NASA Astrophysics Data System (ADS)
Cadatal-Raduban, Marilou; Pham, Minh Hong; Pham, Duong Van; Bui, Duong Thi Thuy; Yamanoi, Kohei; Takeda, Kohei; Empizo, Melvin John F.; Mui, Luong Viet; Shimizu, Toshihiko; Nguyen, Hung Dai; Sarukura, Nobuhiko; Fukuda, Tsuguo
2018-06-01
A two-side-pumping scheme that is based on total internal reflection in a diamond-cut Ce3+:LiCaAlF6 crystal suitable for the development of an ultraviolet laser and femtosecond amplifier system is proposed. Experimental fluorescence images and lasing results that demonstrate total internal reflection of the excitation beam using this diamond-cut crystal are presented. Calculations for the optimized crystal geometry that facilitate high extraction efficiency and homogeneity of the absorbed excitation beam are also discussed. About 50% increase in extraction efficiency compared to previously reported chirped-pulse femtosecond ultraviolet amplifier operating at 50-GW peak power is expected using this total internal reflection-based two-side-pumping configuration and a diamond-cut Ce3+:LiCaAlF6 crystal with a geometry of {φ _1} = 103°, {φ _2} = {φ _4} = 82°, {φ _3} = 93°, a length of 1.23 cm, a height of 2 cm, and an absorption coefficient of 1.5 cm-1. Our results can be used as a guide during the crystal growth process by providing the appropriate crystal geometry and size for a particular absorption coefficient to achieve high extraction efficiency. With the appropriate crystal combined with multiple-beam pumping afforded by the side-pumping scheme, the development of an all-solid-state ultraviolet laser operating at terawatt level would be within reach.
NASA Astrophysics Data System (ADS)
Zude, Manuela; Spinelli, Lorenzo; Dosche, Carsten; Torricelli, Alessandro
2009-08-01
In sweet cherry (Prunus avium), the red pigmentation is correlated with the fruit maturity stage and can be measured by non-invasive spectroscopy. In the present study, the influence of varying fruit scattering coefficients on the fruit remittance spectrum (cw) were corrected with the effective pathlength and refractive index in the fruit tissue obtained with distribution of time-of-flight (DTOF) readings and total internal reflection fluorescence (TIRF) analysis, respectively. The approach was validated on fruits providing variation in the scattering coefficient outside the calibration sample set. In the validation, the measuring uncertainty when non-invasively analyzing fruits with cw method in comparison with combined application of cw, DTOF, and TIRF measurements showed an increase in r2 up to 22.7 % with, however, high errors in all approaches.
Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.
Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D
2000-03-20
The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.
Limitations of quantitative analysis of deep crustal seismic reflection data: Examples from GLIMPCE
Lee, Myung W.; Hutchinson, Deborah R.
1992-01-01
Amplitude preservation in seismic reflection data can be obtained by a relative true amplitude (RTA) processing technique in which the relative strength of reflection amplitudes is preserved vertically as well as horizontally, after compensating for amplitude distortion by near-surface effects and propagation effects. Quantitative analysis of relative true amplitudes of the Great Lakes International Multidisciplinary Program on Crustal Evolution seismic data is hampered by large uncertainties in estimates of the water bottom reflection coefficient and the vertical amplitude correction and by inadequate noise suppression. Processing techniques such as deconvolution, F-K filtering, and migration significantly change the overall shape of amplitude curves and hence calculation of reflection coefficients and average reflectance. Thus lithological interpretation of deep crustal seismic data based on the absolute value of estimated reflection strength alone is meaningless. The relative strength of individual events, however, is preserved on curves generated at different stages in the processing. We suggest that qualitative comparisons of relative strength, if used carefully, provide a meaningful measure of variations in reflectivity. Simple theoretical models indicate that peg-leg multiples rather than water bottom multiples are the most severe source of noise contamination. These multiples are extremely difficult to remove when the water bottom reflection coefficient is large (>0.6), a condition that exists beneath parts of Lake Superior and most of Lake Huron.
Comparison of the Radiative Two-Flux and Diffusion Approximations
NASA Technical Reports Server (NTRS)
Spuckler, Charles M.
2006-01-01
Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.
Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow
NASA Astrophysics Data System (ADS)
Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.
2008-03-01
The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.
Refractive index measurement for biomaterial samples by total internal reflection.
Jin, Y L; Chen, J Y; Xu, L; Wang, P N
2006-10-21
The refractive index of biological tissue is a fundamental parameter in applications of optical diagnosis and laser treatments. In the present work, the refractive indices and thermo-optic coefficients of some basic biomaterials, such as blood plasma, haemoglobin solution and lipid membrane, were studied by the method of total internal reflection at the wavelengths of 532 and 632.8 nm that are the most frequently used laser wavelengths in the biomedical field. The effects of the sample concentration and the temperature on refractive index were measured, and empirical relationships were summarized, accompanied by a theoretical explanation based on molecular polarization theory. The results provide some fundamental data for the refractive indices of these biomaterials under variant conditions, and also demonstrate that the total internal reflection method is a feasible and reliable way to measure the refractive indices of biological samples.
Unifying dynamical and structural stability of equilibria
NASA Astrophysics Data System (ADS)
Arnoldi, Jean-François; Haegeman, Bart
2016-09-01
We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.
Unifying dynamical and structural stability of equilibria.
Arnoldi, Jean-François; Haegeman, Bart
2016-09-01
We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.
Ship Wakes Generated in a Diffuse Internal Layer
2015-01-01
can enhance wake detectability by increasing the surface flows. One example is the reflection of natural waves from a ship hull. A wave carries...be observed using satellite borne optical sensors and high resolution radar. Their existence implies the presence of significant internal layers. The...The principal factors associated with the ship appear to be its principal dimensions (length, beam and draft), its block coefficient and its speed
NASA Astrophysics Data System (ADS)
Fofanov, Ya A.
2009-06-01
A series of reflection resonances formed by the hyperfine components of the D2-lines in the spectrum of the natural mixture of rubidium isotopes is studied. Passages from resonantly frustrated total internal reflection to resonance Brewster reflection caused by the frequency tuning of the incident light are demonstrated experimentally. The contrast of the strongest refection resonances exceeds 500% at the moderate heating of reflecting cells. The intensity of the reflected light changes in this case by more than 20 times. A theory is developed which is based on a two-level model for resonance atoms and Fresnel formulas for reflection coefficients. Numerical calculations based on the proposed theory confirm main experimental results.
An Update to the NASA Reference Solar Sail Thrust Model
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Artusio-Glimpse, Alexandra B.
2015-01-01
An optical model of solar sail material originally derived at JPL in 1978 has since served as the de facto standard for NASA and other solar sail researchers. The optical model includes terms for specular and diffuse reflection, thermal emission, and non-Lambertian diffuse reflection. The standard coefficients for these terms are based on tests of 2.5 micrometer Kapton sail material coated with 100 nm of aluminum on the front side and chromium on the back side. The original derivation of these coefficients was documented in an internal JPL technical memorandum that is no longer available. Additionally more recent optical testing has taken place and different materials have been used or are under consideration by various researchers for solar sails. Here, where possible, we re-derive the optical coefficients from the 1978 model and update them to accommodate newer test results and sail material. The source of the commonly used value for the front side non-Lambertian coefficient is not clear, so we investigate that coefficient in detail. Although this research is primarily designed to support the upcoming NASA NEA Scout and Lunar Flashlight solar sail missions, the results are also of interest to the wider solar sail community.
Kolin, David L.; Ronis, David; Wiseman, Paul W.
2006-01-01
We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272
Nakano, Hideki; Kodama, Takayuki; Ukai, Kazumasa; Kawahara, Satoru; Horikawa, Shiori; Murata, Shin
2018-01-01
In this study, we aimed to (1) translate the English version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ), which assesses motor imagery ability, into Japanese, and (2) investigate the reliability and validity of the Japanese KVIQ. We enrolled 28 healthy adults in this study. We used Cronbach’s alpha coefficients to assess reliability reflected by the internal consistency. Additionally, we assessed validity reflected by the criterion-related validity between the Japanese KVIQ and the Japanese version of the Movement Imagery Questionnaire-Revised (MIQ-R) with Spearman’s rank correlation coefficients. The Cronbach’s alpha coefficients for the KVIQ-20 were 0.88 (Visual) and 0.91 (Kinesthetic), which indicates high reliability. There was a significant positive correlation between the Japanese KVIQ-20 (Total) and the Japanese MIQ-R (Total) (r = 0.86, p < 0.01). Our results suggest that the Japanese KVIQ is an assessment that is a reliable and valid index of motor imagery ability. PMID:29724042
Nakano, Hideki; Kodama, Takayuki; Ukai, Kazumasa; Kawahara, Satoru; Horikawa, Shiori; Murata, Shin
2018-05-02
In this study, we aimed to (1) translate the English version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ), which assesses motor imagery ability, into Japanese, and (2) investigate the reliability and validity of the Japanese KVIQ. We enrolled 28 healthy adults in this study. We used Cronbach’s alpha coefficients to assess reliability reflected by the internal consistency. Additionally, we assessed validity reflected by the criterion-related validity between the Japanese KVIQ and the Japanese version of the Movement Imagery Questionnaire-Revised (MIQ-R) with Spearman’s rank correlation coefficients. The Cronbach’s alpha coefficients for the KVIQ-20 were 0.88 (Visual) and 0.91 (Kinesthetic), which indicates high reliability. There was a significant positive correlation between the Japanese KVIQ-20 (Total) and the Japanese MIQ-R (Total) (r = 0.86, p < 0.01). Our results suggest that the Japanese KVIQ is an assessment that is a reliable and valid index of motor imagery ability.
Thermal coefficients of the methyl groups within ubiquitin
Sabo, T Michael; Bakhtiari, Davood; Walter, Korvin F A; McFeeters, Robert L; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan
2012-01-01
Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature dependence of the local conformational entropy may provide insight into understanding how local dynamics may affect the stability of proteins. Here, we analyze the temperature dependence of internal methyl group dynamics derived from the cross-correlated relaxation between dipolar couplings of two CH bonds within ubiquitin. Spanning a temperature range from 275 to 308 K, internal methyl group dynamics tend to increase with increasing temperature, which translates to a general increase in local conformational entropy. With this data measured over multiple temperatures, the thermal coefficient of the methyl group order parameter, the characteristic thermal coefficient, and the local heat capacity were obtained. By analyzing the distribution of methyl group thermal coefficients within ubiquitin, we found that the N-terminal region has relatively high thermostability. These results indicate that methyl groups contribute quite appreciably to the total heat capacity of ubiquitin through the regulation of local conformational entropy. PMID:22334336
Carter, Amanda G; Creedy, Debra K; Sidebotham, Mary
2017-11-01
develop and test a tool designed for use by academics to evaluate pre-registration midwifery students' critical thinking skills in reflective writing. a descriptive cohort design was used. a random sample (n = 100) of archived student reflective writings based on a clinical event or experience during 2014 and 2015. a staged model for tool development was used to develop a fifteen item scale involving item generation; mapping of draft items to critical thinking concepts and expert review to test content validity; inter-rater reliability testing; pilot testing of the tool on 100 reflective writings; and psychometric testing. Item scores were analysed for mean, range and standard deviation. Internal reliability, content and construct validity were assessed. expert review of the tool revealed a high content validity index score of 0.98. Using two independent raters to establish inter-rater reliability, good absolute agreement of 72% was achieved with a Kappa coefficient K = 0.43 (p<0.0001). Construct validity via exploratory factor analysis revealed three factors: analyses context, reasoned inquiry, and self-evaluation. The mean total score for the tool was 50.48 (SD = 12.86). Total and subscale scores correlated significantly. The scale achieved good internal reliability with a Cronbach's alpha coefficient of .93. this study establishedthe reliability and validity of the CACTiM (reflection) for use by academics to evaluate midwifery students' critical thinking in reflective writing. Validation with large diverse samples is warranted. reflective practice is a key learning and teaching strategy in undergraduate Bachelor of Midwifery programmes and essential for safe, competent practice. There is the potential to enhance critical thinking development by assessingreflective writing with the CACTiM (reflection) tool to provide formative and summative feedback to students and inform teaching strategies. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tao, Xuemei; He, Yong
2006-09-01
The internal quality of tomato such as acidity and sugar content is important to its taste thus influences the market. The objective of this paper was to demonstrate the feasibility of using a near-infrared spectroscopy (NIRS) to investigate the relationship between sugar content and acidity of tomato and absorption spectra. The N1RS reflectance of nondestructive tomatoes was measured with a Visible/NJR spectrophotometer in 325-1075 nm range. The sugar content and acidity of tomato were obtained with a handhold sugar content meter and a PH meter. The reflectance data set was recorded and analyzed with some mathematic methods. The PLS (Partial least squares) calibration method was developed for converting the NIRS reflectance of tomato into the data which determined the acidity value. BP (Back propagation) neural network was used to set up the relationship between the NIRS reflectance of tomato and sugar content. The acidity values were detected with an accuracy of 9O% and the sugar contents determined by the BP network were also very close to the measurements (coefficient of correlation r2=0.8764). NW spectra analysis would be very useful in the nondestructive internal quality inspecting of tomato.
Using wave intensity analysis to determine local reflection coefficient in flexible tubes.
Li, Ye; Parker, Kim H; Khir, Ashraf W
2016-09-06
It has been shown that reflected waves affect the shape and magnitude of the arterial pressure waveform, and that reflected waves have physiological and clinical prognostic values. In general the reflection coefficient is defined as the ratio of the energy of the reflected to the incident wave. Since pressure has the units of energy per unit volume, arterial reflection coefficient are traditionally defined as the ratio of reflected to the incident pressure. We demonstrate that this approach maybe prone to inaccuracies when applied locally. One of the main objectives of this work is to examine the possibility of using wave intensity, which has units of energy flux per unit area, to determine the reflection coefficient. We used an in vitro experimental setting with a single inlet tube joined to a second tube with different properties to form a single reflection site. The second tube was long enough to ensure that reflections from its outlet did not obscure the interactions of the initial wave. We generated an approximately half sinusoidal wave at the inlet of the tube and took measurements of pressure and flow along the tube. We calculated the reflection coefficient using wave intensity (R dI and R dI 0.5 ) and wave energy (R I and R I 0.5 ) as well as the measured pressure (R dP ) and compared these results with the reflection coefficient calculated theoretically based on the mechanical properties of the tubes. The experimental results show that the reflection coefficients determined by all the techniques we studied increased or decreased with distance from the reflection site, depending on the type of reflection. In our experiments, R dP , R dI 0.5 and R I 0.5 are the most reliable parameters to measure the mean reflection coefficient, whilst R dI and R I provide the best measure of the local reflection coefficient, closest to the reflection site. Additional work with bifurcations, tapered tubes and in vivo experiments are needed to further understand, validate the method and assess its potential clinical use. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, Qian; Jiang, Yikun; Lin, Haoze
2017-03-01
In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.
Leaf Surface Effects on Retrieving Chlorophyll Content from Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Qiu, Feng; Chen, JingMing; Ju, Weimin; Wang, Jun; Zhang, Qian
2017-04-01
Light reflected directly from the leaf surface without entering the surface layer is not influenced by leaf internal biochemical content. Leaf surface reflectance varies from leaf to leaf due to differences in the surface roughness features and is relatively more important in strong absorption spectral regions. Therefore it introduces dispersion of data points in the relationship between biochemical concentration and reflectance (especially in the visible region). Separation of surface from total leaf reflection is important to improve the link between leaf pigments content and remote sensing data. This study aims to estimate leaf surface reflectance from hyperspectral remote sensing data and retrieve chlorophyll content by inverting a modified PROSPECT model. Considering leaf surface reflectance is almost the same in the visible and near infrared spectral regions, a surface layer with a reflectance independent of wavelength but varying from leaf to leaf was added to the PROSPECT model. The specific absorption coefficients of pigments were recalibrated. Then the modified model was inverted on independent datasets to check the performance of the model in predicting the chlorophyll content. Results show that differences in estimated surface layer reflectance of various species are noticeable. Surface reflectance of leaves with epicuticular waxes and trichomes is usually higher than other samples. Reconstruction of leaf reflectance and transmittance in the 400-1000 nm wavelength region using the modified PROSPECT model is excellent with low root mean square error (RMSE) and bias. Improvements for samples with high surface reflectance (e.g. maize) are significant, especially for high pigment leaves. Moreover, chlorophyll retrieved from inversion of the modified model is consequently improved (RMSE from 5.9-13.3 ug/cm2 with mean value 8.1 ug/cm2, while mean correlation coefficient is 0.90) compared to results of PROSPECT-5 (RMSE from 9.6-20.2 ug/cm2 with mean value 13.1 ug/cm2, while mean correlation coefficient is 0.81). Underestimation of high chlorophyll content, which is due to underestimation of reflectance in the visible region of PROSPECT, is partially corrected or alleviated. Improvements are particularly noticeable for leaves with high surface reflectance or high chlorophyll content, which both lead to large proportions of surface reflectance to the total leaf reflectance.
The Validation of a Case-Based, Cumulative Assessment and Progressions Examination
Coker, Adeola O.; Copeland, Jeffrey T.; Gottlieb, Helmut B.; Horlen, Cheryl; Smith, Helen E.; Urteaga, Elizabeth M.; Ramsinghani, Sushma; Zertuche, Alejandra; Maize, David
2016-01-01
Objective. To assess content and criterion validity, as well as reliability of an internally developed, case-based, cumulative, high-stakes third-year Annual Student Assessment and Progression Examination (P3 ASAP Exam). Methods. Content validity was assessed through the writing-reviewing process. Criterion validity was assessed by comparing student scores on the P3 ASAP Exam with the nationally validated Pharmacy Curriculum Outcomes Assessment (PCOA). Reliability was assessed with psychometric analysis comparing student performance over four years. Results. The P3 ASAP Exam showed content validity through representation of didactic courses and professional outcomes. Similar scores on the P3 ASAP Exam and PCOA with Pearson correlation coefficient established criterion validity. Consistent student performance using Kuder-Richardson coefficient (KR-20) since 2012 reflected reliability of the examination. Conclusion. Pharmacy schools can implement internally developed, high-stakes, cumulative progression examinations that are valid and reliable using a robust writing-reviewing process and psychometric analyses. PMID:26941435
A ray tracing model for leaf bidirectional scattering studies
NASA Technical Reports Server (NTRS)
Brakke, T. W.; Smith, J. A.
1987-01-01
A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.
Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.
2016-01-01
Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445
NASA Astrophysics Data System (ADS)
Ma, Wei-Ming
1997-06-01
An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and more important the water depth and value of the bottom reflectance. The results of this work indicates little change of subsurface or in-water reflectances, due to variations of wind speed and observation angle. Simulations of the wind effect on the total downwelling irradiance from the two- flow model indicates that the total downwelling irradiance just below a wind-roughened water surface increases to about 1% of the total downwelling irradiance on a calm water surface when the sun is near zenith and increases to about 3% when the sun is near the horizon. This analytically based model, solved or developed utilizing the unique boundary conditions, can be applied to remote sensing of oceanic upper mixed layer dynamics, plant canopies, primary production, and shallow water environments with different bottom type reflectances. Future applications may include determining effects of sediment resuspension of bottom sediments in the bottom boundary layer on remotely sensed data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirch, J. D.; Chang, C.-C.; Boyle, C.
2015-04-13
By stepwise tapering, both the barrier heights and quantum-well depths in the active regions of 8.7–8.8 μm-emitting quantum-cascade-laser (QCL) structures, virtually complete carrier-leakage suppression is achieved. Such step-taper active-region-type QCLs possess, for 3 mm-long devices with high-reflectivity-coated back facets, threshold-current characteristic temperature coefficients, T{sub 0}, as high as 283 K and slope-efficiency characteristic temperature coefficients, T{sub 1}, as high as 561 K, over the 20–60 °C heatsink-temperature range. These high T{sub 0} and T{sub 1} values reflect at least a factor of four reduction in carrier-leakage current compared to conventional 8–9 μm-emitting QCLs. Room temperature, pulsed, threshold-current densities are 1.58 kA/cm{sup 2}; values comparable to those formore » 35-period conventional QCLs of similar injector-region doping level. Superlinear behavior of the light-current curves is shown to be the result of the onset of resonant extraction from the lower laser level at a drive level of ∼1.3× threshold. Maximum room-temperature slope efficiencies are 1.23 W/A; that is, slope efficiency per period values of 35 mW/A, which are 37%–40% higher than for same-geometry conventional 8–9 μm-emitting QCLs. Since the waveguide-loss coefficients are very similar, we estimate that the internal differential efficiency is at least 30% higher than in conventional QCLs. Such high internal differential efficiency values reflect the combined effect of nearly complete carrier-leakage suppression and high differential efficiency of the laser transition (∼90%), due to resonant extraction from the lower laser level.« less
Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio
2015-12-30
An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.
Three-dimensional radiation transfer modeling in a dicotyledon leaf
NASA Astrophysics Data System (ADS)
Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.
1996-11-01
The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.
Techniques For Measuring Absorption Coefficients In Crystalline Materials
NASA Astrophysics Data System (ADS)
Klein, Philipp H.
1981-10-01
Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.
NASA Astrophysics Data System (ADS)
Isakson, Marcia; Camin, H. John; Canepa, Gaetano
2005-04-01
The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.
Olsson, Jan-Eric; Wallentin, Fan Yang; Toth-Pal, Eva; Ekblad, Solvig; Bertilson, Bo Christer
2017-07-10
To determine the internal consistency and the underlying components of our translated and adapted Swedish version of the General Medical Council's multisource feedback questionnaires (GMC questionnaires) for physicians and to confirm which aspects of good medical practice the latent variable structure reflected. From October 2015 to March 2016, residents in family medicine in Sweden were invited to participate in the study and to use the Swedish version to perform self-evaluations and acquire feedback from both their patients and colleagues. The validation focused on internal consistency and construct validity. Main outcome measures were Cronbach's alpha coefficients, Principal Component Analysis, and Confirmatory Factor Analysis indices. A total of 752 completed questionnaires from patients, colleagues, and residents were analysed. Of these, 213 comprised resident self-evaluations, 336 were feedback from residents' patients, and 203 were feedback from residents' colleagues. Cronbach's alpha coefficients of the scores were 0.88 from patients, 0.93 from colleagues, and 0.84 in the self-evaluations. The Confirmatory Factor Analysis validated two models that fit the data reasonably well and reflected important aspects of good medical practice. The first model had two latent factors for patient-related items concerning empathy and consultation management, and the second model had five latent factors for colleague-related items, including knowledge and skills, attitude and approach, reflection and development, teaching, and trust. The current Swedish version seems to be a reliable and valid tool for formative assessment for resident physicians and their supervisors. This needs to be verified in larger samples.
Wallentin, Fan Yang; Toth-Pal, Eva; Ekblad, Solvig; Bertilson, Bo Christer
2017-01-01
Objectives To determine the internal consistency and the underlying components of our translated and adapted Swedish version of the General Medical Council's multisource feedback questionnaires (GMC questionnaires) for physicians and to confirm which aspects of good medical practice the latent variable structure reflected. Methods From October 2015 to March 2016, residents in family medicine in Sweden were invited to participate in the study and to use the Swedish version to perform self-evaluations and acquire feedback from both their patients and colleagues. The validation focused on internal consistency and construct validity. Main outcome measures were Cronbach’s alpha coefficients, Principal Component Analysis, and Confirmatory Factor Analysis indices. Results A total of 752 completed questionnaires from patients, colleagues, and residents were analysed. Of these, 213 comprised resident self-evaluations, 336 were feedback from residents’ patients, and 203 were feedback from residents’ colleagues. Cronbach’s alpha coefficients of the scores were 0.88 from patients, 0.93 from colleagues, and 0.84 in the self-evaluations. The Confirmatory Factor Analysis validated two models that fit the data reasonably well and reflected important aspects of good medical practice. The first model had two latent factors for patient-related items concerning empathy and consultation management, and the second model had five latent factors for colleague-related items, including knowledge and skills, attitude and approach, reflection and development, teaching, and trust. Conclusions The current Swedish version seems to be a reliable and valid tool for formative assessment for resident physicians and their supervisors. This needs to be verified in larger samples. PMID:28704204
The role of the reflection coefficient in precision measurement of ultrasonic attenuation
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1984-01-01
Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.
2009-01-01
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."
NASA Astrophysics Data System (ADS)
Ha, T.-K.; Günthard, H. H.
1989-07-01
Structural parameters like bond length, bond angles, etc. and harmonic and anharmonic potential coefficients of molecules with internal rotation, inversion or puckering modes are generally assumed to vary with the large amplitude internal coordinates in a concerted manner (relaxation). Taking the coordinate vectors of the nuclear configuration of semirigid molecules with relaxation (SRMRs) as functions of relaxing structural parameters and finite amplitude internal coordinate, the isometric group of SRMRs is discussed and the irreducible representations of the latter are shown to classify into engendered and nonengendered ones. On this basis a concept of equivalent sets of nuclei SRMRs is introduced and an analytical expression is derived which defines the most general functional form of relaxation increments of all common types of structural parameters compatible with isometric symmetry. This formula is shown to be a close analog of an analytical expression defining the transformations induced by the isometric group of infinitesimal internal coordinates associated with typical structural parameters. Furthermore analogous formulae are given for the most general form of the relaxation of harmonic potential coefficients as a function of finite internal coordinates. The general relations are illustrated by ab initio calculations for 1,2-difluoroethane at the MP4/DZP//HF/4-31G* level for twelve values of the dihedral angle including complete structure optimization. The potential to internal rotation is found to be in essential agreement with experimentally derived data. For a complete set of ab initio structural parameters the associated relaxation increments are represented as Fourier series, which are shown to confirm the form predicted by the general formula and the isometric group of 1,2-difluoroethane. Depending on type of the structural parameters (bond length, bond angles, etc.), the associated relaxation increments appear to follow some simple rules. Similarly a complete set of harmonic potential coefficients derived from the ab initio calculations will be analyzed in terms of Fourier series and shown to conform to the symmetry requirements of the symmetry group. Relaxation of potential coefficients is found to amount to up to ≈5% for some types of diagonal and nondiagonal terms and to reflect certain "topological" rules similar to regularities of harmonic potential constants of quasi-rigid molecules found in empirical determinations of valence force fields.
DOE R&D Accomplishments Database
Sibener, S. J.; Lee, Y. T.
1978-05-01
An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.
NASA Technical Reports Server (NTRS)
Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2015-01-01
A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.
Spectral Analysis of the Shuttle Glow. AIS Science Support
1992-06-23
Prism (Total Internal Cylindrical Mirror Lens Reflection) Cylindrical Folding \\ Lens Plane Mirror -Cylindrical Slt Slit Mirror Fig. 7. Cron section...on Zerodur blanks, which width of the FOV to 0.14’ outward from the lens. have a coefficient of thermal expansion near zero. The width of the grating...oummambne toathe window of the iMag hunte~air. 3002. APPLIED OPTICS I VOL 3 .No, 16 / I June I02 68 Vacondry Minrror Prmr Mirror -luterence rlZters cm
ERIC Educational Resources Information Center
Green, Samuel B.; Yang, Yanyun
2015-01-01
In the lead article, Davenport, Davison, Liou, & Love demonstrate the relationship among homogeneity, internal consistency, and coefficient alpha, and also distinguish among them. These distinctions are important because too often coefficient alpha--a reliability coefficient--is interpreted as an index of homogeneity or internal consistency.…
Analytical study of the reflection and transmission coefficient of the submarine interface
NASA Astrophysics Data System (ADS)
Zhang, Guangli; Hao, Chongtao; Yao, Chen
2018-05-01
The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a "segmented" characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.
Achromatic vector vortex beams from a glass cone
Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.
2016-01-01
The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191
Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties
Pipino, Andrew Charles Rule
1999-11-16
An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.
Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties
Pipino, Andrew C. R.; Hudgens, Jeffrey W.
1999-08-24
An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.
Achromatic vector vortex beams from a glass cone
NASA Astrophysics Data System (ADS)
Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.
2016-02-01
The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.
The sensitivity in the IR spectrum of the intact and pathological tissues by laser biophotometry.
Ravariu, Cristian; Bondarciuc, Ala
2014-03-01
In this paper, we use the laser biophotometry for in vivo investigations, searching the most sensitive interactions of the near-infrared spectrum with different tissues. The experimental methods are based on the average reflection coefficient (ARC) measurements. For healthy persons, ARC is the average of five values provided by the biophotometer. The probe is applied on dry skin with minimum pilosity, in five regions: left-right shank, left-right forearm, and epigastrium. For the pathological tissues, the emitting terminal is moved over the suspected area, controlling the reflection coefficient level, till a minimum value occurs, as ARC-Pathological. Then, the probe is moved on the symmetrical healthy region of the body to read the complementary coefficient from intact tissue, ARC-Intact, from the same patient. The experimental results show an ARC range between 67 and 59 mW for intact tissues and a lower range, up to 58-42 mW, for pathological tissues. The method is efficient only in those pathological processes accompanied by variable skin depigmentation, water retention, inflammation, thrombosis, or swelling. Frequently, the ARC ranges are overlapping for some diseases. This induces uncertain diagnosis. Therefore, a statistical algorithm is adopted for a differential diagnosis. The laser biophotometry provides a quantitative biometric parameter, ARC, suitable for fast diagnosis in the internal and emergency medicine. These laser biophotometry measurements are representatives for the Romanian clinical trials.
Characterizing the reflectivity of handheld display devices.
Liu, Peter; Badano, Aldo
2014-08-01
With increased use of handheld and tablet display devices for viewing medical images, methods for consistently measuring reflectivity of the devices are needed. In this note, the authors report on the characterization of diffuse reflections for handheld display devices including mobile phones and tablets using methods recommended by the American Association of Physicists in Medicine Task Group 18 (TG18). The authors modified the diffuse reflectance coefficient measurement method outlined in the TG18 report. The authors measured seven handheld display devices (two phones and five tablets) and three workstation displays. The device was attached to a black panel with Velcro. To study the effect of the back surface on the diffuse reflectance coefficient, the authors created Styrofoam masks with different size square openings and placed it in front of the device. Overall, for each display device, measurements of illuminance and reflected luminance on the display screen were taken. The authors measured with no mask, with masks of varying size, and with display-size masks, and calculated the corresponding diffuse reflectance coefficient. For all handhelds, the diffuse reflectance coefficient measured with no back panel were lower than measurements performed with a mask. The authors found an overall increase in reflectivity as the size of the mask decreases. For workstations displays, diffuse reflectance coefficients were higher when no back panel was used, and higher than with masks. In all cases, as luminance increased, illuminance increased, but not at the same rate. Since the size of handheld displays is smaller than that of workstation devices, the TG18 method suffers from a dependency on illumination condition. The authors show that the diffuse reflection coefficients can vary depending on the nature of the back surface of the illuminating box. The variability in the diffuse coefficient can be as large as 20% depending on the size of the mask. For all measurements, both luminance and illuminance increased as the size of the display window decreased. The TG18 method does not account for this variability. The authors conclude that the method requires a definitive description of the back panel used in the light source setup. The methods described in the TG18 document may need to be improved to provide consistent comparisons of desktop monitors, phones, and tablets.
Dielectric characterization of hot-mix asphalt at the smart road using GPR
NASA Astrophysics Data System (ADS)
Al-Qadi, Imad L.; Loulizi, A.; Lahouar, S.
2000-04-01
To better interpret collected ground penetrating radar (GPR) data, a project is currently underway at the Virginia Smart Road. Twelve different flexible pavement sections and a continuously reinforced concrete rigid pavement section are incorporated in the road design. Thirty-five copper plates were placed at different layer interfaces throughout the pavement sections. The copper plates serve as a reflecting material and thus allow the determination of layers' dielectric constant over the GPR frequency range. An initial development of a method to calculate the complex dielectric constant of hot-mix asphalt over the frequency range of 750 to 1750 MHz using an air-coupled GPR system is presented. Utilizing GPR data, this method will be used to predict changes of the dielectric properties of the different SuperPaveTM mixes used at the Smart Road over time. The method is based on equating the overall reflection coefficient as obtained from the radar measurements with the calculated reflection coefficient using electromagnetic theory. The measured overall reflection coefficient is obtained by dividing the reflected frequency spectrum over the incident one. The theoretical overall reflection coefficient is obtained using the multiple reflection model. A Gauss-Newton method is then used to solve for the complex dielectric constant.
NASA Astrophysics Data System (ADS)
Hall, Carlton Raden
A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf thickness Ltadj, LAI, and h (m). Its function is to translate leaf level estimates of diffuse absorption and backscatter to the canopy scale allowing the leaf optical properties to directly influence above canopy estimates of reflectance. The model was successfully modified and parameterized to operate in a canopy scale and a leaf scale mode. Canopy scale model simulations produced the best results. Simulations based on leaf derived coefficients produced calculated above canopy reflectance errors of 15% to 18%. A comprehensive sensitivity analyses indicated the most important parameters were beam to diffuse conversion c(lambda, m-1), diffuse absorption a(lambda, m-1), diffuse backscatter b(lambda, m-1), h (m), Q, and direct and diffuse irradiance. Sources of error include the estimation procedure for the direct beam to diffuse conversion and attenuation coefficients and other field and laboratory measurement and analysis errors. Applications of the model include creation of synthetic reflectance data sets for remote sensing algorithm development, simulations of stress and drought on vegetation reflectance signatures, and the potential to estimate leaf moisture and chemical status.
Laser marking of contrast images for optical read-out systems
NASA Astrophysics Data System (ADS)
Yulmetova, O. S.; Tumanova, M. A.
2017-11-01
In the present study the formation of contrast images that provide functionality of optical read-out systems is considered. The image contrast is determined by the difference of reflection coefficients of the beryllium surface covered with titanium nitride film (TiN) formed by physical vapor deposition and the image created on it by laser oxidation. Two ways of contrast variation are studied: by regulating both TiN reflection coefficient during vapor deposition and the reflection coefficient of the image obtained with the laser. The test results show the efficiency of the proposed approach.
NASA Astrophysics Data System (ADS)
Apolonskiĭ, A. A.; Vinokurov, Nikolai A.; Zinin, É. I.; Ishchenko, P. I.; Kuklin, A. E.; Popik, V. M.; Sokolov, A. S.; Shchebetov, S. D.
1992-09-01
A method is described for determining the reflection coefficients of high-density mirrors, based on the use of a mode-locked laser and a sensitive detector with a fast time resolution. The laser light is transmitted through an optical resonator formed by the investigated mirrors. The measured delay in the decay of a light pulse gives the damping time of the optical resonator. This is related to its Q factor determined by the reflection coefficients of its mirrors.
High purity silica reflective heat shield development
NASA Technical Reports Server (NTRS)
Blome, J. C.; Drennan, D. N.; Schmitt, R. J.
1974-01-01
Measurements were made of reflectance in the vacuum ultraviolet down to 0.15 micron. Scattering coefficients (S) and absorption coefficients (K) were also measured. These coefficients express the optical properties and are used directly in a thermodynamic analysis for sizing a heat shield. The effect of the thin silica melt layer formed during entry was also studied from the standpoint of trapped radiant energy.
Protein osmotic pressure gradients and microvascular reflection coefficients.
Drake, R E; Dhother, S; Teague, R A; Gabel, J C
1997-08-01
Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.
Investigations of ionospheric sporadic Es layer using oblique sounding method
NASA Astrophysics Data System (ADS)
Minullin, R.
The characteristics of Es layer have been studied using oblique sounding at 28 radiolines at the frequencies of 34 -- 73 MHz at the transmission paths 400 -- 1600 km long during 30 years. Reflections from Es layer with a few hours duration were observed. The amplitude of the reflected signal reached 1000 μ V with the registration threshold 0,1 μ V. The borderlines between reflected and scattered signals were observed as sharp curves in 60 -- 100 s range on the distributions of duration of reflected signals for decameter waves. The duration of continuous Es reflections were decreased upon amplification of oblique sounding frequency. The distributions of duration of reflected signals for meter waves showed sharp curves in the range 200 -- 300 s, representing borderlines between signals reflected from meteoric traces and from Es layer. The filling coefficient for the oblique sounding as well as the Es layer emersion probability for the vertical sounding were shown to undergo daily, seasonal and periodic variations. The daily variations of the filling coefficient of Es signals showed clear-cut maximums at 10 -- 12 and 18 -- 20 hours and minimum at 4 -- 6 hours at all paths in summer time and the maximum at 12 -- 14 hours in winter time. The values of the filling coefficient for Es layer declined with the increase of oblique sounding frequency. The minimal values of the filling coefficient were observed in winter and early spring, while the maximal values were observed from May to August. Provided that the averaged filling coefficient is equal to one in summer, it reaches the level 0,25 in equinox and does not exceed the level 0,12 in winter as evident by the of oblique sounding. The filling coefficient relation to the value of the voltage detection threshold was approximated by power-mode law. The filling coefficients for summer period showed exponential relation with equivalent sounding frequencies. The experimental evidence was generalized in an analytical model. Using this model the averaged Es layer filling coefficients for particular season of the year can be forecasted in case of given sounding frequency, path length, and voltage threshold.
BOREAS TE-9 In Situ Understory Spectral Reflectance Within the NSA
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Supronowicz, Jan; Edwards, Geoffrey; Viau, Alain; Thomson, Keith
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. Spectral reflection coefficients of the forest understory at the ground level, in three boreal forest sites of Northern Manitoba (56 N latitude and 98 W longitude), were obtained and analyzed in 1994. In particular, angular variation of the reflection coefficients in the old jack pine and young jack pine forests, as well as nadir reflection coefficient in the young aspen forest, were investigated. The complexity of understory composition and the light patterns limited quantitative conclusions; however, a number of interesting trends in the behavior of the measured values can be inferred. In particular, the unique spectral profiles of lichens show very strongly in the old jack pine understory, yet are definitely less conspicuous for young jack pine, and virtually absent in the aspen forest. The angular variation of the reflection coefficient by the young pine understory seems to be significantly toned down by fine-structured branches and their shadows. Our study also indicates how difficult the ground reflection coefficient problem in a forest is, compared to certain previously investigated areas that have a more uniform appearance, such as prairie grassland, bare soil, or agricultural crops. This is due to several factors, generally typical of a forest environment, that may influence the overall understory reflection coefficient, including: (1) a strong diversity of the forest floor due to the presence of dead tree trunks, holes in the ground, patches of different types of vegetation or litter, etc.; (2) pronounced 3-D structures at the ground level, such as shrubs, bushes, and young trees; and (3) an irregular shadow mosaic, which not only varies with the time of the day, causing intensity variations, but likely also effectively modifies the spectrum of the illuminating light and hence the reflection coefficient signal as well The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
NASA Technical Reports Server (NTRS)
Poggio, A. J.; Burke, G. L.; Pennock, S. T.
1995-01-01
This report describes the experimental and analytical efforts performed to determine the constitutive parameters of a reinforced concrete pad on which an aircraft (the NASA Boeing 757) was parked while its internal electromagnetic environment was measured. This concrete pad is part of the Large Electromagnetic System-Level Illuminator (LESLI) test facility at the Phillips Laboratory, Kirtland Air Force Base, New Mexico. The relative dielectric constant, conductivity, index of refraction, and reflection coefficient have been determined over the frequency range of 0 to 300 MHz and are presented.
Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer
NASA Astrophysics Data System (ADS)
Chen, Weiyun; Wang, Zhihua; Zhao, Kai; Chen, Guoxing; Li, Xiaojun
2015-10-01
Based on the multiphase poroelasticity theory, the reflection characteristics of an obliquely incident acoustic wave upon a plane interface between overlying water and a gassy marine sediment layer with underlying elastic solid seabed are investigated. The sandwiched gassy layer is modelled as a porous material with finite thickness, which is saturated by two compressible and viscous fluids (liquid and gas). The closed-form expression for the amplitude ratio of the reflected wave, called reflection coefficient, is derived theoretically according to the boundary conditions at the upper and lower interfaces in our proposed model. Using numerical calculation, the influences of layer thickness, incident angle, wave frequency and liquid saturation of sandwiched porous layer on the reflection coefficient are analysed, respectively. It is revealed that the reflection coefficient is closely associated with incident angle and sandwiched layer thickness. Moreover, in different frequency ranges, the dependence of the wave reflection characteristics on moisture (or gas) variations in the intermediate marine sediment layer is distinguishing.
Kiyan, Wataru; Ito, Akira; Nakagawa, Yasuaki; Mukai, Shogo; Mori, Koji; Arai, Tatsuo; Uchino, Eiichiro; Okuno, Yasushi; Kuroki, Hiroshi
2017-08-01
We aimed to quantitatively investigate the relationship between amplitude-based pulse-echo ultrasound parameters and early degeneration of the knee articular cartilage. Twenty samples from six human femoral condyles judged as grade 0 or 1 according to International Cartilage Repair Society grading were assessed using a 15-MHz pulsed-ultrasound 3-D scanning system ex vivo. Surface roughness (R q ), average collagen content (A 1 ) and collagen orientation (A 12 ) in the superficial zone of the cartilage were measured via laser microscopy and Fourier transform infrared imaging spectroscopy. Multiple regression analysis with a linear mixed-effects model (LMM) revealed that a time-domain reflection coefficient at the cartilage surface (R c ) had a significant coefficient of determination with R q and A 12 (R LMMm 2 =0.79); however, R c did not correlate with A 1 . Concerning the collagen characteristic in the superficial zone, R c was found to be a sensitive indicator reflecting collagen disorganization, not collagen content, for the early degeneration samples. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Ultrasonic measurements of the reflection coefficient at a water/polyurethane foam interface.
Sagers, Jason D; Haberman, Michael R; Wilson, Preston S
2013-09-01
Measured ultrasonic reflection coefficients as a function of normal incidence angle are reported for several samples of polyurethane foam submerged in a water bath. Three reflection coefficient models are employed as needed in this analysis to approximate the measured data: (1) an infinite plane wave impinging on an elastic halfspace, (2) an infinite plane wave impinging on a single fluid layer overlying a fluid halfspace, and (3) a finite acoustic beam impinging on an elastic halfspace. The compressional wave speed in each sample is calculated by minimizing the sum of squared error (SSE) between the measured and modeled data.
Spectrophotometric Method for Differentiation of Human Skin Melanoma. II. Diagnostic Characteristics
NASA Astrophysics Data System (ADS)
Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barunb, V. V.
2016-05-01
Experimental data on the spectral dependences of the optical diffuse reflection coefficient for skin from different people with melanoma or nevus are presented in the form of the probability density of the diffuse reflection coefficient for the corresponding pigmented lesions. We propose a noninvasive technique for differentiating between malignant and benign tumors, based on measuring the diffuse reflection coefficient for a specific patient and comparing the value obtained with a pre-set threshold. If the experimental result is below the threshold, then it is concluded that the person has melanoma; otherwise, no melanoma is present. As an example, we consider the wavelength 870 nm. We determine the risk of malignant transformation of a nevus (its transition to melanoma) for different measured diffuse reflection coefficients. We have studied the errors in the method, its operating characteristics and probability characteristics as the threshold diffuse reflection coefficient is varied. We find that the diagnostic confidence, sensitivity, specificity, and effectiveness (accuracy) parameters are maximum (>0.82) for a threshold of 0.45-0.47. The operating characteristics for the proposed technique exceed the corresponding parameters for other familiar optical approaches to melanoma diagnosis. Its distinguishing feature is operation at only one wavelength, and consequently implementation of the experimental technique is simplified and made less expensive.
NASA Astrophysics Data System (ADS)
Saki, Morvarid; Thomas, Christine; Merkel, Sebastien; Wookey, James
2017-04-01
We investigate the effect of various types of deformation mechanisms on the reflection coefficients of P and S waves underside reflections off the 410 km discontinuity, to find a diagnostic tool to detect the style of deformation at boundary layers. We calculate the reflection coefficient for P and SH underside reflections depending on the variation in velocity perturbations across the 410 km discontinuity for two deformation scenarios, compression and shear for different azimuths and angles of incidence at the interface. The results show that in the case of an anisotropic olivine layer above an isotropic wadsleyite layer, the P wave reflection coefficient amplitudes are only slightly influenced by the joint effect of angle of incidence and the strength of imposed deformation, without any polarity reversal and for all deformation styles. For the SH wave underside reflections a more complicated behaviour is visible: In compressional deformation, a polarity reversal occurs at distances depending on the incidence angle and the intensity of applied deformation without any azimuthal dependency. However, for shear geometry the azimuth to the direction of deformation appears as an important factor which strongly affects the incidence angle at which the polarity reversal of the reflected S wave occurs. These differences in amplitude and polarity patterns of reflection coefficients of different deformation geometries, especially for S wave at shorter distances allow to detect the style of deformation mechanisms at a boundary layer.
NASA Astrophysics Data System (ADS)
Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.
Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light
NASA Astrophysics Data System (ADS)
Kniazkov, A. V.
2016-04-01
Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.
Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.
Reichardt, Thomas A; Collins, Aaron M; McBride, Robert C; Behnke, Craig A; Timlin, Jerilyn A
2014-08-20
We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours.
NASA Technical Reports Server (NTRS)
Clarke, Garry K. C.; Cross, Guy M.; Benson, Carl S.
1989-01-01
Glaciological measurements and an airborne radar sounding survey of the glacier lying in Mount Wrangell caldera raise many questions concerning the glacier thermal regime and volcanic history of Mount Wrangell. An interpretation model has been developed that allows the depth variation of temperature, heat flux, pressure, density, ice velocity, depositional age, and thermal and dielectric properties to be calculated. Some predictions of the interpretation model are that the basal ice melting rate is 0.64 m/yr and the volcanic heat flux is 7.0 W/sq m. By using the interpretation model to calculate two-way travel time and propagation losses, radar sounding traces can be transformed to give estimates of the variation of power reflection coefficient as a function of depth and depositional age. Prominent internal reflecting zones are located at depths of approximately 59-91m, 150m, 203m, and 230m. These internal reflectors are attributed to buried horizons of acidic ice, possibly intermixed with volcanic ash, that were deposited during past eruptions of Mount Wrangell.
NASA Astrophysics Data System (ADS)
Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan
2016-03-01
A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.
NASA Astrophysics Data System (ADS)
Couture, O.; Cherin, E.; Foster, F. S.
2007-07-01
A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.
NASA Technical Reports Server (NTRS)
Gordy, R. S.
1972-01-01
An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.
Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications.
Anoshkin, Ilya V; Campion, James; Lioubtchenko, Dmitri V; Oberhammer, Joachim
2018-06-13
A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 °C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 °C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.
Safrai, Eli; Ishai, Paul Ben; Caduff, Andreas; Puzenko, Alexander; Polsman, Alexander; Agranat, Aharon J; Feldman, Yuri
2012-07-01
Recent work has demonstrated that the reflection coefficient of human skin in the frequency range from 95 to 110 GHz (W band) mirrors the temporal relaxation of stress induced by physical exercise. In this work, we extend these findings to show that in the event of a subtle trigger to stress, such as mental activity, a similar picture of response emerges. Furthermore, the findings are extended to cover not only the W band (75-110 GHz), but also the frequency band from 110 to 170 GHz (D band). We demonstrate that mental stress, induced by the Stroop effect and recorded by the galvanic skin response (GSR), can be correlated to the reflection coefficient in the aforementioned frequency bands. Intriguingly, a light physical stress caused by repeated hand gripping clearly showed an elevated stress level in the GSR signal, but was largely unnoted in the reflection coefficient in the D band. The implication of this observation requires further validation. Copyright © 2011 Wiley Periodicals, Inc.
Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.
We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less
Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria
Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; ...
2014-08-20
We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less
Techniques for estimating Space Station aerodynamic characteristics
NASA Technical Reports Server (NTRS)
Thomas, Richard E.
1993-01-01
A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.
Isobaric Inert Gas Counterdiffusion,
1982-11-01
solubility coefficient . Helium is 0.006 and nitrogen is about 0.012. Q. Are those lipid solubilities? A. Those are aqueous . Here is theN 2 into helium...was aqueous rather than fat. We did:’t, worry about solubility coefficients , either -- if they play a part, it will only be to make bubbles come more...reflection coefficient , sometimes interpreted as the fraction of the solute molecules which are reflected upon striking the barrier. Assuming that tissue
Delimiting Coefficient a from Internal Consistency and Unidimensionality
ERIC Educational Resources Information Center
Sijtsma, Klaas
2015-01-01
I discuss the contribution by Davenport, Davison, Liou, & Love (2015) in which they relate reliability represented by coefficient a to formal definitions of internal consistency and unidimensionality, both proposed by Cronbach (1951). I argue that coefficient a is a lower bound to reliability and that concepts of internal consistency and…
Effect of surface deposits on electromagnetic waves propagating in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1990-01-01
A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas
2017-07-01
Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (p<0.0001), I 2 =73%, test for overall effect Z=8.67 (p<0.00001). ADC min correlated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Reproducibility of the Internal Load and Performance-Based Responses to Simulated Amateur Boxing.
Thomson, Edward D; Lamb, Kevin L
2017-12-01
Thomson, ED and Lamb, KL. Reproducibility of the internal load and performance-based responses to simulated amateur boxing. J Strength Cond Res 31(12): 3396-3402, 2017-The aim of this study was to examine the reproducibility of the internal load and performance-based responses to repeated bouts of a three-round amateur boxing simulation protocol (boxing conditioning and fitness test [BOXFIT]). Twenty-eight amateur boxers completed 2 familiarization trials before performing 2 complete trials of the BOXFIT, separated by 4-7 days. To characterize the internal load, mean (HRmean) and peak (HRpeak) heart rate, breath-by-breath oxygen uptake (V[Combining Dot Above]O2), aerobic energy expenditure, excess carbon dioxide production (CO2excess), and ratings of perceived exertion were recorded throughout each round, and blood lactate determined post-BOXFIT. Additionally, an indication of the performance-based demands of the BOXFIT was provided by a measure of acceleration of the punches thrown in each round. Analyses revealed there were no significant differences (p > 0.05) between repeated trials in any round for all dependent measures. The typical error (coefficient variation %) for all but 1 marker of internal load (CO2excess) was 1.2-16.5% and reflected a consistency that was sufficient for the detection of moderate changes in variables owing to an intervention. The reproducibility of the punch accelerations was high (coefficient of variance % range = 2.1-2.7%). In general, these findings suggest that the internal load and performance-based efforts recorded during the BOXFIT are reproducible and, thereby, offer practitioners a method by which meaningful changes impacting on performance could be identified.
To, Kien Gia; Meuleners, Lynn; Chen, Huei-Yang; Lee, Andy; Do, Dung Van; Duong, Dat Van; Phi, Tien Duy; Tran, Hoang Huy; Nguyen, Nguyen Do
2014-06-01
To determine the test-retest repeatability of the National Eye Institute 25-item Visual Function Questionnaire (NEI VFQ-25) for use with older Vietnamese adults with bilateral cataract. The questionnaire was translated into Vietnamese and back-translated into English by two independent translators. Patients with bilateral cataract aged 50 and older completed the questionnaire on two separate occasions, one to two weeks after first administration of the questionnaire. Test-retest repeatability was assessed using the Cronbach's α and intraclass correlation coefficients. The average age of participants was 67 ± 8 years and most participants were female (73%). Internal consistency was acceptable with the α coefficient above 0.7 for all subscales and intraclass correlation coefficients were 0.6 or greater in all subscales. The Vietnamese NEI VFQ-25 is reliable for use in studies assessing vision-related quality of life in older adults with bilateral cataract in Vietnam. We propose some modifications to the NEI-VFQ questions to reflect activities of older people in Vietnam. © 2013 ACOTA.
Liu, Xin; Shu, Xuewen
2017-08-20
All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, V I; Marusin, N V; Molchanova, S I
2014-11-30
The problem of reflection of a TE-polarised Gaussian light beam from a layered structure under conditions of resonance excitation of waveguide modes using a total internal reflection prism is considered. Using the spectral approach we have derived the analytic expressions for the mode propagation lengths, widths and depths of m-lines (sharp and narrow dips in the angular dependence of the specular reflection coefficient), depending on the structure parameters. It is shown that in the case of weak coupling, when the propagation lengths l{sub m} of the waveguide modes are mainly determined by the extinction coefficient in the film, the depthmore » of m-lines grows with the mode number m. In the case of strong coupling, when l{sub m} is determined mainly by the radiation of modes into the prism, the depth of m-lines decreases with increasing m. The change in the TE-polarised Gaussian beam shape after its reflection from the layered structure is studied, which is determined by the energy transfer from the incident beam into waveguide modes that propagate along the structure by the distance l{sub m}, are radiated in the direction of specular reflection and interfere with a part of the beam reflected from the working face of the prism. It is shown that this interference can lead to the field intensity oscillations near m-lines. The analysis of different methods for determining the parameters of thin-film structures is presented, including the measurement of mode angles θ{sub m} and the reflected beam shape. The methods are based on simultaneous excitation of a few waveguide modes in the film with a strongly focused monochromatic Gaussian beam, the waist width of which is much smaller than the propagation length of the modes. As an example of using these methods, the refractive index and the thickness of silicon monoxide film on silica substrate at the wavelength 633 nm are determined. (fibre and integrated-optical structures)« less
NASA Astrophysics Data System (ADS)
Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.
2016-03-01
We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen
WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offersmore » the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.« less
Simancas-Pallares, Miguel Angel; Fortich Mesa, Natalia; González Martínez, Farith Damián
To determine the internal consistency and content validity of the Maslach Burnout Inventory-Student Survey (MBI-SS) in dental students from Cartagena, Colombia. Scale validation study in 886 dental students from Cartagena, Colombia. Factor structure was determined through exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). Internal consistency was measured using the Cronbach's alpha coefficient. Analyses were performed using the Stata v.13.2 for Windows (Statacorp., USA) and Mplus v.7.31 for Windows (Muthén & Muthén, USA) software. Internal consistency was α=.806. The factor structure showed three that accounted for the 56.6% of the variance. CFA revealed: χ 2 =926.036; df=85; RMSEA=.106 (90%CI, .100-.112); CFI=.947; TLI=.934. The MBI showed an adequate internal consistency and a factor structure being consistent with the original proposed structure with a poor fit, which does not reflect adequate content validity in this sample. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Seismic Rheological Model and Reflection Coefficients of the Brittle-Ductile Transition
NASA Astrophysics Data System (ADS)
Carcione, José M.; Poletto, Flavio
2013-12-01
It is well established that the upper—cooler—part of the crust is brittle, while deeper zones present ductile behaviour. In some cases, this brittle-ductile transition is a single seismic reflector with an associated reflection coefficient. We first develop a stress-strain relation including the effects of crust anisotropy, seismic attenuation and ductility in which deformation takes place by shear plastic flow. Viscoelastic anisotropy is based on the eigenstrain model and the Zener and Burgers mechanical models are used to model the effects of seismic attenuation, velocity dispersion, and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the reflection and transmission coefficients of a single brittle-ductile interface and of a ductile thin layer. The PP scattering coefficient has a Brewster angle (a sign change) in both cases, and there is substantial PS conversion at intermediate angles. The PP coefficient is sensitive to the layer thickness, unlike the SS coefficient. Thick layers have a well-defined Brewster angle and show higher reflection amplitudes. Finally, we compute synthetic seismograms in a homogeneous medium as a function of temperature.
Effect of surface deposits on electromagnetic propagation in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1991-01-01
A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field
NASA Astrophysics Data System (ADS)
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-04-01
The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.
Electromagnetic reflection from multi-layered snow models
NASA Technical Reports Server (NTRS)
Linlor, W. I.; Jiracek, G. R.
1975-01-01
The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.
Properties of seismic absorption induced reflections
NASA Astrophysics Data System (ADS)
Zhao, Haixia; Gao, Jinghuai; Peng, Jigen
2018-05-01
Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.
NASA Technical Reports Server (NTRS)
Pathak, P. H.; Altintas, A.
1988-01-01
A high-frequency analysis of electromagnetic modal reflection and transmission coefficients is presented for waveguide discontinuities formed by joining different waveguide sections. The analysis uses an extended version of the concept of geometrical theory of diffraction based equivalent edge currents in conjunction with the reciprocity theorem to describe interior scattering effects. If the waveguide modes and their associated modal rays can be found explicitly, general two- and three-dimensional waveguide geometries can be analyzed. Expressions are developed for two-dimensional reflection and transmission coefficients. Numerical results are given for a flanged, semi-infinite parallel plate waveguide and for the junction between two linearly tapered waveguides.
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
1994-01-01
Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)
NASA Astrophysics Data System (ADS)
Riccio, G.; Gennarelli, G.
2012-04-01
As well-known, the observation of structures and infrastructures by radar remote sensing involves the investigation of the high-frequency electromagnetic scattering by canonical shapes, such as cylinders and wedges. For instance, the ruptures caused by natural disasters can be represented in the form of a wedge-shaped fracture [1]. They modify the electromagnetic response of the scene under investigation and the Geometrical Theory of Diffraction (GTD) can be used as efficient tool for describing this occurrence. Diffraction by a wedge is a well-covered topic in the scientific literature, but the available results mainly concern impenetrable structures. The aim of this work is to provide Uniform Asymptotic Physical Optics (UAPO) diffraction coefficients in the case of lossless penetrable wedges illuminated by plane waves having normal incidence with respect to the edge. To this end, the original problem is subdivided into two parts relevant to the internal region of the wedge and the surrounding space. For what concerns the evaluation of the field diffracted in the outer region, equivalent electric and magnetic PO surface currents are used as sources in the radiation integral. They lie on the external faces of the wedge and their expressions change in accordance with the incidence direction. As a matter of fact, they involve the reflection and transmission Fresnel's coefficients when one external face is directly illuminated, and only the reflection Fresnel's coefficients if both the external faces are considered. A useful approximation and a uniform asymptotic evaluation of the resulting radiation integrals allow one to obtain the diffraction coefficients in terms of the Geometrical Optics (GO) response and the standard transition function of the Uniform Theory of Diffraction (UTD) [2]. The evaluation of the field diffracted in the inner region is tackled and solved by using equivalent PO surface currents on the internal faces of the wedge. Once such currents are determined, the diffracted field is evaluated by using a method like that employed for the exterior problem. The UAPO solutions for the diffracted field allow one to compensate the GO field discontinuities in the interior and exterior regions. Furthermore, they are simple to handle and implement in numerical simulators for radar remote sensing. Their accuracy is well assessed by comparisons with Finite-Difference Time-Domain (FDTD) results. [1] A.I. Kozlov, L. Lighart, A.I. Logvin, "Radar reflection from surfaces with ruptures," Proc. of MIKON 2000, vol. 1, pp. 347-350. [2] R.G. Kouyoumjian, P.H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. of IEEE, vol. 62, pp. 1448-1461, 1974.
Ponterotto, Joseph G; Ruckdeschel, Daniel E
2007-12-01
The present article addresses issues in reliability assessment that are often neglected in psychological research such as acceptable levels of internal consistency for research purposes, factors affecting the magnitude of coefficient alpha (alpha), and considerations for interpreting alpha within the research context. A new reliability matrix anchored in classical test theory is introduced to help researchers judge adequacy of internal consistency coefficients with research measures. Guidelines and cautions in applying the matrix are provided.
Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh
2012-01-01
The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718
Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.
Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas
2017-04-01
The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).
Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan
2018-04-16
The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.
NASA Astrophysics Data System (ADS)
Baek, Sang-In; Kim, Sung-Jo; Kim, Jong-Hyun
2015-09-01
Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.
NASA Astrophysics Data System (ADS)
Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh
2016-08-01
The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.
Interpreting spectral unmixing coefficients: From spectral weights to mass fractions
NASA Astrophysics Data System (ADS)
Grumpe, Arne; Mengewein, Natascha; Rommel, Daniela; Mall, Urs; Wöhler, Christian
2018-01-01
It is well known that many common planetary minerals exhibit prominent absorption features. Consequently, the analysis of spectral reflectance measurements has become a major tool of remote sensing. Quantifying the mineral abundances, however, is not a trivial task. The interaction between the incident light rays and particulate surfaces, e.g., the lunar regolith, leads to a non-linear relationship between the reflectance spectra of the pure minerals, the so-called ;endmembers;, and the surface's reflectance spectrum. It is, however, possible to transform the non-linear reflectance mixture into a linear mixture of single-scattering albedos of the Hapke model. The abundances obtained by inverting the linear single-scattering albedo mixture may be interpreted as volume fractions which are weighted by the endmember's extinction coefficient. Commonly, identical extinction coefficients are assumed throughout all endmembers and the obtained volume fractions are converted to mass fractions using either measured or assumed densities. In theory, the proposed method may cover different grain sizes if each grain size range of a mineral is treated as a distinct endmember. Here, we present a method to transform the mixing coefficients to mass fractions for arbitrary combinations of extinction coefficients and densities. The required parameters are computed from reflectance measurements of well defined endmember mixtures. Consequently, additional measurements, e.g., the endmember density, are no longer required. We evaluate the method based on laboratory measurements and various results presented in the literature, respectively. It is shown that the procedure transforms the mixing coefficients to mass fractions yielding an accuracy comparable to carefully calibrated laboratory measurements without additional knowledge. For our laboratory measurements, the square root of the mean squared error is less than 4.82 wt%. In addition, the method corrects for systematic effects originating from mixtures of endmembers showing a highly varying albedo, e.g., plagioclase and pyroxene.
NASA Astrophysics Data System (ADS)
Shimada, M.; Sato, C.; Hoshi, Y.; Yamada, Y.
2009-08-01
Our newly developed method using spatially and time-resolved reflectances can easily estimate the absorption coefficients of each layer in a two-layered medium if the thickness of the upper layer and the reduced scattering coefficients of the two layers are known a priori. We experimentally validated this method using phantoms and examined its possibility of estimating the absorption coefficients of the tissues in human heads. In the case of a homogeneous plastic phantom (polyacetal block), the absorption coefficient estimated by our method agreed well with that obtained by a conventional method. Also, in the case of two-layered phantoms, our method successfully estimated the absorption coefficients of the two layers. Furthermore, the absorption coefficients of the extracerebral and cerebral tissue inside human foreheads were estimated under the assumption that the human heads were two-layered media. It was found that the absorption coefficients of the cerebral tissues were larger than those of the extracerebral tissues.
Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2008-03-01
This paper develops a joint time/frequency-domain inversion for high-resolution single-bounce reflection data, with the potential to resolve fine-scale profiles of sediment velocity, density, and attenuation over small seafloor footprints (approximately 100 m). The approach utilizes sequential Bayesian inversion of time- and frequency-domain reflection data, employing ray-tracing inversion for reflection travel times and a layer-packet stripping method for spherical-wave reflection-coefficient inversion. Posterior credibility intervals from the travel-time inversion are passed on as prior information to the reflection-coefficient inversion. Within the reflection-coefficient inversion, parameter information is passed from one layer packet inversion to the next in terms of marginal probability distributions rotated into principal components, providing an efficient approach to (partially) account for multi-dimensional parameter correlations with one-dimensional, numerical distributions. Quantitative geoacoustic parameter uncertainties are provided by a nonlinear Gibbs sampling approach employing full data error covariance estimation (including nonstationary effects) and accounting for possible biases in travel-time picks. Posterior examination of data residuals shows the importance of including data covariance estimates in the inversion. The joint inversion is applied to data collected on the Malta Plateau during the SCARAB98 experiment.
Li, Bolin; Li, Xu; Ma, Yong-Hao; Han, Xiaofeng; Wu, Fu-Gen; Guo, Zhirui; Chen, Zhan; Lu, Xiaolin
2016-07-19
Sum frequency generation (SFG) vibrational spectroscopy has been widely employed to investigate molecular structures of biological surfaces and interfaces including model cell membranes. A variety of lipid monolayers or bilayers serving as model cell membranes and their interactions with many different molecules have been extensively studied using SFG. Here, we conducted an in-depth investigation on polarization-dependent SFG signals collected from interfacial lipid monolayers using different experimental geometries, i.e., the prism geometry (total internal reflection) and the window geometry (external reflection). The different SFG spectral features of interfacial lipid monolayers detected using different experimental geometries are due to the interplay between the varied Fresnel coefficients and second-order nonlinear susceptibility tensor terms of different vibrational modes (i.e., ss and as modes of methyl groups), which were analyzed in detail in this study. Therefore, understanding the interplay between the interfacial Fresnel coefficients and χ((2)) tensors is a prerequisite for correctly understanding the SFG spectral features with respect to different experimental geometries. More importantly, the derived information in this paper should not be limited to the methyl groups with a C3v symmetry; valid extension to interfacial functional groups with different molecular symmetries and even chiral interfaces could be expected.
Quantitative characterization of turbidity by radiative transfer based reflectance imaging
Tian, Peng; Chen, Cheng; Jin, Jiahong; Hong, Heng; Lu, Jun Q.; Hu, Xin-Hua
2018-01-01
A new and noncontact approach of multispectral reflectance imaging has been developed to inversely determine the absorption coefficient of μa, the scattering coefficient of μs and the anisotropy factor g of a turbid target from one measured reflectance image. The incident beam was profiled with a diffuse reflectance standard for deriving both measured and calculated reflectance images. A GPU implemented Monte Carlo code was developed to determine the parameters with a conjugate gradient descent algorithm and the existence of unique solutions was shown. We noninvasively determined embedded region thickness in heterogeneous targets and estimated in vivo optical parameters of nevi from 4 patients between 500 and 950nm for melanoma diagnosis to demonstrate the potentials of quantitative reflectance imaging. PMID:29760971
NASA Astrophysics Data System (ADS)
Qin, Jianwei; Lu, Renfu
2005-11-01
Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.
Multilayered models for electromagnetic reflection amplitudes
NASA Technical Reports Server (NTRS)
Linlor, W. I.
1976-01-01
The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.
BRIEF COMMUNICATIONS: Q switching of a resonator by the metal-semiconductor phase transition
NASA Astrophysics Data System (ADS)
Bugaev, A. A.; Zakharchenya, Boris P.; Chudnovskiĭ, F. A.
1981-12-01
An experimental study was made of Q switching in a resonator by a mirror with a nonlinear reflection coefficient. This mirror was an interference reflecting structure containing a vanadium oxide film capable of undergoing a metal-semiconductor transition. The nonlinearity of the reflection coefficient was due to initiation of this phase transition by laser radiation. A determination was made of the parameters of a giant radiation pulse obtained using such a passive switch with a vanadium oxide film.
Acoustic parameters inversion and sediment properties in the Yellow River reservoir
NASA Astrophysics Data System (ADS)
Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei
2018-03-01
The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.
Determination of optical coefficients of biological tissue from a single integrating-sphere
NASA Astrophysics Data System (ADS)
Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang
2012-01-01
The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.
A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.
ERIC Educational Resources Information Center
Feher, Joseph J.; Ford, George D.
1995-01-01
Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…
Determination of optical band gap of powder-form nanomaterials with improved accuracy
NASA Astrophysics Data System (ADS)
Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul
2017-10-01
Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.
NASA Astrophysics Data System (ADS)
Cao, Bin; Liao, Ningfang; Li, Yasheng; Cheng, Haobo
2017-05-01
The use of spectral reflectance as fundamental color information finds application in diverse fields related to imaging. Many approaches use training sets to train the algorithm used for color classification. In this context, we note that the modification of training sets obviously impacts the accuracy of reflectance reconstruction based on classical reflectance reconstruction methods. Different modifying criteria are not always consistent with each other, since they have different emphases; spectral reflectance similarity focuses on the deviation of reconstructed reflectance, whereas colorimetric similarity emphasizes human perception. We present a method to improve the accuracy of the reconstructed spectral reflectance by adaptively combining colorimetric and spectral reflectance similarities. The different exponential factors of the weighting coefficients were investigated. The spectral reflectance reconstructed by the proposed method exhibits considerable improvements in terms of the root-mean-square error and goodness-of-fit coefficient of the spectral reflectance errors as well as color differences under different illuminants. Our method is applicable to diverse areas such as textiles, printing, art, and other industries.
NASA Astrophysics Data System (ADS)
Weger, Lukas; Hoffmann-Jacobsen, Kerstin
2017-09-01
Fluorescence correlation spectroscopy (FCS) measures fluctuations in a (sub-)femtoliter volume to analyze the diffusive behavior of fluorescent particles. This highly sensitive method has proven to be useful for the analysis of dynamic biological systems as well as in chemistry, physics, and material sciences. It is routinely performed with commercial fluorescence microscopes, which provide a confined observation volume by the confocal technique. The evanescent wave of total internal reflectance (TIR) is used in home-built systems to permit a surface sensitive FCS analysis. We present a combined confocal and TIR-FCS setup which uses economic low-power pulsed diode lasers for excitation. Excitation and detection are coupled to time-correlated photon counting hardware. This allows simultaneous fluorescence lifetime and FCS measurements in a surface-sensitive mode. Moreover, the setup supports fluorescence lifetime correlation spectroscopy at surfaces. The excitation can be easily switched between TIR and epi-illumination to compare the surface properties with those in liquid bulk. The capabilities of the presented setup are demonstrated by measuring the diffusion coefficients of a free dye molecule, a labeled polyethylene glycol, and a fluorescent nanoparticle in confocal as well as in TIR-FCS.
[Spectral reflectance characteristics and modeling of typical Takyr Solonetzs water content].
Zhang, Jun-hua; Jia, Ke-li
2015-03-01
Based on the analysis of the spectral reflectance of the typical Takyr Solonetzs soil in Ningxia, the relationship of soil water content and spectral reflectance was determined, and a quantitative model for the prediction of soil water content was constructed. The results showed that soil spectral reflectance decreased with the increasing soil water content when it was below the water holding capacity but increased with the increasing soil water content when it was higher than the water holding capacity. Soil water content presented significantly negative correlation with original reflectance (r), smooth reflectance (R), logarithm of reflectance (IgR), and positive correlation with the reciprocal of R and logarithm of reciprocal [lg (1/R)]. The correlation coefficient of soil water content and R in the whole wavelength was 0.0013, 0.0397 higher than r and lgR, respectively. Average correlation coefficient of soil water content with 1/R and [lg (1/R)] at the wavelength of 950-1000 nm was 0.2350 higher than that of 400-950 nm. The relationships of soil water content with the first derivate differential (R') , the first derivate differential of logarithm (lgR)' and the first derivate differential of logarithm of reciprocal [lg(1/R)]' were unstable. Base on the coefficients of r, lg(1/R), R' and (lgR)', different regression models were established to predict soil water content, and the coefficients of determination were 0.7610, 0.8184, 0.8524 and 0.8255, respectively. The determination coefficient for power function model of R'. reached 0.9447, while the fitting degree between the predicted value based on this model and on-site measured value was 0.8279. The model of R' had the highest fitted accuracy, while that of r had the lowest one. The results could provide a scientific basis for soil water content prediction and field irrigation in the Takyr Solonetzs region.
Osmotic water transport in aquaporins: evidence for a stochastic mechanism
Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric; MacAulay, Nanna
2013-01-01
We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, PS, is proportional to 1 –σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mm of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured optically at high resolution and compared to the solute permeability obtained from short-term uptake of radio-labelled solute under isotonic conditions. For each type of aquaporin there was a linear relationship between solute permeability and reflection coefficient, in accordance with the model. We found no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward-facing end of the pore. PMID:23959676
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1999-01-01
A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.
NASA Technical Reports Server (NTRS)
Ville, J. M.; Silcox, R. J.
1980-01-01
The radiation of sound from an inlet as a function of flow velocity, frequency, duct mode structure, and inlet geometry was examined by using a spinning mode synthesizer to insure a given space-time structure inside the duct. Measurements of the radiation pattern (amplitude and phase) and of the pressure reflection coefficient were obtained over an azimuthal wave number range of 0 to 6 and a frequency range up to 5000 Hz for an unflanged duct and a bellmouth. The measured radiated field and pressure reflection coefficient without flow for the unflanged duct agree reasonably well with theory. The influence of the inlet contour appears to be very drastic near the cut-on frequency of a mode and reasonable agreement is found between the bellmouth pressure reflection coefficient and a infinite hyperboloidal inlet theory. It is also shown that the flow has a weak effect on the amplitude of the directivity factor but significantly shifts the directivity factor phase. The influence of the flow on the modulus of the pressure reflection coefficient is found to be well described by a theoretical prediction.
Santos, Rafaella Zulianello Dos; Bonin, Christiani Decker Batista; Martins, Eliara Ten Caten; Pereira Junior, Moacir; Ghisi, Gabriela Lima de Melo; Macedo, Kassia Rosangela Paz de; Benetti, Magnus
2018-01-01
The absence of instruments capable of measuring the level of knowledge of hypertensive patients in cardiac rehabilitation programs about their disease reflects the lack of specific recommendations for these patients. To develop and validate a questionnaire to evaluate the knowledge of hypertensive patients in cardiac rehabilitation programs about their disease. A total of 184 hypertensive patients (mean age 60.5 ± 10 years, 66.8% men) were evaluated. Reproducibility was assessed by calculation of the intraclass correlation coefficient using the test-retest method. Internal consistency was assessed by the Cronbach's alpha and the construct validity by the exploratory factorial analysis. The final version of the instrument had 17 questions organized in areas considered important for patient education. The instrument proposed showed a clarity index of 8.7 (0.25). The intraclass correlation coefficient was 0.804 and the Cronbach's correlation coefficient was 0.648. Factor analysis revealed five factors associated with knowledge areas. Regarding the criterion validity, patients with higher education level and higher family income showed greater knowledge about hypertension. The instrument has a satisfactory clarity index and adequate validity, and can be used to evaluate the knowledge of hypertensive participants in cardiac rehabilitation programs.
NASA Technical Reports Server (NTRS)
Christodoulou, C. G.
1986-01-01
In some applications, the wires used to construct the grids are plated over with highly conducting materials such as gold or silver. In those cases, depending on the frequency of operation, the coating may not be thick enough to prevent currents from flowing in the substrate. The conjugate gradient method, in conjunction with the fast Fourier transform is employed to solve the problem of scattering from such rectangular grids. An internal impedance is utilized to account for the effects of the substrate conductivity on the induced current densities. Calculated values of the reflection coefficient and induced currents from different coating thicknesses, angles of incidence and polarizations are presented and discussed.
Tohmyoh, Hironori; Sakamoto, Yuhei
2015-11-01
This paper reports on a technique to measure the acoustic properties of a thin polymer film utilizing the frequency dependence of the reflection coefficient of ultrasound reflected back from a system comprising a reflection plate, the film, and a material that covers the film. The frequency components of the echo reflected from the back of the plate, where the film is attached, take their minimum values at the resonant frequency, and from these frequency characteristics, the acoustic impedance, sound velocity, and the density of the film can be determined. We applied this technique to characterize an ion exchange membrane, which has high water absorbability, and successfully determined the acoustic properties of the membrane without getting it wet.
Quantifying Errors in Jet Noise Research Due to Microphone Support Reflection
NASA Technical Reports Server (NTRS)
Nallasamy, Nambi; Bridges, James
2002-01-01
The reflection coefficient of a microphone support structure used insist noise testing is documented through tests performed in the anechoic AeroAcoustic Propulsion Laboratory. The tests involve the acquisition of acoustic data from a microphone mounted in the support structure while noise is generated from a known broadband source. The ratio of reflected signal amplitude to the original signal amplitude is determined by performing an auto-correlation function on the data. The documentation of the reflection coefficients is one component of the validation of jet noise data acquired using the given microphone support structure. Finally. two forms of acoustic material were applied to the microphone support structure to determine their effectiveness in reducing reflections which give rise to bias errors in the microphone measurements.
Spectral radiative properties of a living human body
NASA Astrophysics Data System (ADS)
Terada, N.; Ohnishi, K.; Kobayashi, M.; Kunitomo, T.
1986-09-01
Spectral radiative properties of the human body were studied experimentally in the region from the ultraviolet to the far-infrared to know the thermal response of the human body exposed to solar radiation and infrared radiation. The measuring equipment for reflectance and transmittance of a semitransparent scattering medium was developed and measurement on a living human skin was performed in vivo. The measured parts are forearm, cheek, dorsum hand, hip, and hair. The values obtained by the present study are much different from those of previous in vitro measurements. Fairly large values for hemispherical reflectances are observed in the visible and near-infrared regions but very small values for hemispherical reflectances are observed in the infrared region, below 0.05. By applying the four-flux treatment of radiative transfer, the absorption coefficient and scattering coefficient in the human skin are determined. The scattering coefficient is large in the visible region but negligible in the infrared region. The absorption coefficient is very close to that of water and large in the infrared region.
Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2016-07-01
We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.
NASA Astrophysics Data System (ADS)
Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.
1992-10-01
The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.
Retrieval of background surface reflectance with BRD components from pre-running BRDF
NASA Astrophysics Data System (ADS)
Choi, Sungwon; Lee, Kyeong-Sang; Jin, Donghyun; Lee, Darae; Han, Kyung-Soo
2016-10-01
Many countries try to launch satellite to observe the Earth surface. As important of surface remote sensing is increased, the reflectance of surface is a core parameter of the ground climate. But observing the reflectance of surface by satellite have weakness such as temporal resolution and being affected by view or solar angles. The bidirectional effects of the surface reflectance may make many noises to the time series. These noises can lead to make errors when determining surface reflectance. To correct bidirectional error of surface reflectance, using correction model for normalized the sensor data is necessary. A Bidirectional Reflectance Distribution Function (BRDF) is making accuracy higher method to correct scattering (Isotropic scattering, Geometric scattering, Volumetric scattering). To correct bidirectional error of surface reflectance, BRDF was used in this study. To correct bidirectional error of surface reflectance, we apply Bidirectional Reflectance Distribution Function (BRDF) to retrieve surface reflectance. And we apply 2 steps for retrieving Background Surface Reflectance (BSR). The first step is retrieving Bidirectional Reflectance Distribution (BRD) coefficients. Before retrieving BSR, we did pre-running BRDF to retrieve BRD coefficients to correct scatterings (Isotropic scattering, Geometric scattering, Volumetric scattering). In pre-running BRDF, we apply BRDF with observed surface reflectance of SPOT/VEGETATION (VGT-S1) and angular data to get BRD coefficients for calculating scattering. After that, we apply BRDF again in the opposite direction with BRD coefficients and angular data to retrieve BSR as a second step. As a result, BSR has very similar reflectance to one of VGT-S1. And reflectance in BSR is shown adequate. The highest reflectance of BSR is not over 0.4μm in blue channel, 0.45μm in red channel, 0.55μm in NIR channel. And for validation we compare reflectance of clear sky pixel from SPOT/VGT status map data. As a result of comparing BSR with VGT-S1, bias is from 0.0116 to 0.0158 and RMSE is from 0.0459 to 0.0545. They are very reasonable results, so we confirm that BSR is similar to VGT-S1. And weakness of this study is missing pixel in BSR which are observed less time to retrieve BRD components. If missing pixels are filled, BSR is better to retrieve surface products with more accuracy. And we think that after filling the missing pixel and being more accurate, it can be useful data to retrieve surface product which made by surface reflectance like cloud masking and retrieving aerosol.
Measuring critical thinking in pre-registration midwifery students: A multi-method approach.
Carter, Amanda G; Creedy, Debra K; Sidebotham, Mary
2018-02-01
Test the concurrent validity of three newly developed tools (student self-rating, preceptor rating, and reflective writing) that aim to measure critical thinking in midwifery practice. A descriptive matched cohort design was used. Australian research intensive university offering a three year Bachelor of Midwifery programme. Fifty-five undergraduate midwifery students. Students assessed their ability to apply critical thinking in midwifery practice using a 25-item tool and a 5-item subscale in Motivated Strategies for Learning Questionnaire. Clinical preceptors completed a 24-item tool assessing the students' application of critical thinking in practice. Reflective writing by students was assessed by midwifery academics using a 15-item tool. Internal reliability, and concurrent validity were assessed. Correlations, t-tests, multiple regression and confidence levels were calculated for the three scales and associations with student characteristics. The three scales achieved good internal reliability with a Cronbach's alpha coefficient between 0.93 and 0.97. Matched total scores for the three critical thinking scales were moderately correlated; student/preceptor (r=0.36, p<0.01); student/reflective writing (r=0.38, p<0.01); preceptor/reflective writing (r=0.30, p<0.05). All critical thinking mean scores were higher for students with a previous degree, but only significant for reflective writing (t (53)=-2.35, p=0.023). Preceptor ratings were predictive of GPA (beta=0.50, p<0.001, CI=0.10 to 0.30). Students' self-rating scores were predictive of year level (beta=0.32, p<0.05, CI=0.00 to 0.03). The student, preceptor, and reflective writing tools were found to be reliable and valid measures of critical thinking. The three tools can be used individually or in combination to provide students with various sources of feedback to improve their practice. The tools allow formative measurement of critical thinking over time. Further testing of the tools with larger, diverse samples is recommended. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Replacing backscattering with reduced scattering. A better formulation of reflectance function?
NASA Astrophysics Data System (ADS)
Piskozub, Jacek; McKee, David; Freda, Wlodzimierz
2014-05-01
Modern reflectance formulas all involve backscattering coefficient divided by absorption coefficient (bb/a). The backscattering (or backward scattering) coefficient describes how much of the incident radiation is scattered at angles between 90 and 180 deg. However, water leaving photons are not necessarily backscattered because it is possible for a variable fraction to exit after multiple forward scattering events. Therefore the whole angular function of scattering probability (phase function) influences the reflectance signal. This is the reason why phase functions of identical backscattering ratio may result in different reflectance values, contrary to the universally used formula. This creates the question whether there may exist a better formula using a parameter better describing phase function shape than backscattering ratio. The asymmetry parameter g (the average scattering cosine) is commonly used to parametrize phase functions. A replacement for backscattering should decrease with increasing g. Therefore, the simplest candidate to replace backscattering has the form of b(1-g), where b is the scattering coefficient. Such a parameter is well known in biomedical optics under the name of reduced scattering (sometimes transport scattering). It has even been used in parametrizing reflectance in (highly turbid) human tissues. However no attempt has been made to check its usefulness in marine optics. We perform Monte Carlo radiative transfer calculations of reflectance for multiple combinations of inherent optical properties, including different phase functions. The results are used to create a new reflectance formula as a function of reduced scattering and absorption and test its robustness to changes in phase function shape compared to the traditional bb/a formula. We discuss its usefulness as well as advantages and disadvantages compared to the traditional formulation.
Design of psychosocial factors questionnaires: a systematic measurement approach
Vargas, Angélica; Felknor, Sarah A
2012-01-01
Background Evaluation of psychosocial factors requires instruments that measure dynamic complexities. This study explains the design of a set of questionnaires to evaluate work and non-work psychosocial risk factors for stress-related illnesses. Methods The measurement model was based on a review of literature. Content validity was performed by experts and cognitive interviews. Pilot testing was carried out with a convenience sample of 132 workers. Cronbach’s alpha evaluated internal consistency and concurrent validity was estimated by Spearman correlation coefficients. Results Three questionnaires were constructed to evaluate exposure to work and non-work risk factors. Content validity improved the questionnaires coherence with the measurement model. Internal consistency was adequate (α=0.85–0.95). Concurrent validity resulted in moderate correlations of psychosocial factors with stress symptoms. Conclusions Questionnaires´ content reflected a wide spectrum of psychosocial factors sources. Cognitive interviews improved understanding of questions and dimensions. The structure of the measurement model was confirmed. PMID:22628068
Thermally stabilized heliostat
Anderson, Alfred J.
1983-01-01
An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.
NASA Astrophysics Data System (ADS)
Ji, Hongli; Luo, Jing; Qiu, Jinhao; Cheng, Li
2018-05-01
Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise attenuation, have been drawing increasing attentions of many researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH structures, it is important to understand the wave propagation and attenuation process in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper, an analytical expression of the wave reflection coefficient in a modified one-dimensional ABH is derived and a time-domain experimental method based on a laser excitation technique is used to visualize the wave propagation. In the experimental studies, the flexural waves in the ABH were excited by a scanning pulse laser and measured by a Laser Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from the measured original wave field and the decrease of the wave velocity in the ABH was exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the reflected wave to that of the incident wave for different ABH parameters and different thicknesses of the damping layer. The measured reflection coefficients were used to identify the unknown coefficients in the theoretical formula. The results confirm that there exists an optimal thickness for the damping layer, which leads to the minimum wave reflection. Based on the laser-induced visualization technique and various signal processing and feature extraction methods, the entire process of the wave propagation in a non-ideal one-dimensional ABH structure can be visualized and scrutinized.
Choi, Jee Woong; Dahl, Peter H; Goff, John A
2008-09-01
Acoustic bottom-interacting measurements from the Shallow Water '06 experiment experiment (frequency range 1-20 kHz) are presented. These are co-located with coring and stratigraphic studies showing a thin (approximately 20 cm) higher sound speed layer overlaying a thicker (approximately 20 m) lower sound speed layer ending at a high-impedance reflector (R reflector). Reflections from the R reflector and analysis of the bottom reflection coefficient magnitude for the upper two sediment layers confirm both these features. Geoacoustic parameters are estimated, dispersion effects addressed, and forward modeling using the parabolic wave equation undertaken. The reflection coefficient measurements suggest a nonlinear attenuation law for the thin layer of sandy sediments.
On Sound Reflection in Superfluid
NASA Astrophysics Data System (ADS)
Melnikovsky, L. A.
2008-02-01
We consider reflection of first and second sound waves by a rigid flat wall in superfluid. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.
Bidirectional reflection functions from surface bump maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, B.; Max, N.; Springmeyer, R.
1987-04-29
The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less
NASA Astrophysics Data System (ADS)
Avrutskiĭ, I. A.; Sychugov, V. A.
1989-02-01
The problem of reflection of light from the surface of an amplifying corrugated waveguide is solved. An increase in the waveguide gain increases considerably the reflection coefficient and reduces the spectral width of the reflection peak.
Including scattering within the room acoustics diffusion model: An analytical approach.
Foy, Cédric; Picaut, Judicaël; Valeau, Vincent
2016-10-01
Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.
NASA Astrophysics Data System (ADS)
Berbiche, A.; Sadouki, M.; Fellah, Z. E. A.; Ogam, E.; Fellah, M.; Mitri, F. G.; Depollier, C.
2016-01-01
An acoustic reflectivity method is proposed for measuring the permeability or flow resistivity of air-saturated porous materials. In this method, a simplified expression of the reflection coefficient is derived in the Darcy's regime (low frequency range), which does not depend on frequency and porosity. Numerical simulations show that the reflection coefficient of a porous material can be approximated by its simplified expression obtained from its Taylor development to the first order. This approximation is good especially for resistive materials (of low permeability) and for the lower frequencies. The permeability is reconstructed by solving the inverse problem using waves reflected by plastic foam samples, at different frequency bandwidths in the Darcy regime. The proposed method has the advantage of being simple compared to the conventional methods that use experimental reflected data, and is complementary to the transmissivity method, which is more adapted to low resistive materials (high permeability).
Reflection and interference of electromagnetic waves in inhomogeneous media
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Kyle, H. L.
1973-01-01
Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.
Interference effects in phased beam tracing using exact half-space solutions.
Boucher, Matthew A; Pluymers, Bert; Desmet, Wim
2016-12-01
Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.
Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro
2018-05-01
Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Numerical computations on one-dimensional inverse scattering problems
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Hariharan, S. I.
1983-01-01
An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.
La Frenais, Francesca L; Bedder, Rachel; Vickerstaff, Victoria; Stone, Patrick; Sampson, Elizabeth L
2018-02-01
To explore global changes in the prescription of analgesic drugs over time in the international long-term care (LTC) population. Systematic review. We included original research articles in English, published and unpublished, that included number of participants, country and year(s) of data collection, and prescription of analgesics (analgesics not otherwise specified, opioids, acetaminophen; scheduled only, or scheduled plus as needed (PRN)). LTC residents. We searched PubMed, EMBASE, CINAHL, International Pharmaceutical Abstracts, PsycINFO, Cochrane, Web of Science, Google Scholar, using keywords for LTC facilities and analgesic medication; hand-searched references of eligible papers; correspondence. Studies were quality rated using an adapted Newcastle-Ottawa scale. Pearson correlation coefficients were generated between percentage of residents prescribed an analgesic and year of data collection. If available, we investigated changes in acetaminophen and opioid prescriptions. Forty studies met inclusion criteria. A moderate correlation (0.59) suggested that scheduled prescription rates for analgesics have increased over time. Similar findings were reflected in scheduled prescriptions for acetaminophen and opioids. No increase was seen when analyzing scheduled plus PRN analgesics. Use of opioids (scheduled plus PRN) appears to have increased over time. Worldwide, use of opioids and acetaminophen has increased in LTC residents. Research is needed to explore whether this reflects appropriate pain management for LTC residents and if PRN medication is used effectively. © 2017 The Authors. Journal of the American Geriatrics Society published by Wiley Periodicals, Inc. on behalf of The American Geriatrics Society.
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Chandra, Malavika; Scheiman, James; Simeone, Diane; McKenna, Barbara; Purdy, Julianne; Mycek, Mary-Ann
2009-02-01
Pancreatic adenocarcinoma has a five-year survival rate of only 4%, largely because an effective procedure for early detection has not been developed. In this study, mathematical modeling of reflectance and fluorescence spectra was utilized to quantitatively characterize differences between normal pancreatic tissue, pancreatitis, and pancreatic adenocarcinoma. Initial attempts at separating the spectra of different tissue types involved dividing fluorescence by reflectance, and removing absorption artifacts by applying a "reverse Beer-Lambert factor" when the absorption coefficient was modeled as a linear combination of the extinction coefficients of oxy- and deoxy-hemoglobin. These procedures demonstrated the need for a more complete mathematical model to quantitatively describe fluorescence and reflectance for minimally-invasive fiber-based optical diagnostics in the pancreas.
Analytical and numerical solution for wave reflection from a porous wave absorber
NASA Astrophysics Data System (ADS)
Magdalena, Ikha; Roque, Marian P.
2018-03-01
In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.
NASA Technical Reports Server (NTRS)
Pathak, P. H.; Kouyoumjian, R. G.
1974-01-01
The diffraction of a TM sub o surface wave by a terminated dielectric slab which is flush mounted in a perfectly conducting surface is studied. The incident surface wave gives rise to waves reflected and diffracted by the termination; these reflected and diffracted fields may be expressed in terms of the geometrical theory of diffraction by introducing surface wave reflection and diffraction coefficients which are associated with the termination. In this investigation, the surface wave reflection and diffraction coefficients have been deduced from a formally exact solution to this canonical problem. The solution is obtained by a combination of the generalized scattering matrix technique and function theoretic methods.
NASA Astrophysics Data System (ADS)
Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy
2018-06-01
The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.
Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole
NASA Astrophysics Data System (ADS)
Huang, Lu; Chen, Juhua; Wang, Yongjiu
2018-06-01
In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.
Finite-floe wave reflection and transmission coefficients from a semi-infinite model
NASA Astrophysics Data System (ADS)
Meylan, Michael; Squire, Vernon A.
1993-07-01
A model to describe the reflection and transmission of ocean waves by a single ice floe is developed from the semi-infinite model of Fox and Squire (1990, 1991). This is done by considering the coefficients for the transition from ice to water in the semi-infinite case in terms of those from water to ice. Finite-floe reflection and transmission coefficients, R and T, respectively, are then found as the solution of a set of four simple simultaneous equations. The properties of R and T are investigated, and examples of their absolute values are given for several geometries. |R| compares well with the predictions of a precise model in the case of deep water. These results suggest that the analytical model described has applications to defining the sea state within marginal ice zones, given the floe size and ice thickness distributions and the incoming sea wave spectrum.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1996-01-01
A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.
Optical Properties of the DIRC Fused Silica Radiator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Convery, Mark R
2003-04-15
The DIRC detector is successfully operating as the hadronic particle identification system for the BaBar experiment at SLAC. The production of its Cherenkov radiator required much effort in practice, both in manufacture and conception, which in turn required a large number of R&D measurements. One of the major outcomes of this R&D work was an understanding of methods to select radiation hard and optically uniform fused silica material. Others included measurement of the wavelength dependency of the internal reflection coefficient, and its sensitivity to the surface pollution, selection of the radiator support, selection of good optical glue, etc. This notemore » summarizes the optical R&D test results.« less
Size effects on magnetoelectric response of multiferroic composite with inhomogeneities
NASA Astrophysics Data System (ADS)
Yue, Y. M.; Xu, K. Y.; Chen, T.; Aifantis, E. C.
2015-12-01
This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO3), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe2O3). In a composite consisiting of a piezomagnetic matrix (CoFe2O3) reinforced with piezoelectric nanofibers (BaTiO3), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.
[The perception of ethics from the point of view of medical students].
García-Mangas, José Alberto; García-Vigil, José Luis; Lifshitz, Alberto
2016-01-01
The present study was conducted to characterize the ethical environment in which medical students and internal are trained. The aim of this article is to identify the perception of ethics in medical students. The instrument was constructed by pairs: the socially desirable and socially undesirable exploring 10 principles and 24 ethical values. Through rounds of experts the instrument was validated with 35 pairs with 70 statements. The internal consistency of the instrument with the coefficient of determination "r2" reached a "p" value of < 0.025. In the overall analysis to compare means, students gave higher scores than interns with "p" value of < 0.002. A comparison of the principal differences was found in seven of the ten principles explored and in three (freedom, honesty and solidarity) no differences were noted in the rate of perception of the ethics (RPE). The were statistically significant differences between groups with a "p" value of < 0.04 in which students perceive higher scores with interns. We conclude that learning environments are not prone to ethical reflection and changes depending on the degree in training in medical school, with a worse perception in greater degrees.
The internal dosimetry code PLEIADES.
Fell, T P; Phipps, A W; Smith, T J
2007-01-01
The International Commission on Radiological Protection (ICRP) has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public, including children and pregnant or lactating women. The calculation of these coefficients divides naturally into two distinct parts-the biokinetic and dosimetric. This paper describes in detail the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES. A summary of the dosimetric treatment is included.
NASA Astrophysics Data System (ADS)
Jayanthi, Harikishan
The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were compared with the actual yields extracted from the ground. The remote sensing-derived yields compared well with the actual yields sampled on the ground. This research has highlighted the importance of the date of spectral emergence, the need to know the duration for which the crops stand on the ground, and the need to identify critical periods of time when multispectral coverages are essential for reliable tuber yield estimation.
[Research on Resistant Starch Content of Rice Grain Based on NIR Spectroscopy Model].
Luo, Xi; Wu, Fang-xi; Xie, Hong-guang; Zhu, Yong-sheng; Zhang, Jian-fu; Xie, Hua-an
2016-03-01
A new method based on near-infrared reflectance spectroscopy (NIRS) analysis was explored to determine the content of rice-resistant starch instead of common chemical method which took long time was high-cost. First of all, we collected 62 spectral data which have big differences in terms of resistant starch content of rice, and then the spectral data and detected chemical values are imported chemometrics software. After that a near-infrared spectroscopy calibration model for rice-resistant starch content was constructed with partial least squares (PLS) method. Results are as follows: In respect of internal cross validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+1thD, pretreatment with 1thD+SNV were 0.920 2, 0.967 0 and 0.976 7 respectively. Root mean square error of prediction (RMSEP) were 1.533 7, 1.011 2 and 0.837 1 respectively. In respect of external validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+ 1thD, pretreatment with 1thD+SNV were 0.805, 0.976 and 0.992 respectively. The average absolute error was 1.456, 0.818, 0.515 respectively. There was no significant difference between chemical and predicted values (Turkey multiple comparison), so we think near infrared spectrum analysis is more feasible than chemical measurement. Among the different pretreatment, the first derivation and standard normal variate (1thD+SNV) have higher coefficient of determination (R2) and lower error value whether in internal validation and external validation. In other words, the calibration model has higher precision and less error by pretreatment with 1thD+SNV.
Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka
2017-06-01
The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.
NASA Astrophysics Data System (ADS)
Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae
2018-07-01
It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.
NASA Astrophysics Data System (ADS)
Khadzhi, P. I.; Lyakhomskaya, K. D.
1999-10-01
The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted.
The numerical simulation of Lamb wave propagation in laser welding of stainless steel
NASA Astrophysics Data System (ADS)
Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang
2017-12-01
In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,
Multi-attribute integrated measurement of node importance in complex networks.
Wang, Shibo; Zhao, Jinlou
2015-11-01
The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.
Frustrated Total Internal Reflection: A Simple Application and Demonstration.
ERIC Educational Resources Information Center
Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.
2003-01-01
Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)
NASA Astrophysics Data System (ADS)
Cai, Chunpei
2013-10-01
In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.
A comprehensive analysis of surface acoustic wave reflections
NASA Astrophysics Data System (ADS)
Robinson, H.; Hahn, Y.; Gau, J. N.
1989-06-01
A thorough study of the perturbative and variational approaches is carried out for the surface acoustic wave reflection problem. We have shown that the perturbation treatment by Datta and Hunsinger and potentially powerful variational formulation by Chen and Haus [IEEE Trans. Sonics Ultrason. SU-32, 395 (1985)] are mutually consistent. In their common region of validity, these two approaches yield nearly identical results for the reflection coefficients and velocity shifts due to metal finger and groove overlays. Term-by-term comparison of the mass- and stress-loading effects, and also the electric shorting effect, is carried out to provide a coherent picture of the reflection phenomena. The on- and off-resonance behavior of the reflection coefficient can be described correctly using either one of these theories, with proper inclusion of the overlay shape dependence. A new term for electric shorting is derived for groove overlays.
Measurement of thermal neutrons reflection coefficients for two-layer reflectors.
Azimkhani, S; Zolfagharpour, F; Ziaie, F
2018-05-01
In this research, thermal neutrons albedo coefficients and relative number of excess counts have been measured experimentally for different thicknesses of two-layer reflectors by using 241 Am-Be neutron source (5.2Ci) and BF 3 detector. Our used reflectors consist of two-layer which are combinations of water, graphite, polyethylene, and lead materials. Experimental results reveal that thermal neutron reflection coefficients slightly increased by addition of the second layer. The maximum value of growth for thermal neutrons albedo is obtained for lead-polyethylene compound (0.72 ± 0.01). Also, there is suitable agreement between the experimental values and simulation results by using MCNPX code. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enhanced absorption of TM waves in conductive nanoparticles structure
NASA Astrophysics Data System (ADS)
Mousa, H. M.; Shabat, M. M.; Ouda, A. K.; Schaadt, D. M.
2018-05-01
This paper tackles anti-reflection coating structure for silicon solar cell where conductive nanoparticle (CNP) film is sandwiched between a semi-infinite glass cover and a semi-infinite silicon substrate. The transmission and reflection coefficients are derived by the transfer matrix method and simulated for values of unit cell sizes, gab widths in visible and near-infrared radiation. We also illustrated the dependence of the absorption, transmission and reflection coefficients on several angles of incidence of the transverse magnetic polarized (TM) waves. We found out that reflection decreases by the increase of incident angle to 50∘. If nanoparticles are suitably located and sized at gab width of 3.5 nm, unit cell of 250 nm and CNP layer thickness of 150 nm, the absorptivity of the structure achieves 100%.
Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media
NASA Astrophysics Data System (ADS)
Wang, Hongwei; Peng, Suping
2016-01-01
This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.
Theoretical studies of floating-reference method for NIR blood glucose sensing
NASA Astrophysics Data System (ADS)
Shi, Zhenzhi; Yang, Yue; Zhao, Huijuan; Chen, Wenliang; Liu, Rong; Xu, Kexin
2011-03-01
Non-invasive blood glucose monitoring using NIR light has been suffered from the variety of optical background that is mainly caused by the change of human body, such as the change of temperature, water concentration, and so on. In order to eliminate these internal influence and external interference a so called floating-reference method has been proposed to provide an internal reference. From the analysis of the diffuse reflectance spectrum, a position has been found where diffuse reflection of light is not sensitive to the glucose concentrations. Our previous work has proved the existence of reference position using diffusion equation. However, since glucose monitoring generally use the NIR light in region of 1000-2000nm, diffusion equation is not valid because of the high absorption coefficient and small source-detector separations. In this paper, steady-state high-order approximate model is used to further investigate the existence of the floating reference position in semi-infinite medium. Based on the analysis of different optical parameters on the impact of spatially resolved reflectance of light, we find that the existence of the floating-reference position is the result of the interaction of optical parameters. Comparing to the results of Monte Carlo simulation, the applicable region of diffusion approximation and higher-order approximation for the calculation of floating-reference position is discussed at the wavelength of 1000nm-1800nm, using the intralipid solution of different concentrations. The results indicate that when the reduced albedo is greater than 0.93, diffusion approximation results are more close to simulation results, otherwise the high order approximation is more applicable.
Reliability of the ecSatter Inventory as a tool to measure eating competence.
Stotts, Jodi L; Lohse, Barbara
2007-01-01
To examine the reliability of the ecSatter Inventory (ecSI), a measure of eating competence. Self-report questionnaires were administered in person or by mail. Retesting occurred 2 to 6 weeks after completion of the first questionnaire. Both administrations of the questionnaire were completed by 259 participants who were mostly food secure, white females with some college education; mean age was 26.9 +/- 10.4 years. Test-retest reliability and internal consistency. Spearman's rank correlation coefficients to estimate test-retest reliability and Cronbach alpha coefficients to estimate internal consistency. Spearman's rank correlation coefficient for ecSI total score was 0.68; subscale coefficients were 0.70 for eating attitudes, 0.70 for contextual skills, 0.65 for food acceptance, and 0.52 for internal regulation. Cronbach alpha coefficient for ecSI total score was 0.77. Subscale alphas coefficients were 0.80 for eating attitudes, 0.69 for contextual skills, 0.68 for food acceptance, and 0.66 for internal regulation. This study provides psychometric evidence about the reliability of ecSI as a measure of eating competence in this sample. Although some ecSI items may require revision, results suggest that the instrument may be used to evaluate nutrition education designed to improve eating competence.
On the possibility of spectroscopic cancer diagnostics
NASA Astrophysics Data System (ADS)
Khairullina, Alphiya Y.; Oleinik, Tatiana V.; Korolevich, Alexander N.; Sevkovsky, Yacob I.
1993-07-01
The diffuse reflection and transmission coefficients, other optical parameters of normal and cancer tissues have been investigated in visible and infrared spectra. The optimal spectral range for distinguishing the cancer is found. The spectral absorption coefficients and size of cells parameter determined using our approach are analyzed to be different for normal and pathological tissues. The method is proposed for calculating the diffuse reflectance and transmittance of multiple tissue layers. The investigations have shown that cancer may be distinguished under the layers of skin and normal tissue.
VizieR Online Data Catalog: Absolute Refletivity of Jupiter and Saturn (Mendikoa+ 2017)
NASA Astrophysics Data System (ADS)
Mendikoa, I.; Sanchez-Lavega, A.; Perez-Hoyos, S.; Hueso, R.; Rojas, J. F.; Lopez-Santiago, J.
2017-08-01
Overall mean absolute reflectivity I/F of Jupiter and Saturn. Scans at central meridian are given versus latitude from observations at Calar Alto observatory between 2012 and 2016. In addition, Minnaert coefficients (I/F)0 and k are given, determining the I/F variation with the cosines of the incidence and emission angles, where (I/F)0 represents the absolute reflectivity in absence of darkening effects at nadir viewing and k is the limb-darkening coefficient. (12 data files).
Theoretical calculations of the self-reflection coefficients for some species of ions
NASA Astrophysics Data System (ADS)
Luo, Z. M.; Gou, C.; Hou, Q.
2002-06-01
The bipartition model of ion transport has been applied to study the self-reflection coefficients of some species of ion beams which are normally incident to a surface. The computational results has been compared with the results taken from Eckstein and Biersack and the compilation data given by Thomas, Janev and Smith. It was found that there are in reasonable agreement between the results given by the bipartition model and the results given by Monte Carlo method.
NASA Astrophysics Data System (ADS)
Milov, V. R.; Kogan, L. P.; Gorev, P. V.; Kuzmichev, P. N.; Egorova, P. A.
2017-01-01
In this paper, we consider the question of the plane electromagnetic wave incidence at the inhomogeneity with an arbitrary profile of the relative permittivity disturbance. Module estimation of Neumann series remainder is carried out for the field of the wave passing through the nonhomogeneous section. Based on that, the number of summands in the series, required to calculate with a given accuracy, the transmission and reflection coefficients have been determined.
2009-10-09
trains the coefficients c of a finite impulse response (FIR) filter by gradient descent. The coefficients at iteration k + 1 are computed with the update... absorption . Figure 9 shows the reflection loss as a function of grazing angle for this bottom model. Note that below 30◦ this bottom model predicts...less than 1 dB loss per ray bounce. 11 Figure 9: Jackson bottom reflection loss for sand at 15 kHz Absorption Loss The absorption loss in the medium was
NASA Technical Reports Server (NTRS)
Sharma, P. K.; Knuth, E. L.
1977-01-01
Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included.
NASA Astrophysics Data System (ADS)
Cornet, C.; Davies, R.
2008-02-01
Radiative transfer simulations of an isolated deep convective cloud reconstructed with stereo-techniques from the Multiangle Imaging Spectroradiometer (MISR) are compared with the reflectances measured at the nine MISR viewing angles. The simulations were done using a three dimensional Monte Carlo model, in which ocean reflectance, aerosol and Rayleigh scattering were prescribed to match the surrounding clear-sky MISR measurements. Making reasonable assumptions regarding the vertical and horizontal distribution of the volume extinction coefficient, we were able to reproduce the MISR measurements with the 3D radiative calculations. While the uniqueness of the these distributions cannot be proven, they all lead to retrievals of much larger cloud optical thickness and cloud water content than for a 1D retrieval. Averaged over the cloud, the difference was a factor of about 3, rising to 9 locally. This is a consequence of horizontal photon transport that serves to highlight the inadequacy of 1D retrievals for the case of deep convective cloud. Concerning the internal cloud properties, we noticed the angular distribution of modeled radiances did not match the measured radiances when an ice crystal phase function was applied. Better estimates of the optical depths and water contents of deep convective clouds appear to be obtainable by integrating an estimate of the extinction coefficient over the vertical cloud extent (when this can assessed) than by attempting to invert the radiance measured from a single-angle view using 1D theory.
Quantitative analysis of bayberry juice acidity based on visible and near-infrared spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao Yongni; He Yong; Mao Jingyuan
Visible and near-infrared (Vis/NIR) reflectance spectroscopy has been investigated for its ability to nondestructively detect acidity in bayberry juice. What we believe to be a new, better mathematic model is put forward, which we have named principal component analysis-stepwise regression analysis-backpropagation neural network (PCA-SRA-BPNN), to build a correlation between the spectral reflectivity data and the acidity of bayberry juice. In this model, the optimum network parameters,such as the number of input nodes, hidden nodes, learning rate, and momentum, are chosen by the value of root-mean-square (rms) error. The results show that its prediction statistical parameters are correlation coefficient (r) ofmore » 0.9451 and root-mean-square error of prediction(RMSEP) of 0.1168. Partial least-squares (PLS) regression is also established to compare with this model. Before doing this, the influences of various spectral pretreatments (standard normal variate, multiplicative scatter correction, S. Golay first derivative, and wavelet package transform) are compared. The PLS approach with wavelet package transform preprocessing spectra is found to provide the best results, and its prediction statistical parameters are correlation coefficient (r) of 0.9061 and RMSEP of 0.1564. Hence, these two models are both desirable to analyze the data from Vis/NIR spectroscopy and to solve the problem of the acidity prediction of bayberry juice. This supplies basal research to ultimately realize the online measurements of the juice's internal quality through this Vis/NIR spectroscopy technique.« less
An urban energy performance evaluation system and its computer implementation.
Wang, Lei; Yuan, Guan; Long, Ruyin; Chen, Hong
2017-12-15
To improve the urban environment and effectively reflect and promote urban energy performance, an urban energy performance evaluation system was constructed, thereby strengthening urban environmental management capabilities. From the perspectives of internalization and externalization, a framework of evaluation indicators and key factors that determine urban energy performance and explore the reasons for differences in performance was proposed according to established theory and previous studies. Using the improved stochastic frontier analysis method, an urban energy performance evaluation and factor analysis model was built that brings performance evaluation and factor analysis into the same stage for study. According to data obtained for the Chinese provincial capitals from 2004 to 2013, the coefficients of the evaluation indicators and key factors were calculated by the urban energy performance evaluation and factor analysis model. These coefficients were then used to compile the program file. The urban energy performance evaluation system developed in this study was designed in three parts: a database, a distributed component server, and a human-machine interface. Its functions were designed as login, addition, edit, input, calculation, analysis, comparison, inquiry, and export. On the basis of these contents, an urban energy performance evaluation system was developed using Microsoft Visual Studio .NET 2015. The system can effectively reflect the status of and any changes in urban energy performance. Beijing was considered as an example to conduct an empirical study, which further verified the applicability and convenience of this evaluation system. Copyright © 2017 Elsevier Ltd. All rights reserved.
A new fifth parameter for transverse isotropy III: reflection and transmission coefficients
NASA Astrophysics Data System (ADS)
Kawakatsu, Hitoshi
2018-04-01
The effect of the newly defined fifth parameter, ηκ, of transverse anisotropy to the reflection and transmission coefficients, especially for P-to-S and S-to-P conversion coefficients, is examined. While ηκ systematically affects the P-to-S and S-to-P conversions, in the incidence angle range of the practical interest of receiver function studies, the effect may be asymmetric in a sense that P-wave receiver function is affected more than S-receiver function in terms of amplitude. This asymmetry may help resolving ηκ via extensive receiver function analysis. It is also found that P-wave anisotropy significantly influences P-to-S and S-to-P conversion coefficients that complicates the interpretation of receiver functions, because, for isotropic media, we typically attribute the primary receiver function signals to S-wave velocity changes but not to P-wave changes.
Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan
2018-01-22
Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.
NASA Astrophysics Data System (ADS)
Li, Yan; Hu, Jianyu; Li, Jing; Fu, Bin; Ma, Liming
2003-05-01
A possible mechanism to explain the correlation between submarine topography and the direct sunlight specially reflected from the sea surface with variable roughness caused by the bottom-current effect was suggested fifteen years ago by Henning et al. in International Journal of Remote Sensing, 9, 45-67, after comparing radar satellite image and Skylab satellite photograph of the North American east coast (Nantucket Shoals) with submarine relief features. A case study is carried out in the famous sand waves field located at the Taiwan banks of Taiwan Strait in August 1998. The TM images, either visible bands (TM1, TM2, TM3) or near infrared bands (TM4, TM5, TM7), shows submarine relief features for sand waves, with wavelength of 300 to 2000 meters, riding on the lager scale sand ridges and channel system. Sea truth data including 660 nm beam attenuation coefficient profiles were conducted in the same period. We compare signals of TM images, attenuation coefficient profiles, and sounding maps of the Taiwan Bands. The subsurface upwelling signals with contributions of the water column and the bottom, either estimated by single or quasi-single-scattering theory or revealed by the TM images after removing the contribution of direct sunlight reflected signals from sea surface, were too weak to distinguish the ridges and troughs of bedforms especially for red and near infrared bands. However, the direct sunlight specially reflected signals from the sea surface, approximately at same level in water-leaving reflectance not only for visible bands (TM1, TM2, TM3) but also for near infrared bands (TM4, TM5, TM7), was the major submarine bottom topography signals especially for those pixels towards the direction of the sun azimuth. Following a physical description for the lee waves appeared on free surface when the current flows round an underwater obstacle, the direct sunlight reflected signals related wave face slope, is dominated by the height and depth of sand waves and sand ridges, and current speed of the flows over those bedforms. The direct sunlight reflected signals from the sea surface could be regarded as a powerful tool to detect bedforms and other underwater obstacles.
Internal additive noise effects in stochastic resonance using organic field effect transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Yoshiharu; Asakawa, Naoki; Matsubara, Kiyohiko
Stochastic resonance phenomenon was observed in organic field effect transistor using poly(3-hexylthiophene), which enhances performance of signal transmission with application of noise. The enhancement of correlation coefficient between the input and output signals was low, and the variation of correlation coefficient was not remarkable with respect to the intensity of external noise, which was due to the existence of internal additive noise following the nonlinear threshold response. In other words, internal additive noise plays a positive role on the capability of approximately constant signal transmission regardless of noise intensity, which can be said “homeostatic” behavior or “noise robustness” against externalmore » noise. Furthermore, internal additive noise causes emergence of the stochastic resonance effect even on the threshold unit without internal additive noise on which the correlation coefficient usually decreases monotonically.« less
Pressure broadening and pressure shift of diatomic iodine at 675 nm
NASA Astrophysics Data System (ADS)
Wolf, Erich N.
Doppler-limited, steady-state, linear absorption spectra of 127 I2 (diatomic iodine) near 675 nm were recorded with an internally-referenced wavelength modulation spectrometer, built around a free-running diode laser using phase-sensitive detection, and capable of exceeding the signal-to-noise limit imposed by the 12-bit data acquisition system. Observed I2 lines were accounted for by published spectroscopic constants. Pressure broadening and pressure shift coefficients were determined respectively from the line-widths and line-center shifts as a function of buffer gas pressure, which were determined from nonlinear regression analysis of observed line shapes against a Gaussian-Lorentzian convolution line shape model. This model included a linear superposition of the I2 hyperfine structure based on changes in the nuclear electric quadrupole coupling constant. Room temperature (292 K) values of these coefficients were determined for six unblended I 2 lines in the region 14,817.95 to 14,819.45 cm-1 for each of the following buffer gases: the atoms He, Ne, Ar, Kr, and Xe; and the molecules H2, D2, N2, CO2, N2O, air, and H2O. These coefficients were also determined at one additional temperature (388 K) for He and CO2, and at two additional temperatures (348 and 388 K) for Ar. Elastic collision cross-sections were determined for all pressure broadening coefficients in this region. Room temperature values of these coefficients were also determined for several low-J I2 lines in the region 14,946.17 to 14,850.29 cm-1 for Ar. A line shape model, obtained from a first-order perturbation solution of the time-dependent Schrodinger equation for randomly occurring interactions between a two-level system and a buffer gas treated as step-function potentials, reveals a relationship between the ratio of pressure broadening to pressure shift coefficients and a change in the wave function phase-factor, interpreted as reflecting the "cause and effect" of state-changing events in the microscopic domain. Collision cross-sections determined from this model are interpreted as reflecting the inelastic nature of collision-induced state-changing events. A steady-state kinetic model for the two-level system compatible with the Beer-Lambert law reveals thermodynamic constraints on the ensemble-average state-changing rates and collision cross-sections, and leads to the proposal of a relationship between observed asymmetric line shapes and irreversibility in the microscopic domain.
Material For Self-Q-Switching Mirrors For Solid State Laser (MSMSSL)
NASA Astrophysics Data System (ADS)
Wolf, L.; Walocha, J.; Drobnik, A.
1983-09-01
Vanadium dioxide (V02) film exhibits semiconductor-to-metal transition at temperature, Tt near 340 K. The transition is accompanied by changes in optical transmission and relection. In this paper the reflected light spectra were experimentally determined at the two temperatures below and above Tt (300 and 360 K) using film thickness as the parameter. Then we calculated the ratio, Kλ , of reflection coefficient, Rm, in metallic phase to reflection coefficient, Rsc, in semiconductor phase. The film for which the maximum Kλ was observed at λ =1.06μm applied as a mirror in Nd:glass laser. The laser generated giant pulse with duration time at about 50 ns.
Hosten, Bernard; Moreau, Ludovic; Castaings, Michel
2007-06-01
The paper presents a Fourier transform-based signal processing procedure for quantifying the reflection and transmission coefficients and mode conversion of guided waves diffracted by defects in plates made of viscoelastic materials. The case of the S(0) Lamb wave mode incident on a notch in a Perspex plate is considered. The procedure is applied to numerical data produced by a finite element code that simulates the propagation of attenuated guided modes and their diffraction by the notch, including mode conversion. Its validity and precision are checked by the way of the energy balance computation and by comparison with results obtained using an orthogonality relation-based processing method.
Qu, Yanfei; Ma, Yongwen; Wan, Jinquan; Wang, Yan
2018-06-01
The silicon oil-air partition coefficients (K SiO/A ) of hydrophobic compounds are vital parameters for applying silicone oil as non-aqueous-phase liquid in partitioning bioreactors. Due to the limited number of K SiO/A values determined by experiment for hydrophobic compounds, there is an urgent need to model the K SiO/A values for unknown chemicals. In the present study, we developed a universal quantitative structure-activity relationship (QSAR) model using a sequential approach with macro-constitutional and micromolecular descriptors for silicone oil-air partition coefficients (K SiO/A ) of hydrophobic compounds with large structural variance. The geometry optimization and vibrational frequencies of each chemical were calculated using the hybrid density functional theory at the B3LYP/6-311G** level. Several quantum chemical parameters that reflect various intermolecular interactions as well as hydrophobicity were selected to develop QSAR model. The result indicates that a regression model derived from logK SiO/A , the number of non-hydrogen atoms (#nonHatoms) and energy gap of E LUMO and E HOMO (E LUMO -E HOMO ) could explain the partitioning mechanism of hydrophobic compounds between silicone oil and air. The correlation coefficient R 2 of the model is 0.922, and the internal and external validation coefficient, Q 2 LOO and Q 2 ext , are 0.91 and 0.89 respectively, implying that the model has satisfactory goodness-of-fit, robustness, and predictive ability and thus provides a robust predictive tool to estimate the logK SiO/A values for chemicals in application domain. The applicability domain of the model was visualized by the Williams plot.
NASA Astrophysics Data System (ADS)
Song, Ho Seung; Ghergherehchi, Mitra; Oh, Seyoung; Chai, Jong Seo
2017-03-01
We design a stripline-type Wilkinson power divider and combiner for a 3.2 kW solid-state radio frequency (RF) amplifier module and optimize this setup. A Teflon-based printed circuit board is used in the power combiner to transmit high RF power efficiently in the limited space. The reflection coefficient (S11) and insertion loss (S21) related to impedance matching are characterized to determine the optimization process. The resulting two-way divider reflection coefficient and insertion loss were -48.00 dB and -3.22 dB, respectively. The two-way power combiner reflection coefficient and insertion loss were -20 dB and -3.3 dB, respectively. Moreover, the 3.2 kW solid-state RF power test results demonstrate that the proposed power divider and combiner exhibit a maximum efficiency value of 71.3% (combiner loss 5%) at 48 V supply voltage.
NASA Technical Reports Server (NTRS)
Cho, Y. C.
1983-01-01
Rigorous solutions are presented for sound diffraction in a circular cylinder with axial discontinuities of the wall admittance (or impedance). Analytical expressions are derived for the reflection and the transmission coefficients for duct modes. The results are discussed quantitatively in the limits of small admittance shifts (delta) and of low frequencies (ka). One of the results is the low frequency behavior of the reflection coefficient R(o) sub 00 of the fundamental mode. For the mode of a hardwall duct reflected from the junction with a softwall duct, (R(o) sub oo yields - (1-square root of (ka) square root of (2/i delta)); this result is in contrast to the frequency dependence of the reflection from the open end of a hardwall duct, for which R(o) sub oo yields - 1-(ka) squared/2 .
Use of complex frequency plane to design broadband and sub-wavelength absorbers.
Romero-García, V; Theocharis, G; Richoux, O; Pagneux, V
2016-06-01
The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-wavelength resonators is studied in this work. In particular, only single mode reflected waves are considered, an approximation which is accurate in this low frequency regime. A method of analysis of absorption that uses the structure of the reflection coefficient in the complex frequency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of poles and zeros that are complex conjugate and which have imaginary parts linked to the energy leakage by radiation. When losses are introduced and balanced to the leakage, the critical coupling condition is satisfied and total absorption is obtained. Examples of a slot resonator and of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total absorption.
Reflectance confocal microscopy of optical phantoms
Jacques, Steven L.; Wang, Bo; Samatham, Ravikant
2012-01-01
A reflectance confocal scanning laser microscope (rCSLM) operating at 488-nm wavelength imaged three types of optical phantoms: (1) 100-nm-dia. polystyrene microspheres in gel at 2% volume fraction, (2) solid polyurethane phantoms (INO BiomimicTM), and (3) common reflectance standards (SpectralonTM). The noninvasive method measured the exponential decay of reflected signal as the focus (zf) moved deeper into the material. The two experimental values, the attenuation coefficient μ and the pre-exponential factor ρ, were mapped into the material optical scattering properties, the scattering coefficient μs and the anisotropy of scattering g. Results show that μs varies as 58, 8–24, and 130–200 cm-1 for phantom types (1), (2) and (3), respectively. The g varies as 0.112, 0.53–0.67, and 0.003–0.26, respectively. PMID:22741065
NASA Astrophysics Data System (ADS)
Tanaka, Satoru; Tkalčić, Hrvoje
2015-12-01
Frequency-dependent reflection coefficients of P waves at the inner core boundary (ICB) are estimated from the spectral ratios of PKiKP and PcP waves observed by the high-sensitivity seismograph network (Hi-net) in Japan. The corresponding PKiKP reflection locations at the ICB are distributed beneath the western Pacific. At frequencies where noise levels are sufficiently low, spectra of reflection coefficients show four distinct sets of characteristics: a flat spectrum, a spectrum with a significant spectral hole at approximately 1 or 3 Hz, a spectrum with a strong peak at approximately 2 or 3 Hz, and a spectrum containing both a sharp peak and a significant hole. The variety in observed spectra suggests complex lateral variations in ICB properties. To explain the measured differences in frequency characteristics of ICB reflection coefficients, we conduct 2D finite difference simulations of seismic wavefields near the ICB. The models tested in our simulations include a liquid layer and a solid layer above the ICB, as well as sinusoidal and spike-shaped ICB topography with varying heights and scale lengths. We find that the existence of a layer above the ICB can be excluded as a possible explanation for the observed spectra. Furthermore, we find that an ICB topographic model with wavelengths and heights of several kilometers is too extreme to explain our measurements. However, restricting the ICB topography to wavelengths and heights of 1.0-1.5 km can explain the observed frequency-related phenomena. The existence of laterally varying topography may be a sign of lateral variations in inner core solidification.
NASA Astrophysics Data System (ADS)
Rossinskyi, Volodymyr
2018-02-01
The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.
Construct validity and internal consistency in the Leisure Practices Scale (EPL) for adults.
Andrade, Rubian Diego; Schwartz, Gisele Maria; Tavares, Giselle Helena; Pelegrini, Andreia; Teixeira, Clarissa Stefani; Felden, Érico Pereira Gomes
2018-02-01
This study proposes and analyzes the construct validity and internal consistency of the Leisure Practices Scale (EPL). This survey seeks to identify the preferences and involvement in in different leisure practices in adults. The instrument was formed based on the cultural leisure content (artistic, manual, physical, sports, intellectual, social, tourist, virtual and contemplation/leisure). The validation process was conducted with: a) content analysis by leisure experts, who evaluated the instrument for clarity of language and practical relevance, which allowed the calculation of the content validity coefficient (CVC); b) reproducibility test-retest with 51 subjects to calculate the temporal variation coefficient; c) internal consistency analysis with 885 participants. The evaluation presented appropriate coefficients, both with respect to language clarity (CVCt = 0.883) and practical relevance (CVCt = 0.879). The reproducibility coefficients were moderate to excellent. The scale showed adequate internal consistency (0.72). The EPL has psychometric quality and acceptable values in its structure, and can be used to investigate adult involvement in leisure activities.
A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability
Kedem, O.; Katchalsky, A.
1961-01-01
A "translation" of the phenomenological permeability coefficients into friction and distribution coefficients amenable to physical interpretation is presented. Expressions are obtained for the solute permeability coefficient ω and the reflection coefficient σ for both non-electrolytic and electrolytic permeants. An analysis of the coefficients is given for loose membranes as well as for dense natural membranes where transport may go through capillaries or by solution in the lipoid parts of the membrane. Water diffusion and filtration and the relation between these and capillary pore radius of the membrane are discussed. For the permeation of ions through the charged membranes equations are developed for the case of zero electrical current in the membrane. The correlation of σ with ω and Lp for electrolytes resembles that for non-electrolytes. In this case ω and σ depend markedly on ion concentration and on the charge density of the membrane. The reflection coefficient may assume negative values indicating anomalous osmosis. An analysis of the phenomena of anomalous osmosis was carried out for the model of Teorell and Meyer and Sievers and the results agree with the experimental data of Loeb and of Grim and Sollner. A set of equations and reference curves are presented for the evaluation of ω and σ in the transport of polyvalent ions through charged membranes. PMID:13752127
NASA Astrophysics Data System (ADS)
Chakrabarti, Aloknath; Mohapatra, Smrutiranjan
2013-09-01
Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates, separated by a gap of finite width, floating horizontally on water of finite depth, are investigated in the present work for a two-dimensional time-harmonic case. Within the frame of linear water wave theory, the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions. Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem. In both the problems, the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates. Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations. The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration. The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.
Electro-Optic Beam Steering Using Non-Linear Organic Materials
1993-08-01
York (SUNY), Buffalo, for potential application to the Hughes electro - optic beam deflector device. Evaluations include electro - optic coefficient...response time, transmission, and resistivity. Electro - optic coefficient measurements were made at 633 nm using a simple reflection technique. The
Reflection and transmission for layered composite materials
NASA Technical Reports Server (NTRS)
Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.
1991-01-01
A layered planar structure consisting of different bianisotropic materials separated by jump-immittance sheets is considered. Reflection and transmission coefficients are determined via a chain-matrix algorithm. Applications are important for radomes and radar-absorbing materials.
Phase-resolved reflectance spectroscopy on layered turbid media
NASA Astrophysics Data System (ADS)
Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.
1995-05-01
In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.
Groups in the radiative transfer theory
NASA Astrophysics Data System (ADS)
Nikoghossian, Arthur
2016-11-01
The paper presents a group-theoretical description of radiation transfer in inhomogeneous and multi-component atmospheres with the plane-parallel geometry. It summarizes and generalizes the results obtained recently by the author for some standard transfer problems of astrophysical interest with allowance of the angle and frequency distributions of the radiation field. We introduce the concept of composition groups for media with different optical and physical properties. Group representations are derived for two possible cases of illumination of a composite finite atmosphere. An algorithm for determining the reflectance and transmittance of inhomogeneous and multi-component atmospheres is described. The group theory is applied also to determining the field of radiation inside an inhomogeneous atmosphere. The concept of a group of optical depth translations is introduced. The developed theory is illustrated with the problem of radiation diffusion with partial frequency distribution assuming that the inhomogeneity is due to depth-variation of the scattering coefficient. It is shown that once reflectance and transmittance of a medium are determined, the internal field of radiation in the source-free atmosphere is found without solving any new equations. The transfer problems for a semi-infinite atmosphere and an atmosphere with internal sources of energy are discussed. The developed theory allows to derive summation laws for the mean number of scattering events underwent by the photons in the course of diffusion in the atmosphere.
Development of landsat-5 thematic mapper internal calibrator gain and offset table
Barsi, J.A.; Chander, G.; Micijevic, E.; Markham, B.L.; Haque, Md. O.
2008-01-01
The National Landsat Archive Production System (NLAPS) has been the primary processing system for Landsat data since U.S. Geological Survey (USGS) Earth Resources Observation and Science Center (EROS) started archiving Landsat data. NLAPS converts raw satellite data into radiometrically and geometrically calibrated products. NLAPS has historically used the Internal Calibrator (IC) to calibrate the reflective bands of the Landsat-5 Thematic Mapper (TM), even though the lamps in the IC were less stable than the TM detectors, as evidenced by vicarious calibration results. In 2003, a major effort was made to model the actual TM gain change and to update NLAPS to use this model rather than the unstable IC data for radiometric calibration. The model coefficients were revised in 2007 to reflect greater understanding of the changes in the TM responsivity. While the calibration updates are important to users with recently processed data, the processing system no longer calculates the original IC gain or offset. For specific applications, it is useful to have a record of the gain and offset actually applied to the older data. Thus, the NLAPS calibration database was used to generate estimated daily values for the radiometric gain and offset that might have been applied to TM data. This paper discusses the need for and generation of the NLAPSIC gain and offset tables. A companion paper covers the application of and errors associated with using these tables.
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui
2017-09-01
Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.
Internal Consistencies of the Original and Revised Beck Depression Inventory.
ERIC Educational Resources Information Center
Beck, Aaron, T.; Steer, Robert A.
1984-01-01
Compared versions of the Beck Depression Inventory in psychiatric patients. The alpha coefficient for 598 inpatients and outpatients on the 1961 version was .88, and the alpha coefficient for 248 outpatients on the 1978 version was .86. Concluded that the internal consistencies of both versions were comparable. (JAC)
Measurement of the absorption coefficient using the sound-intensity technique
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.
Daytime Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo; Matthies, Larry; Bellutta, Paolo
2011-01-01
A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.
NASA Astrophysics Data System (ADS)
Yoshida, Kenichiro; Nishidate, Izumi; Ojima, Nobutoshi; Iwata, Kayoko
2014-01-01
To quantitatively evaluate skin chromophores over a wide region of curved skin surface, we propose an approach that suppresses the effect of the shading-derived error in the reflectance on the estimation of chromophore concentrations, without sacrificing the accuracy of that estimation. In our method, we use multiple regression analysis, assuming the absorbance spectrum as the response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as the predictor variables. The concentrations of melanin and total hemoglobin are determined from the multiple regression coefficients using compensation formulae (CF) based on the diffuse reflectance spectra derived from a Monte Carlo simulation. To suppress the shading-derived error, we investigated three different combinations of multiple regression coefficients for the CF. In vivo measurements with the forearm skin demonstrated that the proposed approach can reduce the estimation errors that are due to shading-derived errors in the reflectance. With the best combination of multiple regression coefficients, we estimated that the ratio of the error to the chromophore concentrations is about 10%. The proposed method does not require any measurements or assumptions about the shape of the subjects; this is an advantage over other studies related to the reduction of shading-derived errors.
Konstantinov effect in helium II
NASA Astrophysics Data System (ADS)
Melnikovsky, L. A.
2008-04-01
The reflection of first and second sound waves by a rigid flat wall in helium II is considered. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at oblique incidence.
Combination of acoustical radiosity and the image source method.
Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho; Jacobsen, Finn
2013-06-01
A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy.
NASA Astrophysics Data System (ADS)
Pavlenko, D. V.; Tkach, D. V.; Danilova-Tret'yak, S. M.; Evseeva, L. E.
2017-05-01
The results of measurements of the thermal diffusivity, thermal conductivity, and heat capacity of VT1-0-grade titanium samples in as-cast, deformed submicrocrystalline, and sintered states are presented. It has been established that the decrease in the thermal conductivity and thermal diffusivity of titanium in the submicrocrystalline and sintered states is associated with the increase in the quantity of defects in the material volume, whereas the increase in the temperature of polymorphic transformation of titanium is connected with the dissolution of oxygen in its lattice. The results of investigation of the coefficient of thermal linear expansion of titanium in the macrocrystalline and submicrocrystalline states are presented. The decrease in the coefficient of thermal linear expansion of titanium of submicrocrystalline structure has been established, which may point to the decrease in its melting temperature. It is shown that annealing of samples in a submicrocrystalline state leads to the growth of the temperature coefficient of linear expansion, bringing its value closer to the temperature coefficient of linear expansion of titanium in the equilibrium state. Studies by the method of back reflection photography in a KROS chamber made it possible to estimate the temperature of the start of VT1-0-grade titanium recrystallization after intense plastic deformation by the twist extrusion method. The decrease in the temperature of the start of recrystallization for titanium in the deformed submicrocrystalline state has been established. Based on the trends revealed, optimum regimes of thermal treatment of VT1-0-grade titanium for removing internal stresses and preserving the submicrocrystalline structure have been established.
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-01-01
Photoacoustic spectroscopy has been used to measure optical absorption coefficient and the application of tens of wavelength bands in photoacoustic spectroscopy was reported. Using optical methods, absorption-related information is, generally, derived from reflectance or transmittance values. Hence measurement accuracy is limited for highly absorbing samples where the reflectance or transmittance is too low to give reasonable signal-to-noise ratio. In this context, this paper proposes and illustrates a hyperspectral photoacoustic spectroscopy system to measure the absorption-related properties of highly absorbing samples directly. The normalized optical absorption coefficient spectrum of the highly absorbing iris is acquired using an optical absorption coefficient standard. The proposed concepts and the feasibility of the developed diagnostic medical imaging system are demonstrated using fluorescent microsphere suspensions and porcine eyes as test samples.
Skinner, Ian W; Hübscher, Markus; Moseley, G Lorimer; Lee, Hopin; Wand, Benedict M; Traeger, Adrian C; Gustin, Sylvia M; McAuley, James H
2017-08-15
Eyetracking is commonly used to investigate attentional bias. Although some studies have investigated the internal consistency of eyetracking, data are scarce on the test-retest reliability and agreement of eyetracking to investigate attentional bias. This study reports the test-retest reliability, measurement error, and internal consistency of 12 commonly used outcome measures thought to reflect the different components of attentional bias: overall attention, early attention, and late attention. Healthy participants completed a preferential-looking eyetracking task that involved the presentation of threatening (sensory words, general threat words, and affective words) and nonthreatening words. We used intraclass correlation coefficients (ICCs) to measure test-retest reliability (ICC > .70 indicates adequate reliability). The ICCs(2, 1) ranged from -.31 to .71. Reliability varied according to the outcome measure and threat word category. Sensory words had a lower mean ICC (.08) than either affective words (.32) or general threat words (.29). A longer exposure time was associated with higher test-retest reliability. All of the outcome measures, except second-run dwell time, demonstrated low measurement error (<6%). Most of the outcome measures reported high internal consistency (α > .93). Recommendations are discussed for improving the reliability of eyetracking tasks in future research.
Lee, Chin-Pang; Chiu, Yu-Wen; Chu, Chun-Lin; Chen, Yu; Jiang, Kun-Hao; Chen, Jiun-Liang; Chen, Ching-Yen
2016-12-01
The aging males' symptoms (AMS) scale is an instrument used to determine the health-related quality of life in adult and elderly men. The purpose of this study was to synthesize internal consistency (Cronbach's alpha) and test-retest reliability for the AMS scale and its three subscales. Of the 123 studies reviewed, 12 provided alpha coefficients which were then used in the meta-analyses of internal consistency. Seven of the 12 included studies provided test-retest coefficients, and these were used in the meta-analyses of test-retest reliability. The AMS scale had excellent internal consistency [α = 0.89 (95% CI 0.88-0.90)]; the mean alpha estimates across the AMS subscales ranged from 0.79 to 0.82. The AMS scale also had good test-retest reliability [r = 0.85 (95% CI 0.82-0.88]; the test-retest reliability coefficients of the AMS subscales ranged from 0.76 to 0.83. There was significant heterogeneity among the included studies. The AMS scale and the three subscales had fairly good internal consistency and test-retest reliability. Future psychometric studies of the AMS scale should report important characteristics of the participants, details of item scores, and test-retest reliability.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
The role of intra-NAPL diffusion on mass transfer from MGP residuals
NASA Astrophysics Data System (ADS)
Shafieiyoun, Saeid; Thomson, Neil R.
2018-06-01
An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients ( 6 cm/day) can result in diffusion-limited dissolution.
[Estimators of internal consistency in health research: the use of the alpha coefficient].
da Silva, Franciele Cascaes; Gonçalves, Elizandra; Arancibia, Beatriz Angélica Valdivia; Bento, Gisele Graziele; Castro, Thiago Luis da Silva; Hernandez, Salma Stephany Soleman; da Silva, Rudney
2015-01-01
Academic production has increased in the area of health, increasingly demanding high quality in publications of great impact. One of the ways to consider quality is through methods that increase the consistency of data analysis, such as reliability which, depending on the type of data, can be evaluated by different coefficients, especially the alpha coefficient. Based on this, the present review systematically gathers scientific articles produced in the last five years, which in a methodological manner gave the α coefficient psychometric use as an estimator of internal consistency and reliability in the processes of construction, adaptation and validation of instruments. The identification of the studies was conducted systematically in the databases BioMed Central Journals, Web of Science, Wiley Online Library, Medline, SciELO, Scopus, Journals@Ovid, BMJ and Springer, using inclusion and exclusion criteria. Data analyses were performed by means of triangulation, content analysis and descriptive analysis. It was found that most studies were conducted in Iran (f=3), Spain (f=2) and Brazil (f=2). These studies aimed to test the psychometric properties of instruments, with eight studies using the α coefficient to assess reliability and nine for assessing internal consistency. All studies were classified as methodological research when their objectives were analyzed. In addition, four studies were also classified as correlational and one as descriptive-correlational. It can be concluded that though the α coefficient is widely used as one of the main parameters for assessing internal consistency of questionnaires in health sciences, its use as an estimator of trust of the methodology used and internal consistency has some critiques that should be considered.
Prisms with total internal reflection as solar reflectors
Rabl, Arnulf; Rabl, Veronika
1978-01-01
An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.
Metasurface with interfering Fano resonance: manipulating transmission wave with high efficiency.
Su, Zhaoxian; Song, Kun; Yin, Jianbo; Zhao, Xiaopeng
2017-06-15
We proposed a novel strategy to design a deep subwavelength metasurface with full 2π transmission phase modulation and high transmission efficiency by applying resonators with interfering Fano resonance. Theoretical investigation demonstrates that the transmission efficiency of the resonators depends on the direct transmission coefficient, direct reflection coefficient, and Q factor. When an impedance layer is added in the resonators, the direct transmission and direct reflection coefficients can be facilely manipulated so that the span of the transmission phase around the resonance frequency can be extended to 2π. As a result, we can continuously adjust the transmission phase from 0 to 2π through changing the geometric parameters of the resonators and construct a deep subwavelength metasurface with the resonators to manipulate the transmission wave with high efficiency. We also find that a layer of grating can be used as the impedance layer to change direct transmission and direct reflection in the actual design of the metasurface. The proposed strategy may provide effective guidance to design a deep subwavelength metasurface for controlling a transmitted wave with high efficiency.
Analytical model of diffuse reflectance spectrum of skin tissue
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.
2014-01-01
We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.
NASA Astrophysics Data System (ADS)
Korolenko, P. V.; Nikolaev, I. V.; Ochkin, V. N.; Tskhai, S. N.
2014-04-01
An integral method is considered for recording absorption using three laser beams transmitted through and reflected from an external cavity with the absorbing medium (R-ICOS). The method is the elaboration of a known single-beam ICOS method and allows suppression of the influence of radiation phase fluctuations in the resonator on recording weak absorption spectra. First of all, this reduces high-frequency instabilities and gives a possibility to record spectra during short time intervals. In this method, mirrors of the resonator may have moderate reflection coefficients. Capabilities of the method have been demonstrated by the examples of weak absorption spectra of atmospheric methane and natural gas in a spectral range around 1650 nm. With the mirrors having the reflection coefficients of 0.8-0.99, a spectrum can be recorded for 320 μs with the accuracy sufficient for detecting a background concentration of methane in atmosphere. For the acquisition time of 20 s, the absorption coefficients of ~2×10-8 cm-1 can be measured, which corresponds to a 40 times less molecule concentration than the background value.
Coherent active methods for applications in room acoustics.
Guicking, D; Karcher, K; Rollwage, M
1985-10-01
An adjustment of reverberation time in rooms is often desired, even for low frequencies where passive absorbers fail. Among the active (electroacoustic) systems, incoherent ones permit lengthening of reverberation time only, whereas coherent active methods will allow sound absorption as well. A coherent-active wall lining consists of loudspeakers with microphones in front and adjustable control electronics. The microphones pick up the incident sound and drive the speakers in such a way that the reflection coefficient takes on prescribed values. An experimental device for the one-dimensional case allows reflection coefficients between almost zero and about 1.5 to be realized below 1000 Hz. The extension to three dimensions presents problems, especially by nearfield effects. Experiments with a 3 X 3 loudspeaker array and computer simulations proved that the amplitude reflection coefficient can be adjusted between 10% and 200% for sinusoidal waves at normal and oblique incidence. Future developments have to make the system work with broadband excitation and in more diffuse sound fields. It is also planned to combine the active reverberation control with active diffusion control.
Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio
2012-10-01
The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.
Analysis and measurement of electromagnetic scattering by pyramidal and wedge absorbers
NASA Technical Reports Server (NTRS)
Dewitt, B. T.; Burnside, Walter D.
1986-01-01
By modifying the reflection coefficients in the Uniform Geometrical Theory of Diffraction a solution that approximates the scattering from a dielectric wedge is found. This solution agrees closely with the exact solution of Rawlins which is only valid for a few minor cases. This modification is then applied to the corner diffraction coefficient and combined with an equivalent current and geometrical optics solutions to model scattering from pyramid and wedge absorbers. Measured results from 12 inch pyramid absorbers from 2 to 18 GHz are compared to calculations assuming the returns add incoherently and assuming the returns add coherently. The measured results tend to be between the two curves. Measured results from the 8 inch wedge absorber are also compared to calculations with the return being dominated by the wedge diffraction. The procedures for measuring and specifying absorber performance are discussed and calibration equations are derived to calculate a reflection coefficient or a reflectivity using a reference sphere. Shaping changes to the present absorber designs are introduced to improve performance based on both high and low frequency analysis. Some prototypes were built and tested.
NASA Astrophysics Data System (ADS)
Hoernlein, W.
1988-11-01
Measurements were made of the complex reflection coefficient of hf (10-400 MHz) signals from semiconductor injection lasers supplied with a direct bias current ranging from several milliamperes up to the threshold value or higher. The hf impedance was calculated. The parameters of the equivalent electrical circuit made it possible to predict the modulation characteristics. The impedance corresponding to currents below the lasing threshold was used to find the differential carrier lifetime from the RC constant of the p-n junction of a laser diode. A description of the apparatus is supplemented by an account of the method used in calculation of the electrical parameters and carrier lifetimes. The first results obtained using this apparatus and method are reported.
Grilo, C M
2004-01-01
To examine the factor structure of DSM-IV criteria for obsessive compulsive personality disorder (OCPD) in patients with binge eating disorder (BED). Two hundred and eleven consecutive out-patients with axis I diagnoses of BED were reliably assessed with semi-structured diagnostic interviews. The eight criteria for the OCPD diagnosis were examined with reliability and correlational analyses. Exploratory factor analysis was performed to identify potential components. Cronbach's coefficient alpha for the OCPD criteria was 0.77. Principal components factor analysis with varimax rotation revealed a three-factor solution (rigidity, perfectionism, and miserliness), which accounted for 65% of variance. The DSM-IV criteria for OCPD showed good internal consistency. Exploratory factor analysis, however, revealed three components that may reflect distinct interpersonal, intrapersonal (cognitive), and behavioral features.
Reflection of a shock wave from a thermally accommodating wall - Molecular simulation.
NASA Technical Reports Server (NTRS)
Deiwert, G. S.
1973-01-01
Reflection of a plane shock wave from a wall has been simulated on a microscopic scale using a direct simulation Monte Carlo technique of the type developed by Bird. A monatomic gas model representing argon was used to describe the fluid medium and a simple one-parameter accommodation coefficient model was used to describe the gas-surface interaction. The influence of surface accommodation was studied parametrically by varying the accommodation coefficient from zero to one. Results are presented showing the temporal variations of flow field density, and mass, momentum, and energy fluxes to the wall during the shock wave reflection process. The energy flux was used to determine the wall temperature history. Comparisons with experiment are found to be satisfactory where data are available.
Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng
2015-01-01
Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255
Magnetoanisotropic spin-triplet Andreev reflection in ferromagnet-Ising superconductor junctions
NASA Astrophysics Data System (ADS)
Lv, Peng; Zhou, Yan-Feng; Yang, Ning-Xuan; Sun, Qing-Feng
2018-04-01
We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combining the nonequilibrium Green's function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is π instead of 2 π as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconducting gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance exhibits a strong magnetoanisotropy with period π as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconducting gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection and has an underlying application of π -periodic spin valve in spintronics.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Hixon, Duane R.; Sutliff, Daniel L.
2018-01-01
A rotating rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode coefficient amplitudes and phases were quantified. Early studies using this system found that mode power levels computed from rotating rake measured data would agree with the far-field power levels. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection and previous studies suggested conditions could exist where significant reflections could occur. This paper shows that mounting a second rake to the rotating system, with an offset in both the axial and the azimuthal directions, measures the data necessary to determine the modes propagating in both directions within a duct. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode coefficients at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode coefficients for the modes propagating in both directions within the duct while accounting for the presence of evanescent modes. The validation of the dual-rotating-rake measurements was conducted using data from a combination of experiments and numerical calculations to compute reflection coefficients and other mode coefficient ratios. Compared to results from analytical and numerical computations, the results from dual-rotating-rake measured data followed the expected trends when frequency, mode number, and duct termination geometry were changed.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2015-07-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.
NASA Technical Reports Server (NTRS)
Krull, H George; Beale, William T
1956-01-01
Internal performance data on a short exhaust nozzle designed by the method of characteristics were obtained over a range of pressure ratios from 1.5 to 22. The peak thrust coefficient was not affected by a shortened divergent section, but it occurred at lower pressure ratios due to reduction in expansion ratio. This nozzle contour based on characteristics solution gave higher thrust coefficients than a conical convergent-divergent nozzle of equivalent length. Abrupt-inlet sections permitted a reduction in nozzle length without a thrust-coefficient reduction.
International trends in forest products consumption: is there convergence?
Joseph Buongiorno
2009-01-01
International data from 1961 to 2005 showed that the coefficient of variation of consumption per- capita across countries had tended to decrease over time for all forest products except sawnwood. This convergence of per-capita consumption was confirmed by the trends in Theil's inequality coefficients: the distribution of forest products consumption across...
Reflection and refraction of hydromagnetic waves at the magnetopause
NASA Technical Reports Server (NTRS)
Verzariu, P.
1973-01-01
Reflection and transmission coefficients of MHD waves are obtained at a stable, plane interface which separates two compressible, perfectly conducting media in relative motion to each other. The coefficients are evaluated for representative conditions of the quiet-time, near-earth magnetopause. The transmission coefficient averaged over a hemispherical distribution of incident waves is found to be 1-2%. Yet the magnitude of the energy flux deposited into the magnetosphere in a day averaged over a hemispherical distribution of waves having amplitudes of say 2-3 gamma, is estimated to be of the order 10 to the 22-nd power erg. Therefore the energy input of MHD waves must contribute significantly to the energy budget of the magnetosphere. The assumption that the boundary surface is a tangential discontinuity with no curvature limits the present theory to hydromagnetic frequencies higher than about .1 Hz.
NASA Astrophysics Data System (ADS)
McFarquhar, G. M.; Finlon, J.; Um, J.; Nesbitt, S. W.; Borque, P.; Chase, R.; Wu, W.; Morrison, H.; Poellot, M.
2017-12-01
Parameterizations of fall speed-dimension (V-D), mass (m)-D and projected area (A)-D relationships are needed for development of model parameterization and remote sensing retrieval schemes. An approach for deriving such relations is discussed here that improves upon previously developed schemes in the following aspects: 1) surfaces are used to characterize uncertainties in derived coefficients; 2) all derived relations are internally consistent; and 3) multiple bulk measures are used to derive parameter coefficients. In this study, data collected by two-dimensional optical array probes (OAPs) installed on the University of North Dakota Citation aircraft during the Mid-Latitude Continental Convective Clouds Experiment (MC3E) and during the Olympic Mountains Experiment (OLYMPEX) are used in conjunction with data from a Nevzorov total water content (TWC) probe and ground-based radar data at S-band to test a novel approach that determines m-D relationships for a variety of environments. A surface of equally realizable a and b coefficients, where m=aDb, in (a,b) phase space is determined using a technique that minimizes the chi-squared difference between both the TWC and radar reflectivity Z derived from the size distributions measured by the OAPs and those directly measured by a TWC probe and radar, accepting as valid all coefficients within a specified tolerance of the minimum chi-squared difference. Because both A and perimeter P can be directly measured by OAPs, coefficients characterizing these relationships are derived using only one bulk parameter constraint derived from the appropriate images. Because terminal velocity parameterizations depend on both A and m, V-D relations can be derived from these self-consistent relations. Using this approach, changes in parameters associated with varying environmental conditions and varying aerosol amounts and compositions can be isolated from changes associated with statistical noise or measurement errors. The applicability of the derived coefficients for a stochastic framework that employs an observationally-constrained dataset to account for coefficient variability within microphysics parameterization schemes is discussed.
Fabrication and Electromagnetic Characterization of Novel Self-Metallized Thin Films
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Cravey, Robin L.; Dudley, Kenneth L.; Fralick, Dion T.; Miner, Gilda A.; Stoakley, Diane M.
2002-01-01
Unique, self-metallized films were investigated for deployable reflector antenna applications at L-band. Polyamic acid resins or soluble polyimides were doped with metal complexes, cast into films, and thermally cured. Each resulting film had a metallic layer on one side, adhering unfailingly to the polymer. Metallization was successful for silver or palladium in 3,3',4,4'-benzophenonetetracarboxylic acid dianhydride (BTDA) and 4,4'- oxydianiline and for gold in BTDA and 2,2-bis[4-(4- aminophenoxy)phenyl]hexafluoropropane (4-BDAF) or the space durable polyimide, 2,2-bis(3,4-dicarboxyphenyl)- hexafluoropropane dianhydride and 4-BDAF (LaRCCP1). Reflectivity, transmissivity, and emissivity were determined, using an HP 8510 Vector Network Analyzer, to within 0.001 precision and accuracy. A custom-made test fixture/positioner, a thru-reflect-line calibration, and calculated reflection coefficients were used. The Ag film proved most suitable for further study, with 0.9957 reflectivity and 0.0042 emissivity. The Pd films were 0.89 reflective and 0.11 emissive; both Au films tested entirely transmissive. Transmission and scanning electron micrographs, S-parameters, and power coefficients are shown.
NASA Astrophysics Data System (ADS)
Tuell, Grady H.; Feygels, Viktor; Kopilevich, Yuri; Weidemann, Alan D.; Cunningham, A. Grant; Mani, Reza; Podoba, Vladimir; Ramnath, Vinod; Park, J. Y.; Aitken, Jen
2005-08-01
Estimation of water column optical properties and seafloor reflectance (532 nm) is demonstrated using recent SHOALS data collected at Fort Lauderdale, Florida (November, 2003). To facilitate this work, the first radiometric calibrations of SHOALS were performed. These calibrations permit a direct normalization of recorded data by converting digitized counts at the output of the SHOALS receivers to input optical power. For estimation of environmental parameters, this normalization is required to compensate for the logarithmic compression of the signals and the finite frequency of the bandpass of the detector/amplifier. After normalization, the SHOALS data are used to estimate the backscattering coefficient, the beam attenuation coefficient, the single-scattering albedo, the VSF asymmetry, and seafloor reflectance by fitting simulated waveforms to actual waveforms measured by the SHOALS APD and PMT receivers. The resulting estimates of these water column optical properties are compared to in-situ measurements acquired at the time of the airborne data collections. Images of green laser bottom reflectance are also presented and compared to reflectance estimated from simultaneously acquired passive spectral data.
Quantum reflection in the linearly downward potential
NASA Astrophysics Data System (ADS)
Chamnan, N.; Krunavakarn, B.
2017-09-01
In this work, the motion of a particle in one dimension under the influence of the linearly downward potential well is studied within the context of the non-relativistic quantum mechanics. The attention is paid on the paradoxical phenomenon of the reflection of a particle that is in contrast between classical and quantum physics. Classically, the reflection effect occurs only at a potential barrier. To demonstrate such counter-intuitive phenomenon, the Schrödinger equation is solved to obtain the reflection coefficient in the scattering state by considering an incident particle that is represented by a monochromatic plane wave having an energy E > 0, propagates freely from left to right, pass through the potential well. The continuity conditions at boundaries give the desired result that is expressed in terms of the Airy functions which depends on the incident energy E, the strength jV 0 j and the range L of the well. The value of the reflection coefficient R lies in the interval 0 < R < 1, and its behavior is the decreasing function with respect to the range L.
Shou, Juan; Ren, Limin; Wang, Haitang; Yan, Fei; Cao, Xiaoyun; Wang, Hui; Wang, Zhiliang; Zhu, Shanzhu; Liu, Yao
2016-04-01
The 12-item Short-Form Health Survey (SF-12) is the abridged practical version of SF-36. This cross-sectional study was aimed to assess the reliability and validity of SF-12 for the health status of Chinese community elderly population. The Chinese community elderly people in Xujiahui district of Shanghai were investigated. The internal consistency reliability was assessed using Cronbach's alpha and split-half reliability coefficients. Construct validity was analyzed using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). Spearman's correlation coefficient (ρ) was used for the evaluation of criterion, convergent, and discriminant validity with Spearman's ρ ≥ 0.4 as satisfactory. Comparisons of the SF-12 summary scores among populations that differed in demographics were performed for discriminant validity. Total 1343 individuals aged ≥60 and <85 years old (response rate: 91.3 %) were analyzed. The Cronbach's α value (0.910) and the split-half reliability coefficient (0.812) reflected satisfactory internal consistency reliability of SF-12. EFA extracted a two-factor model (physical and mental health). About 60.7 % of the total variance was explained by the two factors. CFA showed that the two-factor solution provided a good fit to the data. Good convergent validity and discriminant validity of SF-12 were proved by the correction analyses (Spearman's ρ > 0.4) and the comparisons of the SF-12 summary scores among populations (P < 0.05). SF-12 summary scores were significantly correlated with the SF-36 summary scores (Spearman's ρ > 0.4, P < 0.05). In conclusion, SF-12 had satisfactory reliability and validity in measuring health status of Chinese community elderly population in Xujiahui district of Shanghai.
Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths
NASA Technical Reports Server (NTRS)
Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.
2016-01-01
This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.
Methods for determining the internal thrust of scramjet engine modules from experimental data
NASA Technical Reports Server (NTRS)
Voland, Randall T.
1990-01-01
Methods for calculating zero-fuel internal drag of scramjet engine modules from experimental measurements are presented. These methods include two control-volume approaches, and a pressure and skin-friction integration. The three calculation techniques are applied to experimental data taken during tests of a version of the NASA parametric scramjet. The methods agree to within seven percent of the mean value of zero-fuel internal drag even though several simplifying assumptions are made in the analysis. The mean zero-fuel internal drag coefficient for this particular engine is calculated to be 0.150. The zero-fuel internal drag coefficient when combined with the change in engine axial force with and without fuel defines the internal thrust of an engine.
NASA Astrophysics Data System (ADS)
Fan, Qiang; Huang, Zhenyu; Zhang, Bing; Chen, Dayue
2013-02-01
Properties of discontinuities, such as bolt joints and cracks in the waveguide structures, are difficult to evaluate by either analytical or numerical methods due to the complexity and uncertainty of the discontinuities. In this paper, the discontinuity in a Timoshenko beam is modeled with high-order parameters and then these parameters are identified by using reflection coefficients at the discontinuity. The high-order model is composed of several one-order sub-models in series and each sub-model consists of inertia, stiffness and damping components in parallel. The order of the discontinuity model is determined based on the characteristics of the reflection coefficient curve and the accuracy requirement of the dynamic modeling. The model parameters are identified through the least-square fitting iteration method, of which the undetermined model parameters are updated in iteration to fit the dynamic reflection coefficient curve with the wave-based one. By using the spectral super-element method (SSEM), simulation cases, including one-order discontinuities on infinite- and finite-beams and a two-order discontinuity on an infinite beam, were employed to evaluate both the accuracy of the discontinuity model and the effectiveness of the identification method. For practical considerations, effects of measurement noise on the discontinuity parameter identification are investigated by adding different levels of noise to the simulated data. The simulation results were then validated by the corresponding experiments. Both the simulation and experimental results show that (1) the one-order discontinuities can be identified accurately with the maximum errors of 6.8% and 8.7%, respectively; (2) and the high-order discontinuities can be identified with the maximum errors of 15.8% and 16.2%, respectively; and (3) the high-order model can predict the complex discontinuity much more accurately than the one-order discontinuity model.
Bio-Optical Properties of the Arabian Sea as Determined by In Situ and Sea WiFS Data
NASA Technical Reports Server (NTRS)
Trees, Charles C.
1997-01-01
The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. JGOFS Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces," within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable. The specific technical objectives were: (1) To characterize the vertical distribution of the inherent and apparent optical properties by measuring downwelling and upwelling irradiances, upwelling radiances, scalar irradiance of PAR, and beam transmissions at each station - from these data, spectral diffuse attenuation coefficients, irradiance reflectances, remote sensing reflectances, surface-leaving radiances and beam attenuation coefficients were determined; (2) To characterize the spectral absorption of total particulate, detrital, and dissolved organic material at each station from discrete water samples; (3) To describe the vertical distribution of photoadaptive properties in the water column by measuring profiles of stimulated (SF) and natural (NF) fluorescence and examining relationships between SF and NF as a function of diffuse optical depth, pigment biomass and primary productivity; and (4) To establish locally derived, in-water algorithms relating remote sensing reflectance spectra to diffuse attenuation coefficients, phytoplankton pigment concentrations and primary productivity, through intercomparisons with in situ measurements, for application to SeaWiFS data.
NASA Technical Reports Server (NTRS)
Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong
2011-01-01
Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.
Wang, Shinn-Fwu; Chiu, Ming-Hung; Chen, Wei-Wu; Kao, Fu-Hsi; Chang, Rong-Seng
2009-05-01
A small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry is proposed. In this paper, a small displacement can be obtained only by measuring the variation in phase difference between s- and p-polarization states for the total internal reflection effect. In order to improve the sensitivity, we increase the number of total internal reflections by using a parallelogram prism. The theoretical resolution of the method is better than 0.417 nm. The method has some merits, e.g., high resolution, high sensitivity, and real-time measurement. Also, its feasibility is demonstrated.
Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows
NASA Astrophysics Data System (ADS)
Zhuromskii, V. M.
2018-01-01
The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.
Dew point measurement technique utilizing fiber cut reflection
NASA Astrophysics Data System (ADS)
Kostritskii, S. M.; Dikevich, A. A.; Korkishko, Yu. N.; Fedorov, V. A.
2009-05-01
The fiber optical dew point hygrometer based on change of reflection coefficient for fiber cut has been developed and examined. We proposed and verified the model of condensation detector functioning principle. Experimental frost point measurements on air with different frost points have been performed.
NASA ER-2 Doppler radar reflectivity calibration for the CAMEX project
NASA Technical Reports Server (NTRS)
Caylor, I. J.; Heymsfield, G. M.; Bidwell, S. W.; Ameen, S.
1994-01-01
The NASA ER-2 Doppler radar (EDOP) was flown aboard the ER-2 high-altitude aircraft in September and October 1993 for the Convection and Moisture Experiment. During these flights, the first reliable reflectivity observations were performed with the EDOP instrument. This report details the procedure used to convert real-time engineering data into calibrated radar reflectivity. Application of the calibration results produces good agreement between the EDOP nadir pointing reflectivity and ground truth provided by a National Weather Service WSR-88D radar. The rms deviation between WSR-88D and EDOP is 6.9 dB, while measurements of the ocean surface backscatter coefficient are less than 3 dB from reported scatterometer coefficients. After an initial 30-minute period required for the instrument to reach thermal equilibrium, the radar is stable to better than 0.25 dB during flight. The range performance of EDOP shows excellent agreement with aircraft altimeter and meteorological sounding data.
Srivastava, Nishi; Srivastava, Amit; Srivastava, Sharad; Rawat, Ajay Kumar Singh; Khan, Abdul Rahman
2016-03-01
A rapid, sensitive, selective and robust quantitative densitometric high-performance thin-layer chromatographic method was developed and validated for separation and quantification of syringic acid (SYA) and kaempferol (KML) in the hydrolyzed extracts of Bergenia ciliata and Bergenia stracheyi. The separation was performed on silica gel 60F254 high-performance thin-layer chromatography plates using toluene : ethyl acetate : formic acid (5 : 4: 1, v/v/v) as the mobile phase. The quantification of SYA and KML was carried out using a densitometric reflection/absorption mode at 290 nm. A dense spot of SYA and KML appeared on the developed plate at a retention factor value of 0.61 ± 0.02 and 0.70 ± 0.01. A precise and accurate quantification was performed using linear regression analysis by plotting the peak area vs concentration 100-600 ng/band (correlation coefficient: r = 0.997, regression coefficient: R(2) = 0.996) for SYA and 100-600 ng/band (correlation coefficient: r = 0.995, regression coefficient: R(2) = 0.991) for KML. The developed method was validated in terms of accuracy, recovery and inter- and intraday study as per International Conference on Harmonisation guidelines. The limit of detection and limit of quantification of SYA and KML were determined, respectively, as 91.63, 142.26 and 277.67, 431.09 ng. The statistical data analysis showed that the method is reproducible and selective for the estimation of SYA and KML in extracts of B. ciliata and B. stracheyi. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Using Video Records to Mediate Teaching Interns' Critical Reflection
ERIC Educational Resources Information Center
Scott, Sarah E.; Kucan, Linda; Correnti, Richard; Miller, Leigh A.
2013-01-01
In this study we investigated how the use of video records in a literacy methods course supports the development of reflective practitioners when video is a core element of the course design. Specifically, we detail how interns' video-based reflections provide evidence that the use of video records of teaching interns' promotes the development of…
NASA Technical Reports Server (NTRS)
Richardson, A. J. (Principal Investigator)
1983-01-01
The equivalence of three separate investigations that related LANDSAT digital count (DC) to ground measured reflectance (R) was demonstrated. One investigator related DC data to the cosZ, where Z is the solar zenith angle, for surfaces of constant R. The second investigator corrected the DC data to the solar zenith angle of 39 degrees before relating to surface R. Both of these investigators used LANDSAT 1 and 2 data from overpass dates 1972 through 1977. A third investigator calculated the relation between DC and R based on atmospheric radiative transfer theory. The equation coefficients obtained from these three investigators for all four LANDSAT MSS bands were shown to be equivalent although differences in ground reflectance measurement procedures have created coefficient variations among the three investigations. These relations should be useful for testing atmospheric radiative transfer theory.
Analyzing the international exergy flow network of ferrous metal ores.
Qi, Hai; An, Haizhong; Hao, Xiaoqing; Zhong, Weiqiong; Zhang, Yanbing
2014-01-01
This paper employs an un-weighted and weighted exergy network to study the properties of ferrous metal ores in countries worldwide and their evolution from 2002 to 2012. We find that there are few countries controlling most of the ferrous metal ore exports in terms of exergy and that the entire exergy flow network is becoming more heterogeneous though the addition of new nodes. The increasing of the average clustering coefficient indicates that the formation of an international exergy flow system and regional integration is improving. When we contrast the average out strength of exergy and the average out strength of currency, we find both similarities and differences. Prices are affected largely by human factors; thus, the growth rate of the average out strength of currency has fluctuated acutely in the eleven years from 2002 to 2012. Exergy is defined as the maximum work that can be extracted from a system and can reflect the true cost in the world, and this parameter fluctuates much less. Performing an analysis based on the two aspects of exergy and currency, we find that the network is becoming uneven.
Analyzing the International Exergy Flow Network of Ferrous Metal Ores
Qi, Hai; An, Haizhong; Hao, Xiaoqing; Zhong, Weiqiong; Zhang, Yanbing
2014-01-01
This paper employs an un-weighted and weighted exergy network to study the properties of ferrous metal ores in countries worldwide and their evolution from 2002 to 2012. We find that there are few countries controlling most of the ferrous metal ore exports in terms of exergy and that the entire exergy flow network is becoming more heterogeneous though the addition of new nodes. The increasing of the average clustering coefficient indicates that the formation of an international exergy flow system and regional integration is improving. When we contrast the average out strength of exergy and the average out strength of currency, we find both similarities and differences. Prices are affected largely by human factors; thus, the growth rate of the average out strength of currency has fluctuated acutely in the eleven years from 2002 to 2012. Exergy is defined as the maximum work that can be extracted from a system and can reflect the true cost in the world, and this parameter fluctuates much less. Performing an analysis based on the two aspects of exergy and currency, we find that the network is becoming uneven. PMID:25188407
Experimental research on friction coefficient between grain bulk and bamboo clappers
NASA Astrophysics Data System (ADS)
Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong
2017-12-01
A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.
NASA Astrophysics Data System (ADS)
Rathsam, Jonathan
This dissertation seeks to advance the current state of computer-based sound field simulations for room acoustics. The first part of the dissertation assesses the reliability of geometric sound-field simulations, which are approximate in nature. The second part of the dissertation uses the rigorous boundary element method (BEM) to learn more about reflections from finite reflectors: planar and non-planar. Acoustical designers commonly use geometric simulations to predict sound fields quickly. Geometric simulation of reflections from rough surfaces is still under refinement. The first project in this dissertation investigates the scattering coefficient, which quantifies the degree of diffuse reflection from rough surfaces. The main result is that predicted reverberation time varies inversely with scattering coefficient if the sound field is nondiffuse. Additional results include a flow chart that enables acoustical designers to gauge how sensitive predicted results are to their choice of scattering coefficient. Geometric acoustics is a high-frequency approximation to wave acoustics. At low frequencies, more pronounced wave phenomena cause deviations between real-world values and geometric predictions. Acoustical designers encounter the limits of geometric acoustics in particular when simulating the low frequency response from finite suspended reflector panels. This dissertation uses the rigorous BEM to develop an improved low-frequency radiation model for smooth, finite reflectors. The improved low frequency model is suggested in two forms for implementation in geometric models. Although BEM simulations require more computation time than geometric simulations, BEM results are highly accurate. The final section of this dissertation uses the BEM to investigate the sound field around non-planar reflectors. The author has added convex edges rounded away from the source side of finite, smooth reflectors to minimize coloration of reflections caused by interference from boundary waves. Although the coloration could not be fully eliminated, the convex edge increases the sound energy reflected into previously nonspecular zones. This excess reflected energy is marginally audible using a standard of 20 dB below direct sound energy. The convex-edged panel is recommended for use when designers want to extend reflected energy spatially beyond the specular reflection zone of a planar panel.
Water column attenuation coefficient estimations in Alqueva reservoir
NASA Astrophysics Data System (ADS)
Potes, Miguel; João Costa, Maria; Salgado, Rui; Rodrigues, Gonçalo; Bortoli, Daniele
2017-04-01
The vertical structure of the underwater radiative absorption plays an important role in the thermal dynamics of the water surface layer and consequently on the energy budget at the water-lake interface. Thus, a better estimation of the irradiance at different levels is relevant to understand the lake-air interactions. The main purpose of this dataset of measurements is to estimate the spectral attenuation coefficient of the water column. The apparatus exploited in this work are composed of an optical cable linked to a portable FieldSpec UV/VNIR (ASD). This version has hemispherical field-of-view (FOV) of 180° allowing for measurements under all range of solar zenith. In situ water spectral reflectances were also obtained to help in the validation of satellite water leaving reflectances obtained from satellite spectroradiometers. It is intention of the team to develop an algorithm to derive the attenuation coefficient from satellite data in this reservoir.
Quantifying relative importance: Computing standardized effects in models with binary outcomes
Grace, James B.; Johnson, Darren; Lefcheck, Jonathan S.; Byrnes, Jarrett E.K.
2018-01-01
Results from simulation studies show that both the LT and OE methods of standardization support a similarly-broad range of coefficient comparisons. The LT method estimates effects that reflect underlying latent-linear propensities, while the OE method computes a linear approximation for the effects of predictors on binary responses. The contrast between assumptions for the two methods is reflected in persistently weaker standardized effects associated with OE standardization. Reliance on standard deviations for standardization (the traditional approach) is critically examined and shown to introduce substantial biases when predictors are non-Gaussian. The use of relevant ranges in place of standard deviations has the capacity to place LT and OE standardized coefficients on a more comparable scale. As ecologists address increasingly complex hypotheses, especially those that involve comparing the influences of different controlling factors (e.g., top-down versus bottom-up or biotic versus abiotic controls), comparable coefficients become a necessary component for evaluations.
A Small and Slim Coaxial Probe for Single Rice Grain Moisture Sensing
You, Kok Yeow; Mun, Hou Kit; You, Li Ling; Salleh, Jamaliah; Abbas, Zulkifly
2013-01-01
A moisture detection of single rice grains using a slim and small open-ended coaxial probe is presented. The coaxial probe is suitable for the nondestructive measurement of moisture values in the rice grains ranging from from 9.5% to 26%. Empirical polynomial models are developed to predict the gravimetric moisture content of rice based on measured reflection coefficients using a vector network analyzer. The relationship between the reflection coefficient and relative permittivity were also created using a regression method and expressed in a polynomial model, whose model coefficients were obtained by fitting the data from Finite Element-based simulation. Besides, the designed single rice grain sample holder and experimental set-up were shown. The measurement of single rice grains in this study is more precise compared to the measurement in conventional bulk rice grains, as the random air gap present in the bulk rice grains is excluded. PMID:23493127
Tromberg, Bruce J [Irvine, CA; Berger, Andrew J [Rochester, NY; Cerussi, Albert E [Lake Forest, CA; Bevilacqua, Frederic [Costa Mesa, CA; Jakubowski, Dorota [Irvine, CA
2008-09-23
A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.
The Delicate Analysis of Short-Term Load Forecasting
NASA Astrophysics Data System (ADS)
Song, Changwei; Zheng, Yuan
2017-05-01
This paper proposes a new method for short-term load forecasting based on the similar day method, correlation coefficient and Fast Fourier Transform (FFT) to achieve the precision analysis of load variation from three aspects (typical day, correlation coefficient, spectral analysis) and three dimensions (time dimension, industry dimensions, the main factors influencing the load characteristic such as national policies, regional economic, holidays, electricity and so on). First, the branch algorithm one-class-SVM is adopted to selection the typical day. Second, correlation coefficient method is used to obtain the direction and strength of the linear relationship between two random variables, which can reflect the influence caused by the customer macro policy and the scale of production to the electricity price. Third, Fourier transform residual error correction model is proposed to reflect the nature of load extracting from the residual error. Finally, simulation result indicates the validity and engineering practicability of the proposed method.
Variation of wave speed determined by the PU-loop with proximity to a reflection site.
Li, Ye; Borlotti, Alessandra; Parker, Kim H; Khir, Ashraf W
2011-01-01
Wave speed is directly related to arterial distensibility and is widely used by clinicians to assess arterial stiffness. The PU-loop method for determining wave speed is based on the water hammer equation for flow in flexible tubes and artery using the method of characteristics. This technique determines wave speed using simultaneous measurements of pressure and velocity at a single point. The method shows that during the early part of systole, the relationship between pressure and velocity is generally linear, and the initial slope of the PU-loop is proportional to wave speed. In this work, we designed an in-vitro experiment to investigate the effect of proximity to a reflection site on the wave speed determined by the PU-loop through varying the distance between the measurement and reflection sites. Measurements were made in a flexible tube with a reflection site at the distal end formed by joining the tube to another tube with a different diameter and material properties. Six different flexible tubes were used to generate both positive and negative reflection coefficients of different magnitudes. We found that the wave speed determined by the PU-loop did not change when the measurement site was far from the reflection site but did change as the distance to the reflection site decreased. The calculated wave speed increased with positive reflections and decreased with negative reflections. The magnitude of the change in wave speed at a fixed distance from the reflection site increased with increasing the value of the reflection coefficient.
Hoche, S; Hussein, M A; Becker, T
2015-03-01
The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.
Coefficient Alpha and Reliability of Scale Scores
ERIC Educational Resources Information Center
Almehrizi, Rashid S.
2013-01-01
The majority of large-scale assessments develop various score scales that are either linear or nonlinear transformations of raw scores for better interpretations and uses of assessment results. The current formula for coefficient alpha (a; the commonly used reliability coefficient) only provides internal consistency reliability estimates of raw…
Mostafazadeh, Ali
2009-06-05
Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafazadeh, Ali
2009-06-05
Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.
A comparison of time domain boundary conditions for acoustic waves in wave guides
NASA Technical Reports Server (NTRS)
Banks, H. T.; Propst, G.; Silcox, R. J.
1991-01-01
Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.
Geoacoustic inversion with two source-receiver arrays in shallow water.
Sukhovich, Alexey; Roux, Philippe; Wathelet, Marc
2010-08-01
A geoacoustic inversion scheme based on a double beamforming algorithm in shallow water is proposed and tested. Double beamforming allows identification of multi-reverberated eigenrays propagating between two vertical transducer arrays according to their emission and reception angles and arrival times. Analysis of eigenray intensities yields the bottom reflection coefficient as a function of angle of incidence. By fitting the experimental reflection coefficient with a theoretical prediction, values of the acoustic parameters of the waveguide bottom can be extracted. The procedure was initially tested in a small-scale tank experiment for a waveguide with a Plexiglas bottom. Inversion results for the speed of shear waves in Plexiglas are in good agreement with the table values. A similar analysis was applied to data collected during an at-sea experiment in shallow coastal waters of the Mediterranean. Bottom reflection coefficient was fitted with the theory in which bottom sediments are modeled as a multi-layered system. Retrieved bottom parameters are in quantitative agreement with those determined from a prior inversion scheme performed in the same area. The present study confirms the interest in processing source-receiver array data through the double beamforming algorithm, and indicates the potential for application of eigenray intensity analysis to geoacoustic inversion problems.
Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.
Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong
2016-02-01
Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.
2017-11-01
The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.
Huang, L; Fantke, P; Ernstoff, A; Jolliet, O
2017-11-01
Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R 2 of .93). The internal validations showed the model to be robust, stable and not a result of chance correlation. The external validation against two separate prediction datasets demonstrated the model has good predicting ability within its applicability domain (Rext2>.8), namely MW between 30 and 1178 g/mol and temperature between 4 and 180°C. By covering a much wider range of organic chemicals and materials, this QPPR facilitates high-throughput estimates of human exposures for chemicals encapsulated in solid materials. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rotational characterization of methyl methacrylate: Internal dynamics and structure determination
NASA Astrophysics Data System (ADS)
Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe
2018-01-01
Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.
Optical bistability in a single-sided cavity coupled to a quantum channel
NASA Astrophysics Data System (ADS)
Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.
2018-06-01
In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.
Wideband Low-Reflection Inhomogeneous Dielectric Structures
NASA Astrophysics Data System (ADS)
Denisova, N. A.; Rezvov, A. V.
2017-08-01
We consider reflection of electromagnetic waves from two-layer dielectric films with finite thickness, whose refractive indices vary in the direction of wave propagation, which is perpendicular to the substrate boundary. The profiles of the refractive indices of the structures having low reflection coefficients in a wide frequency range are found. The obtained results are based on exact analytical solutions of the Helmholtz equation for one type of the layered inhomogeneous dielectric medium. The possibility of creating new low-reflection wideband inhomogeneous dielectric structures is demonstrated.
An Arduino-Based Experiment Designed to Clarify the Transition to Total Internal Reflection
ERIC Educational Resources Information Center
Atkin, Keith
2018-01-01
The topic of refraction and reflection of light at the boundary of transparent media is a fundamentally important one. The special case of total internal reflection is however commonly misrepresented in elementary textbooks. This paper addresses the problem and describes an experimental procedure for measuring and displaying reflected and…
Studies of the Reflection, Refraction and Internal Reflection of Light
ERIC Educational Resources Information Center
Lanchester, P. C.
2014-01-01
An inexpensive apparatus and associated experiments are described for studying the basic laws of reflection and refraction of light at an air-glass interface, and multiple internal reflections within a glass block. In order to motivate students and encourage their active participation, a novel technique is described for determining the refractive…
Tidal Wave Reflectance, Evolution and Distortion in Elkhorn Slough, CA
2013-03-01
School O1 Lunisolar diurnal Tidal Constituent ONR Office of Naval Research p Pressure Rhfm High-Frequency Motion Tidal Reflection Coefficient RIVET ...2012 an experiment at the New River Inlet, known as the River and Inlet Dynamics experiment ( RIVET ) was conducted. RIVET 2 is currently scheduled for
The decomposition of remote sensing reflectance (RSR) spectra into absorption, scattering and backscattering coefficients, and scattering phase function is an important issue for estimating water quality (WQ) components. For Case 1 waters RSR decomposition can be easily accompli...
Sterner, Eila; Fossum, Bjöörn; Berg, Elisabeth; Lindholm, Christina; Stark, André
2014-08-01
Early detection of non blanching erythema (pressure ulcer category I) is necessary to prevent any further skin damage. An objective method to discriminate between blanching/non blanching erythema is presently not available. The purpose of this investigation was to explore if a non invasive objective method could differentiate between blanching/non blanching erythema in the sacral area of patients undergoing hip fracture surgery. Seventy-eight patients were included. The sacral area of all patients was assessed using (i) conventional finger-press test and (ii) digital reading of the erythema index assessed with reflectance spectrophotometry. The patients were examined at admission and during 5 days postsurgery. Reflectance spectrophotometry measurements proved able to discriminate between blanching/non blanching erythema. The reliability, quantified by the intra-class correlation coefficient, was excellent between repeated measurements over the measurement period, varying between 0·82 and 0·96, and a significant change was recorded in the areas from day 1 to day 5 (P < 0·0001). The value from the reference point did not show any significant changes over the same period (P = 0·32). An objective method proven to identify early pressure damage to tissue can be a valuable tool in clinical practice. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Modeling Saturnshine in Cassini Images of the Rings
NASA Astrophysics Data System (ADS)
Dones, Henry C.; Weiss, J. W.; Porco, C. C.; DiNino, D.; Skinner, R.
2013-10-01
In some viewing geometries, such as large solar phase angles or small solar elevation angles, the light reflected by or transmitted through Saturn's rings can be dominated by Saturnshine, i.e., illumination of the rings by the planet. Saturnshine results in longitudinal variations in the reflectivity of the rings. In addition, Saturn's A Ring and, to a lesser extent, B Ring, show intrinsic longitudinal variations ("azimuthal asymmetry") due to self-gravity wakes. Any attempt to infer physical properties of ring particles and their spatial distribution using ring photometry must consider both Saturnshine and self-gravity wakes. "Ringshine," in turn, complicates photometry of Saturn itself [1]. We have improved the Saturnshine model in [2], which applies a ray-tracing code to N-body simulations of a patch of Saturn's rings, by incorporating measurements of the planet's reflectivity in Cassini images taken in a range of viewing geometries through a number of broadband filters. We will compare the results of our photometric model with measurements of the I/F of the main rings, and will attempt to constrain the intrinsic properties of ring particles, such as their coefficients of restitution in collisions and internal densities. We thank the Cassini project for support. [1] Skinner, R.W., and Weiss, J.W. (2011). http://serc.carleton.edu/cismi/undergrad_research/posters/52679.html [2] Porco, C.C., et al. (2008). Astron J. 136, 2172-2200
A statistical model of the wave field in a bounded domain
NASA Astrophysics Data System (ADS)
Hellsten, T.
2017-02-01
Numerical simulations of plasma heating with radiofrequency waves often require repetitive calculations of wave fields as the plasma evolves. To enable effective simulations, bench marked formulas of the power deposition have been developed. Here, a statistical model applicable to waves with short wavelengths is presented, which gives the expected amplitude of the wave field as a superposition of four wave fields with weight coefficients depending on the single pass damping, as. The weight coefficient for the wave field coherent with that calculated in the absence of reflection agrees with the coefficient for strong single pass damping of an earlier developed heuristic model, for which the weight coefficients were obtained empirically using a full wave code to calculate the wave field and power deposition. Antennas launching electromagnetic waves into bounded domains are often designed to produce localised wave fields and power depositions in the limit of strong single pass damping. The reflection of the waves changes the coupling that partly destroys the localisation of the wave field, which explains the apparent paradox arising from the earlier developed heuristic formula that only a fraction as2(2-as) and not as of the power is absorbed with a profile corresponding to the power deposition for the first pass of the rays. A method to account for the change in the coupling spectrum caused by reflection for modelling the wave field with ray tracing in bounded media is proposed, which should be applicable to wave propagation in non-uniform media in more general geometries.
Photovoltaic module with light reflecting backskin
Gonsiorawski, Ronald C [Danvers, MA
2007-07-03
A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.
The radar cross section of dielectric disks
NASA Technical Reports Server (NTRS)
Levine, D. M.
1982-01-01
A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.
Observation and analysis of water inherent optical properties
NASA Astrophysics Data System (ADS)
Sun, Deyong; Li, Yunmei; Le, Chengfeng; Huang, Changchun
2008-03-01
Inherent optical property is an important part of water optical properties, and is the foundation of water color analytical model establishment. Through quantity filter technology (QFT) and backscattering meter BB9 (WETlabs Inc), absorption coefficients of CDOM, total suspended minerals and backscattering coefficients of total suspended minerals had been observed in Meiliang Bay of Taihu lake at summer and winter respectively. After analyzing the spectral characteristics of absorption and backscattering coefficients, the differences between two seasons had been illustrated adequately, and the reasons for the phenomena, which are related to the changes of water quality coefficient, had also been explained. So water environment states can be reflected by inherent optical properties. In addition, the relationship models between backscattering coefficients and suspended particle concentrations had been established, which can support coefficients for analytical models.
[The reliability of a questionnaire regarding Colombian children's physical activity].
Herazo-Beltrán, Aliz Y; Domínguez-Anaya, Regina
2012-10-01
Reporting the Physical Activity Questionnaire for school children's (PAQ-C) test-retest reliability and internal consistency. This was a descriptive study of 100 school-aged children aged 9 to 11 years old attending a school in Cartagena, Colombia. The sample was randomly selected. The PAQ-C was given twice, one week apart, after the informed consent forms had been signing by the children's parents and school officials. Cronbach's alpha coefficient of reliability was used for assessing internal consistency and an intra-class correlation coefficient for test-retest reliability SPSS (version 17.0) was used for statistical analysis. The questionnaire scored 0.73 internal consistencies during the first measurement and 0.78 on the second; intra-class correlation coefficient was 0.60. There were differences between boys and girls regarding both measurements. The PAQ-C had acceptable internal consistency and test-retest reliability, thereby making it useful for measuring children's self-reported physical activity and a valuable tool for population studies in Colombia.
High Frequency Acoustic Reflection and Transmission in Ocean Sediments
2005-09-30
the magnitude and phase of the reflection coefficient from a smooth water/sand interface with elastic and poroelastic models ”, J. Acoust . Soc. Am...physical model of high-frequency acoustic interaction with the ocean floor, including penetration through and reflection from smooth and rough water...and additional laboratory measurements in the ARL:UT sand tank, an improved model of sediment acoustics will be developed that is consistent with
Reliability of Lactation Assessment Tools Applied to Overweight and Obese Women.
Chapman, Donna J; Doughty, Katherine; Mullin, Elizabeth M; Pérez-Escamilla, Rafael
2016-05-01
The interrater reliability of lactation assessment tools has not been evaluated in overweight/obese women. This study aimed to compare the interrater reliability of 4 lactation assessment tools in this population. A convenience sample of 45 women (body mass index > 27.0) was videotaped while breastfeeding (twice daily on days 2, 4, and 7 postpartum). Three International Board Certified Lactation Consultants independently rated each videotaped session using 4 tools (Infant Breastfeeding Assessment Tool [IBFAT], modified LATCH [mLATCH], modified Via Christi [mVC], and Riordan's Tool [RT]). For each day and tool, we evaluated interrater reliability with 1-way repeated-measures analyses of variance, intraclass correlation coefficients (ICCs), and percentage absolute agreement between raters. Analyses of variance showed significant differences between raters' scores on day 2 (all scales) and day 7 (RT). Intraclass correlation coefficient values reflected good (mLATCH) to excellent reliability (IBFAT, mVC, and RT) on days 2 and 7. All day 4 ICCs reflected good reliability. The ICC for mLATCH was significantly lower than all others on day 2 and was significantly lower than IBFAT (day 7). Percentage absolute interrater agreement for scale components ranged from 31% (day 2: observable swallowing, RT) to 92% (day 7: IBFAT, fixing; and mVC, latch time). Swallowing scores on all scales had the lowest levels of interrater agreement (31%-64%). We demonstrated differences in the interrater reliability of 4 lactation assessment tools when applied to overweight/obese women, with the lowest values observed on day 4. Swallowing assessment was particularly unreliable. Researchers and clinicians using these scales should be aware of the differences in their psychometric behavior. © The Author(s) 2015.
Measuring internal friction of an ultrafast-folding protein.
Cellmer, Troy; Henry, Eric R; Hofrichter, James; Eaton, William A
2008-11-25
Nanosecond laser T-jump was used to measure the viscosity dependence of the folding kinetics of the villin subdomain under conditions where the viscogen has no effect on its equilibrium properties. The dependence of the unfolding/refolding relaxation time on solvent viscosity indicates a major contribution to the dynamics from internal friction. The internal friction increases with increasing temperature, suggesting a shift in the transition state along the reaction coordinate toward the native state with more compact structures, and therefore, a smaller diffusion coefficient due to increased landscape roughness. Fitting the data with an Ising-like model yields a relatively small position dependence for the diffusion coefficient. This finding is consistent with the excellent correlation found between experimental and calculated folding rates based on free energy barrier heights using the same diffusion coefficient for every protein.
The 24 GHz measurements of 2.2 lambda conical horn antennas illuminating a conducting sheet
NASA Technical Reports Server (NTRS)
Cross, A. E.; Marshall, R. E.; Hearn, C. P.; Neece, R. T.
1993-01-01
Monostatic reflection-coefficient magnitude, absolute value of Gamma, measurements occurring between a radiating horn and a metal reflecting plate are presented for a family of three 2.2 lambda diameter conical horn antennas. The three horns have different aperture phase deviations: 6 deg, 22.5 deg, and 125 deg. Measurements of the magnitude of absolute value of Gamma as a function of horn-plate separation (d) extend from an effective antenna aperture short (d = O) to beyond the far-field boundary (d = 2D(sup 2)/lambda, where D is the antenna diameter). Measurement data are presented with various physical environments for each of the horns. Measured scalar data are compared with theoretical data from two models, a numerical model for a circular waveguide aperture in a ground plane and a scalar diffraction theory model. This work was conducted in support of the development effort for a spaceborne multifrequency microwave reflectometer designed to accurately determine the distance from a space vehicle's surface to a reflecting plasma boundary. The metal reflecting plate was used to simulate the RF reflectivity of a critically dense plasma. The resulting configuration, a ground plane mounted aperture facing a reflecting plane in close proximity, produces a strong interaction between the ground plane and the reflecting plate, especially at integral half-wavelength separations. The transition coefficient is characterized by large amplitude variations.
Fundamental limits of ultrathin metasurfaces
Arbabi, Amir; Faraon, Andrei
2017-01-01
We present a set of universal relations which relate the local transmission, reflection, and polarization conversion coefficients of a general class of non-magnetic passive ultrathin metasurfaces. We show that these relations are a result of equal forward and backward scattering by single layer ultrathin metasurfaces, and they lead to confinement of the transmission, reflection, and polarization conversion coefficients to limited regions of the complex plane. Using these relations, we investigate the effect of the presence of a substrate, and show that the maximum polarization conversion efficiency for a transmissive metasurface decreases as the refractive index contrast between the substrate and cladding layer increases. Furthermore, we demonstrate that a single layer reflective metasurface can achieve full 2π phase shift coverage without altering the polarization if it is illuminated from the higher refractive index material. We also discuss two approaches for achieving asymmetric scattering from metasurfaces, and realizing metasurfaces which overcome the performance limitations of single layer ultrathin metasurfaces. PMID:28262739
Methods and limitations in radar target imagery
NASA Astrophysics Data System (ADS)
Bertrand, P.
An analytical examination of the reflectivity of radar targets is presented for the two-dimensional case of flat targets. A complex backscattering coefficient is defined for the amplitude and phase of the received field in comparison with the emitted field. The coefficient is dependent on the frequency of the emitted signal and the orientation of the target with respect to the transmitter. The target reflection is modeled in terms of the density of illumined, colored points independent from one another. The target therefore is represented as an infinite family of densities indexed by the observational angle. Attention is given to the reflectivity parameters and their distribution function, and to the conjunct distribution function for the color, position, and the directivity of bright points. It is shown that a fundamental ambiguity exists between the localization of the illumined points and the determination of their directivity and color.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigorian, G. M.; Dyatko, N. A.; Kochetov, I. V., E-mail: kochet@triniti.ru
Radial profiles of the density of metastable atoms Ar({sup 3}P{sub 2}) in the positive column of a dc glow discharge in argon were measured. Gas-discharge glass tubes with clean inner surfaces and surfaces covered with a carbonitride or carbon film were utilized. The parameters of the discharge plasma under experimental conditions were calculated in the framework of a one-dimensional (along the tube radius) discharge model. The coefficient K of reflection of Ar({sup 3}P{sub 2}) atoms from the tube wall was estimated by comparing the measured and calculated density profiles. It is found that, for a clean tube wall, the coefficientmore » of reflection is K = 0.4 ± 0.2, whereas for a wall covered with a carbonitride or carbon film, it is K < 0.2.« less
NASA Astrophysics Data System (ADS)
Wall, R. Andrew; Barton, Jennifer K.
2014-06-01
A side-viewing, 2.3-mm diameter oblique incidence reflectometry endoscope has been designed to obtain optical property measurements of turbid samples. Light from a single-mode fiber is relayed obliquely onto the tissue with a gradient index lens-based distal optics assembly and the resulting diffuse reflectance profile is imaged and collected with a 30,000 element, 0.72 mm clear aperture fiber bundle. Sampling the diffuse reflectance in two-dimensions allows for fitting of the reflected intensity profile to a well-known theoretical model, permitting the extraction of both absorption and reduced scattering coefficients of the tissue sample. Models and measurements of the endoscopic imaging system are presented in tissue phantoms and in vivo mouse colon, verifying the endoscope's capabilities to accurately measure effective attenuation coefficient and differentiate diseased from normal colon.
Quick and Easy Measurements of the Inherent Optical Property of Water by Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izadi, Dina; Hajiesmaeilbaigi, Fereshteh
2009-04-19
To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water.more » In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.« less
NASA Astrophysics Data System (ADS)
Lin, Bao-Qin; Guo, Jian-Xin; Chu, Peng; Huo, Wen-Jun; Xing, Zhuo; Huang, Bai-Gang; Wu, Lan
2018-02-01
In this work, we propose a multiband linear-polarization (LP) conversion and circular polarization (CP) maintaining reflector using a symmetric anisotropic metasurface. The anisotropic metasurface is composed of a square array of a two-corner-cut square multiring disk printed on a grounded dielectric substrate, which is a symmetric structure with a pair of mutually perpendicular symmetric axes u and v along the ±45 ° directions with respect to the y -axis direction. The simulated results show that the reflector can realize LP conversion in five frequency bands at both x - and y -polarized incidence, the first four bands all have a certain bandwidth, and the fourth one, especially, is an ultrawideband. In addition, because of the symmetry of the reflector structure, the polarization state of a CP wave can be maintained after reflection, and the magnitude of the copolarized reflection coefficient at the CP incidence is just equal to that of the cross-polarized reflection coefficient at the x - and y -polarized incidence. We analyze the root cause of the multiband LP conversion and CP maintaining reflection, and carry out one experiment to verify the proposed reflector.
NASA Astrophysics Data System (ADS)
Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S.; Nie, Zhaojun; Hayward, Joseph E.; Farrell, Thomas J.; McMillan, William; Zhang, Wenbin; Fang, Qiyin
2017-02-01
Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.
Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S; Nie, Zhaojun; Hayward, Joseph E; Farrell, Thomas J; McMillan, William; Zhang, Wenbin; Fang, Qiyin
2017-02-01
Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.
Kienle, A; Patterson, M S
1997-09-01
We investigate theoretically the errors in determining the reduced scattering and absorption coefficients of semi-infinite turbid media from frequency-domain reflectance measurements made at small distances between the source and the detector(s). The errors are due to the uncertainties in the measurement of the phase, the modulation and the steady-state reflectance as well as to the diffusion approximation which is used as a theoretical model to describe light propagation in tissue. Configurations using one and two detectors are examined for the measurement of the phase and the modulation and for the measurement of the phase and the steady-state reflectance. Three solutions of the diffusion equation are investigated. We show that measurements of the phase and the steady-state reflectance at two different distances are best suited for the determination of the optical properties close to the source. For this arrangement the errors in the absorption coefficient due to typical uncertainties in the measurement are greater than those resulting from the application of the diffusion approximation at a modulation frequency of 200 MHz. A Monte Carlo approach is also examined; this avoids the errors due to the diffusion approximation.
ERIC Educational Resources Information Center
Le Cornu, Alison
2009-01-01
The study of the process of reflection has a dignified history. However, few have linked reflection to the development of the self in such a way that the form of reflection is understood to influence the resultant type of self. This article explores the process of reflection using a framework of meaning making, internalization, and externalization…
The Uncertainty of Long-term Linear Trend in Global SST Due to Internal Variation
NASA Astrophysics Data System (ADS)
Lian, Tao
2016-04-01
In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of local multi-scale internal variation. One can thus use the record of a specified period to arbitrarily determine the value and the sign of the long-term linear trend in regional SST, and further leading to controversial conclusions on how global SST responds to global warming in the recent history. Analyzing the linear trend coefficient estimated by the ordinary least-square method indicates that the linear trend consists of two parts: One related to the long-term change, and the other related to the multi-scale internal variation. The sign of the long-term change can be correctly reproduced only when the magnitude of the linear trend coefficient is greater than a theoretical threshold which scales the influence from the multi-scale internal variation. Otherwise, the sign of the linear trend coefficient will depend on the phase of the internal variation, or in the other words, the period being used. An improved least-square method is then proposed to reduce the theoretical threshold. When apply the new method to a global SST reconstruction from 1881 to 2013, we find that in a large part of Pacific, the southern Indian Ocean and North Atlantic, the influence from the multi-scale internal variation on the sign of the linear trend coefficient can-not be excluded. Therefore, the resulting warming or/and cooling linear trends in these regions can-not be fully assigned to global warming.
ERIC Educational Resources Information Center
Furman, Rich; Coyne, Ann; Negi, Nalini Junko
2008-01-01
This descriptive article explores the uses of poetry and journaling exercises as means of helping students develop their self-reflective capacities within the context of international social work. First, self-reflection and its importance to social work practice and education is discussed. Second, the importance of self-reflection in international…
Taniguchi, Naoya; Matsuda, Shuichi; Kawaguchi, Takahisa; Tabara, Yasuharu; Ikezoe, Tome; Tsuboyama, Tadao; Ichihashi, Noriaki; Nakayama, Takeo; Matsuda, Fumihiko; Ito, Hiromu
2015-01-01
Cultural and ethnic differences are present both in subjective and objective measures of patient health, but scoring systems do not always reflect these differences, and so validation of outcomes tools in different cultural settings is important. Recently, a revised version of The Knee Society Score® (KSS 2011) was developed, but to our knowledge, the degree that this tool evaluates clinical symptoms, physical activities, and radiographic grades in the general Japanese population is not known. We therefore asked: (1) how KSS 2011 reflects knee conditions and function in the general Japanese population, in particular evaluating changes with increasing patient age; (2) can objective measures of physical function be correlated with KSS 2011; and (3) does radiographic osteoarthritis (OA) grade correlate with KSS 2011? Two hundred twenty-six people in the general Japanese population, aged 35 to 92 years, with and without knee arthritis, voluntarily participated in this cross-sectional study. Residents who had no serious disease or symptoms based on a self-assessment were recruited. This study consisted of a questionnaire including self-administered KSS 2011, physical examination, and weightbearing radiographs of the knee. Leg muscle strength, Timed Up and Go test, and body mass index (BMI) were examined in all the participants. Radiographs were graded according to the Kellgren and Lawrence scale (KL grade). Multivariable linear regression analysis showed that KSS 2011 correlated with age (coefficient: -0.30±0.12, p=0.011), BMI (coefficient: -1.47±0.42, p<0.001), leg muscle strength (coefficient: 0.41±0.13, p=0.002), and Timed Up and Go Test (coefficient: -1.96±0.92, p=0.034), but not sex, as independent variables by a stepwise method. KSS 2011 was also correlated with radiographic OA evaluated by KL grade (coefficient: -12.2±2.9, p<0.001). KSS 2011 reflects symptoms, physical activities, and radiographic OA grades of the knee in an age-dependent manner in the general Japanese population. Level IV, diagnostic study. See Guidelines for Authors for a complete description of levels of evidence.
[Developing Perceived Competence Scale (PCS) for Adolescents].
Özer, Arif; Gençtanirim Kurt, Dilek; Kizildağ, Seval; Demırtaş Zorbaz, Selen; Arici Şahın, Fatma; Acar, Tülin; Ergene, Tuncay
2016-01-01
In this study, Perceived Competence Scale was developed to measure high school students' perceived competence. Scale development process was verified on three different samples. Participants of the research are some high school students in 2011-2012 academic terms from Ankara. Participants' numbers are incorporated in exploratory factor analysis, confirmatory factor analysis and test-retest reliability respectively, as follows: 372, 668 and 75. Internal consistency coefficients (Cronbach's and stratified α) are calculated separately for each group. For data analysis Factor 8.02 and LISREL 8.70 package programs were used. According to results of the analyses, internal consistency coefficients (α) are .90 - .93 for academic competence, .82 - .86 for social competence in the samples that exploratory and confirmatory factor analysis performed. For the whole scale internal consistency coefficient (stratified α) is calculated as .91. As a result of test-retest reliability, adjusted correlation coefficients (r) are .94 for social competence and .90 for academic competence. In addition, to fit indexes and regression weights obtained from factor analysis, findings related convergent and discriminant validity, indicating that competence can be addressed in two dimensions which are academic (16 items) and social (14 items).
A theoretical study of passive control of duct noise using panels of varying compliance.
Huang, L
2001-06-01
It is theoretically demonstrated that, in a duct, a substantial amount of sound energy can be transferred to flexural waves on a finite wall panel when the upstream portion of the panel is made to couple strongly with sound. The flexural wave then loses its energy either through radiating reflection sound waves or by internal friction. The effectiveness of the energy transfer and damping is greatly enhanced if the panel has a gradually decreasing in vacuo wave speed, which, in this study, is achieved by using a tapered membrane under tension. A high noise attenuation rate is possible with the usual viscoelastic materials such as rubber. The transmission loss has a broadband spectrum, and it offers an alternative to conventional duct lining where a smooth air passage is desired and nonacoustical considerations, such as chemical contamination or cost of operation maintenance, are important. Another advantage of the tapered panel is that, at very low frequencies, typically 5% of the first cut-on frequency of the duct, sound reflection occurs over the entire panel length. This supplements the inevitable drop in sound absorption coefficient, and a high transmission loss may still be obtained at very low frequencies.
HERA Broadband Feed Design for Low-Frequency Radio Astronomy
NASA Astrophysics Data System (ADS)
Garza, Sierra; Trung, Vincent; Ewall-Wice, Aaron Michael; Li, Jianshu; Hewitt, Jacqueline; Riley, Daniel; Bradley, Richard F.; Makhija, Krishna
2018-01-01
As part of the Hydrogen Epoch of Reionization Array (HERA) project, we are designing a broadband low-frequency radio feed to extend the bandwidth from 100-200 MHz to 50-220 MHz. By extending the lower-limit to 50 MHz, we hope to detect the signatures of the first black holes heating the hydrogen gas in the intergalactic medium.The isolation of a very faint signal from vastly brighter foregrounds sets strict requirements on antenna spectral smoothness, polarization purity, forward gain, and internal reflections. We are currently working to meet these requirements with a broad-band sinuous antenna feed suspended over the 14-m parabolic HERA dish, using a combination of measurements and simulations to verify the performance of our design.A sinuous feed has been designed and simulated with Computer Simulation Technology (CST) software. We will present the construction of a prototype sinuous antenna and measurements of its reflection coefficient, S11, including laboratory characterization of baluns. Our measurements agree well with the CST simulations of the antenna’s performance, giving us confidence in our ability to model the feed and ensure that it meets the requirements of a 21cm cosmology measurement.
Red and near-infrared spectral reflectance of snow
NASA Technical Reports Server (NTRS)
Obrien, H. W.; Munis, R. H.
1975-01-01
The spectral reflectance of snow in the range of 0.60 to 2.50 microns wavelengths was studied in a cold laboratory using natural snow and simulated preparations of snow. A white barium sulfate powder was used as the standard for comparison. The high reflectance (usually nearly 100%) of fresh natural snow in visible wavelengths declines rapidly at wavelengths longer than the visible, as the spectral absorption coefficients of ice increase. Aging snow becomes only somewhat less reflective than fresh snow in the visible region and usually retains a reflectance greater than 80%. In the near infrared, aging snow tends to become considerably less reflective than fresh snow.
Assessment of the Maximal Split-Half Coefficient to Estimate Reliability
ERIC Educational Resources Information Center
Thompson, Barry L.; Green, Samuel B.; Yang, Yanyun
2010-01-01
The maximal split-half coefficient is computed by calculating all possible split-half reliability estimates for a scale and then choosing the maximal value as the reliability estimate. Osburn compared the maximal split-half coefficient with 10 other internal consistency estimates of reliability and concluded that it yielded the most consistently…
VizieR Online Data Catalog: Rate coefficients for H2(v,j)+H2(v',j'
NASA Astrophysics Data System (ADS)
Mandy, M. E.
2016-11-01
State-specific rate coefficients for the dissociation of H2 result of collisions with H2 were calculated for all combinations of (v,j) with an internal energy below 1eV. Full-dimensional quasiclassical trajectories were calculated using the BMKP2 interaction potential with a minimum of 80000 trajectories at each translational energy. Additional large batches of trajectories were carried out to calculate the cross sections near the threshold to dissociation to attain the desired precision of the rate coefficients. A piecewise linear excitation function was used to calculate the rate coefficient between 100 and 100000K. The resulting state-specific rate coefficients, γ, were parametrized as a function of temperature over the range 600-10000K using: log10γ(t)=a+bz+cz2-d(1/t-1) where t=T/4500K and z=log10t. The values of the resulting rate coefficients were sensitive to the internal energy of both molecules, with initial vibrational energy having a slightly greater effect than rotational energy. This effect diminished as temperature increased. (15 data files).
Optical properties of nasal septum cartilage
NASA Astrophysics Data System (ADS)
Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.
1998-05-01
Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu
2014-03-01
We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.
Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control
NASA Astrophysics Data System (ADS)
Krushynska, A. O.; Bosia, F.; Miniaci, M.; Pugno, N. M.
2017-10-01
Attenuating low-frequency sound remains a challenge, despite many advances in this field. Recently-developed acoustic metamaterials are characterized by unusual wave manipulation abilities that make them ideal candidates for efficient subwavelength sound control. In particular, labyrinthine acoustic metamaterials exhibit extremely high wave reflectivity, conical dispersion, and multiple artificial resonant modes originating from the specifically-designed topological architectures. These features enable broadband sound attenuation, negative refraction, acoustic cloaking and other peculiar effects. However, hybrid and/or tunable metamaterial performance implying enhanced wave reflection and simultaneous presence of conical dispersion at desired frequencies has not been reported so far. In this paper, we propose a new type of labyrinthine acoustic metamaterials (LAMMs) with hybrid dispersion characteristics by exploiting spider web-structured configurations. The developed design approach consists in adding a square surrounding frame to sectorial circular-shaped labyrinthine channels described in previous publications (e.g. (11)). Despite its simplicity, this approach provides tunability in the metamaterial functionality, such as the activation/elimination of subwavelength band gaps and negative group-velocity modes by increasing/decreasing the edge cavity dimensions. Since these cavities can be treated as extensions of variable-width internal channels, it becomes possible to exploit geometrical features, such as channel width, to shift the band gap position and size to desired frequencies. Time transient simulations demonstrate the effectiveness of the proposed metastructures for wave manipulation in terms of transmission or reflection coefficients, amplitude attenuation and time delay at subwavelength frequencies. The obtained results can be important for practical applications of LAMMs such as lightweight acoustic barriers with enhanced broadband wave-reflecting performances.
NASA Astrophysics Data System (ADS)
Dai, Shengyun; Pan, Xiaoning; Ma, Lijuan; Huang, Xingguo; Du, Chenzhao; Qiao, Yanjiang; Wu, Zhisheng
2018-05-01
Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC) was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS) models of harpagoside. Data showed that the particle size distribution of 125-150 μm for Radix Scrophulariae exhibited the best prediction ability with R2pre=0.9513, RMSEP=0.1029 mg·g-1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90-180 μm exhibited the best prediction ability with R2pre=0.8919, RMSEP=0.1632 mg·g-1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent) and scatter coefficient s (particle size-dependent). The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was greater than 4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90-180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.
On physical optics for calculating scattering from coated bodies
NASA Technical Reports Server (NTRS)
Baldauf, J.; Lee, S. W.; Ling, H.; Chou, R.
1989-01-01
The familiar physical optics (PO) approximation is no longer valid when the perfectly conducting scatterer is coated with dielectric material. This paper reviews several possible PO formulations. By comparing the PO formulation with the moment method solution based on the impedance boundary condition for the case of the coated cone-sphere, a PO formulation using both electric and magnetic currents consistently gives the best numerical results. Comparisons of the exact moment method with the PO formulations using the impedance boundary condition and the PO formulation using the Fresnel reflection coefficient for the case of scattering from the cone-ellipsoid demonstrate that the Fresnel reflection coefficient gives the best numerical results in general.
NASA Astrophysics Data System (ADS)
Sayar, M.; Ogawa, K.; Shoji, T.
2008-02-01
Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.
High-reflectivity phase conjugation using Brillouin preamplification.
Ridley, K D; Scott, A M
1990-07-15
We describe experiments in which a weak laser pulse is phase conjugated by using a high-gain Brillouin amplifier in front of a stimulated Brillouin scattering phase-conjugate mirror. We observe phase conjugation with signal energies as low as 3 x 10(-13) J and with a maximum reflection coefficient of 2 x 10(8).
NASA Technical Reports Server (NTRS)
Carleton, O.
1972-01-01
Consideration is given specifically to sixth order elliptic partial differential equations in two independent real variables x, y such that the coefficients of the highest order terms are real constants. It is assumed that the differential operator has distinct characteristics and that it can be factored as a product of second order operators. By analytically continuing into the complex domain and using the complex characteristic coordinates of the differential equation, it is shown that its solutions, u, may be reflected across analytic arcs on which u satisfies certain analytic boundary conditions. Moreover, a method is given whereby one can determine a region into which the solution is extensible. It is seen that this region of reflection is dependent on the original domain of difinition of the solution, the arc and the coefficients of the highest order terms of the equation and not on any sufficiently small quantities; i.e., the reflection is global in nature. The method employed may be applied to similar differential equations of order 2n.
Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites
NASA Astrophysics Data System (ADS)
Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun
2016-03-01
Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.
A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain
NASA Astrophysics Data System (ADS)
Ullah, M. Habib; Islam, M. T.
2014-08-01
A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.
Effects of Refractive Index and Diffuse or Specular Boundaries on a Radiating Isothermal Layer
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1994-01-01
Equilibrium temperatures of an absorbing-emitting layer were obtained for exposure to incident radiation and with the layer boundaries either specular or diffuse. For high refractive indices the surface condition can influence the radiative heat balance if the layer optical thickness is small. Hence for a spectrally varying absorption coefficient the layer temperature is affected if there is significant radiative energy in the spectral range with a small absorption coefficient. Similar behavior was obtained for transient radiative cooling of a layer where the results are affected by the initial temperature and hence the fraction of energy radiated in the short wavelength region where the absorption coefficient is small. The results are a layer without internal scattering. If internal scattering is significant, the radiation reaching the internal surface of a boundary is diffused and the effect of the two different surface conditions would become small.
Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing
NASA Astrophysics Data System (ADS)
Yu, Tingting; Wen, Xiang; Tuchin, Valery V.; Luo, Qingming; Zhu, Dan
2011-09-01
Dehydration induced by optical clearing agents (OCAs) can improve tissue optical transmittance; however, current studies merely gave some qualitative descriptions. We develop a model to quantitatively evaluate water content with partial least-squares method based on the measurements of near-infrared reflectance spectroscopy and weight of porcine skin. Furthermore, a commercial spectrometer with an integrating sphere is used to measure the transmittance and reflectance of skin after treatment with different OCAs, and then the water content and optical properties of sample are calculated, respectively. The results show that both the reduced scattering coefficient and dehydration of skin decrease with prolongation of action of OCAs, but the relative change in former is larger than that in latter after a 60-min treatment. The absorption coefficient at 1450 nm decreases completely coincident with dehydration of skin. Further analysis illustrates that the correlation coefficient between the relative changes in the reduced scattering coefficient and dehydration is ~1 during the 60-min treatment of agents, but there is an extremely significant difference between the two parameters for some OCAs with more hydroxyl groups, especially, glycerol or D-sorbitol, which means that the dehydration is a main mechanism of skin optical clearing, but not the only mechanism.
NASA Astrophysics Data System (ADS)
Li, Caiyun; Wei, Huajiang; Zhao, Yanping; Wu, Guoyong; Gu, Huaimin; Guo, Zhouyi; Yang, Hongqin; He, Yonghong; Xie, Shusen
2018-07-01
The purpose of this study is to illustrate experimentally the optical coherence tomography (OCT) signal slope and diffuse reflectance (DR) spectra of 30% and 80% glycerol combined with electroporation (EP) diffusion in normal, benign and cancerous human gastric tissues in vitro. The results of OCT showed that the permeability coefficients of 80% and 30% glycerol (both with and without EP) have the following trend: human cancerous gastric tissue > human benign gastric tissue > human normal gastric tissue under the same conditions. The permeability coefficient of the 30% glycerol group is larger than that of the 80% glycerol group under the same circumstances; the permeability coefficient of glycerol combined with the EP group is larger than that without the EP group under the same conditions. The permeability coefficient and the reduction of the DR spectra have perfect linear correlation (R2 = 0.9745). The research results suggest that OCT and the DR spectra combined with an optical clearing agent (glycerol) and the EP method can potentially become a powerful tool for the early diagnosis and monitoring of human gastric cancer.
Bos, Nanne; Sturms, Leontien M; Stellato, Rebecca K; Schrijvers, Augustinus J P; van Stel, Henk F
2015-10-01
Patients' experiences are an indicator of health-care performance in the accident and emergency department (A&E). The Consumer Quality Index for the Accident and Emergency department (CQI A&E), a questionnaire to assess the quality of care as experienced by patients, was investigated. The internal consistency, construct validity and discriminative capacity of the questionnaire were examined. In the Netherlands, twenty-one A&Es participated in a cross-sectional survey, covering 4883 patients. The questionnaire consisted of 78 questions. Principal components analysis determined underlying domains. Internal consistency was determined by Cronbach's alpha coefficients, construct validity by Pearson's correlation coefficients and the discriminative capacity by intraclass correlation coefficients and reliability of A&E-level mean scores (G-coefficient). Seven quality domains emerged from the principal components analysis: information before treatment, timeliness, attitude of health-care professionals, professionalism of received care, information during treatment, environment and facilities, and discharge management. Domains were internally consistent (range: 0.67-0.84). Five domains and the 'global quality rating' had the capacity to discriminate among A&Es (significant intraclass correlation coefficient). Four domains and the 'global quality rating' were close to or above the threshold for reliably demonstrating differences among A&Es. The patients' experiences score on the domain timeliness showed the largest range between the worst- and best-performing A&E. The CQI A&E is a validated survey to measure health-care performance in the A&E from patients' perspective. Five domains regarding quality of care aspects and the 'global quality rating' had the capacity to discriminate among A&Es. © 2013 John Wiley & Sons Ltd.
The nature of crustal reflectivity at the southwest Iberian margin
NASA Astrophysics Data System (ADS)
Buffett, G. G.; Torne, M.; Carbonell, R.; Melchiorre, M.; Vergés, J.; Fernàndez, M.
2017-11-01
Reprocessing of multi-channel seismic reflection data acquired over the northern margin of the Gulf of Cádiz (SW Iberian margin) places new constraints on the upper crustal structure of the Guadalquivir-Portimão Bank. The data presented have been processed with optimized stacking and interval velocity models, a better approach to multiple attenuation, preserved amplitude information to derive the nature of seismic reflectivity, and accurate time-to-depth conversion after migration. The reprocessed data reveal a bright upper crustal reflector just underneath the Paleozoic basement that spatially coincides with the local positive free-air gravity high called the Gulf of Cádiz Gravity High. To investigate the nature of this reflector and to decipher whether it could be associated with pieces of mantle material emplaced at upper crustal levels, we calculated its reflection coefficient and compared it to a buried high-density ultramafic body (serpentinized peridotite) at the Gorringe Bank. Its reflection coefficient ratio with respect to the sea floor differs by only 4.6% with that calculated for the high-density ultramafic body of the Gorringe Bank, while it differs by 35.8% compared to a drilled Miocene limestone unconformity. This means that the Gulf of Cádiz reflector has a velocity and/or density contrast similar to the peridotite at the Gorringe Bank. However, considering the depth at which it is found (between 2.0 and 4.0 km) and the available geological information, it seems unlikely that the estimated shortening from the Oligocene to present is sufficient to emplace pieces of mantle material at these shallow levels. Therefore, and despite the similarity in its reflection coefficient with the peridotites of the Gorringe Bank, our preferred interpretation is that the upper crustal Gulf of Cádiz reflector represents the seismic response of high-density intracrustal magmatic intrusions that may partially contribute to the Gulf of Cádiz Gravity High.
Waves propagating over a two-layer porous barrier on a seabed
NASA Astrophysics Data System (ADS)
Lin, Qiang; Meng, Qing-rui; Lu, Dong-qiang
2018-05-01
A research of wave propagation over a two-layer porous barrier, each layer of which is with different values of porosity and friction, is conducted with a theoretical model in the frame of linear potential flow theory. The model is more appropriate when the seabed consists of two different properties, such as rocks and breakwaters. It is assumed that the fluid is inviscid and incompressible and the motion is irrotational. The wave numbers in the porous region are complex ones, which are related to the decaying and propagating behaviors of wave modes. With the aid of the eigenfunction expansions, a new inner product of the eigenfunctions in the two-layer porous region is proposed to simplify the calculation. The eigenfunctions, under this new definition, possess the orthogonality from which the expansion coefficients can be easily deduced. Selecting the optimum truncation of the series, we derive a closed system of simultaneous linear equations for the same number of the unknown reflection and transmission coefficients. The effects of several physical parameters, including the porosity, friction, width, and depth of the porous barrier, on the dispersion relation, reflection and transmission coefficients are discussed in detail through the graphical representations of the solutions. It is concluded that these parameters have certain impacts on the reflection and transmission energy.
NASA Astrophysics Data System (ADS)
Sirikham, Adisorn; Zhao, Yifan; Mehnen, Jörn
2017-11-01
Thermography is a promising method for detecting subsurface defects, but accurate measurement of defect depth is still a big challenge because thermographic signals are typically corrupted by imaging noise and affected by 3D heat conduction. Existing methods based on numerical models are susceptible to signal noise and methods based on analytical models require rigorous assumptions that usually cannot be satisfied in practical applications. This paper presents a new method to improve the measurement accuracy of subsurface defect depth through determining the thermal wave reflection coefficient directly from observed data that is usually assumed to be pre-known. This target is achieved through introducing a new heat transfer model that includes multiple physical parameters to better describe the observed thermal behaviour in pulsed thermographic inspection. Numerical simulations are used to evaluate the performance of the proposed method against four selected state-of-the-art methods. Results show that the accuracy of depth measurement has been improved up to 10% when noise level is high and thermal wave reflection coefficients is low. The feasibility of the proposed method in real data is also validated through a case study on characterising flat-bottom holes in carbon fibre reinforced polymer (CFRP) laminates which has a wide application in various sectors of industry.
Harnessing Multiple Internal Reflections to Design Highly Absorptive Acoustic Metasurfaces
NASA Astrophysics Data System (ADS)
Shen, Chen; Cummer, Steven A.
2018-05-01
The rapid development of metasurfaces has enabled numerous intriguing applications with acoustically thin sheets. Here we report the theory and experimental realization of a nonresonant sound-absorbing strategy using metasurfaces by harnessing multiple internal reflections. We theoretically and numerically show that the higher-order diffraction of thin gradient-index metasurfaces is tied to multiple internal reflections inside the unit cells. Highly absorbing acoustic metasurfaces can be realized by enforcing multiple internal reflections together with a small amount of loss. A reflective gradient-index acoustic metasurface is designed based on the theory, and we further experimentally verify the performance using a three-dimensional printed prototype. Measurements show over 99% energy absorption at the peak frequency and a 95% energy absorption bandwidth of around 600 Hz. The proposed mechanism provides an alternative route for sound absorption without the necessity of high absorption of the individual unit cells.
Internal high-reflectivity omni-directional reflectors
NASA Astrophysics Data System (ADS)
Xi, J.-Q.; Ojha, Manas; Plawsky, J. L.; Gill, W. N.; Kim, Jong Kyu; Schubert, E. F.
2005-07-01
An internal high-reflectivity omni-directional reflector (ODR) for the visible spectrum is realized by the combination of total internal reflection using a low-refractive-index (low-n) material and reflection from a one-dimensional photonic crystal (1D PC). The low-n layer limits the range of angles in the 1D PC to values below the Brewster angle, thereby enabling high reflectivity and omni-directionality. This ODR is demonstrated using GaP as ambient, nanoporous SiO2 with a very low refractive index (n=1.10), and a four-pair TiO2/SiO2 multilayer stack. The results indicate a two orders of magnitude lower angle-integrated transverse-electric-transverse-magnetic polarization averaged mirror loss of the ODR compared with conventional distributed Bragg reflectors and metal reflectors. This indicates the high potential of the internal ODRs for optoelectronic semiconductor devices, e.g., light-emitting diodes.
Passively Q-switched side pumped monolithic ring laser
NASA Technical Reports Server (NTRS)
Li, Steven X. (Inventor)
2012-01-01
Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.
Seismic reflection imaging, accounting for primary and multiple reflections
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel
2015-04-01
Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are mapped to their correct positions, with correct reflection amplitudes. In the presentation we will illustrate this new methodology with numerical examples and discuss its potential and limitations.
Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation
2016-05-01
identifying and mapping flaw size distributions on glass surfaces for predicting mechanical response. International Journal of Applied Glass ...ARL-TN-0756 ● MAY 2016 US Army Research Laboratory Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation...Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation by Clayton M Weiss Oak Ridge Institute for Science and Education
Multiple-scattering coefficients and absorption controlled diffusive processes
NASA Astrophysics Data System (ADS)
Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor
1999-11-01
Multiple-scattering transmission and reflection coefficients (T,R) are introduced in addition to the diffusion coefficient D for the description of ballistic diffusion in the presence of absorption. For 1D (one-dimensional) systems, the measurement of only one between T and D imposes restrictions on the possible values of the other. If D is measured, then T is bounded between the Landauer and Lambert-Beer equations. Measurements of both (T,D) imply the theoretical knowledge of the microscopic absorption Σa and scattering rΣs cross sections.
NASA Astrophysics Data System (ADS)
Badano, Aldo
1999-11-01
This thesis addresses the characterization of light scattering processes that degrade image quality in high performance electronic display devices for digital radiography. Using novel experimental and computational tools, we study the lateral diffusion of light in emissive display devices that causes extensive veiling glare and significant reduction of the physical contrast. In addition, we examine the deleterious effects of ambient light reflections that affect the contrast of low luminance regions, and superimpose unwanted structured signal. The analysis begins by introducing the performance limitations of the human visual system to define high fidelity requirements. It is noted that current devices severely suffer from image quality degradation due to optical transport processes. To model the veiling glare and reflectance characteristics of display devices, we introduce a Monte Carlo light transport simulation code, DETECT-II, that tracks individual photons through multiple scattering events. The simulation accounts for the photon polarization state at each scattering event, and provides descriptions for rough surfaces and thin film coatings. A new experimental method to measure veiling glare is described next, based on a conic collimated probe that minimizes contamination from bright areas. The measured veiling glare ratio is taken to be the luminance in the surrounding bright field divided by the luminance in the dark circle. We show that veiling glare ratios in the order of a few hundreds can be measured with an uncertainty of a few percent. The veiling glare response function is obtained by measuring the small spot contrast ratio of test patterns having varying dark spot radius. Using DETECT-II, we then estimate the ring response functions for a high performance medical imaging monitor of current design, and compare the predictions of the model with the experimentally measured response function. The data presented in this thesis demonstrate that although absorption in the faceplate of high performance monochrome cathode-ray tube monitors have reduced glare, a black matrix design is needed for high fidelity applications. For a high performance medical imaging monitor with anti-reflective coating, the glare ratio for a 1 cm diameter dark spot was measured to be 240. Finally, we introduce experimental techniques for measurements of specular and diffuse display reflectance, and we compare measured reflection coefficients with Monte Carlo estimates. A specular reflection coefficient of 0.0012, and a diffuse coefficient of 0.005 nits/lux are required to minimize degradation from ambient light in rooms with 100 lux illumination. In spite of having comparable reflection coefficients, the low maximum luminance of current devices worsens the effect of ambient light reflections when compared to radiographic film. Flat panel technologies with optimized designs can perform even better than film due to a thin faceplate, increased light absorption, and high brightness.
An Arduino-based experiment designed to clarify the transition to total internal reflection
NASA Astrophysics Data System (ADS)
Atkin, Keith
2018-03-01
The topic of refraction and reflection of light at the boundary of transparent media is a fundamentally important one. The special case of total internal reflection is however commonly misrepresented in elementary textbooks. This paper addresses the problem and describes an experimental procedure for measuring and displaying reflected and transmitted light intensities using readily available components and the Arduino microcontroller.
New mounting improves solar-cell efficiency
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1980-01-01
Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.
Spectroscopic method for determination of the absorption coefficient in brain tissue
NASA Astrophysics Data System (ADS)
Johansson, Johannes D.
2010-09-01
I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.
The Accidental Tide Gauge: A GPS Reflection Case Study from Kachemak Bay, Alaska
NASA Technical Reports Server (NTRS)
Larson, Kristine M.; Ray, Richard D.; Nievinski, Felipe G..; Freymueller, Jeffrey T.
2013-01-01
For the last decade, it has been known that reflected GPS signals observed with specialized instruments could be used to measure sea level. In this letter, data from an existing geodeticquality GPS site near Kachemak Bay, Alaska, are analyzed for a one-year time period. Daily sea-level variations are more than 7 m. Tidal coefficients have been estimated and compared with coefficients estimated from records from a traditional tide gauge at Seldovia Harbor, approximately 30 km away. The GPS and Seldovia estimates of M(sub 2) and S(sub 2) coefficients agree to better than 2%; much of this residual can be attributed to true differences in the tide over 30 km as it propagates up Kachemak Bay. For daily mean sea levels the agreement is 2.3 cm. Because a standard geodetic GPS receiver/antenna is used, this GPS instrument can measure long-term sea-level changes in a stable terrestrial reference frame.
Research on soundproof properties of cylindrical shells of generalized phononic crystals
NASA Astrophysics Data System (ADS)
Liu, Ru; Shu, Haisheng; Wang, Xingguo
2017-04-01
Based on the previous studies, the concept of generalized phononic crystals (GPCs) is further introduced into the cylindrical shell structures in this paper. And a type of cylindrical shells of generalized phononic crystals (CS-GPCs) is constructed, the structural field and acoustic-structural coupled field of the composite cylindrical shells are examined respectively. For the structural field, the transfer matrix method of mechanical state vector is adopted to build the transfer matrix of radial waves propagating from inside to outside. For the acoustic-structural coupled field, the expressions of the acoustic transmission/reflection coefficients and the sound insulation of acoustic waves with the excitation of center line sound source are set up. And the acoustic transmission coefficient and the frequency response of sound insulation in this mode were numerical calculated. Furthermore, the theoretical analysis results are verified by using the method of combining the numerical calculation and finite element simulation. Finally, the effects of inner and outer fluid parameters on the transmission/reflection coefficients of CS-GPCs are analyzed in detail.
Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.
Pogue, B W; Patterson, M S
1994-07-01
The goal of frequency-domain optical absorption spectroscopy is the non-invasive determination of the absorption coefficient of a specific tissue volume. Since this allows the concentration of endogenous and exogenous chromophores to be calculated, there is considerable potential for clinical application. The technique relies on the measurement of the phase and modulation of light, which is diffusely reflected or transmitted by the tissue when it is illuminated by an intensity-modulated source. A model of light propagation must then be used to deduce the absorption coefficient. For simplicity, it is usual to assume the tissue is either infinite in extent (for transmission measurements) or semi-infinite (for reflectance measurements). The goal of this paper is to examine the errors introduced by these assumptions when measurements are actually performed on finite volumes. Diffusion-theory calculations and experimental measurements were performed for slabs, cylinders and spheres with optical properties characteristic of soft tissues in the near infrared. The error in absorption coefficient is presented as a function of object size as a guideline to when the simple models may be used. For transmission measurements, the error is almost independent of the true absorption coefficient, which allows absolute changes in absorption to be measured accurately. The implications of these errors in absorption coefficient for two clinical problems--quantitation of an exogenous photosensitizer and measurement of haemoglobin oxygenation--are presented and discussed.
Reliability of an interactive computer program for advance care planning.
Schubart, Jane R; Levi, Benjamin H; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J
2012-06-01
Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83-0.95, and 0.86-0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time.
Reliability of an Interactive Computer Program for Advance Care Planning
Levi, Benjamin H.; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J
2012-01-01
Abstract Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83–0.95, and 0.86–0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830
Basset, Antoine; Bouthemy, Patrick; Boulanger, Jérôme; Waharte, François; Salamero, Jean; Kervrann, Charles
2017-07-24
Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins. A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins. An automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.
How well do clinical pain assessment tools reflect pain in infants?
Slater, Rebeccah; Cantarella, Anne; Franck, Linda; Meek, Judith; Fitzgerald, Maria
2008-06-24
Pain in infancy is poorly understood, and medical staff often have difficulty assessing whether an infant is in pain. Current pain assessment tools rely on behavioural and physiological measures, such as change in facial expression, which may not accurately reflect pain experience. Our ability to measure cortical pain responses in young infants gives us the first opportunity to evaluate pain assessment tools with respect to the sensory input and establish whether the resultant pain scores reflect cortical pain processing. Cortical haemodynamic activity was measured in infants, aged 25-43 wk postmenstrual, using near-infrared spectroscopy following a clinically required heel lance and compared to the magnitude of the premature infant pain profile (PIPP) score in the same infant to the same stimulus (n = 12, 33 test occasions). Overall, there was good correlation between the PIPP score and the level of cortical activity (regression coefficient = 0.72, 95% confidence interval [CI] limits 0.32-1.11, p = 0.001; correlation coefficient = 0.57). Of the different PIPP components, facial expression correlated best with cortical activity (regression coefficient = 1.26, 95% CI limits 0.84-1.67, p < 0.0001; correlation coefficient = 0.74) (n = 12, 33 test occasions). Cortical pain responses were still recorded in some infants who did not display a change in facial expression. While painful stimulation generally evokes parallel cortical and behavioural responses in infants, pain may be processed at the cortical level without producing detectable behavioural changes. As a result, an infant with a low pain score based on behavioural assessment tools alone may not be pain free.
NASA Technical Reports Server (NTRS)
Lee, Zhong-Ping; Carder, Kendall L.
2001-01-01
A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.
Detecting severity of delamination in a lap joint using S-parameters
NASA Astrophysics Data System (ADS)
Islam, M. M.; Huang, H.
2018-03-01
The scattering parameters (S-parameters) represent the frequency response of a two-port linear time-invariant network. Treating a lap joint structure instrumented with two piezoelectric wafer active transducers (PWaTs) as such a network, this paper investigates the application of the S-parameters for detecting the severity of delamination in the lap joint. The pulse-echo signal calculated from the reflection coefficients, namely the S 11 and S 22-parameters, can be divided into three signals, i.e. the excitation, resonant, and echo signals, based on their respective time spans. Analyzing the effects of the delamination on the resonant signal enables us to identify the resonance at which the resonant characteristics of the PWaTs are least sensitive to the delamination. Only at this resonance, we found that the reflection coefficients and the amplitude of the first arrival echo signal changed monotonously with the increase of the delamination length. This discovery is further validated by the time-domain pitch-catch signal calculated from the transmission coefficient (i.e. the S 21-parameter). In addition, comparing the pulse-echo signals obtained from both PWaTs enables us to determine the side of the lap joint that the delamination is located at. This work establishes the S-parameters as an effective tool to evaluate the effects of damage on the PWaT resonant characteristics, based on which the PWaT resonance can be selected judiciously for damage severity detection. Correlating the reflection and transmission coefficients also provide addition validations that increase the detection confidence.
NASA Astrophysics Data System (ADS)
Fonseca, E. S. R.; de Jesus, M. E. P.
2007-07-01
The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.
Nonimaging light concentration using total internal reflection films.
Ouellette, G; Waltham, C E; Drees, R M; Poon, A; Schubank, R; Whitehead, L A
1992-05-01
We present a method of fabricating nonimaging light concentrators from total internal reflection film. A prototype has been made and tested and found to operate in agreement with predictions of ray-tracing codes. The performance of the prototype is comparable with that of concentrators made from specular reflecting materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, David A; Schwahn, Scott O
2011-01-01
While inhalation dose coefficients are provided for about 800 radionuclides in International Commission on Radiological Protection (ICRP) Publication 68, many radionuclides of practical dosimetric interest for facilities such as high-energy proton accelerators are not specifically addressed, nor are organ-specific dose coefficients tabulated. The ICRP Publication 68 methodology is used, along with updated radiological decay data and metabolic data, to identify committed equivalent dose coefficients [hT(50)] and committed effective dose coefficients [e(50)] for radionuclides produced at the Oak Ridge National Laboratory s Spallation Neutron Source.
Electromagnetic Inverse Methods and Applications for Inhomogeneous Media Probing and Synthesis.
NASA Astrophysics Data System (ADS)
Xia, Jake Jiqing
The electromagnetic inverse scattering problems concerned in this thesis are to find unknown inhomogeneous permittivity and conductivity profiles in a medium from the scattering data. Both analytical and numerical methods are studied in the thesis. The inverse methods can be applied to geophysical medium probing, non-destructive testing, medical imaging, optical waveguide synthesis and material characterization. An introduction is given in Chapter 1. The first part of the thesis presents inhomogeneous media probing. The Riccati equation approach is discussed in Chapter 2 for a one-dimensional planar profile inversion problem. Two types of the Riccati equations are derived and distinguished. New renormalized formulae based inverting one specific type of the Riccati equation are derived. Relations between the inverse methods of Green's function, the Riccati equation and the Gel'fand-Levitan-Marchenko (GLM) theory are studied. In Chapter 3, the renormalized source-type integral equation (STIE) approach is formulated for inversion of cylindrically inhomogeneous permittivity and conductivity profiles. The advantages of the renormalized STIE approach are demonstrated in numerical examples. The cylindrical profile inversion problem has an application for borehole inversion. In Chapter 4 the renormalized STIE approach is extended to a planar case where the two background media are different. Numerical results have shown fast convergence. This formulation is applied to inversion of the underground soil moisture profiles in remote sensing. The second part of the thesis presents the synthesis problem of inhomogeneous dielectric waveguides using the electromagnetic inverse methods. As a particular example, the rational function representation of reflection coefficients in the GLM theory is used. The GLM method is reviewed in Chapter 5. Relations between modal structures and transverse reflection coefficients of an inhomogeneous medium are established in Chapter 6. A stratified medium model is used to derive the guidance condition and the reflection coefficient. Results obtained in Chapter 6 provide the physical foundation for applying the inverse methods for the waveguide design problem. In Chapter 7, a global guidance condition for continuously varying medium is derived using the Riccati equation. It is further shown that the discrete modes in an inhomogeneous medium have the same wave vectors as the poles of the transverse reflection coefficient. An example of synthesizing an inhomogeneous dielectric waveguide using a rational reflection coefficient is presented. A summary of the thesis is given in Chapter 8. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Brace, Christopher L
2011-07-01
Design and validate an efficient dual-slot coaxial microwave ablation antenna that produces an approximately spherical heating pattern to match the shape of most abdominal and pulmonary tumor targets. A dual-slot antenna geometry was utilized for this study. Permutations of the antenna geometry using proximal and distal slot widths from 1 to 10 mm separated by 1-20 mm were analyzed using finite-element electromagnetic simulations. From this series, the most optimal antenna geometry was selected using a two-term sigmoidal objective function to minimize antenna reflection coefficient and maximize the diameter-to-length aspect ratio of heat generation. Sensitivities to variations in tissue properties and insertion depth were also evaluated in numerical models. The most optimal dual-slot geometry of the parametric analysis was then fabricated from semirigid coaxial cable. Antenna reflection coefficients at various insertion depths were recorded in ex vivo bovine livers and compared to numerical results. Ablation zones were then created by applying 50 W for 2-10 min in simulations and ex vivo livers. Mean zone diameter, length, aspect ratio, and reflection coefficients before and after heating were then compared to a conventional monopole antenna using ANOVA with post-hoc t-tests. Statistical significance was indicated for P <0.05. Antenna performance was highly sensitive to dual-slot geometry. The best-performing designs utilized a proximal slot width of 1 mm, distal slot width of 4 mm +/- 1 mm and separation of 8 mm +/- 1 mm. These designs were characterized by an active choking mechanism that focused heating to the distal tip of the antenna. A dual-band resonance was observed in the most optimal design, with a minimum reflection coefficient of -20.9 dB at 2.45 and 1.25 GHz. Total operating bandwidth was greater than 1 GHz, but the desired heating pattern was achieved only near 2.45 GHz. As a result, antenna performance was robust to changes in insertion depth and variations in relative permittivity of the surrounding tissue medium. In both simulations and ex vivo liver, the dual-slot antenna created ablations greater in diameter than a coaxial monopole (35 mm +/- 2 mm versus 31 mm +/- 2 mm; P<0.05), while also shorter in length (49 mm +/- 2 mm versus 60 mm +/- 6 mm; P < 0.001) after 10 min. Similar results were obtained after 2 and 5 min as well. Dual-slot antennas can produce more spherical ablation zones while retaining low reflection coefficients. These benefits are obtained without adding to the antenna diameter. Further evaluation for clinical microwave ablation appears warranted.
Study on Hyperspectral Estimation Model of Total Nitrogen Content in Soil of Shaanxi Province
NASA Astrophysics Data System (ADS)
Liu, Jinbao; Dong, Zhenyu; Chen, Xi
2018-01-01
The development of hyperspectral remote sensing technology has been widely used in soil nutrient prediction. The soil is the representative soil type in Shaanxi Province. In this study, the soil total nitrogen content in Shaanxi soil was used as the research target, and the soil samples were measured by reflectance spectroscopy using ASD method. Pre-treatment, the first order differential, second order differential and reflectance logarithmic transformation of the reflected spectrum after pre-treatment, and the hyperspectral estimation model is established by using the least squares regression method and the principal component regression method. The results show that the correlation between the reflectance spectrum and the total nitrogen content of the soil is significantly improved. The correlation coefficient between the original reflectance and soil total nitrogen content is in the range of 350 ~ 2500nm. The correlation coefficient of soil total nitrogen content and first deviation of reflectance is more than 0.5 at 142nm, 1963nm, 2204nm and 2307nm, the second deviation has a significant positive correlation at 1114nm, 1470nm, 1967nm, 2372nm and 2402nm, respectively. After the reciprocal logarithmic transformation of the reflectance with the total nitrogen content of the correlation analysis found that the effect is not obvious. Rc2 = 0.7102, RMSEC = 0.0788; Rv2 = 0.8480, RMSEP = 0.0663, which can achieve the rapid prediction of the total nitrogen content in the region. The results show that the principal component regression model is the best.
Georgopoulos, Michael; Zehetmayer, Martin; Ruhswurm, Irene; Toma-Bstaendig, Sabine; Ségur-Eltz, Nikolaus; Sacu, Stefan; Menapace, Rupert
2003-01-01
This study assesses differences in relative tumour regression and internal acoustic reflectivity after 3 methods of radiotherapy for uveal melanoma: (1) brachytherapy with ruthenium-106 radioactive plaques (RU), (2) fractionated high-dose gamma knife stereotactic irradiation in 2-3 fractions (GK) or (3) fractionated linear-accelerator-based stereotactic teletherapy in 5 fractions (Linac). Ultrasound measurements of tumour thickness and internal reflectivity were performed with standardised A scan pre-operatively and 3, 6, 9, 12, 18, 24 and 36 months postoperatively. Of 211 patients included in the study, 111 had a complete 3-year follow-up (RU: 41, GK: 37, Linac: 33). Differences in tumour thickness and internal reflectivity were assessed with analysis of variance, and post hoc multiple comparisons were calculated with Tukey's honestly significant difference test. Local tumour control was excellent with all 3 methods (>93%). At 36 months, relative tumour height reduction was 69, 50 and 30% after RU, GK and Linac, respectively. In all 3 treatment groups, internal reflectivity increased from about 30% initially to 60-70% 3 years after treatment. Brachytherapy with ruthenium-106 plaques results in a faster tumour regression as compared to teletherapy with gamma knife or Linac. Internal reflectivity increases comparably in all 3 groups. Besides tumour growth arrest, increasing internal reflectivity is considered as an important factor indicating successful treatment. Copyright 2003 S. Karger AG, Basel
Reliability, validity and factor structure of the CES-D in Iranian elderly.
Malakouti, Seyed Kazem; Pachana, Nancy A; Naji, Borzooyeh; Kahani, Shamsoddin; Saeedkhani, Mozhdeh
2015-12-01
In developing countries such as Iran, elder populations are growing. Due to the high prevalence of depressive disorders among elders, reliable screening instruments for this population are required. The main purpose of this study was to determine the reliability and validity of the Farsi version of the Center for Epidemiological Studies-Depression Scale-10 (CES-D) among Iranian elderly persons. The investigators created the Farsi version of the CES-D-10 by translation and back translation. Two hundred and four cases aged 59 and above completed the questionnaire. The reliability and validity of the translated CES-D-10 was established through comparison with the Composite International Diagnostic Interview (CIDI), a recognized gold standard method for diagnosing major depressive disorder. We used a receiver operating curve (ROC) to determine the optimum cutoff score. The Farsi version of the CED-D-10 displayed acceptable psychometric characteristics, as reflected in internal consistency with Cronbach's alpha, split-half coefficients and test-retest reliability of 0.85, 0.65 and 0.49, respectively. Factor analysis and the varimax rotation resulted in two factors including 'depression' and 'interpersonal relationships'. The Depression factor (introduced as CES-D-8 of the scale) had significant correlation with the 10 items form (r=0.99) with 0.87 alpha coefficient. The ROC showed that the optimum cutoff point is 5 with sensitivity of 82% and specificity of 70%, and positive and negative predictive values of 26% and 98%, respectively, for both of the forms. Both the 10 and 8 items form of the Farsi version have desirable characteristics to be useful as a screening instrument for depressive disorders in Iranian elders, especially in urban areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Character of the opposition effect and negative polarization
NASA Technical Reports Server (NTRS)
Pieters, Carle M.; Shkuratov, Yu. G.; Stankevich, D. G.
1991-01-01
Photometric and polarimetric properties at small phase angles were measured for silicates with controlled surface properties in order to distinguish properties that are associated with surface reflection from those that are associated with multiple scattering from internal grain boundaries. These data provide insight into the causes and conditions of photometric properties observed at small phase angles for dark bodies of the solar system. Obsidian was chosen to represent a silicate dielectric with no internal scattering boundaries. Because obsidian is free of internal scatterers, light reflected from both the rough and smooth obsidian samples is almost entirely single and multiple Fresnel reflections form surface facets with no body component. Surface structure alone cannot produce an opposition effect. Comparison of the obsidian and basalt results indicates that for an opposition effect to occur, surface texture must be both rough and contain internal scattering interfaces. Although the negative polarization observed for the obsidian samples indicates single and multiple reflections are part of negative polarization, the longer inversion angle of the multigrain inversion samples implies that internal reflections must also contribute a significant negative polarization component.
Fiber-optic miniature sensor for in situ temperature monitoring of curing composite material
NASA Astrophysics Data System (ADS)
Sampath, Umesh; Kim, Dae-gil; Kim, Hyunjin; Song, Minho
2018-04-01
This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30-110 °C).
Reliability of pulse waveform separation analysis: effects of posture and fasting.
Stoner, Lee; Credeur, Daniel; Fryer, Simon; Faulkner, James; Lambrick, Danielle; Gibbs, Bethany Barone
2017-03-01
Oscillometric pulse wave analysis devices enable, with relative simplicity and objectivity, the measurement of central hemodynamic parameters. The important parameters are central blood pressures and indices of arterial wave reflection, including wave separation analysis (backward pressure component Pb and reflection magnitude). This study sought to determine whether the measurement precision (between-day reliability) of Pb and reflection magnitude: exceeds the criterion for acceptable reliability; and is affected by posture (supine, seated) and fasting state. Twenty healthy adults (50% female, 27.9 years, 24.2 kg/m) were tested on six different mornings: 3 days fasted, 3 days nonfasted condition. On each occasion, participants were tested in supine and seated postures. Oscillometric pressure waveforms were recorded on the left upper arm. The criterion intra-class correlation coefficient value of 0.75 was exceeded for Pb (0.76) and reflection magnitude (0.77) when participants were assessed under the combined supine-fasted condition. The intra-class correlation coefficient was lowest for Pb in seated-nonfasted condition (0.57), and lowest for reflection magnitude in the seated-fasted condition (0.56). For Pb, the smallest detectible change that must be exceeded in order for a significant change to occur in an individual was 2.5 mmHg, and for reflection magnitude, the smallest detectable change was 8.5%. Assessments of Pb and reflection magnitude are as follows: exceed the criterion for acceptable reliability; and are most reliable when participants are fasted in a supine position. The demonstrated reliability suggests sufficient precision to detect clinically meaningful changes in reflection magnitude and Pb.
Reciprocal relations for transmission coefficients - Theory and application
NASA Technical Reports Server (NTRS)
Qu, Jianmin; Achenbach, Jan D.; Roberts, Ronald A.
1989-01-01
The authors present a rigorous proof of certain intuitively plausible reciprocal relations for time harmonic plane-wave transmission and reflection at the interface between a fluid and an anisotropic elastic solid. Precise forms of the reciprocity relations for the transmission coefficients and for the transmitted energy fluxes are derived, based on the reciprocity theorem of elastodynamics. It is shown that the reciprocity relations can be used in conjunction with measured values of peak amplitudes for transmission through a slab of the solid (water-solid-water) to obtain the water-solid coefficients. Experiments were performed for a slab of a unidirectional fiber-reinforced composite. Good agreement of the experimentally measured transmission coefficients with theoretical values was obtained.
Germania Quo Vadis?: Dynamics of Change in German Security Policy
2007-06-01
Keohane, Robert O., Michael Brecher and Frank Harveys, eds. Institutional Theory in international Relations. In: Millennial Reflections on International...Hegemony: Cooperation and Discord in the World Political Economy, (Princeton University Press, 1984), pp. 78-109; Robert O. Keohane, “ Institutional ... Theory in international Relations,” in Michael Brecher and Frank Harveys, eds., Millennial Reflections on International Studies (University of Michigan
Optical and Acoustic Device Applications of Ferroelastic Crystals
NASA Astrophysics Data System (ADS)
Meeks, Steven Wayne
This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use these periodic structures are discussed. These devices are a tunable active grating laser (TAG laser), a tunable active grating (TAG), and a tunable acoustic bulk wave filter.
Étude expérimentale de cristaux photoniques bi-dimensionnels
NASA Astrophysics Data System (ADS)
Labilloy, D.
Experimental study of two-dimensional photonic crystals Photonic bandgap materials (PBGs), the so-called photonic crystals, are structures with a periodic dielectric constant. For strong enough index contrast, it was theoretically predicted that they should prevent light propagation in all directions, because they create spectral regions with zero-density of states. We study the optical properties of two-dimensional photonic crystals etched through waveguiding semiconductor heterostructures. Photoluminescence of quantum wells or quantum dots embedded in the waveguide are used as internal probe source. This technique allows a full characterization of these objects, giving access to quantitative values of the transmission, reflection and diffraction coefficients. Weak transmissions correspond to high reflection or diffraction values, which indicates that light remains guided upon interaction with the crystals, confirming their high potential for integrated optics. These reflectors are next used as cavity mirrors. One-dimensional cavities demonstrate a high finesse through transmission measurements, confirming the low amount of out-of-plane losses. Small volume three-dimensional cavities (sim5 μm^3) are also probed, using the photoluminescence of the emitters placed inside the cavity. Narrow peaks in the photoluminescence spectrum prove the strong confinement and allow to envision applications for spontaneous emission control. Les matériaux à bande interdite de photons (BIPs) ou cristaux photoniques, sont des structures, généralement artificielles, dont l'indice diélectrique varie périodiquement. Lorsque le contraste d'indice est fort, on prédit théoriquement qu'elles doivent empêcher la propagation de la lumière dans toutes les directions en créant des plages spectrales (les bandes interdites) à densité d'état de photons nulle. Nous avons étudié le comportement optique de cristaux photoniques bidimensionnels gravés dans des hétérostructures semiconductrices guidantes. L'originalité consiste à utiliser la photoluminescence de boîtes ou puits quantiques comme source lumineuse interne. Cette technique a permis d'effectuer une caractérisation complète de ces objets en mesurant quantitativement les coefficients de transmission et de réflexion ainsi que les propriétés de diffraction. Aux zones de faible transmission correspondent de forts coefficients de réflexion ou de diffraction, ce qui indique que l'onde reste guidée lors de l'interaction avec les cristaux et confirme leur fort potentiel pour l'optique intégrée. Nous avons utilisé ces réflecteurs pour réaliser des cavités, d'abord unidimensionnelles, qui montrent une bonne finesse en transmission, confirmant que les pertes hors du plan du guide sont faibles. Nous avons ensuite étudié des cavités tridimensionnelles de faible volume (sim 5 μm^3), sondées cette fois-ci à l'aide d'émetteurs internes à la cavité. L'apparition de pics étroits montre que l'effet de confinement est important et laisse présager de réelles potentialités de modification de l'émission spontanée.
Joyce-McCoach, Joanne T; Parrish, Dominique R; Andersen, Patrea R; Wall, Natalie
2013-09-01
Being reflective is well established as an important conduit of practice development, a desirable tertiary graduate quality and a core competency of health professional membership. By assisting students to be more effective in their ability to reflect, they are better able to formulate strategies to manage issues experienced within a professional context, which ultimately assists them to be better service providers. However, some students are challenged by the practice of reflection and these challenges are even more notable for international students. This paper presents a teaching initiative that focused specifically on enhancing the capacity of an international cohort of nursing students, to engage in reflective practice. The initiative centered on an evaluation of a reflective practice core subject, which was taught in a Master of Nursing programme delivered in Hong Kong. A learning-centered framework was used to evaluate the subject and identify innovative strategies that would better assist international students to develop reflective practices. The outcomes of curriculum and teaching analysis and proposed changes and innovations in teaching practice to support international students are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Globally Convergent Numerical Methods for Coefficient Inverse Problems
2008-09-23
backgrounds. Probing radiations are usually thought as electric and acoustic waves for the first two applications and light originated by lasers in...fundamental laws of physics. Electric , acoustic or light scattering properties of both unknown targets and the backgrounds are described by coefficients of...with the back-reflected data here, Army applications are quite feasible. The 2-D inverse problem of the determination of the unknown electric
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.
O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.
2017-02-14
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.
Light distribution modulated diffuse reflectance spectroscopy.
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-06-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.
Light distribution modulated diffuse reflectance spectroscopy
Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao
2016-01-01
Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931
NASA Technical Reports Server (NTRS)
Hansen, Gary B.; Martin, Terry Z.
1993-01-01
New measurements of the absorption coefficients of CO2 ice, in most of the spectral range 0.2 to 3.9 microns where absorption coefficients are below 1.5 per cm, have recently been made. Although these measurements are preliminary, they contain spectral detail not seen previously in the literature. Therefore, it is useful to combine these new data with older data from spectral regions of stronger absorption and reformulate models of the albedo or reflectance of CO2 frost. These models can then be adjusted in an attempt to match measurements of Martian polar deposits, such as the set of spectra returned by the IRS instrument on Mariner 7 (1969). The new absorption coefficients of CO2 ice were measured on several samples of 41-mm thickness at 150-155 K. A portion of the spectrum from 1.9 to 3.9 microns wavelength is shown in the form of imaginary coefficient of refraction ( = linear absorption x wavelength / 4 pi). The data above 3x10(exp -5) are obtained from, except for the absorption line at 3.32 micrometers, which is extrapolated in a way that is consistent with laboratory frost measurements, but the peak level is still highly uncertain. This new imagary coefficient, combined with the real coefficient, can be immediately applied to the models for hemispherical albedo, resulting in markedly different results from those in that study. The results for an infinite optical depth layer and solar incidence of 60 degrees are plotted for a range of mean particle radii from 0.03 to 3 mm.
NASA Astrophysics Data System (ADS)
Arai, Kohei
2012-07-01
More than 11 years Radiometric Calibration Coefficients (RCC) derived from onboard and vicarious calibrations are compared together with cross comparison to the well calibrated MODIS RCC. Fault Tree Analysis (FTA) is also conducted for clarification of possible causes of the RCC degradation together with sensitivity analysis for vicarious calibration. One of the suspects of causes of RCC degradation is clarified through FTA. Test site dependency on vicarious calibration is quite obvious. It is because of the vicarious calibration RCC is sensitive to surface reflectance measurement accuracy, not atmospheric optical depth. The results from cross calibration with MODIS support that significant sensitivity of surface reflectance measurements on vicarious calibration.
Tayong, Rostand B; Manyo Manyo, Jacques A; Siryabe, Emmanuel; Ntamack, Guy E
2018-04-01
This study deals with the deduction of parameters of Micro-Perforated Panel (MPP) systems from impedance tube data. It is shown that there is an ambiguity problem that exists between the MPP thickness and its open area ratio. This problem makes it difficult to invert the reflection coefficient data fitting and therefore to deduct the MPP parameters. A technique is proposed to reduce this ambiguity by using an equation that links the hole diameter to the open area ratio. Reflection coefficient data obtained for two specimens with different characteristics is employed for searching the MPP parameters using a simulated annealing algorithm. The results obtained demonstrate the effectiveness of this technique.
NASA Astrophysics Data System (ADS)
Marks, Amelia A.; Lamare, Maxim L.; King, Martin D.
2017-12-01
Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices, ˜ 30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ˜ 2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg-1 for four ices. Sea ices were generated with and without ˜ 5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm-1 (e-folding depths of 10-30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of ˜ 75, ˜ 150 and ˜ 300 ng g-1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean
sea ice (at a wavelength of 500 nm).
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.
1994-01-01
Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.
Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K
2016-09-01
This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.
NASA Astrophysics Data System (ADS)
Kosaka, Tatsuro; Osaka, Katsuhiko; Nakakita, Satoru; Fukuda, Takehito
2003-08-01
This paper describes cure and health monitoring of glass fiber reinforced plastics (GFRP) textile composites both during a resin transfer molding (RTM) process and in loading tests. Carbon fiber reinforced plastics (CFRP) textile composites also were used for a comparative study. Fiber Bragg grating (FBG) fiber optic sensors were embedded in FRP to monitor internal strain. From the results of cure monitoring, it was found that the embedded FBG sensors were useful to know when cured resin constrained fibers. It also appeared that specimens were subjected to friction stress resulted from difference of coefficient of thermal expansion between FRP and a stainless steel mold in cooling process of RTM molding. After the molding, tensile and fatigue tests were conducted. The results of tensile tests showed that output of the embedded FBG sensors agreed well that of surface-bonded strain gauges despite deterioration of reflected spectra form the sensors. From the results of fatigue tests, the FBG sensors showed good status until 100,000 cycles when specimens had no damage. From these results, it can be concluded that embedded FBG sensors have good capability of monitoring internal strain in textile FRP both during RTM process and in service.
NASA Astrophysics Data System (ADS)
Aksu, Anil A.
2017-09-01
In this paper, we have considered the non-linear effects arising due to the collision of incident and reflected internal wave beams. It has already been shown analytically [Tabaei et al., "Nonlinear effects in reflecting and colliding internal wave beams," J. Fluid Mech. 526, 217-243 (2005)] and numerically [Rodenborn et al., "Harmonic generation by reflecting internal waves," Phys. Fluids 23, 026601 (2011)] that the internal wave beam collision generates the higher harmonics and mean flow in a linear stratification. In this paper, similar to previous analytical work, small amplitude wave theory is employed; however, it is formulated from energetics perspective which allows considering internal wave beams as the product of slowly varying amplitude and fast complex exponential. As a result, the mean energy propagation equation for the second harmonic wave is obtained. Finally, a similar dependence on the angle of incidence is obtained for the non-linear energy transfer to the second harmonic with previous analyses. A possible physical mechanism for this angle dependence on the second harmonic generation is also discussed here. In addition to previous studies, the viscous effects are also included in the mean energy propagation equation for the incident, the reflecting, and the second harmonic waves. Moreover, even though the mean flow obtained here is only confined to the interaction region, it is also affected by viscosity via the decay in the incident and the reflecting internal wave beams. Furthermore, a framework for the non-linear harmonic generation in non-linear stratification is also proposed here.
Asymmetric scattering by non-Hermitian potentials
NASA Astrophysics Data System (ADS)
Ruschhaupt, A.; Dowdall, T.; Simón, M. A.; Muga, J. G.
2017-10-01
The scattering of quantum particles by non-Hermitian (generally non-local) potentials in one dimension may result in asymmetric transmission and/or reflection from left and right incidence. After extending the concept of symmetry for non-Hermitian potentials, eight generalized symmetries based on the discrete Klein's four-group (formed by parity, time reversal, their product, and unity) are found. Together with generalized unitarity relations they determine selection rules for the possible and/or forbidden scattering asymmetries. Six basic device types are identified when the scattering coefficients (squared moduli of scattering amplitudes) adopt zero/one values, and transmission and/or reflection are asymmetric. They can pictorically be described as a one-way mirror, a one-way barrier (a Maxwell pressure demon), one-way (transmission or reflection) filters, a mirror with unidirectional transmission, and a transparent, one-way reflector. We design potentials for these devices and also demonstrate that the behavior of the scattering coefficients can be extended to a broad range of incident momenta.
Efficient Optical Logic, Interconnections and Processing Using Quantum Confined Structures
1993-05-20
mnounced D ELECTE j LL.,iicEtion ......... -..................- JUN 14 1993 B y .. . ........ . . . . . .. Di~t ibution l Availability Codes Avail...coefficient of rt( b ) and power reflectivity of RT( B )=lrt( b )12 , viewed from the cavity. RB>RT is used in the design. Written in terms of the power...reflectivities, the total power reflectivity from the Fabry-Perot is given by: p lf-RT. R-f-• B exp(-.al)1 2 I ~ ~l .•RTRBeXp(._C.)j2 Assuming RB=0.97, Figure
Surface plasmons in new waveguide structures containing ultra-thin metal and silicon layers
NASA Astrophysics Data System (ADS)
Shabat, M. M.; Ubeid, M. F.; Abu Rahma, M. A.
2018-05-01
Reflected and transmitted powers due to the interaction of electromagnetic waves with a structure containing thin metal and silicon layer are investigated in more detail. The formulations for the transverse electric wave case are provided. Transfer matrix method is used to find the reflection and the transmission coefficients at each interface. Numerical results are presented to show the effect of the structure parameters, the incidence angle and the wavelength on the reflected, transmitted and loss powers.
Book of Abstracts, 1983 IEEE International Symposium on Applications of Ferroelectrics (ISAF).
1984-05-31
adverse internal stresses develop which can contribute to the a31 coefficient. To lower the a31 coefficient the polyurethane is foamed , in addition to...light beams. Since the grating shift depends on the recording mechanism, measurements of the energy transfer can also give additional information on the... addition of Mn ( 1-2 ,ol %) to complete the sintering and decrease the dielectric loss at microwave frequnecy. The sintering w=s madc at 1500W-1600 C
Wind-Tunnel Tests of a Portion of a PV-2 Helicopter Rotor Blade
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.
1945-01-01
A portion of a PV-2 helicopter rotor blade has been tested in the 6- by 6-foot test section of the Langley stability tunnel to determine if the aerodynamic characteristics were seriously affected by cross flow or fabric distortion. The outer portion of the blade was tested as a reflection plane model pivoted about the tunnel wall to obtain various angles of cross flow over the blade. Because the tunnel wall acts as a plane of sytry, the measured aerodynamic characteristics correspond to those of an airfoil having various angles of sweepforward and sweepback. Tests were made with the vents on the lower surface open and also with the vents sealed and the internal pressure held at -20 inches of water producing an internal pressure coefficient of -1.059. The change in contour resulting from the range of internal pressures used had very little effect on the aerodynamic characteristics of the blade. The test methods were considered to simulate inadequately the flow conditions over the rotor blade because the effects of cross flow were limited to conditions corresponding to sweep of the blade. The results indicated that this type of cross flow had only minor effects on the aerodynamic characteristics of the blade. It is believed, therefore, that future tests to determine the effects on the aerodynamic characteristics of cross flow should utilize complete rotors.
Improved power efficiency for very-high-temperature solar-thermal-cavity receivers
McDougal, A.R.; Hale, R.R.
1982-04-14
This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.
Power efficiency for very high temperature solar thermal cavity receivers
McDougal, Allan R.; Hale, Robert R.
1984-01-01
This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.
Kinematic parameters of internal waves of the second mode in the South China Sea
NASA Astrophysics Data System (ADS)
Kurkina, Oxana; Talipova, Tatyana; Soomere, Tarmo; Giniyatullin, Ayrat; Kurkin, Andrey
2017-10-01
Spatial distributions of the main properties of the mode function and kinematic and non-linear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM) climatology of hydrological variables, from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly non-linear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner's equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner's equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for expressing estimates of the expected parameters of internal waves for the South China Sea.
Influence of the UV-induced fiber loss on the distributed feedback fiber lasers
NASA Astrophysics Data System (ADS)
Fan, Wei; Chen, Bai; Qiao, Qiquan; Chen, Jialing; Lin, Zunqi
2003-06-01
It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.
ERIC Educational Resources Information Center
Levine, Rachel B.; Kern, David E.; Wright, Scott M.
2008-01-01
Narrative writing has been used to promote reflection and increased self-awareness among physicians. The purpose of this study was to determine the impact of prompted narrative writing on reflection. Thirty-two interns at 9 internal medicine residency programs participated in a year-long qualitative study about personal growth beginning in July of…
International Mindedness through the Looking Glass: Reflections on a Concept
ERIC Educational Resources Information Center
Castro, Paloma; Lundgren, Ulla; Woodin, Jane
2015-01-01
The aim of this article is to report and reflect on a research project involving the conceptualization of the term "International Mindedness", which is used across a range of International Baccalaureate (IB) global and local contexts. The research process involved both a critical analysis of IB official documents and a literature review…
Experimental Study of Sound Waves in Sandy Sediment
2003-05-01
parameter model ) and measurements (using a reflection ratio technique) includes derivations and measurements of acoustic imped- ances, effective densities...22 2.9 Model Used to Find Acoustic Impedance of Biot Medium . . . . . . . . . . . . . . 24 2.10 Free Body Diagram of...38] derived the complex reflection coefficient of plane acoustic waves from a poro-elastic sediment half-space. The boundary condition model is
NASA Astrophysics Data System (ADS)
Qian, Jin; Wang, Xiu-Juan; Wu, Shi-Guo; Wang, Zhen-zhen; Yang, Sheng-Xiong
2014-06-01
Gas hydrates have been identified from two-dimensional (2D) seismic data and logging data above bottom simulating reflector (BSR) during China's first gas hydrate drilling expedition in 2007. The multichannel reflection seismic data were processed to be preserved amplitudes for quantitatively analyzing amplitude variation with offset (AVO) at BSRs. Low P-wave velocity anomaly below BSR, coinciding with high amplitude reflections in 2D seismic data, indicates the presence of free gas. The absolute values of reflection coefficient versus incidence angles for BSR range from 0 to 0.12 at different CMPs near Site SH2. According to logging data and gas hydrate saturations estimated from resistivity of Site SH2, P-wave velocities calculated from effective media theory (EMT) fit the measured sonic velocities well and we choose EMT to calculate elastic velocities for AVO. The rock-physics modeling and AVO analysis were combined to quantitatively assess free gas saturations and distribution by the reflection coefficients variation of the BSRs in Shenhu area, South China Sea. AVO estimation indicates that free gas saturations immediately beneath BSRs may be about 0.2 % (uniform distribution) and up to about 10 % (patchy distribution) at Site SH2.
NASA Astrophysics Data System (ADS)
Hu, Yan; Wang, Yuanhao; An, Zhenguo; Zhang, Jingjie; Yang, Hongxing
2016-11-01
The super-hydrophobic and IR-reflectivity hollow glass microspheres (HGM) was synthesized by being coated with anatase TiO2 and a super-hydrophobic material. The super-hydrophobic self-cleaning property prolong the life time of the IR reflectivity. TBT and PFOTES were firstly applied and hydrolyzed on HGM and then underwent hydrothermal reaction to synthesis anatase TiO2 film. For comparison, the PFOTES/TiO2 mutual-coated HGM (MCHGM), PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The MCHGM had bigger contact angle (153°) but smaller sliding angle (16°) than F-SCHGM (contact angle: 141.2°; sliding angle: 67°). Ti-SCHGM and MCHGM both showed similar IR reflectivity with ca. 5.8% increase compared with original HGM and F-SCHGM. For the thermal conductivity, coefficients of F-SCHGM (0.0479 W/(m K)) was basically equal to that of the original HGM (0.0475 W/(m K)). Negligible difference was found between the thermal conductivity coefficients of MCHGM-coated HGM (0.0543 W/(m K)) and Ti-SCHGM (0.0546 W/(m K)).
Inversion of sonobuoy data from shallow-water sites with simulated annealing.
Lindwall, Dennis; Brozena, John
2005-02-01
An enhanced simulated annealing algorithm is used to invert sparsely sampled seismic data collected with sonobuoys to obtain seafloor geoacoustic properties at two littoral marine environments as well as for a synthetic data set. Inversion of field data from a 750-m water-depth site using a water-gun sound source found a good solution which included a pronounced subbottom reflector after 6483 iterations over seven variables. Field data from a 250-m water-depth site using an air-gun source required 35,421 iterations for a good inversion solution because 30 variables had to be solved for, including the shot-to-receiver offsets. The sonobuoy derived compressional wave velocity-depth (Vp-Z) models compare favorably with Vp-Z models derived from nearby, high-quality, multichannel seismic data. There are, however, substantial differences between seafloor reflection coefficients calculated from field models and seafloor reflection coefficients based on commonly used Vp regression curves (gradients). Reflection loss is higher at one field site and lower at the other than predicted from commonly used Vp gradients for terrigenous sediments. In addition, there are strong effects on reflection loss due to the subseafloor interfaces that are also not predicted by Vp gradients.
Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung
Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated bymore » using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.« less
Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
Tissue identification during Pneumoperitoneum in laparoscopy
NASA Astrophysics Data System (ADS)
Chang, Yin; Tseng, Chi-Yang
2015-03-01
Pneumoperitoneum is the beginning procedure of laparoscopy to enlarge the abdominal cavity in order to allow the surgical instruments to insert for surgical purpose. However, the insertion of Veress needle is a blind fashion that could cause blood vessels or visceral injury without attention and results in undetectable internal bleeding. Seriously it may cause a life-threatened complication. We have developed a method that can monitor the tissue reflective spectrum, which can be used for tissue discrimination, in real time during the puncture of the Veress needle. The system includes a modified Veress needle which containes an optical bundle, a light spectrum analyzing and control unit. Therefore, the tissue reflective spectrum can be vivid observed and analyzed through the fiber optical technology during the procedure of the Veress needle insertion. In this study, we have measured the reflective spectra of various porcine abdominal tissues. The features of their spectra were analyzed and characterized to build up the data base and create an algorithm for tissue discrimination in laparoscopy. The results showed that the correlation coefficient (r) of the reflective spectrum can be 0.79-0.95 for the wavelength range of 350-1000 nm and 0.85-0.98 for the wavelength range of 350-650 nm in the same tissue of various samples which were obtained from different days. An alternative way for tissue discrimination is achieved through a decision making tree according to the characteristics of tissue spectrum. For single blind test the success rate is nearly 100%. It seems that both the algorithms mentioned above for tissue discrimination are all very promising. Therefore, these algorithms will be applied to in vivo study in animal in the near future.
On the Angular Variation of Solar Reflectance of Snow
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Choudhury, B. J.
1979-01-01
Spectral and integrated solar reflectance of nonhomogeneous snowpacks were derived assuming surface reflection of direct radiation and subsurface multiple scattering. For surface reflection, a bidirectional reflectance distribution function derived for an isotropic Gaussian faceted surface was considered and for subsurface multiple scattering, an approximate solution of the radiative transfer equation was studied. Solar radiation incident on the snowpack was decomposed into direct and atmospherically scattered radiation. Spectral attenuation coefficients of ozone, carbon dioxide, water vapor, aerosol and molecular scattering were included in the calculation of incident solar radiation. Illustrative numerical results were given for a case of North American winter atmospheric conditions. The calculated dependence of spectrally integrated directional reflectance (or albedo) on solar elevation was in qualitative agreement with available observations.
A reflection polarizations zoom metasurfaces
NASA Astrophysics Data System (ADS)
Yang, Fulong; Wang, Xiaoyan
2017-02-01
Based on generalized Snell's law, we propose a dual-polarity zoom metasurfaces operating electromagnetic wave in the reflection geometry. The metasurfaces is constructed by two identical ultrathin metal-backed dielectric slabs with metallic Jerusalem cross patterns on the other sides to form a triangular region. The normally incident waves are totally reflected, but the reflection phases of both x- and y-polarized waves are controlled independently. According to the classical theory of optical imaging, the reflection electromagnetic wave phases were obtained in the different polarizations and focus. Each subwavelength units size were determined with the reflection coefficient of the basic unit, the polarizations zoom metasurfaces was designed in the way. The full-wave simulations are in good agreement with theoretical analysis in microwave lengths.
Xiao, Hanguang; Tan, Isabella; Butlin, Mark; Li, Decai; Avolio, Alberto P
2018-03-01
Arterial wave reflection has been shown to have a significant dependence on heart rate (HR). However, the underlying mechanisms inherent in the HR dependency of wave reflection have not been well established. This study aimed to investigate the potential mechanisms and role of arterial viscoelasticity using a 55-segment transmission line model of the human arterial tree combined with a fractional viscoelastic model. At varying degrees of viscoelasticity modeled as fractional order parameter α, reflection magnitude (RM), reflection index (RI), augmentation index (AIx), and a proposed novel normalized reflection coefficient (Γ norm ) were estimated at different HRs from 60 to 100 beats/min with a constant mean flow of 70 ml/s. RM, RI, AIx, and Γ norm at the ascending aorta decreased linearly with increasing HR at all degrees of viscoelasticity. The means ± SD of the HR dependencies of RM, RI, AIx, and Γ norm were -0.042 ± 0.004, -0.018 ± 0.001, -1.93 ± 0.55%, and -0.037 ± 0.002 per 10 beats/min, respectively. There was a significant and nonlinear reduction in RM, RI, and Γ norm with increasing α at all HRs. In addition, HR and α have a more pronounced effect on wave reflection at the aorta than at peripheral arteries. The potential mechanism of the HR dependency of wave reflection was explained by the inverse dependency of the reflection coefficient on frequency, with the harmonics of the pulse waveform moving toward higher frequencies with increasing HR. This HR dependency can be modulated by arterial viscoelasticity. NEW & NOTEWORTHY This in silico study addressed the underlying mechanisms of how heart rate influences arterial wave reflection based on a transmission line model and elucidated the role of arterial viscoelasticity in the dependency of arterial wave reflection on heart rate. This study provides insights into wave reflection as a frequency-dependent phenomenon and demonstrates the validity of using reflection magnitude and reflection index as wave reflection indexes.
NASA Astrophysics Data System (ADS)
Post, Anouk L.; Zhang, Xu; Bosschaart, Nienke; Van Leeuwen, Ton G.; Sterenborg, Henricus J. C. M.; Faber, Dirk J.
2016-03-01
Both Optical Coherence Tomography (OCT) and Single Fiber Reflectance Spectroscopy (SFR) are used to determine various optical properties of tissue. We developed a method combining these two techniques to measure the scattering anisotropy (g1) and γ (=1-g2/1-g1), related to the 1st and 2nd order moments of the phase function. The phase function is intimately associated with the cellular organization and ultrastructure of tissue, physical parameters that may change during disease onset and progression. Quantification of these parameters may therefore allow for improved non-invasive, in vivo discrimination between healthy and diseased tissue. With SFR the reduced scattering coefficient and γ can be extracted from the reflectance spectrum (Kanick et al., Biomedical Optics Express 2(6), 2011). With OCT the scattering coefficient can be extracted from the signal as a function of depth (Faber et al., Optics Express 12(19), 2004). Consequently, by combining SFR and OCT measurements at the same wavelengths, the scattering anisotropy (g) can be resolved using µs'= µs*(1-g). We performed measurements on a suspension of silica spheres as a proof of principle. The SFR model for the reflectance as a function of the reduced scattering coefficient and γ is based on semi-empirical modelling. These models feature Monte-Carlo (MC) based model constants. The validity of these constants - and thus the accuracy of the estimated parameters - depends on the phase function employed in the MC simulations. Since the phase function is not known when measuring in tissue, we will investigate the influence of assuming an incorrect phase function on the accuracy of the derived parameters.
Use of Internal Consistency Coefficients for Estimating Reliability of Experimental Tasks Scores
Green, Samuel B.; Yang, Yanyun; Alt, Mary; Brinkley, Shara; Gray, Shelley; Hogan, Tiffany; Cowan, Nelson
2017-01-01
Reliabilities of scores for experimental tasks are likely to differ from one study to another to the extent that the task stimuli change, the number of trials varies, the type of individuals taking the task changes, the administration conditions are altered, or the focal task variable differs. Given reliabilities vary as a function of the design of these tasks and the characteristics of the individuals taking them, making inferences about the reliability of scores in an ongoing study based on reliability estimates from prior studies is precarious. Thus, it would be advantageous to estimate reliability based on data from the ongoing study. We argue that internal consistency estimates of reliability are underutilized for experimental task data and in many applications could provide this information using a single administration of a task. We discuss different methods for computing internal consistency estimates with a generalized coefficient alpha and the conditions under which these estimates are accurate. We illustrate use of these coefficients using data for three different tasks. PMID:26546100
NASA Astrophysics Data System (ADS)
Wang, Chiao Yi; Yu, Ting Wen; Sung, Kung Bin
2018-02-01
Estimating optical properties of tissues is a crucial step to model photon migration in tissue, facilitate the design of the probe geometry, better interpret data measured from tissue and predict photon energy distributions in tissue for various diagnostic and therapeutic applications. Diffuse reflectance spectroscopy (DRS) using visible and near-infrared light is a well-known method for estimating optical properties of tissues. For estimating optical properties of muscles, most existing researches have used integrating spheres for ex-vivo measurements. However, due to inter-subject variability and sitespecific conditions, an in-vivo approach can provide more accurate estimations of muscle absorption and scattering coefficients, which is important for the tomographic reconstruction of changes in the absorption or fluorescence in tissue. In this study, we used DRS with wavelengths between 600 nm and 800 nm and a fiber bundle with source-to-detector separations in the range of 0.18-0.35 cm to quantify wavelength-dependent scattering and absorption coefficients of human muscles in vivo with an inverse Monte Carlo model. Reflectance spectra were measured on the neck and the upper arm of one volunteer. After calibrating spectra with tissue phantoms made of Intralipid and India ink, we estimated scattering and absorption coefficients of muscles. The results are compared to those measured ex vivo in the literature.
Zhou, Yang; Fu, Xiaping; Ying, Yibin; Fang, Zhenhuan
2015-06-23
A fiber-optic probe system was developed to estimate the optical properties of turbid media based on spatially resolved diffuse reflectance. Because of the limitations in numerical calculation of radiative transfer equation (RTE), diffusion approximation (DA) and Monte Carlo simulations (MC), support vector regression (SVR) was introduced to model the relationship between diffuse reflectance values and optical properties. The SVR models of four collection fibers were trained by phantoms in calibration set with a wide range of optical properties which represented products of different applications, then the optical properties of phantoms in prediction set were predicted after an optimal searching on SVR models. The results indicated that the SVR model was capable of describing the relationship with little deviation in forward validation. The correlation coefficient (R) of reduced scattering coefficient μ'(s) and absorption coefficient μ(a) in the prediction set were 0.9907 and 0.9980, respectively. The root mean square errors of prediction (RMSEP) of μ'(s) and μ(a) in inverse validation were 0.411 cm(-1) and 0.338 cm(-1), respectively. The results indicated that the integrated fiber-optic probe system combined with SVR model were suitable for fast and accurate estimation of optical properties of turbid media based on spatially resolved diffuse reflectance. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shuang, Zhou; Guili, Liu; Dazhi, Fan
2017-02-01
The electronic structure and optical properties of adsorbing O atoms on graphene with different O coverage are researched using the density functional theory based upon the first-principle study to obtain further insight into properties of graphene. The adsorption energies, band structures, the density of states, light absorption coefficient and reflectivity of each system are calculated theoretically after optimizing structures of each system with different O coverage. Our calculations show that adsorption of O atoms on graphene increases the bond length of C-C which adjacent to the O atoms. When the O coverage is 9.4%, the adsorption energy (3.91 eV) is the maximum, which only increases about 1.6% higher than that of 3.1% O coverage. We find that adsorbed O atoms on pristine graphene opens up indirect gap of about 0.493-0.952 eV. Adsorbing O atoms make pristine graphene from metal into a semiconductor. When the O coverage is 9.4%, the band gap (0.952 eV) is the maximum. Comparing with pristine graphene, we find the density of states at Fermi level of O atoms adsorbing on graphene with different coverage are significantly increased. We also find that light absorption coefficient and reflectivity peaks are significantly reduced, and the larger the coverage, the smaller the absorption coefficient and reflectivity peaks are. And the blue shift phenomenon appears.
NASA Astrophysics Data System (ADS)
Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli
2016-10-01
GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.
[Hydrologic variability and sensitivity based on Hurst coefficient and Bartels statistic].
Lei, Xu; Xie, Ping; Wu, Zi Yi; Sang, Yan Fang; Zhao, Jiang Yan; Li, Bin Bin
2018-04-01
Due to the global climate change and frequent human activities in recent years, the pure stochastic components of hydrological sequence is mixed with one or several of the variation ingredients, including jump, trend, period and dependency. It is urgently needed to clarify which indices should be used to quantify the degree of their variability. In this study, we defined the hydrological variability based on Hurst coefficient and Bartels statistic, and used Monte Carlo statistical tests to test and analyze their sensitivity to different variants. When the hydrological sequence had jump or trend variation, both Hurst coefficient and Bartels statistic could reflect the variation, with the Hurst coefficient being more sensitive to weak jump or trend variation. When the sequence had period, only the Bartels statistic could detect the mutation of the sequence. When the sequence had a dependency, both the Hurst coefficient and the Bartels statistics could reflect the variation, with the latter could detect weaker dependent variations. For the four variations, both the Hurst variability and Bartels variability increased with the increases of variation range. Thus, they could be used to measure the variation intensity of the hydrological sequence. We analyzed the temperature series of different weather stations in the Lancang River basin. Results showed that the temperature of all stations showed the upward trend or jump, indicating that the entire basin had experienced warming in recent years and the temperature variability in the upper and lower reaches was much higher. This case study showed the practicability of the proposed method.
Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee
2018-01-01
The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.
Ballif, Marie; Zürcher, Kathrin; Reid, Stewart E; Boulle, Andrew; Fox, Matthew P; Prozesky, Hans W; Chimbetete, Cleophas; Egger, Matthias; Fenner, Lukas
2018-01-01
Objectives Seasonal variations in tuberculosis diagnoses have been attributed to seasonal climatic changes and indoor crowding during colder winter months. We investigated trends in pulmonary tuberculosis (PTB) diagnosis at antiretroviral therapy (ART) programmes in Southern Africa. Setting Five ART programmes participating in the International Epidemiology Database to Evaluate AIDS in South Africa, Zambia and Zimbabwe. Participants We analysed data of 331 634 HIV-positive adults (>15 years), who initiated ART between January 2004 and December 2014. Primary outcome measure We calculated aggregated averages in monthly counts of PTB diagnoses and ART initiations. To account for time trends, we compared deviations of monthly event counts to yearly averages, and calculated correlation coefficients. We used multivariable regressions to assess associations between deviations of monthly ART initiation and PTB diagnosis counts from yearly averages, adjusted for monthly air temperatures and geographical latitude. As controls, we used Kaposi sarcoma and extrapulmonary tuberculosis (EPTB) diagnoses. Results All programmes showed monthly variations in PTB diagnoses that paralleled fluctuations in ART initiations, with recurrent patterns across 2004–2014. The strongest drops in PTB diagnoses occurred in December, followed by April–May in Zimbabwe and South Africa. This corresponded to holiday seasons, when clinical activities are reduced. We observed little monthly variation in ART initiations and PTB diagnoses in Zambia. Correlation coefficients supported parallel trends in ART initiations and PTB diagnoses (correlation coefficient: 0.28, 95% CI 0.21 to 0.35, P<0.001). Monthly temperatures and latitude did not substantially change regression coefficients between ART initiations and PTB diagnoses. Trends in Kaposi sarcoma and EPTB diagnoses similarly followed changes in ART initiations throughout the year. Conclusions Monthly variations in PTB diagnosis at ART programmes in Southern Africa likely occurred regardless of seasonal variations in temperatures or latitude and reflected fluctuations in clinical activities and changes in health-seeking behaviour throughout the year, rather than climatic factors. PMID:29330173
Kubelka-Munk reflectance theory applied to porcelain veneer systems using a colorimeter.
Davis, B K; Johnston, W M; Saba, R F
1994-01-01
The purpose of this study was to demonstrate the ability of Kubelka-Munk reflectance theory to predict color parameters of veneer porcelain on various backings using colorimetric measurements. Tristimulus absorption and scattering coefficients were used to predict the respective tristimulus reflectance values of A1, D3, and translucent porcelain samples after they had been bonded to light and dark substrates using universal, opaque, and untinted shades of bonding resin. Observed and predicted reflectance values exhibited high correlation (r2 > or = 0.93 for each porcelain shade). Kubelka-Munk theory offers an accurate prediction for the resultant colorimetric reflectance parameters of veneer porcelain bonded to variously colored backings.
Real time infrared aerosol analyzer
Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh
1990-01-01
Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.
NASA Astrophysics Data System (ADS)
Wang, Chiao-Yi; Liao, Andy Ying Chi; Sung, Kung Bin
2018-02-01
Collagen provides skin structure integrity and its concentration is related to the severity of scars. The objective of this study is to develop a hand-held and relatively inexpensive system to detect changes of the dermal collagen concentration in vivo. Diffuse reflectance spectroscopy and two-layer diffusion model have often been used to quantify the collagen concentration and other optical properties of the skin. However, the influences of fat and muscle, which are just below the dermis, have not been thoroughly investigated. We applied Monte Carlo simulations to find source-detector separations most sensitive to changes in collagen absorption and identify four wavelengths between 650 nm and 1000 nm suitable for separating influences of other chromophores including melanin, oxyhemoglobin and deoxyhemoglobin. Our tissue model consisted of at least three layers including the epidermis, dermis and subcutaneous fat with an optional forth layer representing the muscle. Results showed that the reflectance of the three-layered tissue model differed significantly from that of the two-layered tissue model, and the additional muscle layer might also influence the reflectance depending on the thickness of the fat layer. In addition, whether scattering coefficients of the epidermis and dermis were the same significantly affected the reflectance. Differences in reflectance due to changes in the collagen concentration were distinct from those due to changes in scattering coefficients and other chromophores. Further in-vivo experiments are ongoing to to validate the proposed approach.
Chen, Shu-Yueh; Lai, Chen-Chun; Chang, Hui-Mei; Hsu, Hui-Chen; Pai, Hsiang-Chu
2016-12-01
Self-reflection (also known as reflection) is an internal process that is difficult to perceive or assess. An instrument that is able to measure self-reflection may serve as a resource for educators to assess the learning process of students and to tailor education approaches to student needs. The aim of this study was to translate the Self-Reflection and Insight Scale (SRIS) into Chinese and evaluate its psychometric properties for use with Taiwanese nursing students. For this cross-sectional study, nursing students were recruited from two nursing schools in southern Taiwan in two phases: Phase 1, which included 361 fourth-year students, and Phase 2, which included 703 fifth-year students. Data were collected in December 2012 and May 2013 using the Chinese version of the SRIS (SRIS-C), Taiwan Critical Thinking Disposition Inventory, and the Perceived Identity as a Nurse Questionnaire, which was developed by the author. In Phase 1, exploratory factor analysis was used to explore the factor structure of the SRIS-C in the fourth-year student participants. In Phase 2, confirmatory factor analysis was used to determine the fitness of the model for the fifth-year student participants. Eight items were deleted from the original SRIS to create the SRIS-C. Thus, the Chinese-version measure had 12 items and two factors (self-reflection and insight) that fit the data well. The Cronbach's alpha coefficients for the total scale and its two subscales were .79, .87, and .83, respectively. The 3-week test-retest reliability was .74. SRIS-C scores correlated significantly with scores on the Taiwan Critical Thinking Disposition Inventory and the Perceived Identity as a Nurse Questionnaire, indicating good convergent validity for the SRIS-C. The current study showed that the SRIS-C has sound psychometric properties. This instrument provides nurse educators with information that may be used to evaluate the self-reflection and insight of students and to develop interventions to effectively improve these skills in Chinese-language-based nursing education.
Cortexin diffusion in human eye sclera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Bashkatov, A N; Tuchin, Valerii V
2011-05-31
Investigation of the diffusion of cytamines, a typical representative of which is cortexin, is important for evaluating the drug dose, necessary to provide sufficient concentration of the preparation in the inner tissues of the eye. In the present paper, the cortexin diffusion rate in the eye sclera is measured using the methods of optical coherence tomography (OCT) and reflectance spectroscopy. The technique for determining the diffusion coefficient is based on the registration of temporal dependence of the eye sclera scattering parameters caused by partial replacement of interstitial fluid with the aqueous cortexin solution, which reduces the level of the OCTmore » signal and decreases the reflectance of the sclera. The values of the cortexin diffusion coefficient obtained using two independent optical methods are in good agreement. (optical technologies in biophysics and medicine)« less
NASA Astrophysics Data System (ADS)
Yahaya, NZ; Ramli, MR; Razak, NNANA; Abbas, Z.
2018-04-01
The Finite Element Method, FEM has been successfully used to model a simple rectangular microstrip sensor to determine the moisture content of Hevea rubber latex. The FEM simulation of sensor and samples was implemented by using COMSOL Multiphysics software. The simulation includes the calculation of magnitude and phase of reflection coefficient and was compared to analytical method. The results show a good agreement in finding the magnitude and phase of reflection coefficient when compared with analytical results. Field distributions of both the unloaded sensor as well as the sensor loaded with different percentages of moisture content were visualized using FEM in conjunction with COMSOL software. The higher the amount of moisture content in the sample the more the electric loops were observed.
NASA Technical Reports Server (NTRS)
Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.
2005-01-01
The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.
NASA Astrophysics Data System (ADS)
Mackay, C.; Hayward, D.; Mulholland, A. J.; McKee, S.; Pethrick, R. A.
2005-06-01
An inverse problem motivated by the nondestructive testing of adhesively bonded structures used in the aircraft industry is studied. Using transmission line theory, a model is developed which, when supplied with electrical and geometrical parameters, accurately predicts the reflection coefficient associated with such structures. Particular attention is paid to modelling the connection between the structures and the equipment used to measure the reflection coefficient. The inverse problem is then studied and an optimization approach employed to recover these electrical and geometrical parameters from experimentally obtained data. In particular the approach focuses on the recovery of spatially varying geometrical parameters as this is paramount to the successful reconstruction of electrical parameters. Reconstructions of structure geometry using this method are found to be in close agreement with experimental observations.
ERIC Educational Resources Information Center
Charters, Alexander N.
2012-01-01
This article presents the author's reflections on involvement with six UNESCO international conferences on adult education. As adult educators continue to look forward with enthusiasm to the future of adult and continuing education in an increasingly international society, the author argues that they need to continually remember that the mission…
University Employment Transitions in International Performing Arts: The Intern's Story
ERIC Educational Resources Information Center
Carneiro, Maria
2013-01-01
This article reflects my journey as a performing arts student and intern both in Portugal and abroad. It is not intended as a personal journal, but rather a reflection and an aftermath comment on my experiences and learning processes. First it provides a context regarding my university education in a Southern European country, against a previous…
Technology Experiences of Student Interns in a One to One Mobile Program
ERIC Educational Resources Information Center
Cullen, Theresa A.; Karademir, Tugra
2018-01-01
This article describes how a group of student intern teachers (n = 51) in a one to one teacher education iPad program were asked to reflect using Experience Sampling Method (ESM) on their use of technology in the classroom during internship. Interns also completed summative reflections and class discussions. Data collected both in online and…
Fang, Li-Gang; Chen, Shui-Sen; Li, Dong; Li, Hong-Li
2009-01-01
Spectra, salinity, total suspended solids (TSS, in mg/L) and colored dissolved organic matter (CDOM, ag(400) at 400 nm) sampled in stations in 44 different locations on December 18, 19 and 21, in 2006 were measured and analyzed. The studied field covered a large variety of optically different waters, the absorption coefficient of CDOM ([ag(400)] in m-1) varied between 0.488 and 1.41 m-1, and the TSS concentrations (mg/L) varied between 7.0 and 241.1 mg/L. In order to detect salinity of the Pearl River Estuary, we analyzed the spectral properties of TSS and CDOM, and the relationships between field water reflectance spectra and water constituents' concentrations based on the synchronous in-situ and satellite hyper-spectral image analysis. A good correlation was discovered (the positive correlation by linear fit), between in-situ reflectance ratio R680/R527 and TSS concentrations (R2 = 0.65) for the salinity range of 1.74-22.12. However, the result also showed that the absorption coefficient of CDOM was not tightly correlated with reflectance. In addition, we also observed two significant relationships (R2 > 0.77), one between TSS concentrations and surface salinity and the other between the absorption coefficient of CDOM and surface salinity. Finally, we develop a novel method to understand surface salinity distribution of estuarine waters from the calibrated EO-1 Hyperion reflectance data in the Pearl River Estuary, i.e. channels with high salinity and shoals with low salinity. The EO-1 Hyperion derived surface salinity and TSS concentrations were validated using in-situ data that were collected on December 21, 2006, synchronous with EO-1 Hyperion satellite imagery acquisition. The results showed that the semi-empirical relationships are capable of predicting salinity from EO-1 Hyperion imagery in the Pearl River Estuary (RMSE < 2‰). PMID:22389623
NASA Astrophysics Data System (ADS)
Zhao, Jinping; Cao, Yong; Wang, Xin
2018-06-01
In order to study the temporal variations of correlations between two time series, a running correlation coefficient (RCC) could be used. An RCC is calculated for a given time window, and the window is then moved sequentially through time. The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient, calculated with the data within the time window, which we call the local running correlation coefficient (LRCC). The LRCC is calculated via the two anomalies corresponding to the two local means, meanwhile, the local means also vary. It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means. To address this problem, two unchanged means obtained from all available data are adopted to calculate an RCC, which is called the synthetic running correlation coefficient (SRCC). When the anomaly variations are dominant, the two RCCs are similar. However, when the variations of the means are dominant, the difference between the two RCCs becomes obvious. The SRCC reflects the correlations of both the anomaly variations and the variations of the means. Therefore, the SRCCs from different time points are intercomparable. A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data. The SRCC always meets this criterion, while the LRCC sometimes fails. Therefore, the SRCC is better than the LRCC for running correlations. We suggest using the SRCC to calculate the RCCs.
Pezzei, Cornelia K; Schönbichler, Stefan A; Hussain, Shah; Kirchler, Christian G; Huck-Pezzei, Verena A; Popp, Michael; Krolitzek, Justine; Bonn, Günther K; Huck, Christian W
2018-04-01
In this study, novel near-infrared and attenuated total reflectance mid-infrared spectroscopic methods coupled with multivariate data analysis were established enabling the determination of thymol, rosmarinic acid, and the antioxidant capacity of Thymi herba. A new high-performance liquid chromatography method and UV-Vis spectroscopy were applied as reference methods. Partial least squares regressions were carried out as cross and test set validations. To reduce systematic errors, different data pretreatments, such as multiplicative scatter correction, 1st derivative, or 2nd derivative, were applied on the spectra. The performances of the two infrared spectroscopic techniques were evaluated and compared. In general, attenuated total reflectance mid-infrared spectroscopy demonstrated a slightly better predictive power (thymol: coefficient of determination = 0.93, factors = 3, ratio of performance to deviation = 3.94; rosmarinic acid: coefficient of determination = 0.91, factors = 3, ratio of performance to deviation = 3.35, antioxidant capacity: coefficient of determination = 0.87, factors = 2, ratio of performance to deviation = 2.80; test set validation) than near-infrared spectroscopy (thymol: coefficient of determination = 0.90, factors = 6, ratio of performance to deviation = 3.10; rosmarinic acid: coefficient of determination = 0.92, factors = 6, ratio of performance to deviation = 3.61, antioxidant capacity: coefficient of determination = 0.91, factors = 6, ratio of performance to deviation = 3.42; test set validation). The capability of infrared vibrational spectroscopy as a quick and simple analytical tool to replace conventional time and chemical consuming analyses for the quality control of T. herba could be demonstrated. Georg Thieme Verlag KG Stuttgart · New York.
Reflection coefficients of permeant molecules in human red cell suspensions.
Owen, J D; Eyring, E M
1975-08-01
The Staverman reflection coefficient, sigma for several permeant molecules was determined in human red cell suspensions with a Durrum stopped-flow spectrophotometer. This procedure was first used with dog, cat, and beef red cells and with human red cells. The stopped-flow technique used was similar to the rapid-flow method used by those who originally reported sigma measurements in human red cells for molecules which rapidly penetrate the red cell membrane. The sigma values we obtained agreed with those previously reported for most of the slow penetrants, except malonamide, but disagreed with all the sigma values previously reported for the rapid penetrants. We were unable to calculate an "equivalent pore radius" with our sigma data. The advantages of our equipment and our experimental procedure are discussed. Our sigma data suggest that sigma is indirectly proportional to the log of the nonelectrolyte permeability coefficient, omega. Since a similar trend has been previously shown for log omega and molar volume of the permeant molecules, a correlatioo was shown between sigma and molar volume suggesting the membrane acts as a sieve.
Igwesi-Chidobe, Chinonso N; Obiekwe, Chinwe; Sorinola, Isaac O; Godfrey, Emma L
2017-12-14
Cross-culturally adapt and validate the Igbo Roland Morris Disability Questionnaire. Cross-cultural adaptation, test-retest, and cross-sectional psychometric testing. Roland Morris Disability Questionnaire was forward and back translated by clinical/non-clinical translators. An expert committee appraised the translations. Twelve participants with chronic low back pain pre-tested the measure in a rural Nigerian community. Internal consistency using Cronbach's alpha; test-retest reliability using intra-class correlation coefficient and Bland-Altman plot; and minimal detectable change were investigated in a convenient sample of 50 people with chronic low back pain in rural and urban Nigeria. Pearson's correlation analyses using the eleven-point box scale and back performance scale, and exploratory factor analysis were used to examine construct validity in a random sample of 200 adults with chronic low back pain in rural Nigeria. Ceiling and floor effects were investigated in the two samples. Modifications gave the option of interviewer-administration and reflected Nigerian social context. The measure had excellent internal consistency (α = 0.91) and intraclass correlation coefficient (ICC =0.84), moderately high correlations (r > 0.6) with performance-based disability and pain intensity, and a predominant uni-dimensional structure, with no ceiling or floor effects. Igbo Roland Morris Disability Questionnaire is a valid and reliable measure of pain-related disability. Implications for rehabilitation Low back pain is the leading cause of years lived with disability worldwide, and is particularly prevalent in rural Nigeria, but there are no self-report measures to assess its impact due to low literacy rates. This study describes the cross-cultural adaptation and validation of a core self-report back pain specific disability measure in a low-literate Nigerian population. The Igbo Roland Morris Disability Questionnaire is a reliable and valid measure of self-reported disability in Igbo populations as indicated by excellent internal consistency (α = 0.91) and intra-class correlation coefficient (ICC =0.84), moderately high correlations (r > 0.6) with performance-based disability and pain intensity that supports a pain-related disability construct, a predominant one factor structure with no ceiling or floor effects. The measure will be useful for researchers and clinicians examining the factors associated with low back pain disability or the effects of interventions on low back pain disability in this culture. This measure will support global health initiatives concurrently involving people from several cultures or countries, and may inform cross-cultural disability research in other populations.
Brace, Christopher L.
2011-01-01
Purpose: Design and validate an efficient dual-slot coaxial microwave ablation antenna that produces an approximately spherical heating pattern to match the shape of most abdominal and pulmonary tumor targets.Methods: A dual-slot antenna geometry was utilized for this study. Permutations of the antenna geometry using proximal and distal slot widths from 1 to 10 mm separated by 1–20 mm were analyzed using finite-element electromagnetic simulations. From this series, the most optimal antenna geometry was selected using a two-term sigmoidal objective function to minimize antenna reflection coefficient and maximize the diameter-to-length aspect ratio of heat generation. Sensitivities to variations in tissue properties and insertion depth were also evaluated in numerical models. The most optimal dual-slot geometry of the parametric analysis was then fabricated from semirigid coaxial cable. Antenna reflection coefficients at various insertion depths were recorded in ex vivo bovine livers and compared to numerical results. Ablation zones were then created by applying 50 W for 2–10 min in simulations and ex vivo livers. Mean zone diameter, length, aspect ratio, and reflection coefficients before and after heating were then compared to a conventional monopole antenna using ANOVA with post-hoc t-tests. Statistical significance was indicated for P < 0.05.Results: Antenna performance was highly sensitive to dual-slot geometry. The best-performing designs utilized a proximal slot width of 1 mm, distal slot width of 4 mm ± 1 mm and separation of 8 mm ± 1 mm. These designs were characterized by an active choking mechanism that focused heating to the distal tip of the antenna. A dual-band resonance was observed in the most optimal design, with a minimum reflection coefficient of −20.9 dB at 2.45 and 1.25 GHz. Total operating bandwidth was greater than 1 GHz, but the desired heating pattern was achieved only near 2.45 GHz. As a result, antenna performance was robust to changes in insertion depth and variations in relative permittivity of the surrounding tissue medium. In both simulations and ex vivo liver, the dual-slot antenna created ablations greater in diameter than a coaxial monopole (35 mm ± 2 mm versus 31 mm ± 2 mm; P < 0.05), while also shorter in length (49 mm ± 2 mm versus 60 mm ± 6 mm; P < 0.001) after 10 min. Similar results were obtained after 2 and 5 min as well.Conclusions: Dual-slot antennas can produce more spherical ablation zones while retaining low reflection coefficients. These benefits are obtained without adding to the antenna diameter. Further evaluation for clinical microwave ablation appears warranted. PMID:21859025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, Amarpreet S.; Samei, Ehsan; Duke Advanced Imaging Laboratories, Departments of Radiology, Physics, Medical Physics, and Biomedical Engineering, Duke University, Durham, North Carolina 27705
2007-01-15
Ambient lighting in soft-copy reading rooms is currently kept at low values to preserve contrast rendition in the dark regions of a medical image. Low illuminance levels, however, create inadequate viewing conditions and may also cause eye strain. This eye strain may be potentially attributed to notable variations in the luminance adaptation state of the reader's eyes when moving the gaze intermittently between the brighter display and darker surrounding surfaces. This paper presents a methodology to minimize this variation and optimize the lighting conditions of reading rooms by exploiting the properties of liquid crystal displays (LCDs) with low diffuse reflectionmore » coefficients and high luminance ratio. First, a computational model was developed to determine a global luminance adaptation value, L{sub adp}, when viewing a medical image on display. The model is based on the diameter of the pupil size, which depends on the luminance of the observed object. Second, this value was compared with the luminance reflected off surrounding surfaces, L{sub s}, under various conditions of room illuminance, E, different values of diffuse reflection coefficients of surrounding surfaces, R{sub s}, and calibration settings of a typical LCD. The results suggest that for typical luminance settings of current LCDs, it is possible to raise ambient illumination to minimize differences in eye adaptation, potentially reducing visual fatigue while also complying with the TG18 specifications for controlled contrast rendition. Specifically, room illumination in the 75-150 lux range and surface diffuse reflection coefficients in the practical range of 0.13-0.22 sr{sup -1} provide an ideal setup for typical LCDs. Future LCDs with lower diffuse reflectivity and with higher inherent luminance ratios can provide further improvement of ergonomic viewing conditions in reading rooms.« less
ERIC Educational Resources Information Center
Maistry, S. M.
2010-01-01
South African society is characterized by high levels of poverty and unemployment. South Africa has an embarrassingly uneven distribution of income as reflected by the Gini-coefficient. While much of the country's economic ailments can be attributed to poor and selective application of economic policies during the apartheid era, there is a growing…
Fell, T P
2007-01-01
The ICRP has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public including children and pregnant or lactating women. The calculation of these coefficients conveniently divides into two distinct parts--the biokinetic and dosimetric. This paper gives a brief summary of the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES.
Borrego, A.G.; Araujo, C.V.; Balke, A.; Cardott, B.; Cook, A.C.; David, P.; Flores, D.; Hamor-Vido, M.; Hiltmann, W.; Kalkreuth, W.; Koch, J.; Kommeren, C.J.; Kus, J.; Ligouis, B.; Marques, M.; Mendonca, Filho J.G.; Misz, M.; Oliveira, L.; Pickel, W.; Reimer, K.; Ranasinghe, P.; Suarez-Ruiz, I.; Vieth, A.
2006-01-01
The development of a qualifying system for reflectance analysis has been the scope of a working group within the International Committee for Coal and Organic Petrology (ICCP) since 1999, when J. Koch presented a system to qualify vitrinite particles according to their size, proximity to bright components and homogeneity of the surface. After some years of work aimed at improving the classification system using photomicrographs, it was decided to run a round robin exercise on microscopy samples. The classification system tested consists of three qualifiers ranging from excellent to low quality vitrinites with an additional option for unsuitable vitrinites. This paper reports on the results obtained by 22 analysts who were asked to measure random reflectance readings on vitrinite particles assigning to each reading a qualifier. Four samples containing different organic matter types and a variety of vitrinite occurrences have been analysed. Results indicated that the reflectance of particles classified as excellent, good or poor compared to the total average reflectance did not show trends to be systematically lower or higher for the four samples analysed. The differences in reflectance between the qualifiers for any given sample were lower than the scatter of vitrinite reflectance among participants. Overall, satisfactory results were obtained in determining the reflectance of vitrinite in the four samples analysed. This was so for samples having abundant and easy to identify vitrinites (higher plant-derived organic matter) as well as for samples with scarce and difficult to identify particles (samples with dominant marine-derived organic matter). The highest discrepancies were found for the organic-rich oil shales where the selection of the vitrinite population to measure proved to be particularly difficult. Special instructions should be provided for the analysis of this sort of samples. The certainty of identification of the vitrinite associated with the vitrinite reflectance values reported has been assessed through a reliability index which takes into account the number of readings and the coefficient of variation. The same statistical approach as that followed in the ICCP vitrinite reflectance accreditation program for single seam coals has been used for data evaluation. The results indicated low to medium dispersion for 17 out of 22 participants. This, combined with data from other sets of comparative analyses over a long period, is considered an encouraging result for the establishment of an accreditation program on vitrinite reflectance measurements in dispersed organic matter. ?? 2006 ICCP.
Commander and User Perceptions of the Army’s Intransit Visibility (ITV) Architecture
2007-03-01
covariance matrix; (c) Bartlett’s test of Sphericity; and (d) Kaiser-Meyer- Olkin ( KMO ) measure of sampling adequacy. The inter-item correlation matrix...001), and all diagonal terms had a value of 1 while off-diagonal terms were 0. The KMO measure of sampling adequacy reflects the homogeneity...amongst the variables and serves as an index for comparing the magnitudes of correlation coefficients to partial correlation coefficients. KMO values at
Comparison of Rising Resonator Relative Permittivity Measurements to Ground Penetrating Radar Data
2014-04-01
permittivity of the soil and the target is critical in determining the strength of the reflection from the target. In this paper, a microstrip ring resonator...is used to measure the relative permittivity of the soil and various target fill materials. For this measurement technique, a microstrip ring... antennas of varying frequencies to take measurements of the two port transmission coefficient. This coefficient is measured from the input feedline to
Comparison of Ring Resonator Relative Permittivity Measurements to Ground Penetrating Radar Data
2014-04-01
permittivity of the soil and the target is critical in determining the strength of the reflection from the target. In this paper, a microstrip ring resonator...is used to measure the relative permittivity of the soil and various target fill materials. For this measurement technique, a microstrip ring... antennas of varying frequencies to take measurements of the two port transmission coefficient. This coefficient is measured from the input feedline to
Koritar, Priscila; Philippi, Sonia Tucunduva; Alvarenga, Marle dos Santos; Santos, Bernardo dos
2014-08-01
The scope of this study was to show the cross-cultural adaptation and validation of the Health and Taste Attitude Scale in Portuguese. The methodology included translation of the scale; evaluation of conceptual, operational and item-based equivalence by 14 experts and 51 female undergraduates; semantic equivalence and measurement assessment by 12 bilingual women by the paired t-test, the Pearson correlation coefficient and the coefficient intraclass correlation; internal consistency and test-retest reliability by Cronbach's alpha and intraclass correlation coefficient, respectively, after application on 216 female undergraduates; assessment of discriminant and concurrent validity via the t-test and Spearman's correlation coefficient, respectively, in addition to Confirmatory Factor and Exploratory Factor Analysis. The scale was considered adequate and easily understood by the experts and university students and presented good internal consistency and reliability (µ 0.86, ICC 0.84). The results show that the scale is valid and can be used in studies with women to better understand attitudes related to taste.
Value of Reflected Light Microscopy in Teaching.
ERIC Educational Resources Information Center
Pasteris, Jill Dill
1983-01-01
Briefly reviews some optical and other physical properties of minerals that can be determined in reflected/incident light. Topics include optical properties of minerals, reflectance, internal reflections, color, bireflectance and reflection pleochroism, anisotropism, zonation, and reflected light microscopy as a teaching tool in undergraduate…
Estimating varying coefficients for partial differential equation models.
Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J
2017-09-01
Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.
Internal Performance of Several Divergent-Shroud Ejector Nozzles with High Divergence Angles
NASA Technical Reports Server (NTRS)
Trout, Arthur M.; Papell, S. Stephen; Povolny, John H.
1957-01-01
Nine divergent-shroud ejector configurations were investigated to determine the effect of shroud divergence angle on ejector internal performance. Unheated dry air was used for both the primary and secondary flows. The decrease in the design-point thrust coefficient with increasing flow divergence angle (angle measured from primary exit to shroud exit) followed very closely a simple relation involving the cosine of the angle. This indicates that design-point thrust performance for divergent-shroud ejectors can be predicted with reasonable accuracy within the range investigated. The decrease in design-point thrust coefficient due to increasing the flow divergence engle from 120deg to 30deg (half-singles) was approximately 6 percent. Ejector air-handling characteristics and the primary-nozzle flow coefficient were not significantly affected by change in shroud divergence angle.
NASA Astrophysics Data System (ADS)
Stefan, Cristiana; Demetrescu, Crisan; Dobrica, Venera
2014-05-01
Several recently developed main geomagnetic field models, based on both observatory and satellite data (e.g. IGRF, CHAOS, GRIMM, COV-OBS), as well as the historical model gufm1, have been designed to describe only the internal part of the field, except for the COV-OBS that also accounts for the external dipole. In this paper we analyze data and coefficients from two main field models, namely gufm1 (Jackson et al., 2000) and COV-OBS (Gillet et al., 2013), by means of low pass filters with a cutoff period of 11-year, to evidence a residual signal with seemingly external sources, superimposed on the internal part of the field. The characteristics of the residual signal in the dipole and non-dipole coefficients are discussed.
Low noise 874 GHz receivers for the International Submillimetre Airborne Radiometer (ISMAR)
NASA Astrophysics Data System (ADS)
Hammar, A.; Sobis, P.; Drakinskiy, V.; Emrich, A.; Wadefalk, N.; Schleeh, J.; Stake, J.
2018-05-01
We report on the development of two 874 GHz receiver channels with orthogonal polarizations for the International Submillimetre Airborne Radiometer. A spline horn antenna and dielectric lens, a Schottky diode mixer circuit, and an intermediate frequency (IF) low noise amplifier circuit were integrated in the same metallic split block housing. This resulted in a receiver mean double sideband (DSB) noise temperature of 3300 K (minimum 2770 K, maximum 3400 K), achieved at an operation temperature of 40 °C and across a 10 GHz wide IF band. A minimum DSB noise temperature of 2260 K at 20 °C was measured without the lens. Three different dielectric lens materials were tested and compared with respect to the radiation pattern and noise temperature. All three lenses were compliant in terms of radiation pattern, but one of the materials led to a reduction in noise temperature of approximately 200 K compared to the others. The loss in this lens was estimated to be 0.42 dB. The local oscillator chains have a power consumption of 24 W and consist of custom-designed Schottky diode quadruplers (5% power efficiency in operation, 8%-9% peak), commercial heterostructure barrier varactor (HBV) triplers, and power amplifiers that are pumped by using a common dielectric resonator oscillator at 36.43 GHz. Measurements of the radiation pattern showed a symmetric main beam lobe with full width half maximum <5° and side lobe levels below -20 dB. Return loss of a prototype of the spline horn and lens was measured using a network analyzer and frequency extenders to 750-1100 GHz. Time-domain analysis of the reflection coefficients shows that the reflections are below -25 dB and are dominated by the external waveguide interface.
NASA Astrophysics Data System (ADS)
Raeli, Alice; Bergmann, Michel; Iollo, Angelo
2018-02-01
We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.
Derivation of the chemical-equilibrium rate coefficient using scattering theory
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1977-01-01
Scattering theory is applied to derive the equilibrium rate coefficient for a general homogeneous chemical reaction involving ideal gases. The reaction rate is expressed in terms of the product of a number of normalized momentum distribution functions, the product of the number of molecules with a given internal energy state, and the spin-averaged T-matrix elements. An expression for momentum distribution at equilibrium for an arbitrary molecule is presented, and the number of molecules with a given internal-energy state is represented by an expression which includes the partition function.
DIRC Dreams: Research Directions for the Next Generation of Internally Reflected Imaging Counters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratcliff, Blair N.
1999-08-17
Some conceptual design features of the total internally reflecting,imaging Cherenkov counter (DIRC) are described. Limits of the DIRC approach to particle identification, and a few features of alternative DIRC designs, are briefly explored.
Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
The influence of hydrogen bonding on partition coefficients
NASA Astrophysics Data System (ADS)
Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues
2017-02-01
This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.
NASA Technical Reports Server (NTRS)
Starks, Patrick J.; Norman, John M.; Blad, Blaine L.; Walter-Shea, Elizabeth A.; Walthall, Charles L.
1991-01-01
An equation for estimating albedo from bidirectional reflectance data is proposed. The estimates of albedo are found to be greater than values obtained with simultaneous pyranometer measurements. Particular attention is given to potential sources of systematic errors including extrapolation of bidirectional reflectance data out to a view zenith angle of 90 deg, the use of inappropriate weighting coefficients in the numerator of the albedo equation, surface shadowing caused by the A-frame instrumentation used to measure the incoming and outgoing radiation fluxes, errors in estimates of the denominator of the proposed albedo equation, and a 'hot spot' contribution in bidirectional data measured by a modular multiband radiometer.
Novel method in solving non-polarizing condition in frustrated total internal reflection layers
NASA Astrophysics Data System (ADS)
Shi, Jin Hui; Wang, Zheng Ping
2008-03-01
When used at oblique angles of incidence, the reflectance and transmittance of thin films exhibit strong polarization effects, particularly for the films inside a glass cube. However, the polarization effects are undesirable in many applications. Novel non-polarizing beam splitter designs are shown, non-polarizing beam splitters with unique optical thin films are achieved through combination of interference and frustrated total internal reflection, the non-polarizing condition expressions based on frustrated total internal reflection is derived, and applied examples of the non-polarizing beam splitters are also presented with the optimization technique and the results of Rp=(50+/-0.4)% and Rs=(50+/-0.4)% in the wavelength range of 500-600nm are obtained.
NASA Astrophysics Data System (ADS)
Jansen, Jan T. M.; Shrimpton, Paul C.
2016-07-01
The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of ±6% and ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F.G., E-mail: F.G.Mitri@ieee.org; Li, R.X., E-mail: rxli@mail.xidian.edu.cn; Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071
A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topologicalmore » charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.« less
Shape, Illumination, and Reflectance from Shading
2013-05-29
the global entropy of log-reflectance. 3) An “absolute” prior on reflectance which prefers to paint the scene with some colors ( white , gray, green...in log- RGB from pixel i to pixel j, and c (· ;α, σ) is the negative log-likelihood of a discrete univariate Gaussian scale mixture (GSM), parametrized...gs(R) = ∑ i ∑ j∈N(i) C (Ri −Rj ;αR, σR,ΣR) (6) Where Ri−Rj is now a 3-vector of the log- RGB differ- ences, α are mixing coefficients, σ are the
Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere
NASA Astrophysics Data System (ADS)
Cherniakov, S.
2017-12-01
The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of the Tumanny observatory observations were carried out. It gave possibility to obtain the behavior of the electron concentration in time at the selected heights. Using the obtained experimental profiles, the effective recombination coefficients at the D-region heights of the ionosphere have been evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. Waddell; William J. Domoracki; Jerome Eyer
2003-01-01
The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1,more » 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be associated with the presence of high concentrations of CCl{sub 4}. Based on the modeling results three different methods of AVO analysis were preformed on the seismic data: enhanced amplitude stacks, offset range limited stacks, and gradient stacks. Seismic models indicate that the reflection from the contact between the Hanford Fine and the Plio/Pleistocene should exhibit amplitude variations where there are high concentrations of CCl{sub 4}. A series of different scenarios were modeled. The first scenario is the Hanford Fine pores are 100% saturated with CCl{sub 4} and the underlying Plio/Pleistocene pores are saturated with air. In this scenario the reflection coefficients are slightly negative at the small angles of incidence and become increasing more negative at the larger angles of incidence (dim-out). The second scenario is the Hanford Fine pores are saturated with air and Plio/Pleistocene pores are saturated with CCl{sub 4}. In this scenario the reflection coefficients are slightly positive at the small angles of incidence and become negative at the large angles of incidence (polarity reversal). Finally the third scenario is both the Hanford Fine and the Plio/Pleistocene pores are saturated CCl{sub 4}. In this scenario the reflection coefficients at the small angles of incidence are slightly positive, but much less than background response, and with increasing angle of incidence the reflection coefficients become slightly more positive. On the field data areas where extraction wells have high concentrations of CCl{sub 4} a corresponding dim-out and/or a polarity reversal is noted.« less
Frustrated total internal reflection acoustic field sensor
Kallman, Jeffrey S.
2000-01-01
A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.
NASA Astrophysics Data System (ADS)
Kȩdzierski, Marcin; Wajnryb, Eligiusz
2011-10-01
Self-diffusion of colloidal particles confined to a cylindrical microchannel is considered theoretically and numerically. Virial expansion of the self-diffusion coefficient is performed. Two-body and three-body hydrodynamic interactions are evaluated with high precision using the multipole method. The multipole expansion algorithm is also used to perform numerical simulations of the self-diffusion coefficient, valid for all possible particle packing fractions. Comparison with earlier results shows that the widely used method of reflections is insufficient for calculations of hydrodynamic interactions even for small packing fractions and small particles radii, contrary to the prevalent opinion.
A test of source-surface model predictions of heliospheric current sheet inclination
NASA Technical Reports Server (NTRS)
Burton, M. E.; Crooker, N. U.; Siscoe, G. L.; Smith, E. J.
1994-01-01
The orientation of the heliospheric current sheet predicted from a source surface model is compared with the orientation determined from minimum-variance analysis of International Sun-Earth Explorer (ISEE) 3 magnetic field data at 1 AU near solar maximum. Of the 37 cases analyzed, 28 have minimum variance normals that lie orthogonal to the predicted Parker spiral direction. For these cases, the correlation coefficient between the predicted and measured inclinations is 0.6. However, for the subset of 14 cases for which transient signatures (either interplanetary shocks or bidirectional electrons) are absent, the agreement in inclinations improves dramatically, with a correlation coefficient of 0.96. These results validate not only the use of the source surface model as a predictor but also the previously questioned usefulness of minimum variance analysis across complex sector boundaries. In addition, the results imply that interplanetary dynamics have little effect on current sheet inclination at 1 AU. The dependence of the correlation on transient occurrence suggests that the leading edge of a coronal mass ejection (CME), where transient signatures are detected, disrupts the heliospheric current sheet but that the sheet re-forms between the trailing legs of the CME. In this way the global structure of the heliosphere, reflected both in the source surface maps and in the interplanetary sector structure, can be maintained even when the CME occurrence rate is high.
NASA Astrophysics Data System (ADS)
Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.
2018-03-01
The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.
Begley, T; Castle, L; Feigenbaum, A; Franz, R; Hinrichs, K; Lickly, T; Mercea, P; Milana, M; O'Brien, A; Rebre, S; Rijk, R; Piringer, O
2005-01-01
Materials and articles intended to come into contact with food must be shown to be safe because they might interact with food during processing, storage and the transportation of foodstuffs. Framework Directive 89/109/EEC and its related specific Directives provide this safety basis for the protection of the consumer against inadmissible chemical contamination from food-contact materials. Recently, the European Commission charged an international group of experts to demonstrate that migration modelling can be regarded as a valid and reliable tool to calculate 'reasonable worst-case' migration rates from the most important food-contact plastics into the European Union official food simulants. The paper summarizes the main steps followed to build up and validate a migration estimation model that can be used, for a series of plastic food-contact materials and migrants, for regulatory purposes. Analytical solutions of the diffusion equation in conjunction with an 'upper limit' equation for the migrant diffusion coefficient, D(P), and the use of 'worst case' partitioning coefficients K(P,F) were used in the migration model. The results obtained were then validated, at a confidence level of 95%, by comparison with the available experimental evidence. The successful accomplishment of the goals of this project is reflected by the fact that in Directive 2002/72/EC, the European Commission included the mathematical modelling as an alternative tool to determine migration rates for compliance purposes.
Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.
2018-01-01
The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.
NASA Technical Reports Server (NTRS)
DeWitt, Keneth J.
1996-01-01
An experimental study to determine the convective heat transfer coefficient from castings made from ice-roughened plates is reported. A corresponding topic, 'Measurements of the Convective Heat Transfer Coefficient from Ice Roughened Surfaces in Parallel and Accelerated Flows,' is presented.
Reflective properties of melt ponds on sea ice
NASA Astrophysics Data System (ADS)
Malinka, Aleksey; Zege, Eleonora; Istomina, Larysa; Heygster, Georg; Spreen, Gunnar; Perovich, Donald; Polashenski, Chris
2018-06-01
Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere-ice-ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel-Kramers-Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo spectra were fitted with the modeled spectra by varying the pond parameters (z, H, and σt). The coincidence of the measured and fitted spectra demonstrates good performance of the model: it is able to reproduce the albedo spectrum in the visible range with RMSD that does not exceed 1.5 % for a wide variety of melt pond types observed in the Arctic.
Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System
BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia
2015-01-01
Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157
van den Besselaar, A M H P; Chantarangkul, V; Angeloni, F; Binder, N B; Byrne, M; Dauer, R; Gudmundsdottir, B R; Jespersen, J; Kitchen, S; Legnani, C; Lindahl, T L; Manning, R A; Martinuzzo, M; Panes, O; Pengo, V; Riddell, A; Subramanian, S; Szederjesi, A; Tantanate, C; Herbel, P; Tripodi, A
2018-01-01
Essentials Two candidate International Standards for thromboplastin (coded RBT/16 and rTF/16) are proposed. International Sensitivity Index (ISI) of proposed standards was assessed in a 20-centre study. The mean ISI for RBT/16 was 1.21 with a between-centre coefficient of variation of 4.6%. The mean ISI for rTF/16 was 1.11 with a between-centre coefficient of variation of 5.7%. Background The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current Fourth International Standards are running low. Candidate replacement materials have been prepared. This article describes the calibration of the proposed Fifth International Standards for thromboplastin, rabbit, plain (coded RBT/16) and for thromboplastin, recombinant, human, plain (coded rTF/16). Methods An international collaborative study was carried out for the assignment of International Sensitivity Indexes (ISIs) to the candidate materials, according to the World Health Organization (WHO) guidelines for thromboplastins and plasma used to control oral anticoagulant therapy with vitamin K antagonists. Results Results were obtained from 20 laboratories. In several cases, deviations from the ISI calibration model were observed, but the average INR deviation attributabled to the model was not greater than 10%. Only valid ISI assessments were used to calculate the mean ISI for each candidate. The mean ISI for RBT/16 was 1.21 (between-laboratory coefficient of variation [CV]: 4.6%), and the mean ISI for rTF/16 was 1.11 (between-laboratory CV: 5.7%). Conclusions The between-laboratory variation of the ISI for candidate material RBT/16 was similar to that of the Fourth International Standard (RBT/05), and the between-laboratory variation of the ISI for candidate material rTF/16 was slightly higher than that of the Fourth International Standard (rTF/09). The candidate materials have been accepted by WHO as the Fifth International Standards for thromboplastin, rabbit plain, and thromboplastin, recombinant, human, plain. © 2017 International Society on Thrombosis and Haemostasis.
NASA Astrophysics Data System (ADS)
Saunders, John Edward
Sensors for real-time monitoring of environmental contaminants are essential for protecting ecosystems and human health. Refractive index sensing is a non-selective technique that can be used to measure almost any analyte. Miniaturized refractive index sensors, such as silicon-on-insulator (SOI) microring resonators are one possible platform, but require coatings selective to the analytes of interest. A homemade prism refractometer is reported and used to characterize the interactions between polymer films and liquid or vapour-phase analytes. A camera was used to capture both Fresnel reflection and total internal reflection within the prism. For thin-films (d = 10 μm - 100 μm), interference fringes were also observed. Fourier analysis of the interferogram allowed for simultaneous extraction of the average refractive index and film thickness with accuracies of Δn = 1-7 x10-4 and Δd < 3-5%. The refractive indices of 29 common organic solvents as well as aqueous solutions of sodium chloride, sucrose, ethylene glycol, glycerol, and dimethylsulfoxide were measured at λ = 1550 nm. These measurements will be useful for future calibrations of near-infrared refractive index sensors. A mathematical model is presented, where the concentration of analyte adsorbed in a film can be calculated from the refractive index and thickness changes during uptake. This model can be used with Fickian diffusion models to measure the diffusion coefficients through the bulk film and at the film-substrate interface. The diffusion of water and other organic solvents into SU-8 epoxy was explored using refractometry and the diffusion coefficient of water into SU-8 is presented. Exposure of soft baked SU-8 films to acetone, acetonitrile and methanol resulted in rapid delamination. The diffusion of volatile organic compound (VOC) vapours into polydimethylsiloxane and polydimethyl-co-polydiphenylsiloxane polymers was also studied using refractometry. Diffusion and partition coefficients are reported for several analytes. As a model system, polydimethyl-co-diphenylsiloxane films were coated onto SOI microring resonators. After the development of data acquisition software, coated devices were exposed to VOCs and the refractive index response was assessed. More studies with other polymers are required to test the viability of this platform for environmental sensing applications.
Grazing incidence reflection coefficients of rhodium, osmium, platinum, and gold from 50 to 300 A
NASA Technical Reports Server (NTRS)
Hettrick, M. C.; Edelstein, J.; Flint, S. A.
1985-01-01
Reflectance measurements were made of several metals illuminated from various angles with light at 14 wavelengths in the interval 46.5-283 A. The metals, Rh, Os, Pt and Au were deposited as 125 A films on a binding substrate through electron beam epitaxy. Measurements were made with a grazing incidence monochromator and a reflectometer. The data generally showed lowered reflectance with increasing angles of illumination and shorter wavelengths. The reflectance peak, however, was located at wavelengths of 100-160 A, particularly at large grazing incidences. The wavelengths correspond with the 5p to epsilon-d transition in all of the elements. Rh displayed the highest overall reflectance, and both Rh and Os were more efficient than Au or Pt.
Implantable ferrite antenna for biomedical applications
NASA Astrophysics Data System (ADS)
Fazeli, Maxwell L.
We have developed an implantable microstrip patch antenna with dimensions of 10x10x1.28 mm, operating around the Industrial, Scientific and Medical (ISM) band (2.4-2.5 GHz). The antenna is characterized in skin-mimicking gels and compared with simulation results. The experimental measurements are in good agreement with simulations, having a -16 dB reflection coefficient and -18 dBi realized gain at resonance, with a 185 MHz -10 dB bandwidth. The simulated effects of ferrite film loading on antenna performance are investigated, with comparisons made for 5 and 10 microm thick films, as well as for 10 microm thick films with varying magnetic loss (tan delta micro = 0.05, 0.1 and 0.3). Our simulations reveal that the addition of 10 microm thick magnetic layers has effectively lowered the resonant frequency by 70 MHz, while improving return loss and -10 dB bandwidth by 3 dB and 40 MHz, respectively, over the uncoated antenna. Ferrite film coating also improved realized gain within the ISM band, with largest gain increases at resonance found for films having lower magnetic loss. Additionally, the gain (G) variance at ISM band limits, Delta Gf(2.5GHz)-f (2.4GHz), decreased from 1.97 to 0.44 dBi for the antenna with 10 microm films over the non-ferrite antenna. The measured dip-coated NiCo ferrite films effectively reduces the antenna resonance by 110 MHz, with a 4.2 dB reflection coefficient improvement as compared to an antenna without ferrite. The measured ferrite antenna also reveals a 6 dBi and 35 MHz improvement in realized gain and -10 dB bandwidth, respectively, at resonance. Additionally, the ferrite-coated antenna shows improved directivity, with wave propagation attenuated at the direction facing the body internal. These results indicate that implantable antenna miniaturization and reliable wireless communication in the operating frequency band can be realized with ferrite loading.
NASA Astrophysics Data System (ADS)
Ciraolo, Giuseppe; La Loggia, Goffredo; Maltese, Antonino
2010-10-01
In December 2006 blooms of Oscillatoria rubescens were found in the reservoir Prizzi in Sicily. Oscillatoria is a genus of filamentous alga comprising approximately 6 species, between these the O. rubescens is sadly famous since this organism produces microcystins which are powerful hepatotoxins. Firstly found in Europe in 1825 on Geneva lake, recently (2006) those algae has been find out in Pozzillo, Nicoletti e Ancipa reservoirs (Enna Province), as well as in Prizzi (Palermo Province) and Garcia reservoirs (Trapani Province). Toxins produced by those bacteria (usually called microcystine LR-1 and LR-2) are highly toxic since they can activate oncogenes cells causing cancer pathologies on liver and gastrointestinal tract. Even if water treatment plants should ensure the provision of safe drinking water from surface waters contaminated with those toxic algae blooms, the contamination of reservoirs used for civil and agricultural supply highlights human health risks. International literature suggests a threshold value of 0.01 μgl-1 to avoid liver cancer using water coming from contaminated water bodies for a long period. Since O. rubescens activities is strongly related to phosphate and nitrogen compounds as well as to temperature and light transmission within water, the paper presents the comparison between optical properties of the water of an infested reservoir and those of a reservoir characterized by clear water. Field campaigns were carried out in February-March 2008 in order to quantify the spectral transparencies of two water bodies through the calculation of the diffuse attenuation coefficient, measuring underwater downwelling irradiance at different depths as well as water spectral reflectance. Results show that diffuse attenuation coefficient is reduced by approximately 15% reducing light penetration in the water column; coherently reflectance spectral signature generally decreases, exhibiting a characteristic peak around 703 nm not present in uncontaminated waters. Latter findings highlight the possibility to detect O. rubescens infestations using their spectral characteristics by means of multitemporal remote sensing techniques.
[Validating the Spanish version of the Nursing Activities Score].
Sánchez-Sánchez, M M; Arias-Rivera, S; Fraile-Gamo, M P; Thuissard-Vasallo, I J; Frutos-Vivar, F
2015-01-01
Validating workload scores ensures that they are appropriate for the purpose for which they were developed. To validate the Nursing Activities Score (NAS) Spanish version. Observational and prospective study. 1,045 patients who were admitted to a medical-surgical unit and a serious burns unit in 2006 were included. The nurse in charge assessed patient workloads by Nine Equivalent of Nursing Manpower use Score and NAS. To assess the internal consistency of the measurements of NAS, item-test correlations, Cronbach's α and Cronbach's α corrected by omitting each of the items were calculated. The intraobserver and interobserver reliability were assessed with the intraclass correlation coefficient by viewing recordings and Kappa (interobserver reliability) was estimated. For the analysis of internal validity, a factorial principal components analysis was performed. Convergent validity was assessed using the Spearman correlation coefficient values obtained from the Nine Equivalent of Nursing Manpower use Score and Spanish-NAS scales. For internal consistency, 164 questionnaires were analysed and a Cronbach's α of 0.373 was calculated. The intraclass correlation coefficient for intraobserver reliability estimate was 0.837 (95% IC: 0.466-0.950) and 0.662 (95% IC: 0.033-0.882) for interobserver reliability. The estimated kappa was 0.371. For internal validity, exploratory factor analysis showed that the first item explained 58.9% of the variance of the questionnaire. For convergent validity 1006 questionnaires were included and a Spearman correlation coefficient of 0.746 was observed. The psychometric properties of Spanish-NAS are acceptable. Copyright © 2014 Elsevier España, S.L.U. y SEEIUC. All rights reserved.
Scanning microwave microscopy technique for nanoscale characterization of magnetic materials
NASA Astrophysics Data System (ADS)
Joseph, C. H.; Sardi, G. M.; Tuca, S. S.; Gramse, G.; Lucibello, A.; Proietti, E.; Kienberger, F.; Marcelli, R.
2016-12-01
In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S11 are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S11 with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Hardy, D.; Favennec, Y., E-mail: yann.favennec@univ-nantes.fr; Rousseau, B.
The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken intomore » account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.« less
Development Radar Absorber Material using Rice Husk Carbon for Anechoic Chamber Application
NASA Astrophysics Data System (ADS)
Zulpadrianto, Z.; Yohandri, Y.; Putra, A.
2018-04-01
The developments of radar technology in Indonesia are very strategic due to the vast territory and had a high-level cloud cover more than 55% of the time. The objective of this research is to develop radar technology facility in Indonesia using local natural resources. The target of this research is to present a low cost and satisfy quality of anechoic chambers. Anechoic chamber is a space designed to avoid reflection of EM waves from outside or from within the room. The reflection coefficient of the EM wave is influenced by the medium imposed by the EM wave. In laboratory experimental research has been done the development of material radar absorber using rice husk. The rice husk is activated using HCl and KOH by stirring using a magnetic stirrer for 1 Hours. The results of rice husk activation were measured using a Vector Network Analyzer by varying the thickness of the ingredients and the concentration of the activation agent. The VNA measurement is obtained reflection coefficient of -12dB and. -6.22dB for 1M HCL and KOH at thickness 10mm, respectively.
Some Insights of Spectral Optimization in Ocean Color Inversion
NASA Technical Reports Server (NTRS)
Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert
2011-01-01
In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.
Hydrodynamics of steady state phloem transport with radial leakage of solute
Cabrita, Paulo; Thorpe, Michael; Huber, Gregor
2013-01-01
Long-distance phloem transport occurs under a pressure gradient generated by the osmotic exchange of water associated with solute exchange in source and sink regions. But these exchanges also occur along the pathway, and yet their physiological role has almost been ignored in mathematical models of phloem transport. Here we present a steady state model for transport phloem which allows solute leakage, based on the Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously. Sieve tube membrane permeability Ps for passive solute exchange (and correspondingly, membrane reflection coefficient) influenced model results strongly, and had to lie in the bottom range of the values reported for plant cells for the results to be realistic. This smaller permeability reflects the efficient specialization of sieve tube elements, minimizing any diffusive solute loss favored by the large concentration difference across the sieve tube membrane. We also found there can be a specific reflection coefficient for which pressure profiles and sap velocities can both be similar to those predicted by the Hagen-Poiseuille equation for a completely impermeable tube. PMID:24409189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitriadis, Alexandros I., E-mail: aldimitr@ee.auth.gr; Kantartzis, Nikolaos V., E-mail: kant@auth.gr; Tsiboukis, Theodoros D., E-mail: tsibukis@auth.gr
2015-01-15
Highlights: •Formulas for E/M fields radiated by continuous surface polarization distributions. •Non-local effective surface susceptibility model for periodic metafilms. •Generalized reflection and transmission coefficients for an arbitrary metafilm. •Successful treatment of non-planar scatterer arrays and spatial dispersion effects. -- Abstract: A non-local surface susceptibility model for the consistent description of periodic metafilms formed by arbitrarily-shaped, electrically-small, bianisotropic scatterers is developed in this paper. The rigorous scheme is based on the point-dipole approximation technique and is valid for any polarization and propagation direction of an electromagnetic wave impinging upon the metafilm, unlike existing approaches whose applicability is practically confined to verymore » specific cases of incidence. Next, the universal form of the resulting surface susceptibility matrix is employed for the derivation of the generalized Fresnel coefficients for such surfaces, which enable the comprehensive interpretation of several significant, yet relatively unexamined, physical interactions. Essentially, these coefficients include eight distinct terms, corresponding to the co-polarized and cross-polarized reflection and transmission coefficients for the two orthogonal eigenpolarizations of a linearly-polarized incident plane wave. The above formulas are, then, utilized for the prediction of the scattering properties of metafilms with different planar and non-planar resonators, which are characterized via the featured model and two previously reported local ones. Their comparison with numerical simulation outcomes substantiates the merits of the proposed method, reveals important aspects of the underlying physics, and highlights the differences between the various modeling procedures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, N.; Koffend, J.B.
1998-02-01
Shock heating t-butyl hydroperoxide behind a reflected shock wave has proved to be as a convenient source of hydroxyl radicals at temperatures near 1000 K. We applied this technique to the measurement of reaction rate coefficients of OH with several species of interest in combustion chemistry, and developed a thermochemical kinetics/transition state theory (TK-TST) model for predicting the temperature dependence of OH rate coefficients.
Three-Dimensional Scale-Model Tank Experiment of the Hudson Canyon Region
2014-09-30
coefficient at a water/ polyurethane foam interface,” J. Acoust. Soc. Am. 134, EL271–EL275 (2013). PUBLICATIONS Peer-reviewed papers J. D. Sagers...Sagers, M. R. Haberman, and P. S. Wilson, “Ultrasonic measurements of the reflection coefficient at a water/ polyurethane foam interface,” J. Acoust...completed apparatus installed in the indoor tank room at ARL:UT is shown in Fig. 2(b). The major components of the apparatus include the rigid
Simulation Analysis of a Strip Dipole Excited Electromagnetic Band-Gap (EBG) Structure
2015-07-01
unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The design of an Electromagnetic Band-Gap (EBG) for a particular antenna application is...summarized. Discussion is provided on interpretation of the EBG reflection coefficient phase for antenna applications and on the range of the EBG bandwidth...It is determined for antenna applications that the reflection phase and current design methods may be misleading. Instead, it is opinioned and shown
Coastal Atmosphere and Sea Time Series (CoASTS)
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Berthon, Jean-Francoise; Zibordi, Giuseppe; Doyle, John P.; Grossi, Stefania; vanderLinde, Dirk; Targa, Cristina; McClain, Charles R. (Technical Monitor)
2002-01-01
In this document, the first three years of a time series of bio-optical marine and atmospheric measurements are presented and analyzed. These measurements were performed from an oceanographic tower in the northern Adriatic Sea within the framework of the Coastal Atmosphere and Sea Time Series (CoASTS) project, an ocean color calibration and validation activity. The data set collected includes spectral measurements of the in-water apparent (diffuse attenuation coefficient, reflectance, Q-factor, etc.) and inherent (absorption and scattering coefficients) optical properties, as well as the concentrations of the main optical components (pigment and suspended matter concentrations). Clear seasonal patterns are exhibited by the marine quantities on which an appreciable short-term variability (on the order of a half day to one day) is superimposed. This short-term variability is well correlated with the changes in salinity at the surface resulting from the southward transport of freshwater coming from the northern rivers. Concentrations of chlorophyll alpha and total suspended matter span more than two orders of magnitude. The bio-optical characteristics of the measurement site pertain to both Case-I (about 64%) and Case-II (about 36%) waters, based on a relationship between the beam attenuation coefficient at 660nm and the chlorophyll alpha concentration. Empirical algorithms relating in-water remote sensing reflectance ratios and optical components or properties of interest (chlorophyll alpha, total suspended matter, and the diffuse attenuation coefficient) are presented.
Prediction of Soil pH Hyperspectral Spectrum in Guanzhong Area of Shaanxi Province Based on PLS
NASA Astrophysics Data System (ADS)
Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Cheng, Jie; Tong, Wei; Wei, Jing
2017-12-01
The soil pH of Fufeng County, Yangling County and Wugong County in Shaanxi Province was studied. The spectral reflectance was measured by ASD Field Spec HR portable terrain spectrum, and its spectral characteristics were analyzed. The first deviation of the original spectral reflectance of the soil, the second deviation, the logarithm of the reciprocal logarithm, the first order differential of the reciprocal logarithm and the second order differential of the reciprocal logarithm were used to establish the soil pH Spectral prediction model. The results showed that the correlation between the reflectance spectra after SNV pre-treatment and the soil pH was significantly improved. The optimal prediction model of soil pH established by partial least squares method was a prediction model based on the first order differential of the reciprocal logarithm of spectral reflectance. The principal component factor was 10, the decision coefficient Rc2 = 0.9959, the model root means square error RMSEC = 0.0076, the correction deviation SEC = 0.0077; the verification decision coefficient Rv2 = 0.9893, the predicted root mean square error RMSEP = 0.0157, The deviation of SEP = 0.0160, the model was stable, the fitting ability and the prediction ability were high, and the soil pH can be measured quickly.
Variability in seismic properties of the décollement offshore Central Sumatra
NASA Astrophysics Data System (ADS)
Henstock, T.; Gardner, K.
2016-12-01
The plate boundary fault properties along subduction margins are primary controls on the magnitude, location and timing of megathrust earthquakes. We have reprocessed and analysed multichannel seismic reflection data from the Sumatra margin between Simeulue and Siberut; we have been careful to preserve amplitudes in order to allow us to investigate the properties of faults within the accretionary prism and the main plate boundary fault. Faults near the deformation front and beneath the initial folds clearly extend to oceanic basement, and the same is largely true where they can be clearly identified within the main part of the prism; limited exceptions appear to be present around topographic features on the downgoing plate. The biggest uncertainty in true amplitude studies is how to compensate for attenuation of the seismic waves. We use the variation in amplitude as a function of the prism thickness to estimate the effect of attenuation. Once the effects of attenuation are removed, absolute estimated reflection coefficients for the composite basement/decollement reflection are typically 0.1-0.15, although a small number of profiles show reflection coefficients as high as 0.2. The most likely cause of these variations is fluid content and pressure; we show examples where high amplitude prism faults link to a low amplitude decollement, suggesting hydraulic connectivity.
Olechno, Joseph; Ellson, Richard; Browning, Brent; Stearns, Richard; Mutz, Mitchell; Travis, Michael; Qureshi, Shehrzad; Shieh, Jean
2005-08-01
Acoustic auditing is a non-destructive, non-invasive technique to monitor the composition and volume of fluids in open or sealed microplates and storage tubes. When acoustic energy encounters an interface between two materials, some of the energy passes through the interface, while the remainder is reflected. Acoustic energy applied to the bottom of a multi-well plate or a storage tube is reflected by the fluid contents of the microplate or tube. The amplitude of these reflections or echoes correlates directly with properties of the fluid, including the speed of sound and the concentration of water in the fluid. Once the speed of sound in the solution is known from the analysis of these echoes, it is easy to determine the depth of liquid and, thereby, the volume by monitoring how long it takes for sound energy to reflect off the fluid meniscus. This technique is rapid (>100,000 samples per day), precise (<1% coefficient of variation for hydration measurements, <4% coefficient of variation for volume measurements), and robust. It does not require uncapping tubes or unsealing or unlidding microplates. The sound energy is extremely gentle and has no deleterious impact upon the fluid or compounds dissolved in it.
Multi-spectral imaging of oxygen saturation
NASA Astrophysics Data System (ADS)
Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.
2008-06-01
The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.
Charter, Richard A
2005-12-01
Confidence intervals are provided for the validity coefficients calculated by Veazey, et al. for the M-FAST. Two coefficients alpha are also presented along with suggestions for different approaches to calculating the M-FAST internal consistency reliability.
Theoretical analysis of SAW propagation characteristics in (100) oriented AlN/diamond structure.
Ro, Ruyen; Chiang, Yuan-Feng; Sung, Chia-Chi; Lee, Ruyue; Wu, Sean
2010-01-01
In this study, the finite element method is employed to calculate SAW characteristics in (100) AlN/diamond based structures with different electrical interfaces; i.e., IDT/ AlN/diamond, AlN/IDT/diamond, IDT/AlN/thin metal film/ diamond, and thin metal film/AlN/IDT/diamond. The effects of Cu and Al electrodes as well as the thickness of electrode on phase velocity, coupling coefficient, and reflectivity of SAWs are illustrated. Propagation characteristics of SAWs in (002) AlN/diamond-based structures are also presented for comparison. Simulation results show that to retain a large reflectivity for the design of RF filters and duplexers, the Cu IDT/(100) AlN/diamond structure possesses the highest phase velocity and largest coupling coefficient at the smallest AlN film thickness- to-wavelength ratio.
Mathematical models for the reflection coefficients of dielectric half-spaces
NASA Technical Reports Server (NTRS)
Evans, D. D.
1973-01-01
The reflection coefficients at normal incidence are found for a large class of one-dimensionally inhomogeneous or stratified half-spaces, which contain a homogeneous half-space. The formulation of the problem involves a combination of the classical boundary value technique, and the nonclassical principle of invariant imbedding. Solutions are in closed form and expressible in terms of Bessel functions. All results are given in terms of the ratio of the distance between free space and the homogeneous half-space to the wavelength in vacuo. One special case is that of an arbitrary number of layers lying on a homogeneous half-space where the dielectric constant of each layer has a constant gradient. A number of other special cases, limiting cases, and generalizations are developed including one in which the thickness of the top layer obeys a probability distribution.
Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds
NASA Technical Reports Server (NTRS)
Pozar, D. M.; Schaubert, D. H.
1984-01-01
A solution is presented to the problem of an infinite array of microstrip patches fed by idealized current probes. The input reflection coefficient is calculated versus scan angle in an arbitrary scan plane, and the effects of substrate parameters and grid spacing are considered. It is pointed out that even when a Galerkin method is used the impedance matrix is not symmetric due to phasing through a unit cell, as required for scanning. The mechanism by which scan blindness can occur is discussed. Measurement results are presented for the reflection coefficient magnitude variation with angle for E-plane, H-plane, and D-plane scans, for various substrate parameters. Measured results from waveguide simulators are also presented, and the scan blindness phenomenon is observed and discussed in terms of forced surface waves and a modified grating lobe diagram.
FIBER AND INTEGRATED OPTICS: Excitation of leaky modes in a system of coupled waveguides
NASA Astrophysics Data System (ADS)
Usievich, B. A.; Nurligareev, J. Kh; Sychugov, V. A.; Golant, K. M.
2007-06-01
A system of coupled single-mode waveguides with the number M of guided modes lower than the number N of single-mode waveguides is studied. Leaky modes in this system are investigated in detail. It is shown, in particular, that these modes can be excited by light incident on the side surface of the system when the reflection coefficient vanishes. It is found that the angular dependence of the coefficient of reflection from the side surface of the system can be used to refine the dispersion curve for leaky modes. It is shown that light incident at a grazing angle can propagate in the system in the direction considerably different from the propagation direction of a beam incident from a substrate, even in the case of a small difference in the refractive indices.
NASA Astrophysics Data System (ADS)
Buchanan, James L.; Gilbert, Robert P.; Ou, Miao-jung Y.
2011-12-01
Estimating the parameters of an elastic or poroelastic medium from reflected or transmitted acoustic data is an important but difficult problem. Use of the Nelder-Mead simplex method to minimize an objective function measuring the discrepancy between some observable and its value calculated from a model for a trial set of parameters has been tried by several authors. In this paper, the difficulty with this direct approach, which is the existence of numerous local minima of the objective function, is documented for the in vitro experiment in which a specimen in a water tank is subject to an ultrasonic pulse. An indirect approach, based on the numerical solution of the equations for a set of ‘effective’ velocities and transmission coefficients, is then observed empirically to ameliorate the difficulties posed by the direct approach.
Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.
Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua
2015-09-01
In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral reflectance.
Lindahl, G; Lundström, K; Tornberg, E
2001-10-01
The colour of loin, M. longissimus dorsi (LD), and ham, M. biceps femoris (BF), from pure breed Hampshire, Swedish Landrace and Swedish Yorkshire pigs was studied. The contribution of the pigment content, the myoglobin forms deoxymyoglobin (Mb), oxymyoglobin (MbO) and metmyoglobin (MetMb) and the internal reflectance to the colour of pork of normal meat quality was evaluated using partial least squares regression (PLS). The colour of LD and BF from the Hampshire breed was more red and yellow and more saturated than the colour of the same muscles from the Swedish Landrace and the Swedish Yorkshire breeds. Furthermore, BF from Hampshire was darker than BF from the other two breeds. These differences in colour were related to the lower pH in Hampshire, resulting in more blooming and in higher internal reflectance, and to the higher pigment content. The colour of BF was darker and more red than the colour of LD within each breed. No colour difference was found between gilts and castrates within each breed. Most of the variation (86-90%) in lightness (L* value), redness (a* value) and yellowness (b* value), chroma (saturation) and hue angle of pork of normal meat quality was explained by the pigment content, myoglobin forms and internal reflectance. The L* value, a* value, chroma and hue angle were influenced by both the pigment content and by the myoglobin forms to almost the same extent, while the internal reflectance was of no significance to these colour parameters. The b* value was influenced most by the myoglobin forms, less by the internal reflectance and almost not at all by the pigment content.
Translation, Cultural Adaptation and Validation of the Simple Shoulder Test to Spanish
Arcuri, Francisco; Barclay, Fernando; Nacul, Ivan
2015-01-01
Background: The validation of widely used scales facilitates the comparison across international patient samples. Objective: The objective was to translate, culturally adapt and validate the Simple Shoulder Test into Argentinian Spanish. Methods: The Simple Shoulder Test was translated from English into Argentinian Spanish by two independent translators, translated back into English and evaluated for accuracy by an expert committee to correct the possible discrepancies. It was then administered to 50 patients with different shoulder conditions.Psycometric properties were analyzed including internal consistency, measured with Cronbach´s Alpha, test-retest reliability at 15 days with the interclass correlation coefficient. Results: The internal consistency, validation, was an Alpha of 0,808, evaluated as good. The test-retest reliability index as measured by intra-class correlation coefficient (ICC) was 0.835, evaluated as excellent. Conclusion: The Simple Shoulder Test translation and it´s cultural adaptation to Argentinian-Spanish demonstrated adequate internal reliability and validity, ultimately allowing for its use in the comparison with international patient samples.
NASA Astrophysics Data System (ADS)
Chen, Wen; Tang, Ming
2017-04-01
The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.
Spatial correlation of hydrometeor occurrence, reflectivity, and rain rate from CloudSat
NASA Astrophysics Data System (ADS)
Marchand, Roger
2012-03-01
This paper examines the along-track vertical and horizontal structure of hydrometeor occurrence, reflectivity, and column rain rate derived from CloudSat. The analysis assumes hydrometeors statistics in a given region are horizontally invariant, with the probability of hydrometeor co-occurrence obtained simply by determining the relative frequency at which hydrometeors can be found at two points (which may be at different altitudes and offset by a horizontal distance, Δx). A correlation function is introduced (gamma correlation) that normalizes hydrometeor co-occurrence values to the range of 1 to -1, with a value of 0 meaning uncorrelated in the usual sense. This correlation function is a generalization of the alpha overlap parameter that has been used in recent studies to describe the overlap between cloud (or hydrometeor) layers. Examples of joint histograms of reflectivity at two points are also examined. The analysis shows that the traditional linear (or Pearson) correlation coefficient provides a useful one-to-one measure of the strength of the relationship between hydrometeor reflectivity at two points in the horizontal (that is, two points at the same altitude). While also potentially useful in the vertical direction, the relationship between reflectivity values at different altitudes is not as well described by the linear correlation coefficient. The decrease in correlation of hydrometeor occurrence and reflectivity with horizontal distance, as well as precipitation occurrence and column rain rate, can be reasonably well fit with a simple two-parameter exponential model. In this paper, the North Pacific and tropical western Pacific are examined in detail, as is the zonal dependence.
"Beginning with the end in mind": imagining personal retirement speeches to promote professionalism.
Yu, Eunice; Wright, Scott M
2015-06-01
The goal of teaching professionalism in medicine is to transform a theoretical concept into an internalized and actualized identity. Many trainees struggle with professionalism in the abstract, particularly when instruction methods are didactic and disconnected from personal experience. The authors aim to demonstrate the feasibility of having interns frame a personal definition of professionalism based on a reflective technique called "beginning with the end in mind." Interns composed remarks that might be used to introduce them at their own retirement ceremony following a career in medicine. This "career eulogies" exercise was introduced to groups of six interns during the first third of the internship year as part of a two-week curriculum focused on professional development. Two investigators independently coded the written introductions, identifying emergent themes through content analysis. Of the 19 interns in an internal medicine residency program (2012-13), 17 participated in the exercise. Six themes emerged from the data: aligning behaviors with core values, achieving excellence in medicine, changing the world and giving back, valuing teamwork and relationships, realizing work-life balance, and appreciating a career in medicine. These themes correlate with accepted published definitions of professionalism. The personal reflections produced through this exercise allow physicians to begin to formulate their professional self-conception. Extensions of this work might include linking such forms of critical reflection to individualized learning plans and updating the speeches over time. Further research on "reflecting forward" may determine its impact as a complement to traditional narrative reflection.
Simulated Aging of Spacecraft External Materials on Orbit
NASA Astrophysics Data System (ADS)
Khatipov, S.
Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.
Callwood, Alison; Cooke, Debbie; Bolger, Sarah; Lemanska, Agnieszka; Allan, Helen
2018-01-01
Universities in the United Kingdom (UK) are required to incorporate values based recruitment (VBR) into their healthcare student selection processes. This reflects an international drive to strengthen the quality of healthcare service provision. This paper presents novel findings in relation to the reliability and predictive validity of multiple mini interviews (MMIs); one approach to VBR widely being employed by universities. To examine the reliability (internal consistency) and predictive validity of MMIs using end of Year One practice outcomes of under-graduate pre-registration adult, child, mental health nursing, midwifery and paramedic practice students. Cross-discipline evaluation study. One university in the United Kingdom. Data were collected in two streams: applicants to A) The September 2014 and 2015 Midwifery Studies programmes; B) September 2015 adult; Child and Mental Health Nursing and Paramedic Practice programmes. Fifty-seven midwifery students commenced their programme in 2014 and 69 in 2015; 47 and 54 agreed to participate and completed Year One respectively. 333 healthcare students commenced their programmes in September 2015. Of these, 281 agreed to participate and completed their first year (180 adult, 33 child and 34 mental health nursing and 34 paramedic practice students). Stream A featured a seven station four-minute model with one interviewer at each station and in Stream B a six station model was employed. Cronbach's alpha was used to assess MMI station internal consistency and Pearson's moment correlation co-efficient to explore associations between participants' admission MMI score and end of Year one clinical practice outcomes (OSCE and mentor grading). Stream A: Significant correlations are reported between midwifery applicant's MMI scores and end of Year One practice outcomes. A multivariate linear regression model demonstrated that MMI score significantly predicted end of Year One practice outcomes controlling for age and academic entry level: coefficients 0.195 (p=0.002) and 0.116 (p=0.002) for OSCE and mentor grading respectively. In Stream B no significant correlations were found between MMI score and practice outcomes measured by mentor grading. Internal consistency for each MMI station was 'excellent' with values ranging from 0.966-0.974 across Streams A and B. This novel, cross-discipline study shows that MMIs are reliable VBR tools which have predictive validity when a seven station model is used. These data are important given the current international use of different MMI models in healthcare student selection processes. Copyright © 2017. Published by Elsevier Ltd.
International trade network: fractal properties and globalization puzzle.
Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata
2014-12-12
Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.
NASA Astrophysics Data System (ADS)
Hale, S. J.; Chaplin, W. J.; Davies, G. R.; Elsworth, Y. P.; Howe, R.; Lund, M. N.; Moxon, E. Z.; Thomas, A.; Pallé, P. L.; Rhodes, E. J., Jr.
2017-09-01
Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory, Chile; Observatorio del Teide, Izaña, Tenerife, Canary Islands; the South African Astronomical Observatory, Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the {{{I}}}{{c}} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984-2016.
Is Coefficient Alpha Robust to Non-Normal Data?
Sheng, Yanyan; Sheng, Zhaohui
2011-01-01
Coefficient alpha has been a widely used measure by which internal consistency reliability is assessed. In addition to essential tau-equivalence and uncorrelated errors, normality has been noted as another important assumption for alpha. Earlier work on evaluating this assumption considered either exclusively non-normal error score distributions, or limited conditions. In view of this and the availability of advanced methods for generating univariate non-normal data, Monte Carlo simulations were conducted to show that non-normal distributions for true or error scores do create problems for using alpha to estimate the internal consistency reliability. The sample coefficient alpha is affected by leptokurtic true score distributions, or skewed and/or kurtotic error score distributions. Increased sample sizes, not test lengths, help improve the accuracy, bias, or precision of using it with non-normal data. PMID:22363306
International Trade Network: Fractal Properties and Globalization Puzzle
NASA Astrophysics Data System (ADS)
Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata
2014-12-01
Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.
Total internal reflection laser tools and methods
Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.
2016-02-02
There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.
A Study of Wall Jets and Tangentially Blown Wings
1981-07-01
Blowing coefficient C Chapman’constant CFF Far field constant CL Lift coefficient SCp Pressure coefficient D Reduced exit height E Normalized stagnation...that the wave interactiop zone there is (6(4/ 3 ). 74 C3471A/jos Oil % Rockwell International Science Cenier SC5055.21FR TABLE 4 - PARAMETRIC SUIMMY OF...34Analysis of Embedded Shock Waves Calculated by Relaxation Methods," Proc. Computational Fluid Dynamics Conference, Palm Springs, Calif., July 19-20, 1973, pp
ERIC Educational Resources Information Center
Davenport, Ernest C.; Davison, Mark L.; Liou, Pey-Yan; Love, Quintin U.
2015-01-01
This article uses definitions provided by Cronbach in his seminal paper for coefficient a to show the concepts of reliability, dimensionality, and internal consistency are distinct but interrelated. The article begins with a critique of the definition of reliability and then explores mathematical properties of Cronbach's a. Internal consistency…
Study of the adsorbed layer on a solid electrode surface by specular reflection measurement
NASA Astrophysics Data System (ADS)
Kusu, Fumiyo; Takamura, Kiyoko
1985-07-01
Specular reflection measurements were carried out to study the adsorbed layers of certain heterocyclic compounds such as adenine, barbital, 2'-deoxyadenosine, phenobarbital, pyridine and thymine. When pyridine was present in 0.1M NaClO 4, a marked decrease in the reflectivity of a gold electrode was observed. In the potential range near the point of zero charge on the reflectivity-potential curve, the decrease was due to the adsorption of pyridine. Assuming the reflectivity change to be proportional to the surface coverage, the potential and concentration dependence of pyridine adsorption was determined and analysed on the basis of a Langmuir-type adsorption isotherm. The refractive indices and extinction coefficients for the adsorbed layers of the compounds investigated were evaluated using the observed reflectivity change, according to relations proposed by McIntyre and Aspnes.
Traction reveals mechanisms of wall effects for microswimmers near boundaries
NASA Astrophysics Data System (ADS)
Shen, Xinhui; Marcos, Fu, Henry C.
2017-03-01
The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.
Traction reveals mechanisms of wall effects for microswimmers near boundaries.
Shen, Xinhui; Marcos; Fu, Henry C
2017-03-01
The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.
Quantum interference in multi-branched molecules: The exact transfer matrix solutions.
Jiang, Yu
2017-12-07
We present a transfer matrix formalism for studying quantum interference in a single molecule electronic system with internal branched structures. Based on the Schrödinger equation with the Bethe ansatz and employing Kirchhoff's rule for quantum wires, we derive a general closed-form expression for the transmission and reflection amplitudes of a two-port quantum network. We show that the transport through a molecule with complex internal structures can be reduced to that of a single two-port scattering unit, which contains all the information of the original composite molecule. Our method allows for the calculation of the transmission coefficient for various types of individual molecular modules giving rise to different resonant transport behaviors such as the Breit-Wigner, Fano, and Mach-Zehnder resonances. As an illustration, we first re-derive the transmittance of the Aharonov-Bohm ring, and then we apply our formulation to N identical parity-time (PT)-symmetric potentials, connected in series as well as in parallel. It is shown that the spectral singularities and PT-symmetric transitions of single scattering cells may be observed in coupled systems. Such transitions may occur at the same or distinct values of the critical parameters, depending on the connection modes under which the scattering objects are coupled.
Cross-cultural adaptation and validation of the Turkish version of Oxford hip score.
Tuğay, Baki Umut; Tuğay, Nazan; Güney, Hande; Hazar, Zeynep; Yüksel, İnci; Atilla, Bülent
2015-06-01
The purpose of this study was to translate the Oxford hip score (OHS) into Turkish and to evaluate the psychometric properties by testing the internal consistency, reproducibility, construct validity, and responsiveness in patients with hip osteoarthritis (OA). Oxford hip score was translated and culturally adapted according to the guidelines in the literature. Seventy patients (mean age 61.45 ± 9.29 years) with hip osteoarthritis participated in the study. Patients completed the Turkish Oxford hip score (OHS-TR), the Short-Form 36 (SF-36), and Western Ontario and McMaster Universities Index (WOMAC). Internal consistency was tested using Cronbach's α coefficient. Patients completed OHS-TR questionnaire twice in 7 days for determining the reproducibility. Correlation between the total results of both tests was determined by the Pearson correlation coefficient and intraclass correlation coefficient (ICC). Validity was assessed by calculating the Pearson correlation coefficient between the OHS-TR and WOMAC and SF-36 scores. Floor and ceiling effects were analyzed. The internal consistency was high (Cronbach's α 0.93). The construct validity showed a significant correlation between the OHS-TR and WOMAC and related SF-36 domains (p < 0.001). The ICC's ranged between 0.80 and 0.99. There was no floor or ceiling effect in total OHS-TR score. The OHS-TR questionnaire is valid, reliable, and responsive for the Turkish-speaking patients with hip OA.
Amplified total internal reflection: theory, analysis, and demonstration of existence via FDTD.
Willis, Keely J; Schneider, John B; Hagness, Susan C
2008-02-04
The explanation of wave behavior upon total internal reflection from a gainy medium has defied consensus for 40 years. We examine this question using both the finite-difference time-domain (FDTD) method and theoretical analyses. FDTD simulations of a localized wave impinging on a gainy half space are based directly on Maxwell's equations and make no underlying assumptions. They reveal that amplification occurs upon total internal reflection from a gainy medium; conversely, amplification does not occur for incidence below the critical angle. Excellent agreement is obtained between the FDTD results and an analytical formulation that employs a new branch cut in the complex "propagation-constant" plane.
NASA Astrophysics Data System (ADS)
Naglič, Peter; Ivančič, Matic; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2018-02-01
A measurement system was developed to acquire and analyze subdiffusive spatially resolved reflectance using an optical fiber probe with short source-detector separations. Since subdiffusive reflectance significantly depends on the scattering phase function, the analysis of the acquired reflectance is based on a novel inverse Monte Carlo model that allows estimation of phase function related parameters in addition to the absorption and reduced scattering coefficients. In conjunction with our measurement system, the model allowed real-time estimation of optical properties, which we demonstrate for a case of dynamically induced changes in human skin by applying pressure with an optical fiber probe.
NASA Astrophysics Data System (ADS)
Khadzhi, P. I.; Lyakhomskaya, K. D.; Nadkin, L. Y.; Markov, D. A.
2002-05-01
The characteristic peculiarities of the self-reflection of a strong electromagnetic wave in a system of coherent excitons and biexcitons due to the exciton-photon interaction and optical exciton-biexciton conversion in semiconductors were investigated as one of the manifestations of nonlinear optical Stark-effect. It was found that a monotonously decreasing standing wave with an exponential decreasing spatial tail is formed in the semiconductor. Under the action of the field of a strong pulse, an optically homogeneous medium is converted, into the medium with distributed feedback. The appearance of the spatially separated narrow pears of the reflective index, extinction and reflection coefficients is predicted.
Method for measuring liquid viscosity and ultrasonic viscometer
Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.
1994-01-01
An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.
Panigrahi, Ritwik; Srivastava, Suneel K.
2015-01-01
In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have been extended on the formation of its silver nanocomposites HPPy/Ag to strengthen our contention on this novel approach. Our investigations showed that electromagnetic interference (EMI) shielding efficiency (SE) of HPPy (34.5-6 dB) is significantly higher compared to PPy (20-5 dB) in the frequency range of 0.5-8 GHz due to the trapping of EM wave by internal reflection. We also observed that EMI shielding is further enhanced to 59–23 in 10 wt% Ag loaded HPPy/Ag-10. This is attributed to the simultaneous contribution of internal reflection as well as reflection from outer surface. Such high EMI shielding capacity using conducting polymers are rarely reported. PMID:25560384
ERIC Educational Resources Information Center
Foley, Tyler; Pegram, Matthew; Jenkins, Zachary; Hester, Brooke C.; Burris, Jennifer L.
2015-01-01
We have developed an eye-catching demonstration that showcases a variety of physics topics from total internal reflection to electrostatics to non-Newtonian fluid dynamics, including the Kaye effect. The essential components of the demonstration include a vertical stream of liquid soap in which a laser pointer is internally reflected, and which…
McUmber, Aaron C; Randolph, Theodore W; Schwartz, Daniel K
2015-07-02
High-throughput single-molecule total internal reflection fluorescence microscopy was used to investigate the effects of pH and ionic strength on bovine serum albumin (BSA) adsorption, desorption, and interfacial diffusion at the aqueous-fused silica interface. At high pH and low ionic strength, negatively charged BSA adsorbed slowly to the negatively charged fused silica surface. At low pH and low ionic strength, where BSA was positively charged, or in solutions at higher ionic strength, adsorption was approximately 1000 times faster. Interestingly, neither surface residence times nor the interfacial diffusion coefficients of BSA were influenced by pH or ionic strength. These findings suggested that adsorption kinetics were dominated by energy barriers associated with electrostatic interactions, but once adsorbed, protein-surface interactions were dominated by short-range nonelectrostatic interactions. These results highlight the ability of single-molecule techniques to isolate elementary processes (e.g., adsorption and desorption) under steady-state conditions, which would be impossible to measure using ensemble-averaging methods.
Calculated organ doses for Mayak production association central hall using ICRP and MCNP.
Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M
2003-03-01
As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.