. From 1996 to 1998, Professor Fortov went into politics where he was just as successful, becoming Deputy Prime Minister of the Government of the Russian Federation and Minister of Science and Technology of the Russian Federation. Professor Fortov has made outstanding experimental and theoretical contributions to low temperature plasma physics. His pioneering work investigating non-ideal plasmas produced by intense shock waves initiated a new research field---the physical properties of highly compressed plasmas with strong inter-particle interactions. Under the leadership of Professor Fortov, experimental methods for generating and diagnosing these plasmas under extreme conditions were developed. To generate intense shock waves, a broad spectrum of drivers was used---chemical explosives, hypervelocity impact, lasers, relativistic electrons, heavy-ion and soft x-ray beams. Measurements of the equation of state, transport and optical properties of strongly coupled plasmas were carried out, including the interesting region lying between condensed matter and rarefied plasmas where specific plasma phase transitions and insulator--metal transitions were expected and explored. In another area of strongly coupled plasmas, Professor Fortov led theoretical and experimental studies on `dusty plasmas', carried out over a wide range of plasma parameters, using a broad spectrum of experimental techniques and devices. These studies embraced thermal combustion, glow and rf discharges and plasmas induced by cosmic ultraviolet and nuclear radiation. Under many of these conditions, ordered structures of dust in plasma liquids and plasma crystals were observed for the first time. Investigations of dusty plasmas induced by solar radiation and dust structures in DC glow discharges were first carried out on the Mir space station under micro-gravity conditions. The Russian--German experiment on dusty plasma crystals in space was successfully started on the International Space Station (ISS) in March 2001. This experiment was the first physics experiment on board the ISS. On the basis of his experimental results, Professor Fortov developed a general method of constructing semi-empirical equations of state of highly compressed materials. He put forward theoretical models of thermodynamical, transport and optical properties of strongly non-ideal plasmas. On the basis of these models Professor Fortov developed two-dimensional and three-dimensional computer codes for computer simulations of the processes in advanced energetic, space, nuclear and aviation systems based on high energy density plasmas. Professor Fortov has not only contributed to plasma theory but also to more applied topics. His laboratory participated in international space projects like the VEGA project (plasma dust impact phenomena), as well as the Halley Comet exploration, and studied plasma and shock wave phenomena stimulated by the impact of the Shoemaker-Levy 9 comet with Jupiter. Professor Fortov is an internationally well known scientist. He collaborates actively with many plasma laboratories and institutions. He has received many national and international awards, including several USSR and Russian State Awards, the A P Karpinskii-Toepfer Scientific Award for Physics and Chemistry (1997), the P Bridgman Award for High Pressure Plasma Investigations and Achievements in High Pressure Physics and Chemistry (1999), the A Einstein Medal of UNESCO (2000) and the Max Planck Award for Physics (2002). It is therefore with great pleasure and honour that the Plasma Physics Division of the European Physical Society has awarded the Hannes Alfvén prize this year to Professor Vladimir Evgenievitch Fortov. This article first appeared on the Europhyisics News website.
NASA Astrophysics Data System (ADS)
Kuo, Eric; Hallinen, Nicole R.; Conlin, Luke D.
2017-05-01
One aim of school science instruction is to help students become adaptive problem solvers. Though successful at structuring novice problem solving, step-by-step problem-solving frameworks may also constrain students' thinking. This study utilises a paradigm established by Heckler [(2010). Some consequences of prompting novice physics students to construct force diagrams. International Journal of Science Education, 32(14), 1829-1851] to test how cuing the first step in a standard framework affects undergraduate students' approaches and evaluation of solutions in physics problem solving. Specifically, prompting the construction of a standard diagram before problem solving increases the use of standard procedures, decreasing the use of a conceptual shortcut. Providing a diagram prompt also lowers students' ratings of informal approaches to similar problems. These results suggest that reminding students to follow typical problem-solving frameworks limits their views of what counts as good problem solving.
Maternal and paternal physical abuse: Unique and joint associations with child behavioral problems.
Cui, Naixue; Deatrick, Janet A; Liu, Jianghong
2018-02-01
Although there is a substantial amount of literature documenting the relationship between child abuse and behavioral problems in China, there is, on the other hand, a limited number of studies on the joint and unique associations of maternal and paternal physical abuse with child behaviors within the Chinese context. The present study, using the family systems theory as the theoretical framework, aims to examine these joint and the unique associations of maternal and paternal physical abuse with externalizing and internalizing behaviors among a community sample of Chinese children. A total of 296 children (54.7% boys, mean age 12.31±0.56years) from two-parent families participated in the study, and they reported their physical abuse experience by their mother and father in the previous year using the Chinese version of the Parent-Child Conflict Tactics Scale. Participants, using the Youth Self Report, reported personal externalizing and internalizing behaviors, and, similarly, their mothers, using the Child Behavior Checklist, assessed children's externalizing and internalizing behaviors. Linear mixed effect models with random intercept and slope were used to examine the joint and unique associations of maternal and paternal physical abuse with child externalizing and internalizing behaviors. Results revealed that physically abused children were more likely to be simultaneously abused by both mothers and fathers. Furthermore, when compared with their non-abused counterparts, children with physical abuse that was carried out solely by mothers (externalizing behaviors: β=6.71, 95% CI=2.45-10.98, p<0.01; internalizing behaviors: β=4.52, 95% CI=0.37-8.66, p<0.05) or by both mothers and fathers (externalizing behaviors: β=4.52, 95% CI=1.80-7.24, p<0.001; internalizing behaviors: β=2.98, 95% CI=0.34-5.61, p<0.05) reported more externalizing and internalizing behaviors. Externalizing and internalizing behaviors of children who were physically abused solely by fathers did not significantly differ from those of their non-abused counterparts, which may result from the small sample size. The present findings suggest that maternal physical abuse may have a dominant and unique association with child behaviors, regardless of whether paternal physical abuse occurs within the family. Implications for future research and practice within the Chinese context regarding the subject of child behaviors and parental abuse are discussed. Copyright © 2017. Published by Elsevier Ltd.
The dynamics of perception and action.
Warren, William H
2006-04-01
How might one account for the organization in behavior without attributing it to an internal control structure? The present article develops a theoretical framework called behavioral dynamics that integrates an information-based approach to perception with a dynamical systems approach to action. For a given task, the agent and its environment are treated as a pair of dynamical systems that are coupled mechanically and informationally. Their interactions give rise to the behavioral dynamics, a vector field with attractors that correspond to stable task solutions, repellers that correspond to avoided states, and bifurcations that correspond to behavioral transitions. The framework is used to develop theories of several tasks in which a human agent interacts with the physical environment, including bouncing a ball on a racquet, balancing an object, braking a vehicle, and guiding locomotion. Stable, adaptive behavior emerges from the dynamics of the interaction between a structured environment and an agent with simple control laws, under physical and informational constraints. ((c) 2006 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Huang, Hong-bin; Liu, Wei-ping; Chen, Shun-er; Zheng, Liming
2005-02-01
A new type of CATV network management system developed by universal MCU, which supports SNMP, is proposed in this paper. From the point of view in both hardware and software, the function and method of every modules inside the system, which include communications in the physical layer, protocol process, data process, and etc, are analyzed. In our design, the management system takes IP MAN as data transmission channel and every controlled object in the management structure has a SNMP agent. In the SNMP agent developed, there are four function modules, including physical layer communication module, protocol process module, internal data process module and MIB management module. In the paper, the structure and function of every module are designed and demonstrated while the related hardware circuit, software flow as well as the experimental results are tested. Furthermore, by introducing RTOS into the software programming, the universal MCU procedure can conducts such multi-thread management as fast Ethernet controller driving, TCP/IP process, serial port signal monitoring and so on, which greatly improves efficiency of CPU.
Validation of the Minority Stress Scale Among Italian Gay and Bisexual Men.
Pala, Andrea Norcini; Dell'Amore, Francesca; Steca, Patrizia; Clinton, Lauren; Sandfort, Theodorus; Rael, Christine
2017-12-01
The experience of sexual orientation stigma (e.g., homophobic discrimination and physical aggression) generates minority stress, a chronic form of psychosocial stress. Minority stress has been shown to have a negative effect on gay and bisexual men's (GBM's) mental and physical health, increasing the rates of depression, suicidal ideation, and HIV risk behaviors. In conservative religious settings, such as Italy, sexual orientation stigma can be more frequently and/or more intensively experienced. However, minority stress among Italian GBM remains understudied. The aim of this study was to explore the dimensionality, internal reliability, and convergent validity of the Minority Stress Scale (MSS), a comprehensive instrument designed to assess the manifestations of sexual orientation stigma. The MSS consists of 50 items assessing (a) Structural Stigma, (b) Enacted Stigma, (c) Expectations of Discrimination, (d) Sexual Orientation Concealment, (e) Internalized Homophobia Toward Others, (f) Internalized Homophobia toward Oneself, and (g) Stigma Awareness. We recruited an online sample of 451 Italian GBM to take the MSS. We tested convergent validity using the Perceived Stress Questionnaire. Through exploratory factor analysis, we extracted the 7 theoretical factors and an additional 3-item factor assessing Expectations of Discrimination From Family Members. The MSS factors showed good internal reliability (ordinal α > .81) and good convergent validity. Our scale can be suitable for applications in research settings, psychosocial interventions, and, potentially, in clinical practice. Future studies will be conducted to further investigate the properties of the MSS, exploring the association with additional health-related measures (e.g., depressive symptoms and anxiety).
ERIC Educational Resources Information Center
Physician and Sportsmedicine, 1992
1992-01-01
International Society of Sport Psychology clarifies the psychological benefits of physical activity, noting the positive relationship between physical activity level and mental health. Exercise can reduce anxiety, decrease depression levels, reduce neuroticism and anxiety, reduce stress, and have beneficial emotional effects for both sexes across…
Parham, Sophie C; Kavanagh, David J; Gericke, Christian A; King, Neil; May, Jon; Andrade, Jackie
2017-06-01
There is a need for improved measurement of motivation for diabetes self-care. The Elaborated Intrusion Theory of Desire offers a coherent framework for understanding and identifying the cognitive-affective events that constitute the subjective experience of motivation and may therefore inform the development of such an instrument. Recent research has shown the resultant Motivation Thought Frequency scale (MTF) to have a stable factor structure (Intensity, Incentives Imagery, Self-Efficacy Imagery, Availability) when applied to physical activity, excessive snacking or alcohol use in the general population. The current study aimed to confirm the four-factor structure of the MTF for glucose testing, physical activity and healthy eating in people with type 2 diabetes. Associations with self-reports of concurrent diabetic self-care behaviours were also examined. Confirmatory factor analyses tested the internal structure, and multiple regressions assessed the scale's relationship with concurrent self-care behaviours. The MTF was completed by 340 adults with type 2 diabetes, and 237 from that sample also reported self-care behaviours. Separate MTFs assessed motivation for glucose testing, physical activity and healthy eating. Self-care was assessed using questions from the Summary of Diabetes Self-Care Activities. The MTF for each goal achieved an acceptable fit on all indices after selected errors within factors were allowed to intercorrelate. Intensity and Self-Efficacy Imagery provided the strongest and most consistent correlations with relevant self-care behaviours. Results provide preliminary support for the MTF in a diabetes sample. Testing of its sensitivity to change and its predictive utility over time is needed.
NASA Astrophysics Data System (ADS)
Hamahashi, M.; Tsuji, T.; Saito, S.; Tanikawa, W.; Hamada, Y.; Hashimoto, Y.; Kimura, G.
2016-12-01
Investigating the mechanical properties and deformation patterns of megathrusts in subduction zones is important to understand the generation of large earthquakes. The Nobeoka Thrust, a fossilized megasplay fault in Kyushu Shimanto Belt, southwest Japan, exposes foliated fault rocks that were formed under the temperature range of 180-350° (Kondo et al., 2005). During the Nobeoka Thrust Drilling Project (2011), core samples and geophysical logging data were obtained recovering a continuous distribution of multiple fault zones, which provide the opportunity to examine their structure and physical properties in various scales (Hamahashi et al., 2013; 2015). By performing logging data analysis, discrete sample physical property measurements, and synthetic modeling of seismic reflections along the Nobeoka Thrust, we conducted core-log-seismic integrative study to characterize the effects of damage zone architecture and structural anisotropy towards the physical properties of the megasplay. A clear contrast in physical properties across the main fault core and surrounding damage zones were identified, where the fault rocks preserve the porosity of 4.8% in the hanging wall and 7.6% in the footwall, and P-wave velocity of 4.8 km/s and 4.2 km/s, respectively. Multiple sandstone-rich- and shale-rich damage zones were found from the drilled cores, in which velocity decreases significantly in the brecciated zones. The internal structure of these foliated fault rocks consist of heterogeneous lithology and texture, and velocity anisotropy ranges 1-18% (P-wave) and 1.5-80% (S-wave), affected by structural dip angle, foliation density, and sandstone/mudstone ratio. To evaluate the fault properties at the seismogenic depth, we developed velocity/earth models and synthetic modeling of seismic reflection using acoustic logs across the thrust and parameterized lithological and structural elements in the identified multiple damage zones.
Marfeo, Elizabeth E; Haley, Stephen M; Jette, Alan M; Eisen, Susan V; Ni, Pengsheng; Bogusz, Kara; Meterko, Mark; McDonough, Christine M; Chan, Leighton; Brandt, Diane E; Rasch, Elizabeth K
2013-09-01
Physical and mental impairments represent the 2 largest health condition categories for which workers receive Social Security disability benefits. Comprehensive assessment of physical and mental impairments should include aspects beyond medical conditions such as a person's underlying capabilities as well as activity demands relevant to the context of work. The objective of this article is to describe the initial conceptual stages of developing new measurement instruments of behavioral health and physical functioning relevant for Social Security work disability evaluation purposes. To outline a clear conceptualization of the constructs to be measured, 2 content models were developed using structured and informal qualitative approaches. We performed a structured literature review focusing on work disability and incorporating aspects of the International Classification of Functioning, Disability and Health as a unifying taxonomy for framework development. Expert interviews provided advice and consultation to enhance face validity of the resulting content models. The content model for work-related behavioral health function identifies 5 major domains: (1) behavior control, (2) basic interactions, (3) temperament and personality, (4) adaptability, and (5) workplace behaviors. The content model describing physical functioning includes 3 domains: (1) changing and maintaining body position, (2) whole-body mobility, and (3) carrying, moving, and handling objects. These content models informed subsequent measurement properties including item development and measurement scale construction, and provided conceptual coherence guiding future empirical inquiry. The proposed measurement approaches show promise to comprehensively and systematically assess physical and behavioral health functioning relevant to work. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Density-functional theory for internal magnetic fields
NASA Astrophysics Data System (ADS)
Tellgren, Erik I.
2018-01-01
A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.
Study of energy partitioning using a set of related explosive formulations
NASA Astrophysics Data System (ADS)
Lieber, Mark; Foster, Joseph C.; Stewart, D. Scott
2012-03-01
Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to high power output during the detonation process. Historically, the explosive design problem has focused on intramolecular energy storage. The molecules of interest are derived via molecular synthesis providing near stoichiometric balance on the physical scale of the molecule. This approach provides prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employ intermolecular ingredients to alter the spatial and temporal distribution of energy release. State of the art continuum methods have been used to study this approach to the materials design. Cheetah has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and kinetic energy in the detonation. The equation of state information from Cheetah has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.
Validation of the Modified Fatigue Impact Scale in mild to moderate traumatic brain injury.
Schiehser, Dawn M; Delano-Wood, Lisa; Jak, Amy J; Matthews, Scott C; Simmons, Alan N; Jacobson, Mark W; Filoteo, J Vincent; Bondi, Mark W; Orff, Henry J; Liu, Lin
2015-01-01
To evaluate the validity of the Modified Fatigue Impact Scale (MFIS) in veterans with a history of mild to moderate traumatic brain injury (TBI). Veterans (N = 106) with mild (92%) or moderate (8%) TBI. Veterans Administration Health System. Factor structure, internal consistency, convergent validity, sensitivity, and specificity of the MFIS were examined. Principal component analysis identified 2 viable MFIS factors: a Cognitive subscale and a Physical/Activities subscale. Item analysis revealed high internal consistency of the MFIS Total scale and subscale items. Strong convergent validity of the MFIS scales was established with 2 Beck Depression Inventory II fatigue items. Receiver operating characteristic curve analysis revealed good to excellent accuracy of the MFIS in classifying fatigued versus nonfatigued individuals. The MFIS is a valid multidimensional measure that can be used to evaluate the impact of fatigue on cognitive and physical functioning in individuals with mild to moderate TBI. The psychometric properties of the MFIS make it useful for evaluating fatigue and provide the potential for improving research on fatigue in this population.
The International Linear Collider Technical Design Report - Volume 2: Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Howard; Barklow, Tim; Fujii, Keisuke
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
NASA Microgravity Combustion Science Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
2003-01-01
A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.
New frontiers in quantum simulation enabled by precision laser spectroscopy
NASA Astrophysics Data System (ADS)
Rey, Ana M.
2014-05-01
Ultracold atomic systems have been proposed as ideal quantum simulators of real materials. Major breakthroughs have been achieved using neutral alkali atoms (one-outer-electron atoms) but their inherent ``simplicity'' introduces important limitations on the physics that can be investigated with them. Systems with more complex interactions and with richer internal structure offer an excellent platform for the exploration of a wider range of many-body phenomena. I will discuss our recent progress on the use of polar molecules, alkaline earth atoms -currently the basis of the most precise atomic clock in the world-, and trapped ions, as quantum simulators of iconic condensed matter Hamiltonians as well as Hamiltonians without solid state analogs. A promising direction under current exploration is the many-body physics that emerges at warmer temperatures (above quantum degeneracy) when there is a decoupling between motional and internal degrees of freedom. Even though in this regime the interaction energy scales can be small (~ Hz), they can be resolved thanks to the unprecedented level of control offered by modern precision laser spectroscopy. AFOSR, NSF, ARO and ARO-DARPA-OLE.
ERIC Educational Resources Information Center
De Cocker, Katrien; Cardon, Greet; De Bourdeaudhuij, Ilse
2007-01-01
Pedometer-determined physical activity (PA) levels in Belgian adults were provided and compared to PA scores reported in the International Physical Activity Questionnaire (IPAQ). The representative sample (N = 1,239) of the Belgian population took on average 9,655 (4,526) steps/day. According to pedometer indices 58.4% were insufficiently active.…
Motivation and Behavioral Regulation of Physical Activity in Middle-School Students
Dishman, Rod K.; McIver, Kerry L; Dowda, Marsha; Saunders, Ruth P.; Pate, Russell R.
2015-01-01
Purpose To examine whether intrinsic motivation and behavioral self-regulation are related to physical activity during middle school. Method Structural equation modeling was applied in cross-sectional and longitudinal tests of self-determination theory. Results Consistent with theory, hypothesized relationships among variables were supported. Integrated regulation and intrinsic motivation were most strongly correlated with moderate-to-vigorous physical activity measured by an accelerometer. Results were independent of a measure of biological maturity. Construct validity and equivalence of measures was confirmed longitudinally between 6th and 7th grades and between boys and girls, non-Hispanic black and white children and overweight and normal weight students. Conclusions Measures of autonomous motivation (identified, integrated, and intrinsic) were more strongly related to physical activity in the 7th grade than measures of controlled motivation (external and introjected), implying that physical activity became more intrinsically motivating for some girls and boys as they moved through middle school. Nonetheless, introjected regulation was related to physical activity in 7th grade, suggesting that internalized social pressures, which can be detrimental to sustained activity and well-being, also became motivating. These results encourage longer prospective studies during childhood and adolescence to clarify how controlled and autonomous motivations for physical activity develop and whether they respond to interventions designed to increase physical activity. PMID:25628178
Motivation and Behavioral Regulation of Physical Activity in Middle School Students.
Dishman, Rod K; McIver, Kerry L; Dowda, Marsha; Saunders, Ruth P; Pate, Russell R
2015-09-01
This study aimed to examine whether intrinsic motivation and behavioral self-regulation are related to physical activity during middle school. Structural equation modeling was applied in cross-sectional and longitudinal tests of self-determination theory. Consistent with theory, hypothesized relations among variables were supported. Integrated regulation and intrinsic motivation were most strongly correlated with moderate-to-vigorous physical activity measured by an accelerometer. Results were independent of a measure of biological maturity. Construct validity and equivalence of measures were confirmed longitudinally between the sixth and seventh grades and between boys and girls, non-Hispanic Black and White children and overweight and normal-weight students. Measures of autonomous motivation (identified, integrated, and intrinsic) were more strongly related to physical activity in the seventh grade than measures of controlled motivation (external and introjected), implying that physical activity became more intrinsically motivating for some girls and boys as they moved through middle school. Nonetheless, change in introjected regulation was related to change in physical activity in the seventh grade, suggesting that internalized social pressures, which can be detrimental to sustained activity and well-being, also became motivating. These results encourage longer prospective studies during childhood and adolescence to clarify how controlled and autonomous motivations for physical activity develop and whether they respond to interventions designed to increase physical activity.
Continuous wave superconducting radio frequency electron linac for nuclear physics research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, Charles E.
CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less
Unsolved problems. [the physics of B stars
NASA Technical Reports Server (NTRS)
1982-01-01
The level of understanding of the physics of single, isolated B stars is assessed and unresolved problems are defined. The significant observational results concerning the effective temperatures, radii, masses and mantles are summarized. The results of the theory of the evolution of massive stars are confronted with the observed luminosities and effective temperatures of B stars. In addition the implications of stellar spectra theory are compared with observed spectra and a heuristic model for a mantle is developed. The chief unresolved problems for B stars concern developing detailed models for (1) the internal structure of massive stars which are beginning to evolve rapidly as they complete burning hydrogen in their cores; (2) mantles; and (3) the transfer of radiation in high temperature inhomogeneous moving bodies of gas.
Continuous wave superconducting radio frequency electron linac for nuclear physics research
Reece, Charles E.
2016-12-28
CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less
Semiclassical Planetology: a progress report
NASA Astrophysics Data System (ADS)
Celebonovic, V.
1999-12-01
Work on planetary internal structure has started in Yugoslavia in the early sixties.It was initiated by P.Savic and R.Kasanin,who have jointly developed a theory of the behaviour of materials under high pressure.By its physical basis,this theory is semiclassical,because it is based on classical physics combined with some quantum mechanical results.The calculations in the theory ( both laboratory and planetological) are baed on ths idea that high pressure leads to excitation and ionisation of atoms and/or molecules which make up the specimen. In this paper we shall briefly present the main ideas of this theory,and then discuss its planetological applications. References P.Savic and V.Celebonovic: 1994,AIP Conf.Proc.,vol.309,p.53. V.Celebonovic: 1999,preprint cond-mat/9906027
PREFACE: 7th Asian International Seminar on Atomic and Molecular Physics
NASA Astrophysics Data System (ADS)
Deshmukh, Pranawa C.; Chakraborty, Purushottam; Williams, Jim F.
2007-09-01
These proceedings arose from the 7th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the Indian Institute of Technology, Madras from 4-7 December 2006. The history of the AISAMP has been reviewed by Takayanagi http://www.physics.iitm.ac.in/~aisamp7/history.html. This international seminar/conference series grew out of the Japan-China meetings which were launched in 1985, the fourth of which was held in 1992 and carried a second title: The First Asian International Seminar on Atomic and Molecular Physics (AISAMP), thus providing a formal medium for scientists in this part of the world to report periodically and exchange their scientific thoughts. The founding nations of Japan and China were joined subsequently by Korea, Taiwan, India and Australia. The aims of the symposia included bringing together leading experts and students of atomic and molecular physics, the discussion of important problems, learning and sharing modern techniques and expanding the horizons of modern atomic and molecular physics. The fields of interest ranged from atomic and molecular structure and dynamics to photon, electron and positron scattering, to quantum information processing, the effects of symmetry and many body interactions, laser cooling, cold traps, electric and magnetic fields and to atomic and molecular physics with synchrotron radiation. Particular interest was evident in new techniques and the changes of the physical properties from atomic to condensed matter. Details of the 7th AISAMP, including the topics for the special sessions and the full programme, are available online at the conference website http://www.physics.iitm.ac.in/~aisamp7/. In total, 95 presentations were made at the 7th AISAMP, these included the Invited Talks and Contributed Poster Presentations, of which 52 appear in the present Proceedings after review by expert referees, refereed to the usual standard of the Institute of Physics journal: Journal of Physics B: Atomic, Molecular and Optical Physics. We received extensive support from the Journal of Physics: Conference Series staff; Graham Douglas, in particular, has been of tremendous help. The 7th AISAMP was very well attended and was sponsored primarily by the host Indian Institute of Technology, Madras (Chennai), the Board of Research in Nuclear Sciences, (Department of Atomic Energy, Government of India), the Department of Science and Technology, (Government of India), and the Asian Office of Aerospace Research and Development (AOARD) of the US Air Force. There was support from various quarters—each was invaluable and added to the success of the 7th AISAMP. We are very grateful to all the sponsors. It is superfluous to add that guidance and active participation from several colleagues within the host Institute was the primary source of strength for the actual organization of the conference and the multitude of arrangements for the organization came from the young graduate students at the IIT-Madras. We hope that this volume of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between various countries in the region in and around Asia, and also of course to all scientists in this field the world over. Pranawa C Deshmukh, Purushottam Chakraborty and Jim F Williams Editors Conference photograph
Quantum Mechanics, vacuum, particles, Gödel-Cohen incompleteness and the Universe
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, Luis
2017-12-01
Are the standard laws of Physics really fundamental principles? Does the physical vacuum have a more primordial internal structure? Are quarks, leptons, gauge bosons… ultimate elementary objects? These three basic questions are actually closely related. If the deep vacuum structure and dynamics turn out to be less trivial than usually depicted, the conventional "elementary" particles will most likely be excitations of such a vacuum dynamics that remains by now unknown. We then expect relativity and quantum mechanics to be low-energy limits of a more fundamental dynamical pattern that generates them at a deeper level. It may even happen that vacuum drives the expansion of the Universe from its own inner dynamics. Inside such a vacuum structure, the speed of light would not be the critical speed for vacuum constituents and propagating signals. The natural scenario would be the superbradyon (superluminal preon) pattern we postulated in 1995, with a new critical speed cs much larger than the speed of light c just as c is much larger than the speed of sound. Superbradyons are assumed to be the bradyons of a super-relativity associated to cs (a Lorentz invariance with cs as the critical speed). Similarly, the standard relativistic space-time with four real coordinates would not necessarily hold beyond low-energy and comparatively local distance scales. Instead, the spinorial space-time (SST) with two complex coordinates we introduced in 1996-97 may be the suitable one to describe the internal structure of vacuum and standard "elementary" particles and, simultaneously, Cosmology at very large distance scales. If the constituents of the preonic vacuum are superluminal, quantum entanglement appears as a natural property provided cs ≫ c . The value of cs can even be possibly found experimentally by studying entanglement at large distances. It is not excluded that preonic constituents of vacuum can exist in our Universe as free particles ("free" superbradyons), in which case we expect them to be weakly coupled to standard matter. If a preonic vacuum is actually leading the basic dynamics of Particle Physics and Cosmology, and standard particles are vacuum excitations, the Gödel-Cohen incompleteness will apply to vacuum dynamics whereas the conventional laws of physics will actually be approximate and have error bars. We discuss here the possible role of the superbradyonic vacuum and of the SST in generating Quantum Mechanics, as well as the implications of such a dynamical origin of the conventional laws of Physics and possible evidences in experiments and observations. Black holes, gravitational waves, possible "free" superbradyons or preonic waves, unconventional vacuum radiation… are considered from this point of view paying particular attention to LIGO, VIRGO and CERN experiments. This lecture is dedicated to the memory of John Bell
NASA Astrophysics Data System (ADS)
Telichev, Igor; Cherniaev, Aleksandr
Gas-filled pressure vessels are extensively used in spacecraft onboard systems. During operation on the orbit they exposed to the space debris environment. Due to high energies they contain, pressure vessels have been recognized as the most critical spacecraft components requiring protection from orbital debris impact. Major type of pressurized containers currently used in spacecraft onboard systems is composite overwrapped pressure vessels (COPVs) manufactured by filament winding. In the present work we analyze the structural integrity of vessels of this kind in case of orbital debris impact at velocities ranging from 2 to 10 km/s. Influence of such parameters as projectile energy, shielding standoff, internal pressure and filament winding pattern on COPVs structural integrity has been investigated by means of numerical and physical experiments.
Wu, XiuYun; Bastian, Kerry; Ohinmaa, Arto; Veugelers, Paul
2018-02-01
Studies among youth suggest that physical inactivity, sedentary behaviors, and poor diet quality are associated with poor mental health. Few population-based studies have investigated these relationships longitudinally. We examined the association between physical activity, sedentary behaviors, and diet quality in childhood and the incidence of internalizing and externalizing disorders throughout adolescence. We linked health behavior survey data from 2003 among 10- to 11-year-old children across Nova Scotia, Canada, with administrative health care data from 2003 to 2011. Students' diet quality was assessed using the Harvard Food Frequency Questionnaire. Physical activity and sedentary behaviors were self-reported, and internalizing and externalizing disorders were diagnosed by a physician. We applied Cox regression to examine the associations of the health behaviors with the incidence of internalizing and externalizing disorders between 2003 and 2011. Of the 4861 participating students, 23.7% and 9.4% had a diagnosis of internalizing and externalizing disorders, respectively. The incidences of internalizing and externalizing disorders were higher among students who were less physically active and spent more time using computers and video games. These findings suggest that promoting an active lifestyle in childhood may contribute to the prevention of both internalizing and externalizing disorders during adolescence. Copyright © 2017 Elsevier Inc. All rights reserved.
Bornstein, Daniel B; Pate, Russell R; Beets, Michael W; Saunders, Ruth P; Blair, Steven N
2015-06-01
Coalitions are often composed of member organizations. Member involvement is thought to be associated with coalition success. No instrument currently exists for evaluating organizational member involvement in physical activity coalitions. This study aimed to develop a survey instrument for evaluating organizational member involvement in physical activity coalitions. The study was carried out in three phases: (a) developing a draft survey, (b) assessing the content validity of the draft survey, and (c) assessing the underlying factor structure, reliability, and validity of the survey. A cross-sectional design was employed. In Phase 1, a team of experts in survey development produced a draft survey. In Phase 2, the content validity of the draft survey was evaluated by a panel of individuals with expertise in physical activity coalitions. In Phase 3, the survey was administered to 120 individuals on local-, state-, and national-level physical activity coalitions. Responses were subjected to an exploratory factor analysis in order to determine the survey's underlying factor structure, reliability, and validity. Phases 1 and 2yielded a survey instrument with demonstrated content validity. Phase 3 yielded a three-factor model with three subscales: Strategic Alignment, Organizational Alignment, and Providing Input. Each subscale demonstrated high internal consistency reliability and construct validity. The survey instrument developed here demonstrated sound psychometric properties and provides new insight into organizational member involvement in physical activity coalitions. This instrument may be an important tool in developing a more complete picture of coalition functioning in physical activity coalitions specifically and health-based coalitions overall. © 2014 Society for Public Health Education.
Introduction: Man and his total environment
NASA Technical Reports Server (NTRS)
1977-01-01
Environmental changes and the utilization of finite resources are analyzed. Beyond the satisfaction of basic physical needs, the advancement of civilization toward an ever-improving quality of like is likewise dependent upon mans' interaction with his entire environment. This larger system is controlled externally by electromagnetic and particle energy from the sun and internally by the dynamic interchange of energy between the solid earth, oceans, the atmosphere, and the magnetosphere. This exchange of energy that determines the structure of the earth's environemental system is evaluated.
Internal Structure and Physical Properties of Ceramics at High Temperatures
1975-06-01
E u u o u •H to... o c a u c u ■a c m a ai C OJ i- n HI C E 01 H ( UJO ßui) (V/UJV) 9" c C TCC) I5J50 1500 1450 1400 1350 1300...l500oC,24hr Figure 3. SEM Micrographs of the Fractured Cross Sections of SIC Specimens Oxidized in ISO torr 02- 10 - —-"■""-*« t • o e
Relocation of Wyoming mine production blasts using calibration explosions
Finn, Carol A.; Kraft, Gordon D.; Sibol, Matthew S.; Jones, Ronald L.; Pulaski, Mark E.
2001-01-01
Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Association of Seismology and the Physics of the Earth’s Interior (IASPEI) travel-time tables, coupled with JHDderived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hearin, Andrew P.; Zentner, Andrew R., E-mail: aph15@pitt.edu, E-mail: zentner@pitt.edu
Forthcoming projects such as the Dark Energy Survey, Joint Dark Energy Mission, and the Large Synoptic Survey Telescope, aim to measure weak lensing shear correlations with unprecedented accuracy. Weak lensing observables are sensitive to both the distance-redshift relation and the growth of structure in the Universe. If the cause of accelerated cosmic expansion is dark energy within general relativity, both cosmic distances and structure growth are governed by the properties of dark energy. Consequently, one may use lensing to check for this consistency and test general relativity. After reviewing the phenomenology of such tests, we address a major challenge tomore » such a program. The evolution of the baryonic component of the Universe is highly uncertain and can influence lensing observables, manifesting as modified structure growth for a fixed cosmic distance scale. Using two proposed methods, we show that one could be led to reject the null hypothesis of general relativity when it is the true theory if this uncertainty in baryonic processes is neglected. Recent simulations suggest that we can correct for baryonic effects using a parameterized model in which the halo mass-concentration relation is modified. The correction suffices to render biases small compared to statistical uncertainties. We study the ability of future weak lensing surveys to constrain the internal structures of halos and test the null hypothesis of general relativity simultaneously. Compared to alternative methods which null information from small-scales to mitigate sensitivity to baryonic physics, this internal calibration program should provide limits on deviations from general relativity that are several times more constraining. Specifically, we find that limits on general relativity in the case of internal calibration are degraded by only {approx} 30% or less compared to the case of perfect knowledge of nonlinear structure.« less
Ishii, Kaori; Shibata, Ai; Oka, Koichiro
2010-08-05
An understanding of the contributing factors to be considered when examining how individuals engage in physical activity is important for promoting population-based physical activity. The environment influences long-term effects on population-based health behaviors. Personal variables, such as self-efficacy and social support, can act as mediators of the predictive relationship between the environment and physical activity. The present study examines the direct and indirect effects of environmental, psychological, and social factors on walking, moderate-intensity activity excluding walking, and vigorous-intensity activity among Japanese adults. The participants included 1,928 Japanese adults aged 20-79 years. Seven sociodemographic attributes (e.g., gender, age, education level, employment status), psychological variables (self-efficacy, pros, and cons), social variables (social support), environmental variables (home fitness equipment, access to facilities, neighborhood safety, aesthetic sensibilities, and frequency of observing others exercising), and the International Physical Activity Questionnaire were assessed via an Internet-based survey. Structural equation modeling was conducted to determine associations between environmental, psychological, and social factors with physical activity. Environmental factors could be seen to have indirect effects on physical activity through their influence on psychological and social variables such as self-efficacy, pros and cons, and social support. The strongest indirect effects could be observed by examining the consequences of environmental factors on physical activity through cons to self-efficacy. The total effects of environmental factors on physical activity were 0.02 on walking, 0.02 on moderate-intensity activity excluding walking, and 0.05 on vigorous-intensity activity. The present study indicates that environmental factors had indirect effects on walking, moderate-intensity activity excluding walking and vigorous-intensity activity among Japanese adults, especially through the effects on these factors of self-efficacy, social support, and pros and cons. The findings of the present study imply that intervention strategies to promote more engagement in physical activity for population-based health promotion may be necessary.
2010-01-01
Background An understanding of the contributing factors to be considered when examining how individuals engage in physical activity is important for promoting population-based physical activity. The environment influences long-term effects on population-based health behaviors. Personal variables, such as self-efficacy and social support, can act as mediators of the predictive relationship between the environment and physical activity. The present study examines the direct and indirect effects of environmental, psychological, and social factors on walking, moderate-intensity activity excluding walking, and vigorous-intensity activity among Japanese adults. Methods The participants included 1,928 Japanese adults aged 20-79 years. Seven sociodemographic attributes (e.g., gender, age, education level, employment status), psychological variables (self-efficacy, pros, and cons), social variables (social support), environmental variables (home fitness equipment, access to facilities, neighborhood safety, aesthetic sensibilities, and frequency of observing others exercising), and the International Physical Activity Questionnaire were assessed via an Internet-based survey. Structural equation modeling was conducted to determine associations between environmental, psychological, and social factors with physical activity. Results Environmental factors could be seen to have indirect effects on physical activity through their influence on psychological and social variables such as self-efficacy, pros and cons, and social support. The strongest indirect effects could be observed by examining the consequences of environmental factors on physical activity through cons to self-efficacy. The total effects of environmental factors on physical activity were 0.02 on walking, 0.02 on moderate-intensity activity excluding walking, and 0.05 on vigorous-intensity activity. Conclusions The present study indicates that environmental factors had indirect effects on walking, moderate-intensity activity excluding walking and vigorous-intensity activity among Japanese adults, especially through the effects on these factors of self-efficacy, social support, and pros and cons. The findings of the present study imply that intervention strategies to promote more engagement in physical activity for population-based health promotion may be necessary. PMID:20684794
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Grant; Keegan, E.; Young, E.
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
Griffiths, Grant; Keegan, E.; Young, E.; ...
2018-01-06
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
National policy on physical activity: the development of a policy audit tool.
Bull, Fiona C; Milton, Karen; Kahlmeier, Sonja
2014-02-01
Physical inactivity is a leading risk factor for noncommunicable disease worldwide. Increasing physical activity requires large scale actions and relevant, supportive national policy across multiple sectors. The policy audit tool (PAT) was developed to provide a standardized instrument to assess national policy approaches to physical activity. A draft tool, based on earlier work, was developed and pilot-tested in 7 countries. After several rounds of revisions, the final PAT comprises 27 items and collects information on 1) government structure, 2) development and content of identified key policies across multiple sectors, 3) the experience of policy implementation at both the national and local level, and 4) a summary of the PAT completion process. PAT provides a standardized instrument for assessing progress of national policy on physical activity. Engaging a diverse international group of countries in the development helped ensure PAT has applicability across a wide range of countries and contexts. Experiences from the development of the PAT suggests that undertaking an audit of health enhancing physical activity (HEPA) policy can stimulate greater awareness of current policy opportunities and gaps, promote critical debate across sectors, and provide a catalyst for collaboration on policy level actions. The final tool is available online.
The Interactions of Relationships, Interest, and Self-Efficacy in Undergraduate Physics
NASA Astrophysics Data System (ADS)
Dou, Remy
This collected papers dissertation explores students' academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology, engineering, and mathematics (STEM) careers. Self-efficacy and interest are factors that play prominent roles in popular, evidence-based, career theories, including the Social cognitive career theory (SCCT) and the identity framework. Understanding how these constructs develop in light of the most pervasive characteristic of the active learning introductory physics classroom (i.e., peer-to-peer interactions) has implications on how students learn in a variety of introductory STEM classrooms and settings structured after constructivist and sociocultural learning theories. I collected data related to students' in-class interactions using the tools of social network analysis (SNA). Social network analysis has recently been shown to be an effective and useful way to examine the structure of student relationships that develop in and out of STEM classrooms. This set of studies furthers the implementation of SNA as a tool to examine self-efficacy and interest formation in the active learning physics classroom. Here I represent a variety of statistical applications of SNA, including bootstrapped linear regression (Chapter 2), structural equation modeling (Chapter 3), and hierarchical linear modeling for longitudinal analyses (Chapter 4). Self-efficacy data were collected using the Sources of Self-Efficacy for Science Courses - Physics survey (SOSESC-P), and interest data were collected using the physics identity survey. Data for these studies came from the Modeling Instruction sections of Introductory Physics with Calculus offered at Florida International University in the fall of 2014 and 2015. Analyses support the idea that students' perceptions of one another impact the development of their social network centrality, which in turn affects their self-efficacy building experiences and their overall self-efficacy. It was shown that unlike career theories that emphasize causal relationships between the development of self-efficacy and the subsequent growth of student interest, in this context student interest takes precedence before the development of student self-efficacy. This outcome also has various implications for career theories.
Van As, Melissa; Myezwa, Hellen; Stewart, Aimee; Maleka, Douglas; Musenge, Eustasius
2009-01-01
In 2005, 16.6% of South Africans between 15 and 49 years of age were HIV positive. The advent of anti-retroviral therapy has led to improved longevity, CD4 counts and clinical well-being of people living with HIV/AIDS (PLWHA). Physical impairments, activity limitations and participation restrictions of PLWHA have profound effects on the Health-related Quality of Life and functional abilities of those with the disease, and understanding thereof may assist in the formulation of rehabilitation protocols, health care interventions as well as vocational and legislative policies. The International Classification of Function, Disability and Health (ICF) is a standardised tool, endorsed by the World Health Assembly for international use, which aims to classify functioning and disability. It is structured to assess body functions and structure, functional activities and associated personal and environmental factors.This study aimed to develop a profile of the level of functional activity, using the ICF Checklist, of an urban cohort of 45 South African individuals who are HIV positive attending an outpatient clinic at the Helen Joseph Memorial Hospital, Gauteng, South Africa. The results showed a high prevalence of physical impairments, participation restrictions and selective activity limitations and that environmental factors influence their level of ability. Specific impairments where patients had problems were mental functions (69% (n=31), sensory and pain -- 71% (n=32), digestive and metabolic functions 45% (n=20) and neuromuscular 27% (n=12). Activity limitations included major life areas' 58% (n=26), interpersonal relationships 56% (n=25), mobility 40% (n=18) and general tasks and demands 38% (n=17). Limitations in mobility were significantly associated with problems of sensory functions (p=0.05), pain (p=0.006), neuromusculoskeletal and movement-related functions (p=0.006), muscle power (p=0.006) as well as energy and drive functions (p=0.001). The study identifies the level of function and ability of PLWHA, clinical markers, and how these affect the physical, psychological and social functioning of this population.
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.
2015-12-01
The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards
De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele
2018-01-01
The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
ERIC Educational Resources Information Center
Yan, Zi; Cardinal, Bradley J.
2013-01-01
International students have become an important and growing group in U.S. higher education. Although many universities offer various types of support to international students, little attention is given to preventive health services or health promotion efforts, such as the promotion of physical activity. This article outlines a theory-based…
Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.
Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less
Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol.
Mason-Smith, Nicholas; Duke, Daniel J; Kastengren, Alan L; Traini, Daniela; Young, Paul M; Chen, Yang; Lewis, David A; Edgington-Mitchell, Daniel; Honnery, Damon
2017-04-01
Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second with 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. The flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.
Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol
Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.; ...
2017-01-17
Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less
Medical physics is alive and well and growing in South East Asia.
Ng, K; Pirabul, R; Peralta, A; Soejoko, D
1997-03-01
In recent years there has been a significant economic growth in South East Asia, along with it a concurrent development of medical physics. The status of four countries--Malaysia, Thailand, the Philippines and Indonesia are presented. Medical physicists in these countries have been experiencing the usual problems of lack of recognition, low salaries, and insufficient facilities for education and training opportunities. However the situation has improved recently through the initiative of local enthusiastic medical physicists who have started MS graduate programs in medical physics and begun organizing professional activities to raise the profile of medical physics. The tremendous support and catalytic roles of the American Association of Physicists in Medicine (AAPM) and international organizations such as International Organization for Medical Physics (IOMP), International Atomic Energy Agency (IAEA), World Health Organization (WHO), and International Center for Theoretical Physics (ICTP) have been instrumental in achieving progress. Contributions by these organizations include co-sponsorship of workshops and conferences, travel grants, medical physics libraries programs, and providing experts and educators. The demand for medical physicists is expected to rise in tandem with the increased emphasis on innovative technology for health care, stringent governmental regulation, and acceptance by the medical community of the important role of medical physicists.
NASA Astrophysics Data System (ADS)
Fernandez-Cordoba, Jhonattan; Zamora-Camacho, Araceli; Espindola, Juan Manuel
2017-10-01
Ceboruco volcano (-104°30', 21°7', 2150 m asl) is located in the western portion of the trans-Mexican volcanic belt and NW extreme of the Tepic-Zacoalco rift zone, a structure composed of a series of NNW-trending en echelon fault-bounded basins constituting the NE boundary between the north-American plate and the Jalisco block (JB). Ceboruco experimented a Plinian eruption about 1000 years ago and several more of different styles afterward; the last one in 1870 CE. This volcano poses a significant risk because of the relatively large population in its surroundings. Ceboruco has been studied by mostly from the point of view of petrology, geochemistry, and physical volcanology; however, no geophysical studies about its internal structure have been published. In this paper, we present the results of a gravimetric survey carried out in its surroundings and a model of the internal structure obtained from inversion of the data. The Ceboruco area is characterized by a negative Bouguer anomaly spanning the volcanic structure. The probable causative body modeled with the data of the survey is located about 1 km below mean sea level and has a volume of 163 km3. We propose that this body is the magma chamber from where the products of its eruptions in the last 1000 years ensued.
Recruitment of Secondary School Physics Teachers--An International Viewpoint.
ERIC Educational Resources Information Center
Mayfield, M. R.
This report of the findings of the working group on "recruitment" of the International Congress on the Education of Secondary School Physics Teachers held in Hungary in September, 1970, includes reasons for the shortage of physics teachers (low salaries, excessive class load, lack of prestige, and inadequate programs of teacher preparation),…
New Governance and Physical Education and School Sport Policy: A Case Study of School to Club Links
ERIC Educational Resources Information Center
Phillpots, Lesley; Grix, Jonathan
2014-01-01
Background: International concern regarding the marginalisation of physical education in school curricula worldwide led to international calls for the establishment and strengthening of national, regional and local networks to integrate physical education into education, sports, health and related policies. The subsequent introduction of the…
Women Physicists Speak: The 2001 International Study of Women in Physics
NASA Astrophysics Data System (ADS)
Ivie, Rachel; Czujko, Roman; Stowe, Katie
2002-09-01
The Working Group on Women in Physics of the International Union of Pure and Applied Physics (IUPAP) subcontracted with the Statistical Research Center of the American Institute of Physics (AIP) to conduct an international study on women in physics. This study had two parts. First, we conducted a benchmarking study to identify reliable sources and collect data on the representation of women in physics in as many IUPAP member countries as possible. Second, we conducted an international survey of individual women physicists. The survey addressed issues related to both education and employment. On the education side, we asked about experiences and critical incidents from secondary school through the highest degree earned. On the employment side, we asked about how the respondents' careers had evolved and their self-assessment of how well their careers had progressed. In addition, the questionnaire also addressed issues that cut across education and employment, such as the impact of marriage and children, the factors that contributed the most toward the success they had achieved to date, and suggestions for what could be done to improve the situation of women physicists.
NASA Astrophysics Data System (ADS)
Zastavker, Yevgeniya V.
2009-03-01
The 3^rd International Conference on Women in Physics (ICWIP), held in Seoul, Korea, in October 2008, brought together 300 participants from 57 countries, including a diverse 22-member U.S. Delegation, for a 3-day summit of stimulating discussions, thought-provoking presentations, inspirational posters, and networking. Held under the auspices of the Working Group on Women in Physics of the International Union of Pure and Applied Physics (IUPAP), this meeting built on the successes of the 1^st (Paris, 2002) and 2^nd (Rio de Janeiro, 2005) Conferences and further clarified the importance of diversifying the field of physics worldwide. Although considerable progress has been made since 2002, it was clear that the global scientific workforce is still under-utilizing a large percentage of the available female talent pool. If human society is to benefit to its fullest from various contributions that the field of physics can offer in addressing global issues of economic crisis, energy, environment, water, health, poverty, and hunger, women of all races and nationalities need to become fully included and engaged in the national and international physical community. To address these and many other issues, the ICWIP unanimously approved a five-part resolution to IUPAP recommending actions to promote the recruitment, retention, and advancement of women in physics and related fields.
Do They Enter the Workforce? Career Choices after an Undergrad Research Experience
NASA Astrophysics Data System (ADS)
Greco, S.; Wissel, S.; Zwicker, A.; Ortiz, D.; Dominguez, A.
2015-11-01
Students in undergrad research internships go on to grad school at rates of 50-75% (Lopatto, 2007;Russell, 2005). NSF studied its undergrad program and found that 74% of physics interns (67% for engineering) go to grad school. PPPL undergrad interns were tracked for 10 years. Only 3% of physics PhD candidates are studying plasma physics, but 23% of our alumni that entered grad school did so in plasma. AIP reports that 60% of physics majors go to grad school (AIP, 2012), but 95% of PPPL interns have gone on to grad schools. Several programs track enrollment in grad school. AIP compiles statistics of undergrads who enter grad school and PhD students who work in the field. There has been no study of interns that follows the path from undergrad to grad school and then on to employment. Our tracking shows that most not only complete their advanced degrees but also stay in STEM fields following their academic careers. 88% of them become part of the STEM workforce, higher than the 82% of all physics PhDs employed in physics after obtaining their degree (AIP, 2014). PPPL puts more students in grad school in physics, and specifically plasma physics, and a higher percentage of those grad students stay in the STEM workforce.
NASA Technical Reports Server (NTRS)
Scharf, R.
2014-01-01
The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.
NASA Technical Reports Server (NTRS)
Vicente, Gilberto
2005-01-01
Several commercial applications of remote sensing data, such as water resources management, environmental monitoring, climate prediction, agriculture, forestry, preparation for and migration of extreme weather events, require access to vast amounts of archived high quality data, software tools and services for data manipulation and information extraction. These on the other hand require gaining detailed understanding of the data's internal structure and physical implementation of data reduction, combination and data product production. The time-consuming task must be undertaken before the core investigation can begin and is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets of different formats, structures, and resolutions.
NASA Astrophysics Data System (ADS)
Fratzl, Peter
Biological tissues are naturally interactive and adaptive. In general, these features are due to the action of cells that provide sensing, actuation as well as tissue remodelling. There are also examples of materials synthesized by living organisms, such as plant seeds, which fulfil an active function without living cells working as mechanosensors and actuators. Thus the activity of these materials is based on physical principles alone, which provides inspiration for new concepts for artificial active materials. We will describe structural principles leading to movement in seed capsules triggered by ambient humidity and discuss the influence of internal architecture on the overall mechanical behaviour of materials, including actuation and motility. Several conceptual systems for actuating planar structures will be discussed.
ATLAS-SOHO: Satellite Arrival and Uncrating, Uncrating of the Propulsion Unit and Electric Module
NASA Technical Reports Server (NTRS)
1995-01-01
The SOHO satellite, part of the International Solar-Terrestrial Physics Program (ISTP), is a solar observatory designed to study the structure, chemical composition, and dynamics of the solar interior. It will also observe the structure (density, temperature and velocity fields), dynamics and composition of the outer solar atmosphere, and the solar wind and its relation to the solar atmosphere. The spacecraft was launched on December 2, 1995. This video shows the unloading of the satellite from the transport plane at the Kennedy Space Station and the lowering to an awaiting flatbed truck. The video also shows the uncrating of the satellite, the propulsion unit and the electric module in a clean room.
ESA's tools for internal charging
NASA Astrophysics Data System (ADS)
Sorensen, J.; Rodgers, D. J.; Ryden, K. A.; Latham, P. M.; Wrenn, G. L.; Levy, L.; Panabiere, G.
2000-06-01
Electrostatic discharges, caused by bulk charging of spacecraft insulating materials, are a major cause of satellite anomalies. A quantitative knowledge of the charge build-up is essential in order to eliminate these problems in the design stage. This is a presentation of ESA's tools to assess whether a given structure is liable to experience electrostatic discharges or not. A study has been made of the physical phenomenon, and an engineering specification has been created to be used to assess a structure for potential discharge problems. The specification has been implemented in a new software DICTAT. The implementation of tests in dedicated facilities is an important part of the specification, and tests have been performed to validate the new tool.
Plasma turbulence and coherent structures in the polar cap observed by the ICI-2 sounding rocket
NASA Astrophysics Data System (ADS)
Spicher, A.; Miloch, W. J.; Clausen, L. B. N.; Moen, J. I.
2015-12-01
The electron density data from the ICI-2 sounding rocket experiment in the high-latitude F region ionosphere are analyzed using the higher-order spectra and higher-order statistics. Two regions of enhanced fluctuations are chosen for detailed analysis: the trailing edge of a polar cap patch and an electron density enhancement associated with particle precipitation. While these two regions exhibit similar power spectra, our analysis reveals that their internal structures are significantly different. The structures on the edge of the polar cap patch are likely due to nonlinear wave interactions since this region is characterized by intermittency and significant coherent mode coupling. The plasma enhancement subjected to precipitation, however, exhibits stronger random characteristics with uncorrelated phases of density fluctuations. These results suggest that particle precipitation plays a fundamental role in ionospheric plasma structuring creating turbulent-like structures. We discuss the physical mechanisms that cause plasma structuring as well as the possible processes for the low-frequency part of the spectrum in terms of plasma instabilities.
The structure and intermolecular forces of DNA condensates.
Yoo, Jejoong; Aksimentiev, Aleksei
2016-03-18
Spontaneous assembly of DNA molecules into compact structures is ubiquitous in biological systems. Experiment has shown that polycations can turn electrostatic self-repulsion of DNA into attraction, yet the physical mechanism of DNA condensation has remained elusive. Here, we report the results of atomistic molecular dynamics simulations that elucidated the microscopic structure of dense DNA assemblies and the physics of interactions that makes such assemblies possible. Reproducing the setup of the DNA condensation experiments, we measured the internal pressure of DNA arrays as a function of the DNA-DNA distance, showing a quantitative agreement between the results of our simulations and the experimental data. Analysis of the MD trajectories determined the DNA-DNA force in a DNA condensate to be pairwise, the DNA condensation to be driven by electrostatics of polycations and not hydration, and the concentration of bridging cations, not adsorbed cations, to determine the magnitude and the sign of the DNA-DNA force. Finally, our simulations quantitatively characterized the orientational correlations of DNA in DNA arrays as well as diffusive motion of DNA and cations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Native State Volume Fluctuations in Proteins as a Mechanism for Dynamic Allostery.
Law, Anthony B; Sapienza, Paul J; Zhang, Jun; Zuo, Xiaobing; Petit, Chad M
2017-03-15
Allostery enables tight regulation of protein function in the cellular environment. Although existing models of allostery are firmly rooted in the current structure-function paradigm, the mechanistic basis for allostery in the absence of structural change remains unclear. In this study, we show that a typical globular protein is able to undergo significant changes in volume under native conditions while exhibiting no additional changes in protein structure. These native state volume fluctuations were found to correlate with changes in internal motions that were previously recognized as a source of allosteric entropy. This finding offers a novel mechanistic basis for allostery in the absence of canonical structural change. The unexpected observation that function can be derived from expanded, low density protein states has broad implications for our understanding of allostery and suggests that the general concept of the native state be expanded to allow for more variable physical dimensions with looser packing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Anthony B.; Sapienza, Paul J.; Zhang, Jun
Allostery enables tight regulation of protein function in the cellular environment. While existing models of allostery are firmly rooted in the current structure-function paradigm, the mechanistic basis for allostery in the absence of structural change remains unclear. In this study, we show that a typical globular protein is able to undergo significant changes in volume under native conditions while exhibiting no additional changes in protein structure. These native state volume fluctuations were found to correlate with changes in internal motions that were previously recognized as a source of allosteric entropy. This finding offers a novel mechanistic basis for allostery inmore » the absence of canonical structural change. As a result, the unexpected observation that function can be derived from expanded, low density protein states has broad implications for our understanding of allostery and suggests that the general concept of the native state be expanded to allow for more variable physical dimensions with looser packing.« less
Applied and implied semantics in crystallographic publishing
2012-01-01
Background Crystallography is a data-rich, software-intensive scientific discipline with a community that has undertaken direct responsibility for publishing its own scientific journals. That community has worked actively to develop information exchange standards allowing readers of structure reports to access directly, and interact with, the scientific content of the articles. Results Structure reports submitted to some journals of the International Union of Crystallography (IUCr) can be automatically validated and published through an efficient and cost-effective workflow. Readers can view and interact with the structures in three-dimensional visualization applications, and can access the experimental data should they wish to perform their own independent structure solution and refinement. The journals also layer on top of this facility a number of automated annotations and interpretations to add further scientific value. Conclusions The benefits of semantically rich information exchange standards have revolutionised the scholarly publishing process for crystallography, and establish a model relevant to many other physical science disciplines. PMID:22932420
NASA Astrophysics Data System (ADS)
Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.
1983-07-01
The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061
Kim-Spoon, Jungmeen; Haskett, Mary E; Longo, Gregory S; Nice, Rachel
2012-02-01
Research using normative and high-risk samples indicates a significant link between problems with self-regulation and child maladjustment. Nevertheless, little is known about the processes that may modify the link between self-regulation and maladjustment. This longitudinal study examined the joint contributions of child self-regulation and positive parenting behaviors to the development of externalizing and internalizing symptomatology spanning from preschool to 1st grade. Data were collected on a total of 95 physically abused children (58% boys); our longitudinal analyses involved 43 children at Time 1 (preschool), 63 children at Time 2 (kindergarten), and 54 children at Time 3 (1st grade). Children's self-regulation was measured by parent report, and their externalizing and internalizing symptomatology was evaluated by teachers. Parents completed self-report measures of positive parenting. Our structural equation modeling analyses revealed positive parenting as a protective factor that attenuated the concurrent association between low self-regulation and externalizing symptomatology among physically abused children. Our findings regarding longitudinal changes in children's externalizing symptomatology supported the differential susceptibility hypothesis: Physically abused children who were at greater risk due to low levels of self-regulation were more susceptible to the beneficial effects of positive parenting, compared to those with high levels of self-regulation. Findings suggest that although physical abuse presents formidable challenges that interfere with the development of adaptive self-regulation, positive parenting behaviors may ameliorate the detrimental effects of maladaptive self-regulation on the development of externalizing symptomatology. In addition, the positive and negative effects of caregiving behaviors were more prominent among physically abused children at great risk due to low self-regulation. Findings from the present study highlight the importance of attending to positive parenting behaviors and child self-regulation when working with physically abused children who are exhibiting externalizing symptomatology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kim, Jungmeen; Haskett, Mary E.; Longo, Gregory S.; Nice, Rachel
2012-01-01
Objective Research using normative and high-risk samples indicates a significant link between problems with self-regulation and child maladjustment. Nevertheless, little is known about the processes that may modify the link between self-regulation and maladjustment. This longitudinal study examined the joint contributions of child self-regulation and positive parenting behaviors to the development of externalizing and internalizing symptomatology spanning from preschool to 1st grade. Methods Data were collected on a total of 95 physically abused children (58% boys); our longitudinal analyses involved 43 children at Time 1 (preschool), 63 children at Time 2 (kindergarten), and 54 children at Time 3 (1st grade). Children's self-regulation was measured by parent report, and their externalizing and internalizing symptomatology was evaluated by teachers. Parents completed self-report measures of positive parenting. Results Our structural equation modeling analyses revealed positive parenting as a protective factor that attenuated the concurrent association between low self-regulation and externalizing symptomatology among physically abused children. Our findings regarding longitudinal changes in children's externalizing symptomatology supported the differential susceptibility hypothesis: Physically abused children who were at greater risk due to low levels of self-regulation were more susceptible to the beneficial effects of positive parenting, compared to those with high levels of self-regulation. Conclusions Findings suggest that although physical abuse presents formidable challenges that interfere with the development of adaptive self-regulation, positive parenting behaviors may ameliorate the detrimental effects of maladaptive self-regulation on the development of externalizing symptomatology. In addition, the positive and negative effects of caregiving behaviors were more prominent among physically abused children at great risk due to low self-regulation. Practice Implications Findings from the present study highlight the importance of attending to positive parenting behaviors and child self-regulation when working with physically abused children who are exhibiting externalizing symptomatology. PMID:22398303
PREFACE: First International Workshop and Summer School on Plasma Physics
NASA Astrophysics Data System (ADS)
Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir
2006-07-01
The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school financially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas; Windes, William; Swank, W. David
The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less
NASA Astrophysics Data System (ADS)
Cheikhrouhou, Abdelwaheb
2010-11-01
The 'Tunisian Materials Research Society: Tu-MRS' organized the International Days on Materials Physics and Applications 'JIPMA 2009' and the National Conference on Materials 'MATERIAUX 2009' in Gafsa (Tunisia) During the period 20-24 December 2009. The first International Days on Materials Physics and Applications 'JIPMA 2007' were organized in Annaba (Algeria) in November 2007 while the first National Conference on Materials 'MATERIAUX 2006' was organized in Douz (Tunisia) in December 2006. The 'JIPMA' conference series together with the 'MATERIAUX' intend to provide an excellent opportunity for international, Maghreb and Tunisian researchers to make their own works on materials known to a wider audience and to have discussions with other participants. This conference will also be an opportunity to exchange experiences, create and consolidate cooperation between different research structures in the Maghreb countries. This conference will equally promote research development, contribute to collaboration between universities and the socio-economical milieu. More than 300 senior researchers, Professors, PhD and Master students attended this conference from Tunisia, Algeria, Morocco, France, and Spain. Several researchers, engineers and managers from industrial firms also attended this scientific meeting. The conference consists of plenary and semi-plenary talks, oral contributions and poster presentations. The topics of the conference are: Nano-materials, nano-systems, thin films, surfaces and interfaces Multifonctional Materials, Magnetic Materials, Dielectric Materials, Superconducting Materials, Applications, ... Materials for Electronics, Informatics and Communications (Semi-conducting Materials, Electronic devices, Spintronic, ... Optoelectronic Materials, Sensors Ceramics, Glasses, Polymers, ... Natural Materials: Phosphates, Clay, ... Metallic Materials, alloys, ... Materials and Environment Materials and Energy Biomaterials Elaborating Methods and Characterization Techniques I want to thank the organizing committee and everyone else who participated in the organization of this meeting for their invaluable efforts to guarantee the full success of this conference. I want also to thank very warmly all the Scientific committee and all other reviewers for their hard work reviewing the submitted papers. Professor Abdelwaheb CHEIKHROUHOU Chairman of the Conference
Arctic Research and Writing: A Lasting Legacy of the International Polar Year
ERIC Educational Resources Information Center
Englert, Karl; Coon, Brian; Hinckley, Matt; Pruis, Matt
2009-01-01
Recently, senior-level physics students joined thousands of scientists from over 60 nations to examine a wide range of physical, biological, and social research topics as part of the International Polar Year (IPY). Through a National Science Foundation (NSF)-funded research project, these students applied physics concepts to the study of Arctic…
Geyh, Szilvia; Schwegler, Urban; Peter, Claudio; Müller, Rachel
2018-03-06
To discuss the representation and organization of information describing persons' lived experience of health from a personal factors perspective in the light of the International Classification of Functioning, Disability and Health, using spinal cord injury as a case in point for disability. The scientific literature was reviewed, discussion rounds conducted, and qualitative secondary analyses of data carried out using an iterative inductive-deductive approach. Conceptual considerations are explicated that distinguish the personal factors perspective from other components of the International Classification of Functioning, Disability and Health. A representation structure is developed that organizes health-related concepts describing the internal context of functioning. Concepts are organized as individual facts, subjective experiences, and recurrent patterns of experience and behavior specifying 7 areas and 211 concept groups. The article calls for further scientific debate on the perspective of personal factors in the light of the International Classification of Functioning, Disability and Health. A structure that organizes concepts in relation to a personal factors perspective can enhance the comprehensiveness, transparency and standardization of health information, and contribute to the empowerment of persons with disabilities. Implications for rehabilitation The present study collected data from scientific literature reviews, discussion rounds and qualitative secondary analyses in order to develop a representation and organization of information describing persons' lived experience of health from a personal factors perspective in the light of the International Classification of Functioning, Disability and Health. The following representation structure for health-related information from a personal factors perspective was developed: (i) Individuals facts (i.e., socio-demographical factors, position in the immediate social and physical context, personal history and biography), (ii) subjective experience (i.e., feelings, thoughts and beliefs, motives), and (iii) recurrent patterns of experience (i.e., feelings, thoughts and beliefs) and behavior. With this study, we aim to stimulate further scientific discussion about the personal factors component in the International Classification of Functioning, Disability and Health, including its application and subsequent validation for potential implementation into clinical practice.
NASA Astrophysics Data System (ADS)
Vihma, T.; Pirazzini, R.; Fer, I.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Lüpkes, C.; Nygård, T.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.
2014-09-01
The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.
NASA Astrophysics Data System (ADS)
Vihma, T.; Pirazzini, R.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Nygård, T.; Fer, I.; Lüpkes, C.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.
2013-12-01
The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2008, significant advances have been made in understanding these processes. Here these advances are reviewed, synthesized and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal and fjordic processes, as well as in boundary-layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of super-imposed ice and snow ice, and the small-scale dynamics of sea ice. In the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but challenge is to understand their interactions with, and impacts and feedbacks on, other processes. Uncertainty in the parameterization of small-scale processes continues to be among the largest challenges facing climate modeling, and nowhere is this more true than in the Arctic. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.
Molecular Rotation Signals: Molecule Chemistry and Particle Physics
NASA Astrophysics Data System (ADS)
Grabow, Jens-Uwe
2015-06-01
Molecules - large or small - are attractive academic resources, with numerous questions on their chemical behaviour as well as problems in fundamental physics now (or still) waiting to be answered: Targeted by high-resolution spectroscopy, a rotating molecular top can turn into a laboratory for molecule chemistry or a laboratory for particle physics. Once successfully entrained (many species - depending on size and chemical composition - have insufficient vapour pressures or are of transient nature, such that specifically designed pulsed-jet sources are required for their transfer into the gas phase or in-situ generation) into the collision-free environment of a supersonic-jet expansion, each molecular top comes with its own set of challenges, theoretically and experimentally: Multiple internal interactions are causing complicated energy level schemes and the resulting spectra will be rather difficult to predict theoretically. Experimentally, these spectra are difficult to assess and assign. With today's broad-banded chirp microwave techniques, finding and identifying such spectral features have lost their major drawback of being very time consuming for many molecules. For other molecules, the unrivalled resolution and sensitivity of the narrow-banded impulse microwave techniques provide a window to tackle - at the highest precision available to date - fundamental questions in physics, even particle physics - potentially beyond the standard model. Molecular charge distribution, properties of the chemical bond, details on internal dynamics and intermolecular interaction, the (stereo-chemical) molecular structure (including the possibility of their spatial separation) as well as potential evidence for tiny yet significant interactions encode their signature in pure molecular rotation subjected to time-domain microwave spectroscopic techniques. Ongoing exciting technical developments promise rapid progress. We present recent examples from Hannover, new directions, and an outlook at the future of molecular rotation spectroscopy.
Ehrenreich, Samuel E; Beron, Kurt J; Underwood, Marion K
2016-03-01
This research examined whether following social and physical aggression trajectories across Grades 3-12 predicted psychological maladjustment. Teachers rated participants' (n = 287, 138 boys) aggressive behavior at the end of each school year. Following the 12th grade, psychosocial outcomes were measured: rule-breaking behaviors, internalizing symptoms, and narcissistic and borderline personality features. Following the highest social aggression trajectory predicted rule-breaking behavior; the medium social aggression trajectory was not a significant predictor of any outcome. Following the highest physical aggression trajectory predicted rule-breaking, internalizing symptoms, and narcissism, whereas the medium physical aggression trajectory predicted rule-breaking and internalizing symptoms. (c) 2016 APA, all rights reserved).
Ehrenreich, Samuel E.; Beron, Kurt J.; Underwood, Marion K.
2016-01-01
This research examined whether following social and physical aggression trajectories across grades 3–12 predicted psychological maladjustment. Teachers rated participants’ (n=287, 138 boys) aggressive behavior at the end of each school year. Following the 12th grade, psychosocial outcomes were measured: rule-breaking behaviors, internalizing symptoms, and narcissistic and borderline personality features. Following the highest social aggression trajectory predicted rule-breaking behavior; the medium social aggression trajectory was not a significant predictor of any outcome. Following the highest physical aggression trajectory predicted rule-breaking, internalizing symptoms and narcissism, whereas the medium physical aggression trajectory predicted rule-breaking and internalizing symptoms. PMID:26891018
[Validity and reliability of a scale to assess self-efficacy for physical activity in elderly].
Borges, Rossana Arruda; Rech, Cassiano Ricardo; Meurer, Simone Teresinha; Benedetti, Tânia Rosane Bertoldo
2015-04-01
This study aimed to analyze the confirmatory factor validity and reliability of a self-efficacy scale for physical activity in a sample of 118 elderly (78% women) from 60 to 90 years of age. Mplus 6.1 was used to evaluate the confirmatory factor analysis. Reliability was tested by internal consistency and temporal stability. The original scale consisted of five items with dichotomous answers (yes/no), independently for walking and moderate and vigorous physical activity. The analysis excluded the item related to confidence in performing physical activities when on vacation. Two constructs were identified, called "self-efficacy for walking" and "self-efficacy for moderate and vigorous physical activity", with a factor load ≥ 0.50. Internal consistency was adequate both for walking (> 0.70) and moderate and vigorous physical activity (> 0.80), and temporal stability was adequate for all the items. In conclusion, the self-efficacy scale for physical activity showed adequate validity, reliability, and internal consistency for evaluating this construct in elderly Brazilians.
The Classroom Environment Questionnaire (CEQ): Development and preliminary structural validity.
Lyons, Carissa; Brown, Ted; Bourke-Taylor, Helen
2018-04-16
Occupational therapists offer a unique perspective regarding the contribution of the environment to occupational performance. Therefore, a scale that measures the unique characteristics of the primary school classroom environment where children complete their daily schoolwork occupations is needed. The aim of this study was to develop and psychometrically evaluate a new teacher-report questionnaire that measures a number of environmental characteristics of primary school classrooms. Participants (N = 117) completed the Classroom Environment Questionnaire (CEQ), which utilises a 4-point Likert scale where teachers rate 51 environmental characteristics of their classroom. Teachers also rate the extent to which they believe the physical, social, temporal, institutional and cultural classroom environmental domains contribute to students' schoolwork performance using a 10-point scale. The structural validity of the CEQ was examined using principal component analysis (PCA). Inter-item correlations were examined using Pearson r correlations, while the internal consistency of the CEQ was assessed using Cronbach's alpha. PCA revealed the CEQ to be multidimensional, with 31 items loading onto nine viable factors, representing the unique nature of classroom environments. Based on the PCA results, 20 items were removed from the CEQ. Cronbach's alpha and correlation analysis indicated that most CEQ subsections had acceptable internal consistency (alpha range 0.70-0.82), with four subsections demonstrating a lower level of internal consistency (alpha range 0.55-0.69). Preliminary structural validity and internal consistency analysis findings confirm that the CEQ has potential to be a useful scale for professionals wishing to examine the unique characteristics of primary school classrooms that influence the occupational performance of students. Ongoing analyses will be undertaken to further explore the CEQ's validity and reliability. © 2018 Occupational Therapy Australia.
Seguin, Maureen; Lewis, Ruth; Amirejibi, Tinatin; Razmadze, Mariam; Makhashvili, Nino; Roberts, Bayard
2016-02-01
Losses experienced by conflict-affected civilians in low and middle income countries is a relatively unexplored area. The aim of our paper is to explore the concept of resource loss in the accounts of internally displaced women in Georgia. We use Hobfoll's Conservation of Resources (COR) theory to guide our approach by examining the loss of objects, personal characteristics, conditions, and energies. Semi-structured interviews were conducted on 42 purposively-selected Georgian women residing in internally displaced persons settlements during fieldwork in Georgia from December 2012 to February 2013. Line-by-line open-coding was conducted on translated and transcribed interviews using Nvivo. The conservation of resources theory was utilised to guide the 'mapping' of the relationships between losses which occurred in the post-conflict period. War-related trauma led to the loss of property, which caused the loss of livelihood and subsequent loss of social networks and mental and physical health. The mental and physical health losses, along with the loss of livelihood, constituted a loss spiral in which losses in one area perpetuated on-going losses in the other areas. Interventions at supporting livelihoods are needed in order to address the cascade of losses resulting from war. Copyright © 2016 Elsevier Ltd. All rights reserved.
A single spacecraft method to study the spatial profiles inside the magnetopause
NASA Astrophysics Data System (ADS)
Dorville, Nicolas; Belmont, Gerard; Rezeau, Laurence; Aunai, Nicolas; Retino, Alessandro
2013-04-01
Previous magnetopause observations have revealed that the tangential magnetic field often rotates over C-shaped hodograms during the boundary crossing. Using observations of magnetopause crossings by the ESA Cluster mission and a simulation developed at LPP by Nicolas Aunai, we developed a single spacecraft method using the temporal information on the magnetic field in such crossings, complemented by the ion data. We can so obtain a 1D spatial parameter to characterize the depth in the layer and study the structure of the magnetopause as a function of this parameter. This allows using one single spacecraft magnetic data, completed by ion data at large temporal scales, to study the spatial structure of the boundary, and access scales that the particle temporal measurements of the four spacecraft do not permit. To obtain the normal direction and position, we first initialize our computations thanks to the standard MVABC method. Then we use the magnetic field data in the current layer, and suppose it is 1D, rotating in the tangential plane along an ellipse, with an angle variation essentially linear in space, with small sinusoidal perturbations. Making the assumption that the normal velocity of ions is dominated by the motion of the boundary and that the internal structure of the magnetopause is stationary over the duration of a crossing, we can compute the best normal direction and parameters of the model with CIS velocity and FGM magnetic field data, and so derive the spatial position of the spacecraft in the boundary. This method, which has been tested on the simulation data, could be applied successfully on several magnetopause crossings observed by Cluster. It directly gives a thickness and a normal direction, and permits to establish spatial profiles of all the physical quantities inside the boundary. It can be used to better understand the internal structure of the boundary, its physical properties and behavior regarding the flux conservation equations. The obtained results are compared with the results of other methods.
Physical activity in climacteric women: comparison between self-reporting and pedometer.
Colpani, Verônica; Spritzer, Poli Mara; Lodi, Ana Paula; Dorigo, Guilherme Gustavo; Miranda, Isabela Albuquerque Severo de; Hahn, Laiza Beck; Palludo, Luana Pedroso; Pietroski, Rafaela Lazzari; Oppermann, Karen
2014-04-01
To compare two methods of assessing physical activity in pre-, peri- and postmenopausal women. Cross-sectional study nested in a cohort of pre-, peri- and postmenopausal women in a city in Southern Brazil. The participants completed a questionnaire that included sociodemographic and clinical data. Physical activity was assessed using a digital pedometer and the International Physical Activity Questionnaire, short version. The participants were classified into strata of physical activity according to the instrument used. For statistical analysis, the Spearman correlation test, Kappa index, concordance coefficient and Bland-Altman plots were used. The concordance (k = 0110; p = 0.007) and the correlation (rho = 0.136, p = 0.02) between the International Physical Activity Questionnaire, short version, and pedometer were weak. In Bland-Altman plots, it was observed that differences deviate from zero value whether the physical activity is minimal or more intense. Comparing the two methods, the frequency of inactive women is higher when assessed by pedometer than by the International Physical Activity Questionnaire--short version, and the opposite occurs in active women. Agreement between the methods was weak. Although easy to use, Physical Activity Questionnaire--short version overestimates physical activity compared with assessment by pedometer.
PREFACE: 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"
NASA Astrophysics Data System (ADS)
Yamada, Taiichi; Kanada-En'yo, Yoshiko
2014-12-01
The 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3) was held at KGU Kannai Media Center, Kanto Gakuin University, Yokohama, Japan, from May 26 to 30, 2014. Yokohama is the second largest city in Japan, about 25 km southeast of Tokyo. The first workshop of the series was held in Strasbourg, France, in 2008 and the second one was in Brussels, Belgium, in 2010. The purpose of SOTANCP3 was to discuss the present status and future perspectives of the nuclear cluster physics. The following nine topics were selected in order to cover most of the scientific programme and highlight an area where new ideas have emerged over recent years: (1) Cluster structures and many-body correlations in stable and unstable nuclei (2) Clustering aspects of nuclear reactions and resonances (3) Alpha condensates and analogy with condensed matter approaches (4) Role of tensor force in cluster physics and ab initio approaches (5) Clustering in hypernuclei (6) Nuclear fission, superheavy nuclei, and cluster decay (7) Cluster physics and nuclear astrophysics (8) Clustering in nuclear matter and neutron stars (9) Clustering in hadron and atomic physics There were 122 participants, including 53 from 17 foreign countries. In addition to invited talks, we had many talks selected from contributed papers. There were plenary, parallel, and poster sessions. Poster contributions were also presented as four-minute talks in parallel sessions. This proceedings contains the papers presented in invited and selected talks together with those presented in poster sessions. We would like to express our gratitude to the members of the International Advisory Committee and those of the Organizing Committee for their efforts which made this workshop successful. In particular we would like to present our great thanks to Drs. Y. Funaki, W. Horiuchi, N. Itagaki, M. Kimura, T. Myo, and T. Yoshida. We would like also to thank the following organizations for their sponsors: RCNP (Research Center for Nuclear Physics, Osaka University), CNS (Center for Nuclear Study, University of Tokyo), JICFuS (Joint Institute for Computational Fundamental Science), and RIKEN (Nishina Center for Accelerator-Based Science, Institute of Physical and Chemical Research). This workshop was supported by Yokohama Convention & Visitors Bureau and Kanto Gakuin University. It remains to be announced that the next, the fourth in this series of SOTANCP workshops, SOTANCP4, will be held in Galveston, Texas, USA, in 2018.
Training of interventional cardiologists in radiation protection--the IAEA's initiatives.
Rehani, Madan M
2007-01-08
The International Atomic Energy Agency (IAEA) has initiated a major international initiative to train interventional cardiologists in radiation protection as a part of its International Action Plan on the radiological protection of patients. A simple programme of two days' training has been developed, covering possible and observed radiation effects among patients and staff, international standards, dose management techniques, examples of good and bad practice and examples indicating prevention of possible injuries as a result of good practice of radiation protection. The training material is freely available on CD from the IAEA. The IAEA has conducted two events in 2004 and 2005 and number of events are planned in 2006. The survey conducted among the cardiologists participating in these programmes indicates that over 80% of them were attending such a structured programme on radiation protection for the first time. As the magnitude of X-ray usage in cardiology grows to match that in interventional radiology, the standards of training on radiation effects, radiation physics and radiation protection in interventional cardiology should also match those in interventional radiology.
Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit
2018-06-01
Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap tides modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal tides might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nishigori, Hiroshi; Otani, Takashi; Plint, Simon; Uchino, Minako; Ban, Nobutaro
2009-05-01
Although medical students have increasingly more opportunities to participate in international electives, their experiences are usually unstructured and the literature referring to their learning outcomes, educational environment, and assessment is scanty. This study was undertaken to clarify qualitatively what students learn from their international electives. We carried out semi-structured individual interviews with 15 Japanese students studying clinical medicine in British medical schools and six British students studying in Japanese medical schools. The thematic synthesis method was used in analysing the transcribed data and triangulation by multiple researchers was used to achieve higher reliability. The main learning outcomes identified were skills in history taking and physical examination with clinical reasoning and in management of diseases rarely seen in the students' own countries; awareness of clinical ethics and merits and demerits of different systems of healthcare and medical education; sensitivity to issues in doctor-patient relationships and work ethics; enhancement of cultural competence; and personal development. Most learning outcomes of international electives are culture- or system-dependent. Students achieved outcomes related closely to medical professionalism, mainly through reflection. International electives may give students opportunities to learn both professionalism and cultural competence.
The Application of the SPASE Metadata Standard in the U.S. and Worldwide
NASA Astrophysics Data System (ADS)
Thieman, J. R.; King, T. A.; Roberts, D.
2012-12-01
The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has not needed any structural modifications since January 2011 . The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. While we anticipate additional modifications to the model in the future to accommodate simulation and model data, these changes will not affect the data descriptions already generated for instrument-related datasets. Examples of SPASE descriptions can be viewed at
The 8th International Conference on Laser Ablation (COLA' 05); Journal of Physics: Conference Series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Wayne P.; Herman, Peter R.; Bauerle, Dieter W.
2007-09-01
Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11–16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in amore » unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications.« less
Kestens, Yan; Chaix, Basile; Gerber, Philippe; Desprès, Michel; Gauvin, Lise; Klein, Olivier; Klein, Sylvain; Köppen, Bernhard; Lord, Sébastien; Naud, Alexandre; Payette, Hélène; Richard, Lucie; Rondier, Pierre; Shareck, Martine; Sueur, Cédric; Thierry, Benoit; Vallée, Julie; Wasfi, Rania
2016-05-05
Given the challenges of aging populations, calls have been issued for more sustainable urban re-development and implementation of local solutions to address global environmental and healthy aging issues. However, few studies have considered older adults' daily mobility to better understand how local built and social environments may contribute to healthy aging. Meanwhile, wearable sensors and interactive map-based applications offer novel means for gathering information on people's mobility, levels of physical activity, or social network structure. Combining such data with classical questionnaires on well-being, physical activity, perceived environments and qualitative assessment of experience of places opens new opportunities to assess the complex interplay between individuals and environments. In line with current gaps and novel analytical capabilities, this research proposes an international research agenda to collect and analyse detailed data on daily mobility, social networks and health outcomes among older adults using interactive web-based questionnaires and wearable sensors. Our study resorts to a battery of innovative data collection methods including use of a novel multisensor device for collection of location and physical activity, interactive map-based questionnaires on regular destinations and social networks, and qualitative assessment of experience of places. This rich data will allow advanced quantitative and qualitative analyses in the aim to disentangle the complex people-environment interactions linking urban local contexts to healthy aging, with a focus on active living, social networks and participation, and well-being. This project will generate evidence about what characteristics of urban environments relate to active mobility, social participation, and well-being, three important dimensions of healthy aging. It also sets the basis for an international research agenda on built environment and healthy aging based on a shared and comprehensive data collection protocol.
Contemporary Cuban Physics Through Scientific Publications: An Insider’s View
NASA Astrophysics Data System (ADS)
Altshuler, Ernesto
In a previous paper, the author reached some conclusions on the tendencies of the publications by Cuban physicists in international journals (Altshuler, Rev Cub Fís 22(2):173-182, 2005) and called for a systematic bibliometric study of the subject. Such a study has now been undertaken (a contribution to this volume entitled "Physics in Cuba from the Perspective of Bibliometrics" by Werner Marx and Manuel Cardona, referred to in this paper as Marx and Cardona) and supports the main conclusions of the former work. The scenario of Cuban physics since 1995 has been conditioned by two main facts interacting in a nontrivial way: the serious material shortages affecting local physics laboratories and bibliographic resources, and an increase in the country's international collaboration. As a positive result, the total volume of Cuban publications in international physics journals has increased since 1995, perhaps reaching a peak around the year 2000, while the number of citations of Cuban papers and the impact of the journals in which they were published have continued to increase since the mid-1990s. Theoretical work produced by physicists from a number of Cuban institutions in international collaborations strongly contribute to those numbers. In the last years, international publications suggest a `self-organized' opening of Cuban physics towards interdisciplinary subjects, which is increasing the `bibliometric visibility' of autochthonous experimental work.
Match Physical Performance of Elite Female Soccer Players During International Competition.
Datson, Naomi; Drust, Barry; Weston, Matthew; Jarman, Ian H; Lisboa, Paulo J; Gregson, Warren
2017-09-01
Datson, N, Drust, B, Weston, M, Jarman, IH, Lisboa, P, and Gregson, W. Match physical performance of elite female soccer players during international competition. J Strength Cond Res 31(9): 2379-2387, 2017-The purpose of this study was to provide a detailed analysis of the physical demands of competitive international female soccer match play. A total of 148 individual match observations were undertaken on 107 outfield players competing in competitive international matches during the 2011-2012 and 2012-2013 seasons, using a computerized tracking system (Prozone Sports Ltd., Leeds, England). Total distance and total high-speed running distances were influenced by playing position, with central midfielders completing the highest (10,985 ± 706 m and 2,882 ± 500 m) and central defenders the lowest (9,489 ± 562 m and 1,901 ± 268 m) distances, respectively. Greater total very high-speed running distances were completed when a team was without (399 ± 143 m) compared to with (313 ± 210 m) possession of the ball. Most sprints were over short distances with 76% and 95% being less than 5 and 10 m, respectively. Between half reductions in physical performance were present for all variables, independent of playing position. This study provides novel findings regarding the physical demands of different playing positions in competitive international female match play and provides important insights for physical coaches preparing elite female players for competition.
Zachara, John; Brantley, Sue; Chorover, Jon; ...
2016-02-05
Internal pore domains exist within rocks, lithic fragments, subsurface sediments, and soil aggregates. These domains, termed internal domains in porous media (IDPM), represent a subset of a material’s porosity, contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse media types, and are important locations for chemical reactivity and fluid storage. IDPM are key features controlling hydrocarbon release from shales in hydraulic fracture systems, organic matter decomposition in soil, weathering and soil formation, and contaminant behavior in the vadose zone and groundwater. It is traditionally difficult to interrogate, advances in instrumentation and imaging methodsmore » are providing new insights on the physical structures and chemical attributes of IDPM, and their contributions to system behaviors. We discuss analytical methods to characterize IDPM, evaluate information on their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess the potential for their inclusion in reactive transport models. Moreover, ongoing developments in measurement technologies and sensitivity, and computer-assisted interpretation will improve understanding of these critical features in the future. Finally, impactful research opportunities exist to advance understanding of IDPM, and to incorporate their effects in reactive transport models for improved environmental simulation and prediction.« less
Renner, Lynette M; Boel-Studt, Shamra
2017-01-01
Family violence has been associated with various negative outcomes among children and adolescents. Yet, less is known about how unique forms of physical family violence contribute to externalizing and internalizing behaviors based on a child's developmental stage. Using data from the Illinois Families Study and administrative Child Protective Services data, we explored the relation between 3 types of physical family violence victimization and externalizing and internalizing behaviors among a sample of 2,402 children and adolescents. After including parent and family level covariates in Poisson regressions, we found that a unique form of family violence victimization was associated with increased externalizing behaviors among children at each age group: exposure to physical intimate partner violence (IPV) among children ages 3-5, exposure to the physical abuse of a sibling among children ages 6-12, and child physical abuse among adolescents ages 13-18. No form of physical family violence was significantly associated with internalizing behaviors for children in any age group. Including exposure to the child maltreatment of a sibling is crucial when attempting to contextualize children's responses to family violence and providing comprehensive services in an effort to enhance the well-being of all children in a family. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Understanding Coreference in a System for Solving Physics Word Problems.
NASA Astrophysics Data System (ADS)
Bulko, William Charles
In this thesis, a computer program (BEATRIX) is presented which takes as input an English statement of a physics problem and a figure associated with it, understands the two kinds of input in combination, and produces a data structure containing a model of the physical objects described and the relationships between them. BEATRIX provides a mouse-based graphic interface with which the user sketches a picture and enters English sentences; meanwhile, BEATRIX creates a neutral internal representation of the picture similar to the which might be produced as the output of a vision system. It then parses the text and the picture representation, resolves the references between objects common to the two data sources, and produces a unified model of the problem world. The correctness and completeness of this model has been validated by applying it as input to a physics problem-solving program currently under development. Two descriptions of a world are said to be coreferent when they contain references to overlapping sets of objects. Resolving coreferences to produce a correct world model is a common task in scientific and industrial problem-solving: because English is typically not a good language for expressing spatial relationships, people in these fields frequently use diagrams to supplement textual descriptions. Elementary physics problems from college-level textbooks provide a useful and convenient domain for exploring the mechanisms of coreference. Because flexible, opportunistic control is necessary in order to recognize coreference and to act upon it, the understanding module of BEATRIX uses a blackboard control structure. The blackboard knowledge sources serve to identify physical objects in the picture, parse the English text, and resolve coreferences between the two. We believed that BEATRIX demonstrates a control structure and collection of knowledge that successfully implements understanding of text and picture by computer. We also believe that this organization can be applied successfully to similar understanding tasks in domains other than physics problem -solving, where data such as the output from vision systems and speech understanders can be used in place of text and pictures.
IUPESM: the international umbrella organisation for biomedical engineering and medical physics.
Nagel, Jh
2007-07-01
An account of the development, aims and activities of the International Union for Physical and Engineering Sciences in Medicine (IUPESM) is presented. Associations with the International Council of Science (ICSU) and the World Health Organization (WHO) are leading to exciting new projects towards improving global health, healthcare, quality of life and support of health technologies in developing countries.
ERIC Educational Resources Information Center
Robinson, Daniel B.; Barrett, Joe; Robinson, Ingrid
2017-01-01
This article reports on results from a qualitative study of a two-week international internship for pre-service and in-service physical education (PE) teachers in a developing nation (Belize). Relying upon data from questionnaires that were administered before and after the short-term international internship, participants' perspectives related to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Raphael P
2017-01-01
This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, asmore » are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.« less
Studies of the QCD Phase Diagram with Heavy-Ion Collisions at J-PARC
NASA Astrophysics Data System (ADS)
Sako, Hiroyuki
To clarify phase structures in the QCD phase diagram is an ultimate goal of heavy-ion collision experiments. Studies of internal structures of neutron stars are also one of the most important topics of nuclear physics since the discovery of neutron stars with two-solar mass. For these physics goals, J-PARC heavy-ion project (J-PARC-HI) has been proposed, where extremely dense matter with 5-10 times the normal nuclear density will be created. Heavy-ion beams up to Uranium will be accelerated to 1-19 AGeV/c, with the designed world's highest beam rate of 1011 Hz. The acceleration of such high-rate beams can be realized by a new heavy-ion linac and a new booster ring, in addition to the existing 3-GeV and 50-GeV proton synchrotrons. To study the above physics goals, following physics observables will be measured in extremely high statistics expected in J-PARC-HI. To search for the critical point, high-order event-by-event fluctuations of conserved charges such as a net-baryon number, an electric charge number, and a strangeness number will be measured. To study the chiral symmetry restoration, dilepton spectra from light vector meson decays will be measured. Also, collective flows, particle correlations will be measured to study the equation of state and hyperon-hyperon and hyperon-nucleon interactions related to neutron stars. Strange quark matter (strangelet) and multi-strangeness hypernuclei will be searched for which may be related directly to the matter constituting the neutron star core. In this work, the physics goals, the experimental design, and expected physics results of J-PARC-HI will be discussed.
Walsh, Deirdre M J; Morrison, Todd G; Conway, Ronan J; Rogers, Eamonn; Sullivan, Francis J; Groarke, AnnMarie
2018-01-01
Background: Post traumatic growth (PTG) can be defined as positive change following a traumatic event. The current conceptualization of PTG encompasses five main dimensions, however, there is no dimension which accounts for the distinct effect of a physical trauma on PTG. The purpose of the present research was to test the role of PTG, physical post traumatic growth (PPTG), resilience and mindfulness in predicting psychological and health related adjustment. Method: Ethical approval was obtained from relevant institutional ethics committees. Participants ( N = 241), who were at least 1 year post prostate cancer treatment, were invited to complete a battery of questionnaires either through an online survey or a paper and pencil package received in the post The sample ranged in age from 44 to 88 years ( M = 64.02, SD = 7.76). Data were analysis using confirmatory factor analysis and structural equation modeling. Results: The physical post traumatic growth inventory (P-PTGI) was used to evaluate the role of PPTG in predicting adjustment using structural equation modeling. P-PTGI predicted lower distress and improvement of quality of life, whereas conversely, the traditional PTG measure was linked with poor adjustment. The relationship between resilience and adjustment was found to be mediated by P-PTGI. Conclusion: Findings suggest the central role of PTG in the prostate cancer survivorship experience is enhanced by the inclusion of PPTG. Adjusting to a physical trauma such as illness (internal transgressor) is unlike a trauma with an external transgressor as the physical trauma creates an entirely different framework for adjustment. The current study demonstrates the impact of PPTG on adjustment. This significantly adds to the theory of the development of PTG by highlighting the interplay of resilience with PTG, PPTG, and adjustment.
NASA Technical Reports Server (NTRS)
Westman, Walter E.; Paris, Jack F.
1987-01-01
The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.
Glass-based confined structures enabling light control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro
2015-04-24
When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures bymore » different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties.« less
Weis, Joachim; Tomaszewski, Krzysztof A; Hammerlid, Eva; Ignacio Arraras, Juan; Conroy, Thierry; Lanceley, Anne; Schmidt, Heike; Wirtz, Markus; Singer, Susanne; Pinto, Monica; Alm El-Din, Mohamed; Compter, Inge; Holzner, Bernhard; Hofmeister, Dirk; Chie, Wei-Chu; Czeladzki, Marek; Harle, Amelie; Jones, Louise; Ritter, Sabrina; Flechtner, Hans-Henning; Bottomley, Andrew
2017-05-01
The European Organisation for Research and Treatment of Cancer (EORTC) Group has developed a new multidimensional instrument measuring cancer-related fatigue to be used in conjunction with the quality of life core questionnaire (EORTC QLQ-C30). The module EORTC QLQ-FA13 assesses physical, cognitive, and emotional aspects of cancer-related fatigue. The methodology follows the EORTC guidelines for phase IV validation of modules. This paper focuses on the results of the psychometric validation of the factorial structure of the module. For validation and cross-validation confirmatory factor analysis (maximum likelihood estimation), intraclass correlation and Cronbach alpha for internal consistency were employed. The study involved an international multicenter collaboration of 11 European and non-European countries. A total of 946 patients with various tumor diagnoses were enrolled. Based on the confirmatory factor analysis, we could approve the three-dimensional structure of the module. Removing one item and reassigning the factorial mapping of another item resulted in the EORTC QLQ-FA12. For the revised scale, we found evidence supporting good local (indicator reliability ≥ 0.60, factor reliability ≥ 0.82) and global model fit (GFI t1|t2 = 0.965/0.957, CFI t1|t2 = 0.976/0.972, RMSEA t1|t2 = 0.060/0.069) for both measurement points. For each scale, test-retest reliability proved to be very good (intraclass correlation: R t1-t2 = 0.905-0.921) and internal consistency proved to be good to high (Cronbach alpha = .79-.90). Based on the former phase III module, the multidimensional structure was revised as a phase IV module (EORTC FA12) with an improved scale structure. For a comprehensive validation of the EORTC FA12, further aspects of convergent and divergent validity as well as sensitivity to change should be determined. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubos, A.K.; Caseiras, C.P.; Buchlin, J.M.
The transient two-phase flow and phase change heat transfer processes in porous media are investigated. Based on an enthalpic approach, a one-domain formulation of the problem is developed, avoiding explicit internal boundary tracking between single- and two-phase regions. An efficient numerical scheme is applied to obtain the solution on a fixed two-dimensional grid. The transient response of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of the computed response to fast power transients is attempted. Comparisons with experimental data are made regarding themore » average void fraction and the limiting dryout heat flux. The numerical approach is extended, keeping the one-domain formulation, to include the surrounding wall structure in the calculation.« less
DEM code-based modeling of energy accumulation and release in structurally heterogeneous rock masses
NASA Astrophysics Data System (ADS)
Lavrikov, S. V.; Revuzhenko, A. F.
2015-10-01
Based on discrete element method, the authors model loading of a physical specimen to describe its capacity to accumulate and release elastic energy. The specimen is modeled as a packing of particles with viscoelastic coupling and friction. The external elastic boundary of the packing is represented by particles connected by elastic springs. The latter means introduction of an additional special potential of interaction between the boundary particles, that exercises effect even when there is no direct contact between the particles. On the whole, the model specimen represents an element of a medium capable of accumulation of deformation energy in the form of internal stresses. The data of the numerical modeling of the physical specimen compression and the laboratory testing results show good qualitative consistency.
NASA Astrophysics Data System (ADS)
Sarusi, Gabby; Gunapala, Sarath D.
2017-08-01
This special issue of Journal of Infrared Physics and Technology is brought to you following an international conference on Quantum Structure Infrared Photodetector (QSIP) that took place on June 2016 in Tel-Aviv, Israel, called QSIP2016. During QSIP2016 conference we had the honor to host Dr. Barry F. Levine that was the pioneer in this field since the 80s at AT&T Bell Labs working on quantum wells infrared photodetectors (QWIPs). Luckily, four of his former post-docs (Choi, Gunapala, Bandara and Sarusi) are still working in this field and they took a major part in contributing the QSIP2016 conference. All papers presented in this special issue went through the highest standard peer-review process of Journal of Infrared Physics and Technology, where 15 papers were reached the final stage and accepted for publication.
NASA Astrophysics Data System (ADS)
Avino, Fabio; Bovet, Alexandre; Fasoli, Ambrogio; Furno, Ivo; Gustafson, Kyle; Loizu, Joaquim; Ricci, Paolo; Theiler, Christian
2012-10-01
TORPEX is a basic plasma physics toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. We review recent advances in the understanding and control of electrostatic interchange turbulence, associated structures and their effect on suprathermal ions. These advances are obtained using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Furthermore, we discuss future developments including the possibility of generating closed field line configurations with rotational transform using an internal toroidal wire carrying a current. This system will also allow the study of innovative fusion-relevant configurations, such as the snowflake divertor.
Validation of the Minority Stress Scale Among Italian Gay and Bisexual Men
Pala, Andrea Norcini; Dell’Amore, Francesca; Steca, Patrizia; Clinton, Lauren; Sandfort, Theodorus; Rael, Christine
2017-01-01
The experience of sexual orientation stigma (e.g., homophobic discrimination and physical aggression) generates minority stress, a chronic form of psychosocial stress. Minority stress has been shown to have a negative effect on gay and bisexual men’s (GBM’s) mental and physical health, increasing the rates of depression, suicidal ideation, and HIV risk behaviors. In conservative religious settings, such as Italy, sexual orientation stigma can be more frequently and/or more intensively experienced. However, minority stress among Italian GBM remains understudied. The aim of this study was to explore the dimensionality, internal reliability, and convergent validity of the Minority Stress Scale (MSS), a comprehensive instrument designed to assess the manifestations of sexual orientation stigma. The MSS consists of 50 items assessing (a) Structural Stigma, (b) Enacted Stigma, (c) Expectations of Discrimination, (d) Sexual Orientation Concealment, (e) Internalized Homophobia Toward Others, (f) Internalized Homophobia toward Oneself, and (g) Stigma Awareness. We recruited an online sample of 451 Italian GBM to take the MSS. We tested convergent validity using the Perceived Stress Questionnaire. Through exploratory factor analysis, we extracted the 7 theoretical factors and an additional 3-item factor assessing Expectations of Discrimination From Family Members. The MSS factors showed good internal reliability (ordinal α > .81) and good convergent validity. Our scale can be suitable for applications in research settings, psychosocial interventions, and, potentially, in clinical practice. Future studies will be conducted to further investigate the properties of the MSS, exploring the association with additional health-related measures (e.g., depressive symptoms and anxiety). PMID:29479555
Beresniak, Ariel; Auray, Jean-Paul; Duru, Gérard; Aractingi, Selim; Krueger, Gerald G; Talarico, Sergio; Tsutani, Kiichiro; Dupont, Danielle; de Linares, Yolaine
2015-09-01
The wide use of cosmetics and their perceived benefits upon well-being imply objective descriptions of their effects upon the different dimensions contributing to the quality of life (QoL). Such a goal pleas for using relevant and validated scientific instruments with robust measurement methods. This paper discusses the interest of the new validated questionnaire BeautyQoL specifically designed to assess the effect of cosmetic products on physical appearance and QoL. After conducting a review of skin appearance and QoL, three phases of the international codevelopment have been carried out in the following sequence: semi-directed interviews (Phase 1), acceptability study (Phase 2), and validation study (Phase 3). Data collection and validation process have been carried out in 16 languages. This review confirms that QoL instruments developed in dermatology are not suitable to assess cosmetic products, mainly because of their lack of sensitivity. General acceptability of BeautyQol was very good. Forty-two questions have been structured in five dimensions that explained 76.7% of the total variance: Social Life, Self-confidence, Mood, Vitality, and Attractiveness. Cronbach's alpha coefficients are between 0.932 and 0.978, confirming the good internal consistency of the results. The BeautyQol questionnaire is the first international instrument specific to cosmetic products and physical appearance that has been validated in 16 languages and could be used in a number of clinical trials and descriptive studies to demonstrate the added value of these products on the QoL. © 2015 Wiley Periodicals, Inc.
Damage Detection and Self-Repair in Inflatable/Deployable Structures
NASA Technical Reports Server (NTRS)
Brandon, Erik; Studor, George; Banks, DAvid; Curry, Mark; Broccato, Robert; Jackson, Tom; Champaigne, Kevin; Sottos, Nancy
2009-01-01
Inflatable/deployable structures are under consideration for applications as varied as expansion modules for the International Space Station to destinations for space tourism to habitats for the lunar surface. Monitoring and maintaining the integrity of the physical structure is critical, particularly since these structures rely on non-traditional engineering materials such as fabrics, foams, and elastomeric polymers to provide the primary protection for the human crew. The closely related prior concept of monitoring structural integrity by use of built-in or permanently attached sensors has been applied to structures made of such standard engineering materials as metals, alloys, and rigid composites. To effect monitoring of flexible structures comprised mainly of soft goods, however, it will be necessary to solve a different set of problems - especially those of integrating power and data-transfer cabling that can withstand, and not unduly interfere with, stowage and subsequent deployment of the structures. By incorporating capabilities for self-repair along with capabilities for structural health monitoring, successful implementation of these technologies would be a significant step toward semi-autonomous structures, which need little human intervention to maintain. This would not only increase the safety of these structures, but also reduce the inspection and maintenance costs associated with more conventional structures.
Statistical mechanics and combinatorics of some discrete lattice models
NASA Astrophysics Data System (ADS)
Ayyer, Arvind
Many problems in statistical physics involve enumeration of certain objects. In this thesis, we apply ideas from combinatorics and statistical physics to understand three different lattice models. (I) We investigate the structure of the nonequilibrium stationary state (NESS) of a system of first and second class particles on L sites of a one-dimensional lattice in contact with first class particle reservoirs at the boundary sites and second class particles constrained to lie the system. The internal dynamics are described by the usual totally asymmetric exclusion process (TASEP) with second class particles. We show in a conceptually simple way how pinned and unpinned (fat) shocks determine the general structure of the phase diagram. We also point out some unexpected features in the microscopic structure of the NESS both for finite L and in the limit L → infinity. In the latter case the local distribution of second class particles is given by an equilibrium pressure ensemble with a pair potential between neighboring particles which grows logarithmically with distance. (II) We model a long linear polymer constrained between two plates as a walk on a two-dimensional lattice constrained to lie between two lines, x = y and x = y+w, which interacts with these lines via contact parameters s and t. The atomic steps of the walk can be taken to be from an arbitrary but fixed set S with the only condition being that the first coordinate of every element in S is strictly positive. For any such S and any w, we prescribe general algorithms (fully implemented in Maple) for the automated calculation of several mathematical and physical quantities of interest. (III) Ferrers (or Young) diagrams are very classical objects in representation theory, whose half-perimeter generating function of Ferrers diagrams is a straightforward rational function. We construct two new classes of Ferrers diagrams, which we call wicketed and gated Ferrers diagrams, which have internal voids in the shape of Ferrers diagrams, and calculate their half-perimeter generating functions, one of which is closely related to the generating function of the Catalan numbers, using a more abstract version of the usual transfer matrix method.
NASA Astrophysics Data System (ADS)
Taylor, Robert A.
2010-09-01
These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur Zrenner (Paderborn University, Germany) International Programme Committee: Alexander Eychmüller (TU Dresden, Germany) Jonathan Finley (TU Munich, Germany) Dan Gammon (NRL, Washington, USA) Alexander Govorov (Ohio University, USA) Neil Greenham (Cavendish Laboratory, UK) Vladimir Korenev (Ioffe Institute, Russia) Leo Kouwenhoven (TU Delft, Netherlands) Wolfgang Langbein (Cardiff University, UK) Xavier Marie (CNRS Toulouse, France) David Ritchie (Cambridge, UK) Andrew Sachrajda (IMS, Ottawa, Canada) Katerina Soulantica (University of Toulouse, France) Seigo Tarucha (University of Tokyo, Japan) Carlos Tejedor (UAM, Madrid, Spain) Euijoon Yoon (Seoul National University, Korea) Ulrike Woggon (Tu Berlin, Germany) Proceedings edited and compiled by Profesor Robert A Taylor, University of Oxford
Threat Assessment of Small Near-Earth Objects
NASA Astrophysics Data System (ADS)
Ryan, E.; Ryan, W.
2010-09-01
Researchers at the Magdalena Ridge Observatory’s (MRO) 2.4-meter telescope facility are in their third year of a program to derive physical characterization information on some of the smallest (less than 200 meters in diameter) objects in the Near-Earth Object (NEO) population. Tiny comets and asteroids are being discovered by survey programs on a routine basis, so targets available for study have been abundant. Our primary objective is to derive rotation rates for these objects, and to place the results in context with previous data to enhance our understanding of asteroid impact physics and better address the threat from NEOs having Earth-crossing orbits. Rotation rate can be used to infer internal structure, which is a physical property important to assessing the energy needed for object disruption or other forms of hazard mitigation. Since the existing database of rotational data derived from lightcurves of objects in this small size regime is sparse, collection of additional observational data is beneficial. Acquiring more knowledge about the physical nature of NEOs not only contributes to general scientific pursuits, but is important to planetary defense.
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams
NASA Technical Reports Server (NTRS)
Tejada, Arturo
2009-01-01
An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.
Særvoll, Charlotte Ahlgren; Sjøgaard, Gisela; Andersen, Lars Louis
2015-01-01
Objective. To provide a comprehensive understanding of the motivational factors and barriers that are important for compliance with high-intensity workplace physical exercise that is aimed at reducing musculoskeletal disorders. Method. The present study, which used semideductive, thematic, and structured in-depth interviews, was nested in a 20-week cluster randomised controlled trial among office workers. Interviews were conducted with 18 informants with diverse fields of sedentary office work who participated in strength training at the workplace for 20 minutes, three times per week. Organisational, implementational, and individual motives and barriers were explored. Results & Discussion. The results show that attention should be given to the interaction between the management, the employees, and the intervention, as the main barrier to compliance was the internal working culture. The results emphasised the need for a clear connection between the management's implementational intentions and the actual implementation. The results emphasise the importance of ensuring the legitimacy of the intervention among managers, participants, and colleagues. Moreover, it is important to centrally organise, structure, and ensure flexibility in the working day to free time for participants to attend the intervention. Recommendations from this study suggest that a thorough intervention mapping process should be performed to analyse organisational and implementational factors before initiating workplace physical exercise training. PMID:26380361
Bredahl, Thomas Viskum Gjelstrup; Særvoll, Charlotte Ahlgren; Kirkelund, Lasse; Sjøgaard, Gisela; Andersen, Lars Louis
2015-01-01
To provide a comprehensive understanding of the motivational factors and barriers that are important for compliance with high-intensity workplace physical exercise that is aimed at reducing musculoskeletal disorders. The present study, which used semideductive, thematic, and structured in-depth interviews, was nested in a 20-week cluster randomised controlled trial among office workers. Interviews were conducted with 18 informants with diverse fields of sedentary office work who participated in strength training at the workplace for 20 minutes, three times per week. Organisational, implementational, and individual motives and barriers were explored. The results show that attention should be given to the interaction between the management, the employees, and the intervention, as the main barrier to compliance was the internal working culture. The results emphasised the need for a clear connection between the management's implementational intentions and the actual implementation. The results emphasise the importance of ensuring the legitimacy of the intervention among managers, participants, and colleagues. Moreover, it is important to centrally organise, structure, and ensure flexibility in the working day to free time for participants to attend the intervention. Recommendations from this study suggest that a thorough intervention mapping process should be performed to analyse organisational and implementational factors before initiating workplace physical exercise training.
Les structures de l'apprentissage en Roumanie: unite et diversite
NASA Astrophysics Data System (ADS)
Văideanu, George
1982-06-01
This analysis concerns structures of learning at the pre-university level. The concept of `learning' is used in a wide sense, including the assimilation not only of knowledge but also of know-how and attitudes. That is to say, learning has been analysed as intellectual — but also as moral, aesthetic and physical or sports — education. The author comments on the philosophy underlying the Report to the Club of Rome, No Limits to Learning. Three categories of learning structure are examined: formal, nonformal and informal. Other possibilities of grouping the structures are also indicated, including learning for society and learning for oneself. Various modalities of their articulation are presented, a distinction being made between those appropriate to school-level and those for scholarly research. Among the final conclusions and suggestions are two addressed to Unesco: a. an international round-table conference on the desirable evolution of learning; and b. the organisation of a network of experimental schools to present the desirable learning structures to educators, researchers and decision-makers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, David A.; Streamer, Margaret; Rowland, Susan L.
2009-09-02
The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB. The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomericmore » or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.« less
Structure of Arabidopsis leaf starch is markedly altered following nocturnal degradation.
Zhu, Fan; Bertoft, Eric; Wang, You; Emes, Michael; Tetlow, Ian; Seetharaman, Koushik
2015-03-06
Little is known about the thermal properties and internal molecular structure of transitory starch. In this study, granule morphology, thermal properties, and the cluster structure of Arabidopsis leaf starch at beginning and end of the light period were explored. The structural properties of building blocks and clusters were evaluated by using diverse chromatographic techniques. On the granular level, starch from end of day had larger granule size, thinner crystalline lamellae thickness, lower free surface energy of crystals, and lower tendency to retrograde than that from end of night. On the molecular level, the starch had lower amylose content, larger cluster size, and higher number of blocks per cluster at the end of day than at end of night. It is concluded that the core of the granules contains a more permanent molecular and less-ordered physical structure different from the transitory layers laid down around the core at daytime. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pasanen, Tytti P; Tyrväinen, Liisa; Korpela, Kalevi M
2014-11-01
A body of evidence shows that both physical activity and exposure to nature are connected to improved general and mental health. Experimental studies have consistently found short term positive effects of physical activity in nature compared with built environments. This study explores whether these benefits are also evident in everyday life, perceived over repeated contact with nature. The topic is important from the perspectives of city planning, individual well-being, and public health. National survey data (n = 2,070) from Finland was analysed using structural regression analyses. Perceived general health, emotional well-being, and sleep quality were regressed on the weekly frequency of physical activity indoors, outdoors in built environments, and in nature. Socioeconomic factors and other plausible confounders were controlled for. Emotional well-being showed the most consistent positive connection to physical activity in nature, whereas general health was positively associated with physical activity in both built and natural outdoor settings. Better sleep quality was weakly connected to frequent physical activity in nature, but the connection was outweighed by other factors. The results indicate that nature provides an added value to the known benefits of physical activity. Repeated exercise in nature is, in particular, connected to better emotional well-being. © 2014 The Authors. Applied Psychology: Health and Well-Being published by John Wiley & Sons Ltd on behalf of The International Association of Applied Psychology.
Identifying Country-Specific Cultures of Physics Education: A differential item functioning approach
NASA Astrophysics Data System (ADS)
Mesic, Vanes
2012-11-01
In international large-scale assessments of educational outcomes, student achievement is often represented by unidimensional constructs. This approach allows for drawing general conclusions about country rankings with respect to the given achievement measure, but it typically does not provide specific diagnostic information which is necessary for systematic comparisons and improvements of educational systems. Useful information could be obtained by exploring the differences in national profiles of student achievement between low-achieving and high-achieving countries. In this study, we aimed to identify the relative weaknesses and strengths of eighth graders' physics achievement in Bosnia and Herzegovina in comparison to the achievement of their peers from Slovenia. For this purpose, we ran a secondary analysis of Trends in International Mathematics and Science Study (TIMSS) 2007 data. The student sample consisted of 4,220 students from Bosnia and Herzegovina and 4,043 students from Slovenia. After analysing the cognitive demands of TIMSS 2007 physics items, the correspondent differential item functioning (DIF)/differential group functioning contrasts were estimated. Approximately 40% of items exhibited large DIF contrasts, indicating significant differences between cultures of physics education in Bosnia and Herzegovina and Slovenia. The relative strength of students from Bosnia and Herzegovina showed to be mainly associated with the topic area 'Electricity and magnetism'. Classes of items which required the knowledge of experimental method, counterintuitive thinking, proportional reasoning and/or the use of complex knowledge structures proved to be differentially easier for students from Slovenia. In the light of the presented results, the common practice of ranking countries with respect to universally established cognitive categories seems to be potentially misleading.
Operational health physics training
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-06-01
The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised tomore » reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.« less
Preface: The International Reference Ionosphere (IRI) at equatorial latitudes
NASA Astrophysics Data System (ADS)
Reinisch, Bodo; Bilitza, Dieter
2017-07-01
This issue of Advances in Space Research includes papers that report and discuss improvements of the International Reference Ionosphere (IRI). IRI is the international standard for the representation of the plasma in Earth's ionosphere and recognized as such by the Committee on Space Research (COSPAR), the International Union of Radio Science (URSI), the International Telecommunication Union (ITU), and the International Standardization Organization (ISO). As requested, particularly by COSPAR and URSI, IRI is an empirical model relying on most of the available and reliable ground and space observations of the ionosphere. As new data become available and as older data sources are fully exploited the IRI model undergoes improvement cycles to stay as close to the existing data record as possible. The latest episode of this process is documented in the papers included in this issue using data from the worldwide network of ionosondes, from a few of the incoherent scatter radars, from the Alouette and ISIS topside sounders, and from the Global Navigation Satellite Systems (GNSS). The focus of this issue is on the equatorial and low latitude region that is of special importance for ionospheric physics because it includes the largest densities and steep density gradients in the double hump latitudinal structure, the Equatorial Ionization Anomaly (EIA), which is characteristic for this region.
Haring, Catharina M; van der Meer, Jos W M; Postma, Cornelis T
2013-09-01
Performance of a focused physical examination will induce a high cognitive load for medical students in the early phase of the clinical clerkships. To come to a workable and clinically applicable standard physical examination for medical students to be used in every new patient in the daily clinical practice of internal medicine. A questionnaire held among physicians that supervise students during the clerkship of internal medicine in one Dutch training region. Of the complete list of physical examination 55 items were considered to be an integral part of the standard general physical examination for medical students. Most emphasized were elements of the physical examination aimed at general parameters, thorax and abdomen, vascular status, lymph nodes, spinal column, skin and some parts of the neurological examination. The standard physical examinations performed by supervisors themselves contain fewer items than they expected from the students. The expectations a supervisor has towards the student correlates with the frequency with which they apply the various components in their own physical examination. This study provides us with a 'core' physical examination for medical students that can be applied in the early phase of the clinical clerkships.
Report from the Third IUPAP International Conference on Women in Physics
NASA Astrophysics Data System (ADS)
Freeland, Emily E.; Murphy, N.; Jang-Condell, H.; Gomez Maqueo Chew, Y.
2009-12-01
The Third IUPAP (International Union of Pure and Applied Physics) International Conference on Women in Physics was held in Seoul, South Korea from October 8-10, 2008 with 283 participants from 57 countries. Topics discussed included personal and professional development, attracting girls to physics, site visits for assessing and improving the climate for women, fundraising and leadership, and organizing women in physics working groups. Resolutions unanimously passed by the conference assembly recommend (1) the formation of additional regional or national working groups for women in physics, (2) promotion of site visits as an effective tool for improving the climate of the physics workplace, (3) increased professional development opportunities and outreach activities associated with conferences, and (4) a global survey of physicists in 2009 to assess the status of women in physics. See http://www.icwip2008.org/ for the text of the resolutions and the conference program. In this poster, AAS members who participated will report on this conference as well as resolutions from the first (Paris, 2002) and second (Rio de Janeiro, 2005) conferences. The next IUPAP Conference on Women in Physics is expected to occur in South Africa in 2011.
NASA Astrophysics Data System (ADS)
Urry, Meg
2002-03-01
The International Union of Pure and Applied Physics (IUPAP) held an international conference on women in physics in early March 2002, in Paris. A diverse delegation from U.S. institutions was selected to attend, to present information about the status of women physicists in this country and to learn more about the international situation. An overview of the activities of this delegation and of the results of the conference will be presented.
Astronomers Travel in Time and Space with Light
NASA Technical Reports Server (NTRS)
Mather, John C.
2016-01-01
This is an excerpt of John Mather's in a book titled: INSPIRED BY LIGHT, Reflections from the International Year of Light 2015. It was produced in January 2016 by SPIE, the European Physical Society (EPS), and The Abdus Salam International Centre for Theoretical Physics (ICTP) to commemorate the International Year of Light and Light-based Technologies 2015. The excerpt discusses how astronomers use light.
van Adrichem, Edwin J; Krijnen, Wim P; Dekker, Rienk; Ranchor, Adelita V; Dijkstra, Pieter U; van der Schans, Cees P
2017-11-01
To explore the underlying dimensions of the Barriers and Motivators Questionnaire that is used to assess barriers to and motivators of physical activity experienced by recipients of solid organ transplantation and thereby improve the application in research and clinical settings. A cross-sectional study was performed in recipients of solid organ transplantation (n = 591; median (IQR) age = 59 (49; 66); 56% male). The multidimensional structure of the questionnaire was analyzed by exploratory principal component analysis. Cronbach's α was calculated to determine internal consistency of the entire questionnaire and individual components. The barriers scale had a Cronbach's α of 0.86 and was subdivided into four components; α of the corresponding subscales varied between 0.80 and 0.66. The motivator scale had an α of 0.91 and was subdivided into four components with an α between 0.88 to 0.70. Nine of the original barrier items and two motivator items were not included in the component structure. A four-dimensional structure for both the barriers and motivators scale of the questionnaire is supported. The use of the indicated subscales increases the usability in research and clinical settings compared to the overall scores and provide opportunities to identify modifiable constructs to be targeted in interventions. Implications for rehabilitation Organ transplant recipients are less active than the general population despite established health benefits of physical activity. A multidimensional structure is shown in the Barriers and Motivators Questionnaire, the use of the identified subscales increases applicability in research and clinical settings. The use of the questionnaire with its component structure in the clinical practice of a rehabilitation physician could result in a faster assessment of problem areas in daily practice and result in a higher degree of clarity as opposed to the use of the individual items of the questionnaire.
NASA Astrophysics Data System (ADS)
El-Bediwi, A. B.
2004-02-01
The structure, electrical resistivity, and elastic modulus of SnSb7 and SnSb7X (X = Cu , Ag, or Cu and Ag) rapidly solidified alloys have been investigated using X-ray diffractometer, double bridge, and dynamic resonance techniques. Copper and silver additions to SnSb result in the formation of a eutectic matrix containing embedded crystals (intermetallic phases) of SnCu, SnAg, and SnSb. The hard crystals SnCu, SnAg, and SnSb increase the overall hardness and wear resistance of SnSb bearing alloys. Addition of copper and silver improves internal friction, electrical conductivity, and elastic modulus values of SnSb rapidly solidified bearing alloys. The internal friction, elastic modulus, and electrical resistivity values are relatively sensitive to the composition of the intermediate phases in the matrix. The SbSb(7)Cu(2)g(2) has better properties (lowest internal friction, cost, adequate elastic modulus, and electrical resistivity) for bearing alloys as compared to cast iron and bronzes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Bin; Li, Fei; Chen, Hong-Ming
2015-06-15
Er-doped ZnO thin films have been prepared by using inductively coupled plasma enhanced physical vapor deposition at different O{sub 2}:Ar gas flow ratio (R = 0:30, 1:30, 1:15, 1:10 and 1:6). The influence of oxygen partial pressure on the structural, optical and magnetic properties was studied. It is found that an appropriate oxygen partial pressure (R=1:10) can produce the best crystalline quality with a maximum grain size. The internal strain, estimated by fitting the X-ray diffraction peaks, varied with oxygen partial pressure during growth. PL measurements show that plenty of defects, especially zinc vacancy, exist in Er-doped ZnO films. Allmore » the samples show room-temperature ferromagnetism. Importantly, the saturation magnetization exhibits similar dependency on oxygen partial pressure with the internal strain, which indicates that internal strain has an important effect on the magnetic properties of Er-doped ZnO thin films.« less
NASA Astrophysics Data System (ADS)
Binzel, R. P.; Earle, A. M.; Vanatta, M.; Miller, D. W.
2017-12-01
Nature is providing a once-per-thousand year opportunity to study the geophysical outcome induced on an unprecedentedly large (350 meter) asteroid making an extremely close passage by the Earth (inside the distance of geosynchronous satellites) on Friday April 13, 2029. The aircraft carrier-sized (estimated 20 million metric ton) asteroid is named Apophis. While many previous spacecraft missions have studied asteroids, none has ever had the opportunity to study "live" the outcome of planetary tidal forces on their shapes, spin states, surface geology, and internal structure. Beyond the science interest directly observing this planetary process, the Apophis encounter provides an invaluable opportunity to gain knowledge for any eventuality of a known asteroid found to be on a certain impact trajectory. MIT's Project Apophis [1] is our response to nature's generous opportunity by developing a detailed mission concept for sending a spacecraft to orbit Apophis with the objectives of surveying its surface and interior structure before, during, and after its 2029 near-Earth encounter. The Surface Evaluation & Tomography (SET) mission concept we present is designed toward accomplishing three key science objectives: (1) bulk physical characterization, (2) internal structure, and (3) long-term orbit tracking. For its first mission objective, SET will study Apophis' bulk properties, including: shape, size, mass, volume, bulk density, surface geology, and composition, rotation rate, and spin state. The second mission objective is to characterize Apophis' internal structure before and after the encounter to determine its strength and cohesion - including tidally induced changes. Finally, the third objective studies the process of thermal re-radiation and consequential Yarkovsky drift, whose results will improve orbit predictions for Apophis as well as other potentially hazardous asteroids. [1] https://eapsweb.mit.edu/mit-project-apophis
Thermal structure and cooling of neutron stars with magnetized envelopes
NASA Astrophysics Data System (ADS)
Potekhin, A. Y.; Yakovlev, D. G.
2001-07-01
The thermal structure of neutron stars with magnetized envelopes is studied using modern physics input. The relation between the internal (Tint) and local surface temperatures is calculated and fitted by analytic expressions for magnetic field strengths B from 0 to 1016 G and arbitrary inclination of the field lines to the surface. The luminosity of a neutron star with dipole magnetic field is calculated and fitted as a function of B, Tint, stellar mass and radius. In addition, we simulate cooling of neutron stars with magnetized envelopes. In particular, we analyse ultramagnetized envelopes of magnetars and also the effects of the magnetic field of the Vela pulsar on the determination of critical temperatures of neutron and proton superfluids in its core.
NASA Astrophysics Data System (ADS)
Zagorodny, A.; Kocherga, O.
2007-05-01
The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zganjar, E.F.
1993-01-01
Studies on nuclei near Z=82 contributed to the establishment of a new region of nuclear deformation and a new class of nuclear structure at closed shells. A important aspect of this work is the establishment of the connection between low-lying 0[sup +] states in even[endash]even nuclei and the occurrence of shape coexistence in the odd-mass neighbors (E0 transitions in [sup 185]Pt, shape coexistence in [sup 184]Pt and [sup 187]Au). A new type of picosecond lifetime measurement system capable of measuring the lifetime of states that decay only by internal conversion was developed and applied to the [sup 186,188]Tl decay tomore » determine the lifetime of the 0[sub 2][sup +] and 2[sub 2][sup +] deformed states in [sup 186,188]Hg. A search for the population of superdeformed states in [sup 192]Hg by the radioactive decay of [sup 192]Tl was accomplished by using a prototype internal pair formation spectrometer.« less
Thermal Evolution of Neutron Stars
NASA Astrophysics Data System (ADS)
Geppert, Ulrich R. M. E.
The thermal evolution of neutron stars is a subject of intense research, both theoretical and observational. The evolution depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission. The evolution depends, too, on the structure of the stellar outer layers which control the photon emission. Various internal heating processes and the magnetic field strength and structure will influence the thermal evolution. Of great importance for the cooling processes is also whether, when, and where superfluidity and superconductivity appear within the neutron star. This article describes and discusses these issues and presents neutron star cooling calculations based on a broad collection of equations of state for neutron star matter and internal magnetic field geometries. X-ray observations provide reliable data, which allow conclusions about the surface temperatures of neutron stars. To verify the thermal evolution models, the results of model calculations are compared with the body of observed surface temperatures and their distribution. Through these comparisons, a better understanding can be obtained of the physical processes that take place under extreme conditions in the interior of neutron
NASA Astrophysics Data System (ADS)
Derrick, J. G.; LaJeunesse, J. W.; Davison, T. M.; Borg, J. P.; Collins, G. S.
2018-04-01
The shock response of granular materials is important in a variety of contexts but the precise dynamics of grains during compaction is poorly understood. Here we use 2D mesoscale numerical simulations of the shock compaction of granular tungsten carbide to investigate the effect of internal structure within the particle bed and ‘stiction’ between grains on the shock response. An increase in the average number of contacts with other particles, per particle, tends to shift the Hugoniot to higher shock velocities, lower particle velocities and lower densities. This shift is sensitive to inter-particle shear resistance. Eulerian shock physics codes approximate friction between, and interlocking of, grains with their treatment of mixed cell strength (stiction) and here we show that this has a significant effect on the shock response. When studying the compaction of particle beds it is not common to quantify the pre-compaction internal structure, yet our results suggest that such differences should be taken into account, either by using identical beds or by averaging results over multiple experiments.
Ternary liquid mixtures control the multiplicity, shape and internal structure of emulsion droplets
NASA Astrophysics Data System (ADS)
Haase, Martin F.; Brujic, Jasna
2014-03-01
It is important to control the shape, internal structure and stability of emulsion droplets for drug delivery, biochemical assays, and the design of materials with novel physical properties. Successful methods involve the mechanical manipulation of the flow of oil in water using complex microfluidic devices to make multiple emulsions with a sequential introduction of specific reactants. Instead, here we show how the thermodynamics of immiscible liquid mixtures tailor emulsions using a single dripping instability. For example, the initial composition and choice of surfactant govern the multiplicity of concentric alternating oil and water layers inside the droplets. Stabilizing ternary droplets using nanoparticles gives rise to a plethora of shapes whose geometry is defined by the deformability of the shell and the flow rate. Another option is to incorporate lipids to the multiple emulsion droplet, which form vesicles upon expulsion of the inner water droplets. Depending on the number of initial water droplets, these vesicles eventually form complex hollow topologies, which can be used as junctions or scaffolds for the self-assembly of colloidal particles in the future.
Approximate universal relations for neutron stars and quark stars
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolás
2017-04-01
Neutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star's internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star's internal structure. One such set of relations is between the star's moment of inertia (I), its tidal Love number (Love) and its quadrupole moment (Q), the so-called I-Love-Q relations. Similar relations hold among the star's multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astrophysical tests of General Relativity that are independent of the equation of state. We here review how the universal relations come about and all the applications that have been devised to date.
NASA Astrophysics Data System (ADS)
Ghazai, A. J.; Thahab, S. M.; Hassan, H. Abu; Hassan, Z.
2010-07-01
The development of efficient MQWs active regions of quaternary InAlGaN in the ultraviolet (UV) region is an engaging challenge by itself. Demonstrating lasers at such low wavelength will require resolving a number of materials, growth and device design issues. However, the quaternary AlInGaN represents a more versatile material since the bandgap and lattice constant can be independently varied. We report a quaternary AlInGaN double-quantum wells (DQWs) UV laser diode (LDs) study by using the simulation program of Integrated System Engineering-Technical Computer Aided Design (ISE TCAD). Advanced physical models of semiconductor properties were used. In this paper, the enhancement in the performance of AlInGaN laser diode can be achieved by optimizing the laser structure geometry design. The AlInGaN laser diodes operating parameters such as internal quantum efficiency ηi, internal loss αi and transparency threshold current density show effective improvements that contribute to a better performance.
Becucci, M; Pietraperzia, G; Pasquini, M; Piani, G; Zoppi, A; Chelli, R; Castellucci, E; Demtroeder, W
2004-03-22
An experimental and theoretical study is made on the anisole-water complex. It is the first van der Waals complex studied by high resolution electronic spectroscopy in which the water is seen acting as an acid. Vibronically and rotationally resolved electronic spectroscopy experiments and molecular mechanics calculations are used to elucidate the structure of the complex in the ground and first electronic excited state. Some internal dynamics in the system is revealed by high resolution spectroscopy. (c) 2004 American Institute of Physics
1992-03-06
Pareige, "Spectroscopie des resonances acoustiques," Thesis , University of Le Havre, 1988. [14] C. E. Baum, in Transient Electromagnetic Fields, L. B...cylindres et des tubes," Thesis , University of Le Havre, 1986. [21] P. Rembert, 0. Lenoir, F. Lecroq, and J. L. Izbicki, "Oblique scattering by...from curved surfaces," Ph.D. Thesis , Department of Physics, Washington State University (1991). 17] P. L. Marston, "Geometrical and catastrophe optics
The Structure and Dynamics of the Solar Corona
NASA Technical Reports Server (NTRS)
Mikic, Zoran
1998-01-01
This report covers technical progress during the first year of the NASA Space Physics Theory contract between NASA and Science Applications International Corporation. Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model. During the period covered by this report we have published 26 articles in the scientific literature. These publications are listed in Section 4 of this report. In the Appendix we have attached reprints of selected articles.
The Influence of the Enhanced Vector Meson Sector on the Properties of the Matter of Neutron Stars
Bednarek, Ilona; Manka, Ryszard; Pienkos, Monika
2014-01-01
This paper gives an overview of the model of a neutron star with non-zero strangeness constructed within the framework of the nonlinear realization of the chiral symmetry. The emphasis is put on the physical properties of the matter of a neutron star as well as on its internal structure. The obtained solution is particularly aimed at the problem of the construction of a theoretical model of a neutron star matter with hyperons that will give high value of the maximum mass. PMID:25188304
Latina, Andrea
2017-12-11
The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.
Mereish, Ethan H.; Poteat, V. Paul
2015-01-01
Sexual minorities (e.g., lesbians, gay men, bisexual individuals) are at higher risk for mental and physical health disparities than heterosexuals, and some of these disparities relate to minority stressors such as discrimination. Yet, there is little research elucidating pathways that predict health or that promote resiliency among sexual minorities. Building on the minority stress model, the present study utilized relational cultural theory to situate sexual minority health within a relational framework. Specifically, the study tested mediators of the relationships between distal (i.e., discrimination, rejection, victimization) and proximal stressors (i.e., internalized homophobia, sexual orientation concealment) and psychological and physical distress for sexual minorities. Among 719 sexual minority adults, structural equation modeling analyses were used to test four models reflecting the mediating effects of shame, poorer relationships with a close peer and the LGBT community, and loneliness on the associations between minority stressors and psychological distress (i.e., depression and anxiety) and physical distress (i.e., distressing physical symptoms). As hypothesized, the associations between distal and proximal minority stressors and distress were mediated by shame, poorer relationships with a close peer and the LGBT community, and loneliness. Findings underscore the possible relational and interpersonal mechanisms by which sexual minority stressors lead to psychological and physical distress. PMID:26010289
Conformable pressure vessel for high pressure gas storage
Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.
2016-01-12
A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.
NASA Astrophysics Data System (ADS)
2014-09-01
This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1
Marie Curie's contribution to Medical Physics.
Jean-Claude, Rosenwald; Nüsslin, Fridtjof
2013-09-01
On occasion of its 50th anniversary, the International Organization for Medical Physics (IOMP) from now on is going to celebrate annually an International Day of Medical Physics for which the 7th November, the birthday of Marie Sklodowska Curie, a most exceptional character in science at all and a pioneer of medical physics, has been chosen. This article briefly outlines her outstanding personality, sketches her fundamental discovery of radioactivity and emphasizes the impact of her various achievements on the development of medical physics at large. © 2013 Published by Elsevier Ltd on behalf of Associazione Italiana di Fisica Medica.
Impact of Visa Issues on an International Physics Graduate Student in the U.S.
NASA Astrophysics Data System (ADS)
Keivani, Azadeh
2011-03-01
More than 35 percent of the physics graduate students in the US are temporary visa holders. Many of these students work in large international collaborations and must travel abroad for research and international conferences, sometimes more than once a year. In many cases, students have to reapply for their visas in order to return to the U.S., a process that can be time-consuming and costly. Furthermore, many international students cannot leave the U.S. even in the case of an emergency because a slow visa process may mean deferring for a semester or losing financial support. Thus visa issues affect not only the scholastic life of students but also their personal lives. Finding ways to resolve these issues could positively affect the quality of graduate research by eliminating these extra hurdles to the progress of international physics graduate students.
Cross-validation of the Student Perceptions of Team-Based Learning Scale in the United States.
Lein, Donald H; Lowman, John D; Eidson, Christopher A; Yuen, Hon K
2017-01-01
The purpose of this study was to cross-validate the factor structure of the previously developed Student Perceptions of Team-Based Learning (TBL) Scale among students in an entry-level doctor of physical therapy (DPT) program in the United States. Toward the end of the semester in 2 patient/client management courses taught using TBL, 115 DPT students completed the Student Perceptions of TBL Scale, with a response rate of 87%. Principal component analysis (PCA) and confirmatory factor analysis (CFA) were conducted to replicate and confirm the underlying factor structure of the scale. Based on the PCA for the validation sample, the original 2-factor structure (preference for TBL and preference for teamwork) of the Student Perceptions of TBL Scale was replicated. The overall goodness-of-fit indices from the CFA suggested that the original 2-factor structure for the 15 items of the scale demonstrated a good model fit (comparative fit index, 0.95; non-normed fit index/Tucker-Lewis index, 0.93; root mean square error of approximation, 0.06; and standardized root mean square residual, 0.07). The 2 factors demonstrated high internal consistency (alpha= 0.83 and 0.88, respectively). DPT students taught using TBL viewed the factor of preference for teamwork more favorably than preference for TBL. Our findings provide evidence supporting the replicability of the internal structure of the Student Perceptions of TBL Scale when assessing perceptions of TBL among DPT students in patient/client management courses.
Women's Participation in Physics Internationally: the IUPAP Working Group on Women
NASA Astrophysics Data System (ADS)
Franz, Judy
2001-04-01
In 1999 the General Assembly of the International Union of Pure and Applied Physics (IUPAP) voted to establish a Working Group on Women in Physics with the following charge: to survey the situation for women in physics in IUPAP member countries; to analyze and report the data collected along with suggestions on how to improve the situation; to suggest ways that women can become more involved in IUPAP, including the Liaison Committees, the Commissions, the Council, and the General Assemblies; and to report all findings at the next General Assembly in 2002. The Working Group was established in 2000 with 11 members representing North and South America, Europe, Asia and the Middle East/Africa. The Group has been gathering data on women in physics and is planning to hold an International Conference on Women in Physics at UNESCO Headquarters in Paris in March, 2002. I will discuss some of the findings and the plans for the future.
Physics of Colloids in Space (PCS) Flight Hardware Developed
NASA Technical Reports Server (NTRS)
Koudelka, John M.
2001-01-01
investigation that will be located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack. The investigation will be conducted in the International Space Station U.S. laboratory, Destiny, over a period of approximately 10 months during the station assembly period from flight 6A through flight UF-2. This experiment will gather data on the basic physical properties of colloids by studying three different colloid systems with the objective of understanding how they grow and what structures they form. A colloidal suspension consists of fine particles (micrometer to submicrometer) suspended in a fluid for example, paints, milk, salad dressings, and aerosols. The long-term goal of this investigation is to learn how to steer the growth of colloidal suspensions to create new materials and new structures. This experiment is part of a two-stage investigation conceived by Professor David Weitz of Harvard University along with Professor Peter Pusey of the University of Edinburgh. The experiment hardware was developed by the NASA Glenn Research Center through contracts with Dynacs, Inc., and ZIN Technologies.
Joint observations of solar corona in space projects ARKA and KORTES
NASA Astrophysics Data System (ADS)
Vishnyakov, Eugene A.; Bogachev, Sergey A.; Kirichenko, Alexey S.; Reva, Anton A.; Loboda, Ivan P.; Malyshev, Ilya V.; Ulyanov, Artem S.; Dyatkov, Sergey Yu.; Erkhova, Nataliya F.; Pertsov, Andrei A.; Kuzin, Sergey V.
2017-05-01
ARKA and KORTES are two upcoming solar space missions in extreme ultraviolet and X-ray wavebands. KORTES is a sun-oriented mission designed for the Russian segment of International Space Station. KORTES consists of several imaging and spectroscopic instruments that will observe the solar corona in a number of wavebands, covering EUV and X-ray ranges. The surveillance strategy of KORTES is to cover a wide range of observations including simultaneous imaging, spectroscopic and polarization measurements. ARKA is a small satellite solar mission intended to take highresolution images of the Sun at the extreme ultraviolet wavelengths. ARKA will be equipped with two high-resolution EUV telescopes designed to collect images of the Sun with approximately 150 km spatial resolution in the field of view of about 10'×10'. The scientific results of the mission may have a significant impact on the theory of coronal heating and may help to clarify the physics of small-scale solar structures and phenomena including oscillations of fine coronal structures and the physics of micro- and nanoflares.
Correlation of phonatory behavior with vocal fold structure, observed in a physical model
NASA Astrophysics Data System (ADS)
Krane, Michael; Walters, Gage; McPhail, Michael
2017-11-01
The effect of vocal fold shape and internal structure on phonation was studied experimentally using a physical model of the human airway. Model folds used a ``M5'' or a swept ellipse coronal cross-section shape. Models were molded in either 2 or three layers. Two-layer models included a more stiff ``body'' layer and a much softer ``cover'' layer, while the 3-layer models also incorporated an additional, thin, ``ligament/conus'' layer stiffer than the body layer. The elliptical section models were all molded in 3 such layers. Measurements of transglottal pressure, volume flow, mouth sound pressure, and high-speed imaging of vocal fold vibration were performed. These show that models with the ``ligament'' layer experienced much attenuated vertical deformation, that glottal closure was more likely, and that phonation was much easier to initiate. These findings suggest that the combination of the vocal ligament and the conus elasticus stabilize the vocal fold for efficient phonation by limiting vertical deformation, while allowing transverse deformations to occur. Acknowledge support from NIH DC R01005642-11.
Winters, William J.; Waite, William F.; Mason, David H.; Kumar, P.
2008-01-01
As part of an international cooperative research program, the U.S. Geological Survey (USGS) and researchers from the National Gas Hydrate Program (NGHP) of India are studying the physical properties of sediment recovered during the NGHP-01 cruise conducted offshore India during 2006. Here we report on index property, acoustic velocity, and triaxial shear test results for samples recovered from the Krishna-Godavari Basin. In addition, we discuss the effects of sample storage temperature, handling, and change in structure of fine-grained sediment. Although complex, sub-vertical planar gas-hydrate structures were observed in the silty clay to clayey silt samples prior to entering the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI), the samples yielded little gas post test. This suggests most, if not all, gas hydrate dissociated during sample transfer. Mechanical properties of hydrate-bearing marine sediment are best measured by avoiding sample depressurization. By contrast, mechanical properties of hydrate-free sediments, that are shipped and stored at atmospheric pressure can be approximated by consolidating core material to the original in situ effective stress.
PREFACE: 24th Summer School and International Symposium on the Physics of Ionized Gases
NASA Astrophysics Data System (ADS)
Malović, Gordana; Popović, Luka Č.; Dimitrijević, Milan S.
2008-02-01
This volume of the Journal of Physics: Conference Series contains the Invited lectures, Topical invited lectures and Progress reports presented at the 24th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2008. The conference was held in Novi Sad, Serbia, 25-29 August 2008. Throughout the history of scientific discovery, one can see repeatedly how fundamental sciences have solved basic questions and opened new frontiers. In the field of physics, there are many key discoveries, resulting in their useful applications for the benefit of the mankind. It is very important to have meetings to discuss actual problems in particular fields of physics. This Conference provided a forum for 160 active researchers from 25 countries to discuss current advances in the physics of ionized gases and related fields. The Conference has a long tradition. Let us remember that the first SPIG was organized in 1968. The decay of former Yugoslavia in 1991, caused a disturbance in SPIG meetings, but fortunately, in 1993, SPIG meetings were successfully revitalized. During recent years we have met successively in Belgrade, Kotor, Zlatibor, Soko Banja, Tara, Kopaonik and finally this time in Novi Sad. The structure of the papers in this Proceedings is as follows: Atomic Collision Processes, Particle and Laser Beam Interactions with Solids, Low Temperature Plasmas and General Plasmas. We hope that this Proceedings will be an important source of information, first of all to students, and also to plasma physics scientists. First of all, we would like to thank to the invited speakers for participating at the SPIG 2008 and for their efforts writing contributions for this Proceedings. We also express our gratitude to the members of the Scientific and Organizing committees for their efforts in organizing the Conference. Especially we would like to thank the Ministry of Science and Technological Development of the Republic of Serbia for financial support. Also, this Conference was a conference sponsored by the European Physical Society (EPS). And finally we are grateful to all participants for useful contributions and useful discussions. Gordana Malović, Luka Č Popović and Milan S Dimitrijević
Shi, Luzi
2018-03-01
The 4.5 million international students worldwide bring in multifold benefits to the advancement of culture, economy, and national security in education host countries. Surprisingly, few prior studies have explored international students' fear of crime, which may harm their mental and physical health and undermine their educational achievements. The current study aims to fill in this research void by investigating international students' fear of crime in line with the cultivation theoretical framework, which postulates that media consumption cultivates fear of crime. The analyses draw on a sample of 398 international students attending nine different public and private universities across the United States. Using structural equation modeling (SEM), I investigate the extent and correlates of students' fear of crime. The findings reveal that international students are more fearful in the United States than in their home countries. SEM results show that controlling for students' fear in their home countries, attention paid to crime news is positively related to fear in the United States, through perceived victimization risk. The SEM results also suggest that exposure to non-U.S. social media (e.g., WeChat and Weibo) is positively related to respondents' fear of crime, whereas exposure to U.S. social media (e.g., Facebook and Twitter) is not related to fear of crime. The current study highlights the importance of studying the impact of fear of crime and social media use on international students.
Development of an instrument to measure internalized stigma in those with HIV/AIDS.
Phillips, Kenneth D; Moneyham, Linda; Tavakoli, Abbas
2011-01-01
Stigma has grave consequences for persons living with HIV/AIDS. Stigma hampers prevention of HIV transmission to sexual partners and to unborn babies, diagnosis, and early treatment, and negatively affects mental and physical health, quality of life, and life satisfaction. Internalized stigma of HIV/AIDS may have even more severe consequences than perceived or enacted stigma. The purpose of this study was to develop an instrument to measure internalized stigma in those with HIV/AIDS. Data were drawn from the Rural Women's Health Project. Research assistants administered structured interviews at baseline, 3 months, and 6 months. Instruments used in these analyses included a demographic data form, the Centers for Epidemiological Studies Depression Scale (CES-D), the Perceived Stigma Scale (PSS), and the Internalized Stigma of AIDS Tool (ISAT). Exploratory factor analysis confirmed that the ten items of the ISAT measure a single factor that explains 88% of the variance in the construct. Internal consistency was demonstrated by a Cronbach's alpha of .91 (Time 1), .92 (Time 2), and .92 (Time 3). Convergent validity was supported with significant positive correlations with the CES-D (rho = 0.33, p < 0.0001) and the PSS (rho = 0.56, < 0.0001). The Internalized Stigma of AIDS Tool appears to be a reliable and valid instrument to measure internalization of the stigma of HIV/AIDS. It may be of value in research and clinical assessment.
Lattanzi, Jill Black; Pechak, Celia
2011-01-01
As physical therapy (PT) and occupational therapy (OT) educational programs endeavor to foster core values of social responsibility, justice, and altruism in an increasingly global community, the incorporation of local and international service-learning (ISL) into the curriculum is growing. Much of the research has focused on the measurement of student learning, with little written about the impact on the host community. Proponents of global health initiatives are calling for consideration of all stakeholders to ensure ethical practice. This paper explores the current literature related to PT and OT ISL and builds a conceptual framework for ISL course planning. The essential phases in the framework include: 1) pre-experience planning/preparation stage, 2) field immersion experience stage, and 3) postexperience stage. The essential elements are: 1) cultural competency training, 2) communication and coordination with community, 3) comprehensive assessment, and 4) strategic planning. The authors suggest this framework as a practical tool to structure ISL courses with an explicit emphasis on ethical concerns. Additionally, they seek to foster more dialogue and action related to the promotion of ethical practices in ISL in PT and OT education programs.
Editorial: The Sackler International Prize in Biophysical Sciences
NASA Astrophysics Data System (ADS)
Frydman, Lucio
2018-02-01
The Raymond and Beverly Sackler International Prize is awarded alternatively in the fields of Biophysics, Chemistry and Physics on a yearly basis, by Tel Aviv University. The price is intended to encourage dedication to science, originality and excellence, by rewarding outstanding scientists under 45 years of age, with a total purse of 100,000. The 2016 Raymond and Beverly Sackler Prize was awarded in the field of Magnetic Resonance last February in a festive symposium, to three excellent researchers: Professor John Morton (University College London), Professor Guido Pintacuda (Ecole Normale Supérieure de Lyon and CNRS), and Professor Charalampos Kalodimos (at the time at the University of Minnesota). John was recognized for his novel contributions to quantum information processing, by means of a range of highly elegant physical phenomena involving both NMR and EPR. Guido was recognized for his methodological advances in solid state NMR spectroscopy, including advances in proton detection under ultrafast MAS at ultrahigh magnetic field, and for his insightful applications to challenging biological systems. While Charalampos (Babis) was recognized for beautifully detailed characterizations of structure, function, and dynamics in challenging and important biological systems through solution NMR spectroscopy.
Quantitative ESD Guidelines for Charged Spacecraft Derived from the Physics of Discharges
NASA Technical Reports Server (NTRS)
Frederickson, A. R.
1992-01-01
Quantitative guidelines are proposed for Electrostatic Discharge (ESD) pulse shape on charged spacecraft. The guidelines are based on existing ground test data, and on a physical description of the pulsed discharge process. The guidelines are designed to predict pulse shape for surface charging and internal charging on a wide variety of spacecraft structures. The pulses depend on the area of the sample, its capacitance to ground, and the strength of the electric field in the vacuum adjacent to the charged surface. By knowing the pulse shape, current vs. time, one can determine if nearby circuits are threatened by the pulse. The quantitative guidelines might be used to estimate the level of threat to an existing spacecraft, or to redesign a spacecraft to reduce its pulses to a known safe level. The experiments which provide the data and the physics that allow one to interpret the data will be discussed, culminating in examples of how to predict pulse shape/size. This method has been used, but not confirmed, on several spacecraft.
REFLECTIONS ON PHYSICAL CHEMISTRY: Science and Scientists
NASA Astrophysics Data System (ADS)
Jortner, Joshua
2006-05-01
This is the story of a young person who grew up in Tel-Aviv during the period of the establishment of the State of Israel and was inspired to become a physical chemist by the cultural environment, by the excellent high-school education, and by having been trained by some outstanding scientists at the Hebrew University of Jerusalem and, subsequently, by the intellectual environment and high-quality scientific endeavor at the University of Chicago. Since serving as the first chairman of the Chemistry Department of the newly formed Tel-Aviv University he has been immersed in research, in the training of young scientists, and in intensive and extensive international scientific collaboration. Together with the members of his "scientific family" he has explored the phenomena of energy acquisition, storage and disposal and structure-dynamics-function relations in large molecules, condensed phase, clusters and biomolecules, and is looking forward to many future adventures in physical chemistry. "What to leave out and what to put in? That's the problem." Hugh Lofting, Doctor Dolittle's Zoo, 1925