Sample records for internal shock model

  1. An analysis of macroeconomic fluctuations for a small open oil-based economy: The case of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Abdulkarim, Bander B.

    The increasing fluctuations in the oil prices through the last decades have been transferred to the oil exporting countries. Thus, many oil exporting countries experienced significant changes in the economic activity due to changes in the oil markets. In light of this, oil exporting countries have attempted to implement a policy that would stabilize the fluctuations in the oil markets recognizing the adverse effects of such behavior on oil exporting countries, as well as oil importing countries. Saudi Arabia, as the largest oil-exporting country and a member of OPEC, takes the role of oil-markets stabilizer by behaving as the swing producer. This role has caused the global economic fluctuations to transfer into the domestic economy. In addition, Saudi Arabian government has adopted a fixed exchange rate currency regime. Although it has contributed to domestic price stabilizations, this policy has also exposed the country to global economic disturbances. The purpose of the study is to empirically investigate these aspects for Saudi Arabia. First, the effects of shocks originated in the international markets on the Saudi Arabian economy. Second, how the fixed exchange rate regimes influences the domestic macroeconomic variables. Third, to what extent the oil sector contributes to the non-oil domestic fluctuations. Finally, how the findings from the study can be explained by economic theory. In pursuing this, there are four economic theories that are considered to explain the causes of business cycles. These theories are Classical Theory, Keynesian Theory, Monetarist Theory, and the Real Business Cycles. In addition, a theoretical model is derived that is suitable for an oil-based economy. The model follows the set up of McCallum and Nelson (1999). Then, the empirical models of Structural Vector Autoregression (SVAR) and Error Correction Model (ECM) are implemented with three different specifications: Choleski Decomposition, Block Exogeneity and long-run Cointegration Model. The empirical models then are applied to sets of data from 1980 to 2002 for Saudi Arabia, Kuwait, Venezuela and Norway. The rationale of including other oil-exporting countries is to distinguish whether the shocks are country-specific, regional-specific, or global. Two sets of shocks are considered: international shocks and domestic shocks. Three types of international shocks are chosen: commodity-price (oil price) shock, international financial (interest rate) shock, and international real (output) shock. In addition, five domestic shocks which are non-oil output shock, oil production shock, price level shock, monetary shock, and exchange rate shock. The findings reached in the study demonstrate that the international shocks are responsible for a high proportion of fluctuations in the economic activity in Saudi Arabia. Most importantly, the international financial shocks represented by the US interest rate and oil price shocks are the major sources of fluctuations in the Saudi Arabian economy. Domestically, the economy is mostly affected by the oil production and the non-oil output shocks for Saudi Arabia. These results emphasize that the Saudi Arabia's role in the international oil market and its fixed exchange rate regime have significant implications on the domestic economy. Thus, special considerations should be placed on designing the appropriate policies to lessen the dependency on the oil sector and strengthen the role of private sector to diversify the economic base, and provide an independent sound monetary policy to steer the economy from the fluctuations in the global economy. (Abstract shortened by UMI.)

  2. Gamma-ray bursts from internal shocks in a relativistic wind: a hydrodynamical study

    NASA Astrophysics Data System (ADS)

    Daigne, F.; Mochkovitch, R.

    2000-06-01

    The internal shock model for gamma-ray bursts involves shocks taking place in a relativistic wind with a very inhomogeneous initial distribution of the Lorentz factor. We have developed a 1D lagrangian hydrocode to follow the evolution of such a wind and the results we have obtained are compared to those of a simpler model presented in a recent paper (Daigne & Mochkovitch \\cite{Daigne2}) where all pressure waves are suppressed in the wind so that shells with different velocities only interact by direct collisions. The detailed hydrodynamical calculation essentially confirms the conclusion of the simple model: the main temporal and spectral properties of gamma-ray bursts can be reproduced by internal shocks in a relativistic wind.

  3. Vulnerability to shocks in the global seafood trade network

    NASA Astrophysics Data System (ADS)

    Gephart, Jessica A.; Rovenskaya, Elena; Dieckmann, Ulf; Pace, Michael L.; Brännström, Åke

    2016-03-01

    Trade can allow countries to overcome local or regional losses (shocks) to their food supply, but reliance on international food trade also exposes countries to risks from external perturbations. Countries that are nutritionally or economically dependent on international trade of a commodity may be adversely affected by such shocks. While exposure to shocks has been studied in financial markets, communication networks, and some infrastructure systems, it has received less attention in food-trade networks. Here, we develop a forward shock-propagation model to quantify how trade flows are redistributed under a range of shock scenarios and assess the food-security outcomes by comparing changes in national fish supplies to indices of each country’s nutritional fish dependency. Shock propagation and distribution among regions are modeled on a network of historical bilateral seafood trade data from UN Comtrade using 205 reporting territories grouped into 18 regions. In our model exposure to shocks increases with total imports and the number of import partners. We find that Central and West Africa are the most vulnerable to shocks, with their vulnerability increasing when a willingness-to-pay proxy is included. These findings suggest that countries can reduce their overall vulnerability to shocks by reducing reliance on imports and diversifying food sources. As international seafood trade grows, identifying these types of potential risks and vulnerabilities is important to build a more resilient food system.

  4. Gamma-Ray Burst Spectral Indices: Evidence for Deceleration of Synchrotron Shocks

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Giblin, T.; Mallozzi, R. S.; Pendleton, G. N.; Paciesas, W. S.; Band, D. L.

    2000-01-01

    The current scenario for gamma-ray bursts (GRBs) involves internal shocks for the prompt GRB emission phase and external shocks for the afterglow phase. Assuming synchrotron emission from energetic shocked electrons. GRB spectra observed with a low-energy power-law spectral index greater than -2/3 (for positive photon number indices E(sup alpha) indicate a problem with this model. The remaining spectra can test the synchrotron shock model prediction that the emission from a single distribution of electrons, cooling rapidly, is responsible for both the low-energy and high-energy power-low portions of the spectra. We find that the inferred relationship between the two spectral indices of observed GRB spectra is inconsistent with the constraints from the model, posing another problem for the synchrotron shock emission model. To overcome this problem, we describe a model where the average of -1, rather than the value of -3/2 predicted for cooling electrons. Situations where this might arise have been discussed in other contexts, and involve deceleration of the internal shocks during the GRB phase.

  5. Social Skills Difficulty: Model of Culture Shock for International Graduate Students

    ERIC Educational Resources Information Center

    Chapdelaine, Raquel Faria; Alexitch, Louise R.

    2004-01-01

    This study expanded and tested Furnham and Bochner's (1982) model of culture shock, employing a sample of 156 male international students in a Canadian university. Path analysis was used to assess the effects of cultural differences, size of co-national group, family status, cross-cultural experience, and social interaction with hosts on culture…

  6. Internal shocks in microquasar jets with a continuous Lorentz factor modulation

    NASA Astrophysics Data System (ADS)

    Pjanka, Patryk; Stone, James M.

    2018-06-01

    We perform relativistic hydrodynamic simulations of internal shocks formed in microquasar jets by continuous variation of the bulk Lorentz factor, in order to investigate the internal shock model. We consider one-, two-, and flicker noise 20-mode variability. We observe emergence of a forward-reverse shock structure for each peak of the Lorentz factor modulation. The high pressure in the shocked layer launches powerful outflows perpendicular to the jet beam into the ambient medium. These outflows dominate the details of the jet's kinetic energy thermalization. They are responsible for mixing between the jet and the surrounding medium and generate powerful shocks in the latter. These results do not concur with the popular picture of well-defined internal shells depositing energy as they collide within the confines of the jet, in fact collisions between internal shells themselves are quite rare in our continuous formulation of the problem. For each of our simulations, we calculate the internal energy deposited in the system, the `efficiency' of this deposition (defined as the ratio of internal to total flow energy), and the maximum temperature reached in order to make connections to emission mechanisms. We probe the dependence of these diagnostics on the Lorentz factor variation amplitudes, modulation frequencies, as well as the initial density ratio between the jet and the ambient medium.

  7. Computer modeling of test particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Decker, Robert B.

    1988-01-01

    The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.

  8. Dynamical efficiency of collisionless magnetized shocks in relativistic jets

    NASA Astrophysics Data System (ADS)

    Aloy, Miguel A.; Mimica, Petar

    2011-09-01

    The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.

  9. A model for sputtering from solid surfaces bombarded by energetic clusters

    NASA Astrophysics Data System (ADS)

    Benguerba, Messaoud

    2018-04-01

    A model is developed to explain and predict the sputtering from solid surfaces bombarded by energetic clusters, on the basis of shock wave generated at the impact of cluster. Under the shock compression the temperature increases causing the vaporization of material that requires an internal energy behind the shock, at least, of about twice the cohesive energy of target. The sputtering is treated as a gas of vaporized particles from a hemispherical volume behind the shock front. The sputter yield per cluster atoms is given as a universal function depending on the ratio of target to cluster atomic density and the ratio of cluster velocity to the velocity calculated on the basis of an internal energy equals about twice cohesive energy. The predictions of the model for self sputter yield of copper, gold, tungsten and of silver bombarded by C60 clusters agree well, with the corresponding data simulated by molecular dynamics.

  10. Origin of the bright prompt optical emission in the naked eye burst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hascoeet, R.; Daigne, F.; Mochkovitch, R.

    The huge optical brightness of GRB 080319B (the 'Naked Eye Burst') makes this event really challenging for models of the prompt GRB emission. In the framework of the internal shock model, we investigate a scenario where the dominant radiative process is synchrotron emission and the high optical flux is due to the dynamical properties of the relativistic outflow : if the initial Lorentz factor distribution in the jet is highly variable, many internal shocks will form within the outflow at various radii. The most violent shocks will produce the main gamma-ray component while the less violent ones will contribute atmore » lower energy, including the optical range.« less

  11. Theoretical Models of Culture Shock and Adaptation in International Students in Higher Education

    ERIC Educational Resources Information Center

    Zhou, Yuefang; Jindal-Snape, Divya; Topping, Keith; Todman, John

    2008-01-01

    Theoretical concepts of culture shock and adaptation are reviewed, as applied to the pedagogical adaptation of student sojourners in an unfamiliar culture. The historical development of "traditional" theories of culture shock led to the emergence of contemporary theoretical approaches, such as "culture learning", "stress and coping" and "social…

  12. Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes

    NASA Astrophysics Data System (ADS)

    Bershader, Daniel; Hanson, Ronald

    1986-09-01

    One hundred ten papers were presented in 32 sessions. Topics included: The application of Hook-method spectroscopy to the diagnosis of shock-heated gases. The nonintrusive destruction of kidney stones by underwater focused shock waves. Several of the papers reflect the recent and continuing interest in shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive configurations. The major subject areas were: shock propagation and interactions; shock-general chemical kinetics; shock computation, modeling, and stability problems; shock wave aerodynamics; experimental methods; shocks in multiphase and heterogeneous media; high energy gas excitation and wave phenomena; and technical applications and shocks in condensed matter.

  13. Quasi One-Dimensional Unsteady Modeling of External Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Kratz, Jonathan

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of an axisymmetric external compression supersonic inlet is being developed. The model utilizes compressible flow computational fluid dynamics to model the internal inlet segment as well as the external inlet portion between the cowl lip and normal shock, and compressible flow relations with flow propagation delay to model the oblique shocks upstream of the normal shock. The external compression portion between the cowl-lip and the normal shock is also modeled with leaking fluxes crossing the sonic boundary, with a moving CFD domain at the normal shock boundary. This model has been verified in steady state against tunnel inlet test data and it s a first attempt towards developing a more comprehensive model for inlet dynamics.

  14. Shock response of nanoporous Cu--A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fengpeng

    2015-06-01

    Shock response of porous materials can be of crucial significance for shock physics and bears many practical applications in materials synthesis and engineering. Molecular dynamics simulations are carried out to investigate shock response of nanoporous metal materials, including elastic-plastic deformation, Hugoniot states, shock-induced melting, partial or complete void collapse, hotspot formation, nanojetting, and vaporization. A model nanoporous Cu with cylindrical voids and a high porosity under shocking is established to investigate such physical properties as velocity, temperature, density, stress and von Mises stress at different stages of compression and release. The elastic-plastic and overtaking shocks are observed at different shock strengths. A modified power-law P- α model is proposed to describe the Hugoniot states. The Grüneisen equation of state is validated. Shock-induced melting shows no clear signs of bulk premelting or superheating. Void collapse via plastic flow nucleated from voids, and the exact processes are shock strength dependent. With increasing shock strengths, void collapse transits from the ``geometrical'' mode (collapse of a void is dominated by crystallography and void geometry and can be different from that of one another) to ``hydrodynamic'' mode (collapse of a void is similar to one another). The collapse may be achieved predominantly by plastic flows along the {111} slip planes, by way of alternating compression and tension zones, by means of transverse flows, via forward and transverse flows, or through forward nano-jetting. The internal jetting induces pronounced shock front roughening, leading to internal hotspot formation and sizable high speed jets on atomically flat free surfaces. P. O. Box 919-401, Mianyang, 621900, Sichuan, PRC.

  15. Mortality Measures to Profile Hospital Performance for Patients With Septic Shock.

    PubMed

    Walkey, Allan J; Shieh, Meng-Shiou; Liu, Vincent X; Lindenauer, Peter K

    2018-04-30

    Sepsis care is becoming a more common target for hospital performance measurement, but few studies have evaluated the acceptability of sepsis or septic shock mortality as a potential performance measure. In the absence of a gold standard to identify septic shock in claims data, we assessed agreement and stability of hospital mortality performance under different case definitions. Retrospective cohort study. U.S. acute care hospitals. Hospitalized with septic shock at admission, identified by either implicit diagnosis criteria (charges for antibiotics, cultures, and vasopressors) or by explicit International Classification of Diseases, 9th revision, codes. None. We used hierarchical logistic regression models to determine hospital risk-standardized mortality rates and hospital performance outliers. We assessed agreement in hospital mortality rankings when septic shock cases were identified by either explicit International Classification of Diseases, 9th revision, codes or implicit diagnosis criteria. Kappa statistics and intraclass correlation coefficients were used to assess agreement in hospital risk-standardized mortality and hospital outlier status, respectively. Fifty-six thousand six-hundred seventy-three patients in 308 hospitals fulfilled at least one case definition for septic shock, whereas 19,136 (33.8%) met both the explicit International Classification of Diseases, 9th revision, and implicit septic shock definition. Hospitals varied widely in risk-standardized septic shock mortality (interquartile range of implicit diagnosis mortality: 25.4-33.5%; International Classification of Diseases, 9th revision, diagnosis: 30.2-38.0%). The median absolute difference in hospital ranking between septic shock cohorts defined by International Classification of Diseases, 9th revision, versus implicit criteria was 37 places (interquartile range, 16-70), with an intraclass correlation coefficient of 0.72, p value of less than 0.001; agreement between case definitions for identification of outlier hospitals was moderate (kappa, 0.44 [95% CI, 0.30-0.58]). Risk-standardized septic shock mortality rates varied considerably between hospitals, suggesting that septic shock is an important performance target. However, efforts to profile hospital performance were sensitive to septic shock case definitions, suggesting that septic shock mortality is not currently ready for widespread use as a hospital quality measure.

  16. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  17. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Astrophysics Data System (ADS)

    Bershader, D.; Hanson, R.

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  18. A Morphological Analysis of Gamma-Ray Burst Early-optical Afterglows

    NASA Astrophysics Data System (ADS)

    Gao, He; Wang, Xiang-Gao; Mészáros, Peter; Zhang, Bing

    2015-09-01

    Within the framework of the external shock model of gamma-ray burst (GRB) afterglows, we perform a morphological analysis of the early-optical light curves to directly constrain model parameters. We define four morphological types, i.e., the reverse shock-dominated cases with/without the emergence of the forward shock peak (Type I/Type II), and the forward shock-dominated cases without/with νm crossing the band (Type III/IV). We systematically investigate all of the Swift GRBs that have optical detection earlier than 500 s and find 3/63 Type I bursts (4.8%), 12/63 Type II bursts (19.0%), 30/63 Type III bursts (47.6%), 8/63 Type IV bursts (12.7%), and 10/63 Type III/IV bursts (15.9%). We perform Monte Carlo simulations to constrain model parameters in order to reproduce the observations. We find that the favored value of the magnetic equipartition parameter in the forward shock ({ɛ }B{{f}}) ranges from 10-6 to 10-2, and the reverse-to-forward ratio of ɛB ({{R}}B) is about 100. The preferred electron equipartition parameter {ɛ }{{e}}{{r},{{f}}} value is 0.01, which is smaller than the commonly assumed value, e.g., 0.1. This could mitigate the so-called “efficiency problem” for the internal shock model, if ɛe during the prompt emission phase (in the internal shocks) is large (say, ˜0.1). The preferred {{R}}B value is in agreement with the results in previous works that indicate a moderately magnetized baryonic jet for GRBs.

  19. Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.

    2016-01-01

    An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.

  20. A reduced-form intensity-based model under fuzzy environments

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Zhuang, Yaming

    2015-05-01

    The external shocks and internal contagion are the important sources of default events. However, the external shocks and internal contagion effect on the company is not observed, we cannot get the accurate size of the shocks. The information of investors relative to the default process exhibits a certain fuzziness. Therefore, using randomness and fuzziness to study such problems as derivative pricing or default probability has practical needs. But the idea of fuzzifying credit risk models is little exploited, especially in a reduced-form model. This paper proposes a new default intensity model with fuzziness and presents a fuzzy default probability and default loss rate, and puts them into default debt and credit derivative pricing. Finally, the simulation analysis verifies the rationality of the model. Using fuzzy numbers and random analysis one can consider more uncertain sources in the default process of default and investors' subjective judgment on the financial markets in a variety of fuzzy reliability so as to broaden the scope of possible credit spreads.

  1. The effects of shock wave precursors ahead of hypersonic entry vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Scott A.; Carlson, Leland A.

    1991-01-01

    A model has been developed to predict the magnitude and characteristics of the shock wave precursor ahead of a hypervelocity vehicle. This model includes both chemical and thermal nonequilibrium, utilizes detailed mass production rates for the photodissociation and photoionization reactions, and accounts for the effects of radiative absorption and emission on the individual internal energy modes of both atomic and diatomic species. Comparison of the present results with shock tube data indicates that the model is reasonably accurate. A series of test cases representing earth aerocapture return from Mars indicate that there is significant production of atoms, ions and electrons ahead of the shock front due to radiative absorption and that the precursor is characterized by an enhanced electron/electronic temperature and molecular ionization. However, the precursor has a negligible effect on the shock layer flow field.

  2. Do oil shocks predict economic policy uncertainty?

    NASA Astrophysics Data System (ADS)

    Rehman, Mobeen Ur

    2018-05-01

    Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.

  3. Streamlines behind curved shock waves in axisymmetric flow fields

    NASA Astrophysics Data System (ADS)

    Filippi, A. A.; Skews, B. W.

    2018-07-01

    Streamlines behind axisymmetric curved shock waves were used to predict the internal surfaces that produced them. Axisymmetric ring wedge models with varying internal radii of curvature and leading-edge angles were used to produce numerical results. Said numerical simulations were validated using experimental shadowgraph results for a series of ring wedge test pieces. The streamlines behind curved shock waves for lower leading-edge angles are examined at Mach 3.4, whereas the highest leading-edge angle cases are explored at Mach 2.8 and 3.4. Numerical and theoretical streamlines are compared for the highest leading-edge angle cases at Mach 3.6. It was found that wall-bounding theoretical streamlines did not match the internal curved surface. This was due to extreme streamline curvature curving the streamlines when the shock angle approached the Mach angle at lower leading-edge angles. Increased Mach number and internal radius of curvature produced more reasonable results. Very good agreement was found between the theoretical and numerical streamlines at lower curvatures before the influence of the trailing edge expansion fan.

  4. Comparative study of predicted and experimentally detected interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Grigorov, K. G.; Smith, Z.; Dryer, M.; Fry, C. D.; Sun, Wei; Deehr, C. S.

    2002-03-01

    We compare the real time space weather prediction shock arrival times at 1 AU made by the USAF/NOAA Shock Time of Arrival (STOA) and Interplanetary Shock Propagation Model (ISPM) models, and the Exploration Physics International/University of Alaska Hakamada-Akasofu-Fry Solar Wind Model (HAF-v2) to a real time analysis analysis of plasma and field ACE data. The comparison is made using an algorithm that was developed on the basis of wavelet data analysis and MHD identification procedure. The shock parameters are estimated for selected "candidate events". An appropriate automatically performing Web-based interface periodically utilizes solar wind observations made by the ACE at L1. Near real time results as well an archive of the registered interesting events are available on a specially developed web site. A number of events are considered. These studies are essential for the validation of real time space weather forecasts made from solar data.

  5. Relativistic simulations of long-lived reverse shocks in stratified ejecta: the origin of flares in GRB afterglows

    NASA Astrophysics Data System (ADS)

    Lamberts, A.; Daigne, F.

    2018-02-01

    The X-ray light curves of the early afterglow phase from gamma-ray bursts (GRBs) present a puzzling variability, including flares. The origin of these flares is still debated, and often associated with a late activity of the central engine. We discuss an alternative scenario where the central engine remains short-lived and flares are produced by the propagation of a long-lived reverse shock in a stratified ejecta. Here we focus on the hydrodynamics of the shock interactions. We perform one-dimensional ultrarelativistic hydrodynamic simulations with different initial internal structure in the GRB ejecta. We use them to extract bolometric light curves and compare with a previous study based on a simplified ballistic model. We find a good agreement between both approaches, with similar slopes and variability in the light curves, but identify several weaknesses in the ballistic model: the density is underestimated in the shocked regions, and more importantly, late shock reflections are not captured. With accurate dynamics provided by our hydrodynamic simulations, we confirm that internal shocks in the ejecta lead to the formation of dense shells. The interaction of the long-lived reverse shock with a dense shell then produces a fast and intense increase of the dissipated power. Assuming that the emission is due to the synchrotron radiation from shock-accelerated electrons, and that the external forward shock is radiatively inefficient, we find that this results in a bright flare in the X-ray light curve, with arrival times, shapes, and duration in agreement with the observed properties of X-ray flares in GRB afterglows.

  6. Frontiers in Anisotropic Shock-Wave Modeling

    DTIC Science & Technology

    2012-02-01

    Nowadays, some models incorporate a user-defined subroutine within the commercial software (e.g., ABAQUS ) to take into account either a homogenous...and temperature on the mass density. The specific internal energy can be decomposed into potentials describing the cold compression, ec (ρ, S); thermal ...Taylor’s series expansion of the Hugoniot pressure P . Assume that the linear approximation between the shock velocity US 24 and particle velocity up

  7. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions

    DOE PAGES

    Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...

    2015-08-05

    Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less

  8. Shock tubes and waves; Proceedings of the Fourteenth International Symposium on Shock Tubes and Shock Waves, University of Sydney, Sydney, Australia, August 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Archer, R. D.; Milton, B. E.

    Techniques and facilities are examined, taking into account compressor cascades research using a helium-driven shock tube, the suppression of shocks on transonic airfoils, methods of isentropically achieving superpressures, optimized performance of arc heated shock tubes, pressure losses in free piston driven shock tubes, large shock tubes designed for nuclear survivability testing, and power-series solutions of the gasdynamic equations for Mach reflection of a planar shock by a wedge. Other subjects considered are related to aerodynamics in shock tubes, shocks in dusty gases, chemical kinetics, and lasers, plasmas, and optical methods. Attention is given to vapor explosions and the blast at Mt. St. Helens, combustion reaction mechanisms from ignition delay times, the development and use of free piston wind tunnels, models for nonequilibrium flows in real shock tubes, air blast measuring techniques, finite difference computations of flow about supersonic lifting bodies, and the investigation of ionization relaxation in shock tubes.

  9. Cellular automaton model for molecular traffic jams

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Schütz, G. M.

    2011-07-01

    We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.

  10. Multi-messenger Light Curves from Gamma-Ray Bursts in the Internal Shock Model

    NASA Astrophysics Data System (ADS)

    Bustamante, Mauricio; Heinze, Jonas; Murase, Kohta; Winter, Walter

    2017-03-01

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma-rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya, E-mail: takahashi@kwasan.kyoto-u.ac.jp

    Flare-associated coronal shock waves sometimes interact with solar prominences, leading to large-amplitude prominence oscillations (LAPOs). Such prominence activation gives us a unique opportunity to track the time evolution of shock–cloud interaction in cosmic plasmas. Although the dynamics of interstellar shock–cloud interaction has been extensively studied, coronal shock–solar prominence interaction is rarely studied in the context of shock–cloud interaction. Associated with the X5.4 class solar flare that occurred on 2012 March 7, a globally propagated coronal shock wave interacted with a polar prominence, leading to LAPO. In this paper, we studied bulk acceleration and excitation of the internal flow of themore » shocked prominence using three-dimensional magnetohydrodynamic (MHD) simulations. We studied eight MHD simulation runs, each with different mass density structure of the prominence, and one hydrodynamic simulation run, and we compared the result. In order to compare the observed motion of activated prominence with the corresponding simulation, we also studied prominence activation by injection of a triangular-shaped coronal shock. We found that the prominence is first accelerated mainly by magnetic tension force as well as direct transmission of the shock, and later decelerated mainly by magnetic tension force. The internal flow, on the other hand, is excited during the shock front sweeps through the prominence and damps almost exponentially. We construct a phenomenological model of bulk momentum transfer from the shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence activation model, we diagnosed physical parameters of the coronal shock wave. The estimated energy of the coronal shock is several percent of the total energy released during the X5.4 flare.« less

  12. General relativistic study of astrophysical jets with internal shocks

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2017-08-01

    We explore the possibility of the formation of steady internal shocks in jets around black holes. We consider a fluid described by a relativistic equation of state, flowing about the axis of symmetry (θ = 0) in a Schwarzschild metric. We use two models for the jet geometry: (I) a conical geometry and (II) a geometry with non-conical cross-section. A jet with conical geometry has a smooth flow, while the jet with non-conical cross-section undergoes multiple sonic points and even standing shock. The jet shock becomes stronger, as the shock location is situated farther from the central black hole. Jets with very high energy and very low energy do not harbour shocks, but jets with intermediate energies do harbour shocks. One advantage of these shocks, as opposed to shocks mediated by external medium, is that these shocks have no effect on the jet terminal speed, but may act as possible sites for particle acceleration. Typically, a jet with specific energy 1.8c2 will achieve a terminal speed of v∞ = 0.813c for jet with any geometry, where, c is the speed of light in vacuum. But for a jet of non-conical cross-section for which the length scale of the inner torus of the accretion disc is 40rg, then, in addition, a steady shock will form at rsh ˜ 7.5rg and compression ratio of R ˜ 2.7. Moreover, electron-proton jet seems to harbour the strongest shock. We will discuss possible consequences of such a scenario.

  13. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    NASA Astrophysics Data System (ADS)

    Bragard, Jean; Simic, Ana; Elorza, Jorge; Grigoriev, Roman O.; Cherry, Elizabeth M.; Gilmour, Robert F.; Otani, Niels F.; Fenton, Flavio H.

    2013-12-01

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 106 simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.

  14. A systematic description of shocks in gamma-ray bursts - I. Formulation

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri

    2009-07-01

    Since the suggestion of relativistic shocks as the origin of gamma-ray bursts (GRBs) in the early 1990s, the mathematical formulation of this process has stayed at a phenomenological level. One of the reasons for the slow development of theoretical works has been the simple power-law behaviour of the afterglows hours or days after the prompt gamma-ray emission. It was believed that they could be explained with these formulations. Nowadays, with the launch of the Swift satellite and implementation of robotic ground follow-ups, GRBs and their afterglow can be observed at multi-wavelengths from a few tens of seconds after trigger onwards. These observations have led to the discovery of features unexplainable by the simple formulation of the shocks and emission processes used up to now. Some of these features can be inherent in the nature and activities of the GRBs' central engines which are not yet well understood. On the other hand, the devil is in the detail and others may be explained with a more detailed formulation of these phenomena and without ad hoc addition of new processes. Such a formulation is the goal of this work. We present a consistent formulation of the kinematics and dynamics of the collision between two spherical relativistic shells, their energy dissipation and their coalescence. It can be applied to both internal and external shocks. Notably, we propose two phenomenological models for the evolution of the emitting region during the collision. One of these models is more suitable for the prompt/internal shocks and late external shocks, and the other for the afterglow/external collisions as well as the onset of internal shocks. We calculate a number of observables such as flux, lag between energy bands and hardness ratios. One of our aims has been a formulation complex enough to include the essential processes, but simple enough such that the data can be directly compared with the theory to extract the value and evolution of physical quantities. To accomplish this goal, we also suggest a procedure for extracting parameters of the model from data. In a companion paper, we numerically calculate the evolution of some simulated models and compare their features with the properties of the observed GRBs.

  15. Flow of supersonic jets across flat plates: Implications for ground-level flow from volcanic blasts

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara M.; Prisco, David; Austin, Joanna M.; Kieffer, Susan W.

    2014-04-01

    We report on laboratory experiments examining the interaction of a jet from an overpressurized reservoir with a canonical ground surface to simulate lateral blasts at volcanoes such as the 1980 blast at Mount St. Helens. These benchmark experiments test the application of supersonic jet models to simulate the flow of volcanic jets over a lateral topography. The internal shock structure of the free jet is modified such that the Mach disk shock is elevated above the surface. In elevation view, the width of the shock is reduced in comparison with a free jet, while in map view the dimensions are comparable. The distance of the Mach disk shock from the vent is in good agreement with free jet data and can be predicted with existing theory. The internal shock structures can interact with and penetrate the boundary layer. In the shock-boundary layer interaction, an oblique shock foot is present in the schlieren images and a distinctive ground signature is evident in surface measurements. The location of the oblique shock foot and the surface demarcation are closely correlated with the Mach disk shock location during reservoir depletion, and therefore, estimates of a ground signature in a zone devastated by a blast can be based on the calculated shock location from free jet theory. These experiments, combined with scaling arguments, suggest that the imprint of the Mach disk shock on the ground should be within the range of 4-9 km at Mount St. Helens depending on assumed reservoir pressure and vent dimensions.

  16. FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING

    NASA Technical Reports Server (NTRS)

    Bishop, A. R.

    1994-01-01

    This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters used, solution planes, and a description of the shock waves. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series machine with a central memory requirement of 110K (octal) of 60 bit words when it is overlayed. This flow analysis program was developed in 1978.

  17. Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio

    Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n{sub e} and the electron temperature T{sub e} profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO{sub 2} laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n{sub e} and T{sub e} were, respectively, about 2 x 10{sup 24} m{sup -3} and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measuredmore » properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n{sub e} at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.« less

  18. Gamma-ray emission from internal shocks in novae

    NASA Astrophysics Data System (ADS)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity <2000 km s-1 and a mass-loss rate of 10-4-10-3 M⊙ yr-1 declining over a time scale of a few days. Because of the large uncertainties in the measurements, many parameters of the problem are degenerate and/or poorly constrained except for the wind velocity, the relatively low values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main features in the observations of the recent gamma-ray nova ASASSN-16ma. Conclusions: The internal shock model can account for the gamma-ray emission of the novae detected by Fermi LAT. Gamma-ray observations hold potential for probing the mechanism of mass ejection in novae, but should be combined to diagnostics of the thermal emission at lower energies to be more constraining.

  19. Characteristics of energy exchange between inter- and intramolecular degrees of freedom in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) with implications for coarse-grained simulations of shock waves in polyatomic molecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroonblawd, Matthew P.; Sewell, Thomas D., E-mail: sewellt@missouri.edu; Maillet, Jean-Bernard, E-mail: jean-bernard.maillet@cea.fr

    2016-02-14

    In this report, we characterize the kinetics and dynamics of energy exchange between intramolecular and intermolecular degrees of freedom (DoF) in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). All-atom molecular dynamics (MD) simulations are used to obtain predictions for relaxation from certain limiting initial distributions of energy between the intra- and intermolecular DoF. The results are used to parameterize a coarse-grained Dissipative Particle Dynamics at constant Energy (DPDE) model for TATB. Each TATB molecule in the DPDE model is represented as an all-atom, rigid-molecule mesoparticle, with explicit external (molecular translational and rotational) DoF and coarse-grained implicit internal (vibrational) DoF. In addition to conserving linearmore » and angular momentum, the DPDE equations of motion conserve the total system energy provided that particles can exchange energy between their external and internal DoF. The internal temperature of a TATB molecule is calculated using an internal equation of state, which we develop here, and the temperatures of the external and internal DoF are coupled using a fluctuation-dissipation relation. The DPDE force expression requires specification of the input parameter σ that determines the rate at which energy is exchanged between external and internal DoF. We adjusted σ based on the predictions for relaxation processes obtained from MD simulations. The parameterized DPDE model was employed in large-scale simulations of shock compression of TATB. We show that the rate of energy exchange governed by σ can significantly influence the transient behavior of the system behind the shock.« less

  20. Which blood oxygen can sensitively indicate shock severity?

    NASA Astrophysics Data System (ADS)

    Pan, Boan; Li, Kai; Gao, Yuan; Ruan, Zhengshang; Li, Ting

    2016-03-01

    Clinical shock-monitoring mainly depends on measuring oxygen saturations from SVC blood samples invasively. The golden standard indicator is the central internal jugular vein oxygenation (SjvO2). Using near-infrared spectroscopy (NIRS) also can monitor shock in some papers published, but there is no discussion about which oxygen saturation (cerebral venous oxygen saturation, ScvO2; tissue oxygen saturation of internal jugular area; tissue oxygen saturation of extremities areas) can monitor shock patient more sensitively and accurately. The purpose of this paper is to examine which one is most effective. In order to discuss the problem, we continuously detected 56 critical patients who may be into shock state using NIRS oximeter at prefrontal, internal jugular vein area and forearm, and chose 24 patients who were into shock and then out of shock from the 56 critical patients. Combined with the patients' condition, the pulse oxygen saturation is most sensitively to monitoring shock than the others, and the internal jugular vein area oxygen saturation is most effective.

  1. Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragard, Jean, E-mail: jbragard@unav.es; Simic, Ana; Elorza, Jorge

    2013-12-15

    In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one–dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 10{sup 6} simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocksmore » are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.« less

  2. Internal structure of shock waves in disparate mass mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.

    1992-01-01

    The detailed flow structure of a normal shock wave for a gas mixture is investigated using the direct-simulation Monte Carlo method. A variable diameter hard-sphere (VDHS) model is employed to investigate the effect of different viscosity temperature exponents (VTE) for each species in a gas mixture. Special attention is paid to the irregular behavior in the density profiles which was previously observed in a helium-xenon experiment. It is shown that the VTE can have substantial effects in the prediction of the structure of shock waves. The variable hard-sphere model of Bird shows good agreement, but with some limitations, with the experimental data if a common VTE is chosen properly for each case. The VDHS model shows better agreement with the experimental data without adjusting the VTE. The irregular behavior of the light-gas component in shock waves of disparate mass mixtures is observed not only in the density profile, but also in the parallel temperature profile. The strength of the shock wave, the type of molecular interactions, and the mole fraction of heavy species have substantial effects on the existence and structure of the irregularities.

  3. International Shock-Wave Database: Current Status

    NASA Astrophysics Data System (ADS)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound speed in the Hugoniot state, and time-dependent free-surface or window-interface velocity profiles. Users are able to search the information in the database and obtain the experimental points in tabular or plain text formats directly via the Internet using common browsers. It is also possible to plot the experimental points for comparison with different approximations and results of equation-of-state calculations. The user can present the results of calculations in text or graphical forms and compare them with any experimental data available in the database. A short history of the shock-wave database will be presented and current possibilities of ISWdb will be demonstrated. Web-site of the project: http://iswdb.info. This work is supported by SNL contracts # 1143875, 1196352.

  4. International and Domestic Business Cycles as Dynamics of a Network of Networks

    NASA Astrophysics Data System (ADS)

    Ikeda, Yuichi; Iyetomi, Hiroshi; Aoyama, Hideaki; Yoshikawa, Hiroshi

    2014-03-01

    Synchronization in business cycles has attracted economists and physicists as self-organization in the time domain. From a different point of view, international and domestic business cycles are also interesting as dynamics of a network of networks or a multi-level network. In this paper, we analyze the Indices of Industrial Production monthly time-series in Japan from January 1988 to December 2007 to develop a deeper understanding of domestic business cycles. The frequency entrainment and the partial phase locking were observed for the 16 sectors to be direct evidence of synchronization. We also showed that the information of the economic shock is carried by the phase time-series. The common shock and individual shocks are separated using phase time-series. The former dominates the economic recession in all of 1992, 1998 and 2001. In addition to the above analysis, we analyze the quarterly GDP time series for Australia, Canada, France, Italy, the United Kingdom, and the United States from Q2 1960 to Q1 2010 in order to clarify its origin. We find frequency entrainment and partial phase locking. Furthermore, a coupled limit-cycle oscillator model is developed to explain the mechanism of synchronization. In this model, the interaction due to international trade is interpreted as the origin of the synchronization. The obtained results suggest that the business cycle may be described as a dynamics of the multi-level coupled oscillators exposed to random individual shocks.

  5. The structure of mass-loading shocks. [interaction of solar wind with cometary coma or local interstellar medium using two-fluid model

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.

    1993-01-01

    A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.

  6. Deformation of compound shells under action of internal shock wave loading

    NASA Astrophysics Data System (ADS)

    Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin

    2015-09-01

    The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.

  7. Finite element code development for modeling detonation of HMX composites

    NASA Astrophysics Data System (ADS)

    Duran, Adam; Sundararaghavan, Veera

    2015-06-01

    In this talk, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for sod shock and ZND strong detonation models and then used to perform 2D and 3D shock simulations. We will present benchmark problems for geometries in which a single HMX crystal is subjected to a shock condition. Our current progress towards developing microstructural models of HMX/binder composite will also be discussed.

  8. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability

    NASA Astrophysics Data System (ADS)

    Tu, Guohua; Zhao, Xiaohui; Mao, Meiliang; Chen, Jianqiang; Deng, Xiaogang; Liu, Huayong

    2014-05-01

    The construction of Euler fluxes is an important step in shock-capturing/upwind schemes. It is well known that unsuitable fluxes are responsible for many shock anomalies, such as the carbuncle phenomenon. Three kinds of flux vector splittings (FVSs) as well as three kinds of flux difference splittings (FDSs) are evaluated for the shock instability by a fifth-order weighted compact nonlinear scheme. The three FVSs are Steger-Warming splitting, van Leer splitting and kinetic flux vector splitting (KFVS). The three FDSs are Roe's splitting, advection upstream splitting method (AUSM) type splitting and Harten-Lax-van Leer (HLL) type splitting. Numerical results indicate that FVSs and high dissipative FDSs undergo a relative lower risk on the shock instability than that of low dissipative FDSs. However, none of the fluxes evaluated in the present study can entirely avoid the shock instability. Generally, the shock instability may be caused by any of the following factors: low dissipation, high Mach number, unsuitable grid distribution, large grid aspect ratio, and the relative shock-internal flow state (or position) between upstream and downstream shock waves. It comes out that the most important factor is the relative shock-internal state. If the shock-internal state is closer to the downstream state, the computation is at higher susceptibility to the shock instability. Wall-normal grid distribution has a greater influence on the shock instability than wall-azimuthal grid distribution because wall-normal grids directly impact on the shock-internal position. High shock intensity poses a high risk on the shock instability, but its influence is not as much as the shock-internal state. Large grid aspect ratio is also a source of the shock instability. Some results of a second-order scheme and a first-order scheme are also given. The comparison between the high-order scheme and the two low-order schemes indicates that high-order schemes are at a higher risk of the shock instability. Adding an entropy fix is very helpful in suppressing the shock instability for the two low-order schemes. When the high-order scheme is used, the entropy fix still works well for Roe's flux, but its effect on the Steger-Warming flux is trivial and not much clear.

  9. Reserves and trade jointly determine exposure to food supply shocks

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Carr, J. A.; Dell'Angelo, J.; Fader, M.; Gephart, J.; Kummu, M.; Magliocca, N. R.; Porkka, M.; Puma, M. J.; Ratajczak, Z.; Rulli, M. C.; Seekell, D.; Suweis, S. S.; Tavoni, A.; D'Odorico, P.

    2016-12-01

    While a growing proportion of global food consumption is obtained through international trade, there is an ongoing debate on whether this increased reliance on trade benefits or hinders food security, and specifically, the ability of global food systems to absorb shocks due to local or regional losses of production. This paper introduces a model that simulates the short-term response to a food supply shock originating in a single country, which is partly absorbed through domestic reserves and consumption, and partly transmitted through the adjustment of trade flows. By applying the model to publicly-available data for the cereals commodity group over a 17-year period, we find that differential outcomes of supply shocks simulated through this time period are driven not only by the intensification of trade, but as importantly by changes in the distribution of reserves. Our analysis also identifies countries where trade dependency may accentuate the risk of food shortages from foreign production shocks; such risk could be reduced by increasing domestic reserves or importing food from a diversity of suppliers that possess their own reserves. This simulation-based model provides a framework to study the short-term, non-linear and out-of-equilibrium response of trade networks to supply shocks, and could be applied to specific scenarios of environmental or economic perturbations.

  10. Reserves and Trade Jointly Determine Exposure to Food Supply Shocks

    NASA Technical Reports Server (NTRS)

    Marchand, Philippe; Carr, Joel A.; Dell'Angelo, Jampel; Fader, Marianela; Gephart, Jessica A.; Kummu, Matti; Magliocca, Nicholas; Porkka, Miina; Puma, Michael J.; Zak, Ratajczak

    2016-01-01

    While a growing proportion of global food consumption is obtained through international trade, there is an ongoing debate on whether this increased reliance on trade benefits or hinders food security, and specifically, the ability of global food systems to absorb shocks due to local or regional losses of production. This paper introduces a model that simulates the short-term response to a food supply shock originating in a single country, which is partly absorbed through decreases in domestic reserves and consumption, and partly transmitted through the adjustment of trade flows. By applying the model to publicly-available data for the cereals commodity group over a 17 year period, we find that differential outcomes of supply shocks simulated through this time period are driven not only by the intensification of trade, but as importantly by changes in the distribution of reserves. Our analysis also identifies countries where trade dependency may accentuate the risk of food shortages from foreign production shocks; such risk could be reduced by increasing domestic reserves or importing food from a diversity of suppliers that possess their own reserves. This simulation-based model provides a framework to study the short-term, nonlinear and out-of-equilibrium response of trade networks to supply shocks, and could be applied to specific scenarios of environmental or economic perturbations.

  11. Reserves and trade jointly determine exposure to food supply shocks

    NASA Astrophysics Data System (ADS)

    Marchand, Philippe; Carr, Joel A.; Dell'Angelo, Jampel; Fader, Marianela; Gephart, Jessica A.; Kummu, Matti; Magliocca, Nicholas R.; Porkka, Miina; Puma, Michael J.; Ratajczak, Zak; Rulli, Maria Cristina; Seekell, David A.; Suweis, Samir; Tavoni, Alessandro; D'Odorico, Paolo

    2016-09-01

    While a growing proportion of global food consumption is obtained through international trade, there is an ongoing debate on whether this increased reliance on trade benefits or hinders food security, and specifically, the ability of global food systems to absorb shocks due to local or regional losses of production. This paper introduces a model that simulates the short-term response to a food supply shock originating in a single country, which is partly absorbed through decreases in domestic reserves and consumption, and partly transmitted through the adjustment of trade flows. By applying the model to publicly-available data for the cereals commodity group over a 17 year period, we find that differential outcomes of supply shocks simulated through this time period are driven not only by the intensification of trade, but as importantly by changes in the distribution of reserves. Our analysis also identifies countries where trade dependency may accentuate the risk of food shortages from foreign production shocks; such risk could be reduced by increasing domestic reserves or importing food from a diversity of suppliers that possess their own reserves. This simulation-based model provides a framework to study the short-term, nonlinear and out-of-equilibrium response of trade networks to supply shocks, and could be applied to specific scenarios of environmental or economic perturbations.

  12. Finite element code development for modeling detonation of HMX composites

    NASA Astrophysics Data System (ADS)

    Duran, Adam V.; Sundararaghavan, Veera

    2017-01-01

    In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.

  13. USM3D Predictions of Supersonic Nozzle Flow

    NASA Technical Reports Server (NTRS)

    Carter, Melissa B.; Elmiligui, Alaa A.; Campbell, Richard L.; Nayani, Sudheer N.

    2014-01-01

    This study focused on the NASA Tetrahedral Unstructured Software System CFD code (USM3D) capability to predict supersonic plume flow. Previous studies, published in 2004 and 2009, investigated USM3D's results versus historical experimental data. This current study continued that comparison however focusing on the use of the volume souring to capture the shear layers and internal shock structure of the plume. This study was conducted using two benchmark axisymmetric supersonic jet experimental data sets. The study showed that with the use of volume sourcing, USM3D was able to capture and model a jet plume's shear layer and internal shock structure.

  14. Total and Linearly Polarized Synchrotron Emission from Overpressured Magnetized Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Fuentes, Antonio; Gómez, José L.; Martí, José M.; Perucho, Manel

    2018-06-01

    We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets, which are characterized by their dominant type of energy: internal, kinetic, or magnetic. Each model is threaded by a helical magnetic field with a pitch angle of 45° and features a series of recollimation shocks produced by the initial pressure mismatch, whose strength and number varies as a function of the dominant type of energy. We perform a study of the polarization signatures from these models by integrating the radiative transfer equations for synchrotron radiation using as inputs the RMHD solutions. These simulations show a top-down emission asymmetry produced by the helical magnetic field and a progressive confinement of the emission into a jet spine as the magnetization increases and the internal energy of the non-thermal population is considered to be a constant fraction of the thermal one. Bright stationary components associated with the recollimation shocks appear, presenting a relative intensity modulated by the Doppler boosting ratio between the pre-shock and post-shock states. Small viewing angles show a roughly bimodal distribution in the polarization angle, due to the helical structure of the magnetic field, which is also responsible for the highly stratified degree of linear polarization across the jet width. In addition, small variations of the order of 26° are observed in the polarization angle of the stationary components, which can be used to identify recollimation shocks in astrophysical jets.

  15. Neurobiology of secure infant attachment and attachment despite adversity: a mouse model.

    PubMed

    Roth, T L; Raineki, C; Salstein, L; Perry, R; Sullivan-Wilson, T A; Sloan, A; Lalji, B; Hammock, E; Wilson, D A; Levitt, P; Okutani, F; Kaba, H; Sullivan, R M

    2013-10-01

    Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor-stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor-shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7-9 or 13-14) with presentations of peppermint odor and either stroking or shock. We used (14) C 2-deoxyglucose (2-DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7-9 mice learned to prefer an odor following either odor-stroke or shock conditioning, whereas odor-shock conditioning at PN13-14 resulted in aversion/fear learning. 2-DG data indicated enhanced bulbar activity in PN7-9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13-14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment-related behaviors and behavioral development. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  17. Gamma-Ray Bursts and Fast Transients. Multi-wavelength Observations and Multi-messenger Signals

    NASA Astrophysics Data System (ADS)

    Willingale, R.; Mészáros, P.

    2017-07-01

    The current status of observations and theoretical models of gamma-ray bursts and some other related transients, including ultra-long bursts and tidal disruption events, is reviewed. We consider the impact of multi-wavelength data on the formulation and development of theoretical models for the prompt and afterglow emission including the standard fireball model utilizing internal shocks and external shocks, photospheric emission, the role of the magnetic field and hadronic processes. In addition, we discuss some of the prospects for non-photonic multi-messenger detection and for future instrumentation, and comment on some of the outstanding issues in the field.

  18. Internal ballistics of the detonation products of a blast-hole charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangush, S.K.; Garbunov, V.A.

    1986-07-01

    The authors investigate the gasdynamic flow of the detonation products of a blast-hole charge (the expansion of the detonation products in the blast hole and the gas outflow and propagation of shock airwaves into the face space). The problem is solved by means of a numerical program for integration of partial differential equations of one-dimensional gas-dynamics. A numerical model of the internal ballistics of a blast-hole charge is presented. In addition to the variation of the thermodynamic parameters in the blast hole, the formation of the shock wave in the face space is shown, which is the source of gasmore » ignition. Further development of the numerical model of the action of blast-hole charges is planned which will involve an analysis of a number of applied problems.« less

  19. Observations on the normal reflection of gaseous detonations

    NASA Astrophysics Data System (ADS)

    Damazo, J.; Shepherd, J. E.

    2017-09-01

    Experimental results are presented examining the behavior of the shock wave created when a gaseous detonation wave normally impinges upon a planar wall. Gaseous detonations are created in a 7.67-m-long, 280-mm-internal-diameter detonation tube instrumented with a test section of rectangular cross section enabling visualization of the region at the tube-end farthest from the point of detonation initiation. Dynamic pressure measurements and high-speed schlieren photography in the region of detonation reflection are used to examine the characteristics of the inbound detonation wave and outbound reflected shock wave. Data from a range of detonable fuel/oxidizer/diluent/initial pressure combinations are presented to examine the effect of cell-size and detonation regularity on detonation reflection. The reflected shock does not bifurcate in any case examined and instead remains nominally planar when interacting with the boundary layer that is created behind the incident wave. The trajectory of the reflected shock wave is examined in detail, and the wave speed is found to rapidly change close to the end-wall, an effect we attribute to the interaction of the reflected shock with the reaction zone behind the incident detonation wave. Far from the end-wall, the reflected shock wave speed is in reasonable agreement with the ideal model of reflection which neglects the presence of a finite-length reaction zone. The net far-field effect of the reaction zone is to displace the reflected shock trajectory from the predictions of the ideal model, explaining the apparent disagreement of the ideal reflection model with experimental reflected shock observations of previous studies.

  20. An experimental investigation of internal area ruling for transonic and supersonic channel flow

    NASA Technical Reports Server (NTRS)

    Roberts, W. B.; Vanrintel, H. L.; Rizvi, G.

    1982-01-01

    A simulated transonic rotor channel model was examined experimentally to verify the flow physics of internal area ruling. Pressure measurements were performed in the high speed wind tunnel at transonic speeds with Mach 1.5 and Mach 2 nozzle blocks to get an indication of the approximate shock losses. The results showed a reduction in losses due to internal area ruling with the Mach 1.5 nozzle blocks. The reduction in total loss coefficient was of the order of 17 percent for a high blockage model and 7 percent for a cut-down model.

  1. Structure of relativistic shocks in pulsar winds: A model of the wisps in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Gallant, Yves A.; Arons, Jonathan

    1994-01-01

    We propose a model of a optical 'wisps' of the Crab Nebula, features observed in the nebular synchrotron surface brightness near the central pulsar, as manifestations of the internal structure of the shock terminating the pulsar wind. We assume that this wind is composed of ions and a much denser plasma of electrons and positrons, frozen together to a toroidal magnetic field and flowing relativistically. We construct a form of solitary wave model of the shock structure in which we self-consistently solve for the ion orbits and the dynamics of the relativistically hot, magnetized e(+/-) background flow. We ignore dispersion in the ion energies, and we treat the pairs as an adiabatic fluid. The synchrotron emission enhancements, observed as the wisps, are then explained as the regions where reflection of the ions in the self-consistent magnetic field causes compressions of the e(+/-).

  2. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  3. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  4. Shock temperature dependent rate law for plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq D.

    2018-04-01

    A reactive flow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 (95% TATB, 5% polymeric binder Kel-F 800) is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. Specifically, sensitivity changes to the initial explosive temperature are accounted for naturally and with a single set of parameters. The equation of state forms for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration, are carried over from the Wescott-Stewart-Davis (WSD) model [Wescott et al., J. Appl. Phys. 98, 053514 (2005) and "Modeling detonation diffraction and dead zones in PBX-9502," in Proceedings of the Thirteenth International Detonation Symposium (2006)]. This newly devised model, with Arrhenius state dependence on the shock temperature, based on the WSD equation of states, is denoted by AWSD. Modifying an existing implementation of the WSD model to the AWSD model in a hydrocode is a rather straightforward procedure.

  5. Internal defibrillation: pain perception of low energy shocks.

    PubMed

    Steinhaus, David M; Cardinal, Debbie S; Mongeon, Luc; Musley, Shailesh Kumar; Foley, Laura; Corrigan, Susie

    2002-07-01

    Recently, device-based low energy cardoversion shocks have been used as therapy for AF. However, discomfort from internal low energy electrical shocks is poorly understood. The aim of this study was to evaluate pain perception with low energy internal discharges. Eighteen patients with ICD devices for malignant ventricular arrhythmias were recruited to receive shocks of 0.4 and 2 J in the nonsedated state. Discharges were delivered in a blinded, random order and questionnaires were used to determine discomfort levels and tolerability. Patients perceived discharges at these energies as relatively uncomfortable, averaging a score of 7.3 on a discomfort scale of 0-10, and could not distinguish 0.4-J shocks from 2-J shocks. Second shocks were perceived as more uncomfortable than initial discharges, regardless of the order in which the shocks were delivered. Despite the perceived discomfort, 83% of patients stated that they would tolerate discharges of this magnitude once per month, and 44% would tolerate weekly discharges. Patients perceive low energy discharges as painful and cannot distinguish between shocks of 0.4 and 2 J. The results suggest that ICD systems developed to treat atrial tachyarrhythmias should minimize the number of shocks delivered to terminate an atrial tachyarrhythmia episode. The majority of the patients tolerated low energy shocks provided the discharges are infrequent (once per month).

  6. NO PLIF imaging in the CUBRC 48-inch shock tunnel

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D. V.; Lempert, W. R.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; Danehy, P. M.

    2012-12-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.

  7. Shock wave properties of anorthosite and gabbro. [to model hypervelocity impact cratering on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1985-01-01

    Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.

  8. Contribution to the optimal shape design of two-dimensional internal flows with embedded shocks

    NASA Technical Reports Server (NTRS)

    Iollo, Angelo; Salas, Manuel D.

    1995-01-01

    We explore the practicability of optimal shape design for flows modeled by the Euler equations. We define a functional whose minimum represents the optimality condition. The gradient of the functional with respect to the geometry is calculated with the Lagrange multipliers, which are determined by solving a co-state equation. The optimization problem is then examined by comparing the performance of several gradient-based optimization algorithms. In this formulation, the flow field can be computed to an arbitrary order of accuracy. Finally, some results for internal flows with embedded shocks are presented, including a case for which the solution to the inverse problem does not belong to the design space.

  9. "You Just Use Your Imagination and Try to Fix It": Agential Change and International Students

    ERIC Educational Resources Information Center

    Matthews, Blair

    2018-01-01

    Although interest in the experiences of international students has increased, the theoretical frameworks that are used to explain their experiences (such as culture shock, models of acculturation, cultural learning or intercultural dimensions) all share a tendency to use culture to explain behavior, denying agency, and leaving changes in the way…

  10. A k-ɛ model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Bonnet, Michel

    1990-09-01

    A k-ɛ model for turbulent mixing induced by Rayleigh-Taylor instability is described. The classical linear closure relations are supplemented with algebraic relations in order to be valid under strong gradients. Calibrations were made against two shock-tube experiments (Andronov et al. [Sov. Phys. JETP 44, 424 (1976); Sov. Phys. Dokl. 27, 393 (1982)] and Houas et al. [Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes (Stanford U.P., Stanford, CA, 1986)]) using the same set of constants. The new interpretation of the experimental data of Brouillette and Sturtevant [Physica D 37, 248 (1989)], where the mixing length is discriminated from the wall jet, requires a different numerical value for the Rayleigh-Taylor source term coefficient. A detailed physical study is given in both cases. It turns out that the spectrum is narrower in the Brouillette and Sturtevant case than in the Andronov et al. case but the small length scales are of the same magnitude.

  11. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation.

    PubMed

    Zhu, Feng; Wagner, Christina; Dal Cengio Leonardi, Alessandra; Jin, Xin; Vandevord, Pamela; Chou, Clifford; Yang, King H; King, Albert I

    2012-03-01

    A combined experimental and numerical study was conducted to determine a method to elucidate the biomechanical response of a head surrogate physical model under air shock loading. In the physical experiments, a gel-filled egg-shaped skull/brain surrogate was exposed to blast overpressure in a shock tube environment, and static pressures within the shock tube and the surrogate were recorded throughout the event. A numerical model of the shock tube was developed using the Eulerian approach and validated against experimental data. An arbitrary Lagrangian-Eulerian (ALE) fluid-structure coupling algorithm was then utilized to simulate the interaction of the shock wave and the head surrogate. After model validation, a comprehensive series of parametric studies was carried out on the egg-shaped surrogate FE model to assess the effect of several key factors, such as the elastic modulus of the shell, bulk modulus of the core, head orientation, and internal sensor location, on pressure and strain responses. Results indicate that increasing the elastic modulus of the shell within the range simulated in this study led to considerable rise of the overpressures. Varying the bulk modulus of the core from 0.5 to 2.0 GPa, the overpressure had an increase of 7.2%. The curvature of the surface facing the shock wave significantly affected both the peak positive and negative pressures. Simulations of the head surrogate with the blunt end facing the advancing shock front had a higher pressure compared to the simulations with the pointed end facing the shock front. The influence of an opening (possibly mimicking anatomical apertures) on the peak pressures was evaluated using a surrogate head with a hole on the shell of the blunt end. It was revealed that the presence of the opening had little influence on the positive pressures but could affect the negative pressure evidently.

  12. Hypertonic/Hyperoncotic Resuscitation from Shock: Reduced Volume Requirement and Lower Intracranial Pressure

    DTIC Science & Technology

    1989-10-01

    in Dogs with Hemorrhagic Shock and an Intracranial Mass. Seventh International Symposium on Intracranial Pressure and Brain Injury , Ann Arbor, Michigan...with Hemorrhagic Shock and an Intracranial Mass. Seventh International Symposium on Intracranial Pressure and Brain Injury . Intracranial Pressure VII...and MCI US groups. Discussion: Following this severe insult a iETTiFMT3-a clinical head injury combined wit6i hemorrha Ic shock, a cobntnc/h rcctc

  13. A novel free floating accelerometer force balance system for shock tunnel applications

    NASA Astrophysics Data System (ADS)

    Joarder, R.; Mahaptra, D. R.; Jagadeesh, G.

    In order to overcome the interference of the model mounting system with the external aerodynamics of the body during shock tunnel testing, a new free floating internally mountable balance system that ensures unrestrained model motion during testing has been designed, fabricated and tested. Minimal friction ball bearings are used for ensuring the free floating condition of the model during tunnel testing. The drag force acting on a blunt leading edge flat plate at hypersonic Mach number has been measured using the new balance system. Finite element model (FEM) and CFD are exhaustively used in the design as well as for calibrating the new balance system. The experimentally measured drag force on the blunt leading edge flat plate at stagnation enthalpy of 0.7 and 1.2 MJ/kg and nominal Mach number of 5.75 matches well with FEM results. The concept can also be extended for measuring all the three fundamental aerodynamic forces in short duration test facilities like free piston driven shock tunnels.

  14. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    NASA Technical Reports Server (NTRS)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  15. Relationships among physical properties as indicators of high temperature deformation or post-shock thermal annealing in ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Friedrich, Jon M.; Ruzicka, Alex; Macke, Robert J.; Thostenson, James O.; Rudolph, Rebecca A.; Rivers, Mark L.; Ebel, Denton S.

    2017-04-01

    Collisions and attendant shock compaction must have been important for the accretion and lithification of planetesimals, including the parent bodies of chondrites, but the conditions under which these occurred are not well constrained. A simple model for the compaction of chondrites predicts that shock intensity as recorded by shock stage should be related to porosity and grain fabric. To test this model, we studied sixteen ordinary chondrites of different groups (H, L, LL) using X-ray computed microtomography (μCT) to measure porosity and metal fabric, ideal gas pycnometry and 3D laser scanning to determine porosity, and optical microscopy (OM) to determine shock stage. These included a subsample of six chondrites previously studied using transmission electron microscopy (TEM) to characterize microstructures in olivine. Combining with previous data, results support the simple model in general, but not for chondrites with low shock-porosity-foliation (low-SPF chondrites). These include Kernouvé (H6), Portales Valley (H6/7), Butsura (H6), Park (L6), GRO 85209 (L6), Estacado (H6), MIL 99301 (LL6), Spade (H6), and Queen's Mercy (H6), among others. The data for these meteorites are best explained by high ambient heat during or after shock. Low-SPF chondrites tend to have older 40Ar/39Ar ages (∼4435-4526 Ma) than other, non-low-SPF type 6 chondrites in this study. We conclude that the H, L, and LL asteroids all were shock-compacted at an early stage while warm, with collisions occurring during metamorphic heating of the parent bodies. Results ultimately bear on whether chondrite parent bodies have internal structures more akin to a metamorphosed onion shell or metamorphosed rubble pile, and on the nature of accretion and lithification processes for planetesimals.

  16. Capturing the Flatness of a peer-to-peer lending network through random and selected perturbations

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis D.; Singh, Pramesh; Uparna, Jayaram; Horvat, Emoke-Agnes; Szymanski, Boleslaw K.; Korniss, Gyorgy; Bakdash, Jonathan Z.; Uzzi, Brian

    Null models are established tools that have been used in network analysis to uncover various structural patterns. They quantify the deviance of an observed network measure to that given by the null model. We construct a null model for weighted, directed networks to identify biased links (carrying significantly different weights than expected according to the null model) and thus quantify the flatness of the system. Using this model, we study the flatness of Kiva, a large international crownfinancing network of borrowers and lenders, aggregated to the country level. The dataset spans the years from 2006 to 2013. Our longitudinal analysis shows that flatness of the system is reducing over time, meaning the proportion of biased inter-country links is growing. We extend our analysis by testing the robustness of the flatness of the network in perturbations on the links' weights or the nodes themselves. Examples of such perturbations are event shocks (e.g. erecting walls) or regulatory shocks (e.g. Brexit). We find that flatness is unaffected by random shocks, but changes after shocks target links with a large weight or bias. The methods we use to capture the flatness are based on analytics, simulations, and numerical computations using Shannon's maximum entropy. Supported by ARL NS-CTA.

  17. Material-Model-Based Determination of the Shock-Hugoniot Relations in Nanosegregated Polyurea

    NASA Astrophysics Data System (ADS)

    Grujicic, Mica; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.

    2014-02-01

    Previous experimental investigations reported in the open literature have indicated that applying polyurea external coatings and/or internal linings can substantially improve ballistic penetration resistance and blast survivability of buildings, vehicles, and laboratory/field test-plates, as well as the blast-mitigation capacity of combat helmets. The protective role of polyurea coatings/linings has been linked to polyurea microstructure, which consists of discrete hard-domains distributed randomly within a compliant/soft matrix. When this protective role is investigated computationally, the availability of reliable, high-fidelity constitutive models for polyurea is vitally important. In the present work, a comprehensive overview and a critical assessment of a polyurea material constitutive model, recently proposed by Shim and Mohr (Int J Plast 27:868-886, 2011), are carried out. The review revealed that this model can accurately account for the experimentally measured uniaxial-stress versus strain data obtained under monotonic and multistep compressive loading/unloading conditions, as well as under stress relaxation conditions. On the other hand, by combining analytical and finite-element procedures with the material model in order to define the basic shock-Hugoniot relations for this material, it was found that the computed shock-Hugoniot relations differ significantly from their experimental counterparts. Potential reasons for the disagreement between the computed and experimental shock-Hugoniot relations are identified.

  18. Extremely Bright GRB 160625B with Multiple Emission Episodes: Evidence for Long-term Ejecta Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing

    GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (∼180 s) following the initial episode, can be fitted with amore » model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ∼300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, i.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.« less

  19. Extremely Bright GRB 160625B with Multiple Emission Episodes: Evidence for Long-term Ejecta Evolution

    NASA Astrophysics Data System (ADS)

    Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing; Huang, Xiao-Li; Zhang, Hai-Ming; Lan, Lin; Xie, Wei; Lu, Rui-Jing; Liang, En-Wei

    2017-11-01

    GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (˜180 s) following the initial episode, can be fitted with a model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ˜300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, I.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.

  20. High-energy cosmic ray nuclei from tidal disruption events: Origin, survival, and implications

    NASA Astrophysics Data System (ADS)

    Zhang, B. Theodore; Murase, Kohta; Oikonomou, Foteini; Li, Zhuo

    2017-09-01

    Tidal disruption events (TDEs) by supermassive or intermediate mass black holes have been suggested as candidate sources of ultrahigh-energy cosmic rays (UHECRs) and high-energy neutrinos. Motivated by the recent measurements from the Pierre Auger Observatory, which indicates a metal-rich cosmic-ray composition at ultrahigh energies, we investigate the fate of UHECR nuclei loaded in TDE jets. First, we consider the production and survival of UHECR nuclei at internal shocks, external forward and reverse shocks, and nonrelativistic winds. Based on the observations of Swift J 1644 +57 , we show that the UHECRs can survive for external reverse and forward shocks, and disk winds. On the other hand, UHECR nuclei are significantly disintegrated in internal shocks, although they could survive for low-luminosity TDE jets. Assuming that UHECR nuclei can survive, we consider implications of different composition models of TDEs. We find that the tidal disruption of main sequence stars or carbon-oxygen white dwarfs does not successfully reproduce UHECR observations, namely the observed composition or spectrum. The observed mean depth of the shower maximum and its deviation could be explained by oxygen-neon-magnesium white dwarfs, although they may be too rare to be the sources of UHECRs.

  1. Plume dynamics from UV pulsed ablation of Al and Ti

    NASA Astrophysics Data System (ADS)

    Bauer, William; Perram, Glen; Haugan, Timothy

    2016-12-01

    Pulsed laser ablation of Al and Ti with a < 3.3 J/cm2 KrF laser and Ar background pressure of up to 1 Torr was performed to study the ablated plume. Mass loss experiments revealed the number of ablated atoms per pulse increases by 30% for Ti and 20% for Al as pressure decreases from 1 Torr to vacuum. Optical emission imaging performed using a gated ICCD revealed a strong dependence of shock front parameters, defined by the Sedov-Taylor blast and classical drag models, on background pressure. Spatially resolved optical emission spectroscopy from Al I, Al II, Ti I, and Ti II revealed ion temperatures of 104 K that decreased away from the target surface along the surface normal and neutral temperatures of 103 K independent of target distance. Comparison between kinetic energy in the shock and internal excitation energy reveals that nearly 100% of the energy is partitioned into shock front kinetic energy and 1% into internal excitation.

  2. Interaction between a pulsating jet and a surrounding disk wind. A hydrodynamical perspective

    NASA Astrophysics Data System (ADS)

    Tabone, B.; Raga, A.; Cabrit, S.; Pineau des Forêts, G.

    2018-06-01

    Context. The molecular richness of fast protostellar jets within 20-100 au of their source, despite strong ultraviolet irradiation, remains a challenge for the models investigated so far. Aim.We aim to investigate the effect of interaction between a time-variable jet and a surrounding steady disk wind, to assess the possibility of jet chemical enrichement by the wind, and the characteristic signatures of such a configuration. Methods: We have constructed an analytic model of a jet bow shock driven into a surrounding slower disk wind in the thin shell approximation. The refilling of the post bow shock cavity from below by the disk wind is also studied. An extension of the model to the case of two or more successive internal working surfaces (IWS) is made. We then compared this analytic model with numerical simulations with and without a surrounding disk wind. Results: We find that at early times (of order the variability period), jet bow shocks travel in refilled pristine disk wind material, before interacting with the cocoon of older bow shocks. This opens the possibility of bow shock chemical enrichment (if the disk wind is molecular and dusty) and of probing the unperturbed disk wind structure near the jet base. Several distinctive signatures of the presence of a surrounding disk wind are identified, in the bow shock morphology and kinematics. Numerical simulations validate our analytical approach and further show that at large scale, the passage of many jet IWS inside a disk wind produces a stationary V-shaped cavity, closing down onto the axis at a finite distance from the source.

  3. Broadband Shock Noise in Internally-Mixed Dual-Stream Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2009-01-01

    Broadband shock noise (BBSN) has been studied in some detail in single-flow jets and recently in dual-stream jets with separate flow exhaust systems. Shock noise is of great concern in these latter cases because of the noise created for the aircraft cabin by the underexpanded nozzle flow at cruise. Another case where shock noise is of concern is in the case of future supersonic aircraft that are expected to have bypass ratios small enough to justify internally mixed exhaust systems, and whose mission will push cycles to the point of imperfectly expanded flows. Dual-stream jets with internally mixed plume have some simplifying aspects relative to the separate flow jets, having a single shock structure given by the common nozzle pressure. This is used to separate the contribution of the turbulent shear layer to the broadband shock noise. Shock structure is held constant while the geometry and strength of the inner and merged shear layers are varying by changing splitter area ratio and core stream temperature. Flow and noise measurements are presented which document the efforts at separating the contribution of the inner shear layer to the broadband shock noise.

  4. The Early X-ray Emission From V382 Velorum (=Nove Vel 1999): An Internal Shock Model

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Ishida, Manabu

    2000-01-01

    We present the results of ASCA and RXTE observations of the early X-ray emission from the classical nova V382 Velorum. Its ASCA spectrum was hard (kT approximately 10 KeV) with a strong (10(exp 13)/sq cm) intrinsic absorption. In the subsequent RXTE data, the spectra became softer both due to a declining temperature and a diminishing column. We argue that this places the X-ray emission interior to the outermost ejecta produced by V382 Vel in 1999, and therefore must have been the result of a shock internal to the nova ejecta. The weakness of the Fe K.alpha lines probably indicates that the X-ray emitting plasmas are not in ionization equilibrium.

  5. Shock waves; Proceedings of the 18th International Symposium, Sendai, Japan, July 21-26, 1991. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.

  6. Tadalafil once daily and extracorporeal shock wave therapy in the management of patients with Peyronie's disease and erectile dysfunction: results from a prospective randomized trial.

    PubMed

    Palmieri, A; Imbimbo, C; Creta, M; Verze, P; Fusco, F; Mirone, V

    2012-04-01

    Extracorporeal shock wave therapy improves erectile function in patients with Peyronie's disease. However, erectile dysfunction still persists in many cases. We aimed to investigate the effects of extracorporeal shock wave therapy plus tadalafil 5 mg once daily in the management of patients with Peyronie's disease and erectile dysfunction not previously treated. One hundred patients were enrolled in a prospective, randomized, controlled study. Patients were randomly allocated to receive either extracorporeal shock wave therapy alone for 4 weeks (n = 50) or extracorporeal shock wave therapy plus tadalafil 5 mg once daily for 4 weeks (n = 50). Main outcome measures were: erectile function (evaluated through the shortened version of the International Index of Erectile Function), pain during erection (evaluated through a Visual Analog Scale), plaque size, penile curvature and quality of life (evaluated through an internal questionnaire). Follow-up evaluations were performed after 12 and 24 weeks. In both groups, at 12 weeks follow-up, mean Visual Analog Scale score, mean International Index of Erectile Function score and mean quality of life score ameliorated significantly while mean plaque size and mean curvature degree were unchanged. Intergroup analysis revealed a significantly higher mean International Index of Erectile Function score and quality of life score in patients receiving the combination. After 24 weeks, intergroup analysis revealed a significantly higher mean International Index of Erectile Function score and mean quality of life score in patients that received extracorporeal shock wave therapy plus tadalafil. In conclusion extracorporeal shock wave therapy plus tadalafil 5 mg once daily may represent a valid conservative strategy for the management of patients with Peyronie's disease and erectile dysfunction. © 2011 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.

  7. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  8. A generic efficient adaptive grid scheme for rocket propulsion modeling

    NASA Technical Reports Server (NTRS)

    Mo, J. D.; Chow, Alan S.

    1993-01-01

    The objective of this research is to develop an efficient, time-accurate numerical algorithm to discretize the Navier-Stokes equations for the predictions of internal one-, two-dimensional and axisymmetric flows. A generic, efficient, elliptic adaptive grid generator is implicitly coupled with the Lower-Upper factorization scheme in the development of ALUNS computer code. The calculations of one-dimensional shock tube wave propagation and two-dimensional shock wave capture, wave-wave interactions, shock wave-boundary interactions show that the developed scheme is stable, accurate and extremely robust. The adaptive grid generator produced a very favorable grid network by a grid speed technique. This generic adaptive grid generator is also applied in the PARC and FDNS codes and the computational results for solid rocket nozzle flowfield and crystal growth modeling by those codes will be presented in the conference, too. This research work is being supported by NASA/MSFC.

  9. NQR Line Broadening Due to Crystal Lattice Imperfections and Its Relationship to Shock Sensitivity

    NASA Astrophysics Data System (ADS)

    Caulder, S. M.; Buess, M. L.; Garroway, A. N.; Miller, P. J.

    2004-07-01

    The hydrodynamic hot spot model is used to explain the difference between shock sensitive and shock insensitive explosives. Among the major factors that influence the shock sensitivity of energetic compounds are the quality and particle size of the energetic crystals used to formulate the cast plastic bonded explosive. As do all energetic compounds, RDX and HMX exhibit internal crystal defects the magnitude and type of which depend on the manufacturing process used to synthesize and re-crystallize the energetic compound. Nuclear Quadrupole Resonance (NQR) spectroscopy was used to determine the crystal quality of RDX, HMX and CL-20 obtained from various manufacturers. The NQR experimental results are discussed. Cast plastic bonded explosives were made using the RDX and HMX obtained from the various manufacturers and subsequently subjected to the NOL large-scale gap test (LSGT). The results of the LSGT are discussed and correlated with the NQR results. A relationship between the crystal defect density and shock initiation pressure of the plastic bonded explosive is developed and discussed.

  10. Electrostatic and magnetic instabilities in the transition layer of a collisionless weakly relativistic pair shock

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Bret, A.

    2018-01-01

    Energetic electromagnetic emissions by astrophysical jets like those that are launched during the collapse of a massive star and trigger gamma-ray bursts are partially attributed to relativistic internal shocks. The shocks are mediated in the collisionless plasma of such jets by the filamentation instability of counterstreaming particle beams. The filamentation instability grows fastest only if the beams move at a relativistic relative speed. We model here with a particle-in-cell simulation, the collision of two cold pair clouds at the speed c/2 (c: speed of light). We demonstrate that the two-stream instability outgrows the filamentation instability for this speed and is thus responsible for the shock formation. The incomplete thermalization of the upstream plasma by its quasi-electrostatic waves allows other instabilities to grow. A shock transition layer forms, in which a filamentation instability modulates the plasma far upstream of the shock. The inflowing upstream plasma is progressively heated by a two-stream instability closer to the shock and compressed to the expected downstream density by the Weibel instability. The strong magnetic field due to the latter is confined to a layer 10 electron skin depths wide.

  11. Shuttle ascent and shock impingement aerodynamic heating studies

    NASA Technical Reports Server (NTRS)

    Lanning, W. D.; Hung, F. T.

    1971-01-01

    The collection and analysis of aerodynamic heating data obtained from shock impingement experimental investigation were completed. The data were categorized into four interference areas; fin leading edge, wing/fuselage fin/plate corners, and space shuttle configurations. The effects of shock impingement were found to increase the heating rates 10 to 40 times the undisturbed values. A test program was completed at NASA/Langley Research Center to investigate the magnitudes and surface patterns of the mated shock interference flowfield. A 0.0065 scale thin-skin model of the MDAC 256-20 space shuttle booster mated with a Stycast model of the MDAC Internal tank orbiter was tested in the 20-inch M=6 tunnel, the 31-inch M=10 tunnel, and the 48-inch Unitary Plan Tunnel. The gap region of the ascent configuration was the principal area of interest where both thermocouple and phase-change paint data were obtained. Pressure and heat transfer distributions data on the leeward surface of a 75-degree sweep slab delta wing are presented. The effects of surface roughness on boundary layer transition and aerodynamic heating were investigated.

  12. Modeling The Shock Initiation of PBX-9501 in ALE3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, L; Springer, H K; Mace, J

    The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrivemore » at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.« less

  13. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef.

    PubMed

    Juneja, V K; Klein, P G; Marmer, B S

    1998-04-01

    Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 degrees C for 15-30 min, and then heated to a final internal temperature of 60 degrees C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 degrees C increased 1.56- and 1.50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 degrees C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held to 15 or 28 degrees C. A 25 min heat shock at 46 degrees C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.

  14. Culture Shock and the International Student "Offshore"

    ERIC Educational Resources Information Center

    Pyvis, David; Chapman, Anne

    2005-01-01

    Within the context of higher education, it is the international student who travels to another country to study who is typically identified as the subject at risk of culture shock. This paper attempts to go further by suggesting that international students studying in their home country with an overseas institution may also experience culture…

  15. Shock wave properties of anorthosite and gabbro

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1984-01-01

    Hugoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from particl velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.

  16. TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars.

    PubMed

    Murase, Kohta; Ioka, Kunihito

    2013-09-20

    We study high-energy neutrino production in collimated jets inside progenitors of gamma-ray bursts (GRBs) and supernovae, considering both collimation and internal shocks. We obtain simple, useful constraints, using the often overlooked point that shock acceleration of particles is ineffective at radiation-mediated shocks. Classical GRBs may be too powerful to produce high-energy neutrinos inside stars, which is consistent with IceCube nondetections. We find that ultralong GRBs avoid such constraints and detecting the TeV signal will support giant progenitors. Predictions for low-power GRB classes including low-luminosity GRBs can be consistent with the astrophysical neutrino background IceCube may detect, with a spectral steepening around PeV. The models can be tested with future GRB monitors.

  17. Internal and external axial corner flows

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.

    1975-01-01

    The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.

  18. A discussion of nursing students' experiences of culture shock during an international clinical placement and the clinical facilitators' role.

    PubMed

    Maginnis, Cathy; Anderson, Judith

    2017-06-01

    This paper examines the meaning and experience of culture shock for nursing students undertaking an international clinical placement (ICP) and the role of the clinical facilitator. Oberg's four stages of adapting to culture shock were aligned to anecdotal conversations with nursing students on an ICP. All four stages were identified in anecdotal conversations with the students. Support by the accompanying clinical facilitator is pivotalin overcoming culture shock and maximising the learning experience. It is essential that students are prepared for the change in cultural norms and are supported by the academic staff to work through the processes required to adapt to culture shock. Planning and preparation prior to departure is essential to assist with managing culture shock with an emphasis on the inclusion of cultural norms and beliefs. The role of the facilitator is crucial to guide and support the students through the culture shock process.

  19. Internal hypersonic flow. [in thin shock layer

    NASA Technical Reports Server (NTRS)

    Lin, T. C.; Rubin, S. G.

    1974-01-01

    An approach for studying hypersonic internal flow with the aid of a thin-shock-layer approximation is discussed, giving attention to a comparison of thin-shock-layer results with the data obtained on the basis of the imposition theory or a finite-difference integration of the Euler equations. Relations in the case of strong interaction are considered together with questions of pressure distribution and aspects of the boundary-layer solution.

  20. Asymmetric and persistent responses in price volatility of fertilizers through stable and unstable periods

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2017-01-01

    Fertilizers are important to improve agricultural productivity growth. The purpose of this study is to investigate asymmetry, leverage, and persistence of shocks on price volatility of five fertilizers using EGARCH model during stable and unstable time periods, corresponding to before and after 2007 international financial crisis, respectively. Using price data of rock phosphate, triple super phosphate, diammonium phosphate (DAP), urea, and potassium chloride, it is found that fertilizers price volatilities display an apparent asymmetric response to shocks which have much pronounced and permanent effect during unstable period than in during stable period. Such effects should be taken into account whenever volatility modeling of fertilizers is considered, particularly during periods of volatile price.

  1. The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks

    NASA Technical Reports Server (NTRS)

    Preece, R.; Burgess, J. Michael; von Kienlin, A.; Bhat, P. N.; Briggs, M. S.; Byrne, D.; Chaplin, V.; Cleveland, W.; Collazzi, A. C.; Goldstein, A.; hide

    2013-01-01

    Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 s is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.

  2. Critical parameters, thermodynamic functions, and shock Hugoniot of aluminum fluid at high energy density

    NASA Astrophysics Data System (ADS)

    Zaghloul, Mofreh R.

    2018-03-01

    We present estimates of the critical properties, thermodynamic functions, and principal shock Hugoniot of hot dense aluminum fluid as predicted from a chemical model for the equation-of-state of hot dense, partially ionized and partially degenerate plasma. The essential features of strongly coupled plasma of metal vapors, such as multiple ionization, Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion are taken into consideration. Internal partition functions of neutral, excited, and multiply ionized species are carefully evaluated in a statistical-mechanically consistent way. Results predicted from the present model are presented, analyzed and compared with available experimental measurements and other theoretical predictions in the literature.

  3. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  4. Pseudo-shock waves and their interactions in high-speed intakes

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  5. The Synchrotron Spectrum of Fast Cooling Electrons Revisited.

    PubMed

    Granot; Piran; Sari

    2000-05-10

    We discuss the spectrum arising from synchrotron emission by fast cooling (FC) electrons, when fresh electrons are continually accelerated by a strong blast wave, into a power-law distribution of energies. The FC spectrum has so far been described by four power-law segments divided by three break frequencies nusa

  6. Global economic impacts of severe Space Weather.

    NASA Astrophysics Data System (ADS)

    Schulte In Den Baeumen, Hagen; Cairns, Iver

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events, and could have substantial impacts on electric power transmission and telecommunication grids. Modern society’s heavy reliance on these domestic and international networks increases our susceptibility to such a severe Space Weather event. Using a new high-resolution model of the global economy we simulate the economic impact of large CMEs for 3 different planetary orientations. We account for the economic impacts within the countries directly affected as well as the post-disaster economic shock in partner economies through international trade. For the CMEs modeled the total global economic impacts would range from US 380 billion to US 1 trillion. Of this total economic shock 50 % would be felt in countries outside the zone of direct impact, leading to a loss in global GDP of 0.1 - 1 %. A severe Space Weather event could lead to global economic damages of the same order as other weather disasters, climate change, and extreme financial crisis.

  7. THE ANATOMY OF A LONG GAMMA-RAY BURST: A SIMPLE CLASSIFICATION SCHEME FOR THE EMISSION MECHANISM(S)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bégué, D.; Burgess, J. Michael, E-mail: jamesb@kth.se, E-mail: damienb@kth.se

    2016-03-20

    Ultra-relativistic motion and efficient conversion of kinetic energy to radiation are required by gamma-ray burst (GRB) observations, yet they are difficult to simultaneously achieve. Three leading mechanisms have been proposed to explain the observed emission emanating from GRB outflows: radiation from either relativistic internal or external shocks, or thermal emission from a photosphere. Previous works were dedicated to independently treating these three mechanisms and arguing for a sole, unique origin of the prompt emission of GRBs. In contrast, herein, we first explain why all three models are valid mechanisms and that a contribution from each of them is expected inmore » the prompt phase. Additionally, we show that a single parameter, the dimensionless entropy of the GRB outflow, determines which mechanism contributes the most to the emission. More specifically, internal shocks dominate for low values of the dimensionless entropy, external shocks for intermediate values, and finally, photospheric emission for large values. We present a unified framework for the emission mechanisms of GRBs with easily testable predictions for each process.« less

  8. The Origin of the Optical Flashes: The Case Study of GRB 080319B and GRB 130427A

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Veres, P.

    2018-05-01

    Correlations between optical flashes and gamma-ray emissions in gamma-ray bursts (GRBs) have been searched in order to clarify the question of whether these emissions occur at internal and/or external shocks. Among the most powerful GRBs ever recorded are GRB 080319B and GRB 130427A, which at early phases presented bright optical flashes possibly correlated with γ-ray components. Additionally, both bursts were fortuitously located within the field of view of the TeV γ-ray Milagro and HAWC observatories, and although no statistically significant excess of counts were collected, upper limits were placed on the GeV–TeV emission. Considering the synchrotron self-Compton emission from internal shocks and requiring the GeV–TeV upper limits, we found that the optical flashes and the γ-ray components are produced by different electron populations. Analyzing the optical flashes together with the multiwavelength afterglow observation, we found that these flashes can be interpreted in the framework of the synchrotron reverse shock model when outflows have arbitrary magnetizations.

  9. Essays in the Application of Linear and Non-linear Bayesian VAR Models to the Macroeconomic Impacts of Energy Price Shocks

    NASA Astrophysics Data System (ADS)

    Nguyen, Bao H.

    This thesis is a collection of five self contained empirical macroeconomic papers on the asymmetric effects of energy price shocks on various economies. Chapter 1 formally determines the number of regime changes in the US natural gas market by employing a MS-VAR model. Estimated using Bayesian methods, three regimes are identified for the period 1980 - 2016, namely, before the Decontrol Act, after the Decontrol Act and the Recession. The results show that the natural gas market tends to be much more sensitive to market fundamental shocks occurring in a Recession regime than in the other regimes. Augmenting the model by incorporating the price of crude oil, the results reveal that the impacts of oil price shocks on natural gas prices are relatively small. Chapter 2 provides new empirical evidence on the asymmetric reactions of the U.S. natural gas market and the U.S. economy to its market fundamental shocks in different phases of the business cycle. To this end, we employ a ST-VAR model to capture the asymmetric responses depending on economic conditions. Our results indicate that in contrast to the prediction made by a linear VAR model, the STVAR model provides a plausible explanation to the behavior of the U.S. natural gas market, which asymmetrically reacts in bad times and good times. Chapter 3 examines the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. Chapter 4 examines the effects of world energy price shocks on China's macroeconomy. We propose a new index of primary commodity energy prices which accurately reflects both the structure of China's energy expenditure shares, as well as intertemporal fluctuations in international energy prices. The index is then in employed a sufficiently rich set of time varying BVARs, identified by a new set of agnostic sign restrictions. Uniformly sized positive energy price shocks are shown to consistently generate economic stagflation over the past two decades. Chapter 5 compares the macroeconomic effects of global oil and iron ore price shocks on the Australian economy. The main results suggest that, over the period 1990Q1 to 2014Q4, the oil shock has a relative larger impact than that of the iron ore shock on output and inflation while the iron ore shock is the dominant source of interest and exchange rate movements. The effects crucially depend on the underlying sources of oil or iron ore price shifts.

  10. Relationships among physical properties as indicators of high temperature deformation or post-shock thermal annealing in ordinary chondrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Jon M.; Ruzicka, Alex; Macke, Robert J.

    Collisions and attendant shock compaction must have been important for the accretion and lithification of planetesimals, including the parent bodies of chondrites, but the conditions under which these occurred are not well constrained. A simple model for the compaction of chondrites predicts that shock intensity as recorded by shock stage should be related to porosity and grain fabric. To test this model, we studied sixteen ordinary chondrites of different groups (H, L, LL) using X-ray computed microtomography (μCT) to measure porosity and metal fabric, ideal gas pycnometry and 3D laser scanning to determine porosity, and optical microscopy (OM) to determinemore » shock stage. These included a subsample of six chondrites previously studied using transmission electron microscopy (TEM) to characterize microstructures in olivine. Combining with previous data, results support the simple model in general, but not for chondrites with low shock-porosity-foliation (low-SPF chondrites). These include Kernouvé (H6), Portales Valley (H6/7), Butsura (H6), Park (L6), GRO 85209 (L6), Estacado (H6), MIL 99301 (LL6), Spade (H6), and Queen’s Mercy (H6), among others. The data for these meteorites are best explained by high ambient heat during or after shock. Low-SPF chondrites tend to have older 40Ar/39Ar ages (~4435–4526 Ma) than other, non-low-SPF type 6 chondrites in this study. We conclude that the H, L, and LL asteroids all were shock-compacted at an early stage while warm, with collisions occurring during metamorphic heating of the parent bodies. Results ultimately bear on whether chondrite parent bodies have internal structures more akin to a metamorphosed onion shell or metamorphosed rubble pile, and on the nature of accretion and lithification processes for planetesimals.« less

  11. A low noise discrete velocity method for the Boltzmann equation with quantized rotational and vibrational energy

    NASA Astrophysics Data System (ADS)

    Clarke, Peter; Varghese, Philip; Goldstein, David

    2018-01-01

    A discrete velocity method is developed for gas mixtures of diatomic molecules with both rotational and vibrational energy states. A full quantized model is described, and rotation-translation and vibration-translation energy exchanges are simulated using a Larsen-Borgnakke exchange model. Elastic and inelastic molecular interactions are modeled during every simulated collision to help produce smooth internal energy distributions. The method is verified by comparing simulations of homogeneous relaxation by our discrete velocity method to numerical solutions of the Jeans and Landau-Teller equations, and to direct simulation Monte Carlo. We compute the structure of a 1D shock using this method, and determine how the rotational energy distribution varies with spatial location in the shock and with position in velocity space.

  12. Oil shocks in New Keynesian models: Positive and normative implications

    NASA Astrophysics Data System (ADS)

    Chang, Jian

    Chapter 1 investigates optimal monetary policy response towards oil shocks in a New Keynesian model. We find that optimal policy, in general, becomes contractionary in response to an adverse oil shock. However, the optimal policy rule and the inflation-output trade-off depend on the specific structure of the model. The benchmark economy consists of a flexible-price energy sector and a sticky-price manufacturing sector where energy is used as an intermediate input. We show that optimal policy is to stabilize the sticky (core) price level. We then show that after incorporating a less oil-dependent sticky-price service sector, the model exhibits a trade-off in stabilizing prices and output gaps in the different sticky-price sectors. It predicts that central bank should not try to stabilize the core price level, and the economy will experience higher inflation and rising output gaps, even if central banks respond optimally. Chapter 2 addresses the observed volatility and persistence of real exchange rates and the terms of trade. It contributes to the literature with a quantitative study on the U.S. and Canada. A two-country New Keynesian model consisting of traded, non-traded, and oil production sectors is proposed to examine the time series properties of the real exchange rate, the terms of trade and the real oil price. We find that after incorporating several realistic features (namely oil price shocks, sector specific labor, non-traded goods, asymmetric pricing decisions of exporters and asymmetric consumer preferences over tradables), the benchmark model broadly matches the volatilities of the relative prices and some business cycle correlations. The model matches the data more closely after adding real demand shocks, suggesting their importance in explaining the relative price movements between the US and Canada. Chapter 3 explores several sources and transmission channels of international relative price movements. In particular, we elaborate on the role of imperfect labor mobility, pricing decisions of exporting firms, oil price shocks and asymmetric consumer preferences over tradables. Our results suggest that: Incorporating both producer currency pricing and local currency pricing assumptions produces more reasonable relative price movements. A model with imperfect labor mobility generates larger relative price volatility. Oil price shocks only contribute to terms of trade variability when oil is modeled as part of the traded basket. And asymmetric consumer preferences contribute to the volatility of the real exchange rate.

  13. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  14. Computer simulations of comet- and asteroidlike bodies passing through the Venusian atmosphere: Preliminary results on atmospheric and ground shock effects

    NASA Technical Reports Server (NTRS)

    Roddy, D.; Hatfield, D.; Hassig, P.; Rosenblatt, M.; Soderblom, L.; Dejong, E.

    1992-01-01

    We have completed computer simulations that model shock effects in the venusian atmosphere caused during the passage of two cometlike bodies 100 m and 1000 m in diameter and an asteroidlike body 10 km in diameter. Our objective is to examine hypervelocity-generated shock effects in the venusian atmosphere for bodies of different types and sizes in order to understand the following: (1) their deceleration and depth of penetration through the atmosphere; and (2) the onset of possible ground-surface shock effects such as splotches, craters, and ejecta formations. The three bodies were chosen to include both a range of general conditions applicable to Venus as well as three specific cases of current interest. These calculations use a new multiphase computer code (DICE-MAZ) designed by California Research & Technology for shock-dynamics simulations in complex environments. The code was tested and calibrated in large-scale explosion, cratering, and ejecta research. It treats a wide range of different multiphase conditions, including material types (vapor, melt, solid), particle-size distributions, and shock-induced dynamic changes in velocities, pressures, temperatures (internal energies), densities, and other related parameters, all of which were recorded in our calculations.

  15. The structure of steady shock waves in porous metals

    NASA Astrophysics Data System (ADS)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  16. NO PLIF Imaging in the CUBRC 48 Inch Shock Tunnel

    NASA Technical Reports Server (NTRS)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton J.; Lempert W.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; hide

    2011-01-01

    Nitric Oxide Planar Laser-Induced Fluorescence (NO PLIF) imaging is demonstrated at a 10 kHz repetition rate in the Calspan-University at Buffalo Research Center s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single approx.10-millisecond duration run of the ground test facility. This represents over an order of magnitude improvement in data rate from previous PLIF-based diagnostic approaches. Comparison with a preliminary CFD simulation shows good overall qualitative agreement between the prediction of the mean NO density field and the observed PLIF image intensity, averaged over forty individual images obtained during several facility runs.

  17. Supernova shock breakout from a red supergiant.

    PubMed

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  18. Computational models for the analysis of three-dimensional internal and exhaust plume flowfields

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Delguidice, P. D.

    1977-01-01

    This paper describes computational procedures developed for the analysis of three-dimensional supersonic ducted flows and multinozzle exhaust plume flowfields. The models/codes embodying these procedures cater to a broad spectrum of geometric situations via the use of multiple reference plane grid networks in several coordinate systems. Shock capturing techniques are employed to trace the propagation and interaction of multiple shock surfaces while the plume interface, separating the exhaust and external flows, and the plume external shock are discretely analyzed. The computational grid within the reference planes follows the trace of streamlines to facilitate the incorporation of finite-rate chemistry and viscous computational capabilities. Exhaust gas properties consist of combustion products in chemical equilibrium. The computational accuracy of the models/codes is assessed via comparisons with exact solutions, results of other codes and experimental data. Results are presented for the flows in two-dimensional convergent and divergent ducts, expansive and compressive corner flows, flow in a rectangular nozzle and the plume flowfields for exhausts issuing out of single and multiple rectangular nozzles.

  19. Static Performance of a Fixed-Geometry Exhaust Nozzle Incorporating Porous Cavities for Shock-Boundary Layer Interaction Control

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-geometry exhaust nozzle incorporating porous cavities for shock-boundary layer interaction control. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and 27 porous configurations. For the porous configurations, the effects of percent open porosity, hole diameter, and cavity depth were determined. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. Porous configurations were capable of controlling off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. The ability of the porous nozzle concept to alternately alleviate separation or encourage stable separation of exhaust flow through shock-boundary layer interaction control offers tremendous off-design performance benefits for fixed-geometry nozzle installations. In addition, the ability to encourage separation on one divergent flap while alleviating it on the other makes it possible to generate thrust vectoring using a fixed-geometry nozzle.

  20. Exhaust Simulation Testing of a Hypersonic Airbreathing Model at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Witte, David W.; Andrews, Earl H., Jr.

    2004-01-01

    An experimental study was performed to examine jet-effects for an airframe-integrated, scramjet-rocket combined-cycle vehicle configuration at transonic test conditions. This investigation was performed by testing an existing exhaust simulation wind tunnel model, known as Model 5B, in the NASA Langley 16-Ft. Transonic Tunnel. Tests were conducted at freestream Mach numbers from 0.7 to 1.2, at angles of attack from 2 to +14 degrees, and at up to seven nozzle static pressure ratio values for a set of horizontal-tail and body-flap deflections. The model aftbody, horizontal tails, and body flaps were extensively pressure instrumented to provide an understanding of jet-effects and control-surface/plume interactions, as well as for the development of analytical methodologies and calibration of computational fluid dynamic codes to predict this type of flow phenomenon. At all transonic test conditions examined, the exhaust flow at the exit of the internal nozzle was over-expanded, generating an exhaust plume that turned toward the aftbody. Pressure contour plots for the aftbody of Model 5B are presented for freestream transonic Mach numbers of 0.70, 0.95, and 1.20. These pressure data, along with shadowgraph images, indicated the impingement of an internal plume shock and at least one reflected shock onto the aftbody for all transonic conditions tested. These results also provided evidence of the highly three-dimensional nature of the aftbody exhaust flowfield. Parametric testing showed that angle-of-attack, static nozzle pressure ratio, and freestream Mach number all affected the exhaust-plume size, exhaust-flowfield shock structure, and the aftbody-pressure distribution, with Mach number having the largest effect. Integration of the aftbody pressure data showed large variations in the pitching moment throughout the transonic regime.

  1. The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks

    DOE PAGES

    Preece, R.; Burgess, J. Michael; von Kienlin, A.; ...

    2013-11-21

    Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. But, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. We found it difficult for any of the existing models to account for all of the observedmore » spectral and temporal behaviors simultaneously.« less

  2. Administration of colistin sulfate in endotoxic model at slow and sustained fashion may reverse shock without causing nephrotoxicity in its optimal concentration.

    PubMed

    Haque, Anwarul; Ishii, Yoshikazu; Akasaka, Yoshikiyo; Matsumoto, Tetsuya; Tateda, Kazuhiro

    2017-12-01

    Despite of proven LPS neutralizing activity, intravenous polymyxin use was waned due to experience of associated nephrotoxicity. But, increasing resistance to all available antibiotics has necessitated their resurgence and the prodrug of colistin sulfate (CS), known as colistin-methanesulfonate (CMS), is increasingly used as the only therapeutic option in many infections. Currently available CMS employ very different dose definitions and thus because of complex pharmacokinetics/pharmacodynamics information and short half-life, this drug use remains confusing. We aimed to expose CS in endotoxic shock models by micro-osmotic pump and evaluated its effectiveness. We used micro-osmotic pumps to deliver either sterile saline or CS at different dosages ranging from 0.25mg/day to 7mg/day for consecutive 3days in LPS (8mg/kg body weight) induced endotoxic mice and observed their outcome twice daily for a week to determine the survival rate. Serum pro-inflammatory cytokine levels and apoptosis in renal tissues in these models were evaluated. We showed endotoxic shock was reversed and all mice survived with a CS administration at a dosage of 2mg/day for 3 days, in comparison to survival rate with saline administration (p≤0.0001) in endotoxic models. CS infusion in shock models using micro-osmotic pump ameliorated rising of serum TNF-α, IL-12p70 and IL-6 levels. Nephrotoxicity was evident only with a higher dosage, but not with a lower dosage which was optimum to control endotoxic shock in models. These results highlighted that an optimal dosage of CS effectively improved outcome in endotoxic shock models without causing nephrotoxicity when administered at a slow and sustained manner. And a higher CS dosage administration was nephrotoxic and fatal. Thus this study bought an opportunity to consider future investigations with CS administration in murine Gram-negative bacterial infections in a novel way. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  3. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm³

    DOE PAGES

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; ...

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findingsmore » advocate that this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets and should improve our understanding of these types of planets.« less

  4. Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure

    NASA Astrophysics Data System (ADS)

    Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.

    2017-07-01

    Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.

  5. Influence of friction forces on the motion of VTOL aircraft during landing operations on ships at sea

    NASA Technical Reports Server (NTRS)

    Howard, J. C.; Chin, D. O.

    1981-01-01

    Equations describing the friction forces generated during landing operations on ships at sea were formulated. These forces depend on the platform reaction and the coefficient of friction. The platform reaction depends on the relative sink rate and the shock absorbing capability of the landing gear. The friction coefficient varies with the surface condition of the landing platform and the angle of yaw of the aircraft relative to the landing platform. Landings by VTOL aircraft, equipped with conventional oleopneumatic landing gears are discussed. Simplifications are introduced to reduce the complexity of the mathematical description of the tire and shock strut characteristics. Approximating the actual complicated force deflection characteristic of the tire by linear relationship is adequate. The internal friction forces in the shock strut are included in the landing gear model. A set of relatively simple equations was obtained by including only those tire and shock strut characteristics that contribute significantly to the generation of landing gear forces.

  6. Shock tubes and waves; Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, July 6-9, 1981

    NASA Astrophysics Data System (ADS)

    Treanor, C. E.; Hall, J. G.

    1982-10-01

    The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.

  7. Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, L; Springer, H K; Mace, J

    A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitatemore » the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.« less

  8. Pulsed Polarimetry and magnetic sensing on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Hutchinson, T. M.; Weber, T. E.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    MSX is uniquely positioned to generate the conditions for collision-less magnetized supercritical shocks with Alvenic Mach numbers (MA) of the order 10 and higher. Significant operational strides have been made in forming plasmas over wide parameter ranges: (Te + Ti) of 10-200 eV, average neof 5-60×10+21 m-3, speeds up to 150 km/s and fields up to 1T with a highest plasma flow MA of 5 to date. The MSX plasma is unique in regards to large plasma size of 10 cm and average β higher than 0.8 making the FRC and the magnetized shock structure candidates for the application of Pulsed Polarimetry, a polarization sensitive Lidar technique. The shock dynamics are presently being investigated using internal probes, interferometry and imaging. Internal probe results and an assessment of the shock parameters will dictate the use of the UW pulsed polarimeter system in which internal ne, Teand B are to be measured. Recent results will be presented. Supported by DOE Office of Fusion Energy Sciences Funding DE-FOA-0000755.

  9. Exposure to whole-body vibration and mechanical shock: a field study of quad bike use in agriculture.

    PubMed

    Milosavljevic, Stephan; McBride, David I; Bagheri, Nasser; Vasiljev, Radivoj M; Mani, Ramakrishnan; Carman, Allan B; Rehn, Borje

    2011-04-01

    The purpose of this study was to determine exposure to whole-body vibration (WBV) and mechanical shock in rural workers who use quad bikes and to explore how personal, physical, and workplace characteristics influence exposure. A seat pad mounted triaxial accelerometer and data logger recorded full workday vibration and shock data from 130 New Zealand rural workers. Personal, physical, and workplace characteristics were gathered using a modified version of the Whole Body Vibration Health Surveillance Questionnaire. WBVs and mechanical shocks were analysed in accordance with the International Standardization for Organization (ISO 2631-1 and ISO 2631-5) standards and are presented as vibration dose value (VDV) and mechanical shock (S(ed)) exposures. VDV(Z) consistently exceeded European Union (Guide to good practice on whole body vibration. Directive 2002/44/EC on minimum health and safety, European Commission Directorate General Employment, Social Affairs and Equal Opportunities. 2006) guideline exposure action thresholds with some workers exceeding exposure limit thresholds. Exposure to mechanical shock was also evident. Increasing age had the strongest (negative) association with vibration and shock exposure with body mass index (BMI) having a similar but weaker effect. Age, daily driving duration, dairy farming, and use of two rear shock absorbers created the strongest multivariate model explaining 33% of variance in VDV(Z). Only age and dairy farming combined to explain 17% of the variance for daily mechanical shock. Twelve-month prevalence for low back pain was highest at 57.7% and lowest for upper back pain (13.8%). Personal (age and BMI), physical (shock absorbers and velocity), and workplace characteristics (driving duration and dairy farming) suggest that a mix of engineered workplace and behavioural interventions is required to reduce this level of exposure to vibration and shock.

  10. Development of solar wind shock models with tensor plasma pressure for data analysis

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.

    1975-01-01

    The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged.

  11. Intraoperative Defibrillation Testing of Subcutaneous Implantable Cardioverter-Defibrillator Systems-A Simple Issue?

    PubMed

    Frommeyer, Gerrit; Zumhagen, Sven; Dechering, Dirk G; Larbig, Robert; Bettin, Markus; Löher, Andreas; Köbe, Julia; Reinke, Florian; Eckardt, Lars

    2016-03-15

    The results of the recently published randomized SIMPLE trial question the role of routine intraoperative defibrillation testing. However, testing is still recommended during implantation of the entirely subcutaneous implantable cardioverter-defibrillator (S-ICD) system. To address the question of whether defibrillation testing in S-ICD systems is still necessary, we analyzed the data of a large, standard-of-care prospective single-center S-ICD registry. In the present study, 102 consecutive patients received an S-ICD for primary (n=50) or secondary prevention (n=52). Defibrillation testing was performed in all except 4 patients. In 74 (75%; 95% CI 0.66-0.83) of 98 patients, ventricular fibrillation was effectively terminated by the first programmed internal shock. In 24 (25%; 95% CI 0.22-0.44) of 98 patients, the first internal shock was ineffective and further internal or external shock deliveries were required. In these patients, programming to reversed shock polarity (n=14) or repositioning of the sensing lead (n=1) or the pulse generator (n=5) led to successful defibrillation. In 4 patients, a safety margin of <10 J was not attained. Nevertheless, in these 4 patients, ventricular arrhythmias were effectively terminated with an internal 80-J shock. Although it has been shown that defibrillation testing is not necessary in transvenous ICD systems, it seems particular important for S-ICD systems, because in nearly 25% of the cases the primary intraoperative test was not successful. In most cases, a successful defibrillation could be achieved by changing shock polarity or by optimizing the shock vector caused by the pulse generator or lead repositioning. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less

  13. A STUDY OF RADIO POLARIZATION IN PROTOSTELLAR JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cécere, Mariana; Velázquez, Pablo F.; De Colle, Fabio

    2016-01-10

    Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray)more » synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.« less

  14. Exact solutions of a hierarchy of mixing speeds models

    NASA Astrophysics Data System (ADS)

    Cornille, H.; Platkowski, T.

    1992-07-01

    This paper presents several new aspects of discrete kinetic theory (DKT). First a hierarchy of d-dimensional (d=1,2,3) models is proposed with (2d+3) velocities and three moduli speeds: 0, 2, and a third one that can be arbitrary. It is assumed that the particles at rest have an internal energy which, for microscopic collisions, supplies for the loss of the kinetic energy. In a more general way than usual, collisions are allowed that mix particles with different speeds. Second, for the (1+1)-dimensional restriction of the systems of PDE for these models which have two independent quadratic collision terms we construct different exact solutions. The usual types of exact solutions are studied: periodic solutions and shock wave solutions obtained from the standard linearization of the scalar Riccati equations called Riccatian shock waves. Then other types of solutions of the coupled Riccati equations are found called non-Riccatian shock waves and they are compared with the previous ones. The main new result is that, between the upstream and downstream states, these new solutions are not necessarily monotonous. Further, for the shock problem, a two-dimensional dynamical system of ODE is solved numerically with limit values corresponding to the upstream and downstream states. As a by-product of this study two new linearizations for the Riccati coupled equations with two functions are proposed.

  15. Experiences of Chinese International Students Learning English at South African Tertiary Institutions

    ERIC Educational Resources Information Center

    Ayliff, D.; Wang, G.

    2006-01-01

    This article aims to provide insight into the experiences of Chinese international students in some South African tertiary institutions. The study investigates their successes and failures in endeavouring to learn English and the culture shock and "learning shock" they endure when registering to study in an African country with an…

  16. Mesoscale simulations of shock compaction of a granular ceramic: effects of mesostructure and mixed-cell strength treatment

    NASA Astrophysics Data System (ADS)

    Derrick, J. G.; LaJeunesse, J. W.; Davison, T. M.; Borg, J. P.; Collins, G. S.

    2018-04-01

    The shock response of granular materials is important in a variety of contexts but the precise dynamics of grains during compaction is poorly understood. Here we use 2D mesoscale numerical simulations of the shock compaction of granular tungsten carbide to investigate the effect of internal structure within the particle bed and ‘stiction’ between grains on the shock response. An increase in the average number of contacts with other particles, per particle, tends to shift the Hugoniot to higher shock velocities, lower particle velocities and lower densities. This shift is sensitive to inter-particle shear resistance. Eulerian shock physics codes approximate friction between, and interlocking of, grains with their treatment of mixed cell strength (stiction) and here we show that this has a significant effect on the shock response. When studying the compaction of particle beds it is not common to quantify the pre-compaction internal structure, yet our results suggest that such differences should be taken into account, either by using identical beds or by averaging results over multiple experiments.

  17. Equation of State and Electrical Conductivity of Helium at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    McWilliams, R. S.; Eggert, J. H.; Loubeyre, P.; Brygoo, S.; Collins, G.; Jeanloz, R.

    2004-12-01

    Helium, the second-most abundant element in the universe and giant planets, is expected to metallize at much higher pressures and temperatures than the most abundant element, hydrogen. The difference in chemical-bonding character, between insulator and metal, is expected to make hydrogen-helium mixtures immiscible throughout large fractions of planetary interiors, and therefore subject to gravitational separation contributing significantly to the internal dynamics of giant planets. Using laser-driven shock waves on samples pre-compressed in high-pressure cells, we have obtained the first measurements of optical reflectivity from the shock front in helium to pressures of 146 GPa. The reflectivity exceeds 5% above \\ensuremath{\\sim} 100 GPa, indicating high electrical conductivity. By varying the initial pressure (hence density) of the sample, we can access a much wider range of final pressure-temperature conditions than is possible in conventional Hugoniot experiments. Our work increases by nine-fold the pressure range of single-shock measurements, in comparison with gas-gun experiments, and yields results in agreement with the Saumon, Chabrier and Van Horn (1994) equation of state for helium. This changes the internal structures inferred for Jupiter-size planets, relative to models based on earlier equations of state (e. g., SESAME).

  18. Hydrodynamical Simulations of the Jet in the Symbiotic Star MWC 560. 3; Application to X-ray Jets in Symbiotic Stars

    NASA Technical Reports Server (NTRS)

    Stute, Matthias; Sahai, Raghvendra

    2007-01-01

    In Papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high-density ambient medium. Since the pulsed emission of the jet creates internal shocks and since the jet velocity is very high, the jet bow shock and the internal shocks are heated to high temperatures and should therefore emit X-ray radiation. In this paper, we investigate in detail the X-ray properties of the jets in our models. We have focused our study on the total X-ray luminosity and its temporal variability, the resulting spectra, and the spatial distribution of the emission. Temperature and density maps from our hydrodynamical simulations with radiative cooling presented in the second paper are used, together with emissivities calculated with the atomic database ATOMDB. The jets in our models show extended and variable X-ray emission, which can be characterized as a sum of hot and warm components with temperatures that are consistent with observations of CH Cyg and R Aqr. The X-ray spectra of our model jets show emission-line features that correspond to observed features in the spectra of CH Cyg. The innermost parts of our pulsed jets show iron line emission in the 6.4-6.7 keV range, which may explain such emission from the central source in R Aqr. We conclude that MWC 560 should be detectable with Chandra or XMM-Newton, and such X-ray observations will prove crucial for understanding jets in symbiotic stars.

  19. Circulatory Shock. Volume 34. Number 1. May 1991. International Conference on Shock (2nd), Meeting of European Shock Society (5th), Annual Meeting of the Shock Society (USA) (14th), Vienna Shock Form (3rd) Held in Vienna, Austria on 2-6 June 1991

    DTIC Science & Technology

    1991-06-06

    OCTADECENOATE, AS A BURN TOXIN Takayuki Ozawa, Mika Hayakawa, Kazuhiro Kosaka, Satoru Sugiyama, Kazuhisa Yokoo, Hisashi Aoyama, and Yohei Izawa Department...shock. 41 CARDIOPULMONARY HEMODYNAMIC AND PERIPHERAL CIRCULATORY RESPONSES IN SHOCK T. Muteki, N. Kaku. T. Fukushige, I. Kohno and T. Hiraki Department...Tadashi, 242 Machleidt, Werner, 213 Ozawa, Takayuki , 11 Kawarada, Yoshifumi, 442 Mackie, D.P., 348 Ozawa, Kazue, 268 Keser, Claudia, 380 Maitra, Subir R

  20. Precise optical observation of 0.5-GPa shock waves in condensed materials

    NASA Astrophysics Data System (ADS)

    Nagayama, Kunihito; Mori, Yasuhito

    1999-06-01

    Precision optical observation method was developed to study impact-generated high-pressure shock waves in condensed materials. The present method makes it possible to sensitively detect the shock waves of the relatively low shock stress around 0.5 GPa. The principle of the present method is based on the use of total internal reflection by triangular prisms placed on the free surface of a target assembly. When a plane shock wave arrives at the free surface, the light reflected from the prisms extinguishes instantaneously. The reason is that the total internal reflection changes to the reflection depending on micron roughness of the free surface after the shock arrival. The shock arrival at the bottom face of the prisms can be detected here by two kinds of methods, i.e., a photographic method and a gauge method. The photographic method is an inclined prism method of using a high-speed streak camera. The shock velocity and the shock tilt angle can be estimated accurately from an obtained streak photograph. While in the gauge method, an in-material PVDF stress gauge is combined with an optical prism-pin. The PVDF gauge records electrically the stress profile behind the shockwave front, and the Hugoniot data can be precisely measured by combining the prism pin with the PVDF gauge.

  1. Three-dimensional lattice Boltzmann model for compressible flows.

    PubMed

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  2. GRB 170817A as a jet counterpart to gravitational wave trigger GW 170817

    NASA Astrophysics Data System (ADS)

    Lamb, Gavin P.; Kobayashi, Shiho

    2018-05-01

    Fermi/GBM (Gamma-ray Burst Monitor) and INTEGRAL (the International Gamma-ray Astrophysics Laboratory) reported the detection of the γ-ray counterpart, GRB 170817A, to the LIGO (Light Interferometer Gravitational-wave Observatory)/Virgo gravitational wave detected binary neutron star merger, GW 170817. GRB 170817A is likely to have an internal jet or another origin such as cocoon emission, shock-breakout, or a flare from a viscous disc. In this paper we assume that the γ-ray emission is caused by energy dissipation within a relativistic jet and we model the afterglow synchrotron emission from a reverse- and forward-shock in the outflow. We show the afterglow for a low-luminosity γ-ray burst (GRB) jet with a high Lorentz-factor (Γ); a low-Γ and low-kinetic energy jet; a low-Γ, high kinetic energy jet; structured jets viewed at an inclination within the jet-half-opening angle; and an off-axis `typical' GRB jet. All jet models will produce observable afterglows on various timescales. The late-time afterglow from 10-110 days can be fit by a Gaussian structured jet viewed at a moderate inclination, however the GRB is not directly reproduced by this model. These jet afterglow models can be used for future GW detected NS merger counterparts with a jet afterglow origin.

  3. Static Thrust and Vectoring Performance of a Spherical Convergent Flap Nozzle with a Nonrectangular Divergent Duct

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1998-01-01

    The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.

  4. International Students from Melbourne Describing Their Cross-Cultural Transitions Experiences: Culture Shock, Social Interaction, and Friendship Development

    ERIC Educational Resources Information Center

    Belford, Nish

    2017-01-01

    Drawing from a study that explored how international students experience cross-cultural transitions after living and studying in Melbourne for a few years, this paper, in particular, examines the participants' experiences with culture shock, social interaction, and friendship development. The findings include narratives of their personal stories…

  5. The anatomy of floating shock fitting. [shock waves computation for flow field

    NASA Technical Reports Server (NTRS)

    Salas, M. D.

    1975-01-01

    The floating shock fitting technique is examined. Second-order difference formulas are developed for the computation of discontinuities. A procedure is developed to compute mesh points that are crossed by discontinuities. The technique is applied to the calculation of internal two-dimensional flows with arbitrary number of shock waves and contact surfaces. A new procedure, based on the coalescence of characteristics, is developed to detect the formation of shock waves. Results are presented to validate and demonstrate the versatility of the technique.

  6. Recent developments in shock tube research; Proceedings of the Ninth International Symposium, Stanford University, Stanford, Calif., July 16-19, 1973

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Griffith, W.

    1973-01-01

    Recent advances in shock tube research are described in papers dealing with the design and performance features of new devices as well as applications in aerodynamic, chemical, and physics experiments. Topics considered include a cryogenic shock tube for studying liquid helium fluid mechanics, studies of shock focusing and nonlinear resonance in shock tubes, applications in gas laser studies, very-low and very-high temperature chemical kinetic measurements, shock tube studies of ionization and recombination phenomena, applications in bioacoustic research, shock-tube simulation studies of sonic booms, and plasma research. Individual items are announced in this issue.

  7. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    PubMed

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  8. Internal Shocks in the Magnetic Reconnection Jet in Solar Flares: Multiple Fast Shocks Created by the Secondary Tearing Instability

    NASA Astrophysics Data System (ADS)

    Tanuma, S.; Shibata, K.

    2005-07-01

    Space solar missions such as Yohkoh and RHESSI observe the hard X- and gamma-ray emission from energetic electrons in impulsive solar flares. Their energization mechanism, however, is unknown. In this Letter, we suggest that the internal shocks are created in the reconnection jet and that they are possible sites of particle acceleration. We examine how magnetic reconnection creates the multiple shocks by performing two-dimensional resistive magnetohydrodynamic simulations. In this Letter, we use a very small grid to resolve the diffusion region. As a result, we find that the current sheet becomes thin due to the tearing instability, and it collapses to a Sweet-Parker sheet. The thin sheet becomes unstable to the secondary tearing instability. Fast reconnection starts by the onset of anomalous resistivity immediately after the secondary tearing instability. During the bursty, time-dependent magnetic reconnection, the secondary tearing instability continues in the diffusion region where the anomalous resistivity is enhanced. As a result, many weak shocks are created in the reconnection jet. This situation produces turbulent reconnection. We suggest that multiple fast shocks are created in the jet and that the energetic electrons can be accelerated by these shocks.

  9. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    NASA Technical Reports Server (NTRS)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  10. Climate change effects on agriculture: Economic responses to biophysical shocks

    PubMed Central

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d’Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. PMID:24344285

  11. Climate change effects on agriculture: economic responses to biophysical shocks.

    PubMed

    Nelson, Gerald C; Valin, Hugo; Sands, Ronald D; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-03-04

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  12. Misfortunes never come singly: Structural change, multiple shocks and child malnutrition in rural Senegal.

    PubMed

    Lazzaroni, Sara; Wagner, Natascha

    2016-12-01

    This study considers the two most pronounced shocks Senegalese subsistence farmers struggle with, namely increasing purchase prices and droughts. We assess the relationship of these self-reported shocks with child health in a multi-shock approach to account for concomitance of adverse events from the natural, biological, economic and health sphere. We employ a unique farming household panel dataset containing information on children living in poor, rural households in eight regions of Senegal in 2009 and 2011 and account for structural changes occurring between survey periods due to the large scale, national Nutrition Enhancement Program. By zooming in to the micro level we demonstrate that Senegal as a Sahelian country, mainly reliant on subsistence agriculture, is very vulnerable to climate variability and international price developments: According to our conservative estimates, the occurrence of a drought explains 25% of the pooled weight-for-age standard deviation, income losses 31%. Our multi-shock analysis reveals that the shocks are perceived as more severe in 2011 with droughts explaining up to 44% of the standard deviation of child health, increased prices up to 21%. Yet, the concomitance of droughts and increased prices after the structural change, i.e. the Nutrition Enhancement Program, indicates that the health of children experiencing both shocks in 2011 has improved. We argue that these results are driven by the increase in rural household income as theoretically outlined in the agricultural household model. Thus, adequate policy responses to shocks do not only depend on the nature but also on the concomitance of hazardous events. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Shock Detector for SURF model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  14. Dynamic Analysis of Tunnel in Weathered Rock Subjected to Internal Blast Loading

    NASA Astrophysics Data System (ADS)

    Tiwari, Rohit; Chakraborty, Tanusree; Matsagar, Vasant

    2016-11-01

    The present study deals with three-dimensional nonlinear finite element (FE) analyses of a tunnel in rock with reinforced concrete (RC) lining subjected to internal blast loading. The analyses have been performed using the coupled Eulerian-Lagrangian analysis tool available in FE software Abaqus/Explicit. Rock and RC lining are modeled using three-dimensional Lagrangian elements. Beam elements have been used to model reinforcement in RC lining. Three different rock types with different weathering conditions have been used to understand the response of rock when subjected to blast load. The trinitrotoluene (TNT) explosive and surrounding air have been modeled using the Eulerian elements. The Drucker-Prager plasticity model with strain rate-dependent material properties has been used to simulate the stress-strain response of rock. The concrete damaged plasticity model and Johnson-Cook plasticity model have been used for the simulation of stress-strain response of concrete and steel, respectively. The explosive (TNT) has been modeled using Jones-Wilkins-Lee (JWL) equation of state. The analysis results have been studied for stresses, deformation and damage of RC lining and the surrounding rock. It is observed that damage in RC lining results in higher stress in rock. Rocks with low modulus and high weathering conditions show higher attenuation of shock wave. Higher amount of ground shock wave propagation is observed in case of less weathered rock. Ground heave is observed under blast loading for tunnel close to ground surface.

  15. Plasma waves downstream of weak collisionless shocks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Greenstadt, E. W.; Moses, S. L.; Smith, E. J.; Tsurutani, B. T.

    1993-01-01

    In September 1983 the International Sun Earth Explorer 3 (ISEE 3) International Cometary Explorer (ICE) spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1 - 3 kHz); the plateau shape is produced by a low-frequency (100 - 300 Hz) emission which is more intense behind downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10 - 30 kHz) emission which is above the maximum Doppler shift exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.

  16. Effects of cavity size on the control of transonic internal flow around a biconvex circular arc airfoil

    NASA Astrophysics Data System (ADS)

    Rahman, M. Mostaqur; Hasan, A. B. M. Toufique; Rabbi, M. S.

    2017-06-01

    In transonic flow conditions, self-sustained shock wave oscillation on biconvex airfoils is initiated by the complex shock wave boundary layer interaction which is frequently observed in several modern internal aeronautical applications such as inturbine cascades, compressor blades, butterfly valves, fans, nozzles, diffusers and so on. Shock wave boundary layer interaction often generates serious problems such as unsteady boundary layer separation, self-excited shock waveoscillation with large pressure fluctuations, buffeting excitations, aeroacoustic noise, nonsynchronous vibration, high cycle fatigue failure and intense drag rise. Recently, the control of the self-excited shock oscillation around an airfoil using passive control techniques is getting intense interest. Among the passive means, control using open cavity has found promising. In this study, the effect of cavity size on the control of self-sustained shock oscillation was investigated numerically. The present computations are validated with available experimental results. The results showed that the average root mean square (RMS) of pressure oscillation around the airfoil with open cavity has reduced significantly when compared to airfoil without cavity (clean airfoil).

  17. Description of a computer program to calculate reacting supersonic internal flow fields with shock waves using viscous characteristics: Program manual and sample calculations

    NASA Technical Reports Server (NTRS)

    Cavalleri, R. J.; Agnone, A. M.

    1972-01-01

    A computer program for calculating internal supersonic flow fields with chemical reactions and shock waves typical of supersonic combustion chambers with either wall or mid-stream injectors is described. The usefulness and limitations of the program are indicated. The program manual and listing are presented along with a sample calculation.

  18. Theoretical and experimental evaluation of the flow behavior of a magnetorheological damper using an extremely bimodal magnetic fluid

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Ahualli, S.; Echávarri Otero, J.; Fernández Ruiz-Morón, L.; Durán, J. D. G.

    2014-08-01

    The flow behavior of a magnetorheological (MR) fluid, consisting of iron particles dispersed in a ferrofluid carrier (‘MRFF’) in a commercial monotube MR shock absorber is studied. The magnetorheological properties of the MRFF suspensions are compared with those of a conventional oil-based MR fluid (‘MRF’). The mechanical behavior of the MR damper, filled with the MRFF or alternatively with the MRF, is characterized by means of different oscillatory force-displacement and force-velocity tests. The MR shock absorber has an internal electromagnet that generates a controlled magnetic field in the channels through which the MR suspensions flow under operation conditions. The results obtained indicate that the damper filled with MRFF shows a reliable and reproducible behavior. In particular, the response of the shock absorber can be controlled to a large extent by adjusting the electromagnetic current, showing a response that is independent of the mechanical and magnetic history of the MRFF. The non-linear hysteresis model proposed for predicting the damping force provides good agreement with the experimental results when the MRFF is employed. The improved response of the damper loaded with ferrofluid-based MRFF (instead of the conventional MRF) is explained considering the physical properties and the internal structure of the suspension.

  19. Experimental investigation of generic three-dimensional sidewall-compression scramjet inlets at Mach 6 in tetrafluoromethane

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1993-01-01

    Three-dimensional sidewall-compression scramjet inlets with leading-edge sweeps of 30 deg and 70 deg were tested in the Langley Hypersonic CF4 Tunnel at Mach 6 and with a ratio of specific heats of 1.2. The parametric effects of leading-edge sweep, cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with 42 static pressure orifices that were distributed on the sidewalls, base plate, and cowl. Schlieren movies were made of each test for flow visualization of the effects of the internal flow spillage on the external flow field. To obtain an approximate characterization of the flow field, a modification to two-dimensional, inviscid, oblique shock theory was derived to accommodate the three-dimensional effects of leading-edge sweep. This theory qualitatively predicted the reflected shock structure (i.e., sidewall impingement locations) and the observed increase in spillage with increasing leading-edge sweep. The primary effect of moving the cowl forward was capturing the flow that would have otherwise spilled out ahead of the cowl. Increasing the contraction ratio increases the number of internal shock reflections and hence incrementally increases the sidewall pressure distribution. Significant Reynolds number effects were noted over a small range of Reynolds number.

  20. Unusual locations of Earth's bow shock on September 24 - 25, 1987: Mach number effects

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Fairfield, Donald H.; Anderson, Oger R.; Carlton, Victoria E. H.; Paularena, Karolen I.; Lazarus, Alan J.

    1995-01-01

    International Sun Earth Explorer 1 (ISEE 1) and Interplanetary Monitoring Platform 8 (IMP 8) data are used to identify 19 crossings of Earth's bow shock during a 30-hour period following 0000 UT on September 24, 1987. Apparent standoff distances for the shock are calculated for each crossing using two methods and the spacecraft location; one method assumes the average shock shape, while the other assumes a ram pressure-dependent shock shape. The shock's apparent standoff distance, normally approximately 14 R(sub E), is shown to increase from near 10 R(sub E) initially to near 19 R(sub E) during an 8-hour period, followed by an excursion to near 35 R(sub E) (where two IMP 8 shock crossings occur) and an eventual return to values smaller than 19 R(sub E). The Alfven M(sub A) and fast magnetosonic M(sub ms). Mach numbers remain above 2 and the number density above 4/cu cm for almost the entire period. Ram pressure effects produce the initial near-Earth shock location, whereas expansions and contractions of the bow shock due to low Mach number effects account, qualitatively and semiquantitatively, for the timing and existence of almost all the remaining ISEE crossings and both IMP 8 crossings. Significant quantitative differences exist between the apparent standoff distances for the shock crossings and those predicted using the observed plasma parameters and the standard model based on Spreiter et al.'s (1966) gasdynamic equation. These differences can be explained in terms of either a different dependence of the standoff distance on Mach number at low M(sub A) and M(sub ms), or variations in shock shape with M(sub A) and M(sub ms) (becoming increasingly "puffed up" with decreasing M(sub A) and M(sub ms), as expected theoretically), or by a combination of both effects.

  1. Investigation of Inlet Control Parameters for an External-internal-compression Inlet from Mach 2.1 to 3.0

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Bowditch, D. N.

    1958-01-01

    Investigation of the control parameters of an external-internal compression inlet indicates that the cowl-lip shock provides a signal to position the spike and to start the inlet over a Mach number range from 2.1 to 3.0. Use of a single fixed probe position to control the spike over the range of conditions resulted in a 3.7-count loss in total-pressure recovery at Mach 3.0 and 0 deg angle of attack. Three separate shock-sensing-probe positions were required to set the spike for peak recovery from Mach 2.1 to 3.0 and angles of attack from 0 deg to 6 deg. When the inlet was unstarted, an erroneous signal was obtained from the normal-shock control through most of the starting cycle that prevented the inlet from starting. Therefore, it was necessary to over-ride the normal-shock control signal and not allow the control to position the terminal shock until the spike was positioned.

  2. Diffuse optical monitoring of peripheral tissues during uncontrolled internal hemorrhage in a porcine model

    PubMed Central

    Vishwanath, Karthik; Gurjar, Rajan; Wolf, David; Riccardi, Suzannah; Duggan, Michael; King, David

    2018-01-01

    Reliable, continuous and noninvasive blood flow and hemoglobin monitoring in trauma patients remains a critical, but generally unachieved goal. Two optical sensing methods - diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy (DRS) – are used to monitor and detect internal hemorrhage. Specifically, we investigate if cutaneous perfusion measurements acquired using DCS and DRS in peripheral (thighs and ear-lobe) tissues could detect severe hemorrhagic shock in a porcine model. Four animals underwent high-grade hepato-portal injury in a closed abdomen, to induce uncontrolled hemorrhage and were subsequently allowed to bleed for 10 minutes before fluid resuscitation. DRS and DCS measurements of cutaneous blood flow were acquired using fiber optical probes placed on the thigh and earlobe of the animals and were obtained repeatedly starting from 1 to 5 minutes pre-injury, up to several minutes post shock. Clear changes were observed in measured optical spectra across all animals at both sites. DCS-derived cutaneous blood flow decreased sharply during hemorrhage, while DRS-derived vascular saturation and hemoglobin paralleled cardiac output. All derived optical parameters had the steepest changes during the rapid initial hemorrhage unambiguously. This suggests that a combined DCS and DRS based device might provide an easy-to-use, non-invasive, internal-hemorrhage detection system that can be used across a wide array of clinical settings. PMID:29552394

  3. Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations

    NASA Astrophysics Data System (ADS)

    Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.

    2017-12-01

    Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.

  4. Could a multi-PeV neutrino event have as origin the internal shocks inside the GRB progenitor star?

    NASA Astrophysics Data System (ADS)

    Fraija, N.

    2016-03-01

    The IceCube Collaboration initially reported the detection of 37 extraterrestrial neutrinos in the TeV-PeV energy range. The reconstructed neutrino events were obtained during three consecutive years of data taking, from 2010 to 2013. Although these events have been discussed to have an extragalactic origin, they have not been correlated to any known source. Recently, the IceCube Collaboration reported a neutrino-induced muon event with energy of 2.6 ± 0.3 PeV which corresponds to the highest event ever detected. Neither the reconstructed direction of this event (J2000.0), detected on June 11 2014 at R.A. = 110 ° . 34, Dec. = 11 ° . 48 matches with any familiar source. Long gamma-ray bursts (lGRBs) are usually associated with the core collapse of massive stars leading relativistic-collimated jets inside stars with high-energy neutrino production. These neutrinos have been linked to the 37 events previously detected by IceCube experiment. In this work, we explore the conditions and values of parameters so that the highest neutrino recently detected could be generated by proton-photon and proton-hadron interactions at internal shocks inside lGRB progenitor star and then detected in IceCube experiment. Considering that internal shocks take place in a relativistic collimated jet, whose (half) opening angle is θ0 ∼ 0.1, we found that lGRBs with total luminosity L ≲1048 erg/s and internal shocks on the surface of progenitors such as Wolf-Rayet (WR) and blue super giant (BSG) stars favor this multi-PeV neutrino production, although this neutrino could be associated with L ∼1050.5 (∼1050) erg/s provided that the internal shocks occur at ∼109 (∼1010.2) cm for a WR (BSG).

  5. Improvements to the Sandia CTH Hydro-Code to Support Blast Analysis and Protective Design of Military Vehicles

    DTIC Science & Technology

    2014-04-15

    used for advertising or product endorsement purposes. 6.0 REFERENCES [1] McGlaun, J., Thompson, S. and Elrick, M. “CTH: A Three-Dimensional Shock-Wave...Validation of a Loading Model for Simulating Blast Mine Effects on Armoured Vehicles,” 7 th International LS-DYNA Users Conference, Detroit, MI 2002. [14

  6. Design evolution of a low shock release nut

    NASA Technical Reports Server (NTRS)

    Otth, D. H.; Gordon, W.

    1976-01-01

    Design improvements and detailed functional analyses are reviewed to trace the development of a pyroactuated release device with segmented thread design from its intermediate design into one that reduces the levels of shock spectra generated during its operation by 50%. Comparisons of shock output and internal load distribution are presented, along with descriptions of mechanical operation for both designs. Results also show the potential areas where design development activity can gain further progress in lowering actuation shock levels.

  7. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  8. Intracardiac impedance response during acute AF internal cardioversion using novel rectilinear and capacitor-discharge waveforms.

    PubMed

    Rababah, A S; Walsh, S J; Manoharan, G; Walsh, P R; Escalona, O J

    2016-07-01

    Intracardiac impedance (ICI) is a major determinant of success during internal cardioversion of atrial fibrillation (AF). However, there have been few studies that have examined the dynamic behaviour of atrial impedance during internal cardioversion in relation to clinical outcome. In this study, voltage and current waveforms captured during internal cardioversion of acute AF in ovine models using novel radiofrequency (RF) generated low-tilt rectilinear and conventional capacitor-discharge based shock waveforms were retrospectively analysed using a digital signal processing algorithm to investigate the dynamic behaviour of atrial impedance during cardioversion. The algorithm was specifically designed to facilitate the simultaneous analysis of multiple impedance parameters, including: mean intracardiac impedance (Z M), intracardiac impedance variance (ICIV) and impedance amplitude spectrum area (IAMSA) for each cardioversion event. A significant reduction in ICI was observed when comparing two successive shocks of increasing energy where cardioversion outcome was successful. In addition, ICIV and IAMSA variables were found to inversely correlate to the magnitude of energy delivered; with a stronger correlation found to the former parameter. In conclusion, ICIV and IAMSA have been evidenced as two key dynamic intracardiac impedance variables that may prove useful in better understanding of the cardioversion process and that could potentially act as prognostic markers with respect to clinical outcome.

  9. Comparison of CME/Shock Propagation Models with Heliospheric Imaging and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Zhao, Xinhua; Liu, Ying D.; Inhester, Bernd; Feng, Xueshang; Wiegelmann, Thomas; Lu, Lei

    2016-10-01

    The prediction of the arrival time for fast coronal mass ejections (CMEs) and their associated shocks is highly desirable in space weather studies. In this paper, we use two shock propagation models, I.e., Data Guided Shock Time Of Arrival (DGSTOA) and Data Guided Shock Propagation Model (DGSPM), to predict the kinematical evolution of interplanetary shocks associated with fast CMEs. DGSTOA is based on the similarity theory of shock waves in the solar wind reference frame, and DGSPM is based on the non-similarity theory in the stationary reference frame. The inputs are the kinematics of the CME front at the maximum speed moment obtained from the geometric triangulation method applied to STEREO imaging observations together with the Harmonic Mean approximation. The outputs provide the subsequent propagation of the associated shock. We apply these models to the CMEs on 2012 January 19, January 23, and March 7. We find that the shock models predict reasonably well the shock’s propagation after the impulsive acceleration. The shock’s arrival time and local propagation speed at Earth predicted by these models are consistent with in situ measurements of WIND. We also employ the Drag-Based Model (DBM) as a comparison, and find that it predicts a steeper deceleration than the shock models after the rapid deceleration phase. The predictions of DBM at 1 au agree with the following ICME or sheath structure, not the preceding shock. These results demonstrate the applicability of the shock models used here for future arrival time prediction of interplanetary shocks associated with fast CMEs.

  10. How severe space weather can disrupt global supply chains

    NASA Astrophysics Data System (ADS)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-10-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space-weather event. Using a new high-resolution model of the global economy, we simulate the economic impact of strong CMEs for three different planetary orientations. We account for the economic impacts within the countries directly affected, as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event, the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock, about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global Gross Domestic Product (GDP) of 3.9 to 5.6%. The global economic damage is of the same order as wars, extreme financial crisis and estimated for future climate change.

  11. How severe Space Weather can disrupt global supply chains

    NASA Astrophysics Data System (ADS)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-06-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space weather event. Using a new high-resolution model of the global economy we simulate the economic impact of strong CMEs for 3 different planetary orientations. We account for the economic impacts within the countries directly affected as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global GDP of 3.9 to 5.6%. The global economic damages are of the same order as wars, extreme financial crisis and estimated for future climate change.

  12. Interactive calculation procedures for mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli

    1983-01-01

    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.

  13. THE INTERNAL STRUCTURE OF OVERPRESSURED, MAGNETIZED, RELATIVISTIC JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martí, J. M.; Perucho, M.; Gómez, J. L.

    This work presents the first characterization of the internal structure of overpressured, steady superfast-magnetosonic relativistic jets in connection with their dominant type of energy. To this aim, relativistic magnetohydrodynamic simulations of different jet models threaded by a helical magnetic field have been analyzed covering a wide region in the magnetosonic Mach number–specific internal energy plane. The merit of this plane is that models dominated by different types of energy (internal energy: hot jets; rest-mass energy: kinetically dominated jets; magnetic energy: Poynting-flux-dominated jets) occupy well-separated regions. The analyzed models also cover a wide range of magnetizations. Models dominated by the internalmore » energy (i.e., hot models, or Poynting-flux-dominated jets with magnetizations larger than but close to one) have a rich internal structure characterized by a series of recollimation shocks and present the largest variations in the flow Lorentz factor (and internal energy density). Conversely, in kinetically dominated models, there is not much internal or magnetic energy to be converted into kinetic, and the jets are featureless with small variations in the flow Lorentz factor. The presence of a significant toroidal magnetic field threading the jet produces large gradients in the transversal profile of the internal energy density. Poynting-flux-dominated models with high magnetization (≈10 or larger) are prone to be unstable against magnetic pinch modes, which sets limits on the expected magnetization in parsec-scale active galactic nucleus jets or constrains their magnetic field configuration.« less

  14. Note: An improved solenoid driver valve for miniature shock tubes.

    PubMed

    Lynch, P T

    2016-05-01

    A solenoid driver valve has been built to improve the operating performance of diaphragmless shock tubes, which are used for high pressure, high temperature chemical kinetics, and fluid mechanics studies. For shock tube driver application, the most important characteristics are those of sealing, strength, and quality of the generated shock waves and repeatability of opening characteristics and therefore subsequent post-shock conditions. The main features of the new driver valve are a face o-ring sealing design of the valve, the large internal volume, and through inserts near the solenoid core: adjustable opening characteristics of the valve.

  15. P - ρ - T data for H2O up to 260 GPa under laser-driven shock loading

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ozaki, N.; Sano, T.; Okuchi, T.; Shimizu, K.; Miyanishi, K.; Terai, T.; Kakeshita, T.; Sakawa, Y.; Kodama, R.

    2014-12-01

    H2O is believed to be one of the most abundant compounds in ice giants including Neptune and Uranus1. Therefore, equation of state (EOS) for H2O is critical for understanding the formation and evolution of these planets. Various EOS models have been suggested for modeling the interior structure of the ice giants2-4. The recent shock experiments reported that their P - ρ data of H2O are in agreement with those of the QMD based EOS model5, indicating that this model is most suitable for modeling H2O in the ice giants. Whether H2O is in the solid or liquid state in the planetary interior has a great importance to understand their internal structures6. While the QMD model predicted that the solid H2O is present in deep interior of their planets above ~100 GPa4, the recent measurements revealed that H2O remains in the liquid state even at the deep interior conditions7. This discrepancy between experimental and theoretical studies suggests that the QMD based EOS model is disputable for modeling the planetary interior. Indeed, the comparison between data obtained from the shock experiments and the QMD based EOS did not cover the temperature5. We have obtained P - ρ - T data for H2O up to 260 GPa by using laser-driven shock compression technique. The diamond cell applied for the laser shock experiments was used as the sample container in order to achieve temperature conditions lower than the principal Hugoniot states. This shock technique combined with the cell can be used for an assessment the EOS models because it is possible to compare the states under the conditions that the contrast between the models clearly appears. Our data covering P - ρ - T on both the principal and the off Hugoniot curves agree with those of the QMD model, indicating this model to be adopted as the standard for modeling the interior structures of Neptune, Uranus, and exoplanets. References 1W. B. Hubbard et al., The interior of Neptune: Neptune and Triton(Univ. Arizona Press, Tucson, 1995) p.109-138. 2S. P. Lyon and J. D. Johnson, Los Alamos Technical Report No. LA-UR-92-3407, 1992. 3F. H. Ree, Lawrence Livemore Laboratory Technical Report No. UCRL-52190, 1976. 4M. French et al., Phys. Rev. B 79, 054107 (2009). 5M. D. Knudson et al., Phys. Rev. Lett. 108, 091102 (2012). 6 R. Redmer et al., Icarus 211, 798 (2011). 7T. Kimura et al., J. Chem. Phys. 140, 074501 (2014).

  16. Proceedings of the International Symposium on Shock Tubes and Waves (13th), Niagara Falls, July 6-9, 1981.

    DTIC Science & Technology

    1981-07-01

    266 The Blast-Noise Environment of Recoilless Rifles. AD-POOO 267 Shock-Excited hission Spectrum of Tungsten Oxide . AD-POO0 268 Rotational...Absorption Measurements of Atom Concentrations in Reacting Gas Mixtures. 9. Measurements of 0 Atoms in Oxidation of H2 and D2. AD-POOO 283 Direct Measurements...PuIverized Lignite in a Single-Pulse Shock-Tube. AD-POOO 306 Short Residence-Time Pyrolysis and Oxidative Pyrolysis of Bituminous Coals. AD-POOO 307 Shock

  17. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.

    2003-01-01

    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/ near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  18. Shock waves data for minerals

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Johnson, Mary L.

    1994-01-01

    Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  20. Characteristic Model of a Shock Absorber in an Unmanned Ground Vehicle

    NASA Astrophysics Data System (ADS)

    Danko, Ján; Milesich, Tomáš; Bugár, Martin; Madarás, Juraj

    2012-12-01

    The paper deals with mathematical models for the shock absorber of an unmanned ground vehicle. The possibility of mathematically modeling the shock absorber is discussed. Specific types of mathematical models are described and the experimental measurement of a shock absorber is made. For modeling the characteristics of the shock absorber the modified Bouc-Wen model (Spencer model) is selected. From the mathematical model, a simulation model in Matlab/Simulink is created. The identification of the Spencer model parameters is performed and force-velocity and force-displacement characteristics of the shock absorber of an unmanned ground vehicle is made. In the conclusions, the simulated characteristics are verified and evaluated by the measured characteristics.

  1. Climate change effects on agriculture: Economic responses to biophysical shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Gerald; Valin, Hugo; Sands, Ronald

    Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments inmore » yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.« less

  2. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    NASA Astrophysics Data System (ADS)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  3. Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation

    DTIC Science & Technology

    2011-04-14

    Quirk JJ, Shepherd JE (1997) An analytical model for direct initiation of gaseous detonation waves, in 21st International Symposium on Shock Waves...the initial vorticity thickness, hi is here performed over (x1, x3) planes and ∆U0 is the initial velocity difference across the layer. In all cases...Reynolds numbers were 1452, 1507 and 2004. Selle et al. [9] showed that this database is relevant for fully-turbulent flow modeling . VI. RESULTS In all

  4. MODELING THE MULTI-BAND AFTERGLOW OF GRB 130831A: EVIDENCE FOR A SPINNING-DOWN MAGNETAR DOMINATED BY GRAVITATIONAL WAVE LOSSES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.; Zong, H. S.; Huang, Y. F., E-mail: zonghs@nju.edu.cn, E-mail: hyf@nju.edu.cn

    2016-06-01

    The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ∼0.8, followed by a steep drop at around 10{sup 5} s with a slope of ∼6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which themore » magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.« less

  5. Modeling the Multi-band Afterglow of GRB 130831A: Evidence for a Spinning-down Magnetar Dominated by Gravitational Wave Losses?

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, Y. F.; Zong, H. S.

    2016-06-01

    The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ˜0.8, followed by a steep drop at around 105 s with a slope of ˜6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which the magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.

  6. Vibration and shock exposure of maintenance-of-way vehicles in the railroad industry.

    PubMed

    Johanning, Eckardt

    2011-05-01

    The aim of this study is to investigate and compare vibration and shock measurements of maintenance-of-way vehicles used in the railroad industry for track maintenance and construction. Following international standards (i.e., ISO 2631-1: 1997) and professional guidelines the frequency weighted root-mean-square (r.m.s.) acceleration for each measurement axis, the vector sum, the seat effective amplitude transmissibility (SEAT), the crest factor (CF), the maximum transient vibration value (MTVV), the vibration dose value (VDV), the ratio and the newly proposed shock risk estimation factor 'R' for spinal injury according to ISO 2631-5:2004 were measured and calculated for seven different maintenance-of-way vehicles during revenue service. Furthermore, a proposed alternative spinal injury prediction method, the VibRisk model, which incorporates different typical driver postures and operator physical characteristics was included for comparison with the ISO 2631-5 risk prediction. The results of the vibration exposure measurements depended on vehicle type, track/surface conditions and seat properties, with the tamper and bulldozer showing the highest r.m.s. vibration values. The vector sum (a(v)) results ranged from 0.37 to 0.99 (m/s(2)). Five of seven track maintenance vehicles would exceed the current Whole-body Vibration ACGIH-TLV(®) guideline for an 8 h exposure duration in the vertical axis recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). The measured CF, MTVV/a(w) and VDV/(a(w)·T(1/4)) ratios were at or above the critical ratios in the majority of measurements given by the ISO 2631-1 (1997) and American industry guidelines by the American Conference of Governmental Industrial Hygienists (ACGIH-TLV). Comparing both prediction models for vibration shock risk for parts of the lumbar spine, different risk predictions and inconsistencies were found. The VibRisk model generally suggests different and higher risk of vertebral endplate failure for individual lumbar levels, whereas the ISO 2631-5 model indicated generally lower risks and did not differentiate between different disk levels and driver posture. Epidemiological studies validating the different shock risk models are lacking. Work modifications and adequate suspension seats would be beneficial for prevention of harmful exposure to vibration and shocks. Copyright © 2010 Elsevier Ltd and The Ergonomics society. All rights reserved.

  7. Global MHD Simulations of the Earth's Bow Shock Shape and Motion Under Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Mejnertsen, L.; Eastwood, J. P.; Hietala, H.; Schwartz, S. J.; Chittenden, J. P.

    2018-01-01

    Empirical models of the Earth's bow shock are often used to place in situ measurements in context and to understand the global behavior of the foreshock/bow shock system. They are derived statistically from spacecraft bow shock crossings and typically treat the shock surface as a conic section parameterized according to a uniform solar wind ram pressure, although more complex models exist. Here a global magnetohydrodynamic simulation is used to analyze the variability of the Earth's bow shock under real solar wind conditions. The shape and location of the bow shock is found as a function of time, and this is used to calculate the shock velocity over the shock surface. The results are compared to existing empirical models. Good agreement is found in the variability of the subsolar shock location. However, empirical models fail to reproduce the two-dimensional shape of the shock in the simulation. This is because significant solar wind variability occurs on timescales less than the transit time of a single solar wind phase front over the curved shock surface. Empirical models must therefore be used with care when interpreting spacecraft data, especially when observations are made far from the Sun-Earth line. Further analysis reveals a bias to higher shock speeds when measured by virtual spacecraft. This is attributed to the fact that the spacecraft only observes the shock when it is in motion. This must be accounted for when studying bow shock motion and variability with spacecraft data.

  8. Evaluating the Impact of Classroom Education on the Management of Septic Shock Using Human Patient Simulation.

    PubMed

    Lighthall, Geoffrey K; Bahmani, Dona; Gaba, David

    2016-02-01

    Classroom lectures are the mainstay of imparting knowledge in a structured manner and have the additional goals of stimulating critical thinking, lifelong learning, and improvements in patient care. The impact of lectures on patient care is difficult to examine in critical care because of the heterogeneity in patient conditions and personnel as well as confounders such as time pressure, interruptions, fatigue, and nonstandardized observation methods. The critical care environment was recreated in a simulation laboratory using a high-fidelity mannequin simulator, where a mannequin simulator with a standardized script for septic shock was presented to trainees. The reproducibility of this patient and associated conditions allowed the evaluation of "clinical performance" in the management of septic shock. In a previous study, we developed and validated tools for the quantitative analysis of house staff managing septic shock simulations. In the present analysis, we examined whether measures of clinical performance were improved in those cases where a lecture on the management of shock preceded a simulated exercise on the management of septic shock. The administration of the septic shock simulations allowed for performance measurements to be calculated for both medical interns and for subsequent management by a larger resident-led team. The analysis revealed that receiving a lecture on shock before managing a simulated patient with septic shock did not produce scores higher than for those who did not receive the previous lecture. This result was similar for both interns managing the patient and for subsequent management by a resident-led team. We failed to find an immediate impact on clinical performance in simulations of septic shock after a lecture on the management of this syndrome. Lectures are likely not a reliable sole method for improving clinical performance in the management of complex disease processes.

  9. Psychometric evaluation of the Environmental Reality Shock-Related Issues and Concerns instrument for newly graduated nurses.

    PubMed

    Kim, Eun-Young; Yeo, Jung Hee; Park, Hyunjeong; Sin, Kyung Mi; Jones, Cheryl B

    2018-02-01

    Reality shock is a critical representation of the gap between nursing education and clinical practice and it is important to explore the level of reality shock among nurses. However, there is no relevant instrument to assess the level of reality shock in South Korea. The purpose of this is to determine the validity and reliability of the Korean version of the Environmental Reality Shock-Related Issues and Concerns instrument. A cross-sectional study design was used in this study. The data collection was conducted in selected 15 hospitals in South Korea. A convenience sample of 216 newly graduated nurses participated in the study. The Korean version of the Environmental Reality Shock-Related Issues and Concerns instrument was developed through the forward-backward translation technique, and revision based on feedback from expert groups. The internal consistency reliability was assessed using Cronbach's alpha, and the construct validity was determined via exploratory and confirmatory factor analysis. The Korean version of the Environmental Reality Shock-Related Issues and Concerns has reliable internal consistency (Cronbach's alpha=0.91). Exploratory factor analysis revealed five factors including job, relationships, expectations, private life, and performance, which explained 61.92% of variance. The factor loadings ranged from 0.451 to 0.832. The five-factor structure was validated by confirmatory factor analysis (RMR<0.05, CFI>0.9). It was concluded that the Korean version of the Environmental Reality Shock-Related Issues and Concerns instrument has satisfactory construct validity and reliability to measure the reality shock of newly graduated nurses in South Korea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mass Fire Model Concept

    DTIC Science & Technology

    1981-05-31

    posium (International) on Combustion,, lombustion Institute, p. 965, 1965. 14. Gostlntsev, Yu.A. and L.A. Sukhanov , "Convective Column Above a inear...Fire in Homogeneous Isothermal Atmosphere," Combustion, Explo- sion, and Shock Waves, 13, p. 570, 1977. 15. Gostintsev, Yu.A., and L.A. Sukhanov ... Sukhanov , "Convectwe Column Above a Linear Fire in a Polytropic Atmosphere," Combustion, Explosion, and Siiock Waves, 14, p. 271, 1978. 17

  11. The Effect of Aerodynamic Heating on Air Penetration by Shaped Charge Jets and Their Particles

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph

    2009-06-01

    The goal of this paper is to present recent work modeling thermal coupling between shaped charge jets and their particles with air while it is being penetrated to form a crater that subsequently collapses back onto the jet. This work complements research published at International Symposia on Ballistics: 1) 1987 - Shaped Charge Jet Aerodynamics, Particulation and Blast Field Modeling; and 2) 2007 - Air Cratering by Eroding Shaped Charge Jets. The current work shows how and when a shaped charge jet's tip and jet particles are softened enough that they can erode in a hydrodynamic manner as modeled in these papers. This paper and its presentation includes models for heat transfer from shocked air as a function of jet velocity as well as heat flow within the jet or particle. The work is supported by an extensive bibliographic search including publications on meteors and ballistic missile re-entry vehicles. The modeling shows that a jet loses its strength to the depth required to justify hydrodynamic erosion when its velocity is above a specific velocity related to the shock properties of air and the jet material's properties. As a result, the portion of a jet's kinetic energy converted at the aerodynamic shock into heating transferred back onto the jet affects the energy deposited into the air through drag and ablation which in turn affect air crater expansion and subsequent collapse back onto the jet and its particles as shown in high-speed photography.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustamante, Mauricio; Heinze, Jonas; Winter, Walter

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma-rays can be deduced from inspection of themore » gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.« less

  13. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  14. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  15. Shock wave interaction with L-shaped structures

    NASA Astrophysics Data System (ADS)

    Miller, Richard C.

    1993-12-01

    This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.

  16. Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1987-01-01

    Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.

  17. Comparative Analysis of Hepatic CD14 Expression between Two Different Endotoxin Shock Model Mice: Relation between Hepatic Injury and CD14 Expression

    PubMed Central

    Hozumi, Hiroyasu; Tada, Rui; Murakami, Taisuke; Adachi, Yoshiyuki; Ohno, Naohito

    2013-01-01

    CD14 is a glycoprotein that recognizes gram-negative bacterial lipopolysaccharide (LPS) and exists in both membrane-bound and soluble forms. Infectious and/or inflammatory diseases induce CD14 expression, which may be involved in the pathology of endotoxin shock. We previously found that the expression of CD14 protein differs among the endotoxin shock models used, although the reasons for these differences are unclear. We hypothesized that the differences in CD14 expression might be due to liver injury, because the hepatic tissue produces CD14 protein. We investigated CD14 expression in the plasma and liver in the carrageenan (CAR)-primed and D-galN-primed mouse models of endotoxin shock. Our results showed that severe liver injury was not induced in CAR-primed endotoxin shock model mice. In this CAR-primed model, the higher mRNA and protein expression of CD14 was observed in the liver, especially in the interlobular bile duct in contrast to D-galN-primed-endotoxin shock model mice. Our findings indicated that the molecular mechanism(s) underlying septic shock in CAR-primed and D-galN-primed endotoxin shock models are quite different. Because CD14 expression is correlated with clinical observations, the CAR-primed endotoxin shock model might be useful for studying the functions of CD14 during septic shock in vivo. PMID:23308276

  18. GRAVITATIONAL-WAVE OBSERVATIONS MAY CONSTRAIN GAMMA-RAY BURST MODELS: THE CASE OF GW150914–GBM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veres, P.; Preece, R. D.; Goldstein, A.

    The possible short gamma-ray burst (GRB) observed by Fermi /GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peakmore » energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (∼10{sup −3} cm{sup −3}) and a high Lorentz factor (∼2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford–Znajek model. If future joint observations confirm the GW–short-GRB association we can provide similar but more detailed tests for prompt emission models.« less

  19. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  20. X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids

    NASA Astrophysics Data System (ADS)

    Owens, F. J.; Sharma, J.

    1980-03-01

    Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.

  1. Wind-tunnel blockage and actuation systems test of a two-dimensional scramjet inlet unstart model at Mach 6

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1994-01-01

    The present study examines the wind-tunnel blockage and actuation systems effectiveness in starting and forcibly unstarting a two-dimensional scramjet inlet in the NASA Langley 20-Inch Mach 6 Tunnel. The intent of the overall test program is to study (both experimentally and computationally) the dynamics of the inlet unstart; however, prior to the design and fabrication of an expensive, instrumented wind-tunnel model, it was deemed necessary first to examine potential wind-tunnel blockage issues related to model sizing and to examine the adequacy of the actuation systems in accomplishing the start and unstart. The model is equipped with both a moveable cowl and aft plug. Windows in the inlet sidewalls allow limited optical access to the internal shock structure; schlieren video was used to identify inlet start and unstart. A chronology of each actuation sequence is provided in tabular form along with still frames from the schlieren video. A pitot probe monitored the freestream conditions throughout the start/unstart process to determine if there was a blockage effect due to the model start or unstart. Because the purpose of this report is to make the phase I (blockage and actuation systems) data rapidly available to the community, the data is presented largely without analysis of the internal shock interactions or the unstart process. This series of tests indicated that the model was appropriately sized for this facility and identified operability limits required first to allow the inlet to start and second to force the unstart.

  2. A probabilistic method to establish the reliability of carbon-carbon rocket motor nozzles. Volume 3: Stress and reliability analysis of layered composite cylinders under thermal shock

    NASA Astrophysics Data System (ADS)

    Heller, R. A.; Thangjitham, S.; Wang, X.

    1992-04-01

    The state of stress in a cylindrical structure consisting of multiple layers of carbon-carbon composite and subjected to thermal and pressure shock are analyzed using an elasticity approach. The reliability of the structure based on the weakest link concept and the Weibull distribution is also calculated. Coupled thermo-elasticity is first assumed and is shown to be unnecessary for the material considered. The effects of external and internal thermal shock as well as a superimposed pressure shock are examined. It is shown that for the geometry chosen, the structure may fail when exposed to thermal shock alone while a superimposed pressure shock can mitigate the probability of failure.

  3. Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.

    1995-01-01

    A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.

  4. Minutes - Accredited Standards Committee on Mechanical Shock and Vibration, S2. U.S. Tag for ISO/TC108 Mechanical Vibration and Shock

    DTIC Science & Technology

    1991-08-02

    if required) - Hanning Window - (4) averages (linear, non -overlapping) At the designated measurement positions suitable surfaces shall be provided such...these efforts of particular importance in order to remain competitive in the international arena with respect to noise control technology and noise...Organizational matters and reports on working grouos , including reports on letter ballots and international matters (continued) b) S3/WG39 (2) - Human

  5. H2 emission from non-stationary magnetized bow shocks

    NASA Astrophysics Data System (ADS)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.

    2018-01-01

    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  6. [Superantigens and toxic shock syndrome. A report of three cases treated with intravenous gammaglobulin].

    PubMed

    Vázquez García, Rubén Eduardo; Hernández Bautista, Víctor; Espinosa Padilla, Sara

    2006-01-01

    The superantigens cause a massive polyclonal activation of T-cells, producing an immense liberation of proinflamatory cytokines, which induces the clinical data of toxic shock syndrome. In international studies the administration of polyclonal intravenous gammaglobulin has been observed to diminish the mortality 50 to 20%. But at the present it has not been reported in Mexico the clinical effectiveness of this therapeutic modality in toxic shock syndrome. We report three cases of toxic shock syndrome treated with gammaglobulin intravenous, and we describe their favorable clinical evolution.

  7. Gas and dust spectra of the D' type symbiotic star HD 330036

    NASA Astrophysics Data System (ADS)

    Angeloni, R.; Contini, M.; Ciroi, S.; Rafanelli, P.

    2007-09-01

    Aims:We present a comprehensive and self-consistent modelling of the D' type symbiotic star (SS) HD 330036 from radio to UV. Methods: Within a colliding-wind scenario, we analyse the continuum, line, and dust spectra by means of SUMA, a code that simulates the physical conditions of an emitting gaseous cloud under the coupled effect of ionisation from an external radiation source and shocks. Results: We find that the UV lines are emitted from high-density gas between thestars downstream of the reverse shock, while the optical lines are emitted downstream of the shock propagating outwards from the system. As regards the continuum SED, three shells are identified in the IR, at 850 K, 320 K, and 200 K with radii r = 2.8 × 1013 cm, 4 × 1014 cm, and 1015 cm, respectively, after adopting a distance to Earth of d=2.3 kpc. Interestingly, all these shells appear to be circumbinary. Analysis of the unexploited ISO-SWS spectrum reveals that both PAHs and crystalline silicates coexist in HD 330036, with PAHs associated to the internal shell at 850 K, and crystalline silicates stored in the cool shells at 320 K and 200 K. Strong evidence that crystalline silicates are shaped in a disk-like structure is derived on the basis of the relative band strengths. Finally, we suggest that shocks can be a reliable mechanism for activating the annealing and the consequent crystallisation processes. Conclusions: We show that a consistent interpretation of gas and dust spectra emitted by SS can be obtained by models that account for the coupled effect of the photoionising flux and of shocks. The VLTI/MIDI proposal recently accepted by ESO aims to verify and better constrain some of our results by means of IR interferometric observations.

  8. Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model

    NASA Astrophysics Data System (ADS)

    Ong, L.; Melosh, H. J.

    2012-12-01

    Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient from the peak shock pressure to the zero pressure boundary. The nonlinear shock interactions occur where the pressure contours curve to accommodate the free surface. The material within this spall zone is ejected at speeds up to 1.8 km s-1 for an imposed pulse of 1 km s-1. Where the ejection velocities are highest, the maximum pressure attained in each cell is effectively zero. We compare our simulation results with a model for nonlinear shock interactions proposed by Kamegai (1986). This model recognizes that the material behind the shock is compressed and has a higher soundspeed than the mate-rial in front of the shock. As the rarefaction wave moves behind the shock, its increased velocity through the com-pressed material combines with the residual particle velocity behind the shock to "catch up" with the shock. This occurs in the near surface where the sum of the compressed sound speed and the residual particle velocity is greater than or equal to the shock velocity. Initial results for the spherical shocks qualitatively match the volume described by this model, but differ significantly in the quantitative slope of the curve defining the region of interaction. We continue to test the Kamegai model with high-resolution numerical simulations of shock interactions to determine its potential application to planetary spallation.

  9. Shock tube and shock wave research; Proceedings of the Eleventh International Symposium, University of Washington, Seattle, Wash., July 11-14, 1977

    NASA Technical Reports Server (NTRS)

    Ahlborn, B. (Editor); Hertzberg, A.; Russell, D.

    1978-01-01

    Papers are presented on the applications of shock-wave technology to the study of hydrodynamics, the use of the pressure-wave machine for charging diesel engines, and measurements of the heat-transfer rate in gas-turbine components. Consideration is given to shock propagation along 90-degree bends, the explosive dissemination of liquids, and rotational and vibrational relaxation behind weak shock waves in water vapor. Shock phenomena associated with expansion flows are described and stratospheric-related research using the shock tube is outlined. Attention is given to shock-wave ignition of magnesium powders, Mach reflection and boundary layers, and transition in the shock-induced unsteady boundary layer on a flat plate. Shock-tube measurements of induction and post-induction rates for low-Btu gas mixtures are presented and shock-initiated ignition in COS-N2O-Ar mixtures is described. Cluster growth rates in supersaturated lead vapor are presented and a study of laser-induced plasma motion in a solenoidal magnetic field is reviewed.

  10. Blast dynamics at Mount St Helens on 18 May 1980

    USGS Publications Warehouse

    Kieffer, S.W.

    1981-01-01

    At 8.32 a.m. on 18 May 1980, failure of the upper part of the north slope of Mount St Helens triggered a lateral eruption ('the blast') that devastated the conifer forests in a sector covering ???500 km2 north of the volcano. I present here a steady flow model for the blast dynamics and propose that through much of the devastated area the blast was a supersonic flow of a complex multiphase (solid, liquid, vapour) mixture. The shape of the blast zone; pressure, temperature, velocity (Mach number) and density distributions within the flow; positions of weak and strong internal shocks; and mass flux, energy flux, and total energy are calculated. The shape of blast zone was determined by the initial areal expansion from the reservoir, by internal expansion and compression waves (including shocks), and by the density of the expanding mixture. The pressure within the flow dropped rapidly away from the source of the blast until, at a distance of ???11 km, the flow became underpressured relative to the surrounding atmosphere. Weak shocks within the flow subparallel to the east and west margins coalesced at about this distance into a strong Mach disk shock, across which the flow velocities would have dropped from supersonic to subsonic as the pressure rose back towards ambient. The positions of the shocks may be reflected in differences in the patterns of felled trees. At the limits of the devastated area, the temperature had dropped only 20% from the reservoir temperature because the entrained solids thermally buffered the flow (the dynamic and thermodynamic effects of the admixture of the surrounding atmosphere and the uprooted forest and soils into the flow are not considered). The density of the flow decreased with distance until, at the limits of the blast zone, 20-25 km from the volcano, the density became comparable with that of the surrounding (dirty) atmosphere and the flow became buoyant and ramped up into the atmosphere. According to the model, the mass flux per unit area at the source was 0.6 ?? 104 g s-1 cm-2 and the energy flux per unit area was 2.5 MW cm-2. From the measured total ejected mass, 0.25 ?? 1015 g, the total energy released during the eruption was 1024 erg or 24 megatons. The model, triggering of the eruption and the transition from unsteady to steady flow, and applications to eyewitness observations and atmospheric effects are discussed in ref. 1. ?? 1981 Nature Publishing Group.

  11. Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compression

    NASA Astrophysics Data System (ADS)

    Xiao, Pan; Kang, Zhitao; Bansihev, Alexandr A.; Breidenich, Jennifer; Scripka, David A.; Christensen, James M.; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.; Zhou, Min

    2016-01-01

    Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.

  12. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators

    PubMed Central

    Dosdall, Derek J; Sweeney, James D

    2008-01-01

    Background Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. Methods The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. Results The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Discussion Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters. PMID:18673561

  13. A Study of Fundamental Shock Noise Mechanisms

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1997-01-01

    This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.

  14. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  15. Analytic model for the dynamic Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.

    2015-06-15

    A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting casesmore » of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis.« less

  16. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.

    PubMed

    Sirmas, N; Radulescu, M I

    2015-02-01

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic, with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not of the Bethe-Zeldovich-Thompson or D'yakov-Kontorovich type. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during repressurization of the gas following the initial relaxation of the medium behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient relaxation.

  17. Particle acceleration at shocks in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations

  18. The Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    NASA Astrophysics Data System (ADS)

    Berardo, David; Cumming, Andrew; Marleau, Gabriel-Dominique

    2017-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the code Modules for Experiments in Stellar Astrophysics. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature T 0 and pressure P 0. At low temperatures ({T}0≲ 300-1000 {{K}}, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a high luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a higher entropy than the interior, giving a radiative zone that stalls cooling. For {T}0≳ 2000 {{K}}, the surface-interior entropy contrast cannot be accommodated by the radiative envelope, and the accreted matter accumulates with high entropy, forming a hot start. The final state of the planet depends on the shock temperature, accretion rate, and starting entropy at the onset of runaway accretion. Cold starts with L≲ 5× {10}-6 {L}⊙ require low accretion rates and starting entropy, and the temperature of the accreting material needs to be maintained close to the nebula temperature. If instead the temperature is near the value required to radiate the accretion luminosity, 4π {R}2σ {T}04˜ ({GM}\\dot{M}/R), as suggested by previous work on radiative shocks in the context of star formation, gas giant planets form in a hot start with L˜ {10}-4 {L}⊙ .

  19. Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Alexander, W., Jr.; Ivey, G. W., Jr.; Kerr, P. A.

    1984-01-01

    An analytical model for calculation of ascent steady state tile loading was developed and validated with wind tunnel data. The analytical model is described and results are given. Results are given for loading due to shocks and skin friction. The analysis included calculation of internal flow (porous media flow and channel flow) to obtain pressures and integration of the pressures to obtain forces and moments on an insulation tile. A heat transfer program was modified by using analogies between heat transfer and fluid flow so that it could be used for internal flow calculation. The type of insulation tile considered was undensified reusable surface insulation (RSI) without gap fillers, and the location studied was the lower surface of the orbiter. Force and moment results are reported for parameter variations on surface pressure distribution, gap sizes, insulation permeability, and tile thickness.

  20. Operational, Real-Time, Sun-to-Earth Interplanetary Shock Predictions During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Dryer, M.; Sun, W.; Deehr, C. S.; Smith, Z.; Akasofu, S.

    2002-05-01

    We report on our progress in predicting interplanetary shock arrival time (SAT) in real-time, using three forecast models: the Hakamada-Akasofu-Fry (HAF) modified kinematic model, the Interplanetary Shock Propagation Model (ISPM) and the Shock Time of Arrival (STOA) model. These models are run concurrently to provide real-time predictions of the arrival time at Earth of interplanetary shocks caused by solar events. These "fearless forecasts" are the first, and presently only, publicly distributed predictions of SAT and are undergoing quantitative evaluation for operational utility and scientific benchmarking. All three models predict SAT, but the HAF model also provides a global view of the propagation of interplanetary shocks through the pre-existing, non-uniform heliospheric structure. This allows the forecaster to track the propagation of the shock and to differentiate between shocks caused by solar events and those associated with co-rotating interaction regions (CIRs). This study includes 173 events during the period February, 1997 to October, 2000. Shock predictions were compared with spacecraft observations at the L1 location to determine how well the models perform. Sixty-eight shocks were observed at L1 within 120 hours of an event. We concluded that 6 of these observed shocks were caused by CIRs, and the remainder were caused by solar events. The forecast skill of the models are presented in terms of RMS errors, contingency tables and skill scores commonly used by the weather forecasting community. The false alarm rate for HAF was higher than for ISPM or STOA but much lower than for predictions based upon empirical studies or climatology. Of the parameters used to characterize a shock source at the Sun, the initial speed of the coronal shock, as represented by the observed metric type II speed, has the largest influence on the predicted SAT. We also found that HAF model predictions based upon type II speed are generally better for shocks originating from sites near central meridian, and worse for limb events. This tendency suggests that the observed type II speed is more representative of the interplanetary shock speed for events occurring near central meridian. In particular, the type II speed appears to underestimate the actual Earth-directed IP shock speed when the source of the event is near the limb. Several of the most interesting events (Bastille Day epoch (2000), April Fools Day epoch (2001))will be discussed in more detail with the use of real-time animations.

  1. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

    NASA Astrophysics Data System (ADS)

    Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.

    2018-03-01

    Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

  2. Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinnella, P.

    1990-01-01

    The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.

  3. Modeling Particle Acceleration and Transport at a 2-D CME-Driven Shock

    NASA Astrophysics Data System (ADS)

    Hu, Junxiang; Li, Gang; Ao, Xianzhi; Zank, Gary P.; Verkhoglyadova, Olga

    2017-11-01

    We extend our earlier Particle Acceleration and Transport in the Heliosphere (PATH) model to study particle acceleration and transport at a coronal mass ejection (CME)-driven shock. We model the propagation of a CME-driven shock in the ecliptic plane using the ZEUS-3D code from 20 solar radii to 2 AU. As in the previous PATH model, the initiation of the CME-driven shock is simplified and modeled as a disturbance at the inner boundary. Different from the earlier PATH model, the disturbance is now longitudinally dependent. Particles are accelerated at the 2-D shock via the diffusive shock acceleration mechanism. The acceleration depends on both the parallel and perpendicular diffusion coefficients κ|| and κ⊥ and is therefore shock-obliquity dependent. Following the procedure used in Li, Shalchi, et al. (k href="#jgra53857-bib-0045"/>), we obtain the particle injection energy, the maximum energy, and the accelerated particle spectra at the shock front. Once accelerated, particles diffuse and convect in the shock complex. The diffusion and convection of these particles are treated using a refined 2-D shell model in an approach similar to Zank et al. (k href="#jgra53857-bib-0089"/>). When particles escape from the shock, they propagate along and across the interplanetary magnetic field. The propagation is modeled using a focused transport equation with the addition of perpendicular diffusion. We solve the transport equation using a backward stochastic differential equation method where adiabatic cooling, focusing, pitch angle scattering, and cross-field diffusion effects are all included. Time intensity profiles and instantaneous particle spectra as well as particle pitch angle distributions are shown for two example CME shocks.

  4. Shock wave propagation in a magnetic flux tube

    NASA Astrophysics Data System (ADS)

    Ferriz-Mas, A.; Moreno-Insertis, F.

    1992-12-01

    The propagation of a shock wave in a magnetic flux tube is studied within the framework of the Brinkley-Kirkwood theory adapted to a radiating gas. Simplified thermodynamic paths along which the compressed plasma returns to its initial state are considered. It is assumed that the undisturbed medium is uniform and that the flux tube is optically thin. The shock waves investigated, which are described with the aid of the thin flux-tube approximation, are essentially slow magnetohydrodynamic shocks modified by the constraint of lateral pressure balance between the flux tube and the surrounding field-free fluid; the confining external pressure must be balanced by the internal gas plus magnetic pressures. Exact analytical solutions giving the evolution of the shock wave are obtained for the case of weak shocks.

  5. Strain Rate Dependant Material Model for Orthotropic Metals

    NASA Astrophysics Data System (ADS)

    Vignjevic, Rade

    2016-08-01

    In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 102 s-1 to 106 s-1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic deformation. In addition the constitutive model is coupled with a vector shock equation of state which allows for modelling of shock wave propagation in orthotropic the material. Parameters for the new constitutive model are typically derived on the basis of the tensile tests (performed over a range of temperatures and strain rates), plate impact tests and Taylor anvil tests. The model was applied to simulate explosively driven fragmentation, blast loading and cold spraying impacts.

  6. Mixing-model Sensitivity to Initial Conditions in Hydrodynamic Predictions

    NASA Astrophysics Data System (ADS)

    Bigelow, Josiah; Silva, Humberto; Truman, C. Randall; Vorobieff, Peter

    2017-11-01

    Amagat and Dalton mixing-models were studied to compare their thermodynamic prediction of shock states. Numerical simulations with the Sandia National Laboratories shock hydrodynamic code CTH modeled University of New Mexico (UNM) shock tube laboratory experiments shocking a 1:1 molar mixture of helium (He) and sulfur hexafluoride (SF6) . Five input parameters were varied for sensitivity analysis: driver section pressure, driver section density, test section pressure, test section density, and mixture ratio (mole fraction). We show via incremental Latin hypercube sampling (LHS) analysis that significant differences exist between Amagat and Dalton mixing-model predictions. The differences observed in predicted shock speeds, temperatures, and pressures grow more pronounced with higher shock speeds. Supported by NNSA Grant DE-0002913.

  7. Electric shocks at work in Europe: development of a job exposure matrix.

    PubMed

    Huss, Anke; Vermeulen, Roel; Bowman, Joseph D; Kheifets, Leeka; Kromhout, Hans

    2013-04-01

    Electric shocks have been suggested as a potential risk factor for neurological disease, in particular for amyotrophic lateral sclerosis. While actual exposure to shocks is difficult to measure, occurrence and variation of electric injuries could serve as an exposure proxy. We assessed risk of electric injury, using occupational accident registries across Europe to develop an electric shock job-exposure-matrix (JEM). Injury data were obtained from five European countries, and the number of workers per occupation and country from EUROSTAT was compiled at a 3-digit International Standard Classification of Occupations 1988 level. We pooled accident rates across countries with a random effects model and categorised jobs into low, medium and high risk based on the 75th and 90th percentile. We next compared our JEM to a JEM that classified extremely low frequency magnetic field exposure of jobs into low, medium and high. Of 116 job codes, occupations with high potential for electric injury exposure were electrical and electronic equipment mechanics and fitters, building frame workers and finishers, machinery mechanics and fitters, metal moulders and welders, assemblers, mining and construction labourers, metal-products machine operators, ships' decks crews and power production and related plant operators. Agreement between the electrical injury and magnetic field JEM was 67.2%. Our JEM classifies occupational titles according to risk of electric injury as a proxy for occurrence of electric shocks. In addition to assessing risk potentially arising from electric shocks, this JEM might contribute to disentangling risks from electric injury from those of extremely low frequency magnetic field exposure.

  8. External Shock in a Multi-bursting Gamma-Ray Burst: Energy Injection Phase Induced by the Later Launched Ejecta

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Huang, Bao-Quan; Liu, Tong; Gu, Wei-Min; Mu, Hui-Jun; Liang, En-Wei

    2018-01-01

    Central engines of gamma-ray bursts (GRBs) may be intermittent and launch several episodes of ejecta separated by a long quiescent interval. In this scenario, an external shock is formed due to the propagation of the first launched ejecta into the circum-burst medium and the later launched ejecta may interact with the external shock at a later period. Owing to the internal dissipation, the later launched ejecta may be observed at a later time (t jet). In this paper, we study the relation of t b and t jet, where t b is the collision time of the later launched ejecta with the formed external shock. It is found that the relation of t b and t jet depends on the bulk Lorentz factor (Γjet) of the later launched ejecta and the density (ρ) of the circum-burst medium. If the value of Γjet or ρ is low, the t b would be significantly larger than t jet. However, the t b ∼ t jet can be found if the value of Γjet or ρ is significantly large. Our results can explain the large lag of the optical emission relative to the γ-ray/X-ray emission in GRBs, e.g., GRB 111209A. For GRBs with a precursor, our results suggest that the energy injection into the external shock and thus more than one external-reverse shock may appear in the main prompt emission phase. According to our model, we estimate the Lorentz factor of the second launched ejecta in GRB 160625B.

  9. Swift AND Fermi observations of x-ray flares: The case of late internal shock

    DOE PAGES

    Troja, Eleonora; Piro, Luigi; Vasileiou, Vlasios; ...

    2015-04-07

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find thatmore » in this scenario, X-ray flares can be produced by a late-time relativistic (Γ > 50) outflow at radii R ~ 10 13-10 14 cm. As a result, this conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.« less

  10. Swift and Fermi Observations of X-Ray Flares: The Case of Late Internal Shock

    NASA Technical Reports Server (NTRS)

    Troja, E.; Piro, L.; Vasileiou, V.; Omodei, N.; Burgess, J. M.; Cutini, S.; Connaughton, V.; McEnery, J. E.

    2015-01-01

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that in this scenario, X-ray flares can be produced by a late-time relativistic (gamma greater than 50) outflow at radii R approximately 10(exp 13) - 10(exp 14) cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.

  11. SWIFT AND FERMI OBSERVATIONS OF X-RAY FLARES: THE CASE OF LATE INTERNAL SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troja, E.; Piro, L.; Vasileiou, V.

    2015-04-10

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find thatmore » in this scenario, X-ray flares can be produced by a late-time relativistic (Γ > 50) outflow at radii R ∼ 10{sup 13}-10{sup 14} cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.« less

  12. The Interaction of Turbulence with Parallel and Perpendicular Shocks: Theory and Observations at 1 au

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.

    2016-12-01

    Shocks are thought to be responsible for the amplification of turbulence as well as for generating turbulence throughout the heliosphere. We study the interaction of turbulence with parallel and perpendicular shock waves using the six-coupled-equation turbulence transport model of Zank et al. We model a 1D stationary shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions for both a reduced model with four coupled equations and the full model. Eight quasi-parallel and five quasi-perpendicular events in the WIND spacecraft data sets are identified, and we compute the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy, and the normalized cross helicity upstream and downstream of the observed shocks. We compare the observed fitted values upstream and downstream of the shock with numerical solutions to our model equations. The comparison shows that our theoretical results are in reasonable agreement with observations for both quasi-parallel and perpendicular shocks. We find that (1) the total turbulent energy, the energy in forward and backward propagating modes, and the normalized residual energy increase across the shock, (2) the normalized cross helicity increases or decreases across the shock, and (3) the correlation length increases upstream and downstream of the shock, and slightly flattens or decreases across the shock.

  13. THE INTERACTION OF TURBULENCE WITH PARALLEL AND PERPENDICULAR SHOCKS: THEORY AND OBSERVATIONS AT 1 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, L.; Zank, G. P.; Hunana, P.

    Shocks are thought to be responsible for the amplification of turbulence as well as for generating turbulence throughout the heliosphere. We study the interaction of turbulence with parallel and perpendicular shock waves using the six-coupled-equation turbulence transport model of Zank et al. We model a 1D stationary shock wave using a hyperbolic tangent function and the Rankine–Hugoniot conditions for both a reduced model with four coupled equations and the full model. Eight quasi-parallel and five quasi-perpendicular events in the WIND spacecraft data sets are identified, and we compute the fluctuating magnetic and kinetic energy, the energy in forward and backwardmore » propagating modes, the total turbulent energy, the normalized residual energy, and the normalized cross helicity upstream and downstream of the observed shocks. We compare the observed fitted values upstream and downstream of the shock with numerical solutions to our model equations. The comparison shows that our theoretical results are in reasonable agreement with observations for both quasi-parallel and perpendicular shocks. We find that (1) the total turbulent energy, the energy in forward and backward propagating modes, and the normalized residual energy increase across the shock, (2) the normalized cross helicity increases or decreases across the shock, and (3) the correlation length increases upstream and downstream of the shock, and slightly flattens or decreases across the shock.« less

  14. Experimental investigation of the inlet detector configuration variation in the flow field at Mach 1.9

    NASA Technical Reports Server (NTRS)

    Hwang, Kyu C.; Tiwari, Surrendra N.; Miley, Stanley J.

    1995-01-01

    In recent years, active research has been conducted to study the technological feasibility of supersonic laminar flow control on the wing of the High Speed Civil Transport (HSCT). For this study, the F-16XL has been chosen due to its highly swept crank wing planform that closely resembles the HSCT configurations. During flights, it is discovered that the shock wave generated from the aircraft inlet introduces disturbances on the wing where the data acquisition is conducted. The flow field about a supersonic inlet is characterized by a complex three dimensional pattern of shock waves generated by the geometrical configuration of a deflector and a cowl lip. Hence, in this study, experimental method is employed to investigate the effects of the variation of deflector configuration on the flow field, and consequently, the possibility of diverting the incoming shock-disturbances away from the test section. In the present experiments, a model composed of a simple circular tube with a triangular deflector is designed to study the deflector length and the deflector base width variation in the flow field. Experimental results indicate that the lowest external pressure ratio is observed at the junction where the deflector lip and the inlet cowl lip merge. Also, it is noted that the external pressure ratio, the internal pressure ratio, the coefficient of spillage drag, and the shock standoff distance decrease as the deflector length increases. In addition, the Redefined Total Pressure Recovery Ratio (RTPRR) increases with an increase in the deflector length. Results from the study of the effect of the deflector's base width variation on the flow field indicate that the lowest external pressure ratio is observed at the junction between the inlet cowl lip and the deflector lip. As the base width of the deflector increases, the external pressure ratio at 0 rotation increases, whereas the external pressure ratio at 180 rotation decreases. In addition, the internal pressure ratio and the coefficient of spillage drag decrease as the base width of the deflector increases. However, RTPRR and shock standoff distance increase as the base width increases. In conclusion, as deflector dimensions vary, distinctive patterns in the pressure variation around the inlet deflector are observed. With an increase in the deflector length and base width, the magnitude of shock-disturbances are weakened due to a decrease in the external pressure ratio. Also, as the deflector length and base width increase, a smaller bow shock angle is formed. Therefore, the inlet shock wave formation would be significantly altered, and consequently, shock disturbances on the wing test section can be avoided through appropriately designing the deflector.

  15. An infrared flash contemporaneous with the gamma-rays of GRB 041219a.

    PubMed

    Blake, C H; Bloom, J S; Starr, D L; Falco, E E; Skrutskie, M; Fenimore, E E; Duchêne, G; Szentgyorgyi, A; Hornstein, S; Prochaska, J X; McCabe, C; Ghez, A; Konopacky, Q; Stapelfeldt, K; Hurley, K; Campbell, R; Kassis, M; Chaffee, F; Gehrels, N; Barthelmy, S; Cummings, J R; Hullinger, D; Krimm, H A; Markwardt, C B; Palmer, D; Parsons, A; McLean, K; Tueller, J

    2005-05-12

    The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.

  16. Dynamics of a discrete chain of bi-stable elements: A biomimetic shock absorbing mechanism

    NASA Astrophysics Data System (ADS)

    Cohen, T.; Givli, S.

    2014-03-01

    A biomimetic shock absorbing mechanism, inspired by the bi-stable elongation behavior of the giant protein titin, is examined. A bi-stable element, composed of three mass particles with monotonous interaction forces, is suggested to facilitate an internal degree of freedom of finite mass which contributes significantly to dissipation upon unlocking of an internal link. An essential feature of the suggested element is that it undergoes reversible rapture and therefore retrieves its initial configuration once unloaded. The quasistatic and dynamic behaviors are investigated showing similarity to the common tri-linear bi-stable response, with two steady phases separated by a spinodal region. The dynamic behavior of a chain of elements is also examined, for several loading scenarios, showing that the suggested mechanism serves as an efficient shock absorber in a sub-critical dampening environment, as compared with a simple mass on spring system. Propagation of shock waves and refraction waves in an element chain is observed and the effect of natural imperfections is considered.

  17. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    DTIC Science & Technology

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  18. Utility of Functional Hemodynamics and Echocardiography to Aid Diagnosis and Management of Shock.

    PubMed

    McGee, William T; Raghunathan, Karthik; Adler, Adam C

    2015-12-01

    The utility of functional hemodynamics and bedside ultrasonography is increasingly recognized as advantageous for both improved diagnosis and management of shock states. In contrast to conventional "static" measures, "dynamic" hemodynamic measures and bedside imaging modalities enhance pathophysiology-based comprehensive understanding of shock states and the response to therapy. The current editions of major textbooks in the primary specialties--in which clinicians routinely encounter patients in shock--including surgery, anesthesia, emergency medicine, and internal medicine continue to incorporate traditional (conventional) descriptions of shock that use well-described (but potentially misleading) intravascular pressures to classify shock states. Reliance on such intravascular pressure measurements is not as helpful as newer "dynamic" functional measures including ultrasonography to both better assess volume responsiveness and biventricular cardiac function. This review thus emphasizes the application of current functional hemodynamics and ultrasonography to the diagnosis and management of shock as a contrast to conventional "static" pressure-based measures.

  19. Transmission and Emission of Solar Energetic Particles in Semi-transparent Shocks

    NASA Astrophysics Data System (ADS)

    Kocharov, Leon; Laitinen, Timo; Usoskin, Ilya; Vainio, Rami

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  20. Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    2004-01-01

    A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.

  1. Thermodynamic Model of Aluminum Combustion in SDF Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, . L

    2006-06-19

    Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.

  2. Internal Energy Transfer and Dissociation Model Development using Accelerated First-Principles Simulations of Hypersonic Flow Features

    DTIC Science & Technology

    2013-07-09

    through a potential energy surface (PES), such as the simple Lennard - Jones (LJ) PES [23] shown in the inset of Fig. 3, which is given by the following...a  normal  shock  wave.  Inset  shows  a   simple   Lennard -­‐ Jones  (LJ)   potential  energy  surface  (PES)  dictating...model input into such simulations is the potential energy surface (PES) that governs individual atomic interaction forces, developed by chemists and

  3. Heat transfer phase change paint tests of 0.0175-scale models (nos. 21-0 and 46-0) of the Rockwell International space shuttle orbiter in the AEDC tunnel B hypersonic wind tunnel (test OH25A)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.

    1975-01-01

    Tests were conducted in a hypersonic wind tunnel using various truncated space shuttle orbiter configurations in an attempt to establish the optimum model size for other tests examining body shock-wing leading edge interference effects. The tests were conducted at Mach number 8 using the phase change paint technique. A test description, tabulated data, and tracings of isotherms made from photographs taken during the test are presented.

  4. Reconnection Remnants in the Magnetic Cloud of October 18-19, 1995: A Shock, Monochromatic Wave, Heat Flux Dropout and Energetic Ion Beam

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Szabo, A.; Farrell, W.; Slavin, J. A.; Lepping, R. P.; Fitzenreiter, R.; Thompson, B.; Hamilton, D. C.; Gloeckler, G.; Ho, G. C.

    2000-01-01

    Evidence is presented that the WIND spacecraft observed particle and field signatures on October 18-19, 1995 due to reconnection near the footpoints of a magnetic cloud (i.e., between 1 and 5 solar radii). These signatures include: (1) an internal shock traveling approximately along the axis of the magnetic cloud, (2) a simple compression of the magnetic field consistent with the footpoint magnetic fields being thrust outwards at speeds much greater than the solar wind speed, (3) an electron heat flux dropout occurring within minutes of the shock indicating a topological change resulting from disconnection from the solar surface, (4) a very cold 5 keV proton beam and (5) an associated monochromatic wave. We expect that, given observations of enough magnetic clouds, Wind and other spacecraft will see signatures similar to the ones reported here indicating reconnection. However, these observations require the spacecraft to be fortuitously positioned to observe the passing shock and other signatures and will therefore be associated with only a small fraction of magnetic clouds. Consistent with this, a few magnetic clouds observed by Wind have been found to possess internal shock waves.

  5. Transition Research with Temperature-Sensitive Paints in the Boeing/AFOSR Mach-6 Quiet Tunnel

    DTIC Science & Technology

    2011-06-01

    flow. This is because the presence of a model in the wind tunnel affects the flowfield due to the presence of a bow shock . This shock impinges on the...model, it was found that the bow shock reflected off the tunnel walls and impinged on the aft end of the model. Besides this region, when the model...reflected bow shock from impinging on the model. Transition occurred on the lee ray on the smaller model. Forward-facing and aft-facing steps on the model

  6. Flowfield analysis for successive oblique shock wave-turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Sun, C. C.; Childs, M. E.

    1976-01-01

    A computation procedure is described for predicting the flowfields which develop when successive interactions between oblique shock waves and a turbulent boundary layer occur. Such interactions may occur, for example, in engine inlets for supersonic aircraft. Computations are carried out for axisymmetric internal flows at M 3.82 and 2.82. The effect of boundary layer bleed is considered for the M 2.82 flow. A control volume analysis is used to predict changes in the flow field across the interactions. Two bleed flow models have been considered. A turbulent boundary layer program is used to compute changes in the boundary layer between the interactions. The results given are for flows with two shock wave interactions and for bleed at the second interaction site. In principle the method described may be extended to account for additional interactions. The predicted results are compared with measured results and are shown to be in good agreement when the bleed flow rate is low (on the order of 3% of the boundary layer mass flow), or when there is no bleed. As the bleed flow rate is increased, differences between the predicted and measured results become larger. Shortcomings of the bleed flow models at higher bleed flow rates are discussed.

  7. On a Stochastic Failure Model under Random Shocks

    NASA Astrophysics Data System (ADS)

    Cha, Ji Hwan

    2013-02-01

    In most conventional settings, the events caused by an external shock are initiated at the moments of its occurrence. In this paper, we study a new classes of shock model, where each shock from a nonhomogeneous Poisson processes can trigger a failure of a system not immediately, as in classical extreme shock models, but with delay of some random time. We derive the corresponding survival and failure rate functions. Furthermore, we study the limiting behaviour of the failure rate function where it is applicable.

  8. Coagulopathy and shock on admission is associated with mortality for children with traumatic injuries at combat support hospitals.

    PubMed

    Patregnani, Jason T; Borgman, Matthew A; Maegele, Marc; Wade, Charles E; Blackbourne, Lorne H; Spinella, Philip C

    2012-05-01

    In adults, early traumatic coagulopathy and shock are both common and independently associated with mortality. There are little data regarding both the incidence and association of early coagulopathy and shock on outcomes in pediatric patients with traumatic injuries. Our objective was to determine whether coagulopathy and shock on admission are independently associated with mortality in children with traumatic injuries. A retrospective review of the Joint Theater Trauma Registry from U.S. combat support hospitals in Iraq and Afghanistan from 2002 to 2009 was performed. Coagulopathy was defined as an international normalized ratio of ≥1.5 and shock as a base deficit of ≥6. Laboratory values were measured on admission. Primary outcome was inhospital mortality. Univariate analyses were performed on all admission variables followed by reverse stepwise multivariate logistic regression to determine independent associations. Combat support hospitals in Iraq and Afghanistan. Patients <18 yrs of age with Injury Severity Score, international normalized ratio, base deficit, and inhospital mortality were included. Of 1998 in the cohort, 744 (37%) had a complete set of data for analysis. None. The incidence of early coagulopathy and shock were 27% and 38.3% and associated with mortality of 22% and 16.8%, respectively. After multivariate logistic regression, early coagulopathy had an odds ratio of 2.2 (95% confidence interval 1.1-4.5) and early shock had an odds ratio of 3.0 (95% confidence interval 1.2-7.5) for mortality. Patients with coagulopathy and shock had an odds ratio of 3.8 (95% confidence interval 2.0-7.4) for mortality. In children with traumatic injuries treated at combat support hospitals, coagulopathy and shock on admission are common and independently associated with a high incidence of inhospital mortality. Future studies are needed to determine whether more rapid and accurate methods of measuring coagulopathy and shock as well as if early goal-directed treatment of these states can improve outcomes in children.

  9. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Brett; Song, Bo; Smith, Scott

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  10. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE PAGES

    Sanborn, Brett; Song, Bo; Smith, Scott

    2015-12-29

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  11. Terminal-shock and restart control of a Mach 2.5, axisymmetric, mixed compression inlet with 40 percent internal contraction. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1974-01-01

    Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.

  12. Conical Shock-Strength Determination on a Low-Sonic-Boom Aircraft Model by Doppler Global Velocimetry

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; Meyers, James F.

    2011-01-01

    A nonintrusive technique Doppler global velocimetry (DGV) was used to determine conical shock strengths on a supersonic-cruise low-boom aircraft model. The work was performed at approximately Mach 2 in the Unitary Plan Wind Tunnel. Water is added to the wind tunnel flow circuit, generating small ice particles used as seed particles for the laser-based velocimetry. DGV generates two-dimensional (2-D) maps of three components of velocity that span the oblique shock. Shock strength (i.e. fractional pressure increase) is determined from observation of the flow deflection angle across the shock in combination with the standard shock relations. Although DGV had conveniently and accurately determined shock strengths from the homogenous velocity fields behind 2-D planar shocks, the inhomogeneous 3-D velocity fields behind the conical shocks presented additional challenges. Shock strength measurements for the near-field conical nose shock were demonstrated and compared with previously-published static pressure probe data for the same model in the same wind tunnel. Fair agreement was found between the two sets of results.

  13. Acceleration of Particles Near Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2012-12-01

    Collisionless shock waves, for example, near planetary bodies or driven by coronal mass ejections, are a key source of energetic particles in the heliosphere. When the solar wind hits Earth's bow shock, some of the incident particles get reflected back towards the Sun and are accelerated in the process. Reflected ions are responsible for the creation of a turbulent foreshock in quasi-parallel regions of Earth's bow shock. We present first results of foreshock macroscopic structure and of particle distributions upstream of Earth's bow shock, obtained with a new 2.5-dimensional self-consistent diffusive shock acceleration model. In the model particles' pitch angle scattering rates are calculated from Alfvén wave power spectra using quasilinear theory. Wave power spectra in turn are modified by particles' energy changes due to the scatterings. The new model has been implemented on massively parallel simulation platform Corsair. We have used an earlier version of the model to study ion acceleration in a shock-shock interaction event (Hietala, Sandroos, and Vainio, 2012).

  14. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  15. Shocks and currents in stratified atmospheres with a magnetic null point

    NASA Astrophysics Data System (ADS)

    Tarr, Lucas A.; Linton, Mark

    2017-08-01

    We use the resistive MHD code LARE (Arber et al 2001) to inject a compressive MHD wavepacket into a stratified atmosphere that has a single magnetic null point, as recently described in Tarr et al 2017. The 2.5D simulation represents a slice through a small ephemeral region or area of plage. The strong gradients in field strength and connectivity related to the presence of the null produce substantially different dynamics compared to the more slowly varying fields typically used in simple sunspot models. The wave-null interaction produces a fast mode shock that collapses the null into a current sheet and generates a set of outward propagating (from the null) slow mode shocks confined to field lines near each separatrix. A combination of oscillatory reconnection and shock dissipation ultimately raise the plasma's internal energy at the null and along each separatrix by 25-50% above the background. The resulting pressure gradients must be balanced by Lorentz forces, so that the final state has contact discontinuities along each separatrix and a persistent current at the null. The simulation demonstrates that fast and slow mode waves localize currents to the topologically important locations of the field, just as their Alfvenic counterparts do, and also illustrates the necessity of treating waves and reconnection as coupled phenomena.

  16. International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.

  17. Unsteady Plasma Ejections from Hollow Accretion Columns of Galactic Neutron Stars as a Trigger for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    1995-09-01

    We propose a model of gamma-ray bursts (GRBs) based on close Galactic neutron stars with accretion disks. We outline a simple mechanism of unsteady plasma ejections during episodic accretion events. The relative kinetic energy of ejected blobs can be converted into gamma-rays by internal shocks. The beaming of gamma-ray emission can be responsible for the observed isotropic angular distribution of GRBs.

  18. Ensuring animal welfare while meeting scientific aims using a murine pneumonia model of septic shock.

    PubMed

    Huet, Olivier; Ramsey, Debbie; Miljavec, Sandra; Jenney, Adam; Aubron, Cecile; Aprico, Andrea; Stefanovic, Nada; Balkau, Beverley; Head, Geoff A; de Haan, Judy B; Chin-Dusting, Jaye P F

    2013-06-01

    With animal models, death as an intentional end point is ethically unacceptable. However, in the study of septic shock, death is still considered the only relevant end point. We defined eight humane end points into four stages of severity (from healthy to moribund) and used to design a clinically relevant scoring tool, termed "the mouse clinical assessment score for sepsis" (M-CASS). The M-CASS was used to enable a consistent approach to the assessment of disease severity. This allowed an ethical and objective assessment of disease after which euthanasia was performed, instead of worsening suffering. The M-CASS displayed a high internal consistency (Cronbach α = 0.97) with a high level of agreement and an intraclass correlation coefficient equal to 0.91. The plasma levels of cytokines and markers of oxidative stress were all associated with the M-CASS score (Kruskal-Wallis test, P < 0.05). The M-CASS allows tracking of disease progression and animal welfare requirements.

  19. Optimal Mission Abort Policy for Systems Operating in a Random Environment.

    PubMed

    Levitin, Gregory; Finkelstein, Maxim

    2018-04-01

    Many real-world critical systems, e.g., aircrafts, manned space flight systems, and submarines, utilize mission aborts to enhance their survivability. Specifically, a mission can be aborted when a certain malfunction condition is met and a rescue or recovery procedure is then initiated. For systems exposed to external impacts, the malfunctions are often caused by the consequences of these impacts. Traditional system reliability models typically cannot address a possibility of mission aborts. Therefore, in this article, we first develop the corresponding methodology for modeling and evaluation of the mission success probability and survivability of systems experiencing both internal failures and external shocks. We consider a policy when a mission is aborted and a rescue procedure is activated upon occurrence of the mth shock. We demonstrate the tradeoff between the system survivability and the mission success probability that should be balanced by the proper choice of the decision variable m. A detailed illustrative example of a mission performed by an unmanned aerial vehicle is presented. © 2017 Society for Risk Analysis.

  20. Application of cosmic-ray shock theories to the Cygnus Loop - an alternative model

    NASA Astrophysics Data System (ADS)

    Boulares, Ahmed; Cox, Donald P.

    1988-10-01

    Steady state cosmic-ray shock models are investigated in light of observations of the Cygnus Loop supernova remnant. In this work the authors find that the model of Völk, Drury, and McKenzie, in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of Cygnus Loop shocks. The waves heat the gas substantially in the cosmic-ray precursor, in addition to the usual heating in the (possibly weak) gas shock. The model is used to deduce upstream densities and shock velocities using known quantities for Cygnus Loop shocks. Compared to the usual pure gas shock interpretation, it is found that lower densities and approximately 3 times higher velocities are required. If the cosmic-ray models are valid, this could significantly alter our understanding of the Cygnus Loop's distance and age and of the energy released during the initial explosion.

  1. Possible Ceres bow shock surfaces based on fluid models

    NASA Astrophysics Data System (ADS)

    Jia, Y.-D.; Villarreal, M. N.; Russell, C. T.

    2017-05-01

    The hot electron beams that Dawn detected at Ceres can be explained by fast-Fermi acceleration at a temporary bow shock. A shock forms when the solar wind encounters a temporary atmosphere, similar to a cometary coma. We use a magnetohydrodynamic model to quantitatively reproduce the 3-D shock surface at Ceres and deduce the atmosphere characteristics that are required to create such a shock. Our most simple model requires about 1.8 kg/s, or 6 × 1025/s water vapor production rate to form such a shock. Such an estimate relies on characteristics of the solar wind-Ceres interaction. We present several case studies to show how these conditions affect our estimate. In addition, we contrast these cases with the smaller and narrower shock caused by a subsurface induction. Our multifluid model reveals the asymmetry introduced by the large gyroradius of the heavy pickup ions and further constrains the IMF direction during the events.

  2. Meteoritic and other constraints on the internal structure and impact history of small asteroids

    NASA Astrophysics Data System (ADS)

    Scott, Edward R. D.; Wilson, Lionel

    2005-03-01

    Studies of the internal structure of asteroids, which are crucial for understanding their impact history and for hazard mitigation, appear to be in conflict for the S-type asteroids, Eros, Gaspra, and Ida. Spacecraft images and geophysical data show that they are fractured, coherent bodies, whereas models of catastrophic asteroidal impacts, family and satellite formation, and studies of asteroid spin rates, and other diverse properties of asteroids and planetary craters suggest that such asteroids are gravitationally bound aggregates of rubble. These conflicting views may be reconciled if 10-50 km S-type asteroids formed as rubble piles, but were later consolidated into coherent bodies. Many meteorites are breccias that testify to a long history of impact fragmentation and consolidation by alteration, metamorphism, igneous and impact processes. Ordinary chondrites, which are the best analogs for S asteroids, are commonly breccias. Some may have formed in cratering events, but many appear to have formed during disruption and reaccretion of their parent asteroids. Some breccias were lithified during metamorphism, and a few were lithified by injected impact melt, but most are regolith and fragmental breccias that were lithified by mild or moderate shock, like their lunar analogs. Shock experiments show that porous chondritic powders can be consolidated during mild shock by small amounts of silicate melt that glues grains together, and by friction and pressure welding of silicate and metallic Fe,Ni grains. We suggest that the same processes that converted impact debris into meteorite breccias also consolidated asteroidal rubble. Internal voids would be partly filled with regolith by impact-induced seismic shaking. Consolidation of this material beneath large craters would lithify asteroidal rubble to form a more coherent body. Fractures on Ida that were created by antipodal impacts and are concentrated in and near large craters, and small positive gravity anomalies associated with the Psyche and Himeros craters on Eros, are consistent with this concept. Spin data suggest that smaller asteroids 0.6-6 km in size are unconsolidated rubble piles. C-type asteroids, which are more porous than S-types, and their analogs, the volatile-rich carbonaceous chondrites, were probably not lithified by shock.

  3. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

    PubMed

    Rhodes, Andrew; Evans, Laura E; Alhazzani, Waleed; Levy, Mitchell M; Antonelli, Massimo; Ferrer, Ricard; Kumar, Anand; Sevransky, Jonathan E; Sprung, Charles L; Nunnally, Mark E; Rochwerg, Bram; Rubenfeld, Gordon D; Angus, Derek C; Annane, Djillali; Beale, Richard J; Bellinghan, Geoffrey J; Bernard, Gordon R; Chiche, Jean-Daniel; Coopersmith, Craig; De Backer, Daniel P; French, Craig J; Fujishima, Seitaro; Gerlach, Herwig; Hidalgo, Jorge Luis; Hollenberg, Steven M; Jones, Alan E; Karnad, Dilip R; Kleinpell, Ruth M; Koh, Younsuk; Lisboa, Thiago Costa; Machado, Flavia R; Marini, John J; Marshall, John C; Mazuski, John E; McIntyre, Lauralyn A; McLean, Anthony S; Mehta, Sangeeta; Moreno, Rui P; Myburgh, John; Navalesi, Paolo; Nishida, Osamu; Osborn, Tiffany M; Perner, Anders; Plunkett, Colleen M; Ranieri, Marco; Schorr, Christa A; Seckel, Maureen A; Seymour, Christopher W; Shieh, Lisa; Shukri, Khalid A; Simpson, Steven Q; Singer, Mervyn; Thompson, B Taylor; Townsend, Sean R; Van der Poll, Thomas; Vincent, Jean-Louis; Wiersinga, W Joost; Zimmerman, Janice L; Dellinger, R Phillip

    2017-03-01

    To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012". A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.

  4. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

    PubMed

    Rhodes, Andrew; Evans, Laura E; Alhazzani, Waleed; Levy, Mitchell M; Antonelli, Massimo; Ferrer, Ricard; Kumar, Anand; Sevransky, Jonathan E; Sprung, Charles L; Nunnally, Mark E; Rochwerg, Bram; Rubenfeld, Gordon D; Angus, Derek C; Annane, Djillali; Beale, Richard J; Bellinghan, Geoffrey J; Bernard, Gordon R; Chiche, Jean-Daniel; Coopersmith, Craig; De Backer, Daniel P; French, Craig J; Fujishima, Seitaro; Gerlach, Herwig; Hidalgo, Jorge Luis; Hollenberg, Steven M; Jones, Alan E; Karnad, Dilip R; Kleinpell, Ruth M; Koh, Younsuck; Lisboa, Thiago Costa; Machado, Flavia R; Marini, John J; Marshall, John C; Mazuski, John E; McIntyre, Lauralyn A; McLean, Anthony S; Mehta, Sangeeta; Moreno, Rui P; Myburgh, John; Navalesi, Paolo; Nishida, Osamu; Osborn, Tiffany M; Perner, Anders; Plunkett, Colleen M; Ranieri, Marco; Schorr, Christa A; Seckel, Maureen A; Seymour, Christopher W; Shieh, Lisa; Shukri, Khalid A; Simpson, Steven Q; Singer, Mervyn; Thompson, B Taylor; Townsend, Sean R; Van der Poll, Thomas; Vincent, Jean-Louis; Wiersinga, W Joost; Zimmerman, Janice L; Dellinger, R Phillip

    2017-03-01

    To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012." A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.

  5. Inlets, ducts, and nozzles

    NASA Technical Reports Server (NTRS)

    Abbott, John M.; Anderson, Bernhard H.; Rice, Edward J.

    1990-01-01

    The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described.

  6. Modeling the effect of orientation on the shock response of a damageable composite material

    NASA Astrophysics Data System (ADS)

    Lukyanov, Alexander A.

    2012-10-01

    A carbon fiber-epoxy composite (CFEC) shock response in the through thickness orientation and in one of the fiber directions is significantly different. The hydrostatic pressure inside anisotropic materials depends on deviatoric strain components as well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the volumetric straining in the material. Thus, a new basis is required to couple the anisotropic material stiffness and strength with anisotropic shock effects, associated energy dependence, and damage softening process. This article presents these constitutive equations for shock wave modeling of a damageable carbon fiber-epoxy composite. Modeling the effect of fiber orientation on the shock response of a CFEC has been performed using a generalized decomposition of the stress tensor [A. A. Lukyanov, Int. J. Plast. 24, 140 (2008)] and Mie-Grüneisen's extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The three-wave structure (non-linear anisotropic, fracture, and isotropic elastic waves) that accompanies damage softening process is also proposed in this work for describing CFEC behavior under shock loading which allows to remove any discontinuities observed in the linear case for relation between shock velocities and particle velocities [A. A. Lukyanov, Eur. Phys. J. B 74, 35 (2010)]. Different Hugoniot stress levels are obtained when the material is impacted in different directions; their good agreement with the experiment demonstrates that the anisotropic equation of state, strength, and damage model are adequate for the simulation of shock wave propagation within damageable CFEC material. Remarkably, in the through thickness orientation, the material behaves similar to a simple polymer whereas in the fiber direction, the proposed in this paper model explains an initial ramp, before at sufficiently high stresses, and a much faster rising shock above it. The numerical results for shock wave modeling using proposed constitutive equations are presented, discussed, and future studies are outlined.

  7. A critical analysis of shock models for chondrule formation

    NASA Astrophysics Data System (ADS)

    Stammler, Sebastian M.; Dullemond, Cornelis P.

    2014-11-01

    In recent years many models of chondrule formation have been proposed. One of those models is the processing of dust in shock waves in protoplanetary disks. In this model, the dust and the chondrule precursors are overrun by shock waves, which heat them up by frictional heating and thermal exchange with the gas. In this paper we reanalyze the nebular shock model of chondrule formation and focus on the downstream boundary condition. We show that for large-scale plane-parallel chondrule-melting shocks the postshock equilibrium temperature is too high to avoid volatile loss. Even if we include radiative cooling in lateral directions out of the disk plane into our model (thereby breaking strict plane-parallel geometry) we find that for a realistic vertical extent of the solar nebula disk the temperature decline is not fast enough. On the other hand, if we assume that the shock is entirely optically thin so that particles can radiate freely, the cooling rates are too high to produce the observed chondrules textures. Global nebular shocks are therefore problematic as the primary sources of chondrules.

  8. Ion-acoustic shocks with reflected ions: modelling and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Liseykina, T. V.; Dudnikova, G. I.; Vshivkov, V. A.; Malkov, M. A.

    2015-10-01

    > Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles, remains incomplete. We present here the results of numerical modelling of an ion-acoustic collisionless shock based on the one-dimensional kinetic approximation for both electrons and ions with a real mass ratio. Special emphasis is paid to the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, the velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.

  9. [Lethal anaphylactic shock model induced by human mixed serum in guinea pigs].

    PubMed

    Ren, Guang-Mu; Bai, Ji-Wei; Gao, Cai-Rong

    2005-08-01

    To establish an anaphylactic shock model induced by human mixed serum in guinea pigs. Eighteen guinea pigs were divided into two groups: sensitized and control, The sensitized group were immunized intracutaneously with human mixed serum and then induced by endocardiac injection after 3 weeks. Symptoms of anaphylactic shock appeared in the sensitized group. The level of serum IgE were increased in the sensitized group significantly. An animal model of anaphylactic shock wer established successfully. It provide a tool for both forensic study and anaphylactic shock therapy.

  10. Grain Destruction in a Supernova Remnant Shock Wave

    NASA Technical Reports Server (NTRS)

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  11. Multiscale modeling of shock wave localization in porous energetic material

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.

    2018-01-01

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

  12. New Probe of Early Phases of Jet Formation and Evolution using Stellar Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    Ranga Reddy Pasham, Dheeraj; van Velzen, Sjoert

    2018-01-01

    The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an outflow interacting with the circumnuclear medium. Until now, evidence for the internal emission mechanism has been lacking; nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. I will talk about a result that presents a challenge to external emission models: we discovered a cross-correlation between the soft X-ray (0.3-1 keV) and 16 GHz radio flux of Rosetta Stone tidal disruption flare ASASSN-14li. Variability features in the X-ray light curve appear again in the radio light curve, but after a time lag of about 13 days. This demonstrates that soft X-ray emitting accretion disk regulates the radio emission. This coupling appears to be inconsistent with all previous external emission models for this source but is naturally explained if the radio emission originates from a freely expanding jet. I will show that emission internal to an adiabatically expanding jet can also reproduce the observed evolution of the radio spectral energy distribution. Furthermore, both the correlation between X-ray and radio luminosity as well as our radio spectral modeling imply an approximately linear coupling between the accretion rate and jet power. I will also discuss how future tidal disruption events can help us understand how jets form and evolve in general.

  13. Discovery of a Time Lag between the Soft X-Ray and Radio Emission of the Tidal Disruption Flare ASASSN-14li: Evidence for Linear Disk–Jet Coupling

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj R.; van Velzen, Sjoert

    2018-03-01

    The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an outflow interacting with the circumnuclear medium. Until now, evidence for the internal emission mechanism has been lacking; nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. Here we report a result that presents a challenge to external emission models: we discovered a cross-correlation between the soft X-ray (0.3–1 keV) and 16 GHz radio flux of the tidal disruption flare ASASSN-14li. Variability features in the X-ray light curve appear again in the radio light curve, but after a time lag of {12}-5+6 days. This demonstrates that the soft X-ray-emitting accretion disk regulates the radio emission. This coupling appears to be inconsistent with all previous external emission models for this source but is naturally explained if the radio emission originates from a freely expanding jet. We show that emission internal to an adiabatically expanding jet can also reproduce the observed evolution of the radio spectral energy distribution. Furthermore, both the correlation between X-ray and radio luminosity as well as our radio spectral modeling imply an approximately linear coupling between the accretion rate and jet power.

  14. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    DTIC Science & Technology

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  15. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  16. Accretion shock geometries in the magnetic variables

    NASA Technical Reports Server (NTRS)

    Stockman, H. S.

    1988-01-01

    The first self consistent shock models for the AM Herculis-type systems successfully identified the dominant physical processes and their signatures. These homogenous shock models predict unpolarized, Rayleigh-Jeans optical spectra with sharp cutoffs and rising polarizations as the shocks become optically thin in the ultraviolet. However, the observed energy distributions are generally flat with intermediate polarizations over a broad optical band. These and other observational evidence support a non-homogenous accretion profile which may extend over a considerable fraction of the stellar surface. Both the fundamental assumptions underlying the canonical 1-D shock model and the extension of this model to inhomogenous accretion shocks were identified, for both radial and linear structures. The observational evidence was also examined for tall shocks and little evidence was found for relative shock heights in excess of h/R(1) greater than or equal to 0.1. For several systems, upper limits to the shock height can be obtained from either x ray or optical data. These lie in the region h/R(1) is approximately 0.01 and are in general agreement with the current physical picture for these systems. The quasi-periodic optical variations observed in several magnetic variables may eventually prove to be a major aid in further understanding their accretion shock geometries.

  17. Measurements and predictions of flyover and static noise of an afterburning turbofan engine in an F-111 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.

    1979-01-01

    The noise of the TF30 afterburning turbofan engine in an F-111 airplane was determined from static (ground) and flyover tests. Exhaust temperatures and velocity profiles were measured for a range of power settings. Comparisons were made between predicted and measured jet mixing, internal, and shock noise. It was found that the noise produced at static conditions was dominated by jet mixing noise, and was adequately predicted by current methods. The noise produced during flyovers exhibited large contributions from internally generated noise in the forward arc. For flyovers with the engine at nonafterburning power, the internal noise, shock noise, and jet mixing noise were accurately predicted. During flyovers with afterburning power settings, however, additional internal noise believed to be due to the afterburning process was evident; its level was as much as 8 decibels above the nonafterburning internal noise.

  18. Regularized Moment Equations and Shock Waves for Rarefied Granular Gas

    NASA Astrophysics Data System (ADS)

    Reddy, Lakshminarayana; Alam, Meheboob

    2016-11-01

    It is well-known that the shock structures predicted by extended hydrodynamic models are more accurate than the standard Navier-Stokes model in the rarefied regime, but they fail to predict continuous shock structures when the Mach number exceeds a critical value. Regularization or parabolization is one method to obtain smooth shock profiles at all Mach numbers. Following a Chapman-Enskog-like method, we have derived the "regularized" version 10-moment equations ("R10" moment equations) for inelastic hard-spheres. In order to show the advantage of R10 moment equations over standard 10-moment equations, the R10 moment equations have been employed to solve the Riemann problem of plane shock waves for both molecular and granular gases. The numerical results are compared between the 10-moment and R10-moment models and it is found that the 10-moment model fails to produce continuous shock structures beyond an upstream Mach number of 1 . 34 , while the R10-moment model predicts smooth shock profiles beyond the upstream Mach number of 1 . 34 . The density and granular temperature profiles are found to be asymmetric, with their maxima occurring within the shock-layer.

  19. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy.

    PubMed

    Freund, J B; Shukla, R K; Evan, A P

    2009-11-01

    Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid "tissue." A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves.

  20. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy

    PubMed Central

    Freund, J. B.; Shukla, R. K.; Evan, A. P.

    2009-01-01

    Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid “tissue.” A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves. PMID:19894850

  1. Detonation Propagation in Slabs and Axisymmetric Rate Sticks

    NASA Astrophysics Data System (ADS)

    Romick, Christopher; Aslam, Tariq

    Insensitive high explosives (IHE) have many benefits; however, these IHEs exhibit longer reaction zones than more conventional high explosives (HE). This makes IHEs less ideal explosives and more susceptible to edge effects as well as other performance degradation issues. Thus, there is a resulting reduction in the detonation speed within the explosive. Many HE computational models, e. g. WSD, SURF, CREST, have shock-dependent reaction rates. This dependency places a high value on having an accurate shock speed. In the common practice of shock-capturing, there is ambiguity in the shock-state due to smoothing of the shock-front. Moreover, obtaining an accurate shock speed with shock-capturing becomes prohibitively computationally expensive in multiple dimensions. The use of shock-fitting removes the ambiguity of the shock-state as it is one of the boundaries. As such, the required resolution for a given error in the detonation speed is less than with shock-capturing. This allows for further insight into performance degradation. A two-dimensional shock-fitting scheme has been developed for unconfined slabs and rate sticks of HE. The HE modeling is accomplished by Euler equations utilizing several models with single-step irreversible kinetics in slab and rate stick geometries. Department of Energy - LANL.

  2. Modeling multiscale evolution of numerous voids in shocked brittle material.

    PubMed

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  3. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  4. Studies on High Energy Radiation Mechanisms and Gamma-Ray Burst Prompt Emissions

    NASA Astrophysics Data System (ADS)

    Zhang, B.

    2014-07-01

    Gamma-Ray Bursts (GRBs) are the most violent high-energy explosion in the universe. They are randomly happened, pulse-like phenomena with short durations. Since its discovery in 1960's by Vela satellite, GRBs have become a hot topic for astrophysical research. In 1997 the BeppoSAX satellite discovered afterglows of GRBs, and then helped to measure GRB redshifts. Thus it was found that GRBs are the events occurred at cosmological distances. Now it is widely accepted that the long bursts with durations longer than 2 s are from the collapsing massive stars, while the short bursts with durations less than 2 s are results of the merging compact binaries. By studying GRBs, the physical processes in ultrarelativistic and very high energy conditions can be investigated, and the researches on other fields, including constraining the cosmological models, can also get helped. The goal of this thesis is to present some discussions on possible radiation mechanisms and prompt light curves of GRBs. Since radiation mechanisms and prompt emissions are related to GRB central engines directly, studying these topics can help us to get a better understanding of some properties of the central engine. In Chapter 1, we review the discovery and observations of GRBs, presenting major achievements from major GRB-monitoring satellites including Compton Gamma-ray Observatory, BeppoSAX satellite, Swift satellite, as well as the latest Fermi Gamma-ray Space Telescope. The multi-wavelength properties of prompt emission as well as afterglows of GRBs are also summarized in Chapter 1. In Chapter 2 the current GRB standard model is presented. According to standard model, a fireball is ejected by the central engine. The internal shock is produced by collisions between various shells with different velocities inside the fireball. The directional kinetic energy of the fireball is then converted to internal energy, and finally the non-thermal radiation (the prompt emission) is produced by internal shocks. And the interaction between the fireball and the outer medium gives rise to external forward and reverse shocks, producing the observed afterglow. In the framework of standard model, we introduce the properties of the fireball, the evolution of shocks, some possible radiation mechanisms, as well as some post-standard effects. Also we present a brief introduction of central engines. And since the internal shock model for prompt emission has some problems hard to be solved, we also introduce some possible alternatives, including the electromagnetic model, the turbulent model, as well as the Internal-Collision-induced Magnetic Reconnection and Turbulence (ICMART) model. In Chapter 3, we present the spectrum of synchro-curvature self-Compton (SCSC) radiation of relativistic electrons with a power-law distribution of Lorentz factors. Synchro-curvature radiation from relativistic electrons moving around curved magnetic field lines and its self-Compton radiation are possible radiation mechanisms in the GRB enviroment. We find that the resulting SCSC spectrum is significantly different from that of either synchrotron self-Compton or curvature self-Compton radiation if both the curvature radius of the magnetic field and the cyclotron radius of the electrons are within some proper ranges. The effects of electrons' cooling and drifting, the low-energy self absorption in seed spectra, and the Klein-Nishina cutoff are also discussed, in order to get an accurate picture. We take GRBs as our example environment for discussions. The results would be considered as a universal approach of the self-Compton emission of relativistic electrons moving in curved magnetic fields, and thus could be applied to many astrophysical phenomena, including active galactic nuclei (AGNs), pulsars, as well as GRBs. In Chapter 4, we simulate the prompt emission light curves of GRBs within the framework of the ICMART model. This model is applied to GRBs with a moderately-high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately-high-σ ejecta. The run-away growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events fundamentally driven by the erratic GRB central engine activity. Allowing variations of model parameters, including initial Lorentz factor, orientation and size distributions of reconnection regions, jet opening angle, radius of emission region, as well as observing energy band, one is able to reproduce a variety of light curves and the power density spectra (PDS) as observed. We also discuss the effects of these parameters on PDS . Finally in Chapter 5 we present our discussions, and list some remaining problems to be solved, as well as observing instruments to be commissioned in the future. We also present calculations of synchro-curvature radiation in Appendix A, and some discussions on ICMART model in Appendix B.

  5. A computer program for the calculation of the flow field in supersonic mixed-compression inlets at angle of attack using the three-dimensional method of characteristics with discrete shock wave fitting

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.; Bishop, A. R.

    1978-01-01

    The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.

  6. Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri; Gardner, Brian

    2011-12-01

    The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emissions in the framework of internal shock model. This model takes into account the evolution of quantities such as densities of colliding shells, and fraction of kinetic energy transferred to electrons and to induced magnetic field. We also extend this formulation by considering the presence of a precessing external magnetic field. These simulations are very realistic and present significant improvement with respect to previous phenomenological GRB simulations. They reproduce light curves of separate peaks of real GRBs and variety of spectral slopes at E > Epeak observed by the Fermi-LAT instrument. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energy structure of the plasma in the shock front. Spectral slopes of simulated bursts at E << Epeak are consistent with theoretical prediction and at E < Epeak can be flatter if the spectrum of electrons is roughly flat or has a shallow slope at low energies. The observed flat spectra at soft gamma-ray and hard x-ray bands is the evidence that there is a significant contribution at E < Epeak from lower Lorentz factor wing of electron distribution which have a roughly random acceleration rather than being thermal. This means that the state of matter in the jet at the time of ejection is most probably nonthermal. As for the effect of a precessing external magnetic field, we show that due to the fast variation of other quantities, its signature in the Power Distribution Spectrum (PDS) is significantly suppressed and only when the duration of the burst is few times longer than the oscillation period it can be detected, otherwise either it is confused with the Poisson noise or with intrinsic variations of the emission. Therefore, low significant oscillations observed in the PDS of GRB 090709a are most probably due to a precessing magnetic field.

  7. Two-Fluid Description of Collisionless Perpendicular Shocks

    NASA Astrophysics Data System (ADS)

    Gomez, D. O.; Morales, L. F.; Dmitruk, P.; Bertucci, C.

    2017-12-01

    Collisionless shocks are ubiquitous in space physics and astrophysics, such as the bow shocks formed by the solar wind in front of planets, the termination shock at the heliospheric boundary or the supernova shock fronts expanding in the interstellar plasma. Although the one-fluid magnetohydrodynamic framework provides a reasonable description of the large scale structures of the upstream and downstream plasmas, it falls short of providing an adequate description of the internal structure of the shock. A more comprehensive description of the inner and outer features of collisionless shocks would require the use of kinetic theory. Nonetheless, in the present work we show that a complete two-fluid framework (considering the role of both ions and electrons in the dynamics) can properly capture some of the features observed in real shocks. For the specific case of perpendicular shocks, i.e. cases in which the magnetic field is perpendicular to the shock normal, we integrate the one-dimensional two-fluid MHD equations numerically, to describe the generation of shocks and their spatial structure along the shock normal. Starting from finite amplitude fast-magnetosonic waves, our simulations show the generation of a stationary fast-magnetosonic shock. More importantly, we show that the ramp thickness is of the order of a few electron inertial lengths. The parallel and perpendicular components of the self-consistent electric field are derived, and their role in accelerating particles is discussed.

  8. A numerical study of fundamental shock noise mechanisms. Ph.D. Thesis - Cornell Univ.

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1995-01-01

    The results of this thesis demonstrate that direct numerical simulation can predict sound generation in unsteady aerodynamic flows containing shock waves. Shock waves can be significant sources of sound in high speed jet flows, on helicopter blades, and in supersonic combustion inlets. Direct computation of sound permits the prediction of noise levels in the preliminary design stage and can be used as a tool to focus experimental studies, thereby reducing cost and increasing the probability of a successfully quiet product in less time. This thesis reveals and investigates two mechanisms fundamental to sound generation by shocked flows: shock motion and shock deformation. Shock motion is modeled by the interaction of a sound wave with a shock. During the interaction, the shock wave begins to move and the sound pressure is amplified as the wave passes through the shock. The numerical approach presented in this thesis is validated by the comparison of results obtained in a quasi-one dimensional simulation with linear theory. Analysis of the perturbation energy demonstrated for the first time that acoustic energy is generated by the interaction. Shock deformation is investigated by the numerical simulation of a ring vortex interacting with a shock. This interaction models the passage of turbulent structures through the shock wave. The simulation demonstrates that both acoustic waves and contact surfaces are generated downstream during the interaction. Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound intensity is highly directional, and that the sound pressure level increases significantly with increasing shock strength. The effect of shock strength on sound pressure level is consistent with experimental observations of shock noise, indicating that the interaction of a ring vortex with a shock wave correctly models a dominant mechanism of shock noise generation.

  9. Catching the radio flare in CTA 102. I. Light curve analysis

    NASA Astrophysics Data System (ADS)

    Fromm, C. M.; Perucho, M.; Ros, E.; Savolainen, T.; Lobanov, A. P.; Zensus, J. A.; Aller, M. F.; Aller, H. D.; Gurwell, M. A.; Lähteenmäki, A.

    2011-07-01

    Context. The blazar CTA 102 (z = 1.037) underwent a historical radio outburst in April 2006. This event offered a unique chance to study the physical properties of the jet. Aims: We used multifrequency radio and mm observations to analyze the evolution of the spectral parameters during the flare as a test of the shock-in-jet model under these extreme conditions. Methods: For the analysis of the flare we took into account that the flaring spectrum is superimposed on a quiescent spectrum. We reconstructed the latter from archival data and fitted a synchrotron self-absorbed distribution of emission. The uncertainties of the derived spectral parameters were calculated using Monte Carlo simulations. The spectral evolution is modeled by the shock-in-jet model, and the derived results are discussed in the context of a geometrical model (varying viewing angle) and shock-shock interaction Results: The evolution of the flare in the turnover frequency-turnover flux density (νm - Sm) plane shows a double peak structure. The nature of this evolution is dicussed in the frame of shock-in-jet models. We discard the generation of the double peak structure in the νm - Sm plane purely based on geometrical changes (variation of the Doppler factor). The detailed modeling of the spectral evolution favors a shock-shock interaction as a possible physical mechanism behind the deviations from the standard shock-in-jet model.

  10. Flow and Turbulence Modeling and Computation of Shock Buffet Onset for Conventional and Supercritical Airfoils

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    1998-01-01

    Flow and turbulence models applied to the problem of shock buffet onset are studied. The accuracy of the interactive boundary layer and the thin-layer Navier-Stokes equations solved with recent upwind techniques using similar transport field equation turbulence models is assessed for standard steady test cases, including conditions having significant shock separation. The two methods are found to compare well in the shock buffet onset region of a supercritical airfoil that involves strong trailing-edge separation. A computational analysis using the interactive-boundary layer has revealed a Reynolds scaling effect in the shock buffet onset of the supercritical airfoil, which compares well with experiment. The methods are next applied to a conventional airfoil. Steady shock-separated computations of the conventional airfoil with the two methods compare well with experiment. Although the interactive boundary layer computations in the shock buffet region compare well with experiment for the conventional airfoil, the thin-layer Navier-Stokes computations do not. These findings are discussed in connection with possible mechanisms important in the onset of shock buffet and the constraints imposed by current numerical modeling techniques.

  11. Probing planetary interiors: Shock compression of water to 700 GPa and 3.8 g/cc, and recent high precision Hugoniot measurements of deuterium

    NASA Astrophysics Data System (ADS)

    Knudson, Marcus

    2013-06-01

    The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.

  12. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit

    PubMed Central

    Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by 1H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a 1H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA. PMID:26565633

  13. Bugbuster: Survivability of Living Bacteria Upon Shock Compression

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Ahrens, T. J.; Bertani, L. E.; Nash, C. Z.

    2003-12-01

    Survivability of bacteria during impact events has implications both for the transport of life between planets and development of organisms on Hadean Earth and other planets during the period of heavy bombardment which ended 3.5 Gyr before the present [1]. We envision that life existed within internal rock surfaces immersed in the early ocean. We performed shock recovery experiments on live E. coli bacteria to determine survival rate vs. shock pressure. Samples of 2x107 cells were suspended in ˜10-5 l of a buffer solution (TE: a 10:1 solution of Tris and EDTA), sealed into stainless steel chambers that are impacted by 1.5 mm thick flyer plates at 670-760 m s-1 using a 20 mm gun. Recovered liquid was mixed with a nutrient broth (LB: growth medium containing tryptone, yeast extract and NaCl) and spread on a Petrie dish containing agar (a polysaccharide growth medium extracted from marine algae Rhodophyceae). Recovered samples were cultured for ˜16 hours at 37° C. In addition, sample bacteria studied under an optical microscope with DAPI fluorescent stain to verify presence of bacteria in shock recovered samples. Initial and reverberated shock pressures in H2O varied from 0.2 to 2.0 and 2.4 to 14.9 GPa respectively. We modeled the bacteria cell walls with stilbene, ρ 0=1.16 g cm-3, US=2.866+1.588uP and the cell interiors as water. Upon initial loading the net strain imposed on E. coli that just caused non-survival for 10-6 s duration stress was 2.8. If this strain is characteristic of that tolerable by E. coli, we predict that shock stresses of 25 MPa, 25 kPa and 25 Pa are sustainable upon shock loading by 0.1 ms, 0.1 s and 100 s shock duration pulses. Such shock durations are induced by 2.5 m, 2.5 km and 2,500 km diameter silicate impactors. References: [1] Maher K.A. & Stevenson D.J., Nature, 331, pp.612-614, 1988

  14. Evaluation of XHVRB for Capturing Explosive Shock Desensitization

    NASA Astrophysics Data System (ADS)

    Tuttle, Leah; Schmitt, Robert; Kittell, Dave; Harstad, Eric

    2017-06-01

    Explosive shock desensitization phenomena have been recognized for some time. It has been demonstrated that pressure-based reactive flow models do not adequately capture the basic nature of the explosive behavior. Historically, replacing the local pressure with a shock captured pressure has dramatically improved the numerical modeling approaches. Models based upon shock pressure or functions of entropy have recently been developed. A pseudo-entropy based formulation using the History Variable Reactive Burn model, as proposed by Starkenberg, was implemented into the Eulerian shock physics code CTH. Improvements in the shock capturing algorithm were made. The model is demonstrated to reproduce single shock behavior consistent with published pop plot data. It is also demonstrated to capture a desensitization effect based on available literature data, and to qualitatively capture dead zones from desensitization in 2D corner turning experiments. This models shows promise for use in modeling and simulation problems that are relevant to the desensitization phenomena. Issues are identified with the current implementation and future work is proposed for improving and expanding model capabilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching

    USGS Publications Warehouse

    Gratz, A.J.; Fisler, D.K.; Bohor, B.F.

    1996-01-01

    Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.

  16. Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Nicholas Alexander

    PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.

  17. Multiscale modeling of shock wave localization in porous energetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  18. Multiscale modeling of shock wave localization in porous energetic material

    DOE PAGES

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...

    2018-01-30

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  19. Hydrodynamic growth and decay of planar shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.

    2016-03-15

    A model for the hydrodynamic attenuation (growth and decay) of planar shocks is presented. The model is based on the approximate integration of the fluid conservation equations, and it does not require the heuristic assumptions used in some previous works. A key issue of the model is that the boundary condition on the piston surface is given by the retarded pressure, which takes into account the transit time of the sound waves between the piston and any position at the bulk of the shocked fluid. The model yields the shock pressure evolution for any given pressure pulse on the piston,more » as well as the evolution of the trajectories, velocities, and accelerations on the shock and piston surfaces. An asymptotic analytical solution is also found for the decay of the shock wave.« less

  20. Modeling magnetic field amplification in nonlinear diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Vladimirov, Andrey

    2009-02-01

    This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.

  1. Examination of Cultural Shock, Inter-Cultural Sensitivity and Willingness to Adapt

    ERIC Educational Resources Information Center

    D'Souza, Clare; Singaraju, Stephen; Halimi, Tariq; Sillivan Mort, Gillian

    2016-01-01

    Purpose: The purpose of this paper is to identify themes on international experiences that impact culture and how these findings will intervene in understanding cross-cultural training programs. Thereby an attempt is made to: evaluate cross-cultural insensitivity influences on cross-cultural shock and willingness to adapt, identify cultural…

  2. Ethical modernization: research misconduct and research ethics reforms in Korea following the Hwang affair.

    PubMed

    Kim, Jongyoung; Park, Kibeom

    2013-06-01

    The Hwang affair, a dramatic and far reaching instance of scientific fraud, shocked the world. This collective national failure prompted various organizations in Korea, including universities, regulatory agencies, and research associations, to engage in self-criticism and research ethics reforms. This paper aims, first, to document and review research misconduct perpetrated by Hwang and members of his research team, with particular attention to the agencies that failed to regulate and then supervise Hwang's research. The paper then examines the research ethics reforms introduced in the wake of this international scandal. After reviewing American and European research governance structures and policies, policy makers developed a mixed model mindful of its Korean context. The third part of the paper examines how research ethics reform is proactive (a response to shocking scientific misconduct and ensuing external criticism from the press and society) as well as reactive (identification of and adherence to national or international ethics standards). The last part deals with Korean society's response to the Hwang affair, which had the effect of a moral atomic bomb and has led to broad ethical reform in Korean society. We conceptualize this change as ethical modernization, through which the Korean public corrects the failures of a growth-oriented economic model for social progress, and attempts to create a more trustworthy and ethical society.

  3. Large eddy simulation of shock train in a convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Mahmood; Roohi, Ehsan

    2014-12-01

    This paper discusses the suitability of the Large Eddy Simulation (LES) turbulence modeling for the accurate simulation of the shock train phenomena in a convergent-divergent nozzle. To this aim, we selected an experimentally tested geometry and performed LES simulation for the same geometry. The structure and pressure recovery inside the shock train in the nozzle captured by LES model are compared with the experimental data, analytical expressions and numerical solutions obtained using various alternative turbulence models, including k-ɛ RNG, k-ω SST, and Reynolds stress model (RSM). Comparing with the experimental data, we observed that the LES solution not only predicts the "locations of the first shock" precisely, but also its results are quite accurate before and after the shock train. After validating the LES solution, we investigate the effects of the inlet total pressure on the shock train starting point and length. The effects of changes in the back pressure, nozzle inlet angle (NIA) and wall temperature on the behavior of the shock train are investigated by details.

  4. Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters

    PubMed Central

    Krimmel, Jeff; Colonius, Tim; Tanguay, Michel

    2011-01-01

    We report on recent efforts to develop predictive models for the pressure and other flow variables in the focal region of shock wave lithotripters. Baseline simulations of three representative lithotripters (electrohydraulic, electromagnetic, and piezoelectric) compare favorably with in vitro experiments (in a water bath). We proceed to model and investigate how shock focusing is altered by the presence of material interfaces associated with different types of tissue encountered along the shock path, and by the presence of cavitation bubbles that are excited by tensile pressures associated with the focused shock wave. We use human anatomical data, but simplify the description by assuming that the tissue behaves as a fluid, and by assuming cylindrical symmetry along the shock path. Scattering by material interfaces is significant, and regions of high pressure amplitudes (both compressive and tensile) are generated almost 4 cm postfocus. Bubble dynamics generate secondary shocks whose strength depends on the density of bubbles and the pulse repetition frequency (PRF). At sufficiently large densities, the bubbles also attenuate the shock. Together with experimental evidence, the simulations suggest that high PRF may be counter-productive for stone comminution. Finally, we discuss how the lithotripter simulations can be used as input to more detailed physical models that attempt to characterize the mechanisms by which collapsing cavitation models erode stones, and by which shock waves and bubbles may damage tissue. PMID:21063697

  5. The interaction of turbulence with parallel and perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.

    2016-11-01

    Interplanetary shocks exist in most astrophysical flows, and modify the properties of the background flow. We apply the Zank et al 2012 six coupled turbulence transport model equations to study the interaction of turbulence with parallel and perpendicular shock waves in the solar wind. We model the 1D structure of a stationary perpendicular or parallel shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions. A reduced turbulence transport model (the 4-equation model) is applied to parallel and perpendicular shock waves, and solved using a 4th- order Runge Kutta method. We compare the model results with ACE spacecraft observations. We identify one quasi-parallel and one quasi-perpendicular event in the ACE spacecraft data sets, and compute various turbulent observed values such as the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy in the upstream and downstream of the shock. We also calculate the error associated with each turbulent observed value, and fit the observed values by a least square method and use a Fourier series fitting function. We find that the theoretical results are in reasonable agreement with observations. The energy in turbulent fluctuations is enhanced and the correlation length is approximately constant at the shock. Similarly, the normalized cross helicity increases across a perpendicular shock, and decreases across a parallel shock.

  6. Regularization method for large eddy simulations of shock-turbulence interactions

    NASA Astrophysics Data System (ADS)

    Braun, N. O.; Pullin, D. I.; Meiron, D. I.

    2018-05-01

    The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k - 5 / 3, and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.

  7. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

    2016-11-01

    Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

  8. Computation of nonstationary strong shock diffraction by curved surfaces

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.; Lombard, C. K.; Bershader, D.

    1986-01-01

    A two-dimensional, high resolution shock-capturing algorithm was used on a supercomputer to solve Eulerian gasdynamic equations in order to simulate nonstationary strong shock diffraction by a circular arc model in a shock tube. The hypersonic Mach shock wave was assumed to arrive at a high angle of incidence, and attention was given to the effect of varying values of the ratio of specific heats on the shock diffraction process. Details of the conservation equations of the numerical algorithm, written in curvilinear coordinates, are provided, and model output is illustrated with the results generated for a Mach shock encountering a 15 deg circular arc. The sample graphics include isopycnics, a shock surface density profile, and pressure and Mach number contours.

  9. Semi-transparent shock model for major solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Kocharov, Leon

    2014-05-01

    Production of solar energetic particles in major events typically comprises two stages: (i) the initial stage associated with shocks and magnetic reconnection in solar corona and (ii) the main stage associated with the CME-bow shock in solar wind. The coronal emission of energetic particles from behind the interplanetary shock wave continues for about one hour , being not shielded by the CME shock in solar wind and having the prompt access to particle detectors at 1 AU. On occasion of two well-separated solar eruptions from the same active region, the newly accelerated solar particles may be emitted well behind the previous CME, and those solar particles may penetrate through the interplanetary shock of the previous CME to arrive at the Earth's orbit without significant delay, which is another evidence that high-energy particles from the solar corona can penetrate through travelling interplanetary shocks. Diffusive shock acceleration is fast only if the particle mean free path near the shock is small. The small mean free path (high turbulence level), however, implies that energetic particles from coronal sources could not penetrate through the interplanetary shock, and even the particles accelerated by the interplanetary shock itself could not escape to its far upstream region. If so, they could not be promptly observed at 1 AU. However, high-energy particles in major solar events are detected well before the shock arrival at 1 AU. The theoretical difficulty can be obviated in the framework of the proposed model of a "semitransparent" shock. As in situ plasma observations indicate, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. Such an intermittence of coronal and solar wind plasmas can affect energetic particle acceleration in coronal and interplanetary shocks. The new modeling incorporates particle acceleration in the shock front and the particle transport both in parallel to the magnetic field and in perpendicular to the magnetic field directions. The modeling suggests that the perpendicular diffusion is always essential for the energetic particle production, because particles can be accelerated in tubes with a high turbulence level and then escape to far upstream of the shock via neighboring, less turbulent tubes. We have modeled both the transmission of high-energy (>50 MeV) protons from coronal sources through the interplanetary shock wave and the interplanetary shock acceleration of ~1-10 MeV protons with subsequent transport to far upstream of the shock. The modeling results imply that presence of the fast transport channels penetrating the shock and the cross-field transport of accelerated particles to those channels may play a key role in the high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.

  10. Development of clinical decision rules to predict recurrent shock in dengue

    PubMed Central

    2013-01-01

    Introduction Mortality from dengue infection is mostly due to shock. Among dengue patients with shock, approximately 30% have recurrent shock that requires a treatment change. Here, we report development of a clinical rule for use during a patient’s first shock episode to predict a recurrent shock episode. Methods The study was conducted in Center for Preventive Medicine in Vinh Long province and the Children’s Hospital No. 2 in Ho Chi Minh City, Vietnam. We included 444 dengue patients with shock, 126 of whom had recurrent shock (28%). Univariate and multivariate analyses and a preprocessing method were used to evaluate and select 14 clinical and laboratory signs recorded at shock onset. Five variables (admission day, purpura/ecchymosis, ascites/pleural effusion, blood platelet count and pulse pressure) were finally trained and validated by a 10-fold validation strategy with 10 times of repetition, using a logistic regression model. Results The results showed that shorter admission day (fewer days prior to admission), purpura/ecchymosis, ascites/pleural effusion, low platelet count and narrow pulse pressure were independently associated with recurrent shock. Our logistic prediction model was capable of predicting recurrent shock when compared to the null method (P < 0.05) and was not outperformed by other prediction models. Our final scoring rule provided relatively good accuracy (AUC, 0.73; sensitivity and specificity, 68%). Score points derived from the logistic prediction model revealed identical accuracy with AUCs at 0.73. Using a cutoff value greater than −154.5, our simple scoring rule showed a sensitivity of 68.3% and a specificity of 68.2%. Conclusions Our simple clinical rule is not to replace clinical judgment, but to help clinicians predict recurrent shock during a patient’s first dengue shock episode. PMID:24295509

  11. Standing shocks in a two-fluid solar wind

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Hu, You Qiu; Esser, Ruth

    1994-01-01

    We present a numerical study of the formation of standing shocks in the solar wind using a two-fluid time-dependent model in the presence of Alfven waves. Included in this model is the adiabatic cooling and thermal conduction of both electrons and protons. In this study, standing shocks develop in the flow when additional critical points form as a result of either localized momentum addition or rapid expansion of the flow tube below the existing sonic point. While the flow speed and density exhibit the same characteristics as found in earlier studies of the formation of standing shocks, the inclusion of electron and proton heat conduction produces different signatures in the electron and proton temperature profiles across the shock layer. Owing to the strong heat conduction, the electron temperature is nearly continuous across the shock, but its gradient has a negative jump across it, thus producing a net heat flux out of the shock layer. The proton temperature exhibits the same characteristics for shocks produced by momentum addition but behaves differently when the shock is formed by the rapid divergence of the flow tube. The adiabatic cooling in a rapidly diverging flow tube reduces the proton temperature so substantially that the proton heat conduction becomes negligible in the vicinity of the shock. As a result, protons experience a positive jump in temperature across the shock. While Alfven waves do not affect the formation of standing shocks, they contribute to the change of the mmomentum and energy balance across them. We also find that for this solar wind model the inclusion of thermal conduction and adiabatic cooling for the elctrons and protons increases significantly the range of parameters characterizing the formation of standing shocks over those previously found for isothermal and polytropic models.

  12. Characteristics of shocks in the solar corona, as inferred from radio, optical, and theoretical investigations

    NASA Technical Reports Server (NTRS)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.

  13. Fluid dynamic modeling and numerical simulation of low-density hypersonic flow

    NASA Astrophysics Data System (ADS)

    Cheng, H. K.; Wong, Eric Y.

    1988-06-01

    The concept of a viscous shock-layer and several related versions of continuum theories/methods are examined for their adequacy as a viable framework to study flow physics and aerothermodynamics of relevance to sustained hypersonic flights. Considering the flat plate at angle of attack, or the wedge, as a generic example for the major aerodynamic component of a hypersonic vehicle, the relative importance of the molecular-transport effects behind the shock (in the form of the 'shock slip') and the wall-slip effects are studied. In the flow regime where the shock-transition-zone thickness remains small compared to the shock radius of curvature, a quasi-one-dimensional shock structure under the Burnett/thirteen-moment approximation, as well as particulate/collisional models, can be consistently developed. The fully viscous version of the shock-layer model is shown to provide the crucial boundary condition downstream the shock in this case. The gas-kinetic basis of the continuum description for the flow behind the bow shock, and certain features affecting the non-equilibrium flow chemistry, are also discussed.

  14. Fluid dynamic modeling and numerical simulation of low-density hypersonic flow

    NASA Technical Reports Server (NTRS)

    Cheng, H. K.; Wong, Eric Y.

    1988-01-01

    The concept of a viscous shock-layer and several related versions of continuum theories/methods are examined for their adequacy as a viable framework to study flow physics and aerothermodynamics of relevance to sustained hypersonic flights. Considering the flat plate at angle of attack, or the wedge, as a generic example for the major aerodynamic component of a hypersonic vehicle, the relative importance of the molecular-transport effects behind the shock (in the form of the 'shock slip') and the wall-slip effects are studied. In the flow regime where the shock-transition-zone thickness remains small compared to the shock radius of curvature, a quasi-one-dimensional shock structure under the Burnett/thirteen-moment approximation, as well as particulate/collisional models, can be consistently developed. The fully viscous version of the shock-layer model is shown to provide the crucial boundary condition downstream the shock in this case. The gas-kinetic basis of the continuum description for the flow behind the bow shock, and certain features affecting the non-equilibrium flow chemistry, are also discussed.

  15. Modeling normal shock velocity curvature relations for heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Yoo, Sunhee; Crochet, Michael; Pemberton, Steven

    2017-01-01

    The theory of Detonation Shock Dynamics (DSD) is, in part, an asymptotic method to model a functional form of the relation between the shock normal, its time rate and shock curvature κ. In addition, the shock polar analysis provides a relation between shock angle θ and the detonation velocity Dn that is dependent on the equations of state (EOS) of two adjacent materials. For the axial detonation of an explosive material confined by a cylinder, the shock angle is defined as the angle between the shock normal and the normal to the cylinder liner, located at the intersection of the shock front and cylinder inner wall. Therefore, given an ideal explosive such as PBX-9501 with two functional models determined, a unique, smooth detonation front shape ψ can be determined that approximates the steady state detonation shock front of the explosive. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 [D. K. Kennedy, 2000] are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of many possibilities the asymmetric character may be attributed to the heterogeneity of the explosives; here, material heterogeneity refers to compositions with multiple components and having a grain morphology that can be modeled statistically. Therefore in extending the formulation of DSD to modern novel explosives, we pose two questions: (1) is there any simple hydrodynamic model that can simulate such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart [1] studied constitutive models for derivation of the Dn(κ) relation for porous homogeneous explosives and carried out simulations in a spherical coordinate frame. In this paper we extend their model to account for heterogeneity and present shock evolutions in heterogeneous explosives using 2-D hydrodynamic simulations with some statistical examination. As an initial work, we assume that the heterogeneity comes from the local density variation or porosity only.

  16. Non-linear shipboard shock analysis of the Tomahawk missile shock isolation system

    NASA Technical Reports Server (NTRS)

    Leifer, Joel; Gross, Michael

    1987-01-01

    The identification, quantification, computer modeling and verification of the Tomahawk nonlinear liquid spring shock isolation system in a surface ship Vertical Launch System (VLS) are discussed. The isolation system hardware and mode of operation is detailed in an effort to understand the nonlinearities. These nonlinearities are then quantified and modeled using the MSC/NASTRAN finite element code. The model was verified using experimental data from the Navel Ordnance Systems Center MIL-S-901 medium weight shock tests of August 1986. The model was then used to predict the Tomahawk response to the CG-53 USS Mobile Bay shock trials of May-June 1987. Results indicate that the model is an accurate mathematical representation of the physical system either functioning as designed or in an impaired condition due to spring failure.

  17. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed us- ing a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify de ciencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the mea- sured data, a sensitivity analysis of the model parameters with emphasis on the de nition of the convection velocity parameter, and a least-squares t of the predicted to the mea- sured shock-associated noise component spectra, resulted in a new de nition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  18. Predictive Analytical Model for Isolator Shock-Train Location in a Mach 2.2 Direct-Connect Supersonic Combustion Tunnel

    NASA Astrophysics Data System (ADS)

    Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel

    2016-11-01

    This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.

  19. Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Titus, T.N.; Becker, K.

    2006-01-01

    The extensive impact cratering record on Mars combined with evidence from SNC meteorites suggests that a significant fraction of the surface is composed of materials subjected to variable shock pressures. Pressure-induced structural changes in minerals during high-pressure shock events alter their thermal infrared spectral emission features, particularly for feldspars, in a predictable fashion. To understand the degree to which the distribution and magnitude of shock effects influence martian surface mineralogy, we used standard spectral mineral libraries supplemented by laboratory spectra of experimentally shocked bytownite feldspar [Johnson, J.R., Ho??rz, F., Christensen, P., Lucey, P.G., 2002b. J. Geophys. Res. 107 (E10), doi:10.1029/2001JE001517] to deconvolve Thermal Emission Spectrometer (TES) data from six relatively large (>50 km) impact craters on Mars. We used both TES orbital data and TES mosaics (emission phase function sequences) to study local and regional areas near the craters, and compared the differences between models using single TES detector data and 3 ?? 2 detector-averaged data. Inclusion of shocked feldspar spectra in the deconvolution models consistently improved the rms errors compared to models in which the spectra were not used, and resulted in modeled shocked feldspar abundances of >15% in some regions. However, the magnitudes of model rms error improvements were within the noise equivalent rms errors for the TES instrument [Hamilton V., personal communication]. This suggests that while shocked feldspars may be a component of the regions studied, their presence cannot be conclusively demonstrated in the TES data analyzed here. If the distributions of shocked feldspars suggested by the models are real, the lack of spatial correlation to crater materials may reflect extensive aeolian mixing of martian regolith materials composed of variably shocked impact ejecta from both local and distant sources. ?? 2005 Elsevier Inc. All rights reserved.

  20. Virtual water trade and country vulnerability: A network perspective

    NASA Astrophysics Data System (ADS)

    Sartori, Martina; Schiavo, Stefano

    2015-04-01

    This work investigates the relationship between countries' participation in virtual water trade and their vulnerability to external shocks from a network perspective. In particular, we investigate whether (i) possible sources of local national crises may interact with the system, propagating through the network and affecting the other countries involved; (ii) the topological characteristics of the international agricultural trade network, translated into virtual water-equivalent flows, may favor countries' vulnerability to external crises. Our work contributes to the debate on the potential merits and risks associated with openness to trade in agricultural and food products. On the one hand, trade helps to ensure that even countries with limited water (and other relevant) resources have access to sufficient food and contribute to the global saving of water. On the other hand, there are fears that openness may increase the vulnerability to external shocks and thus make countries worse off. Here we abstract from political considerations about food sovereignty and independence from imports and focus instead on investigating whether the increased participation in global trade that the world has witnessed in the last 30 years has made the system more susceptible to large shocks. Our analysis reveals that: (i) the probability of larger supply shocks has not increased over time; (ii) the topological characteristics of the VW network are not such as to favor the systemic risk associated with shock propagation; and (iii) higher-order interconnections may reveal further important information about the structure of a network. Regarding the first result, fluctuations in output volumes, among the sources of shock analyzed here, are more likely to generate some instability. The first implication is that, on one side, past national or regional economic crises were not necessarily brought about or strengthened by global trade. The second, more remarkable, implication is that, on the other side, supporting a national policy of self-sufficiency in food production while progressively reducing the participation in international agricultural trade does not necessarily protect a country from economic instability. Moreover, it is well established in the literature that, over time, international food trade has favored more efficient use of water resources, at the global level. This fact, together with our conclusions, highlights the important role of international trade in driving the efficient allocation of water resources. To sum up, our evidence reveals that the increased globalization witnessed in the last 30 years is not associated with an increased frequency of adverse shocks (in either precipitation or food production). Furthermore, building on recent advances in network analysis that connect the stability of a complex system to the interaction between the distribution of shocks and the network topology, we find that the world is more interconnected, but not necessarily less stable.

  1. Measurements of Sound Speed and Grüneisen Parameter in Polystyrene Shocked to 8.5 Mbar

    NASA Astrophysics Data System (ADS)

    Boehly, T. R.; Rygg, J. R.; Zaghoo, M.; Hu, S. X.; Collins, G. W.; Fratanduono, D. E.; Celliers, P. M.; McCoy, C. A.

    2017-10-01

    The high-pressure behavior of polymers is important to fundamental high-energy-density studies and inertial confinement fusion experiments. The sound speed affects shock timing and determines the amplitude of modulations in unstable shocks. The Grüneisen parameter provides a means to model off-Hugoniot behavior, especially release physics. We use laser-driven shocks and a nonsteady wave analysis to infer sound speed in shocked material from the arrival times of drive-pressure perturbations at the shock front. Data are presented for CH shocked to 8.5 Mbar and compared to models. The Grüneisen parameter is observed to drop significantly near the insulator-conductor transition-a behavior not predicted by tabular models but is observed in quantum molecular dynamic simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Modeling shock responses of plastic bonded explosives using material point method

    NASA Astrophysics Data System (ADS)

    Shang, Hailin; Zhao, Feng; Fu, Hua

    2017-01-01

    Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.

  3. Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Li, G.; Zank, G. P.; Hu, Q.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Haggerty, D. K.; von Rosenvinge, T. T.; Looper, M. D.

    2010-12-01

    The Particle Acceleration and Transport in the Heliosphere (PATH) numerical code was developed to understand solar energetic particle (SEP) events in the near-Earth environment. We discuss simulation results for the 13 December 2006 SEP event. The PATH code includes modeling a background solar wind through which a CME-driven oblique shock propagates. The code incorporates a mixed population of both flare and shock-accelerated solar wind suprathermal particles. The shock parameters derived from ACE measurements at 1 AU and observational flare characteristics are used as input into the numerical model. We assume that the diffusive shock acceleration mechanism is responsible for particle energization. We model the subsequent transport of particles originated at the flare site and particles escaping from the shock and propagating in the equatorial plane through the interplanetary medium. We derive spectra for protons, oxygen, and iron ions, together with their time-intensity profiles at 1 AU. Our modeling results show reasonable agreement with in situ measurements by ACE, STEREO, GOES, and SAMPEX for this event. We numerically estimate the Fe/O abundance ratio and discuss the physics underlying a mixed SEP event. We point out that the flare population is as important as shock geometry changes during shock propagation for modeling time-intensity profiles and spectra at 1 AU. The combined effects of seed population and shock geometry will be examined in the framework of an extended PATH code in future modeling efforts.

  4. Shock Layer Radiation Measurements and Analysis for Mars Entry

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Grinstead, Jay Henderson; Bogdanoff, David W.; Wright, Michael J.

    2009-01-01

    NASA's In-Space Propulsion program is supporting the development of shock radiation transport models for aerocapture missions to Mars. A comprehensive test series in the NASA Antes Electric Arc Shock Tube facility at a representative flight condition was recently completed. The facility optical instrumentation enabled spectral measurements of shocked gas radiation from the vacuum ultraviolet to the near infrared. The instrumentation captured the nonequilibrium post-shock excitation and relaxation dynamics of dispersed spectral features. A description of the shock tube facility, optical instrumentation, and examples of the test data are presented. Comparisons of measured spectra with model predictions are also made.

  5. Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments

    NASA Astrophysics Data System (ADS)

    Rehagen, Thomas J.; Vitello, Peter

    2017-06-01

    Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  6. Perpendicular relativistic shocks in magnetized pair plasma

    NASA Astrophysics Data System (ADS)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-07-01

    Perpendicular relativistic (γ0= 10) shocks in magnetized pair plasmas are investigated using two-dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 < σ < 10-2 at which a strong perpendicular net current is observed in the precursor, driving the so-called current-filamentation instability. The global structure of the shock and shock formation time are discussed. The magnetohydrodynamics shock jump conditions are found in good agreement with the numerical results, except for 10-4 < σ < 10-2 where a deviation up to 10 per cent is observed. The particle precursor length converges towards the Larmor radius of particles injected in the upstream magnetic field at intermediate magnetizations. For σ > 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive shock acceleration is observed only in weakly magnetized shocks, while a dominant contribution of shock drift acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of active galactic nucleus jets and in the termination shocks of pulsar wind nebulae.

  7. Perpendicular relativistic shocks in magnetized pair plasma

    NASA Astrophysics Data System (ADS)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 < σ < 10-2 at which a strong perpendicular net current is observed in the precursor, driving the so-called current-filamentation instability. The global structure of the shock and shock formation time are discussed. The MHD shock jump conditions are found in good agreement with the numerical results, except for 10-4 < σ < 10-2 where a deviation up to 10% is observed. The particle precursor length converges toward the Larmor radius of particles injected in the upstream magnetic field at intermediate magnetizations. For σ > 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  8. Microscale shock tube

    NASA Astrophysics Data System (ADS)

    Mirshekari, Gholamreza

    This project aims at the simulation, design, fabrication and testing of a microscale shock tube. A step by step procedure has been followed to develop the different components of the microscale shock tube and then combine them together to realize the final device. The document reports on the numerical simulation of flows in a microscale shock tube, the experimental study of gas flow in microchannels, the design, microfabrication, and the test of a microscale shock tube. In the first step, a one-dimensional numerical model for simulation of transport effects at small-scale, appeared in low Reynolds number shock tubes is developed. The conservation equations have been integrated in the lateral directions and three-dimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the one-dimensional model. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady laminar flow solution, similar to the Blasius solution. The resulting one-dimensional equations are solved numerically and the simulations are performed for previously reported low Reynolds number shock tube experiments. Good agreement between the shock structure simulation and the attenuation due to the boundary layers has been observed. The simulation for predicting the performance of a microscale shock tube shows the large attenuation of shock wave at low pressure ratios. In the next step the steady flow inside microchannels has been experimentally studied. A set of microchannels with different geometries were fabricated. These microchannels have been used to measure the pressure drop as a function of flow rate in a steady compressible flow. The results of the experiments confirm that the flow inside the microscale shock tube follows the laminar model over the experiment's range of Knudsen number. The microscale shock tube is fabricated by deposition and patterning of different thin layers of selected materials on the silicon substrate. The direct sensing piezoelectric sensors were fabricated and integrated with microchannels patterned on the substrate. The channels were then covered with another substrate. This shock tube is 2000 mum long and it has a 2000 mum wide and 17 mum high rectangular cross section equipped with 5 piezoelectric sensors along the tube. The packaged microscale shock tube was installed in an ordinary shock tube and shock waves with different Mach numbers were directed into the channel. A one-dimensional inviscid calculation as well as viscous simulation using the one-dimensional model have also been performed for the above mentioned geometry. The comparison of results with those of the same geometry for an inviscid flow shows the considerable attenuation of shock strength and deceleration of the shock wave for both incident and reflected shock waves in the channel. The comparison of results with numerically generated results with the one-dimensional model presents good agreement for incident shock waves. Keywords. Shock wave, Shock tube, MEMS, Microfluidic, Piezoelectric sensor, Microchannel, Transport phenomena.

  9. Internal defibrillation: where we have been and where we should be going?

    PubMed

    Lévy, Samuel

    2005-08-01

    Internal cardioversion has been developed as an alternative technique for patients who are resistant to external DC cardioversion of atrial fibrillation (AF) and was found to be associated with higher success rates. It used initially high energies (200-300 J) delivered between an intracardiac catheter and a backplate. Subsequent studies have shown that it is possible to terminate with energies of 1 to 6 Joules, paroxysmal or induced AF in 90 percent of patients and persistent AF in 75 percent of patients, using biphasic shocks delivered between a right atrium-coronary sinus vectors. Consequently, internal atrial defibrillation can be performed under sedation only without the need for general anesthesia. Recently developed external defibrillators, capable of delivering biphasic shocks, have increased the success rates of external cardioversion and reduced the need for internal cardioversion. However, internal defibrillation is still useful in overweight or obese patients, in patients with chronic obstructive pulmonary disease or asthma who are more difficult to defibrillate, and in patients with implanted devices which may be injured by high energy shocks. Low energy internal defibrillation has also proven to be safe and this has prompted the development of implantable devices for terminating AF. The first device used was the Metrix system, a stand-alone atrial defibrillator (without ventricular defibrillation) which was found to be safe and effective in selected groups of patients. Unfortunately, this device is no longer being marketed. Only double chamber defibrillators with pacing capabilities are presently available: the Medtronic GEM III AT, an updated version of the Jewel AF and the Guidant PRIZM AVT. These devices can be patient-activated or programmed to deliver automatically ounce atrial tachyarrhythmias are detected, therapies including pacing or/and shocks. Attempts to define the group of patients who might benefit from these devices are described but the respective role of atrial defibrillators versus other non-pharmacologic therapies for AF, such as surgery and radiofrequency catheter ablation, remains to be determined. Advantages and limitations or atrial defibrillators and approaches to reduce shock related discomfort which may be a concern in some patients, are reviewed. Studies have shown that despite shock discomfort, quality of life was improved in patients with atrial defibrillators and the need for repeated hospitalizations was reduced. The cost of these devices remains a concern for the treatment of a non-lethal arrhythmia. Attention that atrial defibrillators will receive from cardiologists and from the industry in the future, will depend of the long-term results of other non-pharmacological options and of the identification of the group of AF patients which will require restoration and maintenance of sinus rhythm. But there is no doubt that selected subsets of patients with AF could benefit from atrial defibrillation.

  10. Shock Wave Propagation in Layered Planetary Interiors: Revisited

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.; Monteux, J.

    2017-12-01

    The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock pressure in the core decreases following a second power law. In this study, we express the output obtained from iSALE hydrocodes by scaling laws to illustrate the influence of the ray angle relative to the axis of symmetry, the target rheology, the impactor size and the impact velocity. We use these shock-pressure scaling laws to determine the impact heating of terrestrial planets.

  11. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    PubMed

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  12. Effects of heat conduction on artificial viscosity methods for shock capturing

    DOE PAGES

    Cook, Andrew W.

    2013-12-01

    Here we investigate the efficacy of artificial thermal conductivity for shock capturing. The conductivity model is derived from artificial bulk and shear viscosities, such that stagnation enthalpy remains constant across shocks. By thus fixing the Prandtl number, more physical shock profiles are obtained, only on a larger scale. The conductivity model does not contain any empirical constants. It increases the net dissipation of a computational algorithm but is found to better preserve symmetry and produce more robust solutions for strong-shock problems.

  13. On the numerical calculation of hydrodynamic shock waves in atmospheres by an FCT method

    NASA Astrophysics Data System (ADS)

    Schmitz, F.; Fleck, B.

    1993-11-01

    The numerical calculation of vertically propagating hydrodynamic shock waves in a plane atmosphere by the ETBFCT-version of the Flux Corrected Transport (FCT) method by Boris and Book is discussed. The results are compared with results obtained by a characteristic method with shock fitting. We show that the use of the internal energy density as a dependent variable instead of the total energy density can give very inaccurate results. Consequent discretization rules for the gravitational source terms are derived. The improvement of the results by an additional iteration step is discussed. It appears that the FCT method is an excellent method for the accurate calculation of shock waves in an atmosphere.

  14. Shear Shock Waves Observed in the Brain

    NASA Astrophysics Data System (ADS)

    Espíndola, David; Lee, Stephen; Pinton, Gianmarco

    2017-10-01

    The internal deformation of the brain is far more complex than the rigid motion of the skull. An ultrasound imaging technique that we have developed has a combination of penetration, frame-rate, and motion-detection accuracy required to directly observe the formation and evolution of shear shock waves in the brain. Experiments at low impacts on the traumatic-brain-injury scale demonstrate that they are spontaneously generated and propagate within the porcine brain. Compared to the initially smooth impact, the acceleration at the shock front is amplified up to a factor of 8.5. This highly localized increase in acceleration suggests that shear shock waves are a previously unappreciated mechanism that could play a significant role in traumatic brain injury.

  15. A model for the origin of high-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Morfill, G. E.

    1985-01-01

    It is suggested that cosmic rays, up to the highest energies observed, originate in the Galaxy and are accelerated in astrophysical shock waves. If there is a galactic wind, in analogy with the solar wind, a hierarchy of shocks ranging from supernova shocks to the galactic wind termination shock is expected. This leads to a consistent model in which most cosmic rays, up to perhaps 10 to the 14th eV energy, are accelerated by supernova shocks, but that particles with energies of 10 to the 15th eV and higher are accelerated at the termination shock of the galactic wind. Intermediate energies may be accelerated by intermediate-scale shocks, and there may be larger scale shocks associated with the Local Group of galaxies.

  16. High-Order Shock-Capturing Methods for Modeling Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kosovichev, Alexander; Levy, Doron

    2004-01-01

    We use one-dimensional high-order central shock capturing numerical methods to study the response of various model solar atmospheres to forcing at the solar surface. The dynamics of the atmosphere is modeled with the Euler equations in a variable-sized flux tube in the presence of gravity. We study dynamics of the atmosphere suggestive of spicule formation and coronal oscillations. These studies are performed on observationally-derived model atmospheres above the quiet sun and above sunspots. To perform these simulations, we provide a new extension of existing second- and third- order shock-capturing methods to irregular grids. We also solve the problem of numerically maintaining initial hydrostatic balance via the introduction of new variables in the model equations and a careful initialization mechanism. We find several striking results: all model atmospheres respond to a single impulsive perturbation with several strong shock waves consistent with the rebound-shock model. These shock waves lift material and the transition region well into the initial corona, and the sensitivity of this lift to the initial impulse depends non-linearly on the details of the atmosphere model. We also reproduce an observed 3-minute coronal oscillation above sunspots compared to 5-minute oscillations above the quiet sun.

  17. Use of Pressure Sensitive Paint for Diagnostics in Turbomachinery Flows With Shocks

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan; Bencic, Timothy J.

    2001-01-01

    The technology of pressure sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and "ghost" images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges were used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. A summary of shortcomings of the pressure sensitive paint technology for internal flow application and lessons learned are presented in the conclusion of the paper.

  18. Use of pressure-sensitive paint for diagnostics in turbomachinery flows with shocks

    NASA Astrophysics Data System (ADS)

    Lepicovsky, J.; Bencic, T. J.

    2002-07-01

    The technology of pressure-sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and 'ghost' images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges was used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map test points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. Lessons learned from this investigation and shortcomings of the PSP technology for internal flow application are presented in the conclusion of the paper.

  19. Application of cosmic-ray shock theories to the Cygnus Loop - An alternative model

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1988-01-01

    Steady state cosmic-ray shock models are investigated here in the light of observations of the Cygnus Loop supernova remnant. The predicted downstream temperature is derived for each model. The Cygnus Loop data and the application of the models to them, including wave dissipation, are presented. Heating rate and ionization fraction structures are provided along with an estimate of the cosmic-ray diffusion coefficient. It is found that the model of Voelk, Drury, and McKenzie (1984), in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of the Cygnus Loop shocks. The model is used to deduce upstream densities and shock velocities and, compared to the usual pure gas shock interpretation, it is found that lower densities and approximately three times higher velocities are required.

  20. Evaluation of surveillance methods for staphylococcal toxic shock syndrome.

    PubMed

    Lesher, Lindsey; Devries, Aaron; Danila, Richard; Lynfield, Ruth

    2009-05-01

    We compared passive surveillance and International Classification of Diseases, 9th Revision, codes for completeness of staphylococcal toxic shock syndrome (TSS) surveillance in the Minneapolis-St. Paul area, Minnesota, USA. TSS-specific codes identified 55% of cases compared with 30% by passive surveillance and were more sensitive (p = 0.0005, McNemar chi2 12.25).

  1. Evaluation of Surveillance Methods for Staphylococcal Toxic Shock Syndrome

    PubMed Central

    DeVries, Aaron; Danila, Richard; Lynfield, Ruth

    2009-01-01

    We compared passive surveillance and International Classification of Diseases, 9th Revision, codes for completeness of staphylococcal toxic shock syndrome (TSS) surveillance in the Minneapolis–St. Paul area, Minnesota, USA. TSS-specific codes identified 55% of cases compared with 30% by passive surveillance and were more sensitive (p = 0.0005, McNemar χ2 12.25). PMID:19402965

  2. Shock wave facilities at Pulter Laboratory of SRI international

    NASA Astrophysics Data System (ADS)

    Murri, W. J.

    1982-04-01

    Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.

  3. Equation of state and shock compression of warm dense sodium—A first-principles study

    DOE PAGES

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...

    2017-02-21

    As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less

  4. Abstracts and Program Fourth International Shock Congress and Twenty Second Annual Conference on Shock. Philadelphia, Pennsylvania, June 12-16, 1999. Supplement to SHOCK Volume 11.

    DTIC Science & Technology

    1999-06-16

    selective modulation of y/5 T- cell activity after major burn trauma may provide therapeutic advantages for such patients. 17 SERUM MELATONIN LEVELS...and GM 568501). 145 EFFECT OF SELECT CYCLOOXYGENASE (COX>l AND COX-2 INHIBITORS ON PROSTAGLANDIN PRODUCTION AND T-CELL PROLIFERATION IN SEPSIS...imported from non-ischemic tissues. Treatment with NG- monomethyl-L-arginine, a non selective inhibitor of nitric oxide synthase (given at 10 mg/kg i.V

  5. Proceedings of the International Symposium on Shock Waves and Shock Tubes (15th) Held in Berkeley, California on July 28-August 2, 1985

    DTIC Science & Technology

    1986-09-01

    hand if spatial resolution is required (or necessary) along tie leagth of the slit then particular attention ned to be paid to the design of the...choice of impactor thickness and design , shock pressures twice as large as with plane wave explosive systems are available, and facilities are operated...This operation is referred to as aeromaneuvering. I For this type of vehicle, a large L/D is preferred, and it can be designated a high-lift AOTV

  6. Direct Acceleration of Pickup Ions at The Solar Wind Termination Shock: The Production of Anomalous Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.; Baring, Matthew G.

    1998-01-01

    We have modeled the injection and acceleration of pickup ions at the solar wind termination shock and investigated the parameters needed to produce the observed Anomalous Cosmic Ray (ACR) fluxes. A non-linear Monte Carlo technique was employed, which in effect solves the Boltzmann equation and is not restricted to near-isotropic particle distribution functions. This technique models the injection of thermal and pickup ions, the acceleration of these ions, and the determination of the shock structure under the influence of the accelerated ions. The essential effects of injection are treated in a mostly self-consistent manner, including effects from shock obliquity, cross- field diffusion, and pitch-angle scattering. Using recent determinations of pickup ion densities, we are able to match the absolute flux of hydrogen in the ACRs by assuming that pickup ion scattering mean free paths, at the termination shock, are much less than an AU and that modestly strong cross-field diffusion occurs. Simultaneously, we match the flux ratios He(+)/H(+) or O(+)/H(+) to within a factor approx. 5. If the conditions of strong scattering apply, no pre-termination-shock injection phase is required and the injection and acceleration of pickup ions at the termination shock is totally analogous to the injection and acceleration of ions at highly oblique interplanetary shocks recently observed by the Ulysses spacecraft. The fact that ACR fluxes can be modeled with standard shock assumptions suggests that the much-discussed "injection problem" for highly oblique shocks stems from incomplete (either mathematical or computer) modeling of these shocks rather than from any actual difficulty shocks may have in injecting and accelerating thermal or quasi-thermal particles.

  7. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  8. On the relationship between collisionless shock structure and energetic particle acceleration

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.

    1983-01-01

    Recent experimental research on bow shock structure and theoretical studies of quasi-parallel shock structure and shock acceleration of energetic particles were reviewed, to point out the relationship between structure and particle acceleration. The phenomenological distinction between quasi-parallel and quasi-perpendicular shocks that has emerged from bow shock research; present efforts to extend this work to interplanetary shocks; theories of particle acceleration by shocks; and particle acceleration to shock structures using multiple fluid models were discussed.

  9. MULTISHOCKED,THREE-DIMENSIONAL SUPERSONIC FLOWFIELDS WITH REAL GAS EFFECTS

    NASA Technical Reports Server (NTRS)

    Kutler, P.

    1994-01-01

    This program determines the supersonic flowfield surrounding three-dimensional wing-body configurations of a delta wing. It was designed to provide the numerical computation of three dimensional inviscid, flowfields of either perfect or real gases about supersonic or hypersonic airplanes. The governing equations in conservation law form are solved by a finite difference method using a second order noncentered algorithm between the body and the outermost shock wave, which is treated as a sharp discontinuity. Secondary shocks which form between these boundaries are captured automatically. The flowfield between the body and outermost shock is treated in a shock capturing fashion and therefore allows for the correct formation of secondary internal shocks . The program operates in batch mode, is in CDC update format, has been implemented on the CDC 7600, and requires more than 140K (octal) word locations.

  10. Modeling Type IIn Supernovae: Understanding How Shock Development Effects Light Curves Properties

    NASA Astrophysics Data System (ADS)

    De La Rosa, Janie

    2016-06-01

    Type IIn supernovae are produced when massive stars experience dramatic mass loss phases caused by opacity edges or violent explosions. Violent mass ejections occur quite often just prior to the collapse of the star. If the final episode happens just before collapse, the outward ejecta is sufficiently dense to alter the supernova light-curve, both by absorbing the initial supernova light and producing emission when the supernova shock hits the ejecta. Initially, the ejecta is driven by shock progating through the interior of the star, and eventually expands through the circumstellar medium, forming a cold dense shell. As the shock wave approaches the shell, there is an increase in UV and optical radiation at the location of the shock breakout. We have developed a suite of simple semi-analytical models in order to understand the relationship between our observations and the properties of the expanding SN ejecta. When we compare Type IIn observations to a set of modeled SNe, we begin to see the influence of initial explosion conditions on early UV light curve properties such as peak luminosities and decay rate.The fast rise and decay corresponds to the models representing a photosphere moving through the envelope, while the modeled light curves with a slower rise and decay rate are powered by 56Ni decay. However, in both of these cases, models that matched the luminosity were unable to match the low radii from the blackbody models. The effect of shock heating as the supernova material blasts through the circumstellar material can drastically alter the temperature and position of the photosphere. The new set of models redefine the initial modeling conditions to incorporate an outer shell-like structure, and include late-time shock heating from shocks produced as the supernova ejecta travels through the inhomogeneous circumstellar medium.

  11. The Interaction of High-Speed Turbulence with Flames: Global Properties and Internal Flame Structure

    DTIC Science & Technology

    2009-09-28

    S L, on all scales, including that of the laminar flame thickness, presents a number of both experimental and numerical challenges. Hereafter, we...fuel preconditioning, compression of the overall system, or propagation of large-scale shocks . Probing such regimes experimentally requires either...reactions are modeled using the first-order Arrhenius kinetics dY dt ≡ ẇ = −AρY exp ( − Q RT ) , (5) where A is the pre-exponential factor, Q is the

  12. An International Survey of Shock and Vibration Technology

    DTIC Science & Technology

    1979-03-01

    Rept. No. APL- UW -7615, RPR-24.4, (Aug. 1976). PB-269 585/6GA. 4-21 29. Angiola, A.J. and Chen, T.C., "An Applied Statistical Approach to Highway Noise...pp 27-42, (June 1975). 61. Wilkinson, T.L., ’Vibrational Loading of Mechanically Fastened Wood Joints’, Forest Products Lab., Madison , WI, Rept. No...Joints using a lumped param- eter model of the upper torso and head. The main objective was to predict lumbar intervertebral joint deformations. Smith

  13. Large Eddy Simulation ... Where Do We Stand? International Workshop Held in St. Petersburg Beach, Florida on 19-21 December 1990.

    DTIC Science & Technology

    1990-01-01

    S. Orszag, Chairman 1. P. Moin Some Issues in Computation of Turbulent Flows. 2. M. Lesieur, P. Comte, X. Normand, 0. Metais and A. Silveira Spectral...Richtmeyer’s computational experience with one-dimensional shock waves (1950) indicated the value of a non-linear artificial viscosity. Charney and... computer architecture and the advantages of semi-Lagrangian advective schemes may lure large-scale atmospheric modelers back to finite-difference

  14. The Vetter-Sturtevant Shock Tube Problem in KULL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulitsky, M S

    2005-10-06

    The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on an example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) with the additional complication of reshock. The experiment by Vetter & Sturtevant (VS) [1], involving a Mach 1.50 incident shock striking an air/SF{sub 6} interface, is a good one to model, now that we understand how the model performs for the Benjamin shock tube [2] and a prototypical incompressible Rayleigh-Taylormore » problem [3]. The x-t diagram for the VS shock tube is quite complicated, since the transmitted shock hits the far wall at {approx}2 millisec, reshocks the mixing zone slightly after 3 millisec (which sets up a release wave that hits the wall at {approx}4 millisec), and then the interface is hit with this expansion wave around 5 millisec. Needless to say, this problem is much more difficult to model than the Bejamin shock tube.« less

  15. Thermal infrared spectroscopy and modeling of experimentally shocked basalts

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Kraft, M.D.

    2007-01-01

    New measurements of thermal infrared emission spectra (250-1400 cm-1; ???7-40 ??m) of experimentally shocked basalt and basaltic andesite (17-56 GPa) exhibit changes in spectral features with increasing pressure consistent with changes in the structure of plagioclase feldspars. Major spectral absorptions in unshocked rocks between 350-700 cm-1 (due to Si-O-Si octahedral bending vibrations) and between 1000-1250 cm-1 (due to Si-O antisymmetric stretch motions of the silica tetrahedra) transform at pressures >20-25 GPa to two broad spectral features centered near 950-1050 and 400-450 cm-1. Linear deconvolution models using spectral libraries composed of common mineral and glass spectra replicate the spectra of shocked basalt relatively well up to shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation in plagioclase. Inclusion of shocked feldspar spectra in the libraries improves fits for more highly shocked basalt. However, deconvolution models of the basaltic andesite select shocked feldspar end-members even for unshocked samples, likely caused by the higher primary glass content in the basaltic andesite sample.

  16. Shock wave attenuation by grids and orifice plates

    NASA Astrophysics Data System (ADS)

    Britan, A.; Igra, O.; Ben-Dor, G.; Shapiro, H.

    2006-11-01

    The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.

  17. Shock wave attenuation in a micro-channel

    NASA Astrophysics Data System (ADS)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  18. Internal flow measurement in transonic compressor by PIV technique

    NASA Astrophysics Data System (ADS)

    Wang, Tongqing; Wu, Huaiyu; Liu, Yin

    2001-11-01

    The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.

  19. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  20. Thermophysical properties of multi-shock compressed dense argon

    NASA Astrophysics Data System (ADS)

    Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-01

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  1. Internal density waves of shock type induced by chemoconvection in miscible reacting liquids

    NASA Astrophysics Data System (ADS)

    Bratsun, D. A.

    2017-10-01

    A theoretical explanation of the phenomenon of spontaneous emergence of density waves experimentally observed recently in bilayered systems of miscible liquids placed in a narrow vertical gap of the Hele-Shaw cell in the gravitational field is provided. Upper and lower layers represent aqueous solutions of acids and bases, respectively, whose contact leads to the beginning of a neutralization reaction. The process is accompanied by a strong dependence of the reagent's diffusion coefficients on their concentrations, giving rise to the generation of local density pockets, in which convection develops. The cavities collapse under certain conditions, causing a density jump, which moves faster than typical perturbations in a medium and takes the form of a shock wave. A mathematical model of the phenomenon is proposed, which can be formally reduced to equations of motion of a compressible gas under certain assumptions. Numerical calculations are given and compared with the experimental data.

  2. Large Eddy simulation of compressible flows with a low-numerical dissipation patch-based adaptive mesh refinement method

    NASA Astrophysics Data System (ADS)

    Pantano, Carlos

    2005-11-01

    We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)

  3. Economic policy optimization based on both one stochastic model and the parametric control theory

    NASA Astrophysics Data System (ADS)

    Ashimov, Abdykappar; Borovskiy, Yuriy; Onalbekov, Mukhit

    2016-06-01

    A nonlinear dynamic stochastic general equilibrium model with financial frictions is developed to describe two interacting national economies in the environment of the rest of the world. Parameters of nonlinear model are estimated based on its log-linearization by the Bayesian approach. The nonlinear model is verified by retroprognosis, estimation of stability indicators of mappings specified by the model, and estimation the degree of coincidence for results of internal and external shocks' effects on macroeconomic indicators on the basis of the estimated nonlinear model and its log-linearization. On the base of the nonlinear model, the parametric control problems of economic growth and volatility of macroeconomic indicators of Kazakhstan are formulated and solved for two exchange rate regimes (free floating and managed floating exchange rates)

  4. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  5. A composite model for a class of electric-discharge shock tubes

    NASA Technical Reports Server (NTRS)

    Elkins, R. T.; Baganoff, D.

    1973-01-01

    A gasdynamic model is presented and analyzed for a class of shock tubes that utilize both Joule heating and electromagnetic forces to produce high-speed shock waves. The model consists of several stages of acceleration in which acceleration to sonic conditions is achieved principally through heating, and further acceleration of the supersonic flow is obtained principally through use of electromagnetic forces. The utility of the model results from the fact that it predicts a quasi-steady flow process, mathematical analysis is straightforward, and it is even possible to remove one or more component stages and still have the model related to a possible shock-tube flow. Initial experiments have been performed where the electrical discharge configuration and current level were such that Joule heating was the dominant form of energy addition present. These experiments indicate that the predictions of the model dealing with heat addition correspond quite closely to reality. The experimental data together with the theory show that heat addition to the flowing driver gas after diaphragm rupture (approach used in the model) is much more effective in producing high-speed shock waves than heating the gas in the driver before diaphragm rupture, as in the case of the arc-driven shock tube.

  6. Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions

    NASA Technical Reports Server (NTRS)

    Sandham, N. D.; Yee, H. C.

    1998-01-01

    Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.

  7. The 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Saunders, J. D.

    1995-01-01

    The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a three-dimensional (3D) Navier-Stokes flow solver. A two-equation turbulence model, and a porous bleed model based on unchoked bleed hole discharge coefficients were used. Comparisons were made with experimental data, inviscid theory, and two-dimensional Navier-Stokes analyses. The main objective was to gain insight into the inlet fluid dynamics. Examination of the computational results along with the experimental data suggest that the cowl shock-sidewall boundary layer interaction near the leading edge caused a substantial separation in the wind tunnel inlet model. As a result, the inlet performance may have been compromised by increased spillage and higher bleed mass flow requirements. The internal flow contained substantial waves that were not in the original inviscid design. 3D effects were fairly minor for this inlet at on-design conditions. Navier-Stokes analysis appears to be an useful tool for gaining insight into the inlet fluid dynamics. It provides a higher fidelity simulation of the flowfield than the original inviscid design, by taking into account boundary layers, porous bleed, and their interactions with shock waves.

  8. Effects of Shock-Breakout Pressure on Ejection of Micron-Scale Material from Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Hammerberg, James; Hixson, Robert; Morley, Kevin; Obst, Andrew; Olson, Russell; Payton, Jeremy; Rigg, Paulo; Buttler, William; Grover, Michael; Iverson, Adam; Macrum, Gregory; Stevens, Gerald; Turley, William; Veeser, Lynn; Routley, Nathan

    2007-06-01

    Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metal surfaces. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.

  9. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusztai, Istvan; TenBarge, Jason; Csapó, Aletta N.

    The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock propertiesmore » significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.« less

  10. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    DOE PAGES

    Pusztai, Istvan; TenBarge, Jason; Csapó, Aletta N.; ...

    2017-12-19

    The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock propertiesmore » significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.« less

  11. Electrostatic potential jump across fast-mode collisionless shocks

    NASA Technical Reports Server (NTRS)

    Mandt, M. E.; Kan, J. R.

    1991-01-01

    The electrostatic potential jump across fast-mode collisionless shocks is examined by comparing published observations, hybrid simulations, and a simple model, in order to better characterize its dependence on the various shock parameters. In all three, it is assumed that the electrons can be described by an isotropic power-law equation of state. The observations show that the cross-shock potential jump correlates well with the shock strength but shows very little correlation with other shock parameters. Assuming that the electrons obey an isotropic power law equation of state, the correlation of the potential jump with the shock strength follows naturally from the increased shock compression and an apparent dependence of the power law exponent on the Mach number which the observations indicate. It is found that including a Mach number dependence for the power law exponent in the electron equation of state in the simple model produces a potential jump which better fits the observations. On the basis of the simulation results and theoretical estimates of the cross-shock potential, it is discussed how the cross-shock potential might be expected to depend on the other shock parameters.

  12. Essays on oil and business cycles in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Aba Alkhail, Bandar A.

    This dissertation consists of three chapters. Chapter one presents a theoretical model using a dynamic stochastic general equilibrium (DSGE) approach to investigate the role of world oil prices in explaining the business cycle in Saudi Arabia. This model incorporates both productivity and oil revenue shocks. The results indicate that productivity shocks are relatively more important to business cycles than oil shocks. However, this model has some unfavorable features that are associated with both investment and labor hours. The second chapter presents a modified theoretical model using DSGE approach to examine the role of world oil prices versus productivity shocks in explaining the business cycles in Saudi Arabia. To overcome the unfavorable features of the baseline model, the alternative model adds friction to the model by incorporating investment portfolio adjustment cost. Thus, the alternative model produces similar dynamics to that of the baseline model but the unfavorable characteristics are eliminated. Also, this chapter conducts sensitivity analysis. The objective of the third chapter is to empirically investigate how real world oil price and productivity shocks affect output, consumption, investment, labor hours, and trade balance/output ratio for Saudi Arabia. This chapter complements the theoretical model of the previous chapters. In addition, this study builds a foundation for future studies in examining the impact of real world oil price shocks on the economies of key trade partners of Saudi Arabia. The results of the third chapter show that productivity shocks matter more for macroeconomic fluctuations than oil shocks for the Saudis' primary trade partners. Therefore, fears of oil importing countries appear to be overstated. As a whole, this research is important for the following reasons. First, the empirical model is consistent with the predictions of our theoretical model in that productivity is a driving force of business cycles in Saudi Arabia. Second, the policymakers in Saudi Arabia should be more concerned with increasing productivity through adopting new technologies that increase economic prosperity. Therefore, the policymakers should continue diversifying economic resources and reduce their reliance on oil.

  13. A FORTRAN program for calculating three dimensional, inviscid and rotational flows with shock waves in axial compressor blade rows: User's manual

    NASA Technical Reports Server (NTRS)

    Thompkins, W. T., Jr.

    1982-01-01

    A FORTRAN-IV computer program was developed for the calculation of the inviscid transonic/supersonic flow field in a fully three dimensional blade passage of an axial compressor rotor or stator. Rotors may have dampers (part span shrouds). MacCormack's explicit time marching method is used to solve the unsteady Euler equations on a finite difference mesh. This technique captures shocks and smears them over several grid points. Input quantities are blade row geometry, operating conditions and thermodynamic quanities. Output quantities are three velocity components, density and internal energy at each mesh point. Other flow quanities are calculated from these variables. A short graphics package is included with the code, and may be used to display the finite difference grid, blade geometry and static pressure contour plots on blade to blade calculation surfaces or blade suction and pressure surfaces. The flow in a low aspect ratio transonic compressor was analyzed and compared with high response total pressure probe measurements and gas fluorescence static density measurements made in the MIT blowdown wind tunnel. These comparisons show that the computed flow fields accurately model the measured shock wave locations and overall aerodynamic performance.

  14. A Low Concentration of Ethanol Impairs Learning but Not Motor and Sensory Behavior in Drosophila Larvae

    PubMed Central

    Ghezzi, Alfredo; Cady, Amanda M.; Najjar, Kristina; Hatch, Michael M.; Shah, Ruchita R.; Bhat, Amar; Hariri, Omar; Haroun, Kareem B.; Young, Melvin C.; Fife, Kathryn; Hooten, Jeff; Tran, Tuan; Goan, Daniel; Desai, Foram; Husain, Farhan; Godinez, Ryan M.; Sun, Jeffrey C.; Corpuz, Jonathan; Moran, Jacxelyn; Zhong, Allen C.; Chen, William Y.; Atkinson, Nigel S.

    2012-01-01

    Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects. PMID:22624024

  15. The preplasma effect on the properties of the shock wave driven by a fast electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llor Aisa, E.; Ribeyre, X.; Tikhonchuk, V. T.

    2016-08-15

    Strong shock wave generation by a mono-energetic fast electron beam in a plasma with an increasing density profile is studied theoretically. The proposed analytical model describes the shock wave characteristics for a homogeneous plasma preceded by a low density precursor. The shock pressure and the time of shock formation depend on the ratio of the electron stopping length to the preplasma areal density and on the initial energy of injected electrons. The conclusions of theoretical model are confirmed in numerical simulations.

  16. Evaluation of a Revised Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-Wind Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Du, A. M.; Du, D.; Sun, W.

    2014-08-01

    We modified the one-dimensional conservation element and solution element (CESE) hydrodynamic (HD) model into a new version [ 1D CESE-HD-2], by considering the direction of the shock propagation. The real-time performance of the 1D CESE-HD-2 model during Solar Cycle 23 (February 1997 - December 2006) is investigated and compared with those of the Shock Time of Arrival Model ( STOA), the Interplanetary-Shock-Propagation Model ( ISPM), and the Hakamada-Akasofu-Fry version 2 ( HAFv.2). Of the total of 584 flare events, 173 occurred during the rising phase, 166 events during the maximum phase, and 245 events during the declining phase. The statistical results show that the success rates of the predictions by the 1D CESE-HD-2 model for the rising, maximum, declining, and composite periods are 64 %, 62 %, 57 %, and 61 %, respectively, with a hit window of ± 24 hours. The results demonstrate that the 1D CESE-HD-2 model shows the highest success rates when the background solar-wind speed is relatively fast. Thus, when the background solar-wind speed at the time of shock initiation is enhanced, the forecasts will provide potential values to the customers. A high value (27.08) of χ 2 and low p-value (< 0.0001) for the 1D CESE-HD-2 model give considerable confidence for real-time forecasts by using this new model. Furthermore, the effects of various shock characteristics (initial speed, shock duration, background solar wind, longitude, etc.) and background solar wind on the forecast are also investigated statistically.

  17. Shock-induced transformations in the system NaAlSiO4-SiO2 - A new interpretation

    NASA Technical Reports Server (NTRS)

    Sekine, Toshimori; Ahrens, Thomas J.

    1992-01-01

    New internally consistent interpretations of the phases represented by the high pressure phase shock wave data for an albite-rich rock, jadeite, and nepheline in the system NaAlSiO4-SiO2, are obtained using the results of static high pressure investigations, and the recent discovery of the hollandite phase in a shocked meteorite. We conclude that nepheline transforms directly to the calcium ferrite structure, whereas albite transforms possibly to the hollandite structure. Shock Hugoniots for the other plagioclase and alkali feldspars also indicate that these transform to hollandite structures. The pressure-volume data at high pressure could alternatively represent the compression of an amorphous phase. Moreover, the shock Hugoniot data are expected to reflect the properties of the melt above shock stresses of 60-80 GPa. The third order Birch-Murnaghan equation of state parameters are given for the calcium ferrite type NaAlSiO4 and for albite-rich, orthoclase-rich, and anorthite-rich hollandites.

  18. Quantum and quasi-classical collisional dynamics of O{sub 2}–Ar at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulusoy, Inga S.; Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400; Andrienko, Daniil A.

    A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate verymore » good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.« less

  19. ULTRAVIOLET SPECTROSCOPY OF BL Hyi AND EF Eri IN HIGH AND INTERMEDIATE STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R.; Abdel-Sabour, M. A.

    2016-08-01

    We present the first phase-resolved ultraviolet spectroscopy of two polar systems, BL Hyi and EF Eri, in high and intermediate states from the International Ultraviolet Explorer ( IUE ) during the periods between 1982–1995 and 1979–1991, respectively. The flux curves for the C iv and He ii emission lines for both systems showing variations in their fluxes at different orbital phases are presented. The emission lines are produced in the accretion stream. The reddening for the two polars is found to be 0.00. Our results show that there are variations of the line fluxes with time, similar to the lightmore » curves found for both BL Hyi and EF Eri in the optical, infrared, ultraviolet, and X-ray bands. IUE observations support a radiative shock model of BL Hyi with the heating of matter by radiation from the accretion shock and cooling by the electrons scattering off ultraviolet photons from the surface of the white dwarf. EF Eri observations support a two-temperature white dwarf model producing sufficient ultraviolet flux for orbital modulations.« less

  20. Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; DeBonis, J. R.

    1999-01-01

    A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.

  1. Quantum and quasi-classical collisional dynamics of O2-Ar at high temperatures

    NASA Astrophysics Data System (ADS)

    Ulusoy, Inga S.; Andrienko, Daniil A.; Boyd, Iain D.; Hernandez, Rigoberto

    2016-06-01

    A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate very good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.

  2. Overview of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.

  3. X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-β values

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Sacco, G. G.; Argiroffi, C.; Reale, F.; Peres, G.; Maggio, A.

    2010-02-01

    Context. Plasma accreting onto classical T Tauri stars (CTTS) is believed to impact the stellar surface at free-fall velocities, generating a shock. Current time-dependent models describing accretion shocks in CTTSs are one-dimensional, assuming that the plasma moves and transports energy only along magnetic field lines (β ≪ 1). Aims: We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of β ⪆ 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. Methods: We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). Results: The dynamics and stability of the accretion shock strongly depend on the plasma β. In the case of shocks with β > 10, violent outflows of shock-heated material (and possibly MHD waves) are generated at the base of the accretion column and intensely perturb the surrounding stellar atmosphere and the accretion column itself (therefore modifying the dynamics of the shock). In shocks with β ≈ 1, the post-shock region is efficiently confined by the magnetic field. The shock oscillations induced by cooling instability are strongly influenced by β: for β > 10, the oscillations may be rapidly dumped by the magnetic field, approaching a quasi-stationary state, or may be chaotic with no obvious periodicity due to perturbation of the stream induced by the post-shock plasma itself; for β≈ 1 the oscillations are quasi-periodic, although their amplitude is smaller and the frequency higher than those predicted by 1D models. Three movies are only available in electronic form at http://www.aanda.org

  4. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head-Tail Radio Galaxies Based on the Magnetic Tower Jet Model

    NASA Astrophysics Data System (ADS)

    Gan, Zhaoming; Li, Hui; Li, Shengtai; Yuan, Feng

    2017-04-01

    The distinctive morphology of head-tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head-tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head-tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head-tail radio galaxies.

  5. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head–Tail Radio Galaxies Based on the Magnetic Tower Jet Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Zhaoming; Yuan, Feng; Li, Hui

    The distinctive morphology of head–tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head–tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather.more » Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head–tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head–tail radio galaxies.« less

  6. Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaou, G.; Livadiotis, G.

    2017-03-20

    We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying alongmore » the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.« less

  7. Anomalous Shocks on the Measured Near-Field Pressure Signatures of Low-Boom Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2006-01-01

    Unexpected shocks on wind-tunnel-measured pressure signatures prompted questions about design methods, pressure signature measurement techniques, and the quality of measurements in the flow fields near lifting models. Some of these unexpected shocks were the result of component integration methods. Others were attributed to the three-dimension nature of the flow around a lifting model, to inaccuracies in the prediction of the area-ruled lift, or to wing-tip stall effects. This report discusses the low-boom model wind-tunnel data where these unexpected shocks were initially observed, the physics of the lifting wing/body model's flow field, the wind-tunnel data used to evaluate the applicability of methods for calculating equivalent areas due to lift, the performance of lift prediction codes, and tip stall effects so that the cause of these shocks could be determined.

  8. The physics of interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Draine, Bruce T.

    1987-01-01

    This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.

  9. Research on shock wave characteristics in the isolator of central strut rocket-based combined cycle engine under Ma5.5

    NASA Astrophysics Data System (ADS)

    Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang

    2017-11-01

    A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.

  10. A Comparative Study of Shock Structures for the Halloween 2003 and the 23 July 2012 CME Events

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Liou, K.

    2015-12-01

    Interplanetary (IP) shocks driven by coronal mass ejections (CMEs) play an important role in space weather. For example, solar energetic particles are accelerated at the shock and storm sudden commencements are produced by the impingement of the Earth by the shocks. Here, we study shocks associated with two major CME events - the Halloween 2003 and the 23 July 2012 CME events, using a three-dimensional (3D) magnetohydrodynamics model (H3DMHD). The H3DMHD (Wu et al. 2007, JGR) combines the kinematic solar wind model (HAF) for regions near the solar surface (2.5-18 Rs) and a 3D magnetohydrodynamics model (Han et al. 1988), which takes output from HAF at 18 Rs and propagates outward up to 1.7 AU. The H3DMHD code has been fully tested and is capable of simulating disturbances propagating in the solar wind. We will focus on the temporal and spatial structure of the CME-driven shocks, including the shock type and strength.

  11. Shock, release and reshock of PBX 9502: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq; Gustavsen, Richard; Whitworh, Nicholas; Menikoff, Ralph; Tarver, Craig; Handley, Caroline; Bartram, Brian

    2017-06-01

    We examine shock, release and reshock into the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502 (95% TATB, 5% Kel-F 800) from both an experimental and modeling point of view. The experiments are performed on the 2-stage light gas gun at Los Alamos National Laboratory and are composed of a multi-layered impactor impinging on PBX 9502 backed by a polymethylmethacrylate window. The objective is to initially shock the PBX 9502 in the 7 GPa range (too weak to start significant reaction), then allow a rarefaction fan to release the material to a lower pressure/temperature state. Following this release, a strong second shock will recompress the PBX. If the rarefaction fan releases the PBX to a very low pressure, the ensuing second shock can increase the entropy and temperature substantially more than in previous double-shock experiments without an intermediate release. Predictions from a variety of reactive burn models (AWSD, CREST, Ignition and Growth, SURF) demonstrate significantly different behaviors and thus the experiments are an excellent validation test of the models, and may suggest improvements for subsequent modeling efforts.

  12. Multiphase Modeling of Secondary Atomization in a Shock Environment

    NASA Astrophysics Data System (ADS)

    St. Clair, Jeffrey; McGrath, Thomas; Balachandar, Sivaramakrishnan

    2017-06-01

    Understanding and developing accurate modeling strategies for shock-particulate interaction remains a challenging and important topic, with application to energetic materials development, volcanic eruptions, and safety/risk assessment. This work presents computational modeling of compressible multiphase flows with shock-induced droplet atomization. Droplet size has a strong influence on the interphase momentum and heat transfer. A test case is presented that is sensitive to this, requiring the dynamic modeling of the secondary atomization process occurring when the shock impacts the droplets. An Eulerian-Eulerian computational model that treats all phases as compressible, is hyperbolic and satisfies the 2nd Law of Thermodynamics is applied. Four different breakup models are applied to the test case in which a planar shock wave encounters a cloud of water droplets. The numerical results are compared with both experimental and previously-generated modeling results. The effect of the drag relation used is also investigated. The computed results indicate the necessity of using a droplet breakup model for this application, and the relative accuracy of results obtained with the different droplet breakup and drag models is discussed.

  13. EFFECTS OF HEAT AND BROMOCHLOROACETIC ACID ON MALE REPRODUCTION IN HEAT SHOCK FACTOR-1 GENE KNOCKOUT MICE

    EPA Science Inventory

    Effects of heat and bromochloroacetic acid on male reproduction in heat shock factor-1 gene knockout mice.
    Luft JC1, IJ Benjamin2, JB Garges1 and DJ Dix1. 1Reproductive Toxicology Division, USEPA, RTP, NC, 27711 and 2Dept of Internal Medicine, Univ.of Texas Southwestern Med C...

  14. Dynamic pressure sensitivity determination with Mach number method

    NASA Astrophysics Data System (ADS)

    Sarraf, Christophe; Damion, Jean-Pierre

    2018-05-01

    Measurements of pressure in fast transient conditions are often performed even if the dynamic characteristic of the transducer are not traceable to international standards. Moreover, the question of a primary standard in dynamic pressure is still open, especially for gaseous applications. The question is to improve dynamic standards in order to respond to expressed industrial needs. In this paper, the method proposed in the EMRP IND09 ‘Dynamic’ project, which can be called the ‘ideal shock tube method’, is compared with the ‘collective standard method’ currently used in the Laboratoire de Métrologie Dynamique (LNE/ENSAM). The input is a step of pressure generated by a shock tube. The transducer is a piezoelectric pressure sensor. With the ‘ideal shock tube method’ the sensitivity of a pressure sensor is first determined dynamically. This method requires a shock tube implemented with piezoelectric shock wave detectors. The measurement of the Mach number in the tube allows an evaluation of the incident pressure amplitude of a step using a theoretical 1D model of the shock tube. Heat transfer, other actual effects and effects of the shock tube imperfections are not taken into account. The amplitude of the pressure step is then used to determine the sensitivity in dynamic conditions. The second method uses a frequency bandwidth comparison to determine pressure at frequencies from quasi-static conditions, traceable to static pressure standards, to higher frequencies (up to 10 kHz). The measurand is also a step of pressure generated by a supposed ideal shock tube or a fast-opening device. The results are provided as a transfer function with an uncertainty budget assigned to a frequency range, also deliverable frequency by frequency. The largest uncertainty in the bandwidth of comparison is used to trace the final pressure step level measured in dynamic conditions, owing that this pressure is not measurable in a steady state on a shock tube. A reference sensor thereby calibrated can be used in a comparison measurement process. At high frequencies the most important component of the uncertainty in this method is due to actual shock tube complex effects not already functionalized nowadays or thought not to be functionalized in this kind of direct method. After a brief review of both methods and a brief review of the determination of the transfer function of pressure transducers, and the budget of associated uncertainty for the dynamic calibration of a pressure transducer in gas, this paper presents a comparison of the results obtained with the ‘ideal shock tube’ and the ‘collective standard’ methods.

  15. Professor Thomas J. Ahrens and Shock Wave Physics in Russia

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Kanel, Gennady I.

    2011-06-01

    Since his earlier works on the equations of state and dynamic mechanical properties of rocks and other materials Prof. T.J. Ahrens furnished large influence on development of the shock wave physics in Russia. He always demonstrates a choice of excellent problems and a level of productivity in the field of shock compression science which is unparalleled. In recognition of his great contribution into science and international scientific collaboration Prof. Ahrens has been elected in Russian Academy of Sciences as its foreign member. In the presentation, emphasis will be done on the Comet Shoemaker-Levy project in which we had fruitful informal collaboration, on the problem of wide-range equations of state, and on stress relaxation at shock compression of solids.

  16. Modelling health and output at business cycle horizons for the USA.

    PubMed

    Narayan, Paresh Kumar

    2010-07-01

    In this paper we employ a theoretical framework - a simple macro model augmented with health - that draws guidance from the Keynesian view of business cycles to examine the relative importance of permanent and transitory shocks in explaining variations in health expenditure and output at business cycle horizons for the USA. The variance decomposition analysis of shocks reveals that at business cycle horizons permanent shocks explain the bulk of the variations in output, while transitory shocks explain the bulk of the variations in health expenditures. We undertake a shock decomposition analysis for private health expenditures versus public health expenditures and interestingly find that while transitory shocks are more important for private sector expenditures, permanent shocks dominate public health expenditures. Copyright (c) 2009 John Wiley & Sons, Ltd.

  17. The Physics of Molecular Shocks in Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Molecular shocks are produced by the impact of the supersonic infall of gas and dust onto protostars and by the interaction of the supersonic outflow from the protostar with the circumstellar material. Infalling gas creates an accretion shock around the circumstellar disk which emits a unique infrared spectrum and which processes the interstellar dust as it enters the disk. The winds and jets from protostars also impact the disk, the infalling material, and the ambient molecular cloud core creating shocks whose spectrum and morphology diagnose the mass loss processes of the protostar and the orientation and structure of the star forming system. We discuss the physics of these shocks, the model spectra derived from theoretical models, and comparisons with observations of H2O masers, H2 emission, as well as other shocks tracers. We show the strong effect of magnetic fields on molecular shock structure, and elucidate the chemical changes induced by the shock heating and compression.

  18. Numerical solutions of Navier-Stokes equations for compressible turbulent two/three dimensional flows in terminal shock region of an inlet/diffuser

    NASA Technical Reports Server (NTRS)

    Liu, N. S.; Shamroth, S. J.; Mcdonald, H.

    1983-01-01

    The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.

  19. Nonholonomic Hamiltonian Method for Meso-macroscale Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Lee, Sangyup

    2015-06-01

    The seamless integration of macroscale, mesoscale, and molecular scale models of reacting shock physics has been hindered by dramatic differences in the model formulation techniques normally used at different scales. In recent research the authors have developed the first unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics. Unlike previous work, the formulation employs reacting themomechanical Hamiltonian formulations at all scales, including the continuum. Unlike previous work, the formulation employs a nonholonomic modeling approach to systematically couple the models developed at all scales. Example applications of the method show meso-macroscale shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  20. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  1. Systematic search for high-energy gamma-ray emission from bow shocks of runaway stars

    DOE PAGES

    Schulz, A.; Ackermann, M.; Buehler, R.; ...

    2014-05-01

    Context. It has been suggested that the bow shocks of runaway stars are sources of high-energy gamma rays (E > 100 MeV). Theoretical models predicting high-energy gamma-ray emission from these sources were followed by the first detection of non-thermal radio emission from the bow shock of BD+43°3654 and non-thermal X-ray emission from the bow shock of AE Aurigae. Aims. We perform the first systematic search for MeV and GeV emission from 27 bow shocks of runaway stars using data collected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). Methods. We analysed 57 months of Fermi-LATmore » data at the positions of 27 bow shocks of runaway stars extracted from the Extensive stellar BOw Shock Survey catalogue (E-BOSS). A likelihood analysis was performed to search for gamma-ray emission that is not compatible with diffuse background or emission from neighbouring sources and that could be associated with the bow shocks. Results. None of the bow shock candidates is detected significantly in the Fermi-LAT energy range. We therefore present upper limits on the high-energy emission in the energy range from 100MeV to 300 GeV for 27 bow shocks of runaway stars in four energy bands. For the three cases where models of the high-energy emission are published we compare our upper limits to the modelled spectra. Our limits exclude the model predictions for ζ Ophiuchi by a factor ≈ 5.« less

  2. Steady state and dynamical structure of a cosmic-ray-modified termination shock

    NASA Technical Reports Server (NTRS)

    Donohue, D. J.; Zank, G. P.

    1993-01-01

    A hydrodynamic model is developed for the structure of a cosmic-ray-modified termination shock. The model is based on the two-fluid equations of diffuse shock acceleration (Drury and Volk, 1981). Both the steady state structure of the shock and its interaction with outer heliospheric disturbances are considered. Under the assumption that the solar wind is decelerated by diffusing interstellar cosmic rates, it is shown that the natural state of the termination shock is a gradual deceleration and compression, followed by a discontinuous jump to a downstream state which is dominated by the pressure contribution of the cosmic rays. A representative model is calculated for the steady state which incorporates both interstellar cosmic ray mediation and diffusively accelerated anomalous ions through a proposed thermal leakage mechanism. The interaction of large-scale disturbances with the equilibrium termination shock model is shown to result in some unusual downstream structure, including transmitted shocks and cosmic-ray-modified contact discontinuities. The structure observed may be connected to the 2-kHz outer heliospheric radio emission (Cairns et al., 1992a, b). The time-dependent simulations also demonstrate that interaction with solar wind compressible turbulence (e.g., traveling interplanetary shocks, etc.) could induce the termination shock to continually fluctuate between cosmic-ray-dominated and gas-dynamic states. This fluctuation may represent a partial explanation of the galactic cosmic ray modulation effect and illustrates that the Pioneer and Voyager satellites will encounter an evolving shock whose structure and dynamic properties are strongly influence by the mediation of interstellar and anomalous cosmic rays.

  3. Steady state and dynamical structure of a cosmic-ray-modified termination shock

    NASA Astrophysics Data System (ADS)

    Donohue, D. J.; Zank, G. P.

    1993-11-01

    A hydrodynamic model is developed for the structure of a cosmic-ray-modified termination shock. The model is based on the two-fluid equations of diffuse shock acceleration (Drury and Volk, 1981). Both the steady state structure of the shock and its interaction with outer heliospheric disturbances are considered. Under the assumption that the solar wind is decelerated by diffusing interstellar cosmic rates, it is shown that the natural state of the termination shock is a gradual deceleration and compression, followed by a discontinuous jump to a downstream state which is dominated by the pressure contribution of the cosmic rays. A representative model is calculated for the steady state which incorporates both interstellar cosmic ray mediation and diffusively accelerated anomalous ions through a proposed thermal leakage mechanism. The interaction of large-scale disturbances with the equilibrium termination shock model is shown to result in some unusual downstream structure, including transmitted shocks and cosmic-ray-modified contact discontinuities. The structure observed may be connected to the 2-kHz outer heliospheric radio emission (Cairns et al., 1992a, b). The time-dependent simulations also demonstrate that interaction with solar wind compressible turbulence (e.g., traveling interplanetary shocks, etc.) could induce the termination shock to continually fluctuate between cosmic-ray-dominated and gas-dynamic states. This fluctuation may represent a partial explanation of the galactic cosmic ray modulation effect and illustrates that the Pioneer and Voyager satellites will encounter an evolving shock whose structure and dynamic properties are strongly influence by the mediation of interstellar and anomalous cosmic rays.

  4. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  5. Control of shock wave-boundary layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Hingst, W. G.; Reshotko, E.

    1975-01-01

    An experimental investigation was conducted to determine the effect of bleed on a shock wave-boundary layer interaction in an axisymmetric mixed-compression supersonic inlet. The inlet was designed for a free-stream Mach number of 2.50 with 60-percent supersonic internal area contraction. The experiment was conducted in the NASA Lewis Research Center 10-Foot Supersonic Wind Tunnel. The effects of bleed amount and bleed geometry on the boundary layer after a shock wave-boundary layer interaction were studied. The effect of bleed on the transformed form factor is such that the full realizable reduction is obtained by bleeding of a mass flow equal to about one-half of the incident boundary layer mass flow. More bleeding does not yield further reduction. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise.

  6. A hierarchy for modeling high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  7. TRANSPORT OF SOLAR WIND H{sup +} AND He{sup ++} IONS ACROSS EARTH’S BOW SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, G. K.; Lin, N.; Lee, E.

    2016-07-10

    We have investigated the dependence of mass, energy, and charge of solar wind (SW) transport across Earth’s bow shock. An examination of 111 crossings during quiet SW in both quasi-perpendicular and quasi-parallel shock regions shows that 64 crossings had various degrees of heating and thermalization of SW. We found 22 crossings where the SW speed was <400 km s{sup −1}. The shock potential of a typical supercritical quasi-perpendicular shock estimated from deceleration of the SW and cutoff energy of electron flat top distribution is ∼50 Volts. We find that the temperatures of H{sup +} and He{sup ++} beams that penetratemore » the shock can sometimes be nearly the same in the upstream and downstream regions, indicating little or no heating had occurred crossing the bow shock. None of the models predict that the SW can cross the bow shock without heating. Our observations are important constraints for new models of collisionless shocks.« less

  8. The effect of varying Mach number on crossing, glancing shocks/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Williams, K. E.

    1991-01-01

    Two crossing side-wall shocks interacting with a supersonic tunnel wall boundary layer have been investigated over a Mach number range of 2.5 to 4.0. The investigation included a range of equal shock strengths produced by shock generators at angles from 4.0 to 12.0 degrees. Results of flow visualization show that the interaction is unseparated at the low shock generator angles. With increasing shock strength, the flow begins to form a separated region that grows in size and moves forward and eventually the model unstarts. The wall static pressures show a symmetrical compression that merges on the centerline upstream of the inviscid shock locations and becomes more 1D downstream. The region of the 1D pressure gradient moves upstream with increasing shock strengths until it coincides with the leading edge of the shock generators at the limit before model unstart. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  9. Aversive conditioning in honey bees (Apis mellifera anatolica): a comparison of drones and workers.

    PubMed

    Dinges, Christopher W; Avalos, Arian; Abramson, Charles I; Craig, David Philip Arthur; Austin, Zoe M; Varnon, Christopher A; Dal, Fatima Nur; Giray, Tugrul; Wells, Harrington

    2013-11-01

    Honey bees provide a model system to elucidate the relationship between sociality and complex behaviors within the same species, as females (workers) are highly social and males (drones) are more solitary. We report on aversive learning studies in drone and worker honey bees (Apis mellifera anatolica) in escape, punishment and discriminative punishment situations. In all three experiments, a newly developed electric shock avoidance assay was used. The comparisons of expected and observed responses were performed with conventional statistical methods and a systematic randomization modeling approach called object oriented modeling. The escape experiment consisted of two measurements recorded in a master-yoked paradigm: frequency of response and latency to respond following administration of shock. Master individuals could terminate an unavoidable shock triggered by a decrementing 30 s timer by crossing the shuttlebox centerline following shock activation. Across all groups, there was large individual response variation. When assessing group response frequency and latency, master subjects performed better than yoked subjects for both workers and drones. In the punishment experiment, individuals were shocked upon entering the shock portion of a bilaterally wired shuttlebox. The shock portion was spatially static and unsignalled. Only workers effectively avoided the shock. The discriminative punishment experiment repeated the punishment experiment but included a counterbalanced blue and yellow background signal and the side of shock was manipulated. Drones correctly responded less than workers when shock was paired with blue. However, when shock was paired with yellow there was no observable difference between drones and workers.

  10. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

    PubMed Central

    Singer, Mervyn; Deutschman, Clifford S.; Seymour, Christopher Warren; Shankar-Hari, Manu; Annane, Djillali; Bauer, Michael; Bellomo, Rinaldo; Bernard, Gordon R.; Chiche, Jean-Daniel; Coopersmith, Craig M.; Hotchkiss, Richard S.; Levy, Mitchell M.; Marshall, John C.; Martin, Greg S.; Opal, Steven M.; Rubenfeld, Gordon D.; van der Poll, Tom; Vincent, Jean-Louis; Angus, Derek C.

    2016-01-01

    IMPORTANCE Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. OBJECTIVE To evaluate and, as needed, update definitions for sepsis and septic shock. PROCESS A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). KEY FINDINGS FROMEVIDENCE SYNTHESIS Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. RECOMMENDATIONS Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. CONCLUSIONS AND RELEVANCE These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis. PMID:26903338

  11. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

    PubMed

    Singer, Mervyn; Deutschman, Clifford S; Seymour, Christopher Warren; Shankar-Hari, Manu; Annane, Djillali; Bauer, Michael; Bellomo, Rinaldo; Bernard, Gordon R; Chiche, Jean-Daniel; Coopersmith, Craig M; Hotchkiss, Richard S; Levy, Mitchell M; Marshall, John C; Martin, Greg S; Opal, Steven M; Rubenfeld, Gordon D; van der Poll, Tom; Vincent, Jean-Louis; Angus, Derek C

    2016-02-23

    Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. To evaluate and, as needed, update definitions for sepsis and septic shock. A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.

  12. Understanding Shock Dynamics in the Inner Heliosphere with Modeling and Type II Radio Data: the 2010-04-03 Event

    NASA Technical Reports Server (NTRS)

    Xie, Hong Na; Odstrcil, Dusan; Mays, L.; Cyr, O. C. St.; Gopalswamy, N.; Cremades, H.

    2012-01-01

    The 2010 April 03 solar event was studied using observations from STEREO SECCHI, SOHO LASCO, and Wind kilometric Type II data (kmTII) combined with WSA-Cone-ENLIL model simulations performed at the Community Coordinated Modeling Center (CCMC). In particular, we identified the origin of the coronal mass ejection (CME) using STEREO EUVI and SOHO EIT images. A flux-rope model was fit to the SECCHI A and B, and LASCO images to determine the CMEs direction, size, and actual speed. J-maps from STEREO COR2HI-1HI-2 and simulations fromCCMC were used to study the formation and evolution of the shock in the inner heliosphere. In addition, we also studied the time-distance profile of the shock propagation from kmTII radio burst observations. The J-maps together with in-situ datafrom the Wind spacecraft provided an opportunity to validate the simulation results andthe kmTII prediction. Here we report on a comparison of two methods of predictinginterplanetary shock arrival time: the ENLIL model and the kmTII method; andinvestigate whether or not using the ENLIL model density improves the kmTIIprediction. We found that the ENLIL model predicted the kinematics of shock evolutionwell. The shock arrival times (SAT) and linear-fit shock velocities in the ENLILmodel agreed well with those measurements in the J-maps along both the CME leading edge and the Sun-Earth line. The ENLIL model also reproduced most of the largescale structures of the shock propagation and gave the SAT prediction at Earth with an error of 17 hours. The kmTII method predicted the SAT at Earth with an error of 15 hours when using n0 4.16 cm3, the ENLIL model plasma density near Earth; but itimproved to 2 hours when using n0 6.64 cm3, the model density near the CMEleading edge at 1 AU.

  13. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  14. Oil price fluctuations and the Gulf Cooperation Council (GCC) countries, 1960--2004

    NASA Astrophysics Data System (ADS)

    Alotaibi, Bader

    The dissertation examines the effect of oil price fluctuations on GCC economies for the period 1960-2004. The objective of chapter two is to investigate whether oil price fluctuations have asymmetric effects on GDP growth. Does a negative oil price shock have merely an opposite effect as does a positive price shock or are there differences in degrees? Many past studies have examined asymmetries between oil prices and output growth in oil importing countries. A fixed effect model is used. We find that negative oil price shocks dominate positive shocks. The objective of chapter three is to investigate the impact of oil price shocks on real exchange rates and price levels. A structural Vector Autoregression (VAR) model for each country is used containing three and four variables in the first and second specifications, respectively. Oil price shocks are found to be not only important but persistent. In most countries, supply shocks play larger roles than do demand shocks. Nominal shocks have only short-run effects on the real exchange rate and the price level. The objective of chapter four is to investigate fluctuations in budget and trade deficits. Do agents smooth over income shocks due to fluctuations in oil prices or do oil price shocks have large effects? Also, are the budget and trade deficits causally related? If so, what direction does this causal relation take? Many studies have considered links between budget and trade deficits but most have been conducted for countries where oil is not a major concern. A VAR model containing three variables for each country is used. Oil price shocks are found to be persistent. Also, the results support the twin deficits hypothesis. Budget deficit shocks cause deterioration in the trade deficits in GCC countries.

  15. Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure

    NASA Technical Reports Server (NTRS)

    Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2003-01-01

    Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid velocity profile due to the contribution of energetic particles to the momentum and energy fluxes.

  16. Thermographic Phosphor Measurements of Shock-Shock Interactions on a Swept Cylinder

    NASA Technical Reports Server (NTRS)

    Jones, Michelle L.; Berry, Scott A.

    2013-01-01

    The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite onedimensional method.

  17. Experimental Investigation of Shock-Shock Interactions Over a 2-D Wedge at M=6

    NASA Technical Reports Server (NTRS)

    Jones, Michelle L.

    2013-01-01

    The effects of fin-leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins through phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.

  18. Characteristics code for shock initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partom, Y.

    1986-10-01

    We developed SHIN, a characteristics code for shock initiation studies. We describe in detail the equations of state, reaction model, rate equations, and numerical difference equations that SHIN incorporates. SHIN uses the previously developed surface burning reaction model which better represents the shock initiation process in TATB, than do bulk reaction models. A large number of computed simulations prove the code is a reliable and efficient tool for shock initiation studies. A parametric study shows the effect on build-up and run distance to detonation of (1) type of boundary condtion, (2) burning velocity curve, (3) shock duration, (4) rise timemore » in ramp loading, (5) initial density (or porosity) of the explosive, (6) initial temperature, and (7) grain size. 29 refs., 65 figs.« less

  19. Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghav, Anil; Lotekar, Ajay; Bhaskar, Ankush

    We have studied the Forbush decrease (FD) event that occurred on February 14, 1978 using 43 neutron monitor observatories to understand the global signature of FD. We have studied rigidity dependence of shock amplitude and total FD amplitude. We have found almost the same power law index for both shock phase amplitude and total FD amplitude. Local time variation of shock phase amplitude and maximum depression time of FD have been investigated which indicate possible effect of shock/CME orientation. We have analyzed rigidity dependence of time constants of two phase recovery. Time constants of slow component of recovery phase showmore » rigidity dependence and imply possible effect of diffusion. Solar wind speed was observed to be well correlated with slow component of FD recovery phase. This indicates solar wind speed as possible driver of recovery phase. To investigate the contribution of interplanetary drivers, shock and CME in FD, we have used shock-only and CME-only models. We have applied these models separately to shock phase and main phase amplitudes respectively. This confirms presently accepted physical scenario that the first step of FD is due to propagating shock barrier and second step is due to flux rope of CME/magnetic cloud.« less

  20. The National Health Service (NHS) at 70: some comparative reflections.

    PubMed

    Tuohy, Carolyn H

    2018-03-16

    As the National Health Service (NHS) turns 70, it bears comparison with another universal system celebrating an anniversary this year: Canada's 50-year-old medicare model. Each system is iconically popular, and each revolves around a profession-state accommodation. Both the popularity and the central axis of each system have been tested by external shocks in the form of periodic fiscal cycles of investment and austerity, and internal stresses generating organizational cycles of centralization and decentralization. In addition, the English NHS has undergone periodic bursts of major policy change, which have arguably moved the system closer to the Canadian single-payer model.

  1. Nonlinear analysis of shock absorbers with amplitude-dependent damping

    NASA Astrophysics Data System (ADS)

    Łuczko, Jan; Ferdek, Urszula; Łatas, Waldemar

    2018-01-01

    This paper contains an analysis of a quarter-car model representing a vehicle equipped with a hydraulic damper whose characteristics are dependent on the piston stroke. The damper, compared to a classical mono-tube damper, has additional internal chambers. Oil flow in those chambers is controlled by relative piston displacement. The proposed nonlinear model of the system is aimed to test the effect of key design parameters of the damper on the quality indices representing ride comfort and driving safety. Numerical methods were used to determine the characteristic curves of the damper and responses of the system to harmonic excitations with their amplitude decreasing as the values of frequency increase.

  2. Oil-Price Shocks: Beyond Standard Aggregate Demand/Aggregate Supply Analysis.

    ERIC Educational Resources Information Center

    Elwood, S. Kirk

    2001-01-01

    Explores the problems of portraying oil-price shocks using the aggregate demand/aggregate supply model. Presents a simple modification of the model that differentiates between production and absorption of goods, which enables it to better reflect the effects of oil-price shocks on open economies. (RLH)

  3. Global Aeroheating Measurements of Shock-Shock Interactions on a Swept Cylinder

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Berry, Scott A.

    2015-01-01

    The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. The cylindrical leading-edge fin models, with radii varied from 0.25 to 0.75 inches, represent wings or struts on hypersonic vehicles. A 9deg wedge generated a planar oblique shock at 16.7deg. to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin sweep angle was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. These cases were chosen to explore three characterized shock-shock interaction types. Global temperature data were obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and any temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using a one-dimensional semi-infinite method, as well as one- and two-dimensional finite-volume methods. These results were compared to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for each explored shock-shock interaction type regardless of the leading-edge radius. However, the dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.

  4. What do mouse models of muscular dystrophy tell us about the DAPC and its components?

    PubMed

    Whitmore, Charlotte; Morgan, Jennifer

    2014-12-01

    There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  5. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  6. The Wardle Instability in Interstellar Shocks. 2; Gas Temperture and Line Emission

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Stone, James M.

    1997-01-01

    We have modeled the gas temperature structure in unstable C-type shocks and obtained predictions for the resultant CO and H2 rotational line emissions, using numerical simulations of the Wardle instability. Our model for the thermal balance of the gas includes ion-neutral frictional heating; compressional heating; radiative cooling due to rotational and ro-vibrational transitions of the molecules CO, H2O, and H2; and gas-grain collisional cooling. We obtained results for the gas temperature distribution in-and H2 and CO line emission from-shocks of neutral Alfvenic Mach number 10 and velocity 20 or 40 km/ s in which the Wardle instability has saturated. Both two- and three-dimensional simulations were carried out for shocks in which the preshock magnetic field is perpendicular to the shock propagation direction, and a two-dimensional simulation was carried out for the case in which the magnetic field is obliquely oriented with respect to the shock propagation direction. Although the Wardle instability profoundly affects the density structure behind C-type shocks, most of the shock-excited molecular line emission is generated upstream of the region where the strongest effects of the instability are felt. Thus the Wardle instability has a relatively small effect on the overall gas temperature distribution in-and the emission-line spectrum from-C-type shocks, at least for the cases that we have considered. In none of the cases that we have considered thus far did any of the predicted emission-line luminosities change by more than a factor of 2.5, and in most cases the effects of instability were significantly smaller than that. Slightly larger changes in the line luminosities seem likely for three-dimensional simulations of oblique shocks, although such simulations have yet to be carried out and lie beyond the scope of this study. Given the typical uncertainties that are always present when model predictions are compared with real astronomical data, we conclude that Wardle instability does not imprint any clear observational signature on the shock-excited CO and H2 line strengths. This result justifies the use of one-dimensional steady shock models in the interpretation of observations of shock-excited line emission in regions of star formation. Our three-dimensional simulations of perpendicular shocks revealed the presence of warm filamentary structures that are aligned along the magnetic field, a result that is of possible relevance to models of water maser emission from C-type shocks.

  7. Simulations and experiments of ejecta generation in twice-shocked metals

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William; Hammerberg, James; Cherne, Frank; Andrews, Malcolm

    2016-11-01

    Using continuum hydrodynamics embedded in the FLASH code, we model ejecta generation in recent target experiments, where a metallic surface was loaded by two successive shock waves. The experimental data were obtained from a two-shockwave, high-explosive tool at Los Alamos National Laboratory, capable of generating ejecta from a shocked tin surface in to a vacuum. In both simulations and experiment, linear growth is observed following the first shock event, while the second shock strikes a finite-amplitude interface leading to nonlinear growth. The timing of the second incident shock was varied systematically in our simulations to realize a finite-amplitude re-initialization of the RM instability driving the ejecta. We find the shape of the interface at the event of second shock is critical in determining the amount of ejecta, and thus must be used as an initial condition to evaluate subsequent ejected mass using a source model. In particular, the agreement between simulations, experiments and the mass model is improved when shape effects associated with the interface at second shock are incorporated. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  8. Vibration analysis on compact car shock absorber

    NASA Astrophysics Data System (ADS)

    Tan, W. H.; Cheah, J. X.; Lam, C. K.; Lim, E. A.; Chuah, H. G.; Khor, C. Y.

    2017-10-01

    Shock absorber is a part of the suspension system which provides comfort experience while driving. Resonance, a phenomenon where forced frequency is coinciding with the natural frequency has significant effect on the shock absorber itself. Thus, in this study, natural frequencies of the shock absorber in a 2 degree-of-freedom system were investigated using Wolfram Mathematica 11, CATIA, and ANSYS. Both theoretical and simulation study how will the resonance affect the car shock absorber. The parametric study on the performance of shock absorber also had been conducted. It is found that the failure tends to occur on coil sprung of the shock absorber before the body of the shock absorber is fail. From mathematical modelling, it can also be seen that higher vibration level occurred on un-sprung mass compare to spring mass. This is due to the weight of sprung mass which could stabilize as compared with the weight of un-sprung mass. Besides that, two natural frequencies had been obtained which are 1.0 Hz and 9.1 Hz for sprung mass and un-sprung mass respectively where the acceleration is recorded as maximum. In conclusion, ANSYS can be used to validate with theoretical results with complete model in order to match with mathematical modelling.

  9. Color temperature measurement in laser-driven shock waves

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Benuzzi, A.; Batani, D.; Beretta, D.; Bossi, S.; Faral, B.; Koenig, M.; Krishnan, J.; Löautwer, Th.; Mahdieh, M.

    1997-06-01

    A simultaneous measurement of color temperature and shock velocity in laser-driven shocks is presented. The color temperature was measured from the target rear side emissivity, and the shock velocity by using stepped targets. A very good planarity of the shock was ensured by the phase zone plate smoothing technique. A simple model of the shock luminosity has been developed in order to estimate the shock temperature from the experimental rear side emissivity. Results have been compared to temperatures obtained from the shock velocity for a material of a known equation of state.

  10. Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model

    NASA Astrophysics Data System (ADS)

    Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi

    2018-02-01

    Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.

  11. Transparency of the strong shock-compressed diamond for 532 nm laser light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyu; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhao, Yang

    2016-04-15

    An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probemore » laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.« less

  12. Pressure Effects on the Ejection of Material from Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.

    2007-12-01

    Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metals that have surface defects. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.

  13. Entropy generation across Earth's collisionless bow shock.

    PubMed

    Parks, G K; Lee, E; McCarthy, M; Goldstein, M; Fu, S Y; Cao, J B; Canu, P; Lin, N; Wilber, M; Dandouras, I; Réme, H; Fazakerley, A

    2012-02-10

    Earth's bow shock is a collisionless shock wave but entropy has never been directly measured across it. The plasma experiments on Cluster and Double Star measure 3D plasma distributions upstream and downstream of the bow shock allowing calculation of Boltzmann's entropy function H and his famous H theorem, dH/dt≤0. The collisionless Boltzmann (Vlasov) equation predicts that the total entropy does not change if the distribution function across the shock becomes nonthermal, but it allows changes in the entropy density. Here, we present the first direct measurements of entropy density changes across Earth's bow shock and show that the results generally support the model of the Vlasov analysis. These observations are a starting point for a more sophisticated analysis that includes 3D computer modeling of collisionless shocks with input from observed particles, waves, and turbulences.

  14. Shock-darkening in ordinary chondrites: Determination of the pressure-temperature conditions by shock physics mesoscale modeling

    NASA Astrophysics Data System (ADS)

    Moreau, J.; Kohout, T.; Wünnemann, K.

    2017-11-01

    We determined the shock-darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post-shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock-darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not-shock-related triggers for iron melt.

  15. Reduction of initial shock in decadal predictions using a new initialization strategy

    NASA Astrophysics Data System (ADS)

    He, Yujun; Wang, Bin; Liu, Mimi; Liu, Li; Yu, Yongqiang; Liu, Juanjuan; Li, Ruizhe; Zhang, Cheng; Xu, Shiming; Huang, Wenyu; Liu, Qun; Wang, Yong; Li, Feifei

    2017-08-01

    A novel full-field initialization strategy based on the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) is proposed to alleviate the well-known initial shock occurring in the early years of decadal predictions. It generates consistent initial conditions, which best fit the monthly mean oceanic analysis data along the coupled model trajectory in 1 month windows. Three indices to measure the initial shock intensity are also proposed. Results indicate that this method does reduce the initial shock in decadal predictions by Flexible Global Ocean-Atmosphere-Land System model, Grid-point version 2 (FGOALS-g2) compared with the three-dimensional variational data assimilation-based nudging full-field initialization for the same model and is comparable to or even better than the different initialization strategies for other fifth phase of the Coupled Model Intercomparison Project (CMIP5) models. Better hindcasts of global mean surface air temperature anomalies can be obtained than in other FGOALS-g2 experiments. Due to the good model response to external forcing and the reduction of initial shock, higher decadal prediction skill is achieved than in other CMIP5 models.

  16. Modeling X-ray and gamma-ray emission in the intrabinary shock of pulsar binaries

    NASA Astrophysics Data System (ADS)

    An, H.

    2017-10-01

    We present broadband SED and light curve, and a wind interaction model for the gamma-ray binary 1FGL J1018.6-5856 (J1018) which exhibits double peaks in the X-ray light curve. Assuming that the X-ray to low-energy gamma-ray emission is produced by synchrotron radiation and high-energy gamma rays by inverse Compton scattering in the intrabinary shock (IBS), we model the broadband SED and light curve of J1018 using a two-component model having slow electrons in the shock and fast bulk-accelerated electrons at the skin of the shock. The model explains the broadband SED and light curve of J1018 qualitatively well. In particular, modeling the synchrotron emission constrains the orbital geometry. We discuss potential use of the model for other pulsar binaries.

  17. Culture-Shock and Reverse-Culture Shock: Implications for Juniors Abroad and Seniors at Home.

    ERIC Educational Resources Information Center

    Hogan, John T.

    Thousands of college seniors who have returned from their junior year abroad may be enduring "reverse culture shock" or "reentry crisis." Social psychology and sociology, in the form of "sojourn research," has derived a developmental, stage specific model of culture shock and reverse culture shock, similar to the grieving process identified by…

  18. Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Rivera, Jose A., Jr.

    1991-01-01

    Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated.

  19. A comparative computational study of coarse-grained and all-atom water models in shock Hugoniot states

    NASA Astrophysics Data System (ADS)

    Min, Sa Hoon; Berkowitz, Max L.

    2018-04-01

    We performed molecular dynamics simulations to study how well some of the water models used in simulations describe shocked states. Water in our simulations was described using three different models. One was an often-used all-atom TIP4P/2005 model, while the other two were coarse-grained models used with the MARTINI force field: non-polarizable and polarizable MARTINI water. The all-atom model provided results in good agreement with Hugoniot curves (for data on pressure versus specific volume or, equivalently, on shock wave velocity versus "piston" velocity) describing shocked states in the whole range of pressures (up to 11 GPa) under study. If simulations of shocked states of water using coarse-grained models were performed for short time periods, we observed that data obtained for shocked states at low pressure were fairly accurate compared to experimental Hugoniot curves. Polarizable MARTINI water still provided a good description of Hugoniot curves for pressures up to 11 GPa, while the results for the non-polarizable MARTINI water substantially deviated from the Hugoniot curves. We also calculated the temperature of the Hugoniot states and observed that for TIP4P/2005 water, they were consistent with those from theoretical calculations, while both coarse-grained models predicted much higher temperatures. These high temperatures for MARTINI water can be explained by the loss of degrees of freedom due to coarse-graining procedure.

  20. Evolution and propagation of the July 23, 2012, CME-driven shock: A 3-D MHD simulation result

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Dryer, Ph D., M.; Liou, K.; Wu, C. C.

    2016-12-01

    The interplanetary shock associated with the July 23, 2012 CME event is studied with the H3DMHD 3-D magnetohydrodynamic (MHD) simulation model. This backside CME event has been actively studied, probably due to its extremely fast propagating speed ( 2000 km/s) and large magnetic field magnitude ( 100 nT) at 1 AU. Some workers even compared this even with the Carrington event. In this study we focus on the acceleration and deceleration of the shock at the cobpoints. The H3DMHD is a data (photospheric magnetic field) driven model, which combines the HAF kinematic model for regions sunward of 18 Rs and the 3DMHD ideal MHD model for antisunward of 18 Rs up to 1.5 AU. To simulate the CME a gaussian velocity pulse is manually applied to the inner simulation boundary at 2.5 Rs above the flare site, with the initial peak velocity ( 3000 km/s) taken from the coronagraph measurements. In situ measurements of the solar wind parameters at STEREO-A are used to validate the simulation result, in particular the arrival time of the shock at STEREO-A. It is found, for this particular event, the CME-driven shock strength varies significantly across the shock surface. In general, the shock strength slowly weakened while propagating outward but stayed hypersonic (> Mach 5) for a cone shape region of a few 10's of degrees surrounding the shock nose. We will discuss our result in the context of the acceleration/deceleration of shock in a much slower background solar wind and the relationship of the shock strength with the flux of solar energetic particles observed by STEREO-A.

  1. Effect of electronic excitation on high-temperature flows behind strong shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Istomin, V. A.; Kustova, E. V.

    2014-12-09

    In the present paper, a strongly non-equilibrium one-dimensional steady-state flow behind the plane shock wave is studied. We consider a high-temperature chemically reacting five-component ionized mixture of nitrogen species (N{sub 2}/N{sub 2}{sup 2}/N/N{sup +}/e{sup −}) taking into account electronic degrees of freedom in N and N{sup +} (170 and 625 electronic energy levels respectively), and electronic-rotational-vibrational modes in N{sub 2} and N{sub 2}{sup +} (5 and 7 electronic terms). Non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer are included to the kinetic scheme. The system of governing equations is written under the assumption that translation and internal energy relaxation ismore » fast whereas chemical reactions and ionization proceed on the macroscopic gas-dynamics time-scale. The developed model is applied to simulate the flow behind a plane shock wave under initial conditions characteristic for the spacecraft re-entry from an interplanetary flight (Hermes and Fire II experiments). Fluid-dynamic parameters behind the shock wave as well as transport coefficients and the heat flux are calculated for the (N{sub 2}/N{sub 2}{sup +}/N/N{sup +}/e{sup −}) mixture. The effect of electronic excitation on kinetics, dynamics and heat transfer is analyzed. Whereas the contribution of electronic degrees of freedom to the flow macroparameters is negligible, their influence on the heat flux is found to be important under conditions of Hermes re-entry.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois

    As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less

  3. Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2009-02-01

    We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A /B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A /B/A configurations such as air/SF6/air gas-curtain experiments. We first consider conventional shock tubes that have a "fixed" boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a "free" boundary—a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction toward the interface(s). Complex acceleration histories are achieved, relevant for inertial confinement fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other and remain to be verified experimentally.

  4. On the formation of Friedlander waves in a compressed-gas-driven shock tube

    PubMed Central

    Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.

    2016-01-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888

  5. Molecular line emission models of Herbig-Haro objects. I - H2 emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Konigl, Arieh

    1991-01-01

    A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.

  6. Factors influencing flow steadiness in laminar boundary layer shock interactions

    NASA Astrophysics Data System (ADS)

    Tumuklu, Ozgur; Levin, Deborah A.; Gimelshein, Sergey F.; Austin, Joanna M.

    2016-11-01

    The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and "tick-shaped" model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.

  7. How Negative Affectivity Moderates the Relationship between Shocks, Embeddedness and Worker Behaviors

    ERIC Educational Resources Information Center

    Holtom, Brooks C.; Burton, James P.; Crossley, Craig D.

    2012-01-01

    We integrated the unfolding model of turnover, job embeddedness theory and affective events theory to build and test a model specifying the relationship between negative shocks, on-the-job embeddedness and important employee behaviors. The results showed that embeddedness mediates the relationship between negative shocks and job search behaviors…

  8. Injection Efficiency of Low-energy Particles at Oblique Shocks with a Focused Transport Model

    NASA Astrophysics Data System (ADS)

    Zuo, P.; Zhang, M.; Rassoul, H.

    2013-12-01

    There is strong evidence that a small portion of thermal and suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events (Desai et al. 2006). To build more powerful SEP models, it is necessary to model the detailed particle injection and acceleration process for source particles especially at lower energies. We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). The injection efficiency as a function of Mach number, obliquity, injection speed, shock strength, cross-shock potential and the degree of turbulence is calculated. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection. The results can be applied to modeling the SEP acceleration from source particles.

  9. Diaphragm opening effects on shock wave formation and acceleration in a rectangular cross section channel

    NASA Astrophysics Data System (ADS)

    Pakdaman, S. A.; Garcia, M.; Teh, E.; Lincoln, D.; Trivedi, M.; Alves, M.; Johansen, C.

    2016-11-01

    Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier-Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.

  10. Shock progression and survival after use of a condom uterine balloon tamponade package in women with uncontrolled postpartum hemorrhage.

    PubMed

    Burke, Thomas F; Danso-Bamfo, Sandra; Guha, Moytrayee; Oguttu, Monica; Tarimo, Vincent; Nelson, Brett D

    2017-10-01

    To examine the outcomes of women in advanced shock from uncontrolled postpartum hemorrhage (PPH) who underwent placement of an Every Second Matters for Mothers and Babies Uterine Balloon Tamponade (ESM-UBT) device. In a prospective case series, data were collected for women who received an ESM-UBT device at healthcare facilities in Kenya, Senegal, Sierra Leone, and Tanzania between September 1, 2012, and September 30, 2016. Shock class was assigned on the basis of recorded blood pressures and mental status at the time of UBT placement. Data for 306 women with uncontrolled PPH from uterine atony across 117 facilities were analyzed. Normal vital signs or class I/II shock were reported for 166 (54.2%). In this group, one death occurred and was attributed to PPH (survival rate 99.4%). There were no cases of shock progression. One hundred and eleven (36.3%) were in class III shock and 29 (9.5%) in class IV shock; the respective survival rates were 97.3% (n=108) and 86.2% (n=25). The ESM-UBT device arrests hemorrhage, prevents shock progression, and is associated with high survival rates among women with uncontrolled PPH from uterine atony. © 2017 International Federation of Gynecology and Obstetrics.

  11. Experimental Study of Shock-Induced Compression and Vortex Generation in the Shock-Bubble Interaction

    NASA Astrophysics Data System (ADS)

    Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey

    2006-11-01

    Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4

  12. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy.

    PubMed

    Freund, Jonathan B; Colonius, Tim; Evan, Andrew P

    2007-09-01

    Evidence suggests that inertial cavitation plays an important role in the renal injury incurred during shock-wave lithotripsy. However, it is unclear how tissue damage is initiated, and significant injury typically occurs only after a sufficient dose of shock waves. Although it has been suggested that shock-induced shearing might initiate injury, estimates indicate that individual shocks do not produce sufficient shear to do so. In this paper, we hypothesize that the cumulative shear of the many shocks is damaging. This mechanism depends on whether there is sufficient time between shocks for tissue to relax to its unstrained state. We investigate the mechanism with a physics-based simulation model, wherein the basement membranes that define the tubules and vessels in the inner medulla are represented as elastic shells surrounded by viscous fluid. Material properties are estimated from in-vitro tests of renal basement membranes and documented mechanical properties of cells and extracellular gels. Estimates for the net shear deformation from a typical lithotripter shock (approximately 0.1%) are found from a separate dynamic shock simulation. The results suggest that the larger interstitial volume (approximately 40%) near the papilla tip gives the tissue there a relaxation time comparable to clinical shock delivery rates (approximately 1 Hz), thus allowing shear to accumulate. Away from the papilla tip, where the interstitial volume is smaller (approximately 20%), the model tissue relaxes completely before the next shock would be delivered. Implications of the model are that slower delivery rates and broader focal zones should both decrease injury, consistent with some recent observations.

  13. Investigation of space shuttle launch vehicle external tank nose configuration effects (model 67-OTS) in the Rockwell International 7 by 7 foot trisonic wind tunnel (IA69)

    NASA Technical Reports Server (NTRS)

    Mennell, R.; Rogge, R.

    1974-01-01

    Wind tunnel aerodynamic investigations were conducted on an 0.015-scale representation of the space shuttle launch configuration. The primary test objectives were to investigate shock wave formation and record the aerodynamic stability and control effects generated by a new external tank nose configuration (MCR 467) at a Mach number of 1.2. Schlieren photographs were taken at angles of attack of -4 deg, 0 deg, and 4 deg, beta = 0 deg with force and pressure data recorded over the alpha range of -4 deg equal to or less than alpha equal to or less than 4 deg at beta = + or - 4 deg. The launch configuration model, consisting of the VL70-00014OA/B Orbiter, the VL78-000041B ET, and the VL77-000036A SRBs, was sting mounted on a 2.5-inch Task type internal balance entering through the ET base region. Wing, body, and base pressure lines for all orifices were routed internally through the model to the sting support system. Parametric variation consisted only of altering the ET nose configuration.

  14. The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study

    NASA Technical Reports Server (NTRS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-01-01

    We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  15. Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration

    NASA Astrophysics Data System (ADS)

    Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.

    2017-06-01

    Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.

  16. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.

    PubMed

    Tham, Leung-Mun; Lee, Heow Pueh; Lu, Chun

    2007-07-01

    We evaluated the effectiveness of modified lithotriptor shock waves using computer models. Finite element models were used to simulate the propagation of lithotriptor shock waves in human renal calculi in vivo. Kidney stones were assumed to be spherical, homogeneous, isotropic and linearly elastic, and immersed in a continuum fluid. Single and tandem shock wave pulses modified to intensify the collapse of cavitation bubbles near the stone surface to increase fragmentation efficiency and suppress the expansion of intraluminal bubbles for decreased vascular injury were analyzed. The effectiveness of the modified shock waves was assessed by comparing the states of loading in the renal calculi induced by these shock waves to those produced by conventional shock waves. Our numerical simulations revealed that modified shock waves produced marginally lower stresses in spherical renal calculi than those produced by conventional shock waves. Tandem pulses of conventional or modified shock waves produced peak stresses in the front and back halves of the renal calculi. However, the single shock wave pulses generated significant peak stresses in only the back halves of the renal calculi. Our numerical simulations suggest that for direct stress wave induced fragmentation modified shock waves should be as effective as conventional shock waves for fragmenting kidney stones. Also, with a small interval of 20 microseconds between the pulses tandem pulse lithotripsy using modified or conventional shock waves could be considerably more effective than single pulse lithotripsy for fragmenting kidney stones.

  17. Monte Carlo simulations of particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.

    1994-01-01

    The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.

  18. Lack of species-specific difference in pulmonary function when using mouse versus human plasma in a mouse model of hemorrhagic shock.

    PubMed

    Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A

    2016-11-01

    Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.

  19. Design and Implementation of a Dual-Mass MEMS Gyroscope with High Shock Resistance

    PubMed Central

    Huang, Libin; Li, Hongsheng

    2018-01-01

    This paper presents the design and implementation of a dual-mass MEMS gyroscope with high shock resistance by improving the in-phase frequency of the gyroscope and by using a two-stage elastic stopper mechanism and proposes a Simulink shock model of the gyroscope equipped with the two-stage stopper mechanism, which is a very efficient method to evaluate the shock resistance of the gyroscope. The structural design takes into account both the mechanical sensitivity and the shock resistance. The design of the primary structure and the analysis of the stopper mechanism are first introduced. Based on the expression of the restoring force of the stopper beam, the analytical shock response model of the gyroscope is obtained. By this model, the shock response of the gyroscope is theoretically analyzed, and the appropriate structural parameters are obtained. Then, the correctness of the model is verified by finite element (FE) analysis, where the contact collision analysis is introduced in detail. The simulation results show that the application of the two-stage elastic stopper mechanism can effectively improve the shock resistance by more than 1900 g and 1500 g in the x- and y-directions, respectively. Finally, experimental verifications are carried out by using a machete hammer on the micro-gyroscope prototype fabricated by the deep dry silicon on glass (DDSOG) technology. The results show that the shock resistance of the prototype along the x-, y- and z-axes all exceed 10,000 g. Moreover, the output of the gyroscope can return to normal in about 2 s. PMID:29601510

  20. Design and Implementation of a Dual-Mass MEMS Gyroscope with High Shock Resistance.

    PubMed

    Gao, Yang; Huang, Libin; Ding, Xukai; Li, Hongsheng

    2018-03-30

    This paper presents the design and implementation of a dual-mass MEMS gyroscope with high shock resistance by improving the in-phase frequency of the gyroscope and by using a two-stage elastic stopper mechanism and proposes a Simulink shock model of the gyroscope equipped with the two-stage stopper mechanism, which is a very efficient method to evaluate the shock resistance of the gyroscope. The structural design takes into account both the mechanical sensitivity and the shock resistance. The design of the primary structure and the analysis of the stopper mechanism are first introduced. Based on the expression of the restoring force of the stopper beam, the analytical shock response model of the gyroscope is obtained. By this model, the shock response of the gyroscope is theoretically analyzed, and the appropriate structural parameters are obtained. Then, the correctness of the model is verified by finite element (FE) analysis, where the contact collision analysis is introduced in detail. The simulation results show that the application of the two-stage elastic stopper mechanism can effectively improve the shock resistance by more than 1900 g and 1500 g in the x - and y -directions, respectively. Finally, experimental verifications are carried out by using a machete hammer on the micro-gyroscope prototype fabricated by the deep dry silicon on glass (DDSOG) technology. The results show that the shock resistance of the prototype along the x -, y - and z -axes all exceed 10,000 g. Moreover, the output of the gyroscope can return to normal in about 2 s.

  1. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Millot, M.; Celliers, P. M.; Sterne, P. A.; Benedict, L. X.; Correa, A. A.; Hamel, S.; Ali, S. J.; Baker, K. L.; Berzak Hopkins, L. F.; Biener, J.; Collins, G. W.; Coppari, F.; Divol, L.; Fernandez-Panella, A.; Fratanduono, D. E.; Haan, S. W.; Le Pape, S.; Meezan, N. B.; Moore, A. S.; Moody, J. D.; Ralph, J. E.; Ross, J. S.; Rygg, J. R.; Thomas, C.; Turnbull, D. P.; Wild, C.; Eggert, J. H.

    2018-04-01

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shock velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.

  2. Shock Initiation Characteristics of an Aluminized DNAN/RDX Melt-Cast Explosive

    NASA Astrophysics Data System (ADS)

    Cao, Tong-Tang; Zhou, Lin; Zhang, Xiang-Rong; Zhang, Wei; Miao, Fei-Chao

    2017-10-01

    Shock sensitivity is one of the key parameters for newly developed, 2,4-dinitroanisole (DNAN)-based, melt-cast explosives. For this paper, a series of shock initiation experiments were conducted using a one-dimensional Lagrangian system with a manganin piezoresistive pressure gauge technique to evaluate the shock sensitivity of an aluminized DNAN/cyclotrimethylenetrinitramine (RDX) melt-cast explosive. This study fully investigated the effects of particle size distributions in both RDX and aluminum, as well as the RDX's crystal quality on the shock sensitivity of the aluminized DNAN/RDX melt-cast explosive. Ultimately, the shock sensitivity of the aluminized DNAN/RDX melt-cast explosives increases when the particle size decreases in both RDX and aluminum. Additionally, shock sensitivity increases when the RDX's crystal quality decreases. In order to simulate these effects, an Ignition and Growth (I&G) reactive flow model was calibrated. This calibrated I&G model was able to predict the shock initiation characteristics of the aluminized DNAN/RDX melt-cast explosive.

  3. Transmural recording of shock potential gradient fields, early postshock activations, and refibrillation episodes associated with external defibrillation of long-duration ventricular fibrillation in swine.

    PubMed

    Allred, James D; Killingsworth, Cheryl R; Allison, J Scott; Dosdall, Derek J; Melnick, Sharon B; Smith, William M; Ideker, Raymond E; Walcott, Gregory P

    2008-11-01

    Knowledge of the shock potential gradient (nablaV) and postshock activation is limited to internal defibrillation of short-duration ventricular fibrillation (SDVF). The purpose of this study was to determine these variables after external defibrillation of long-duration VF (LDVF). In six pigs, 115-20 plunge needles with three to six electrodes each were inserted to record throughout both ventricles. After the chest was closed, the biphasic defibrillation threshold (DFT) was determined after 20 seconds of SDVF with external defibrillation pads. After 7 minutes of LDVF, defibrillation shocks that were less than or equal to the SDVF DFT strength were given. For DFT shocks (1632 +/- 429 V), the maximum minus minimum ventricular voltage (160 +/- 100 V) was 9.8% of the shock voltage. Maximum cardiac nablaV (28.7 +/- 17 V/cm) was 4.7 +/- 2.0 times the minimum nablaV (6.2 +/- 3.5 V/cm). Although LDVF did not increase the DFT in five of the six pigs, it significantly lengthened the time to earliest postshock activation following defibrillation (1.6 +/- 2.2 seconds for SDVF and 4.9 +/- 4.3 seconds for LDVF). After LDVF, 1.3 +/- 0.8 episodes of spontaneous refibrillation occurred per animal, but there was no refibrillation after SDVF. Compared with previous studies of internal defibrillation, during external defibrillation much less of the shock voltage appears across the heart and the shock field is much more even; however, the minimum nablaV is similar. Compared with external defibrillation of SDVF, the biphasic external DFT for LDVF is not increased; however, time to earliest postshock activation triples. Refibrillation is common after LDVF but not after SDVF in these normal hearts, indicating that LDVF by itself can cause refibrillation without requiring preexisting heart disease.

  4. Forsterite Shock Temperatures and Entropy: New Scaling Laws for Impact Melting and Vaporization

    NASA Astrophysics Data System (ADS)

    Davies, E.; Root, S.; Kraus, R. G.; Townsend, J. P.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Fratanduono, D.; Millot, M. A.; Mattsson, T. R.; Hanshaw, H. L.

    2017-12-01

    The observed masses, radii and temperatures of thousands of extra-solar planets have challenged our theoretical understanding of planet formation and planetary structures. Planetary materials are subject to extreme pressures and temperatures during formation and within the present-day interiors of large bodies. Here, we focus on improving understanding of the physical properties of rocky planets for calculations of internal structure and the outcomes of giant impacts. We performed flyer plate impact experiments on forsterite [Mg2SiO4] on the Z-Machine at Sandia National Laboratory and decaying shock temperature measurements at the Omega EP laser at U. Rochester. At Z, planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Using available static and dynamic thermodynamic data, we calculate absolute entropy and heat capacity along the forsterite shock Hugoniot. Entropy and heat capacity on the Hugoniot are larger than previous estimates. Our data constrain the thermodynamic properties of forsterite liquid at high pressures and temperatures and the amount of melt and vapor produced during impact events. For an ambient pressure of 1 bar, shock-vaporization begins upon reaching the liquid region on the forsterite Hugoniot (about 200 GPa). Using hydrocode simulations of giant impacts between rocky planets with forsterite mantles and iron cores and the new experimentally-constrained forsterite shock entropy, we present a new scaling law for the fraction of mantle that is melted or vaporized by the initial shock wave. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Prepared by LLNL under Contract DE-AC52-07NA27344. Prepared by the Center for Frontiers in High Energy Density Science

  5. Detonation onset following shock wave focusing

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.

    2017-06-01

    The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.

  6. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    NASA Astrophysics Data System (ADS)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  7. Entropy Generation Across Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  8. Shock Sensitivity of energetic materials

    NASA Technical Reports Server (NTRS)

    Kim, K.

    1980-01-01

    Viscoplastic deformation is examined as the principal source of hot energy. Some shock sensitivity data on a proposed model is explained. A hollow sphere model is used to approximate complex porous matrix of energetic materials. Two pieces of shock sensitivity data are qualitatively compared with results of the proposed model. The first is the p2 tau law. The second is the desensitization of energetic materials by a ramp wave applied stress. An approach to improve the model based on experimental observations is outlined.

  9. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    NASA Astrophysics Data System (ADS)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  10. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    NASA Astrophysics Data System (ADS)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  11. A process model of technology innovation in governmental agencies: Insights from NASA’s science directorate

    NASA Astrophysics Data System (ADS)

    Szajnfarber, Zoe; Weigel, Annalisa L.

    2013-03-01

    This paper investigates the process through which new technical concepts are matured in the NASA innovation ecosystem. We propose an "epoch-shock" conceptualization as an alternative mental model to the traditional stage-gate view. The epoch-shock model is developed inductively, based on detailed empirical observations of the process, and validated, to the extent possible, through expert review. The paper concludes by illustrating how the new epoch-shock conceptualization could provide a useful basis for rethinking feasible interventions to improve innovation management in the space agency context. Where the more traditional stage-gate model leads to an emphasis on centralized flow control, the epoch-shock model acknowledges the decentralized, probabilistic nature of key interactions and highlights which aspects may be influenced.

  12. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Highly Efficient Lattice Boltzmann Model for Compressible Fluids: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai; Gan, Yan-Biao; Cheng, Tao; Li, Ying-Jun

    2009-10-01

    We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsutahara, Phys. Rev. E 69 (2004) 035701(R)] and reasonable dispersion and dissipation terms. The dispersion term effectively reduces the oscillation at the discontinuity and enhances numerical precision. The dissipation term makes the new model more easily meet with the von Neumann stability condition. This model works for both high-speed and low-speed flows with arbitrary specific-heat-ratio. With the new model simulation results for the well-known benchmark problems get a high accuracy compared with the analytic or experimental ones. The used benchmark tests include (i) Shock tubes such as the Sod, Lax, Sjogreen, Colella explosion wave, and collision of two strong shocks, (ii) Regular and Mach shock reflections, and (iii) Shock wave reaction on cylindrical bubble problems. With a more realistic equation of state or free-energy functional, the new model has the potential tostudy the complex procedure of shock wave reaction on porous materials.

  13. Hypersonic Laminar-Turbulent Transition on Slender Cones at Zero Angle of Attack: Measurements in Support of Mechanism-Based Models for Scaling Ground-Test Data to Flight

    DTIC Science & Technology

    2011-03-04

    reported in Refs. [12, 15, 16, 17, 18, 19, 20, 21, 22]. Related work continues at JAXA, DLR, NASA Langley, CUBRC , AEDC Tunnel 9, VKI, Purdue and... CUBRC (private communication, fall 2007), as these sensors were designed to measure the passage of shock waves in guns. Estorf et al. continued this... CUBRC 11 in Buffalo, New York, and so on. It seems that an informal international cooperation along the lines of the Fisher-Dougherty work is being

  14. International Hypersonic Waverider Symposium, 1st, University of Maryland, College Park, MD, Oct. 17-19, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    Anderson, John D., Jr. (Editor); Lewis, Mark J. (Editor); Corda, Stephen (Editor); Blankson, Isaiah M. (Editor)

    1990-01-01

    The papers presented in this volume provide an overview of current theoretical and experimental research in the field of hypersonic waveriders. In particular, attention is given to efficient waveriders from known axisymmetric flow fields, hypersonic waverider design from given shock waves, limitations of waveriders, and aerodynamic stability theory of hypersonic waveriders. The discussion also covers momentum analysis of waverider flow fields, tethered aerothermodynamic research for hypersonic waveriders, simulation of hypersonic waveriders, and an idealized tip-to-tail waverider model.

  15. Integrating Psychosocial Programs in Multisector Responses to International Disasters

    ERIC Educational Resources Information Center

    Diaz, Joseph Orlando Prewitt

    2008-01-01

    This article describes the role of psychosocial support programs in American Red Cross-sponsored humanitarian assistance efforts in international disasters. The American Red Cross psychosocial support program consists of four specific components: participatory crisis assessment, dealing with survivors' root shock, community mobilization, and…

  16. Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Schmidt, J. M.

    2008-05-01

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  17. Plasma radiation and acceleration effectiveness of CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  18. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.

    2014-05-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  19. Measurements and predictions of flyover and static noise of a TF30 afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Lasagna, P. L.; Oas, S. C.

    1978-01-01

    The noise of the TF30 afterburning turbofan engine in an F-111 airplane was determined from static (ground) and flyover tests. A survey was made to measure the exhaust temperature and velocity profiles for a range of power settings. Comparisons were made between predicted and measured jet mixing, internal, and shock noise. It was found that the noise produced at static conditions was dominated by jet mixing noise, and was adequately predicted by current methods. The noise produced during flyovers exhibited large contributions from internally generated noise in the forward arc. For flyovers with the engine at nonafterburning power, the internal noise, shock noise, and jet mixing noise were accurately predicted. During flyovers with afterburning power settings, however, additional internal noise believed to be due to the afterburning process was evident; its level was as much as 8 decibels above the nonafterburning internal noise. Power settings that produced exhausts with inverted velocity profiles appeared to be slightly less noisy than power settings of equal thrust that produced uniform exhaust velocity profiles both in flight and in static testing.

  20. [Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].

    PubMed

    Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong

    2015-04-01

    Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.

  1. Modeling the Shock Hugoniot in Porous Materials

    NASA Astrophysics Data System (ADS)

    Cochrane, Kyle R.; Shulenburger, Luke; Mattsson, Thomas R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Desjarlais, Michael P.

    2017-06-01

    Porous materials are present in many scenarios from planetary science to ICF. Understanding how porosity modifies the behavior of the shock Hugoniot in an equation of state is key to being able to predictively simulate experiments. For example, modeling shocks in under-dense iron oxide can aid in understanding planetary formation and silica aerogel can be used to approximate the shock response of deuterium. Simulating the shock response of porous materials presents a variety of theoretical challenges, but by combining ab initio calculations with a surface energy and porosity model, we are able to accurately represent the shock Hugoniot. Finally, we show that this new approach can be used to calculate the Hugoniot of porous materials using existing tabular equations of state. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    NASA Astrophysics Data System (ADS)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  3. On Theoretical Broadband Shock-Associated Noise Near-Field Cross-Spectra

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    The cross-spectral acoustic analogy is used to predict auto-spectra and cross-spectra of broadband shock-associated noise in the near-field and far-field from a range of heated and unheated supersonic off-design jets. A single equivalent source model is proposed for the near-field, mid-field, and far-field terms, that contains flow-field statistics of the shock wave shear layer interactions. Flow-field statistics are modeled based upon experimental observation and computational fluid dynamics solutions. An axisymmetric assumption is used to reduce the model to a closed-form equation involving a double summation over the equivalent source at each shock wave shear layer interaction. Predictions are compared with a wide variety of measurements at numerous jet Mach numbers and temperature ratios from multiple facilities. Auto-spectral predictions of broadband shock-associated noise in the near-field and far-field capture trends observed in measurement and other prediction theories. Predictions of spatial coherence of broadband shock-associated noise accurately capture the peak coherent intensity, frequency, and spectral width.

  4. Various continuum approaches for studying shock wave structure in carbon dioxide

    NASA Astrophysics Data System (ADS)

    Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.

    2018-05-01

    Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.

  5. Thermal shock fracture in cross-ply fibre-reinforced ceramic-matrix composites

    NASA Astrophysics Data System (ADS)

    Kastritseas, C.; Smith, P. A.; Yeomans, J. A.

    2010-11-01

    The onset of matrix cracking due to thermal shock in a range of simple and multi-layer cross-ply laminates comprising a calcium aluminosilicate (CAS) matrix reinforced with Nicalon® fibres is investigated analytically. A comprehensive stress analysis under conditions of thermal shock, ignoring transient effects, is performed and fracture criteria based on either a recently derived model for the thermal shock resistance of unidirectional Nicalon®/glass ceramic-matrix composites or fracture mechanics considerations are formulated. The effect of material thickness on the apparent thermal shock resistance is also modelled. Comparison with experimental results reveals that the accuracy of the predictions is satisfactory and the reasons for some discrepancies are discussed. In addition, a theoretical argument based on thermal shock theory is formulated to explain the observed cracking patterns.

  6. Sonic boom interaction with turbulence

    NASA Technical Reports Server (NTRS)

    Rusak, Zvi; Giddings, Thomas E.

    1994-01-01

    A recently developed transonic small-disturbance model is used to analyze the interactions of random disturbances with a weak shock. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. It shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed-type elliptic hyperbolic flows around the shock wave is presented. Numerical calculations of shock wave interactions with various deterministic vorticity and temperature disturbances result in complicate shock wave structures and describe peaked as well as rounded pressure signatures behind the shock front, as were recorded in experiments of sonic booms running through atmospheric turbulence.

  7. Statistical power of intervention analyses: simulation and empirical application to treated lumber prices

    Treesearch

    Jeffrey P. Prestemon

    2009-01-01

    Timber product markets are subject to large shocks deriving from natural disturbances and policy shifts. Statistical modeling of shocks is often done to assess their economic importance. In this article, I simulate the statistical power of univariate and bivariate methods of shock detection using time series intervention models. Simulations show that bivariate methods...

  8. A New Method to Comprehensively Diagnose Shock Waves in the Solar Atmosphere Based on Simultaneous Spectroscopic and Imaging Observations

    NASA Astrophysics Data System (ADS)

    Ruan, Wenzhi; Yan, Limei; He, Jiansen; Zhang, Lei; Wang, Linghua; Wei, Yong

    2018-06-01

    Shock waves are believed to play an important role in plasma heating. The shock-like temporal jumps in radiation intensity and Doppler shift have been identified in the solar atmosphere. However, a quantitative diagnosis of the shocks in the solar atmosphere is still lacking, seriously hindering the understanding of shock dissipative heating of the solar atmosphere. Here, we propose a new method to realize the goal of the shock quantitative diagnosis, based on Rankine–Hugoniot equations and taking the advantages of simultaneous imaging and spectroscopic observations from, e.g., IRIS (Interface Region Imaging Spectrograph). Because of this method, the key parameters of shock candidates can be derived, such as the bulk velocity and temperature of the plasma in the upstream and downstream, the propagation speed and direction. The method is applied to the shock candidates observed by IRIS, and the overall characteristics of the shocks are revealed quantitatively for the first time. This method is also tested with the help of forward modeling, i.e., virtual observations of simulated shocks. The parameters obtained from the method are consistent with the parameters of the shock formed in the model and are independent of the viewing direction. Therefore, the method we proposed here is applicable to the quantitative and comprehensive diagnosis of the observed shocks in the solar atmosphere.

  9. Modeling and Laboratory Investigations of Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Grun, Jacob; Laming, J. Martin; Manka, Charles; Moore, Christopher; Jones, Ted; Tam, Daniel

    2001-10-01

    Supernova remnants are often inhomogeneous, with knots or clumps of material expanding in ambient plasma. This structure may be initiated by hydrodynamic instabilities occurring during the explosion, but it may plausibly be amplified by instabilities of the expanding shocks such as, for example, corrugation instabilities described by D’yakov in 1954, Vishniac in 1983, and observed in the laboratory by Grun et al. in 1991. Shock instability can occur when radiation lowers the effective adiabatic index of the gas. In view of the difficulty of modeling radiation in non-equilibrium plasmas, and the dependence of shock instabilities on such radiation, we are performing a laboratory experiment to study radiative shocks. The shocks are generated in a miniature, laser-driven shock tube. The gas density inside the tube at any instant in time is measured using time and space-resolved interferometry, and the emission spectrum of the gas is measured with time-resolved spectroscopy. We simulate the experiment with a 1D code that models time dependent post-shock ionization and non-equilibrium radiative cooling. S. P. D’yakov, Zhurnal Eksperimentalnoi Teoreticheskoi Fiziki 27, 288 (1954); see also section 90 in L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann 1987); E.T. Vishniac, Astrophys. J. 236, 880 (1983); J. Grun, et al., Phys. Rev. Lett., 66, 2738 (1991)

  10. Structure of Energetic Particle Mediated Shocks Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute bothmore » a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.« less

  11. Gain curves and hydrodynamic modeling for shock ignition

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-05-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  12. Mortality Prediction Model of Septic Shock Patients Based on Routinely Recorded Data

    PubMed Central

    Carrara, Marta; Baselli, Giuseppe; Ferrario, Manuela

    2015-01-01

    We studied the problem of mortality prediction in two datasets, the first composed of 23 septic shock patients and the second composed of 73 septic subjects selected from the public database MIMIC-II. For each patient we derived hemodynamic variables, laboratory results, and clinical information of the first 48 hours after shock onset and we performed univariate and multivariate analyses to predict mortality in the following 7 days. The results show interesting features that individually identify significant differences between survivors and nonsurvivors and features which gain importance only when considered together with the others in a multivariate regression model. This preliminary study on two small septic shock populations represents a novel contribution towards new personalized models for an integration of multiparameter patient information to improve critical care management of shock patients. PMID:26557154

  13. On the low pressure shock initiation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine based plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Chidester, Steven K.

    2010-05-01

    In large explosive and propellant charges, relatively low shock pressures on the order of 1-2 GPa impacting large volumes and lasting tens of microseconds can cause shock initiation of detonation. The pressure buildup process requires several centimeters of shock propagation before shock to detonation transition occurs. In this paper, experimentally measured run distances to detonation for lower input shock pressures are shown to be much longer than predicted by extrapolation of high shock pressure data. Run distance to detonation and embedded manganin gauge pressure histories are measured using large diameter charges of six octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives (PBX's): PBX 9404; LX-04; LX-07; LX-10; PBX 9501; and EDC37. The embedded gauge records show that the lower shock pressures create fewer and less energetic "hot spot" reaction sites, which consume the surrounding explosive particles at reduced reaction rates and cause longer distances to detonation. The experimental data is analyzed using the ignition and growth reactive flow model of shock initiation in solid explosives. Using minimum values of the degrees of compression required to ignite hot spot reactions, the previously determined high shock pressure ignition and growth model parameters for the six explosives accurately simulate the much longer run distances to detonation and much slower growths of pressure behind the shock fronts measured during the shock initiation of HMX PBX's at several low shock pressures.

  14. Shock and vibration technology with applications to electrical systems

    NASA Technical Reports Server (NTRS)

    Eshleman, R. L.

    1972-01-01

    A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.

  15. Dynamical Models for High-Energy Emission from Massive Stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley %FAA(University of Delaware)

    Massive stars are prominent sources of X-rays and gamma-rays detected by both targeted and survey observations from orbiting telescopes like Chandra, XMM/Newton, RXTE, and Fermi. Such high-energy emissions represent key probes of the dynamics of massive-star mass loss, and their penetration through many magnitudes of visible interstellar extinction makes them effective beacons of massive stars in distant reaches of the Galaxy, and in young, active star-forming regions. The project proposed here will develop a comprehensive theoretical framework for interpreting both surveys and targeted observations of high-energy emission from massive stars. It will build on our team's extensive experience in both theoretical models and observational analyses for three key types of emission mechanisms in the stellar wind outflows of these stars, namely: 1) Embedded Wind Shocks (EWS) arising from internal instabilities in the wind driving; 2) shocks in Colliding Wind Binary (CWB) systems; and 3) High-Mass X-ray Binaries (HMXB) systems with interaction between massive-star wind with a compact companion (neutron star or black hole). Taking advantage of commonalities in the treatment of radiative driving, hydrodynamics, shock heating and cooling, and radiation transport, we will develop radiation hydrodynamical models for the key observational signatures like energy distribution, emission line spectrum, and variability, with an emphasis on how these can be used in affiliated analyses of both surveys like the recent Chandra mapping of the Carina association, and targeted observations of galactic X-ray and gamma-ray sources associated with each of the above specific model types. The promises of new clumping-insensitive diagnostics of mass loss rates, and the connection to mass transfer and binarity, all have broad relevance for understanding the origin, evolution, and fate of massive stars, in concert with elements of NASA's Strategic Subgoal 3D. Building on our team's expertise, the project emphasizes training of a new generation of students and post-doctoral researchers to model and analyze observations by current and future NASA X-ray and gamma-ray observatories.

  16. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  17. Recalibration of the Shear Stress Transport Model to Improve Calculation of Shock Separated Flows

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.

    2013-01-01

    The Menter Shear Stress Transport (SST) k . turbulence model is one of the most widely used two-equation Reynolds-averaged Navier-Stokes turbulence models for aerodynamic analyses. The model extends Menter s baseline (BSL) model to include a limiter that prevents the calculated turbulent shear stress from exceeding a prescribed fraction of the turbulent kinetic energy via a proportionality constant, a1, set to 0.31. Compared to other turbulence models, the SST model yields superior predictions of mild adverse pressure gradient flows including those with small separations. In shock - boundary layer interaction regions, the SST model produces separations that are too large while the BSL model is on the other extreme, predicting separations that are too small. In this paper, changing a1 to a value near 0.355 is shown to significantly improve predictions of shock separated flows. Several cases are examined computationally and experimental data is also considered to justify raising the value of a1 used for shock separated flows.

  18. Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations

    NASA Astrophysics Data System (ADS)

    von Martens, Hans-Jürgen

    2010-05-01

    The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s2). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.

  19. The Effects of FUV Radiation on C-Shocks: Implications for Water and Other O-bearing Species

    NASA Astrophysics Data System (ADS)

    Kaufman, Michael; Melick, Gary; Tolls, Volker

    2015-08-01

    Protostellar outflows have long been known to drive endothermic reactions that produce high abundances of oxygen-bearing species. Models of shocks in well-shielded gas made the strong prediction that essentially all of the pre-shock oxygen gets driven into water, so that the post-shock water abundances are order 10-4. Herschel observations, however, including those from the key program “Water in Star Forming Regions with Herschel (WISH)” show that for most sources, the shocked gas water abundances of are far lower, 10-7 - 10-5.This pattern of lower-than-predicted water abundance has led us to consider that our C-shock model (Kaufman & Neufeld 1996) is incomplete. In particular, we did not previously take into account that many outflow sources have higher than average far-ultraviolet radiation fields within their outflow cavities. Strong FUV radiation has important effects on the structure of C-shocks: the ionization fraction is larger than in well-shielded gas, decreasing the coupling length between neutrals and ions, and leading to higher temperatures and a lower breakdown speeds; the pre-shock gas composition, including the presence of ice mantles and the dominant charge carriers, is strongly affected; and abundant species such as water are diminished by photodissociation in the cooled down stream gas.In addition to the normal parameters of density, shock velocity, and magnetic field strength, we now include the external FUV field strength and the extinction between the FUV source and the shock. We use the results of a detailed PDR model to compute pre-shock chemical conditions, including the ionization fraction, the increase of which decreases the maximum velocities of C- shocks. FUV also keeps oxygen in the gas phase, making more available for H2O formarion ; however, photodissociation beyond the temperature peak keeps the average H2O abundance down. We present comparisons of our model results with the inferred water abundances and with observations of H2O, CO, O and OH lines from the Herschel archive.

  20. Analytical solutions of hypersonic type IV shock - shock interactions

    NASA Astrophysics Data System (ADS)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for hypersonic leading edges. The formation of vortices at the termination shock of the supersonic jet has been modeled using the analytical method. The vortices lead to deflections in the jet terminating flow, and the presence of the cylinder surface seems to causes the vortices to break off the jet resulting in an oscillation in the jet flow.

Top