Sample records for internally calibrated quantification

  1. Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards.

    PubMed

    Yarita, Takashi; Aoyagi, Yoshie; Otake, Takamitsu

    2015-05-29

    The impact of the matrix effect in GC-MS quantification of pesticides in food using the corresponding isotope-labeled internal standards was evaluated. A spike-and-recovery study of nine target pesticides was first conducted using paste samples of corn, green soybean, carrot, and pumpkin. The observed analytical values using isotope-labeled internal standards were more accurate for most target pesticides than that obtained using the external calibration method, but were still biased from the spiked concentrations when a matrix-free calibration solution was used for calibration. The respective calibration curves for each target pesticide were also prepared using matrix-free calibration solutions and matrix-matched calibration solutions with blank soybean extract. The intensity ratio of the peaks of most target pesticides to that of the corresponding isotope-labeled internal standards was influenced by the presence of the matrix in the calibration solution; therefore, the observed slope varied. The ratio was also influenced by the type of injection method (splitless or on-column). These results indicated that matrix-matching of the calibration solution is required for very accurate quantification, even if isotope-labeled internal standards were used for calibration. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Target analyte quantification by isotope dilution LC-MS/MS directly referring to internal standard concentrations--validation for serum cortisol measurement.

    PubMed

    Maier, Barbara; Vogeser, Michael

    2013-04-01

    Isotope dilution LC-MS/MS methods used in the clinical laboratory typically involve multi-point external calibration in each analytical series. Our aim was to test the hypothesis that determination of target analyte concentrations directly derived from the relation of the target analyte peak area to the peak area of a corresponding stable isotope labelled internal standard compound [direct isotope dilution analysis (DIDA)] may be not inferior to conventional external calibration with respect to accuracy and reproducibility. Quality control samples and human serum pools were analysed in a comparative validation protocol for cortisol as an exemplary analyte by LC-MS/MS. Accuracy and reproducibility were compared between quantification either involving a six-point external calibration function, or a result calculation merely based on peak area ratios of unlabelled and labelled analyte. Both quantification approaches resulted in similar accuracy and reproducibility. For specified analytes, reliable analyte quantification directly derived from the ratio of peak areas of labelled and unlabelled analyte without the need for a time consuming multi-point calibration series is possible. This DIDA approach is of considerable practical importance for the application of LC-MS/MS in the clinical laboratory where short turnaround times often have high priority.

  3. Intrinsic Bioprobes, Inc. (Tempe, AZ)

    DOEpatents

    Nelson, Randall W [Phoenix, AZ; Williams, Peter [Phoenix, AZ; Krone, Jennifer Reeve [Granbury, TX

    2008-07-15

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  4. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  5. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  6. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve

    2005-12-13

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  7. Quantification of transformation products of rocket fuel unsymmetrical dimethylhydrazine in soils using SPME and GC-MS.

    PubMed

    Bakaikina, Nadezhda V; Kenessov, Bulat; Ul'yanovskii, Nikolay V; Kosyakov, Dmitry S

    2018-07-01

    Determination of transformation products (TPs) of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in soil is highly important for environmental impact assessment of the launches of heavy space rockets from Kazakhstan, Russia, China and India. The method based on headspace solid-phase microextraction (HS SPME) and gas chromatography-mass spectrometry is advantageous over other known methods due to greater simplicity and cost efficiency. However, accurate quantification of these analytes using HS SPME is limited by the matrix effect. In this research, we proposed using internal standard and standard addition calibrations to achieve proper combination of accuracies of the quantification of key TPs of UDMH and cost efficiency. 1-Trideuteromethyl-1H-1,2,4-triazole (MTA-d3) was used as the internal standard. Internal standard calibration allowed controlling matrix effects during quantification of 1-methyl-1H-1,2,4-triazole (MTA), N,N-dimethylformamide (DMF), and N-nitrosodimethylamine (NDMA) in soils with humus content < 1%. Using SPME at 60 °C for 15 min by 65 µm Carboxen/polydimethylsiloxane fiber, recoveries of MTA, DMF and NDMA for sandy and loamy soil samples were 91-117, 85-123 and 64-132%, respectively. For improving the method accuracy and widening the range of analytes, standard addition and its combination with internal standard calibration were tested and compared on real soil samples. The combined calibration approach provided greatest accuracies for NDMA, DMF, N-methylformamide, formamide, 1H-pyrazole, 3-methyl-1H-pyrazole and 1H-pyrazole. For determination of 1-formyl-2,2-dimethylhydrazine, 3,5-dimethylpyrazole, 2-ethyl-1H-imidazole, 1H-imidazole, 1H-1,2,4-triazole, pyrazines and pyridines, standard addition calibration is more suitable. However, the proposed approach and collected data allow using both approaches simultaneously. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Applicability of plasmid calibrant pTC1507 in quantification of TC1507 maize: an interlaboratory study.

    PubMed

    Meng, Yanan; Liu, Xin; Wang, Shu; Zhang, Dabing; Yang, Litao

    2012-01-11

    To enforce the labeling regulations of genetically modified organisms (GMOs), the application of DNA plasmids as calibrants is becoming essential for the practical quantification of GMOs. This study reports the construction of plasmid pTC1507 for a quantification assay of genetically modified (GM) maize TC1507 and the collaborative ring trial in international validation of its applicability as a plasmid calibrant. pTC1507 includes one event-specific sequence of TC1507 maize and one unique sequence of maize endogenous gene zSSIIb. A total of eight GMO detection laboratories worldwide were invited to join the validation process, and test results were returned from all eight participants. Statistical analysis of the returned results showed that real-time PCR assays using pTC1507 as calibrant in both GM event-specific and endogenous gene quantifications had high PCR efficiency (ranging from 0.80 to 1.15) and good linearity (ranging from 0.9921 to 0.9998). In a quantification assay of five blind samples, the bias between the test values and true values ranged from 2.6 to 24.9%. All results indicated that the developed pTC1507 plasmid is applicable for the quantitative analysis of TC1507 maize and can be used as a suitable substitute for dried powder certified reference materials (CRMs).

  9. Hepatitis E Virus (HEV) Detection and Quantification by a Real-Time Reverse Transcription-PCR Assay Calibrated to the World Health Organization Standard for HEV RNA

    PubMed Central

    Germer, Jeffrey J.; Ankoudinova, Irina; Belousov, Yevgeniy S.; Mahoney, Walt; Dong, Chen; Meng, Jihong; Mandrekar, Jayawant N.

    2017-01-01

    ABSTRACT Hepatitis E virus (HEV) has emerged as a cause of chronic hepatitis among immunocompromised patients. Molecular assays have become important tools for the diagnosis and management of these chronically infected patients. A real-time reverse transcription-quantitative PCR (RT-qPCR) assay utilizing Pleiades probe chemistry and an RNA internal control for the simultaneous detection and quantification of HEV RNA in human serum was developed based on an adaptation of a previously described and broadly reactive primer set targeting the overlapping open reading frame 2/3 (ORF2/3) nucleotide sequence of HEV. A chimeric bovine viral diarrhea virus construct containing an HEV RNA insert (SynTura HEV) was developed, value assigned with the first World Health Organization (WHO) international standard for HEV RNA (code 6329/10), and used to prepare working assay calibrators and controls, which supported an assay quantification range of 100 to 5,000,000 IU/ml. The analytical sensitivity (95% detection rate) of this assay was 25.2 IU/ml (95% confidence interval [CI], 19.2 to 44.1 IU/ml). The assay successfully amplified 16 different HEV sequences with significant nucleotide mismatching in primer/probe binding regions, while evaluation of a WHO international reference panel for HEV genotypes (code 8578/13) showed viral load results falling within the result ranges generated by WHO collaborative study participants for all panel members (genotypes 1 to 4). Broadly reactive RT-qPCR primers targeting HEV ORF2/3 were successfully adapted for use in an assay based on Pleiades probe chemistry. The availability of secondary standards calibrated to the WHO HEV international standard can improve the standardization and performance of assays for the detection and quantification of HEV RNA. PMID:28228493

  10. Hepatitis E Virus (HEV) Detection and Quantification by a Real-Time Reverse Transcription-PCR Assay Calibrated to the World Health Organization Standard for HEV RNA.

    PubMed

    Germer, Jeffrey J; Ankoudinova, Irina; Belousov, Yevgeniy S; Mahoney, Walt; Dong, Chen; Meng, Jihong; Mandrekar, Jayawant N; Yao, Joseph D

    2017-05-01

    Hepatitis E virus (HEV) has emerged as a cause of chronic hepatitis among immunocompromised patients. Molecular assays have become important tools for the diagnosis and management of these chronically infected patients. A real-time reverse transcription-quantitative PCR (RT-qPCR) assay utilizing Pleiades probe chemistry and an RNA internal control for the simultaneous detection and quantification of HEV RNA in human serum was developed based on an adaptation of a previously described and broadly reactive primer set targeting the overlapping open reading frame 2/3 (ORF2/3) nucleotide sequence of HEV. A chimeric bovine viral diarrhea virus construct containing an HEV RNA insert (SynTura HEV) was developed, value assigned with the first World Health Organization (WHO) international standard for HEV RNA (code 6329/10), and used to prepare working assay calibrators and controls, which supported an assay quantification range of 100 to 5,000,000 IU/ml. The analytical sensitivity (95% detection rate) of this assay was 25.2 IU/ml (95% confidence interval [CI], 19.2 to 44.1 IU/ml). The assay successfully amplified 16 different HEV sequences with significant nucleotide mismatching in primer/probe binding regions, while evaluation of a WHO international reference panel for HEV genotypes (code 8578/13) showed viral load results falling within the result ranges generated by WHO collaborative study participants for all panel members (genotypes 1 to 4). Broadly reactive RT-qPCR primers targeting HEV ORF2/3 were successfully adapted for use in an assay based on Pleiades probe chemistry. The availability of secondary standards calibrated to the WHO HEV international standard can improve the standardization and performance of assays for the detection and quantification of HEV RNA. Copyright © 2017 American Society for Microbiology.

  11. Development and validation of a bioanalytical LC-MS method for the quantification of GHRP-6 in human plasma.

    PubMed

    Gil, Jeovanis; Cabrales, Ania; Reyes, Osvaldo; Morera, Vivian; Betancourt, Lázaro; Sánchez, Aniel; García, Gerardo; Moya, Galina; Padrón, Gabriel; Besada, Vladimir; González, Luis Javier

    2012-02-23

    Growth hormone-releasing peptide 6 (GHRP-6, His-(DTrp)-Ala-Trp-(DPhe)-Lys-NH₂, MW=872.44 Da) is a potent growth hormone secretagogue that exhibits a cytoprotective effect, maintaining tissue viability during acute ischemia/reperfusion episodes in different organs like small bowel, liver and kidneys. In the present work a quantitative method to analyze GHRP-6 in human plasma was developed and fully validated following FDA guidelines. The method uses an internal standard (IS) of GHRP-6 with ¹³C-labeled Alanine for quantification. Sample processing includes a precipitation step with cold acetone to remove the most abundant plasma proteins, recovering the GHRP-6 peptide with a high yield. Quantification was achieved by LC-MS in positive full scan mode in a Q-Tof mass spectrometer. The sensitivity of the method was evaluated, establishing the lower limit of quantification at 5 ng/mL and a range for the calibration curve from 5 ng/mL to 50 ng/mL. A dilution integrity test was performed to analyze samples at higher concentration of GHRP-6. The validation process involved five calibration curves and the analysis of quality control samples to determine accuracy and precision. The calibration curves showed R² higher than 0.988. The stability of the analyte and its internal standard (IS) was demonstrated in all conditions the samples would experience in a real time analyses. This method was applied to the quantification of GHRP-6 in plasma from nine healthy volunteers participating in a phase I clinical trial. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Isotope Inversion Experiment evaluating the suitability of calibration in surrogate matrix for quantification via LC-MS/MS-Exemplary application for a steroid multi-method.

    PubMed

    Suhr, Anna Catharina; Vogeser, Michael; Grimm, Stefanie H

    2016-05-30

    For quotable quantitative analysis of endogenous analytes in complex biological samples by isotope dilution LC-MS/MS, the creation of appropriate calibrators is a challenge, since analyte-free authentic material is in general not available. Thus, surrogate matrices are often used to prepare calibrators and controls. However, currently employed validation protocols do not include specific experiments to verify the suitability of a surrogate matrix calibration for quantification of authentic matrix samples. The aim of the study was the development of a novel validation experiment to test whether surrogate matrix based calibrators enable correct quantification of authentic matrix samples. The key element of the novel validation experiment is the inversion of nonlabelled analytes and their stable isotope labelled (SIL) counterparts in respect to their functions, i.e. SIL compound is the analyte and nonlabelled substance is employed as internal standard. As a consequence, both surrogate and authentic matrix are analyte-free regarding SIL analytes, which allows a comparison of both matrices. We called this approach Isotope Inversion Experiment. As figure of merit we defined the accuracy of inverse quality controls in authentic matrix quantified by means of a surrogate matrix calibration curve. As a proof-of-concept application a LC-MS/MS assay addressing six corticosteroids (cortisol, cortisone, corticosterone, 11-deoxycortisol, 11-deoxycorticosterone, and 17-OH-progesterone) was chosen. The integration of the Isotope Inversion Experiment in the validation protocol for the steroid assay was successfully realized. The accuracy results of the inverse quality controls were all in all very satisfying. As a consequence the suitability of a surrogate matrix calibration for quantification of the targeted steroids in human serum as authentic matrix could be successfully demonstrated. The Isotope Inversion Experiment fills a gap in the validation process for LC-MS/MS assays quantifying endogenous analytes. We consider it a valuable and convenient tool to evaluate the correct quantification of authentic matrix samples based on a calibration curve in surrogate matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Alternative Internal Standard Calibration of an Indirect Enzymatic Analytical Method for 2-MCPD Fatty Acid Esters.

    PubMed

    Koyama, Kazuo; Miyazaki, Kinuko; Abe, Kousuke; Egawa, Yoshitsugu; Fukazawa, Toru; Kitta, Tadashi; Miyashita, Takashi; Nezu, Toru; Nohara, Hidenori; Sano, Takashi; Takahashi, Yukinari; Taniguchi, Hideji; Yada, Hiroshi; Yamazaki, Kumiko; Watanabe, Yomi

    2017-06-01

    An indirect enzymatic analysis method for the quantification of fatty acid esters of 2-/3-monochloro-1,2-propanediol (2/3-MCPD) and glycidol was developed, using the deuterated internal standard of each free-form component. A statistical method for calibration and quantification of 2-MCPD-d 5 , which is difficult to obtain, is substituted by 3-MCPD-d 5 used for calculation of 3-MCPD. Using data from a previous collaborative study, the current method for the determination of 2-MCPD content using 2-MCPD-d 5 was compared to three alternative new methods using 3-MCPD-d 5 . The regression analysis showed that the alternative methods were unbiased compared to the current method. The relative standard deviation (RSD R ) among the testing laboratories was ≤ 15% and the Horwitz ratio was ≤ 1.0, a satisfactory value.

  14. Matrix-normalised quantification of species by threshold-calibrated competitive real-time PCR: allergenic peanut in food as one example.

    PubMed

    Holzhauser, Thomas; Kleiner, Kornelia; Janise, Annabella; Röder, Martin

    2014-11-15

    A novel method to quantify species or DNA on the basis of a competitive quantitative real-time polymerase chain reaction (cqPCR) was developed. Potentially allergenic peanut in food served as one example. Based on an internal competitive DNA sequence for normalisation of DNA extraction and amplification, the cqPCR was threshold-calibrated against 100mg/kg incurred peanut in milk chocolate. No external standards were necessary. The competitive molecule successfully served as calibrator for quantification, matrix normalisation, and inhibition control. Although designed for verification of a virtual threshold of 100mg/kg, the method allowed quantification of 10-1,000 mg/kg peanut incurred in various food matrices and without further matrix adaption: On the basis of four PCR replicates per sample, mean recovery of 10-1,000 mg/kg peanut in chocolate, vanilla ice cream, cookie dough, cookie, and muesli was 87% (range: 39-147%) in comparison to 199% (range: 114-237%) by three commercial ELISA kits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Partial synthesis of ganglioside and lysoganglioside lipoforms as internal standards for MS quantification.

    PubMed

    Gantner, Martin; Schwarzmann, Günter; Sandhoff, Konrad; Kolter, Thomas

    2014-12-01

    Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. A combined application of thermal desorber and gas chromatography to the analysis of gaseous carbonyls with the aid of two internal standards.

    PubMed

    Kim, Ki-Hyun; Anthwal, A; Pandey, Sudhir Kumar; Kabir, Ehsanul; Sohn, Jong Ryeul

    2010-11-01

    In this study, a series of GC calibration experiments were conducted to examine the feasibility of the thermal desorption approach for the quantification of five carbonyl compounds (acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde) in conjunction with two internal standard compounds. The gaseous working standards of carbonyls were calibrated with the aid of thermal desorption as a function of standard concentration and of loading volume. The detection properties were then compared against two types of external calibration data sets derived by fixed standard volume and fixed standard concentration approach. According to this comparison, the fixed standard volume-based calibration of carbonyls should be more sensitive and reliable than its fixed standard concentration counterpart. Moreover, the use of internal standard can improve the analytical reliability of aromatics and some carbonyls to a considerable extent. Our preliminary test on real samples, however, indicates that the performance of internal calibration, when tested using samples of varying dilution ranges, can be moderately different from that derivable from standard gases. It thus suggests that the reliability of calibration approaches should be examined carefully with the considerations on the interactive relationships between the compound-specific properties and the operation conditions of the instrumental setups.

  17. Identification and accurate quantification of structurally related peptide impurities in synthetic human C-peptide by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Li, Ming; Josephs, Ralf D; Daireaux, Adeline; Choteau, Tiphaine; Westwood, Steven; Wielgosz, Robert I; Li, Hongmei

    2018-06-04

    Peptides are an increasingly important group of biomarkers and pharmaceuticals. The accurate purity characterization of peptide calibrators is critical for the development of reference measurement systems for laboratory medicine and quality control of pharmaceuticals. The peptides used for these purposes are increasingly produced through peptide synthesis. Various approaches (for example mass balance, amino acid analysis, qNMR, and nitrogen determination) can be applied to accurately value assign the purity of peptide calibrators. However, all purity assessment approaches require a correction for structurally related peptide impurities in order to avoid biases. Liquid chromatography coupled to high resolution mass spectrometry (LC-hrMS) has become the key technique for the identification and accurate quantification of structurally related peptide impurities in intact peptide calibrator materials. In this study, LC-hrMS-based methods were developed and validated in-house for the identification and quantification of structurally related peptide impurities in a synthetic human C-peptide (hCP) material, which served as a study material for an international comparison looking at the competencies of laboratories to perform peptide purity mass fraction assignments. More than 65 impurities were identified, confirmed, and accurately quantified by using LC-hrMS. The total mass fraction of all structurally related peptide impurities in the hCP study material was estimated to be 83.3 mg/g with an associated expanded uncertainty of 3.0 mg/g (k = 2). The calibration hierarchy concept used for the quantification of individual impurities is described in detail. Graphical abstract ᅟ.

  18. Matrix suppression as a guideline for reliable quantification of peptides by matrix-assisted laser desorption ionization.

    PubMed

    Ahn, Sung Hee; Bae, Yong Jin; Moon, Jeong Hee; Kim, Myung Soo

    2013-09-17

    We propose to divide matrix suppression in matrix-assisted laser desorption ionization into two parts, normal and anomalous. In quantification of peptides, the normal effect can be accounted for by constructing the calibration curve in the form of peptide-to-matrix ion abundance ratio versus concentration. The anomalous effect forbids reliable quantification and is noticeable when matrix suppression is larger than 70%. With this 70% rule, matrix suppression becomes a guideline for reliable quantification, rather than a nuisance. A peptide in a complex mixture can be quantified even in the presence of large amounts of contaminants, as long as matrix suppression is below 70%. The theoretical basis for the quantification method using a peptide as an internal standard is presented together with its weaknesses. A systematic method to improve quantification of high concentration analytes has also been developed.

  19. Solid matrix transformation and tracer addition using molten ammonium bifluoride salt as a sample preparation method for laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Grate, Jay W; Gonzalez, Jhanis J; O'Hara, Matthew J; Kellogg, Cynthia M; Morrison, Samuel S; Koppenaal, David W; Chan, George C-Y; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E

    2017-09-08

    Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.

  20. Development and validation of a fast and simple multi-analyte procedure for quantification of 40 drugs relevant to emergency toxicology using GC-MS and one-point calibration.

    PubMed

    Meyer, Golo M J; Weber, Armin A; Maurer, Hans H

    2014-05-01

    Diagnosis and prognosis of poisonings should be confirmed by comprehensive screening and reliable quantification of xenobiotics, for example by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS). The turnaround time should be short enough to have an impact on clinical decisions. In emergency toxicology, quantification using full-scan acquisition is preferable because this allows screening and quantification of expected and unexpected drugs in one run. Therefore, a multi-analyte full-scan GC-MS approach was developed and validated with liquid-liquid extraction and one-point calibration for quantification of 40 drugs relevant to emergency toxicology. Validation showed that 36 drugs could be determined quickly, accurately, and reliably in the range of upper therapeutic to toxic concentrations. Daily one-point calibration with calibrators stored for up to four weeks reduced workload and turn-around time to less than 1 h. In summary, the multi-analyte approach with simple liquid-liquid extraction, GC-MS identification, and quantification over fast one-point calibration could successfully be applied to proficiency tests and real case samples. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Improved uncertainty quantification in nondestructive assay for nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Croft, Stephen; Jarman, Ken

    2016-12-01

    This paper illustrates methods to improve uncertainty quantification (UQ) for non-destructive assay (NDA) measurements used in nuclear nonproliferation. First, it is shown that current bottom-up UQ applied to calibration data is not always adequate, for three main reasons: (1) Because there are errors in both the predictors and the response, calibration involves a ratio of random quantities, and calibration data sets in NDA usually consist of only a modest number of samples (3–10); therefore, asymptotic approximations involving quantities needed for UQ such as means and variances are often not sufficiently accurate; (2) Common practice overlooks that calibration implies a partitioningmore » of total error into random and systematic error, and (3) In many NDA applications, test items exhibit non-negligible departures in physical properties from calibration items, so model-based adjustments are used, but item-specific bias remains in some data. Therefore, improved bottom-up UQ using calibration data should predict the typical magnitude of item-specific bias, and the suggestion is to do so by including sources of item-specific bias in synthetic calibration data that is generated using a combination of modeling and real calibration data. Second, for measurements of the same nuclear material item by both the facility operator and international inspectors, current empirical (top-down) UQ is described for estimating operator and inspector systematic and random error variance components. A Bayesian alternative is introduced that easily accommodates constraints on variance components, and is more robust than current top-down methods to the underlying measurement error distributions.« less

  2. An alternative method for irones quantification in iris rhizomes using headspace solid-phase microextraction.

    PubMed

    Roger, B; Fernandez, X; Jeannot, V; Chahboun, J

    2010-01-01

    The essential oil obtained from iris rhizomes is one of the most precious raw materials for the perfume industry. Its fragrance is due to irones that are gradually formed by oxidative degradation of iridals during rhizome ageing. The development of an alternative method allowing irone quantification in iris rhizomes using HS-SPME-GC. The development of the method using HS-SPME-GC was achieved using the results obtained from a conventional method, i.e. a solid-liquid extraction (SLE) followed by irone quantification by CG. Among several calibration methods tested, internal calibration gave the best results and was the least sensitive to the matrix effect. The proposed method using HS-SPME-GC is as accurate and reproducible as the conventional one using SLE. These two methods were used to monitor and compare irone concentrations in iris rhizomes that had been stored for 6 months to 9 years. Irone quantification in iris rhizome can be achieved using HS-SPME-GC. This method can thus be used for the quality control of the iris rhizomes. It offers the advantage of combining extraction and analysis with an automated device and thus allows a large number of rhizome batches to be analysed and compared in a limited amount of time. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT.

    PubMed

    McCollough, Cynthia H; Ulzheimer, Stefan; Halliburton, Sandra S; Shanneik, Kaiss; White, Richard D; Kalender, Willi A

    2007-05-01

    To develop a consensus standard for quantification of coronary artery calcium (CAC). A standard for CAC quantification was developed by a multi-institutional, multimanufacturer international consortium of cardiac radiologists, medical physicists, and industry representatives. This report specifically describes the standardization of scan acquisition and reconstruction parameters, the use of patient size-specific tube current values to achieve a prescribed image noise, and the use of the calcium mass score to eliminate scanner- and patient size-based variations. An anthropomorphic phantom containing calibration inserts and additional phantom rings were used to simulate small, medium-size, and large patients. The three phantoms were scanned by using the recommended protocols for various computed tomography (CT) systems to determine the calibration factors that relate measured CT numbers to calcium hydroxyapatite density and to determine the tube current values that yield comparable noise values. Calculation of the calcium mass score was standardized, and the variance in Agatston, volume, and mass scores was compared among CT systems. Use of the recommended scanning parameters resulted in similar noise for small, medium-size, and large phantoms with all multi-detector row CT scanners. Volume scores had greater interscanner variance than did Agatston and calcium mass scores. Use of a fixed calcium hydroxyapatite density threshold (100 mg/cm(3)), as compared with use of a fixed CT number threshold (130 HU), reduced interscanner variability in Agatston and calcium mass scores. With use of a density segmentation threshold, the calcium mass score had the smallest variance as a function of patient size. Standardized quantification of CAC yielded comparable image noise, spatial resolution, and mass scores among different patient sizes and different CT systems and facilitated reduced radiation dose for small and medium-size patients.

  4. An international collaboration to standardize HIV-2 viral load assays: results from the 2009 ACHI(E)V(2E) quality control study.

    PubMed

    Damond, F; Benard, A; Balotta, Claudia; Böni, Jürg; Cotten, Matthew; Duque, Vitor; Ferns, Bridget; Garson, Jeremy; Gomes, Perpetua; Gonçalves, Fátima; Gottlieb, Geoffrey; Kupfer, Bernd; Ruelle, Jean; Rodes, Berta; Soriano, Vicente; Wainberg, Mark; Taieb, Audrey; Matheron, Sophie; Chene, Genevieve; Brun-Vezinet, Francoise

    2011-10-01

    Accurate HIV-2 plasma viral load quantification is crucial for adequate HIV-2 patient management and for the proper conduct of clinical trials and international cohort collaborations. This study compared the homogeneity of HIV-2 RNA quantification when using HIV-2 assays from ACHI(E)V(2E) study sites and either in-house PCR calibration standards or common viral load standards supplied to all collaborators. Each of the 12 participating laboratories quantified blinded HIV-2 samples, using its own HIV-2 viral load assay and standard as well as centrally validated and distributed common HIV-2 group A and B standards (http://www.hiv.lanl.gov/content/sequence/HelpDocs/subtypes-more.html). Aliquots of HIV-2 group A and B strains, each at 2 theoretical concentrations (2.7 and 3.7 log(10) copies/ml), were tested. Intralaboratory, interlaboratory, and overall variances of quantification results obtained with both standards were compared using F tests. For HIV-2 group A quantifications, overall and interlaboratory and/or intralaboratory variances were significantly lower when using the common standard than when using in-house standards at the concentration levels of 2.7 log(10) copies/ml and 3.7 log(10) copies/ml, respectively. For HIV-2 group B, a high heterogeneity was observed and the variances did not differ according to the type of standard used. In this international collaboration, the use of a common standard improved the homogeneity of HIV-2 group A RNA quantification only. The diversity of HIV-2 group B, particularly in PCR primer-binding regions, may explain the heterogeneity in quantification of this strain. Development of a validated HIV-2 viral load assay that accurately quantifies distinct circulating strains is needed.

  5. An International Collaboration To Standardize HIV-2 Viral Load Assays: Results from the 2009 ACHIEV2E Quality Control Study▿

    PubMed Central

    Damond, F.; Benard, A.; Balotta, Claudia; Böni, Jürg; Cotten, Matthew; Duque, Vitor; Ferns, Bridget; Garson, Jeremy; Gomes, Perpetua; Gonçalves, Fátima; Gottlieb, Geoffrey; Kupfer, Bernd; Ruelle, Jean; Rodes, Berta; Soriano, Vicente; Wainberg, Mark; Taieb, Audrey; Matheron, Sophie; Chene, Genevieve; Brun-Vezinet, Francoise

    2011-01-01

    Accurate HIV-2 plasma viral load quantification is crucial for adequate HIV-2 patient management and for the proper conduct of clinical trials and international cohort collaborations. This study compared the homogeneity of HIV-2 RNA quantification when using HIV-2 assays from ACHIEV2E study sites and either in-house PCR calibration standards or common viral load standards supplied to all collaborators. Each of the 12 participating laboratories quantified blinded HIV-2 samples, using its own HIV-2 viral load assay and standard as well as centrally validated and distributed common HIV-2 group A and B standards (http://www.hiv.lanl.gov/content/sequence/HelpDocs/subtypes-more.html). Aliquots of HIV-2 group A and B strains, each at 2 theoretical concentrations (2.7 and 3.7 log10 copies/ml), were tested. Intralaboratory, interlaboratory, and overall variances of quantification results obtained with both standards were compared using F tests. For HIV-2 group A quantifications, overall and interlaboratory and/or intralaboratory variances were significantly lower when using the common standard than when using in-house standards at the concentration levels of 2.7 log10 copies/ml and 3.7 log10 copies/ml, respectively. For HIV-2 group B, a high heterogeneity was observed and the variances did not differ according to the type of standard used. In this international collaboration, the use of a common standard improved the homogeneity of HIV-2 group A RNA quantification only. The diversity of HIV-2 group B, particularly in PCR primer-binding regions, may explain the heterogeneity in quantification of this strain. Development of a validated HIV-2 viral load assay that accurately quantifies distinct circulating strains is needed. PMID:21813718

  6. Overview of intercalibration of satellite instruments

    USGS Publications Warehouse

    Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J.

    2013-01-01

    Inter-calibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be inter-operable, the instruments must be cross-calibrated. To meet the stringent needs of such applications requires that instruments provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d'unités (SI) traceable Calibration and Validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stability monitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Inter-calibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Inter-calibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated inter-calibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms of change. This paper summarizes the state-of-the-art of post-launch radiometric calibration of remote sensing satellite instruments, through inter-calibration.

  7. Comparison of gas chromatography-combustion-mass spectrometry and gas chromatography-flame ionization detector for the determination of fatty acid methyl esters in biodiesel without specific standards.

    PubMed

    Sobrado, Laura Alonso; Freije-Carrelo, Laura; Moldovan, Mariella; Encinar, Jorge Ruiz; Alonso, J Ignacio García

    2016-07-29

    GC-FID has been effectively used as a universal quantification technique for volatile organic compounds for a long time. In most cases, the use of the ECN allows for quantification by GC-FID without external calibration using only the response of a single internal standard. In this paper we compare the performance characteristics of GC-FID with those of post-column (13)C Isotope Dilution GC-Combustion-MS for the absolute quantification of organic compounds without the need for individual standards. For this comparison we have selected the quantification of FAMEs in biodiesel. The selection of the right internal standard was critical for GC-FID even when ECN were considered. On the other hand, the nature of the internal standard was not relevant when GC-Combustion-MS was employed. The proposed method was validated with the analysis of the certified reference material SRM 2772 and comparative data was obtained on real biodiesel samples. The analysis of the SRM 2772 biodiesel provided recoveries in the range 100.6-103.5% and 96.4-103.6% for GC-combustion-MS and GC-FID, respectively. The detection limit for GC-combustion-MS was found to be 4.2ng compound/g of injected sample. In conclusion, the quantitative performance of GC-Combustion-MS compared satisfactorily with that of GC-FID constituting a viable alternative for the quantification of organic compounds without the need for individual standards. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Group refractive index quantification using a Fourier domain short coherence Sagnac interferometer.

    PubMed

    Montonen, Risto; Kassamakov, Ivan; Lehmann, Peter; Österberg, Kenneth; Hæggström, Edward

    2018-02-15

    The group refractive index is important in length calibration of Fourier domain interferometers by transparent transfer standards. We demonstrate accurate group refractive index quantification using a Fourier domain short coherence Sagnac interferometer. Because of a justified linear length calibration function, the calibration constants cancel out in the evaluation of the group refractive index, which is then obtained accurately from two uncalibrated lengths. Measurements of two standard thickness coverslips revealed group indices of 1.5426±0.0042 and 1.5434±0.0046, with accuracies quoted at the 95% confidence level. This agreed with the dispersion data of the coverslip manufacturer and therefore validates our method. Our method provides a sample specific and accurate group refractive index quantification using the same Fourier domain interferometer that is to be calibrated for the length. This reduces significantly the requirements of the calibration transfer standard.

  9. Quantification of N-acetyl- and N-glycolylneuraminic acids by a stable isotope dilution assay using high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Allevi, Pietro; Femia, Eti Alessandra; Costa, Maria Letizia; Cazzola, Roberta; Anastasia, Mario

    2008-11-28

    The present report describes a method for the quantification of N-acetyl- and N-glycolylneuraminic acids without any derivatization, using their (13)C(3)-isotopologues as internal standards and a C(18) reversed-phase column modified by decylboronic acid which allows for the first time a complete chromatographic separation between the two analytes. The method is based on high-performance liquid chromatographic coupled with electrospray ion-trap mass spectrometry. The limit of quantification of the method is 0.1mg/L (2.0ng on column) for both analytes. The calibration curves are linear for both sialic acids over the range of 0.1-80mg/L (2.0-1600ng on column) with a correlation coefficient greater than 0.997. The proposed method was applied to the quantitative determination of sialic acids released from fetuin as a model of glycoproteins.

  10. Optically transmitted and inductively coupled electric reference to access in vivo concentrations for quantitative proton-decoupled ¹³C magnetic resonance spectroscopy.

    PubMed

    Chen, Xing; Pavan, Matteo; Heinzer-Schweizer, Susanne; Boesiger, Peter; Henning, Anke

    2012-01-01

    This report describes our efforts on quantification of tissue metabolite concentrations in mM by nuclear Overhauser enhanced and proton decoupled (13) C magnetic resonance spectroscopy and the Electric Reference To access In vivo Concentrations (ERETIC) method. Previous work showed that a calibrated synthetic magnetic resonance spectroscopy-like signal transmitted through an optical fiber and inductively coupled into a transmit/receive coil represents a reliable reference standard for in vivo (1) H magnetic resonance spectroscopy quantification on a clinical platform. In this work, we introduce a related implementation that enables simultaneous proton decoupling and ERETIC-based metabolite quantification and hence extends the applicability of the ERETIC method to nuclear Overhauser enhanced and proton decoupled in vivo (13) C magnetic resonance spectroscopy. In addition, ERETIC signal stability under the influence of simultaneous proton decoupling is investigated. The proposed quantification method was cross-validated against internal and external reference standards on human skeletal muscle. The ERETIC signal intensity stability was 100.65 ± 4.18% over 3 months including measurements with and without proton decoupling. Glycogen and unsaturated fatty acid concentrations measured with the ERETIC method were in excellent agreement with internal creatine and external phantom reference methods, showing a difference of 1.85 ± 1.21% for glycogen and 1.84 ± 1.00% for unsaturated fatty acid between ERETIC and creatine-based quantification, whereas the deviations between external reference and creatine-based quantification are 6.95 ± 9.52% and 3.19 ± 2.60%, respectively. Copyright © 2011 Wiley Periodicals, Inc.

  11. Ultra-high Performance Liquid Chromatography Tandem Mass-Spectrometry for Simple and Simultaneous Quantification of Cannabinoids

    PubMed Central

    Jamwal, Rohitash; Topletz, Ariel R.; Ramratnam, Bharat; Akhlaghi, Fatemeh

    2017-01-01

    Cannabis is used widely in the United States, both recreationally and for medical purposes. Current methods for analysis of cannabinoids in human biological specimens rely on complex extraction process and lengthy analysis time. We established a rapid and simple assay for quantification of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), 11-hydroxy Δ9-tetrahydrocannabinol (11-OH THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannbinol (THC-COOH) in human plasma by U-HPLC-MS/MS using Δ9-tetrahydrocannabinol-D3 as the internal standard. Chromatographic separation was achieved on an Acquity BEH C18 column using a gradient comprising of water (0.1% formic acid) and methanol (0.1% formic acid) over a 6 min run-time. Analytes from 200 µL plasma were extracted using acetonitrile (containing 1% formic acid and THC-D3). Mass spectrometry was performed in positive ionization mode, and total ion chromatogram was used for quantification of analytes. The assay was validated according to guidelines set forth by Food and Drug Administration of United States. An eight-point calibration curve was fitted with quadratic regression (r2>0.99) from 1.56 to 100 ng mL−1 and a lower limit of quantification (LLOQ) of 1.56 ng mL−1 was achieved. Accuracy and precision calculated from six calibration curves was between 85 to 115% while the mean extraction recovery was >90% for all the analytes. Several plasma phospholipids eluted after the analytes thus did not interfere with the assay. Bench-top, freeze-thaw, auto-sampler and short-term stability ranged from 92.7 to 106.8% of nominal values. Application of the method was evaluated by quantification of analytes in human plasma from six subjects. PMID:28192758

  12. Calibration of BCR-ABL1 mRNA quantification methods using genetic reference materials is a valid strategy to report results on the international scale.

    PubMed

    Mauté, Carole; Nibourel, Olivier; Réa, Delphine; Coiteux, Valérie; Grardel, Nathalie; Preudhomme, Claude; Cayuela, Jean-Michel

    2014-09-01

    Until recently, diagnostic laboratories that wanted to report on the international scale had limited options: they had to align their BCR-ABL1 quantification methods through a sample exchange with a reference laboratory to derive a conversion factor. However, commercial methods calibrated on the World Health Organization genetic reference panel are now available. We report results from a study designed to assess the comparability of the two alignment strategies. Sixty follow-up samples from chronic myeloid leukemia patients were included. Two commercial methods calibrated on the genetic reference panel were compared to two conversion factor methods routinely used at Saint-Louis Hospital, Paris, and at Lille University Hospital. Results were matched against concordance criteria (i.e., obtaining at least two of the three following landmarks: 50, 75 and 90% of the patient samples within a 2-fold, 3-fold and 5-fold range, respectively). Out of the 60 samples, more than 32 were available for comparison. Compared to the conversion factor method, the two commercial methods were within a 2-fold, 3-fold and 5-fold range for 53 and 59%, 89 and 88%, 100 and 97%, respectively of the samples analyzed at Saint-Louis. At Lille, results were 45 and 85%, 76 and 97%, 100 and 100%, respectively. Agreements between methods were observed in the four comparisons performed. Our data show that the two commercial methods selected are concordant with the conversion factor methods. This study brings the proof of principle that alignment on the international scale using the genetic reference panel is compatible with the patient sample exchange procedure. We believe that these results are particularly important for diagnostic laboratories wishing to adopt commercial methods. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Use of multiple competitors for quantification of human immunodeficiency virus type 1 RNA in plasma.

    PubMed

    Vener, T; Nygren, M; Andersson, A; Uhlén, M; Albert, J; Lundeberg, J

    1998-07-01

    Quantification of human immunodeficiency virus type 1 (HIV-1) RNA in plasma has rapidly become an important tool in basic HIV research and in the clinical care of infected individuals. Here, a quantitative HIV assay based on competitive reverse transcription-PCR with multiple competitors was developed. Four RNA competitors containing identical PCR primer binding sequences as the viral HIV-1 RNA target were constructed. One of the PCR primers was fluorescently labeled, which facilitated discrimination between the viral RNA and competitor amplicons by fragment analysis with conventional automated sequencers. The coamplification of known amounts of the RNA competitors provided the means to establish internal calibration curves for the individual reactions resulting in exclusion of tube-to-tube variations. Calibration curves were created from the peak areas, which were proportional to the starting amount of each competitor. The fluorescence detection format was expanded to provide a dynamic range of more than 5 log units. This quantitative assay allowed for reproducible analysis of samples containing as few as 40 viral copies of HIV-1 RNA per reaction. The within- and between-run coefficients of variation were <24% (range, 10 to 24) and <36% (range, 27 to 36), respectively. The high reproducibility (standard deviation, <0.13 log) of the overall procedure for quantification of HIV-1 RNA in plasma, including sample preparation, amplification, and detection variations, allowed reliable detection of a 0.5-log change in RNA viral load. The assay could be a useful tool for monitoring HIV-1 disease progression and antiviral treatment and can easily be adapted to the quantification of other pathogens.

  14. Simultaneous Quantification of Apolipoprotein A-I and Apolipoprotein B by Liquid-Chromatography–Multiple-Reaction–Monitoring Mass Spectrometry

    PubMed Central

    Agger, Sean A.; Marney, Luke C.; Hoofnagle, Andrew N.

    2011-01-01

    BACKGROUND If liquid-chromatography–multiple-reaction–monitoring mass spectrometry (LC-MRM/MS) could be used in the large-scale preclinical verification of putative biomarkers, it would obviate the need for the development of expensive immunoassays. In addition, the translation of novel biomarkers to clinical use would be accelerated if the assays used in preclinical studies were the same as those used in the clinical laboratory. To validate this approach, we developed a multiplexed assay for the quantification of 2 clinically well-known biomarkers in human plasma, apolipoprotein A-I and apolipoprotein B (apoA-I and apoB). METHODS We used PeptideAtlas to identify candidate peptides. Human samples were denatured with urea or trifluoroethanol, reduced and alkylated, and digested with trypsin. We compared reversed-phase chromatographic separation of peptides with normal flow and microflow, and we normalized endogenous peptide peak areas to internal standard peptides. We evaluated different methods of calibration and compared the final method with a nephelometric immunoassay. RESULTS We developed a final method using trifluoroethanol denaturation, 21-h digestion, normal flow chromatography-electrospray ionization, and calibration with a single normal human plasma sample. For samples injected in duplicate, the method had intraassay CVs <6% and interassay CVs <12% for both proteins, and compared well with immunoassay (n = 47; Deming regression, LC-MRM/MS = 1.17 × immunoassay – 36.6; Sx|y = 10.3 for apoA-I and LC-MRM/MS = 1.21 × immunoassay + 7.0; Sx|y = 7.9 for apoB). CONCLUSIONS Multiplexed quantification of proteins in human plasma/serum by LC-MRM/MS is possible and compares well with clinically useful immunoassays. The potential application of single-point calibration to large clinical studies could simplify efforts to reduce day-to-day digestion variability. PMID:20923952

  15. Organ-specific SPECT activity calibration using 3D printed phantoms for molecular radiotherapy dosimetry.

    PubMed

    Robinson, Andrew P; Tipping, Jill; Cullen, David M; Hamilton, David; Brown, Richard; Flynn, Alex; Oldfield, Christopher; Page, Emma; Price, Emlyn; Smith, Andrew; Snee, Richard

    2016-12-01

    Patient-specific absorbed dose calculations for molecular radiotherapy require accurate activity quantification. This is commonly derived from Single-Photon Emission Computed Tomography (SPECT) imaging using a calibration factor relating detected counts to known activity in a phantom insert. A series of phantom inserts, based on the mathematical models underlying many clinical dosimetry calculations, have been produced using 3D printing techniques. SPECT/CT data for the phantom inserts has been used to calculate new organ-specific calibration factors for (99m) Tc and (177)Lu. The measured calibration factors are compared to predicted values from calculations using a Gaussian kernel. Measured SPECT calibration factors for 3D printed organs display a clear dependence on organ shape for (99m) Tc and (177)Lu. The observed variation in calibration factor is reproduced using Gaussian kernel-based calculation over two orders of magnitude change in insert volume for (99m) Tc and (177)Lu. These new organ-specific calibration factors show a 24, 11 and 8 % reduction in absorbed dose for the liver, spleen and kidneys, respectively. Non-spherical calibration factors from 3D printed phantom inserts can significantly improve the accuracy of whole organ activity quantification for molecular radiotherapy, providing a crucial step towards individualised activity quantification and patient-specific dosimetry. 3D printed inserts are found to provide a cost effective and efficient way for clinical centres to access more realistic phantom data.

  16. Development and Validation of a Method for Alcohol Analysis in Brain Tissue by Headspace Gas Chromatography with Flame Ionization Detector

    PubMed Central

    Chun, Hao-Jung; Poklis, Justin L.; Poklis, Alphonse; Wolf, Carl E.

    2016-01-01

    Ethanol is the most widely used and abused drug. While blood is the preferred specimen for analysis, tissue specimens such as brain serve as alternative specimens for alcohol analysis in post-mortem cases where blood is unavailable or contaminated. A method was developed using headspace gas chromatography with flame ionization detection (HS-GC-FID) for the detection and quantification of ethanol, acetone, isopropanol, methanol and n-propanol in brain tissue specimens. Unfixed volatile-free brain tissue specimens were obtained from the Department of Pathology at Virginia Commonwealth University. Calibrators and controls were prepared from 4-fold diluted homogenates of these brain tissue specimens, and were analyzed using t-butanol as the internal standard. The chromatographic separation was performed with a Restek BAC2 column. A linear calibration was generated for all analytes (mean r2 > 0.9992) with the limits of detection and quantification of 100–110 mg/kg. Matrix effect from the brain tissue was determined by comparing the slopes of matrix prepared calibration curves with those of aqueous calibration curves; no significant differences were observed for ethanol, acetone, isopropanol, methanol and n-propanol. The bias and the CVs for all volatile controls were ≤10%. The method was also evaluated for carryover, selectivity, interferences, bench-top stability and freeze-thaw stability. The HS-GC-FID method was determined to be reliable and robust for the analysis of ethanol, acetone, isopropanol, methanol and n-propanol concentrations in brain tissue, effectively expanding the specimen options for post-mortem alcohol analysis. PMID:27488829

  17. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies.

    PubMed

    Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi

    2017-09-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Calibration of BK Virus Nucleic Acid Amplification Testing to the 1st WHO International Standard for BK Virus

    PubMed Central

    Tan, Susanna K.; Milligan, Stephen; Sahoo, Malaya K.; Taylor, Nathaniel

    2017-01-01

    ABSTRACT Significant interassay variability in the quantification of BK virus (BKV) DNA precludes establishing broadly applicable thresholds for the management of BKV infection in transplantation. The 1st WHO International Standard for BKV (primary standard) was introduced in 2016 as a common calibrator for improving the harmonization of BKV nucleic acid amplification testing (NAAT) and enabling comparisons of biological measurements worldwide. Here, we evaluated the Altona RealStar BKV assay (Altona) and calibrated the results to the international unit (IU) using the Exact Diagnostics BKV verification panel, a secondary standard traceable to the primary standard. The primary and secondary standards on Altona had nearly identical linear regression equations (primary standard, Y = 1.05X − 0.28, R2 = 0.99; secondary standard, Y = 1.04X − 0.26, R2 = 0.99) and conversion factors (primary standard, 1.11 IU/copy; secondary standard, 1.09 IU/copy). A comparison of Altona with a laboratory-developed BKV NAAT assay in IU/ml versus copies/ml using Passing-Bablok regression revealed similar regression lines, no proportional bias, and improvement in the systematic bias (95% confidence interval of intercepts: copies/ml, −0.52 to −1.01; IU/ml, 0.07 to −0.36). Additionally, Bland-Altman analyses revealed a clinically significant reduction of bias when results were reported in IU/ml (IU/ml, −0.10 log10; copies/ml, −0.70 log10). These results indicate that the use of a common calibrator improved the agreement between the two assays. As clinical laboratories worldwide use calibrators traceable to the primary standard to harmonize BKV NAAT results, we anticipate improved interassay comparisons with a potential for establishing broadly applicable quantitative BKV DNA load cutoffs for clinical practice. PMID:28053213

  19. Pure hydroxyapatite phantoms for the calibration of in vivo X-ray fluorescence systems of bone lead and strontium quantification.

    PubMed

    Da Silva, Eric; Kirkham, Brian; Heyd, Darrick V; Pejović-Milić, Ana

    2013-10-01

    Plaster of Paris [poP, CaSO4·(1)/(2) H2O] is the standard phantom material used for the calibration of in vivo X-ray fluorescence (IVXRF)-based systems of bone metal quantification (i.e bone strontium and lead). Calibration of IVXRF systems of bone metal quantification employs the use of a coherent normalization procedure which requires the application of a coherent correction factor (CCF) to the data, calculated as the ratio of the relativistic form factors of the phantom material and bone mineral. Various issues have been raised as to the suitability of poP for the calibration of IVXRF systems of bone metal quantification which include its chemical purity and its chemical difference from bone mineral (a calcium phosphate). This work describes the preparation of a chemically pure hydroxyapatite phantom material, of known composition and stoichiometry, proposed for the purpose of calibrating IVXRF systems of bone strontium and lead quantification as a replacement for poP. The issue with contamination by the analyte was resolved by preparing pure Ca(OH)2 by hydroxide precipitation, which was found to bring strontium and lead levels to <0.7 and <0.3 μg/g Ca, respectively. HAp phantoms were prepared from known quantities of chemically pure Ca(OH)2, CaHPO4·2H2O prepared from pure Ca(OH)2, the analyte, and a HPO4(2-) containing setting solution. The final crystal structure of the material was found to be similar to that of the bone mineral component of NIST SRM 1486 (bone meal), as determined by powder X-ray diffraction spectrometry.

  20. Estimation of the quantification uncertainty from flow injection and liquid chromatography transient signals in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Laborda, Francisco; Medrano, Jesús; Castillo, Juan R.

    2004-06-01

    The quality of the quantitative results obtained from transient signals in high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) and flow injection-inductively coupled plasma mass spectrometry (FI-ICPMS) was investigated under multielement conditions. Quantification methods were based on multiple-point calibration by simple and weighted linear regression, and double-point calibration (measurement of the baseline and one standard). An uncertainty model, which includes the main sources of uncertainty from FI-ICPMS and HPLC-ICPMS (signal measurement, sample flow rate and injection volume), was developed to estimate peak area uncertainties and statistical weights used in weighted linear regression. The behaviour of the ICPMS instrument was characterized in order to be considered in the model, concluding that the instrument works as a concentration detector when it is used to monitorize transient signals from flow injection or chromatographic separations. Proper quantification by the three calibration methods was achieved when compared to reference materials, although the double-point calibration allowed to obtain results of the same quality as the multiple-point calibration, shortening the calibration time. Relative expanded uncertainties ranged from 10-20% for concentrations around the LOQ to 5% for concentrations higher than 100 times the LOQ.

  1. Quantification of meat proportions by measuring DNA contents in raw and boiled sausages using matrix-adapted calibrators and multiplex real-time PCR.

    PubMed

    Köppel, René; Eugster, Albert; Ruf, Jürg; Rentsch, Jürg

    2012-01-01

    The quantification of meat proportions in raw and boiled sausage according to the recipe was evaluated using three different calibrators. To measure the DNA contents from beef, pork, sheep (mutton), and horse, a tetraplex real-time PCR method was applied. Nineteen laboratories analyzed four meat products each made of different proportions of beef, pork, sheep, and horse meat. Three kinds of calibrators were used: raw and boiled sausages of known proportions ranging from 1 to 55% of meat, and a dilution series of DNA from muscle tissue. In general, results generated using calibration sausages were more accurate than those resulting from the use of DNA from muscle tissue, and exhibited smaller measurement uncertainties. Although differences between uses of raw and boiled calibration sausages were small, the most precise and accurate results were obtained by calibration with fine-textured boiled reference sausages.

  2. HPLC-ESI-MS/MS validated method for simultaneous quantification of zopiclone and its metabolites, N-desmethyl zopiclone and zopiclone-N-oxide in human plasma.

    PubMed

    Mistri, Hiren N; Jangid, Arvind G; Pudage, Ashutosh; Shrivastav, Pranav

    2008-03-15

    A simple, selective and sensitive isocratic HPLC method with triple quadrupole mass spectrometry detection has been developed and validated for simultaneous quantification of zopiclone and its metabolites in human plasma. The analytes were extracted using solid phase extraction, separated on Symmetry shield RP8 column (150 mm x 4.6 mm i.d., 3.5 microm particle size) and detected by tandem mass spectrometry with a turbo ion spray interface. Metaxalone was used as an internal standard. The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration range of 0.5-150 ng/mL for both zopiclone and N-desmethyl zopiclone and 1-150 ng/mL for zopiclone-N-oxide. The intra-batch and inter-batch accuracy and precision evaluated at lower limit of quantification and quality control levels were within 89.5-109.1% and 3.0-14.7%, respectively, for all the analytes. The recoveries calculated for the analytes and internal standard were > or = 90% from spiked plasma samples. The validated method was successfully employed for a comparative bioavailability study after oral administration of 7.5 mg zopiclone (test and reference) to 16 healthy volunteers under fasted condition.

  3. Quantification of strontium in human serum by ICP-MS using alternate analyte-free matrix and its application to a pilot bioequivalence study of two strontium ranelate oral formulations in healthy Chinese subjects.

    PubMed

    Zhang, Dan; Wang, Xiaolin; Liu, Man; Zhang, Lina; Deng, Ming; Liu, Huichen

    2015-01-01

    A rapid, sensitive and accurate ICP-MS method using alternate analyte-free matrix for calibration standards preparation and a rapid direct dilution procedure for sample preparation was developed and validated for the quantification of exogenous strontium (Sr) from the drug in human serum. Serum was prepared by direct dilution (1:29, v/v) in an acidic solution consisting of nitric acid (0.1%) and germanium (Ge) added as internal standard (IS), to obtain simple and high-throughput preparation procedure with minimized matrix effect, and good repeatability. ICP-MS analysis was performed using collision cell technology (CCT) mode. Alternate matrix method by using distilled water as an alternate analyte-free matrix for the preparation of calibration standards (CS) was used to avoid the influence of endogenous Sr in serum on the quantification. The method was validated in terms of selectivity, carry-over, matrix effects, lower limit of quantification (LLOQ), linearity, precision and accuracy, and stability. Instrumental linearity was verified in the range of 1.00-500ng/mL, corresponding to a concentration range of 0.0300-15.0μg/mL in 50μL sample of serum matrix and alternate matrix. Intra- and inter-day precision as relative standard deviation (RSD) were less than 8.0% and accuracy as relative error (RE) was within ±3.0%. The method allowed a high sample throughput, and was sensitive and accurate enough for a pilot bioequivalence study in healthy male Chinese subjects following single oral administration of two strontium ranelate formulations containing 2g strontium ranelate. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Use of Multiple Competitors for Quantification of Human Immunodeficiency Virus Type 1 RNA in Plasma

    PubMed Central

    Vener, Tanya; Nygren, Malin; Andersson, AnnaLena; Uhlén, Mathias; Albert, Jan; Lundeberg, Joakim

    1998-01-01

    Quantification of human immunodeficiency virus type 1 (HIV-1) RNA in plasma has rapidly become an important tool in basic HIV research and in the clinical care of infected individuals. Here, a quantitative HIV assay based on competitive reverse transcription-PCR with multiple competitors was developed. Four RNA competitors containing identical PCR primer binding sequences as the viral HIV-1 RNA target were constructed. One of the PCR primers was fluorescently labeled, which facilitated discrimination between the viral RNA and competitor amplicons by fragment analysis with conventional automated sequencers. The coamplification of known amounts of the RNA competitors provided the means to establish internal calibration curves for the individual reactions resulting in exclusion of tube-to-tube variations. Calibration curves were created from the peak areas, which were proportional to the starting amount of each competitor. The fluorescence detection format was expanded to provide a dynamic range of more than 5 log units. This quantitative assay allowed for reproducible analysis of samples containing as few as 40 viral copies of HIV-1 RNA per reaction. The within- and between-run coefficients of variation were <24% (range, 10 to 24) and <36% (range, 27 to 36), respectively. The high reproducibility (standard deviation, <0.13 log) of the overall procedure for quantification of HIV-1 RNA in plasma, including sample preparation, amplification, and detection variations, allowed reliable detection of a 0.5-log change in RNA viral load. The assay could be a useful tool for monitoring HIV-1 disease progression and antiviral treatment and can easily be adapted to the quantification of other pathogens. PMID:9650926

  5. Ultrasensitive quantification of the CYP2E1 probe chlorzoxazone and its main metabolite 6-hydroxychlorzoxazone in human plasma using ultra performance liquid chromatography coupled to tandem mass spectrometry after chlorzoxazone microdosing.

    PubMed

    Witt, Lukas; Suzuki, Yosuke; Hohmann, Nicolas; Mikus, Gerd; Haefeli, Walter E; Burhenne, Jürgen

    2016-08-01

    Chlorzoxazone is a probe drug to assess cytochrome P450 (CYP) 2E1 activity (phenotyping). If the pharmacokinetics of the probe drug is linear, pharmacologically ineffective doses are sufficient for the purpose of phenotyping and adverse effects can thus be avoided. For this reason, we developed and validated an assay for the ultrasensitive quantification of chlorzoxazone and 6-hydroxychlorzoxazone in human plasma. Plasma (0.5mL) and liquid/liquid partitioning were used for sample preparation. Extraction recoveries ranged between 76 and 93% for both analytes. Extracts were separated within 3min on a Waters BEH C18 Shield 1.7μm UPLC column with a fast gradient consisting of aqueous formic acid and acetonitrile. Quantification was achieved using internal standards labeled with deuterium or (13)C and tandem mass spectrometry in the multiple reaction monitoring mode using negative electrospray ionization, which yielded lower limits of quantification of 2.5pgmL(-1), while maintaining a precision always below 15%. The calibrated concentration ranges were linear for both analytes (2.5-1000pgmL(-1)) with correlation coefficients of >0.99. Within-batch and batch-to-batch precision in the calibrated ranges for both analytes were <15% and <11% and plasma matrix effects always were below 50%. The assay was successfully applied to assess the pharmacokinetics of chlorzoxazone in two human volunteers after administration of single oral doses (2.5-5000μg). This ultrasensitive assay allowed the determination of chlorzoxazone pharmacokinetics for 8h after microdosing of 25μg chlorzoxazone. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantification of endocrine disruptors and pesticides in water by gas chromatography-tandem mass spectrometry. Method validation using weighted linear regression schemes.

    PubMed

    Mansilha, C; Melo, A; Rebelo, H; Ferreira, I M P L V O; Pinho, O; Domingues, V; Pinho, C; Gameiro, P

    2010-10-22

    A multi-residue methodology based on a solid phase extraction followed by gas chromatography-tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC-MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  8. Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices

    NASA Astrophysics Data System (ADS)

    Semkow, T. M.; Bradt, C. J.; Beach, S. E.; Haines, D. K.; Khan, A. J.; Bari, A.; Torres, M. A.; Marrantino, J. C.; Syed, U.-F.; Kitto, M. E.; Hoffman, T. J.; Curtis, P.

    2015-11-01

    A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm-3. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid.

  9. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank

    2017-06-01

    This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.

  10. Universal calibration of Raman spectroscopy for the analysis of volatiles in glasses of variable composition

    NASA Astrophysics Data System (ADS)

    Schiavi, Federica; Bolfan-Casanova, Nathalie

    2017-04-01

    The amount and distribution of volatiles (water, carbon dioxide …) in magmas represent key parameters for the understanding of magma processes and dynamics within volcanic plumbing systems. Micro-Raman spectroscopy is an excellent technique for accurate determination of volatile contents in magmas, as it combines several advantages. The technique is non-destructive and requires minimal sample preparation before the analysis. Its high lateral and in-depth spatial resolution is crucial for the study of small objects and samples that are chemically and texturally heterogeneous at the small scale (microns). Moreover, the high confocality allows analysis of sample regions not exposed to the surface and 3D mapping. We present a universal calibration of Raman spectroscopy for quantification of volatiles in silicate glasses. The proposed method is based on internal calibration, i.e., on the correlation between the glass water content and the ratio between the areas of the water and silicate Raman bands. Synthetic glasses with variable major element compositions (basaltic, andesitic, rhyolitic, dacitic ..) bearing different H2O (up to 7 wt%) and CO2 contents are used as standard glasses. Natural silicate glasses, mainly in the form of melt inclusions, are used to test the goodness of the proposed method. In addition to quantification of volatiles in glass, in bubble-bearing melt inclusions we perform micro-Raman spectroscopy investigation of gas-bearing bubbles for accurate determination of total volatile contents in melt inclusions.

  11. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  12. Simple and accurate quantification of BTEX in ambient air by SPME and GC-MS.

    PubMed

    Baimatova, Nassiba; Kenessov, Bulat; Koziel, Jacek A; Carlsen, Lars; Bektassov, Marat; Demyanenko, Olga P

    2016-07-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) comprise one of the most ubiquitous and hazardous groups of ambient air pollutants of concern. Application of standard analytical methods for quantification of BTEX is limited by the complexity of sampling and sample preparation equipment, and budget requirements. Methods based on SPME represent simpler alternative, but still require complex calibration procedures. The objective of this research was to develop a simpler, low-budget, and accurate method for quantification of BTEX in ambient air based on SPME and GC-MS. Standard 20-mL headspace vials were used for field air sampling and calibration. To avoid challenges with obtaining and working with 'zero' air, slope factors of external standard calibration were determined using standard addition and inherently polluted lab air. For polydimethylsiloxane (PDMS) fiber, differences between the slope factors of calibration plots obtained using lab and outdoor air were below 14%. PDMS fiber provided higher precision during calibration while the use of Carboxen/PDMS fiber resulted in lower detection limits for benzene and toluene. To provide sufficient accuracy, the use of 20mL vials requires triplicate sampling and analysis. The method was successfully applied for analysis of 108 ambient air samples from Almaty, Kazakhstan. Average concentrations of benzene, toluene, ethylbenzene and o-xylene were 53, 57, 11 and 14µgm(-3), respectively. The developed method can be modified for further quantification of a wider range of volatile organic compounds in air. In addition, the new method is amenable to automation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks

    NASA Astrophysics Data System (ADS)

    Nischkauer, Winfried; Vanhaecke, Frank; Bernacchi, Sébastien; Herwig, Christoph; Limbeck, Andreas

    2014-11-01

    Nebulising liquid samples and using the aerosol thus obtained for further analysis is the standard method in many current analytical techniques, also with inductively coupled plasma (ICP)-based devices. With such a set-up, quantification via external calibration is usually straightforward for samples with aqueous or close-to-aqueous matrix composition. However, there is a variety of more complex samples. Such samples can be found in medical, biological, technological and industrial contexts and can range from body fluids, like blood or urine, to fuel additives or fermentation broths. Specialized nebulizer systems or careful digestion and dilution are required to tackle such demanding sample matrices. One alternative approach is to convert the liquid into a dried solid and to use laser ablation for sample introduction. Up to now, this approach required the application of internal standards or matrix-adjusted calibration due to matrix effects. In this contribution, we show a way to circumvent these matrix effects while using simple external calibration for quantification. The principle of representative sampling that we propose uses radial line-scans across the dried residue. This compensates for centro-symmetric inhomogeneities typically observed in dried spots. The effectiveness of the proposed sampling strategy is exemplified via the determination of phosphorus in biochemical fermentation media. However, the universal viability of the presented measurement protocol is postulated. Detection limits using laser ablation-ICP-optical emission spectrometry were in the order of 40 μg mL- 1 with a reproducibility of 10 % relative standard deviation (n = 4, concentration = 10 times the quantification limit). The reported sensitivity is fit-for-purpose in the biochemical context described here, but could be improved using ICP-mass spectrometry, if future analytical tasks would require it. Trueness of the proposed method was investigated by cross-validation with conventional liquid measurements, and by analyzing IAEA-153 reference material (Trace Elements in Milk Powder); a good agreement with the certified value for phosphorus was obtained.

  14. Method development and validation for simultaneous quantification of 15 drugs of abuse and prescription drugs and 7 of their metabolites in whole blood relevant in the context of driving under the influence of drugs--usefulness of multi-analyte calibration.

    PubMed

    Steuer, Andrea E; Forss, Anna-Maria; Dally, Annika M; Kraemer, Thomas

    2014-11-01

    In the context of driving under the influence of drugs (DUID), not only common drugs of abuse may have an influence, but also medications with similar mechanisms of action. Simultaneous quantification of a variety of drugs and medications relevant in this context allows faster and more effective analyses. Therefore, multi-analyte approaches have gained more and more popularity in recent years. Usually, calibration curves for such procedures contain a mixture of all analytes, which might lead to mutual interferences. In this study we investigated whether the use of such mixtures leads to reliable results for authentic samples containing only one or two analytes. Five hundred microliters of whole blood were extracted by routine solid-phase extraction (SPE, HCX). Analysis was performed on an ABSciex 3200 QTrap instrument with ESI+ in scheduled MRM mode. The method was fully validated according to international guidelines including selectivity, recovery, matrix effects, accuracy and precision, stabilities, and limit of quantification. The selected SPE provided recoveries >60% for all analytes except 6-monoacetylmorphine (MAM) with coefficients of variation (CV) below 15% or 20% for quality controls (QC) LOW and HIGH, respectively. Ion suppression >30% was found for benzoylecgonine, hydrocodone, hydromorphone, MDA, oxycodone, and oxymorphone at QC LOW, however CVs were always below 10% (n=6 different whole blood samples). Accuracy and precision criteria were fulfilled for all analytes except for MAM. Systematic investigation of accuracy determined for QC MED in a multi-analyte mixture compared to samples containing only single analytes revealed no relevant differences for any analyte, indicating that a multi-analyte calibration is suitable for the presented method. Comparison of approximately 60 samples to a former GC-MS method showed good correlation. The newly validated method was successfully applied to more than 1600 routine samples and 3 proficiency tests. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Data-Independent MS/MS Quantification of Neuropeptides for Determination of Putative Feeding-Related Neurohormones in Microdialysate

    PubMed Central

    2015-01-01

    Food consumption is an important behavior that is regulated by an intricate array of neuropeptides (NPs). Although many feeding-related NPs have been identified in mammals, precise mechanisms are unclear and difficult to study in mammals, as current methods are not highly multiplexed and require extensive a priori knowledge about analytes. New advances in data-independent acquisition (DIA) MS/MS and the open-source quantification software Skyline have opened up the possibility to identify hundreds of compounds and quantify them from a single DIA MS/MS run. An untargeted DIA MSE quantification method using Skyline software for multiplexed, discovery-driven quantification was developed and found to produce linear calibration curves for peptides at physiologically relevant concentrations using a protein digest as internal standard. By using this method, preliminary relative quantification of the crab Cancer borealis neuropeptidome (<2 kDa, 137 peptides from 18 families) was possible in microdialysates from 8 replicate feeding experiments. Of these NPs, 55 were detected with an average mass error below 10 ppm. The time-resolved profiles of relative concentration changes for 6 are shown, and there is great potential for the use of this method in future experiments to aid in correlation of NP changes with behavior. This work presents an unbiased approach to winnowing candidate NPs related to a behavior of interest in a functionally relevant manner, and demonstrates the success of such a UPLC-MSE quantification method using the open source software Skyline. PMID:25552291

  16. Data-independent MS/MS quantification of neuropeptides for determination of putative feeding-related neurohormones in microdialysate.

    PubMed

    Schmerberg, Claire M; Liang, Zhidan; Li, Lingjun

    2015-01-21

    Food consumption is an important behavior that is regulated by an intricate array of neuropeptides (NPs). Although many feeding-related NPs have been identified in mammals, precise mechanisms are unclear and difficult to study in mammals, as current methods are not highly multiplexed and require extensive a priori knowledge about analytes. New advances in data-independent acquisition (DIA) MS/MS and the open-source quantification software Skyline have opened up the possibility to identify hundreds of compounds and quantify them from a single DIA MS/MS run. An untargeted DIA MS(E) quantification method using Skyline software for multiplexed, discovery-driven quantification was developed and found to produce linear calibration curves for peptides at physiologically relevant concentrations using a protein digest as internal standard. By using this method, preliminary relative quantification of the crab Cancer borealis neuropeptidome (<2 kDa, 137 peptides from 18 families) was possible in microdialysates from 8 replicate feeding experiments. Of these NPs, 55 were detected with an average mass error below 10 ppm. The time-resolved profiles of relative concentration changes for 6 are shown, and there is great potential for the use of this method in future experiments to aid in correlation of NP changes with behavior. This work presents an unbiased approach to winnowing candidate NPs related to a behavior of interest in a functionally relevant manner, and demonstrates the success of such a UPLC-MS(E) quantification method using the open source software Skyline.

  17. Simultaneous quantification of fentanyl, sufentanil, cefazolin, doxapram and keto-doxapram in plasma using liquid chromatography - tandem mass spectrometry.

    PubMed

    Flint, Robert B; Bahmany, Soma; van der Nagel, Bart C H; Koch, Birgit C P

    2018-05-16

    A simple and specific UPLC-MS/MS method was developed and validated for simultaneous quantification of fentanyl, sufentanil, cefazolin, doxapram and its active metabolite keto-doxapram. The internal standard was fentanyl-d5 for all analytes. Chromatographic separation was achieved with a reversed phase Acquity UPLC HSS T3 column with a run-time of only 5.0 minutes per injected sample. Gradient elution was performed with a mobile phase consisting of ammonium acetate, formic acid in Milli-Q ultrapure water or in methanol with a total flow rate of 0.4 mL minute -1 . A plasma volume of only 50 μL was required to achieve both adequate accuracy and precision. Calibration curves of all 5 analytes were linear. All analytes were stable for at least 48 hours in the autosampler. The method was validated according to US Food and Drug Administration guidelines. This method allows quantification of fentanyl, sufentanil, cefazolin, doxapram and keto-doxapram, which serves purposes for research, as well as therapeutic drug monitoring, if applicable. The strength of this method is the combination of a small sample volume, a short run-time, a deuterated internal standard, an easy sample preparation method and the ability to simultaneously quantify all analytes in one run. This article is protected by copyright. All rights reserved.

  18. Quantitative proton magnetic resonance spectroscopy without water suppression

    NASA Astrophysics Data System (ADS)

    Özdemir, M. S.; DeDeene, Y.; Fieremans, E.; Lemahieu, I.

    2009-06-01

    The suppression of the abundant water signal has been traditionally employed to decrease the dynamic range of the NMR signal in proton MRS (1H MRS) in vivo. When using this approach, if the intent is to utilize the water signal as an internal reference for the absolute quantification of metabolites, additional measurements are required for the acquisition of the water signal. This can be prohibitively time-consuming and is not desired clinically. Additionally, traditional water suppression can lead to metabolite alterations. This can be overcome by performing quantitative 1H MRS without water suppression. However, the non-water-suppressed spectra suffer from gradient-induced frequency modulations, resulting in sidebands in the spectrum. Sidebands may overlap with the metabolites, which renders the spectral analysis and quantification problematic. In this paper, we performed absolute quantification of metabolites without water suppression. Sidebands were removed by utilizing the phase of an external reference signal of single resonance to observe the time-varying the static field fluctuations induced by gradient-vibration and deconvolving this phase contamination from the desired NMR signal. The quantification of metabolites was determined after sideband correction by calibrating the metabolite signal intensities against the recorded water signal. The method was evaluated by phantom and in vivo measurements in human brain. The maximum systematic error for the quantified metabolite concentrations was found to be 10.8%, showing the feasibility of the quantification after sideband correction.

  19. Quantification of Paclitaxel and Polyaspartate Paclitaxel Conjugate in Beagle Plasma: Application to a Pharmacokinetic Study.

    PubMed

    Gao, Yangyang; Chen, Junying; Zhang, Xiqian; Xie, Huiru; Wang, Yanran; Guo, Shuquan

    2017-03-01

    An LC-MS/MS method for the determination of polyaspartate paclitaxel conjugate (PASP-PTX) and paclitaxel (PTX) in dog plasma with cephalomannine (Internal Standard for PASP-PTX, IS-I) and clopidogrel bisulfate (Internal Standard for PTX, IS-II) as the internal standards was developed and validated. Plasma samples of PASP-PTX were extracted by ethyl acetate following the hydrolysis reaction, while protein precipitation was used for the extraction of PTX using acetonitrile. Analytes were separated by a CAPCELL PAK C18 MG II column using a gradient elution with the mobile phase (A) 5 mM ammonium containing 0.1% formic acid, and (B) acetonitrile. Quantification was performed by monitoring the m/z transitions of 286.2/105.0 for PASP-PTX, 264.2/83.0 for IS-I, 854.4/286.0 for PTX, and 322.1/184.1 for IS-II in the ESI positive mode. This method was validated in terms of specificity, linearity, precision, accuracy, and stability. The lower limit of quantification was 0.15 µg/mL for PASP-PTX and 0.01 µg/mL for PTX, and the calibration curves were linear over 0.15-300 µg/mL for PASP-PTX and over 0.01-10 µg/mL for PTX. The samples were stable under all the tested conditions. The method was successfully applied to study the pharmacokinetic profiles of PASP-PTX and PTX in beagles following intravenous administration of PASP-PTX. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Extension of the International Atomic Energy Agency phantom study in image quantification: results of multicentre evaluation in Croatia.

    PubMed

    Grošev, Darko; Gregov, Marin; Wolfl, Miroslava Radić; Krstonošić, Branislav; Debeljuh, Dea Dundara

    2018-06-07

    To make quantitative methods of nuclear medicine more available, four centres in Croatia participated in the national intercomparison study, following the materials and methods used in the previous international study organized by the International Atomic Energy Agency (IAEA). The study task was to calculate the activities of four Ba sources (T1/2=10.54 years; Eγ=356 keV) using planar and single-photon emission computed tomography (SPECT) or SPECT/CT acquisitions of the sources inside a water-filled cylindrical phantom. The sources were previously calibrated by the US National Institute of Standards and Technology. Triple-energy window was utilized for scatter correction. Planar studies were corrected for attenuation correction (AC) using the conjugate-view method. For SPECT/CT studies, data from X-ray computed tomography were used for attenuation correction (CT-AC), whereas for SPECT-only acquisition, the Chang-AC method was applied. Using the lessons learned from the IAEA study, data were acquired according to the harmonized data acquisition protocol, and the acquired images were then processed using centralized data analysis. The accuracy of the activity quantification was evaluated as the ratio R between the calculated activity and the value obtained from National Institute of Standards and Technology. For planar studies, R=1.06±0.08; for SPECT/CT study using CT-AC, R=1.00±0.08; and for Chang-AC, R=0.89±0.12. The results are in accordance with those obtained within the larger IAEA study and confirm that SPECT/CT method is the most appropriate for accurate activity quantification.

  1. Correlation of X-ray computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical measurement of adipose and lean tissues in living mice.

    PubMed

    Metzinger, Matthew N; Miramontes, Bernadette; Zhou, Peng; Liu, Yueying; Chapman, Sarah; Sun, Lucy; Sasser, Todd A; Duffield, Giles E; Stack, M Sharon; Leevy, W Matthew

    2014-10-08

    Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.

  2. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation

    NASA Astrophysics Data System (ADS)

    Reichert, Andreas; Rettinger, Markus; Sussmann, Ralf

    2016-09-01

    Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (< 2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm-1, but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2σ) excluding the contribution due to inaccuracies in the extra-atmospheric solar spectrum (ESS) is below 1 % in window regions and up to 1.7 % within absorption bands. The overall radiometric accuracy of the calibration depends on the ESS uncertainty, on which at present no firm consensus has been reached in the NIR. However, as is shown in the companion publication Reichert and Sussmann (2016), ESS uncertainty is only of minor importance for the specific aim of this study, i.e., the quantification of the water vapor continuum in a closure experiment. The calibration uncertainty estimate is substantiated by the investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1 % of the 2500 to 7800 cm-1 range. Additionally, a comparison of a set of calibrated spectra to radiative transfer model calculations yields consistent results within the estimated errors for 97.7 % of the spectral range.

  3. Simultaneous analysis of mono-, di-, and tri-ethanolamine in cosmetic products using liquid chromatography coupled tandem mass spectrometry.

    PubMed

    Shin, Kyong-Oh; Lee, Yong-Moon

    2016-01-01

    Alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) are used as wetting agents in shampoos, lotions, creams, and other cosmetics. DEA is widely used to provide lather in shampoos and maintain a favorable consistency in lotions and creams. Although DEA is not harmful, it may react with other ingredients in the cosmetic formula after extended storage periods to form an extremely potent carcinogen called nitrosodiethanolamine (NDEA), which is readily absorbed through the skin and has been linked to the development of stomach, esophagus, liver, and bladder cancers. The purpose of this study was to develop a simultaneous quantification method for measurement of MEA, DEA, and TEA in cosmetic products. Liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) was performed using a hydrophilic interaction liquid chromatography (HILIC) column with isocratic elution containing acetonitrile and 5 mM ammonium formate in water (88:12, v/v). Identification and quantification of alkanolamines were performed using MS/MS monitoring to assess the transition from precursor to product ion of MEA (m/z, 61.1 → 44.0), DEA (m/z, 106.1 → 88.0), TEA (m/z, 150.1 → 130.0), and the internal standard triethylamine (m/z, 102.2 → 58.0). Alkanolamines extractions were simplified using a single extraction with acetonitrile in the cosmetic matrix. Performance of the method was evaluated with quality parameters such as specificity, carry-over, linearity and calibration, correlation of determination (R(2)), detection limit, precision, accuracy, and recovery. Calibration curves of MEA (2.9-1000 ppb), DEA (1-1000 ppb), and TEA (1-1000 ppb) were constructed by plotting concentration versus peak-area ratio (analyte/internal standard with a correlation coefficient greater than 0.99). The intra- and inter-assay accuracy ranged from 92.92 to 101.15 % for all analytes. The intra- and inter-assay precision for MEA, DEA, and TEA showed all coefficients of variance were less than 9.38 % for QC samples. Limits of detection and limits of quantification were 2.00 and 15.63 ppb for MEA, 0.49 and 1.96 ppb for DEA, and 0.49 and 1.96 ppb for TEA, respectively. This novel quantification method simplified sample preparation and allowed accurate and reproducible quantification of alkanolamines in the ng/g cosmetic weight (ppb) range for several cosmetic products.

  4. Procedure for the Selection and Validation of a Calibration Model I-Description and Application.

    PubMed

    Desharnais, Brigitte; Camirand-Lemyre, Félix; Mireault, Pascal; Skinner, Cameron D

    2017-05-01

    Calibration model selection is required for all quantitative methods in toxicology and more broadly in bioanalysis. This typically involves selecting the equation order (quadratic or linear) and weighting factor correctly modelizing the data. A mis-selection of the calibration model will generate lower quality control (QC) accuracy, with an error up to 154%. Unfortunately, simple tools to perform this selection and tests to validate the resulting model are lacking. We present a stepwise, analyst-independent scheme for selection and validation of calibration models. The success rate of this scheme is on average 40% higher than a traditional "fit and check the QCs accuracy" method of selecting the calibration model. Moreover, the process was completely automated through a script (available in Supplemental Data 3) running in RStudio (free, open-source software). The need for weighting was assessed through an F-test using the variances of the upper limit of quantification and lower limit of quantification replicate measurements. When weighting was required, the choice between 1/x and 1/x2 was determined by calculating which option generated the smallest spread of weighted normalized variances. Finally, model order was selected through a partial F-test. The chosen calibration model was validated through Cramer-von Mises or Kolmogorov-Smirnov normality testing of the standardized residuals. Performance of the different tests was assessed using 50 simulated data sets per possible calibration model (e.g., linear-no weight, quadratic-no weight, linear-1/x, etc.). This first of two papers describes the tests, procedures and outcomes of the developed procedure using real LC-MS-MS results for the quantification of cocaine and naltrexone. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Sensitivity Analysis and Uncertainty Quantification for the LAMMPS Molecular Dynamics Simulation Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, Richard Roy; Bhat, Kabekode Ghanasham

    2017-07-18

    We examine sensitivity analysis and uncertainty quantification for molecular dynamics simulation. Extreme (large or small) output values for the LAMMPS code often occur at the boundaries of input regions, and uncertainties in those boundary values are overlooked by common SA methods. Similarly, input values for which code outputs are consistent with calibration data can also occur near boundaries. Upon applying approaches in the literature for imprecise probabilities (IPs), much more realistic results are obtained than for the complacent application of standard SA and code calibration.

  6. Visualization and quantification of magnetic nanoparticles into vesicular systems by combined atomic and magnetic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, C.; Department of Physics, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185, Rome; Corsetti, S.

    2015-06-23

    We report a phenomenological approach for the quantification of the diameter of magnetic nanoparticles (MNPs) incorporated in non-ionic surfactant vesicles (niosomes) using magnetic force microscopy (MFM). After a simple specimen preparation, i.e., by putting a drop of solution containing MNPs-loaded niosomes on flat substrates, topography and MFM phase images are collected. To attempt the quantification of the diameter of entrapped MNPs, the method is calibrated on the sole MNPs deposited on the same substrates by analyzing the MFM signal as a function of the MNP diameter (at fixed tip-sample distance) and of the tip-sample distance (for selected MNPs). After calibration,more » the effective diameter of the MNPs entrapped in some niosomes is quantitatively deduced from MFM images.« less

  7. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    PubMed

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached <0.1-10nM and 0.2-25nM, respectively. Commercially available pooled human plasma was used to build matrix-matched calibration curves ranging 2-500, 5-1250, 20-5000 or 150-37500nM depending on the analyte. The overall performance of the method was considered adequate, with 2.8-20.9% and 5.2-20.0% intra and inter-day precision, respectively and averaged accuracy reaching 91-108%. Recovery experiments were also performed and reached in average 82%. This analytical approach was then applied for the quantification of circulating water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Configurations and calibration methods for passive sampling techniques.

    PubMed

    Ouyang, Gangfeng; Pawliszyn, Janusz

    2007-10-19

    Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.

  9. Easy-Assessment of Levofloxacin and Minocycline in Relevant Biomimetic Media by HPLC-UV Analysis.

    PubMed

    Matos, Ana C; Pinto, Rosana V; Bettencourt, Ana F

    2017-08-01

    Simple, economic and environmental friendly high-performance liquid chromatography methods for levofloxacin and minocycline quantification in biomimetic media were developed and validate including their stability at body temperature, an often neglected evaluation parameter. Both methods are similar only differing in the wavelength setting, i.e., for levofloxacin and minocycline quantification the UV detection was set at 284 and at 273 nm, respectively. The separation of both antibiotics was achieved using a reversed-phase column and a mobile phase consisting of acetonitrile and water (15:85) with 0.6% triethylamine, adjusted to pH 3. As an internal standard for levofloxacin quantification, minocycline was used and vice versa. The calibration curves for both methods were linear (r = 0.99) over a concentration range of 0.3-16 μg/mL and 0.5-16 μg/mL for levofloxacin and minocycline, respectively, with precision, accuracy and recovery in agreement with international guidelines requirement. Levofloxacin revealed stability in all media and conditions, including at 37°C, with exception to freeze-thaw cycle conditions. Minocycline presented a more accentuated degradation profile over prolonged time courses, when compared to levofloxacin. Reported data is of utmost interest for pharma and biomaterials fields regarding the research and development of new local drug-delivery-systems containing either of these two antibiotics, namely when monitoring the in vitro release studies of those systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues.

    PubMed

    Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2016-01-01

    In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2)  > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Determination of chloramphenicol residues in meat, seafood, egg, honey, milk, plasma and urine with liquid chromatography-tandem mass spectrometry, and the validation of the method based on 2002/657/EC.

    PubMed

    Rønning, Helene Thorsen; Einarsen, Kristin; Asp, Tone Normann

    2006-06-23

    A simple and rapid method for the determination and confirmation of chloramphenicol in several food matrices with LC-MS/MS was developed. Following addition of d5-chloramphenicol as internal standard, meat, seafood, egg, honey and milk samples were extracted with acetonitrile. Chloroform was then added to remove water. After evaporation, the residues were reconstituted in methanol/water (3+4) before injection. The urine and plasma samples were after addition of internal standard applied to a Chem Elut extraction cartridge, eluted with ethyl acetate, and hexane washed. Also these samples were reconstituted in methanol/water (3+4) after evaporation. By using an MRM acquisition method in negative ionization mode, the transitions 321-->152, 321-->194 and 326-->157 were used for quantification, confirmation and internal standard, respectively. Quantification of chloramphenicol positive samples regardless of matrix could be achieved with a common water based calibration curve. The validation of the method was based on EU-decision 2002/657 and different ways of calculating CCalpha and CCbeta were evaluated. The common CCalpha and CCbeta for all matrices were 0.02 and 0.04 microg/kg for the 321-->152 ion transition, and 0.02 and 0.03 microg/kg for the 321-->194 ion transition. At fortification level 0.1 microg/kg the within-laboratory reproducibility is below 25%.

  12. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture.

    PubMed

    Padrela, Luis; de Azevedo, Edmundo Gomes; Velaga, Sitaram P

    2012-08-01

    The solid state purity of cocrystals critically affects their performance. Thus, it is important to accurately quantify the purity of cocrystals in the final crystallization product. The aim of this study was to develop a powder X-ray diffraction (PXRD) quantification method for investigating the purity of cocrystals. The method developed was employed to study the formation of indomethacin-saccharin (IND-SAC) cocrystals by mechanochemical methods. Pure IND-SAC cocrystals were geometrically mixed with 1:1 w/w mixture of indomethacin/saccharin in various proportions. An accurately measured amount (550 mg) of the mixture was used for the PXRD measurements. The most intense, non-overlapping, characteristic diffraction peak of IND-SAC was used to construct the calibration curve in the range 0-100% (w/w). This calibration model was validated and used to monitor the formation of IND-SAC cocrystals by liquid-assisted grinding (LAG). The IND-SAC cocrystal calibration curve showed excellent linearity (R(2) = 0.9996) over the entire concentration range, displaying limit of detection (LOD) and limit of quantification (LOQ) values of 1.23% (w/w) and 3.74% (w/w), respectively. Validation results showed excellent correlations between actual and predicted concentrations of IND-SAC cocrystals (R(2) = 0.9981). The accuracy and reliability of the PXRD quantification method depend on the methods of sample preparation and handling. The crystallinity of the IND-SAC cocrystals was higher when larger amounts of methanol were used in the LAG method. The PXRD quantification method is suitable and reliable for verifying the purity of cocrystals in the final crystallization product.

  13. Calibration transfer of a Raman spectroscopic quantification method for the assessment of liquid detergent compositions between two at-line instruments installed at two liquid detergent production plants.

    PubMed

    Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T

    2017-09-01

    Calibration transfer of partial least squares (PLS) quantification models is established between two Raman spectrometers located at two liquid detergent production plants. As full recalibration of existing calibration models is time-consuming, labour-intensive and costly, it is investigated whether the use of mathematical correction methods requiring only a handful of standardization samples can overcome the dissimilarities in spectral response observed between both measurement systems. Univariate and multivariate standardization approaches are investigated, ranging from simple slope/bias correction (SBC), local centring (LC) and single wavelength standardization (SWS) to more complex direct standardization (DS) and piecewise direct standardization (PDS). The results of these five calibration transfer methods are compared reciprocally, as well as with regard to a full recalibration. Four PLS quantification models, each predicting the concentration of one of the four main ingredients in the studied liquid detergent composition, are aimed at transferring. Accuracy profiles are established from the original and transferred quantification models for validation purposes. A reliable representation of the calibration models performance before and after transfer is thus established, based on β-expectation tolerance intervals. For each transferred model, it is investigated whether every future measurement that will be performed in routine will be close enough to the unknown true value of the sample. From this validation, it is concluded that instrument standardization is successful for three out of four investigated calibration models using multivariate (DS and PDS) transfer approaches. The fourth transferred PLS model could not be validated over the investigated concentration range, due to a lack of precision of the slave instrument. Comparing these transfer results to a full recalibration on the slave instrument allows comparison of the predictive power of both Raman systems and leads to the formulation of guidelines for further standardization projects. It is concluded that it is essential to evaluate the performance of the slave instrument prior to transfer, even when it is theoretically identical to the master apparatus. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Clonazepam quantification in human plasma by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry in a bioequivalence study.

    PubMed

    Cavedal, Luiz E; Mendes, Fabiana D; Domingues, Claudia C; Patni, Anil K; Monif, Tausif; Reyar, Simrit; Pereira, Alberto Dos S; Mendes, Gustavo D; De Nucci, Gilberto

    2007-01-01

    A rapid, sensitive and specific method for quantifying clonazepam in human plasma using diazepam as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using a hexane/diethylether (20 : 80, v/v) solution. The extracts were analysed by high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed on a Jones Genesis C8 4 microm analytical column (100 x 2.1 mm i.d.). The method had a chromatographic run time of 3.0 min and a linear calibration curve over the range 0.5-50 ng/ml (r2 > 0.9965). The limit of quantification was 0.5 ng/ml. This HPLC/MS/MS procedure was used to assess the bioequivalence of two clonazepam 2 mg tablet formulations (clonazepam test formulation from Ranbaxy Laboratories Ltd and Rivotril from Roche Laboratórios Ltda as standard reference formulation). Copyright 2006 John Wiley & Sons, Ltd.

  15. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. MetaQuant: a tool for the automatic quantification of GC/MS-based metabolome data.

    PubMed

    Bunk, Boyke; Kucklick, Martin; Jonas, Rochus; Münch, Richard; Schobert, Max; Jahn, Dieter; Hiller, Karsten

    2006-12-01

    MetaQuant is a Java-based program for the automatic and accurate quantification of GC/MS-based metabolome data. In contrast to other programs MetaQuant is able to quantify hundreds of substances simultaneously with minimal manual intervention. The integration of a self-acting calibration function allows the parallel and fast calibration for several metabolites simultaneously. Finally, MetaQuant is able to import GC/MS data in the common NetCDF format and to export the results of the quantification into Systems Biology Markup Language (SBML), Comma Separated Values (CSV) or Microsoft Excel (XLS) format. MetaQuant is written in Java and is available under an open source license. Precompiled packages for the installation on Windows or Linux operating systems are freely available for download. The source code as well as the installation packages are available at http://bioinformatics.org/metaquant

  17. Experimental validation of 2D uncertainty quantification for DIC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reu, Phillip L.

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual testmore » images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.« less

  18. Experimental validation of 2D uncertainty quantification for digital image correlation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reu, Phillip L.

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual testmore » images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.« less

  19. Quantification and spatial characterization of moisture and NaCl content of Iberian dry-cured ham slices using NIR hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral imaging technology is increasingly regarded as a powerful tool for the classification and spatial quantification of a wide range of agrofood product properties. Taking into account the difficulties involved in validating hyperspectral calibrations, the models constructed here proved mo...

  20. PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration.

    PubMed

    Zolg, Daniel Paul; Wilhelm, Mathias; Yu, Peng; Knaute, Tobias; Zerweck, Johannes; Wenschuh, Holger; Reimer, Ulf; Schnatbaum, Karsten; Kuster, Bernhard

    2017-11-01

    Beyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored. Here, we describe PROCAL (ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span the entire hydrophobicity range of tryptic digests, enabling not only accurate determination of retention time indices but also monitoring of chromatographic separation performance over time. The fragmentation characteristics of the peptides can also be used to calibrate and compare collision energies between mass spectrometers. The sequences of all selected peptides do not occur in any natural protein, thus eliminating the need for stable isotope labeling. We anticipate that this set of peptides will be useful for multiple purposes in individual laboratories but also aiding the transfer of data acquisition and analysis methods between laboratories, notably the use of spectral libraries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A novel approach for quantification and analysis of the color Doppler twinkling artifact with application in noninvasive surface roughness characterization: an in vitro phantom study.

    PubMed

    Jamzad, Amoon; Setarehdan, Seyed Kamaledin

    2014-04-01

    The twinkling artifact is an undesired phenomenon within color Doppler sonograms that usually appears at the site of internal calcifications. Since the appearance of the twinkling artifact is correlated with the roughness of the calculi, noninvasive roughness estimation of the internal stones may be considered as a potential twinkling artifact application. This article proposes a novel quantitative approach for measurement and analysis of twinkling artifact data for roughness estimation. A phantom was developed with 7 quantified levels of roughness. The Doppler system was initially calibrated by the proposed procedure to facilitate the analysis. A total of 1050 twinkling artifact images were acquired from the phantom, and 32 novel numerical measures were introduced and computed for each image. The measures were then ranked on the basis of roughness quantification ability using different methods. The performance of the proposed twinkling artifact-based surface roughness quantification method was finally investigated for different combinations of features and classifiers. Eleven features were shown to be the most efficient numerical twinkling artifact measures in roughness characterization. The linear classifier outperformed other methods for twinkling artifact classification. The pixel count measures produced better results among the other categories. The sequential selection method showed higher accuracy than other individual rankings. The best roughness recognition average accuracy of 98.33% was obtained by the first 5 principle components and the linear classifier. The proposed twinkling artifact analysis method could recognize the phantom surface roughness with average accuracy of 98.33%. This method may also be applicable for noninvasive calculi characterization in treatment management.

  2. Droplet digital polymerase chain reaction (ddPCR) assays integrated with an internal control for quantification of bovine, porcine, chicken and turkey species in food and feed

    PubMed Central

    Shehata, Hanan R.; Li, Jiping; Redda, Helen; Cheng, Shumei; Tabujara, Nicole; Li, Honghong; Warriner, Keith; Hanner, Robert

    2017-01-01

    Food adulteration and feed contamination are significant issues in the food/feed industry, especially for meat products. Reliable techniques are needed to monitor these issues. Droplet Digital PCR (ddPCR) assays were developed and evaluated for detection and quantification of bovine, porcine, chicken and turkey DNA in food and feed samples. The ddPCR methods were designed based on mitochondrial DNA sequences and integrated with an artificial recombinant plasmid DNA to control variabilities in PCR procedures. The specificity of the ddPCR assays was confirmed by testing both target species and additional 18 non-target species. Linear regression established a detection range between 79 and 33200 copies of the target molecule from 0.26 to 176 pg of fresh animal tissue DNA with a coefficient of determination (R2) of 0.997–0.999. The quantification ranges of the methods for testing fortified heat-processed food and feed samples were 0.05–3.0% (wt/wt) for the bovine and turkey targets, and 0.01–1.0% (wt/wt) for pork and chicken targets. Our methods demonstrated acceptable repeatability and reproducibility for the analytical process for food and feed samples. Internal validation of the PCR process was monitored using a control chart for 74 consecutive ddPCR runs for quantifying bovine DNA. A matrix effect was observed while establishing calibration curves with the matrix type under testing, and the inclusion of an internal control in DNA extraction provides a useful means to overcome this effect. DNA degradation caused by heating, sonication or Taq I restriction enzyme digestion was found to reduce ddPCR readings by as much as 4.5 fold. The results illustrated the applicability of the methods to quantify meat species in food and feed samples without the need for a standard curve, and to potentially support enforcement activities for food authentication and feed control. Standard reference materials matching typical manufacturing processes are needed for future validation of ddPCR assays for absolute quantification of meat species. PMID:28796824

  3. Droplet digital polymerase chain reaction (ddPCR) assays integrated with an internal control for quantification of bovine, porcine, chicken and turkey species in food and feed.

    PubMed

    Shehata, Hanan R; Li, Jiping; Chen, Shu; Redda, Helen; Cheng, Shumei; Tabujara, Nicole; Li, Honghong; Warriner, Keith; Hanner, Robert

    2017-01-01

    Food adulteration and feed contamination are significant issues in the food/feed industry, especially for meat products. Reliable techniques are needed to monitor these issues. Droplet Digital PCR (ddPCR) assays were developed and evaluated for detection and quantification of bovine, porcine, chicken and turkey DNA in food and feed samples. The ddPCR methods were designed based on mitochondrial DNA sequences and integrated with an artificial recombinant plasmid DNA to control variabilities in PCR procedures. The specificity of the ddPCR assays was confirmed by testing both target species and additional 18 non-target species. Linear regression established a detection range between 79 and 33200 copies of the target molecule from 0.26 to 176 pg of fresh animal tissue DNA with a coefficient of determination (R2) of 0.997-0.999. The quantification ranges of the methods for testing fortified heat-processed food and feed samples were 0.05-3.0% (wt/wt) for the bovine and turkey targets, and 0.01-1.0% (wt/wt) for pork and chicken targets. Our methods demonstrated acceptable repeatability and reproducibility for the analytical process for food and feed samples. Internal validation of the PCR process was monitored using a control chart for 74 consecutive ddPCR runs for quantifying bovine DNA. A matrix effect was observed while establishing calibration curves with the matrix type under testing, and the inclusion of an internal control in DNA extraction provides a useful means to overcome this effect. DNA degradation caused by heating, sonication or Taq I restriction enzyme digestion was found to reduce ddPCR readings by as much as 4.5 fold. The results illustrated the applicability of the methods to quantify meat species in food and feed samples without the need for a standard curve, and to potentially support enforcement activities for food authentication and feed control. Standard reference materials matching typical manufacturing processes are needed for future validation of ddPCR assays for absolute quantification of meat species.

  4. Evaluation of digital PCR for absolute RNA quantification.

    PubMed

    Sanders, Rebecca; Mason, Deborah J; Foy, Carole A; Huggett, Jim F

    2013-01-01

    Gene expression measurements detailing mRNA quantities are widely employed in molecular biology and are increasingly important in diagnostic fields. Reverse transcription (RT), necessary for generating complementary DNA, can be both inefficient and imprecise, but remains a quintessential RNA analysis tool using qPCR. This study developed a Transcriptomic Calibration Material and assessed the RT reaction using digital (d)PCR for RNA measurement. While many studies characterise dPCR capabilities for DNA quantification, less work has been performed investigating similar parameters using RT-dPCR for RNA analysis. RT-dPCR measurement using three, one-step RT-qPCR kits was evaluated using single and multiplex formats when measuring endogenous and synthetic RNAs. The best performing kit was compared to UV quantification and sensitivity and technical reproducibility investigated. Our results demonstrate assay and kit dependent RT-dPCR measurements differed significantly compared to UV quantification. Different values were reported by different kits for each target, despite evaluation of identical samples using the same instrument. RT-dPCR did not display the strong inter-assay agreement previously described when analysing DNA. This study demonstrates that, as with DNA measurement, RT-dPCR is capable of accurate quantification of low copy RNA targets, but the results are both kit and target dependent supporting the need for calibration controls.

  5. Quantification of metronidazole in human plasma using a highly sensitive and rugged LC-MS/MS method for a bioequivalence study.

    PubMed

    Vanol, Pravin G; Sanyal, Mallika; Shah, Priyanka A; Shrivastav, Pranav S

    2018-03-23

    A highly sensitive, selective and rugged method has been described for the quantification of metronidazole (MTZ) in human plasma by liquid chromatography-tandem mass spectrometry using metronidazole-d4 as the internal standard (IS). The analyte and the IS were extracted from 100 μL plasma by liquid-liquid extraction. The clear samples obtained were chromatographed on an ACE C 18 (100 × 4.6 mm, 5 μm) column using acetonitrile and 10.0 mm ammonium formate in water, pH 4.00 (80:20, v/v) as the mobile phase. A triple quadrupole mass spectrometer system equipped with turbo ion spray source and operated in multiple reaction monitoring mode was used for the detection and quantification of MTZ. The calibration range was established from 0.01 to 10.0 μg/mL. The results of validation testing for precision and accuracy, selectivity, matrix effects, recovery and stability complied with current bioanalytical guidelines. A run time of 3.0 min permitted analysis of more than 300 samples in a day. The method was applied to a bioequivalence study with 250 mg MTZ tablet formulation in 24 healthy Indian males. Copyright © 2018 John Wiley & Sons, Ltd.

  6. A liquid chromatography/tandem mass spectrometry assay for the analysis of atomoxetine in human plasma and in vitro cellular samples

    PubMed Central

    Appel, David I.; Brinda, Bryan; Markowitz, John S.; Newcorn, Jeffrey H.; Zhu, Hao-Jie

    2012-01-01

    A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography- tandem mass spectrometry (LC-MS/MS) was developed. This assay represents the first LC-MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3-atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/ml and 10 nM for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3 ng/ml to 900 ng/ml and 10 nM to 10 μM for human plasma and cellular samples, respectively (r2 > 0.999). The intra- and inter-day assay accuracy and precision were evaluated using quality control samples at 3 different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect, and recovery were also successfully demonstrated. The present assay is superior to previously published LC-MS and LC-MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. PMID:22275222

  7. A liquid chromatography-tandem mass spectrometry assay for the detection and quantification of trehalose in biological samples.

    PubMed

    Kretschmer, Philip M; Bannister, Austin M; O Brien, Molly K; MacManus-Spencer, Laura A; Paulick, Margot G

    2016-10-15

    Trehalose is an important disaccharide that is used as a cellular protectant by many different organisms, helping these organisms better survive extreme conditions, such as dehydration, oxidative stress, and freezing temperatures. Methods to detect and accurately measure trehalose from different organisms will help us gain a better understanding of the mechanisms behind trehalose's ability to act as a cellular protectant. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay using selected reaction monitoring mode for the detection and quantification of trehalose using maltose as an internal standard has been developed. This assay uses a commercially available LC column for trehalose separation and a standard triple quadrupole mass spectrometer, thus allowing many scientists to take advantage of this simple assay. The calibration curve from 3 to 100μM trehalose was fit best by a single polynomial. This LC-MS/MS assay directly detects and accurately quantifies trehalose, with an instrument limit of detection (LOD) that is 2-1000 times more sensitive than the most commonly-used assays for trehalose detection and quantification. Furthermore, this assay was used to detect and quantify endogenous trehalose produced by Escherichia coli (E. coli) cells, which were found to have an intracellular concentration of 8.5±0.9mM trehalose. This method thus shows promise for the reliable detection and quantification of trehalose from different biological sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Simultaneous quantification of Aroclor mixtures in soil samples by gas chromatography/mass spectrometry with solid phase microextraction using partial least-squares regression.

    PubMed

    Zhang, Mengliang; Harrington, Peter de B

    2015-01-01

    Multivariate partial least-squares (PLS) method was applied to the quantification of two complex polychlorinated biphenyls (PCBs) commercial mixtures, Aroclor 1254 and 1260, in a soil matrix. PCBs in soil samples were extracted by headspace solid phase microextraction (SPME) and determined by gas chromatography/mass spectrometry (GC/MS). Decachlorinated biphenyl (deca-CB) was used as internal standard. After the baseline correction was applied, four data representations including extracted ion chromatograms (EIC) for Aroclor 1254, EIC for Aroclor 1260, EIC for both Aroclors and two-way data sets were constructed for PLS-1 and PLS-2 calibrations and evaluated with respect to quantitative prediction accuracy. The PLS model was optimized with respect to the number of latent variables using cross validation of the calibration data set. The validation of the method was performed with certified soil samples and real field soil samples and the predicted concentrations for both Aroclors using EIC data sets agreed with the certified values. The linear range of the method was from 10μgkg(-1) to 1000μgkg(-1) for both Aroclor 1254 and 1260 in soil matrices and the detection limit was 4μgkg(-1) for Aroclor 1254 and 6μgkg(-1) for Aroclor 1260. This holistic approach for the determination of mixtures of complex samples has broad application to environmental forensics and modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Stochastic approach for radionuclides quantification

    NASA Astrophysics Data System (ADS)

    Clement, A.; Saurel, N.; Perrin, G.

    2018-01-01

    Gamma spectrometry is a passive non-destructive assay used to quantify radionuclides present in more or less complex objects. Basic methods using empirical calibration with a standard in order to quantify the activity of nuclear materials by determining the calibration coefficient are useless on non-reproducible, complex and single nuclear objects such as waste packages. Package specifications as composition or geometry change from one package to another and involve a high variability of objects. Current quantification process uses numerical modelling of the measured scene with few available data such as geometry or composition. These data are density, material, screen, geometric shape, matrix composition, matrix and source distribution. Some of them are strongly dependent on package data knowledge and operator backgrounds. The French Commissariat à l'Energie Atomique (CEA) is developing a new methodology to quantify nuclear materials in waste packages and waste drums without operator adjustment and internal package configuration knowledge. This method suggests combining a global stochastic approach which uses, among others, surrogate models available to simulate the gamma attenuation behaviour, a Bayesian approach which considers conditional probability densities of problem inputs, and Markov Chains Monte Carlo algorithms (MCMC) which solve inverse problems, with gamma ray emission radionuclide spectrum, and outside dimensions of interest objects. The methodology is testing to quantify actinide activity in different kind of matrix, composition, and configuration of sources standard in terms of actinide masses, locations and distributions. Activity uncertainties are taken into account by this adjustment methodology.

  10. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging.

    PubMed

    Li, Wei; Abram, François; Pelletier, Jean-Pierre; Raynauld, Jean-Pierre; Dorais, Marc; d'Anjou, Marc-André; Martel-Pelletier, Johanne

    2010-01-01

    Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application.

  11. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  12. Evaluation of plasmid and genomic DNA calibrants used for the quantification of genetically modified organisms.

    PubMed

    Caprioara-Buda, M; Meyer, W; Jeynov, B; Corbisier, P; Trapmann, S; Emons, H

    2012-07-01

    The reliable quantification of genetically modified organisms (GMOs) by real-time PCR requires, besides thoroughly validated quantitative detection methods, sustainable calibration systems. The latter establishes the anchor points for the measured value and the measurement unit, respectively. In this paper, the suitability of two types of DNA calibrants, i.e. plasmid DNA and genomic DNA extracted from plant leaves, for the certification of the GMO content in reference materials as copy number ratio between two targeted DNA sequences was investigated. The PCR efficiencies and coefficients of determination of the calibration curves as well as the measured copy number ratios for three powder certified reference materials (CRMs), namely ERM-BF415e (NK603 maize), ERM-BF425c (356043 soya), and ERM-BF427c (98140 maize), originally certified for their mass fraction of GMO, were compared for both types of calibrants. In all three systems investigated, the PCR efficiencies of plasmid DNA were slightly closer to the PCR efficiencies observed for the genomic DNA extracted from seed powders rather than those of the genomic DNA extracted from leaves. Although the mean DNA copy number ratios for each CRM overlapped within their uncertainties, the DNA copy number ratios were significantly different using the two types of calibrants. Based on these observations, both plasmid and leaf genomic DNA calibrants would be technically suitable as anchor points for the calibration of the real-time PCR methods applied in this study. However, the most suitable approach to establish a sustainable traceability chain is to fix a reference system based on plasmid DNA.

  13. Standardization of enterococci density estimates by EPA qPCR methods and comparison of beach action value exceedances in river waters with culture methods

    EPA Science Inventory

    The U.S.EPA has published recommendations for calibrator cell equivalent (CCE) densities of enterococci in recreational waters determined by a qPCR method in its 2012 Recreational Water Quality Criteria (RWQC). The CCE quantification unit stems from the calibration model used to ...

  14. Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals

    PubMed Central

    Xia, Jun; Danielli, Amos; Liu, Yan; Wang, Lidai; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is a hybrid imaging technique that has broad preclinical and clinical applications. Based on the photoacoustic effect, PAT directly measures specific optical absorption, which is the product of the tissue-intrinsic optical absorption coefficient and the local optical fluence. Therefore, quantitative PAT, such as absolute oxygen saturation (sO2) quantification, requires knowledge of the local optical fluence, which can be estimated only through invasive measurements or sophisticated modeling of light transportation. In this work, we circumvent this requirement by taking advantage of the dynamics in sO2. The new method works when the sO2 transition can be simultaneously monitored with multiple wavelengths. For each wavelength, the ratio of photoacoustic amplitudes measured at different sO2 states is utilized. Using the ratio cancels the contribution from optical fluence and allows calibration-free quantification of absolute sO2. The new method was validated through both phantom and in vivo experiments. PMID:23903146

  15. Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry.

    PubMed

    Qian, Kuangnan; Edwards, Kathleen E; Dechert, Gary J; Jaffe, Stephen B; Green, Larry A; Olmstead, William N

    2008-02-01

    We report a new method for rapid measurement of total acid number (TAN) and TAN boiling point (BP) distribution for petroleum crude and products. The technology is based on negative ion electrospray ionization mass spectrometry (ESI-MS) for selective ionization of petroleum acid and quantification of acid structures and molecular weight distributions. A chip-based nanoelectrospray system enables microscale (<200 mg) and higher throughput (20 samples/h) measurement. Naphthenic acid structures were assigned based on nominal masses of a set of predefined acid structures. Stearic acid is used as an internal standard to calibrate ESI-MS response factors for quantification purposes. With the use of structure-property correlations, boiling point distributions of TAN values can be calculated from the composition. The rapid measurement of TAN BP distributions by ESI is demonstrated for a series of high-TAN crudes and distillation cuts. TAN values determined by the technique agree well with those by the titration method. The distributed properties compare favorably with those measured by distillation and measurement of TAN of corresponding cuts.

  16. Simultaneous detection and quantification of select nitromusks, antimicrobial agent, and antihistamine in fish of grocery stores by gas chromatography-mass spectrometry.

    PubMed

    Foltz, James; Abdul Mottaleb, M; Meziani, Mohammed J; Rafiq Islam, M

    2014-07-01

    Continually detected biologically persistent nitromusks; galaxolide (HHCB), tonalide (AHTN) and musk ketone (MK), antimicrobial triclosan (TCS), and antihistamine diphenhydramine (DPH) were examined for the first time in edible fillets originating from eight fish species grown in salt- and fresh-water. The sampled fish collected from local grocery stores were homogenized, extracted, pre-concentrated and analyzed by gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM). The presence of the target compounds in fish extracts was confirmed based on similar mass spectral features and retention behavior with standards. Internal standard based calibration plots were used for quantification. The HHCB, AHTN, TCS and DPH were consistently observed with concentration of 0.163-0.892, 0.068-0.904, 0.189-1.182, and 0.942-7.472 ng g(-1), respectively. These values are at least 1-3 orders of magnitude lower than those obtained in environmental fish specimens. The MK was not detected in any fish. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy

    PubMed Central

    2012-01-01

    1H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D2O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as “fingerprints” and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents. PMID:22356160

  18. Qualitative and quantitative control of carbonated cola beverages using ¹H NMR spectroscopy.

    PubMed

    Maes, Pauline; Monakhova, Yulia B; Kuballa, Thomas; Reusch, Helmut; Lachenmeier, Dirk W

    2012-03-21

    ¹H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D₂O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as "fingerprints" and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents.

  19. Liquid chromatography-tandem mass spectrometry for the quantification of flurbiprofen in human plasma and its application in a study of bioequivalence.

    PubMed

    Mei, Chenghan; Li, Bin; Yin, Qiangfeng; Jin, Jing; Xiong, Ting; He, Wenjuan; Gao, Xiujuan; Xu, Rong; Zhou, Piqi; Zheng, Heng; Chen, Hui

    2015-07-01

    A simple, quick and accurate LC-MS/MS method for the quantification of flurbiprofen in human plasma with indomethacin as internal standard (IS) was developed and validated. Samples were treated with methanol to precipitate proteins, then separated on a Ultimate C18 column (5μm, 2.1×50mm) with a gradient elusion process. Mobile phase A was comprised of water and formic acid, mobile phase B was comprised of acetonitrile and formic acid. Multi reaction monitoring (MRM) signals were saved on a negative ionization electrospray mass spectrometer. The calibration curve showed good linearity in the range of 40.00-10000.00μg/L (r(2)=0.998). Intra-day RE was 0.2-2.2%. Inter-day RE was 0.5-3.4%. The samples showed good stability under the study conditions. No significant matrix effect was observed. The established method was then applied to a bioequivalence study of a flurbiprofen axetil formulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Quantification of six herbicide metabolites in human urine.

    PubMed

    Norrgran, Jessica; Bravo, Roberto; Bishop, Amanda M; Restrepo, Paula; Whitehead, Ralph D; Needham, Larry L; Barr, Dana B

    2006-01-18

    We developed a sensitive, selective and precise method for measuring herbicide metabolites in human urine. Our method uses automated liquid delivery of internal standards and acetate buffer and a mixed polarity polymeric phase solid phase extraction of a 2 mL urine sample. The concentrated eluate is analyzed using high-performance liquid chromatography-tandem mass spectrometry. Isotope dilution calibration is used for quantification of all analytes. The limits of detection of our method range from 0.036 to 0.075 ng/mL. The within- and between-day variation in pooled quality control samples range from 2.5 to 9.0% and from 3.2 to 16%, respectively, for all analytes at concentrations ranging from 0.6 to 12 ng/mL. Precision was similar with samples fortified with 0.1 and 0.25 ng/mL that were analyzed in each run. We validated our selective method against a less selective method used previously in our laboratory by analyzing human specimens using both methods. The methods produced results that were in agreement, with no significant bias observed.

  1. Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.

    PubMed

    Sfetsas, Themistoklis; Michailof, Chrysa; Lappas, Angelos; Li, Qiangyi; Kneale, Brian

    2011-05-27

    Pyrolysis oils have attracted a lot of interest, as they are liquid energy carriers and general sources of chemicals. In this work, gas chromatography with flame ionization detector (GC-FID) and two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) techniques were used to provide both qualitative and quantitative results of the analysis of three different pyrolysis oils. The chromatographic methods and parameters were optimized and solvent choice and separation restrictions are discussed. Pyrolysis oil samples were diluted in suitable organic solvent and were analyzed by GC×GC-TOFMS. An average of 300 compounds were detected and identified in all three samples using the ChromaToF (Leco) software. The deconvoluted spectra were compared with the NIST software library for correct matching. Group type classification was performed by use of the ChromaToF software. The quantification of 11 selected compounds was performed by means of a multiple-point external calibration curve. Afterwards, the pyrolysis oils were extracted with water, and the aqueous phase was analyzed both by GC-FID and, after proper change of solvent, by GC×GC-TOFMS. As previously, the selected compounds were quantified by both techniques, by means of multiple point external calibration curves. The parameters of the calibration curves were calculated by weighted linear regression analysis. The limit of detection, limit of quantitation and linearity range for each standard compound with each method are presented. The potency of GC×GC-TOFMS for an efficient mapping of the pyrolysis oil is undisputable, and the possibility of using it for quantification as well has been demonstrated. On the other hand, the GC-FID analysis provides reliable results that allow for a rapid screening of the pyrolysis oil. To the best of our knowledge, very few papers have been reported with quantification attempts on pyrolysis oil samples using GC×GC-TOFMS most of which make use of the internal standard method. This work provides the ground for further analysis of pyrolysis oils of diverse sources for a rational design of both their production and utilization process. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strains.

    PubMed

    Mehle, Nataša; Dobnik, David; Ravnikar, Maja; Pompe Novak, Maruša

    2018-05-03

    RNA viruses have a great potential for high genetic variability and rapid evolution that is generated by mutation and recombination under selection pressure. This is also the case of Potato virus Y (PVY), which comprises a high diversity of different recombinant and non-recombinant strains. Consequently, it is hard to develop reverse transcription real-time quantitative PCR (RT-qPCR) with the same amplification efficiencies for all PVY strains which would enable their equilibrate quantification; this is specially needed in mixed infections and other studies of pathogenesis. To achieve this, we initially transferred the PVY universal RT-qPCR assay to a reverse transcription droplet digital PCR (RT-ddPCR) format. RT-ddPCR is an absolute quantification method, where a calibration curve is not needed, and it is less prone to inhibitors. The RT-ddPCR developed and validated in this study achieved a dynamic range of quantification over five orders of magnitude, and in terms of its sensitivity, it was comparable to, or even better than, RT-qPCR. RT-ddPCR showed lower measurement variability. We have shown that RT-ddPCR can be used as a reference tool for the evaluation of different RT-qPCR assays. In addition, it can be used for quantification of RNA based on in-house reference materials that can then be used as calibrators in diagnostic laboratories.

  3. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging

    PubMed Central

    2010-01-01

    Introduction Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. Methods MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. Results The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). Conclusions The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application. PMID:20846392

  4. Film Cooling in Fuel Rich Environments

    DTIC Science & Technology

    2013-03-27

    Heat Release Analysis . . . . . . . 89 4.26 Enhanced Blue Value Photographs for Flame Length Quantification, M=2.0, φ = 1.175, Single Row, Triple Row...Photographs for Flame Length . . . . . . . . . . . . . . 105 B.1 Charts Used to Calculate Trip Height . . . . . . . . . . . . . . . . . . . . . . . 107 B...coolant and quantification of flame length . The side window is shown in Figure 3.20 with a ruler used to calibrate the images. 51 Figure 3.18: Spanwise

  5. Validation of an LC-MS/MS method to measure tacrolimus in rat kidney and liver tissue and its application to human kidney biopsies.

    PubMed

    Noll, Benjamin D; Coller, Janet K; Somogyi, Andrew A; Morris, Raymond G; Russ, Graeme R; Hesselink, Dennis A; Van Gelder, Teun; Sallustio, Benedetta C

    2013-10-01

    Tacrolimus (TAC) has a narrow therapeutic index and high interindividual and intraindividual pharmacokinetic variability, necessitating therapeutic drug monitoring to individualize dosage. Recent evidence suggests that intragraft TAC concentrations may better predict transplant outcomes. This study aimed to develop a method for the quantification of TAC in small biopsy-sized samples of rat kidney and liver tissue, which could be applied to clinical biopsy samples from kidney transplant recipients. Kidneys and livers were harvested from Mrp2-deficient TR- Wistar rats administered TAC (4 mg·kg·d for 14 days, n = 8) or vehicle (n = 10). Tissue samples (0.20-1.00 mg of dry weight) were solubilized enzymatically and underwent liquid-liquid extraction before analysis by liquid chromatography tandem mass spectrometry method. TAC-free tissue was used in the calibrator and quality control samples. Analyte detection was accomplished using positive electrospray ionization (TAC: m/z 821.5 → 768.6; internal standard ascomycin m/z 809.3 → 756.4). Calibration curves (0.04-2.6 μg/L) were linear (R > 0.99, n = 10), with interday and intraday calibrator coefficients of variation and bias <17% at the lower limit of quantification and <15% at all other concentrations (n = 6-10). Extraction efficiencies for TAC and ascomycin were approximately 70%, and matrix effects were minimal. Rat kidney TAC concentrations were higher (range 109-190 pg/mg tissue) than those in the liver (range 22-53 pg/mg of tissue), with median tissue/blood concentrations ratios of 72.0 and 17.6, respectively. In 2 transplant patients, kidney TAC concentrations ranged from 119 to 285 pg/mg of tissue and were approximately 20 times higher than whole blood trough TAC concentrations. The method displayed precision and accuracy suitable for application to TAC measurement in human kidney biopsy tissue.

  6. The Detection and Quantification of Adulteration in Ground Roasted Asian Palm Civet Coffee Using Near-Infrared Spectroscopy in Tandem with Chemometrics

    NASA Astrophysics Data System (ADS)

    Suhandy, D.; Yulia, M.; Ogawa, Y.; Kondo, N.

    2018-05-01

    In the present research, an evaluation of using near infrared (NIR) spectroscopy in tandem with full spectrum partial least squares (FS-PLS) regression for quantification of degree of adulteration in civet coffee was conducted. A number of 126 ground roasted coffee samples with degree of adulteration 0-51% were prepared. Spectral data were acquired using a NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement in the range of 1300-2500 nm. The samples were divided into two groups calibration sample set (84 samples) and prediction sample set (42 samples). The calibration model was developed on original spectra using FS-PLS regression with full-cross validation method. The calibration model exhibited the determination coefficient R2=0.96 for calibration and R2=0.92 for validation. The prediction resulted in low root mean square error of prediction (RMSEP) (4.67%) and high ratio prediction to deviation (RPD) (3.75). In conclusion, the degree of adulteration in civet coffee have been quantified successfully by using NIR spectroscopy and FS-PLS regression in a non-destructive, economical, precise, and highly sensitive method, which uses very simple sample preparation.

  7. Simultaneous quantitative analysis of nine vitamin D compounds in human blood using LC-MS/MS.

    PubMed

    Abu Kassim, Nur Sofiah; Gomes, Fabio P; Shaw, Paul Nicholas; Hewavitharana, Amitha K

    2016-01-01

    It has been suggested that each member of the family of vitamin D compounds may have different function(s). Therefore, selective quantification of each compound is important in clinical research. Development and validation attempts of a simultaneous determination method of 12 vitamin D compounds in human blood using precolumn derivatization followed by LC-MS/MS is described. Internal standard calibration with 12 stable isotope labeled analogs was used to correct for matrix effects in MS detector. Nine vitamin D compounds were quantifiable in blood samples with detection limits within femtomole levels. Serum (compared with plasma) was found to be a more suitable sample type, and protein precipitation (compared with saponification) a more effective extraction method for vitamin D assay.

  8. Identification and Quantification of Explosives in Nanolitre Solution Volumes by Raman Spectroscopy in Suspended Core Optical Fibers

    PubMed Central

    Tsiminis, Georgios; Chu, Fenghong; Warren-Smith, Stephen C.; Spooner, Nigel A.; Monro, Tanya M.

    2013-01-01

    A novel approach for identifying explosive species is reported, using Raman spectroscopy in suspended core optical fibers. Numerical simulations are presented that predict the strength of the observed signal as a function of fiber geometry, with the calculated trends verified experimentally and used to optimize the sensors. This technique is used to identify hydrogen peroxide in water solutions at volumes less than 60 nL and to quantify microgram amounts of material using the solvent's Raman signature as an internal calibration standard. The same system, without further modifications, is also used to detect 1,4-dinitrobenzene, a model molecule for nitrobenzene-based explosives such as 2,4,6-trinitrotoluene (TNT). PMID:24084111

  9. Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Misun; Bilheux, Hassina Z; Voisin, Sophie

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scatteringmore » effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.« less

  10. A highly efficient, high-throughput lipidomics platform for the quantitative detection of eicosanoids in human whole blood.

    PubMed

    Song, Jiao; Liu, Xuejun; Wu, Jiejun; Meehan, Michael J; Blevitt, Jonathan M; Dorrestein, Pieter C; Milla, Marcos E

    2013-02-15

    We have developed an ultra-performance liquid chromatography-multiple reaction monitoring/mass spectrometry (UPLC-MRM/MS)-based, high-content, high-throughput platform that enables simultaneous profiling of multiple lipids produced ex vivo in human whole blood (HWB) on treatment with calcium ionophore and its modulation with pharmacological agents. HWB samples were processed in a 96-well plate format compatible with high-throughput sample processing instrumentation. We employed a scheduled MRM (sMRM) method, with a triple-quadrupole mass spectrometer coupled to a UPLC system, to measure absolute amounts of 122 distinct eicosanoids using deuterated internal standards. In a 6.5-min run, we resolved and detected with high sensitivity (lower limit of quantification in the range of 0.4-460 pg) all targeted analytes from a very small HWB sample (2.5 μl). Approximately 90% of the analytes exhibited a dynamic range exceeding 1000. We also developed a tailored software package that dramatically sped up the overall data quantification and analysis process with superior consistency and accuracy. Matrix effects from HWB and precision of the calibration curve were evaluated using this newly developed automation tool. This platform was successfully applied to the global quantification of changes on all 122 eicosanoids in HWB samples from healthy donors in response to calcium ionophore stimulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Immunosuppressant therapeutic drug monitoring by LC-MS/MS: workflow optimization through automated processing of whole blood samples.

    PubMed

    Marinova, Mariela; Artusi, Carlo; Brugnolo, Laura; Antonelli, Giorgia; Zaninotto, Martina; Plebani, Mario

    2013-11-01

    Although, due to its high specificity and sensitivity, LC-MS/MS is an efficient technique for the routine determination of immunosuppressants in whole blood, it involves time-consuming manual sample preparation. The aim of the present study was therefore to develop an automated sample-preparation protocol for the quantification of sirolimus, everolimus and tacrolimus by LC-MS/MS using a liquid handling platform. Six-level commercially available blood calibrators were used for assay development, while four quality control materials and three blood samples from patients under immunosuppressant treatment were employed for the evaluation of imprecision. Barcode reading, sample re-suspension, transfer of whole blood samples into 96-well plates, addition of internal standard solution, mixing, and protein precipitation were performed with a liquid handling platform. After plate filtration, the deproteinised supernatants were submitted for SPE on-line. The only manual steps in the entire process were de-capping of the tubes, and transfer of the well plates to the HPLC autosampler. Calibration curves were linear throughout the selected ranges. The imprecision and accuracy data for all analytes were highly satisfactory. The agreement between the results obtained with manual and those obtained with automated sample preparation was optimal (n=390, r=0.96). In daily routine (100 patient samples) the typical overall total turnaround time was less than 6h. Our findings indicate that the proposed analytical system is suitable for routine analysis, since it is straightforward and precise. Furthermore, it incurs less manual workload and less risk of error in the quantification of whole blood immunosuppressant concentrations than conventional methods. © 2013.

  12. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for themore » thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling steps). The paper will concern these two kinds of calorimetric sensors. It will focus in particular on studies on their out-of-pile calibrations. Firstly, the characteristics of the sensor designs will be detailed (such as geometry, dimension, material sample, assembly, instrumentation). Then the out-of-pile calibration methods will be described. Furthermore numerical results obtained thanks to 2D axisymmetrical thermal simulations (Finite Element Method, CAST3M) and experimental results will be presented for each sensor. A comparison of the two different thermal sensor behaviours will be realized. To conclude a discussion of the advantages and the drawbacks of each sensor will be performed especially regarding measurement methods. (authors)« less

  13. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography.

    PubMed

    Jiřík, Miroslav; Bartoš, Martin; Tomášek, Petr; Malečková, Anna; Kural, Tomáš; Horáková, Jana; Lukáš, David; Suchý, Tomáš; Kochová, Petra; Hubálek Kalbáčová, Marie; Králíčková, Milena; Tonar, Zbyněk

    2018-06-01

    Quantification of the structure and composition of biomaterials using micro-CT requires image segmentation due to the low contrast and overlapping radioopacity of biological materials. The amount of bias introduced by segmentation procedures is generally unknown. We aim to develop software that generates three-dimensional models of fibrous and porous structures with known volumes, surfaces, lengths, and object counts in fibrous materials and to provide a software tool that calibrates quantitative micro-CT assessments. Virtual image stacks were generated using the newly developed software TeIGen, enabling the simulation of micro-CT scans of unconnected tubes, connected tubes, and porosities. A realistic noise generator was incorporated. Forty image stacks were evaluated using micro-CT, and the error between the true known and estimated data was quantified. Starting with geometric primitives, the error of the numerical estimation of surfaces and volumes was eliminated, thereby enabling the quantification of volumes and surfaces of colliding objects. Analysis of the sensitivity of the thresholding upon parameters of generated testing image sets revealed the effects of decreasing resolution and increasing noise on the accuracy of the micro-CT quantification. The size of the error increased with decreasing resolution when the voxel size exceeded 1/10 of the typical object size, which simulated the effect of the smallest details that could still be reliably quantified. Open-source software for calibrating quantitative micro-CT assessments by producing and saving virtually generated image data sets with known morphometric data was made freely available to researchers involved in morphometry of three-dimensional fibrillar and porous structures in micro-CT scans. © 2018 Wiley Periodicals, Inc.

  14. Identification of spectral regions for the quantification of red wine tannins with fourier transform mid-infrared spectroscopy.

    PubMed

    Jensen, Jacob S; Egebo, Max; Meyer, Anne S

    2008-05-28

    Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due to interferences from spectral responses of other wine components. Four different variable selection tools were investigated for the identification of the most important spectral regions which would allow quantification of tannins from the spectra using partial least-squares regression. The study included the development of a new variable selection tool, iterative backward elimination of changeable size intervals PLS. The spectral regions identified by the different variable selection methods were not identical, but all included two regions (1485-1425 and 1060-995 cm(-1)), which therefore were concluded to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69-79 mg of CE/L; r = 0.93-0.94) as compared to a calibration model developed using all variables (RMSEP = 115 mg of CE/L; r = 0.87). Only minor differences in the performance of the variable selection methods were observed.

  15. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Rohman, A; Sismindari; Erwanto, Y; Che Man, Yaakob B

    2011-05-01

    Meatball is one of the favorite foods in Indonesia. The adulteration of pork in beef meatball is frequently occurring. This study was aimed to develop a fast and non destructive technique for the detection and quantification of pork in beef meatball using Fourier transform infrared (FTIR) spectroscopy and partial least square (PLS) calibration. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures in meatball formulation were scanned, interpreted, and identified by relating them to those spectroscopically representative to pure PF and BF. For quantitative analysis, PLS regression was used to develop a calibration model at the selected fingerprint regions of 1200-1000 cm(-1). The equation obtained for the relationship between actual PF value and FTIR predicted values in PLS calibration model was y = 0.999x + 0.004, with coefficient of determination (R(2)) and root mean square error of calibration are 0.999 and 0.442, respectively. The PLS calibration model was subsequently used for the prediction of independent samples using laboratory made meatball samples containing the mixtures of BF and PF. Using 4 principal components, root mean square error of prediction is 0.742. The results showed that FTIR spectroscopy can be used for the detection and quantification of pork in beef meatball formulation for Halal verification purposes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  16. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Alexiou, Christoph; Trahms, Lutz; Odenbach, Stefan

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XμCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XμCT-equipment. The developed calibration procedure of the X-ray-μCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XμCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration.

  17. Calibration uncertainty for Advanced LIGO's first and second observing runs

    NASA Astrophysics Data System (ADS)

    Cahillane, Craig; Betzwieser, Joe; Brown, Duncan A.; Goetz, Evan; Hall, Evan D.; Izumi, Kiwamu; Kandhasamy, Shivaraj; Karki, Sudarshan; Kissel, Jeff S.; Mendell, Greg; Savage, Richard L.; Tuyenbayev, Darkhan; Urban, Alex; Viets, Aaron; Wade, Madeline; Weinstein, Alan J.

    2017-11-01

    Calibration of the Advanced LIGO detectors is the quantification of the detectors' response to gravitational waves. Gravitational waves incident on the detectors cause phase shifts in the interferometer laser light which are read out as intensity fluctuations at the detector output. Understanding this detector response to gravitational waves is crucial to producing accurate and precise gravitational wave strain data. Estimates of binary black hole and neutron star parameters and tests of general relativity require well-calibrated data, as miscalibrations will lead to biased results. We describe the method of producing calibration uncertainty estimates for both LIGO detectors in the first and second observing runs.

  18. In-line multipoint near-infrared spectroscopy for moisture content quantification during freeze-drying.

    PubMed

    Kauppinen, Ari; Toiviainen, Maunu; Korhonen, Ossi; Aaltonen, Jaakko; Järvinen, Kristiina; Paaso, Janne; Juuti, Mikko; Ketolainen, Jarkko

    2013-02-19

    During the past decade, near-infrared (NIR) spectroscopy has been applied for in-line moisture content quantification during a freeze-drying process. However, NIR has been used as a single-vial technique and thus is not representative of the entire batch. This has been considered as one of the main barriers for NIR spectroscopy becoming widely used in process analytical technology (PAT) for freeze-drying. Clearly it would be essential to monitor samples that reliably represent the whole batch. The present study evaluated multipoint NIR spectroscopy for in-line moisture content quantification during a freeze-drying process. Aqueous sucrose solutions were used as model formulations. NIR data was calibrated to predict the moisture content using partial least-squares (PLS) regression with Karl Fischer titration being used as a reference method. PLS calibrations resulted in root-mean-square error of prediction (RMSEP) values lower than 0.13%. Three noncontact, diffuse reflectance NIR probe heads were positioned on the freeze-dryer shelf to measure the moisture content in a noninvasive manner, through the side of the glass vials. The results showed that the detection of unequal sublimation rates within a freeze-dryer shelf was possible with the multipoint NIR system in use. Furthermore, in-line moisture content quantification was reliable especially toward the end of the process. These findings indicate that the use of multipoint NIR spectroscopy can achieve representative quantification of moisture content and hence a drying end point determination to a desired residual moisture level.

  19. Investigation into low-level anti-rubella virus IgG results reported by commercial immunoassays.

    PubMed

    Dimech, Wayne; Arachchi, Nilukshi; Cai, Jingjing; Sahin, Terri; Wilson, Kim

    2013-02-01

    Since the 1980s, commercial anti-rubella virus IgG assays have been calibrated against a WHO International Standard and results have been reported in international units per milliliter (IU/ml). Laboratories testing routine patients' samples collected 100 samples that gave anti-rubella virus IgG results of 40 IU/ml or less from each of five different commercial immunoassays (CIA). The total of 500 quantitative results obtained from 100 samples from each CIA were compared with results obtained from an in-house enzyme immunoassay (IH-EIA) calibrated using the WHO standard. All 500 samples were screened using a hemagglutination inhibition assay (HAI). Any sample having an HAI titer of 1:8 or less was assigned a negative anti-rubella virus antibody status. If the HAI titer was greater than 1:8, the sample was tested in an immunoblot (IB) assay. If the IB result was negative, the sample was assigned a negative anti-rubella virus IgG status; otherwise, the sample was assigned a positive status. Concordance between the CIA qualitative results and the assigned negative status ranged from 50.0 to 93.8% and 74.5 to 97.8% for the assigned positive status. Using a receiver operating characteristic analysis with the cutoff set at 10 IU/ml, the estimated sensitivity and specificity ranged from 70.2 to 91.2% and 65.9 to 100%, respectively. There was poor correlation between the quantitative CIA results and those obtained by the IH-EIA, with the coefficient of determination (R(2)) ranging from 0.002 to 0.413. Although CIAs have been calibrated with the same international standard for more than 2 decades, the level of standardization continues to be poor. It may be time for the scientific community to reevaluate the relevance of quantification of anti-rubella virus IgG.

  20. Investigation into Low-Level Anti-Rubella Virus IgG Results Reported by Commercial Immunoassays

    PubMed Central

    Arachchi, Nilukshi; Cai, Jingjing; Sahin, Terri; Wilson, Kim

    2013-01-01

    Since the 1980s, commercial anti-rubella virus IgG assays have been calibrated against a WHO International Standard and results have been reported in international units per milliliter (IU/ml). Laboratories testing routine patients' samples collected 100 samples that gave anti-rubella virus IgG results of 40 IU/ml or less from each of five different commercial immunoassays (CIA). The total of 500 quantitative results obtained from 100 samples from each CIA were compared with results obtained from an in-house enzyme immunoassay (IH-EIA) calibrated using the WHO standard. All 500 samples were screened using a hemagglutination inhibition assay (HAI). Any sample having an HAI titer of 1:8 or less was assigned a negative anti-rubella virus antibody status. If the HAI titer was greater than 1:8, the sample was tested in an immunoblot (IB) assay. If the IB result was negative, the sample was assigned a negative anti-rubella virus IgG status; otherwise, the sample was assigned a positive status. Concordance between the CIA qualitative results and the assigned negative status ranged from 50.0 to 93.8% and 74.5 to 97.8% for the assigned positive status. Using a receiver operating characteristic analysis with the cutoff set at 10 IU/ml, the estimated sensitivity and specificity ranged from 70.2 to 91.2% and 65.9 to 100%, respectively. There was poor correlation between the quantitative CIA results and those obtained by the IH-EIA, with the coefficient of determination (R2) ranging from 0.002 to 0.413. Although CIAs have been calibrated with the same international standard for more than 2 decades, the level of standardization continues to be poor. It may be time for the scientific community to reevaluate the relevance of quantification of anti-rubella virus IgG. PMID:23254301

  1. The Use of Partial Least Square Regression and Spectral Data in UV-Visible Region for Quantification of Adulteration in Indonesian Palm Civet Coffee

    PubMed Central

    Yulia, Meinilwita

    2017-01-01

    Asian palm civet coffee or kopi luwak (Indonesian words for coffee and palm civet) is well known as the world's priciest and rarest coffee. To protect the authenticity of luwak coffee and protect consumer from luwak coffee adulteration, it is very important to develop a robust and simple method for determining the adulteration of luwak coffee. In this research, the use of UV-Visible spectra combined with PLSR was evaluated to establish rapid and simple methods for quantification of adulteration in luwak-arabica coffee blend. Several preprocessing methods were tested and the results show that most of the preprocessing spectra were effective in improving the quality of calibration models with the best PLS calibration model selected for Savitzky-Golay smoothing spectra which had the lowest RMSECV (0.039) and highest RPDcal value (4.64). Using this PLS model, a prediction for quantification of luwak content was calculated and resulted in satisfactory prediction performance with high both RPDp and RER values. PMID:28913348

  2. qFlow Cytometry-Based Receptoromic Screening: A High-Throughput Quantification Approach Informing Biomarker Selection and Nanosensor Development.

    PubMed

    Chen, Si; Weddell, Jared; Gupta, Pavan; Conard, Grace; Parkin, James; Imoukhuede, Princess I

    2017-01-01

    Nanosensor-based detection of biomarkers can improve medical diagnosis; however, a critical factor in nanosensor development is deciding which biomarker to target, as most diseases present several biomarkers. Biomarker-targeting decisions can be informed via an understanding of biomarker expression. Currently, immunohistochemistry (IHC) is the accepted standard for profiling biomarker expression. While IHC provides a relative mapping of biomarker expression, it does not provide cell-by-cell readouts of biomarker expression or absolute biomarker quantification. Flow cytometry overcomes both these IHC challenges by offering biomarker expression on a cell-by-cell basis, and when combined with calibration standards, providing quantitation of biomarker concentrations: this is known as qFlow cytometry. Here, we outline the key components for applying qFlow cytometry to detect biomarkers within the angiogenic vascular endothelial growth factor receptor family. The key aspects of the qFlow cytometry methodology include: antibody specificity testing, immunofluorescent cell labeling, saturation analysis, fluorescent microsphere calibration, and quantitative analysis of both ensemble and cell-by-cell data. Together, these methods enable high-throughput quantification of biomarker expression.

  3. Fingerprinting and quantification of GMOs in the agro-food sector.

    PubMed

    Taverniers, I; Van Bockstaele, E; De Loose, M

    2003-01-01

    Most strategies for analyzing GMOs in plants and derived food and feed products, are based on the polymerase chain reaction (PCR) technique. In conventional PCR methods, a 'known' sequence between two specific primers is amplified. To the contrary, with the 'anchor PCR' technique, unknown sequences adjacent to a known sequence, can be amplified. Because T-DNA/plant border sequences are being amplified, anchor PCR is the perfect tool for unique identification of transgenes, including non-authorized GMOs. In this work, anchor PCR was applied to characterize the 'transgene locus' and to clarify the complete molecular structure of at least six different commercial transgenic plants. Based on sequences of T-DNA/plant border junctions, obtained by anchor PCR, event specific primers were developed. The junction fragments, together with endogeneous reference gene targets, were cloned in plasmids. The latter were then used as event specific calibrators in real-time PCR, a new technique for the accurate relative quantification of GMOs. We demonstrate here the importance of anchor PCR for identification and the usefulness of plasmid DNA calibrators in quantification strategies for GMOs, throughout the agro-food sector.

  4. European Pharmacopoeia biological reference preparation for poliomyelitis vaccine (inactivated): collaborative study for the establishment of batch No. 3.

    PubMed

    Martin, J; Daas, A; Milne, C

    2016-01-01

    Inactivated poliomyelitis vaccines are an important part of the World Health Organization (WHO) control strategy to eradicate poliomyelitis. Requirements for the quality control of poliomyelitis vaccines (inactivated) include the use of an in vitro D antigen quantification assay for potency determination on the final lot as outlined in the European Pharmacopoeia (Ph. Eur.) monograph 0214. Performance of this assay requires a reference preparation calibrated in International Units (IU). A Ph. Eur. biological reference preparation (BRP) for poliomyelitis vaccine (inactivated) calibrated in IU has been established for this purpose. Due to the dwindling stocks of batch 2 of the BRP a collaborative study was run as part of the European Directorate for the Quality of Medicines & HealthCare (EDQM) Biological Standardisation Programme to establish BRP batch 3 (BRP3). Twelve laboratories including Official Medicines Control Laboratories (OMCLs) and manufacturers participated. The candidate BRP3 (cBRP3) was from the same source and had the same characteristics as BRP batch 2 (BRP2). During the study the candidate was calibrated against the 3 rd International Standard for inactivated poliomyelitis vaccine using in-house D antigen ELISA assays in line with the Ph. Eur. monograph 0214. The candidate was also compared to BRP2 to evaluate the continuity. Based on the results of the study, values of 320 DU/mL, 78 DU/mL and 288 DU/mL (D antigen units/mL) (IU) for poliovirus type 1, 2 and 3 respectively were assigned to the candidate. In June 2016, the Ph. Eur. Commission adopted the material as Ph. Eur. BRP for poliomyelitis vaccine (inactivated) batch 3.

  5. Quantification of polyhydroxyalkanoates in mixed and pure cultures biomass by Fourier transform infrared spectroscopy: comparison of different approaches.

    PubMed

    Isak, I; Patel, M; Riddell, M; West, M; Bowers, T; Wijeyekoon, S; Lloyd, J

    2016-08-01

    Fourier transform infrared (FTIR) spectroscopy was used in this study for the rapid quantification of polyhydroxyalkanoates (PHA) in mixed and pure culture bacterial biomass. Three different statistical analysis methods (regression, partial least squares (PLS) and nonlinear) were applied to the FTIR data and the results were plotted against the PHA values measured with the reference gas chromatography technique. All methods predicted PHA content in mixed culture biomass with comparable efficiency, indicated by similar residuals values. The PHA in these cultures ranged from low to medium concentration (0-44 wt% of dried biomass content). However, for the analysis of the combined mixed and pure culture biomass with PHA concentration ranging from low to high (0-93% of dried biomass content), the PLS method was most efficient. This paper reports, for the first time, the use of a single calibration model constructed with a combination of mixed and pure cultures covering a wide PHA range, for predicting PHA content in biomass. Currently no one universal method exists for processing FTIR data for polyhydroxyalkanoates (PHA) quantification. This study compares three different methods of analysing FTIR data for quantification of PHAs in biomass. A new data-processing approach was proposed and the results were compared against existing literature methods. Most publications report PHA quantification of medium range in pure culture. However, in our study we encompassed both mixed and pure culture biomass containing a broader range of PHA in the calibration curve. The resulting prediction model is useful for rapid quantification of a wider range of PHA content in biomass. © 2016 The Society for Applied Microbiology.

  6. Two imaging techniques for 3D quantification of pre-cementation space for CAD/CAM crowns.

    PubMed

    Rungruanganunt, Patchanee; Kelly, J Robert; Adams, Douglas J

    2010-12-01

    Internal three-dimensional (3D) "fit" of prostheses to prepared teeth is likely more important clinically than "fit" judged only at the level of the margin (i.e. marginal "opening"). This work evaluates two techniques for quantitatively defining 3D "fit", both using pre-cementation space impressions: X-ray microcomputed tomography (micro-CT) and quantitative optical analysis. Both techniques are of interest for comparison of CAD/CAM system capabilities and for documenting "fit" as part of clinical studies. Pre-cementation space impressions were taken of a single zirconia coping on its die using a low viscosity poly(vinyl siloxane) impression material. Calibration specimens of this material were fabricated between the measuring platens of a micrometre. Both calibration curves and pre-cementation space impression data sets were obtained by examination using micro-CT and quantitative optical analysis. Regression analysis was used to compare calibration curves with calibration sets. Micro-CT calibration data showed tighter 95% confidence intervals and was able to measure over a wider thickness range than for the optical technique. Regions of interest (e.g., lingual, cervical) were more easily analysed with optical image analysis and this technique was more suitable for extremely thin impression walls (<10-15μm). Specimen preparation is easier for micro-CT and segmentation parameters appeared to capture dimensions accurately. Both micro-CT and the optical method can be used to quantify the thickness of pre-cementation space impressions. Each has advantages and limitations but either technique has the potential for use as part of clinical studies or CAD/CAM protocol optimization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D. C.; Gu, X.; Haldenman, S.

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of themore » standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.« less

  8. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  9. Comments on: Accuracy of Raman Lidar Water Vapor Calibration and its Applicability to Long-Term Measurements

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

    2012-01-01

    In a recent publication, LeBlanc and McDermid proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios.

  10. Calibration and Propagation of Uncertainty for Independence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Troy Michael; Kress, Joel David; Bhat, Kabekode Ghanasham

    This document reports on progress and methods for the calibration and uncertainty quantification of the Independence model developed at UT Austin. The Independence model is an advanced thermodynamic and process model framework for piperazine solutions as a high-performance CO 2 capture solvent. Progress is presented in the framework of the CCSI standard basic data model inference framework. Recent work has largely focused on the thermodynamic submodels of Independence.

  11. Airborne Human Odorants: Detection, Dispersion and Characterization

    DTIC Science & Technology

    2012-03-01

    begin this research. To allow the quantification of various human odorants we first calibrated the gas chromatography -mass spectrometry system that...odorants we have chosen for study are emitted from the body in axillary sweat which is a complex mixture of water, protein, lipids and other small...will be employed to quantify odorants collected from various headspaces . Experiment 1: a.) Calibration of GC-MS system was performed by injecting

  12. Rapid quantification of multi-components in alcohol precipitation liquid of Codonopsis Radix using near infrared spectroscopy (NIRS).

    PubMed

    Luo, Yu; Li, Wen-Long; Huang, Wen-Hua; Liu, Xue-Hua; Song, Yan-Gang; Qu, Hai-Bin

    2017-05-01

    A near infrared spectroscopy (NIRS) approach was established for quality control of the alcohol precipitation liquid in the manufacture of Codonopsis Radix. By applying NIRS with multivariate analysis, it was possible to build variation into the calibration sample set, and the Plackett-Burman design, Box-Behnken design, and a concentrating-diluting method were used to obtain the sample set covered with sufficient fluctuation of process parameters and extended concentration information. NIR data were calibrated to predict the four quality indicators using partial least squares regression (PLSR). In the four calibration models, the root mean squares errors of prediction (RMSEPs) were 1.22 μg/ml, 10.5 μg/ml, 1.43 μg/ml, and 0.433% for lobetyolin, total flavonoids, pigments, and total solid contents, respectively. The results indicated that multi-components quantification of the alcohol precipitation liquid of Codonopsis Radix could be achieved with an NIRS-based method, which offers a useful tool for real-time release testing (RTRT) of intermediates in the manufacture of Codonopsis Radix.

  13. UFLC-ESI-MS/MS analysis of multiple mycotoxins in medicinal and edible Areca catechu.

    PubMed

    Liu, Hongmei; Luo, Jiaoyang; Kong, Weijun; Liu, Qiutao; Hu, Yichen; Yang, Meihua

    2016-05-01

    A robust, sensitive and reliable ultra fast liquid chromatography combined with electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) was optimized and validated for simultaneous identification and quantification of eleven mycotoxins in medicinal and edible Areca catechu, based on one-step extraction without any further clean-up. Separation and quantification were performed in both positive and negative modes under multiple reaction monitoring (MRM) in a single run with zearalanone (ZAN) as internal standard. The chromatographic conditions and MS/MS parameters were carefully optimized. Matrix-matched calibration was recommended to reduce matrix effects and improve accuracy, showing good linearity within wide concentration ranges. Limits of quantification (LOQ) were lower than 50 μg kg(-1), while limits of detection (LOD) were in the range of 0.1-20 μg kg(-1). The accuracy of the developed method was validated for recoveries, ranging from 85% to 115% with relative standard deviation (RSD) ≤14.87% at low level, from 75% to 119% with RSD ≤ 14.43% at medium level and from 61% to 120% with RSD ≤ 13.18% at high level, respectively. Finally, the developed multi-mycotoxin method was applied for screening of these mycotoxins in 24 commercial samples. Only aflatoxin B2 and zearalenone were found in 2 samples. This is the first report on the application of UFLC-ESI(+/-)-MS/MS for multi-class mycotoxins in A. catechu. The developed method with many advantages of simple pretreatment, rapid determination and high sensitivity is a proposed candidate for large-scale detection and quantification of multiple mycotoxins in other complex matrixes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Virtual quantification of metabolites by capillary electrophoresis-electrospray ionization-mass spectrometry: predicting ionization efficiency without chemical standards.

    PubMed

    Chalcraft, Kenneth R; Lee, Richard; Mills, Casandra; Britz-McKibbin, Philip

    2009-04-01

    A major obstacle in metabolomics remains the identification and quantification of a large fraction of unknown metabolites in complex biological samples when purified standards are unavailable. Herein we introduce a multivariate strategy for de novo quantification of cationic/zwitterionic metabolites using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) based on fundamental molecular, thermodynamic, and electrokinetic properties of an ion. Multivariate calibration was used to derive a quantitative relationship between the measured relative response factor (RRF) of polar metabolites with respect to four physicochemical properties associated with ion evaporation in ESI-MS, namely, molecular volume (MV), octanol-water distribution coefficient (log D), absolute mobility (mu(o)), and effective charge (z(eff)). Our studies revealed that a limited set of intrinsic solute properties can be used to predict the RRF of various classes of metabolites (e.g., amino acids, amines, peptides, acylcarnitines, nucleosides, etc.) with reasonable accuracy and robustness provided that an appropriate training set is validated and ion responses are normalized to an internal standard(s). The applicability of the multivariate model to quantify micromolar levels of metabolites spiked in red blood cell (RBC) lysates was also examined by CE-ESI-MS without significant matrix effects caused by involatile salts and/or major co-ion interferences. This work demonstrates the feasibility for virtual quantification of low-abundance metabolites and their isomers in real-world samples using physicochemical properties estimated by computer modeling, while providing deeper insight into the wide disparity of solute responses in ESI-MS. New strategies for predicting ionization efficiency in silico allow for rapid and semiquantitative analysis of newly discovered biomarkers and/or drug metabolites in metabolomics research when chemical standards do not exist.

  15. Quantitation of lysergic acid diethylamide in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.

    PubMed

    Cui, Meng; McCooeye, Margaret A; Fraser, Catharine; Mester, Zoltán

    2004-12-01

    A quantitative method was developed for analysis of lysergic acid diethylamide (LSD) in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry (AP MALDI-ITMS). Following solid-phase extraction of LSD from urine samples, extracts were analyzed by AP MALDI-ITMS. The identity of LSD was confirmed by fragmentation of the [M + H](+) ion using tandem mass spectrometry. The quantification of LSD was achieved using stable-isotope-labeled LSD (LSD-d(3)) as the internal standard. The [M + H](+) ion fragmented to produce a dominant fragment ion, which was used for a selected reaction monitoring (SRM) method for quantitative analysis of LSD. SRM was compared with selected ion monitoring and produced a wider linear range and lower limit of quantification. For SRM analysis of samples of LSD spiked in urine, the calibration curve was linear in the range of 1-100 ng/mL with a coefficient of determination, r(2), of 0.9917. This assay was used to determine LSD in urine samples and the AP MALDI-MS results were comparable to the HPLC/ ESI-MS results.

  16. Simultaneous quantification of stevioside and rebaudioside A in different stevia samples collected from the Indian subcontinent

    PubMed Central

    Chester, Karishma; Tamboli, Ennus T.; Singh, Mhaveer; Ahmad, Sayeed

    2012-01-01

    Background: A high performance thin layer chromatographic (HPTLC) method was developed for simultaneous estimation of stevioside and rebaudioside A in Stevia rebaudiana samples collected from different regions of Indian subcontinent. Materials and Methods: The separation was achieved by using acetone: ethyl acetate: water (5:4:1, v/v/v) as the solvent system on precoated silica gel 60 F254 TLC plates. The densitometric quantification of stevia glycosides was carried out at wavelength 360 nm in absorption mode after spraying with anisaldehyde sulphuric acid as detecting reagent. Results: The well resolved peaks for stevioside and rebaudioside A were observed at Rf values 0.31± 0.02 and 0.21± 0.02 respectively. The calibration curves were found linear with a wide range of concentration 100 - 2000 ng spot-1 with good correlation coefficient 0.996 and 0.991 for stevioside and rebaudioside A, respectively. Conclusions: The proposed method was validated as per the ICH (International Conferences on Harmonization) guidelines and found simple, sensitive, economic, reproducible, robust and accurate for quantitative analysis of stevia glycosides, which can be applied for quality control of stevia as well as to check. PMID:23248559

  17. 1H NMR quantification in very dilute toxin solutions: application to anatoxin-a analysis.

    PubMed

    Dagnino, Denise; Schripsema, Jan

    2005-08-01

    A complete procedure is described for the extraction, detection and quantification of anatoxin-a in biological samples. Anatoxin-a is extracted from biomass by a routine acid base extraction. The extract is analysed by GC-MS, without the need of derivatization, with a detection limit of 0.5 ng. A method was developed for the accurate quantification of anatoxin-a in the standard solution to be used for the calibration of the GC analysis. 1H NMR allowed the accurate quantification of microgram quantities of anatoxin-a. The accurate quantification of compounds in standard solutions is rarely discussed, but for compounds like anatoxin-a (toxins with prices in the range of a million dollar a gram), of which generally only milligram quantities or less are available, this factor in the quantitative analysis is certainly not trivial. The method that was developed can easily be adapted for the accurate quantification of other toxins in very dilute solutions.

  18. Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm.

    PubMed

    Zhang, Xiao-Hua; Wu, Hai-Long; Wang, Jian-Yao; Tu, De-Zhu; Kang, Chao; Zhao, Juan; Chen, Yao; Miu, Xiao-Xia; Yu, Ru-Qin

    2013-05-01

    This paper describes the use of second-order calibration for development of HPLC-DAD method to quantify nine polyphenols in five kinds of honey samples. The sample treatment procedure was simplified effectively relative to the traditional ways. Baselines drift was also overcome by means of regarding the drift as additional factor(s) as well as the analytes of interest in the mathematical model. The contents of polyphenols obtained by the alternating trilinear decomposition (ATLD) method have been successfully used to distinguish different types of honey. This method shows good linearity (r>0.99), rapidity (t<7.60 min) and accuracy, which may be extremely promising as an excellent routine strategy for identification and quantification of polyphenols in the complex matrices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Quantification of suvorexant in blood using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry.

    PubMed

    Skillman, Britni; Kerrigan, Sarah

    2018-08-01

    Suvorexant is a novel drug for the treatment of insomnia that is marketed under the trade name Belsomra®. Unlike other hypnotics, suvorexant is a dual orexin receptor antagonist that is believed to have a lower abuse potential compared to other therapeutics. Although sedative hypnotics feature prominently in forensic toxicology investigations, there have been limited reports that describe the analysis of suvorexant in biological samples. Following a 10-mg oral dose, peak concentrations are typically <200 ng/mL. A highly sensitive assay is required because forensic toxicology laboratories are often required to identify a drug several hours after a single dose. A new analytical procedure for the quantification of suvorexant in whole blood was developed that will aid in the identification of this new drug in forensic toxicology casework. A simple acidic/neutral liquid-liquid extraction (LLE) was used to isolate suvorexant from whole blood followed by liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry analysis using positive electrospray ionization (ESI). The extraction efficiencies of various solvents in blood were evaluated in addition to limit of detection, limit of quantitation, precision, accuracy and bias, calibration model, matrix effects, interferences, and carryover. The recovery of suvorexant was evaluated using four different extraction solvents (N-butyl chloride, ether/toluene (1:1), hexane/ethyl acetate (9:1), and methyl tert-butyl ether (MTBE). Although no significant differences in analytical recovery were observed, N-butyl chloride demonstrated improved reproducibility, efficiency and convenience. A weighted (1/x) quadratic calibration model was selected over a range of 2-200 ng/mL (R 2  = 0.995). Using only 0.5 mL whole blood, limits of detection and quantification were 0.5 ng/mL. Intra-assay (n = 5) and inter-assay (n = 15) precision (% CV) were ≤ 13% and bias ranged from -5 to 2% at concentrations of 5, 50, and 160 ng/mL. Matrix effects were 16% (9% CV) and 15% (8% CV) for 20 ng/mL and 100 ng/mL (n = 20), respectively. No qualitative interferences or carryover were observed; however, a quantitative interference with the internal standard (estazolam-D5) could be attributed to sertraline when present at a 10-fold higher concentration. In the absence of a commercially available deuterated internal standard, the potential for quantitative interferences using LC-based methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Extract-filter-shoot liquid chromatography with mass spectrometry for the analysis of vitamin D2 in a powdered supplement capsule and standard reference material 3280.

    PubMed

    Byrdwell, William Craig

    2014-08-01

    An "extract-filter-shoot" method for the analysis of vitamin D2, ergocalciferol, in a dry powdered dietary supplement capsule containing rice flour excipient and in a National Institute of Standards and Technology standard reference material 3280 is reported. Quantification of vitamin D2 was done by atmospheric pressure chemical ionization mass spectrometry using selected ion monitoring, two transitions of selected reaction monitoring, and extracted ion chromatograms from full scans. UV detection was used for the quantification of Vitamin D2 in the dry powder capsule, whereas interfering species rendered UV detection unreliable for standard reference material 3280. Average values for standard reference material 3280 ranged from 8.27 ± 0.58 to 8.33 ± 0.57 μg/g using internal standard calibration and response factor approaches, compared to the previous National Institute of Standards and Technology internal value for vitamin D2 of 8.78 ± 0.11 μg/g, and the recently updated reference value of 8.6 ± 2.6 μg/g. The powdered supplement capsule was found to contain 28.19 ± 0.35 to 28.67 ± 0.90 μg/capsule for a capsule labeled to contain 25.00 μg. The triacylglycerol composition of the rice flour excipient in the powdered supplement capsule determined by atmospheric pressure chemical ionization mass spectrometry is also reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development and validation of an LC-ESI-MS/MS method for the quantification of D-84, reboxetine and citalopram for their use in MS Binding Assays addressing the monoamine transporters hDAT, hSERT and hNET.

    PubMed

    Neiens, Patrick; De Simone, Angela; Ramershoven, Anna; Höfner, Georg; Allmendinger, Lars; Wanner, Klaus T

    2018-03-03

    MS Binding Assays represent a label-free alternative to radioligand binding assays. In this study, we present an LC-ESI-MS/MS method for the quantification of (R,R)-4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidin-3-ol [(R,R)-D-84, (R,R)-1], (S,S)-reboxetine [(S,S)-2], and (S)-citalopram [(S)-3] employed as highly selective nonlabeled reporter ligands in MS Binding Assays addressing the dopamine [DAT, (R,R)-D-84], norepinephrine [NET, (S,S)-reboxetine] and serotonin transporter [SERT, (S)-citalopram], respectively. The developed LC-ESI-MS/MS method uses a pentafluorphenyl stationary phase in combination with a mobile phase composed of acetonitrile and ammonium formate buffer for chromatography and a triple quadrupole mass spectrometer in the multiple reaction monitoring mode for mass spectrometric detection. Quantification is based on deuterated derivatives of all three analytes serving as internal standards. The established LC-ESI-MS/MS method enables fast, robust, selective and highly sensitive quantification of all three reporter ligands in a single chromatographic run. The method was validated according to the Center for Drug Evaluation and Research (CDER) guideline for bioanalytical method validation regarding selectivity, accuracy, precision, calibration curve and sensitivity. Finally, filtration-based MS Binding Assays were performed for all three monoamine transporters based on this LC-ESI-MS/MS quantification method as read out. The affinities determined in saturation experiments for (R,R)-D-84 toward hDAT, for (S,S)-reboxetine toward hNET, and for (S)-citalopram toward hSERT, respectively, were in good accordance with results from literature, clearly demonstrating that the established MS Binding Assays have the potential to be an efficient alternative to radioligand binding assays widely used for this purpose so far. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Fast quantification of ten psychotropic drugs and metabolites in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry for therapeutic drug monitoring.

    PubMed

    Ansermot, Nicolas; Brawand-Amey, Marlyse; Kottelat, Astrid; Eap, Chin B

    2013-05-31

    A sensitive and selective ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method was developed for the fast quantification of ten psychotropic drugs and metabolites in human plasma for the needs of our laboratory (amisulpride, asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, norquetiapine, olanzapine, paliperidone, quetiapine and risperidone). Stable isotope-labeled internal standards were used for all analytes, to compensate for the global method variability, including extraction and ionization variations. Sample preparation was performed by generic protein precipitation with acetonitrile. Chromatographic separation was achieved in less than 3.0min on an Acquity UPLC BEH Shield RP18 column (2.1mm×50mm; 1.7μm), using a gradient elution of 10mM ammonium formate buffer pH 3.0 and acetonitrile at a flow rate of 0.4ml/min. The compounds were quantified on a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The method was fully validated according to the latest recommendations of international guidelines. Eight point calibration curves were used to cover a large concentration range 0.5-200ng/ml for asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, olanzapine, paliperidone and risperidone, and 1-1500ng/ml for amisulpride, norquetiapine and quetiapine. Good quantitative performances were achieved in terms of trueness (93.1-111.2%), repeatability (1.3-8.6%) and intermediate precision (1.8-11.5%). Internal standard-normalized matrix effects ranged between 95 and 105%, with a variability never exceeding 6%. The accuracy profiles (total error) were included in the acceptance limits of ±30% for biological samples. This method is therefore suitable for both therapeutic drug monitoring and pharmacokinetic studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Sensitivity of Chemical Shift-Encoded Fat Quantification to Calibration of Fat MR Spectrum

    PubMed Central

    Wang, Xiaoke; Hernando, Diego; Reeder, Scott B.

    2015-01-01

    Purpose To evaluate the impact of different fat spectral models on proton density fat-fraction (PDFF) quantification using chemical shift-encoded (CSE) MRI. Material and Methods Simulations and in vivo imaging were performed. In a simulation study, spectral models of fat were compared pairwise. Comparison of magnitude fitting and mixed fitting was performed over a range of echo times and fat fractions. In vivo acquisitions from 41 patients were reconstructed using 7 published spectral models of fat. T2-corrected STEAM-MRS was used as reference. Results Simulations demonstrate that imperfectly calibrated spectral models of fat result in biases that depend on echo times and fat fraction. Mixed fitting is more robust against this bias than magnitude fitting. Multi-peak spectral models showed much smaller differences among themselves than when compared to the single-peak spectral model. In vivo studies show all multi-peak models agree better (for mixed fitting, slope ranged from 0.967–1.045 using linear regression) with reference standard than the single-peak model (for mixed fitting, slope=0.76). Conclusion It is essential to use a multi-peak fat model for accurate quantification of fat with CSE-MRI. Further, fat quantification techniques using multi-peak fat models are comparable and no specific choice of spectral model is shown to be superior to the rest. PMID:25845713

  4. Quantification of chitinase and thaumatin-like proteins in grape juices and wines.

    PubMed

    Le Bourse, D; Conreux, A; Villaume, S; Lameiras, P; Nuzillard, J-M; Jeandet, P

    2011-09-01

    Chitinases and thaumatin-like proteins are important grape proteins as they have a great influence on wine quality. The quantification of these proteins in grape juices and wines, along with their purification, is therefore crucial to study their intrinsic characteristics and the exact role they play in wines. The main isoforms of these two proteins from Chardonnay grape juice were thus purified by liquid chromatography. Two fast protein liquid chromatography (FLPC) steps allowed the fractionation and purification of the juice proteins, using cation exchange and hydrophobic interaction media. A further high-performance liquid chromatography (HPLC) step was used to achieve higher purity levels. Fraction assessment was achieved by mass spectrometry. Fraction purity was determined by HPLC to detect the presence of protein contaminants, and by nuclear magnetic resonance (NMR) spectroscopy to detect the presence of organic contaminants. Once pure fractions of lyophilized chitinase and thaumatin-like protein were obtained, ultra-HPLC (UHPLC) and enzyme-linked immunosorbent assay (ELISA) calibration curves were constructed. The quantification of these proteins in different grape juice and wine samples was thus achieved for the first time with both techniques through comparison with the purified protein calibration curve. UHPLC and ELISA showed very consistent results (less than 16% deviation for both proteins) and either could be considered to provide an accurate and reliable quantification of proteins in the oenology field.

  5. Measurement of neosaxitoxin in human plasma using liquid-chromatography tandem mass spectrometry: Proof of concept for a pharmacokinetic application.

    PubMed

    Peake, Roy W A; Zhang, Victoria Y; Azcue, Nina; Hartigan, Christina E; Shkreta, Aida; Prabhakara, Jasmina; Berde, Charles B; Kellogg, Mark D

    2016-11-15

    Neosaxitoxin, a member of the saxitoxin family of paralytic shellfish poisoning toxins, has shown potential as an effective, long-acting, anesthetic. We describe the development and validation of a highly sensitive method for measurement of neosaxitoxin in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS) and provide evidence for its use in a human pharmacokinetic study. Samples were prepared using cation exchange solid phase extraction followed by hydrophilic interaction liquid chromatography and MS/MS detection in positive electrospray ionization mode. Multiple reaction monitoring was used to monitor neosaxitoxin (m/z 316.17>220.07) and the internal standard analogue decarbamoylneosaxitoxin (m/z 273.12>180.00). The method was validated for lower limit of quantification, precision, accuracy, linearity and matrix effect. The stability of neosaxitoxin in plasma matrix at various storage conditions was also investigated. Standard curves for calibration were linear (r>0.995) across the assay calibration range, 10 to 1000pg/mL. The analytical measurable range of the assay was 10-10,000pg/mL in plasma matrix. This method has demonstrated excellent sensitivity demonstrating a lower limit of quantification in human plasma of 10pg/mL. The mean, inter-batch variation was <5.2% across the concentration range 30 to 800pg/mL. This method was successfully used in a phase 1 trial to investigate the pharmacokinetic profile of neosaxitoxin in humans following the intravenous administration of the drug at a range of doses up to 40μg. We conclude that our high-sensitivity method for measurement of neosaxitoxin in human plasma is capable of supporting future clinical trials. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantification of six potential unspecific human biomarkers of 1-vinyl-2-pyrrolidone exposure in Sprague-Dawley rat urine using gas chromatography coupled with triple mass spectrometry.

    PubMed

    Bertram, J; Schettgen, T; Kraus, T

    2017-11-15

    The monomer 1-vinyl-2-pyrrolidone (VP) is a substance with excellent solvent features. It is used in a wide variety of pharmaceutical, cosmetic, food industrial or technical applications and produced on an industrial scale. Since VP has caused adenocarcinoma of the nasal cavity and liver cell carcinoma in long-term experiments with rats, a human biomarker would be appreciated for risk assessment. A sensitive analytical electron ionization gas chromatography/tandem mass spectrometry (GC/MS/MS) method for the determination of six possible biomarkers for VP in urine was established and validated. Two isotope-labeled internal standards (ISTD) were used for quantification. A simple and easy to use freeze-drying step was performed prior to derivatization with N-tert-butyldimethylsilyl-N-methyltrifluoracetamide (MTBSTFA) and following sample extraction for cleanup purposes. A calibration curve with six calibration standards ranging from 50 μg/L to 2000 μg/L (10-fold higher for H-OPAA) in urine was prepared. Validation results were satisfactory with recoveries ranging from 88.2 to 110.2 % with two exceptions for the lowest quality control for two substances without ISTD (126.4 % and 139.3 %). Three of the substances could be identified as VP metabolites in an exposure study with Sprague-Dawley (SD) rats. A quick and easy to use method has been established for six target molecules investigated for a better understanding of the metabolism of VP. Two of three substances identified as metabolites of VP could serve as a nonspecific human biomarker for VP exposure as shown with an excerpt of an exposure study performed in SD rats. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Determination of phenobarbital in hair matrix by liquid phase microextraction (LPME) and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Roveri, Flávia Lopes; Paranhos, Beatriz Aparecida Passos Bismara; Yonamine, Mauricio

    2016-08-01

    A method for identification and quantification of phenobarbital in hair samples by liquid phase microextraction (LPME) and gas chromatography-mass spectrometry (GC-MS) has been presented. Drug-free hair specimens were collected and separated in 50mg aliquots. Each aliquot was washed with 2.0mL of dichloromethane for 15min at 37°C. Standards and deuterated internal standards for calibration and quality control samples were added to the washed hair aliquot and the sample was submitted to complete digestion with sodium hydroxide (NaOH) 1.0mol/L for 15min at 70°C. The dissolved sample was submitted to LPME. After extraction, the residue was derivatized with tetramethylammonium hydroxide (TMAH) and analyzed by GC-MS. The limit of detection (LOD) was 0.1ng/mg and the limit of quantification (LOQ) was 0.25ng/mg. The calibration curve was linear over a concentration range of 0.25ng/mg to 10ng/mg (r(2)>0.99). The intra- and inter-assay precisions, given by RSD, were less than 6% for phenobarbital. Fortified samples of secobarbital and pentobarbital were also submitted to the validated method. The method was successfully applied to hair samples collected from three volunteers who reported regular use of phenobarbital (clinical treatment). The concentrations found were 9.5, 15.1 and 16.3ng/mg of phenobarbital. To contemplate the concentrations found, dilution integrity tests were also validated. The LPME and GC-MS method showed to be suitable for the detection of phenobarbital in hair samples and can be promptly used for different purposes whenever required. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Analytical method for the identification and assay of 12 phthalates in cosmetic products: application of the ISO 12787 international standard "Cosmetics-Analytical methods-Validation criteria for analytical results using chromatographic techniques".

    PubMed

    Gimeno, Pascal; Maggio, Annie-Françoise; Bousquet, Claudine; Quoirez, Audrey; Civade, Corinne; Bonnet, Pierre-Antoine

    2012-08-31

    Esters of phthalic acid, more commonly named phthalates, may be present in cosmetic products as ingredients or contaminants. Their presence as contaminant can be due to the manufacturing process, to raw materials used or to the migration of phthalates from packaging when plastic (polyvinyl chloride--PVC) is used. 8 phthalates (DBP, DEHP, BBP, DMEP, DnPP, DiPP, DPP, and DiBP), classified H360 or H361, are forbidden in cosmetics according to the European regulation on cosmetics 1223/2009. A GC/MS method was developed for the assay of 12 phthalates in cosmetics, including the 8 phthalates regulated. Analyses are carried out on a GC/MS system with electron impact ionization mode (EI). The separation of phthalates is obtained on a cross-linked 5%-phenyl/95%-dimethylpolysiloxane capillary column 30 m × 0.25 mm (i.d.) × 0.25 mm film thickness using a temperature gradient. Phthalate quantification is performed by external calibration using an internal standard. Validation elements obtained on standard solutions, highlight a satisfactory system conformity (resolution>1.5), a common quantification limit at 0.25 ng injected, an acceptable linearity between 0.5 μg mL⁻¹ and 5.0 μg mL⁻¹ as well as a precision and an accuracy in agreement with in-house specifications. Cosmetic samples ready for analytical injection are analyzed after a dilution in ethanol whereas more complex cosmetic matrices, like milks and creams, are assayed after a liquid/liquid extraction using ter-butyl methyl ether (TBME). Depending on the type of cosmetics analyzed, the common limits of quantification for the 12 phthalates were set at 0.5 or 2.5 μg g⁻¹. All samples were assayed using the analytical approach described in the ISO 12787 international standard "Cosmetics-Analytical methods-Validation criteria for analytical results using chromatographic techniques". This analytical protocol is particularly adapted when it is not possible to make reconstituted sample matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Simultaneous and rapid determination of gefitinib, erlotinib and afatinib plasma levels using liquid chromatography/tandem mass spectrometry in patients with non-small-cell lung cancer.

    PubMed

    Hayashi, Hideki; Kita, Yutaro; Iihara, Hirotoshi; Yanase, Koumei; Ohno, Yasushi; Hirose, Chiemi; Yamada, Maya; Todoroki, Kenichiro; Kitaichi, Kiyoyuki; Minatoguchi, Shinya; Itoh, Yoshinori; Sugiyama, Tadashi

    2016-07-01

    A simultaneous, selective, sensitive and rapid liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of gefitinib, erlotinib and afatinib in 250 μL samples of human blood plasma. Diluted plasma samples were extracted using a liquid-phase extraction procedure with tert-butyl methyl ether. The three drugs were separated by high-performance liquid chromatography using a C18 column and an isocratic mobile phase running at a flow rate of 0.2 mL/min for 5 min. The drugs were detected using a tandem mass spectrometer with electrospray ionization using imatinib as an internal standard. Calibration curves were generated over the linear concentration range of 0.05-100 nm in plasma with a lower limit of quantification of 0.01 or 0.05 nm for all compounds. Finally, the validated method was applied to a clinical pharmacokinetic study in patients with nonsmall-cell lung cancer (NSCLC) following the oral administration of afatinib. These results indicate that this method is suitable for assessing the risks and benefits of chemotherapy in patients with NSCLC and is useful for therapeutic drug monitoring for NSCLC treatment. As far as we know, this is the first report on LC-MS/MS method for the simultaneous quantification of NSCLC tyrosine kinase inhibitor plasma concentrations including afatinib. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Quantification and application of a liquid chromatography-tandem mass spectrometric method for the determination of WKYMVm peptide in rat using solid-phase extraction.

    PubMed

    Lee, Byeong Ill; Park, Min-Ho; Heo, Soon Chul; Park, Yuri; Shin, Seok-Ho; Byeon, Jin-Ju; Kim, Jae Ho; Shin, Young G

    2018-03-01

    A liquid chromatographic-electrospray ionization-time-of-flight/mass spectrometric (LC-ESI-TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro-elution solid-phase extraction (SPE) for sample preparation and LC-ESI-TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro-elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration 2 ), with the equation y = ax 2  + bx + c was used to fit calibration curves over the concentration range of 3.02-2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within-run and the between-run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC-ESI-TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma. Copyright © 2017 John Wiley & Sons, Ltd.

  11. A validated LC-MS/MS assay for simultaneous quantification of methotrexate and tofacitinib in rat plasma: application to a pharmacokinetic study.

    PubMed

    Sharma, Kuldeep; Giri, Kalpeshkumar; Dhiman, Vinay; Dixit, Abhishek; Zainuddin, Mohd; Mullangi, Ramesh

    2015-05-01

    A highly sensitive, specific and rapid LC-ESI-MS/MS method has been developed and validated for simultaneous quantification of methotrexate (MTX) and tofacitinib (TFB) in rat plasma (50 μL) using phenacetin as an internal standard (IS), as per the US Food and Drug Administration guidelines. After a solid-phase extraction procedure, the separation of the analytes and IS was performed on a Chromolith RP₁₈e column using an isocratic mobile phase of 5 m m ammonium acetate (pH 5.0) and acetonitrile at a ratio of 25:75 (v/v) using flow-gradient with a total run time of 3.5 min. The detection was performed in multiple reaction monitoring mode, using the transitions of m/z 455.2 → 308.3, m/z 313.2 → 149.2 and m/z 180.3 → 110.2 for MTX, TFB and IS, respectively. The calibration curves were linear over the range of 0.49-91.0 and 0.40-74.4 ng/mL for MTX and TFB, respectively. The intra- and interday accuracy and precision values for MTX and TFB were <15% at low quality control (QC), medium QC and high QC and <20% at lower limit of quantification. The validated assay was applied to derive the pharmacokinetic parameters for MTX and TFB post-dosing of MTX and TFB orally and intravenously to rats. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Development and validation of LC-MS/MS method for the quantification of oxcarbazepine in human plasma using an experimental design.

    PubMed

    Srinubabu, Gedela; Ratnam, Bandaru Veera Venkata; Rao, Allam Appa; Rao, Medicherla Narasimha

    2008-01-01

    A rapid tandem mass spectrometric (MS-MS) method for the quantification of Oxcarbazepine (OXB) in human plasma using imipramine as an internal standard (IS) has been developed and validated. Chromatographic separation was achieved isocratically on a C18 reversed-phase column within 3.0 min, using a mobile phase of acetonitrile-10 mM ammonium formate (90 : 10 v/v) at a flow rate of 0.3 ml/min. Quantitation was achieved using multiple reaction monitoring (MRM) scan at MRM transitions m/z 253>208 and m/z 281>86 for OXB and the IS respectively. Calibration curves were linear over the concentration range of 0.2-16 mug/ml (r>0.999) with a limit of quantification of 0.2 mug/ml. Analytical recoveries of OXB from spiked human plasma were in the range of 74.9 to 76.3%. Plackett-Burman design was applied for screening of chromatographic and mass spectrometric factors; factorial design was applied for optimization of essential factors for the robustness study. A linear model was postulated and a 2(3) full factorial design was employed to estimate the model coefficients for intermediate precision. More specifically, experimental design helps the researcher to verify if changes in factor values produce a statistically significant variation of the observed response. The strategy is most effective if statistical design is used in most or all stages of the screening and optimizing process for future method validation of pharmacokinetic and bioequivalence studies.

  13. Short-Chain Polysaccharide Analysis in Ethanol-Water Solutions.

    PubMed

    Yan, Xun

    2017-07-01

    This study demonstrates that short-chain polysaccharides, or oligosaccharides, could be sufficiently separated with hydrophilic interaction LC (HILIC) conditions and quantified by evaporative light-scattering detection (ELSD). The multianalyte calibration approach improved the efficiency of calibrating the nonlinear detector response. The method allowed easy quantification of short-chain carbohydrates. Using the HILIC method, the oligosaccharide solubility and its profile in water/alcohol solutions at room temperature were able to be quantified. The results showed that the polysaccharide solubility in ethanol-water solutions decreased as ethanol content increased. The results also showed oligosaccharides to have minimal solubility in pure ethanol. In a saturated maltodextrin ethanol (80%) solution, oligosaccharide components with a degree of polymerization >12 were practically insoluble and contributed less than 0.2% to the total solute dry weight. The HILIC-ELSD method allows for the identification and quantification of low-MW carbohydrates individually and served as an alternative method to current gel permeation chromatography procedures.

  14. Application of Multivariable Analysis and FTIR-ATR Spectroscopy to the Prediction of Properties in Campeche Honey

    PubMed Central

    Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.

    2016-01-01

    Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445

  15. Prospects and difficulties in TiO₂ nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry.

    PubMed

    López-Heras, Isabel; Madrid, Yolanda; Cámara, Carmen

    2014-06-01

    In this work, we proposed an analytical approach based on asymmetrical flow field-flow fractionation combined to an inductively coupled plasma mass spectrometry (AsFlFFF-ICP-MS) for rutile titanium dioxide nanoparticles (TiO2NPs) characterization and quantification in cosmetic and food products. AsFlFFF-ICP-MS separation of TiO2NPs was performed using 0.2% (w/v) SDS, 6% (v/v) methanol at pH 8.7 as the carrier solution. Two problems were addressed during TiO2NPs analysis by AsFlFFF-ICP-MS: size distribution determination and element quantification of the NPs. Two approaches were used for size determination: size calibration using polystyrene latex standards of known sizes and transmission electron microscopy (TEM). A method based on focused sonication for preparing NPs dispersions followed by an on-line external calibration strategy based on AsFlFFF-ICP-MS, using rutile TiO2NPs as standards is presented here for the first time. The developed method suppressed non-specific interactions between NPs and membrane, and overcame possible erroneous results obtained when quantification is performed by using ionic Ti solutions. The applicability of the quantification method was tested on cosmetic products (moisturizing cream). Regarding validation, at the 95% confidence level, no significant differences were detected between titanium concentrations in the moisturizing cream prior sample mineralization (3865±139 mg Ti/kg sample), by FIA-ICP-MS analysis prior NPs extraction (3770±24 mg Ti/kg sample), and after using the optimized on-line calibration approach (3699±145 mg Ti/kg sample). Besides the high Ti content found in the studied food products (sugar glass and coffee cream), TiO2NPs were not detected. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection.

    PubMed

    Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao

    2017-09-27

    Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.

  17. Separation of plant hormones from biofertilizer by capillary electrophoresis using a capillary coated dynamically with polycationic polymers.

    PubMed

    Jiang, Ting-Fu; Lv, Zhi-Hua; Wang, Yuan-Hong; Yue, Mei-E

    2006-06-01

    A new, simple and rapid capillary electrophoresis (CE) method, using hexadimethrine bromide (HDB) as electroosmotic flow (EOF) modifier, was developed for the identification and quantitative determination of four plant hormones, including gibberellin A3 (GA3), indole-3-acetic acid (IAA), alpha-naphthaleneacetic acid (NAA) and 4-chlorophenoxyacetic acid (4-CA). The optimum separation was achieved with 20 mM borate buffer at pH 10.00 containing 0.005% (w/v) of HDB. The applied voltage was -25 kV and the capillary temperature was kept constant at 25 degrees C. Salicylic acid was used as internal standard for quantification. The calibration dependencies exhibited good linearity within the ratios of the concentrations of standard samples and internal standard and the ratios of the peak areas of samples and internal standard. The correlation coefficients were from 0.9952 to 0.9997. The relative standard deviations of migration times and peak areas were < 1.93 and 6.84%, respectively. The effects of buffer pH, the concentration of HDB and the voltage on the resolution were studied systematically. By this method, the contents of plant hormone in biofertilizer were successfully determined within 7 min, with satisfactory repeatability and recovery.

  18. Simultaneous determination of ascorbic acid and caffeine in commercial soft drinks using reversed-phase ultraperformance liquid chromatography.

    PubMed

    Turak, Fatma; Güzel, Remziye; Dinç, Erdal

    2017-04-01

    A new reversed-phase ultraperformance liquid chromatography method with a photodiode array detector was developed for the quantification of ascorbic acid (AA) and caffeine (CAF) in 11 different commercial drinks consisting of one energy drink and 10 ice tea drinks. Separation of the analyzed AA and CAF with an internal standard, caffeic acid, was performed on a Waters BEH C 18 column (100 mm × 2.1 mm, 1.7 μm i.d.), using a mobile phase consisting of acetonitrile and 0.2M H 3 PO 4 (11:89, v/v) with a flow rate of 0.25 mL/min and an injection volume of 1.0 μL. Calibration graphs for AA and CAF were computed from the peak area ratio of AA/internal standard and CAF/internal standard detected at 244.0 nm and 273.6 nm, respectively. The developed reversed-phase ultraperformance liquid chromatography method was validated by analyzing standard addition samples. The proposed reversed-phase ultraperformance liquid chromatography method gave us successful results for the quantitative analysis of commercial drinks containing AA and CAF substances. Copyright © 2016. Published by Elsevier B.V.

  19. Development of a general method for quantifying IgG-based therapeutic monoclonal antibodies in human plasma using protein G purification coupled with a two internal standard calibration strategy using LC-MS/MS.

    PubMed

    Chiu, Huai-Hsuan; Liao, Hsiao-Wei; Shao, Yu-Yun; Lu, Yen-Shen; Lin, Ching-Hung; Tsai, I-Lin; Kuo, Ching-Hua

    2018-08-17

    Monoclonal antibody (mAb) drugs have generated much interest in recent years for treating various diseases. Immunoglobulin G (IgG) represents a high percentage of mAb drugs that have been approved by the Food and Drug Administration (FDA). To facilitate therapeutic drug monitoring and pharmacokinetic/pharmacodynamic studies, we developed a general liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify the concentration of IgG-based mAbs in human plasma. Three IgG-based drugs (bevacizumab, nivolumab and pembrolizumab) were selected to demonstrate our method. Protein G beads were used for sample pretreatment due to their universal ability to trap IgG-based drugs. Surrogate peptides that were obtained after trypsin digestion were quantified by using LC-MS/MS. To calibrate sample preparation errors and matrix effects that occur during LC-MS/MS analysis, we used two internal standards (IS) method that include the IgG-based drug-IS tocilizumab and post-column infused IS. Using two internal standards was found to effectively improve quantification accuracy, which was within 15% for all mAb drugs that were tested at three different concentrations. This general method was validated in term of its precision, accuracy, linearity and sensitivity for 3 demonstration mAb drugs. The successful application of the method to clinical samples demonstrated its' applicability in clinical analysis. It is anticipated that this general method could be applied to other mAb-based drugs for use in precision medicine and clinical studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Relative quantification in seed GMO analysis: state of art and bottlenecks.

    PubMed

    Chaouachi, Maher; Bérard, Aurélie; Saïd, Khaled

    2013-06-01

    Reliable quantitative methods are needed to comply with current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) and GMO-derived food and feed products with a minimum GMO content of 0.9 %. The implementation of EU Commission Recommendation 2004/787/EC on technical guidance for sampling and detection which meant as a helpful tool for the practical implementation of EC Regulation 1830/2003, which states that "the results of quantitative analysis should be expressed as the number of target DNA sequences per target taxon specific sequences calculated in terms of haploid genomes". This has led to an intense debate on the type of calibrator best suitable for GMO quantification. The main question addressed in this review is whether reference materials and calibrators should be matrix based or whether pure DNA analytes should be used for relative quantification in GMO analysis. The state of the art, including the advantages and drawbacks, of using DNA plasmid (compared to genomic DNA reference materials) as calibrators, is widely described. In addition, the influence of the genetic structure of seeds on real-time PCR quantitative results obtained for seed lots is discussed. The specific composition of a seed kernel, the mode of inheritance, and the ploidy level ensure that there is discordance between a GMO % expressed as a haploid genome equivalent and a GMO % based on numbers of seeds. This means that a threshold fixed as a percentage of seeds cannot be used as such for RT-PCR. All critical points that affect the expression of the GMO content in seeds are discussed in this paper.

  1. Issues concerning international comparison of free-field calibrations of acoustical standards

    NASA Astrophysics Data System (ADS)

    Nedzelnitsky, Victor

    2002-11-01

    Primary free-field calibrations of laboratory standard microphones by the reciprocity method establish these microphones as reference standard devices for calibrating working standard microphones, other measuring microphones, and practical instruments such as sound level meters and personal sound exposure meters (noise dosimeters). These primary, secondary, and other calibrations are indispensable to the support of regulatory requirements, standards, and product characterization and quality control procedures important for industry, commerce, health, and safety. International Electrotechnical Commission (IEC) Technical Committee 29 Electroacoustics produces international documentary standards, including standards for primary and secondary free-field calibration and measurement procedures and their critically important application to practical instruments. This paper addresses some issues concerning calibrations, standards activities, and the international key comparison of primary free-field calibrations of IEC-type LS2 laboratory standard microphones that is being planned by the Consultative Committee for Acoustics, Ultrasound, and Vibration (CCAUV) of the International Committee for Weights and Measures (CIPM). This comparison will include free-field calibrations by the reciprocity method at participating major national metrology laboratories throughout the world.

  2. Development and validation of a solid-phase extraction gas chromatography–mass spectrometry method for the simultaneous quantification of methadone, heroin, cocaine and metabolites in sweat

    PubMed Central

    Brunet, Bertrand R.; Barnes, Allan J.; Scheidweiler, Karl B.; Mura, Patrick

    2009-01-01

    A sensitive and specific method is presented to simultaneously quantify methadone, heroin, cocaine and metabolites in sweat. Drugs were eluted from sweat patches with sodium acetate buffer, followed by SPE and quantification by GC/MS with electron impact ionization and selected ion monitoring. Daily calibration for anhydroecgonine methyl ester, ecgonine methyl ester, cocaine, benzoylecgonine (BE), codeine, morphine, 6-acetylcodeine, 6-acetylmorphine (6AM), heroin (5–1000 ng/patch) and methadone (10–1000 ng/patch) achieved determination coefficients of >0.995, and calibrators quantified to within ±20% of the target concentrations. Extended calibration curves (1000–10,000 ng/patch) were constructed for methadone, cocaine, BE and 6AM by modifying injection techniques. Within (N=5) and between-run (N=20) imprecisions were calculated at six control levels across the dynamic ranges with coefficients of variation of <6.5%. Accuracies at these concentrations were ±11.9% of target. Heroin hydrolysis during specimen processing was <11%. This novel assay offers effective monitoring of drug exposure during drug treatment, workplace and criminal justice monitoring programs. PMID:18607576

  3. Quantitation of iothalamate in urine and plasma using liquid chromatography electrospray tandem mass spectrometry (HPLC-ESI-MS/MS).

    PubMed

    Molinaro, Ross J; Ritchie, James C

    2010-01-01

    The following chapter describes a method to measure iothalamate in plasma and urine samples using high performance liquid chromatography combined with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Methanol and water are spiked with the internal standard (IS) iohexol. Iothalamate is isolated from plasma after IS spiked methanol extraction and from urine by IS spiked water addition and quick-spin filtration. The plasma extractions are dried under a stream of nitrogen. The residue is reconstituted in ammonium acetate-formic acid-water. The reconstituted plasma and filtered urine are injected into the HPLC-ESI-MS/MS. Iothalamate and iohexol show similar retention times in plasma and urine. Quantification of iothalamate in the samples is made by multiple reaction monitoring using the hydrogen adduct mass transitions, from a five-point calibration curve.

  4. Least squares parameter estimation methods for material decomposition with energy discriminating detectors

    PubMed Central

    Le, Huy Q.; Molloi, Sabee

    2011-01-01

    Purpose: Energy resolving detectors provide more than one spectral measurement in one image acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose four materials using energy discriminating detectors and least squares minimization techniques. Methods: Three least squares parameter estimation decomposition techniques were investigated for four-material breast imaging tasks in the image domain. The first technique treats the voxel as if it consisted of fractions of all the materials. The second method assumes that a voxel primarily contains one material and divides the decomposition process into segmentation and quantification tasks. The third is similar to the second method but a calibration was used. The simulated computed tomography (CT) system consisted of an 80 kVp spectrum and a CdZnTe (CZT) detector that could resolve the x-ray spectrum into five energy bins. A postmortem breast specimen was imaged with flat panel CT to provide a model for the digital phantoms. Hydroxyapatite (HA) (50, 150, 250, 350, 450, and 550 mg∕ml) and iodine (4, 12, 20, 28, 36, and 44 mg∕ml) contrast elements were embedded into the glandular region of the phantoms. Calibration phantoms consisted of a 30∕70 glandular-to-adipose tissue ratio with embedded HA (100, 200, 300, 400, and 500 mg∕ml) and iodine (5, 15, 25, 35, and 45 mg∕ml). The x-ray transport process was simulated where the Beer–Lambert law, Poisson process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations of the decomposition techniques were performed and compared. The effect of breast size was also investigated. Results: The first technique decomposed iodine adequately but failed for other materials. The second method separated the materials but was unable to quantify the materials. With the addition of a calibration, the third technique provided good separation and quantification of hydroxyapatite, iodine, glandular, and adipose tissues. Quantification with this technique was accurate with errors of 9.83% and 6.61% for HA and iodine, respectively. Calibration at one point (one breast size) showed increased errors as the mismatch in breast diameters between calibration and measurement increased. A four-point calibration successfully decomposed breast diameter spanning the entire range from 8 to 20 cm. For a 14 cm breast, errors were reduced from 5.44% to 1.75% and from 6.17% to 3.27% with the multipoint calibration for HA and iodine, respectively. Conclusions: The results of the simulation study showed that a CT system based on CZT detectors in conjunction with least squares minimization technique can be used to decompose four materials. The calibrated least squares parameter estimation decomposition technique performed the best, separating and accurately quantifying the concentrations of hydroxyapatite and iodine. PMID:21361193

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Huy Q.; Molloi, Sabee

    Purpose: Energy resolving detectors provide more than one spectral measurement in one image acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose four materials using energy discriminating detectors and least squares minimization techniques. Methods: Three least squares parameter estimation decomposition techniques were investigated for four-material breast imaging tasks in the image domain. The first technique treats the voxel as if it consisted of fractions of all the materials. The second method assumes that a voxel primarily contains one material and divides the decomposition process into segmentation and quantification tasks. The third is similar tomore » the second method but a calibration was used. The simulated computed tomography (CT) system consisted of an 80 kVp spectrum and a CdZnTe (CZT) detector that could resolve the x-ray spectrum into five energy bins. A postmortem breast specimen was imaged with flat panel CT to provide a model for the digital phantoms. Hydroxyapatite (HA) (50, 150, 250, 350, 450, and 550 mg/ml) and iodine (4, 12, 20, 28, 36, and 44 mg/ml) contrast elements were embedded into the glandular region of the phantoms. Calibration phantoms consisted of a 30/70 glandular-to-adipose tissue ratio with embedded HA (100, 200, 300, 400, and 500 mg/ml) and iodine (5, 15, 25, 35, and 45 mg/ml). The x-ray transport process was simulated where the Beer-Lambert law, Poisson process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations of the decomposition techniques were performed and compared. The effect of breast size was also investigated. Results: The first technique decomposed iodine adequately but failed for other materials. The second method separated the materials but was unable to quantify the materials. With the addition of a calibration, the third technique provided good separation and quantification of hydroxyapatite, iodine, glandular, and adipose tissues. Quantification with this technique was accurate with errors of 9.83% and 6.61% for HA and iodine, respectively. Calibration at one point (one breast size) showed increased errors as the mismatch in breast diameters between calibration and measurement increased. A four-point calibration successfully decomposed breast diameter spanning the entire range from 8 to 20 cm. For a 14 cm breast, errors were reduced from 5.44% to 1.75% and from 6.17% to 3.27% with the multipoint calibration for HA and iodine, respectively. Conclusions: The results of the simulation study showed that a CT system based on CZT detectors in conjunction with least squares minimization technique can be used to decompose four materials. The calibrated least squares parameter estimation decomposition technique performed the best, separating and accurately quantifying the concentrations of hydroxyapatite and iodine.« less

  6. Development and application of a multi-targeting reference plasmid as calibrator for analysis of five genetically modified soybean events.

    PubMed

    Pi, Liqun; Li, Xiang; Cao, Yiwei; Wang, Canhua; Pan, Liangwen; Yang, Litao

    2015-04-01

    Reference materials are important in accurate analysis of genetically modified organism (GMO) contents in food/feeds, and development of novel reference plasmid is a new trend in the research of GMO reference materials. Herein, we constructed a novel multi-targeting plasmid, pSOY, which contained seven event-specific sequences of five GM soybeans (MON89788-5', A2704-12-3', A5547-127-3', DP356043-5', DP305423-3', A2704-12-5', and A5547-127-5') and sequence of soybean endogenous reference gene Lectin. We evaluated the specificity, limit of detection and quantification, and applicability of pSOY in both qualitative and quantitative PCR analyses. The limit of detection (LOD) was as low as 20 copies in qualitative PCR, and the limit of quantification (LOQ) in quantitative PCR was 10 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and Lectin assays were higher than 90%, and the squared regression coefficients (R(2)) were more than 0.999. The quantification bias varied from 0.21% to 19.29%, and the relative standard deviations were from 1.08% to 9.84% in simulated samples analysis. All the results demonstrated that the developed multi-targeting plasmid, pSOY, was a credible substitute of matrix reference materials, and could be used as a reliable reference calibrator in the identification and quantification of multiple GM soybean events.

  7. Background Signal as an in Situ Predictor of Dopamine Oxidation Potential: Improving Interpretation of Fast-Scan Cyclic Voltammetry Data.

    PubMed

    Meunier, Carl J; Roberts, James G; McCarty, Gregory S; Sombers, Leslie A

    2017-02-15

    Background-subtracted fast-scan cyclic voltammetry (FSCV) has emerged as a powerful analytical technique for monitoring subsecond molecular fluctuations in live brain tissue. Despite increasing utilization of FSCV, efforts to improve the accuracy of quantification have been limited due to the complexity of the technique and the dynamic recording environment. It is clear that variable electrode performance renders calibration necessary for accurate quantification; however, the nature of in vivo measurements can make conventional postcalibration difficult, or even impossible. Analyte-specific voltammograms and scaling factors that are critical for quantification can shift or fluctuate in vivo. This is largely due to impedance changes, and the effects of impedance on these measurements have not been characterized. We have previously reported that the background current can be used to predict electrode-specific scaling factors in situ. In this work, we employ model circuits to investigate the impact of impedance on FSCV measurements. Additionally, we take another step toward in situ electrode calibration by using the oxidation potential of quinones on the electrode surface to accurately predict the oxidation potential for dopamine at any point in an electrochemical experiment, as both are dependent on impedance. The model, validated both in adrenal slice and live brain tissue, enables information encoded in the shape of the background voltammogram to determine electrochemical parameters that are critical for accurate quantification. This improves data interpretation and provides a significant next step toward more automated methods for in vivo data analysis.

  8. Simultaneous identification and quantification of new psychoactive substances in blood by GC-APCI-QTOFMS coupled to nitrogen chemiluminescence detection without authentic reference standards.

    PubMed

    Ojanperä, Ilkka; Mesihää, Samuel; Rasanen, Ilpo; Pelander, Anna; Ketola, Raimo A

    2016-05-01

    A novel platform is introduced for simultaneous identification and quantification of new psychoactive substances (NPS) in blood matrix, without the necessity of using authentic reference standards. The instrumentation consisted of gas chromatography (GC) coupled to nitrogen chemiluminescence detection (NCD) and atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-QTOFMS). In this concept, the GC flow is divided in appropriate proportions between NCD for single-calibrant quantification, utilizing the detector's equimolar response to nitrogen, and QTOFMS for accurate mass-based identification. The principle was proven by analyzing five NPS, bupropion, desoxypipradrol (2-DPMP), mephedrone, methylone, and naphyrone, in sheep blood. The samples were spiked with the analytes post-extraction to avoid recovery considerations at this point. All the NPS studies produced a protonated molecule in APCI resulting in predictable fragmentation with high mass accuracy. The N-equimolarity of quantification by NCD was investigated by using external calibration with the secondary standard caffeine at five concentration levels between 0.17 and 1.7 mg/L in blood matrix as five replicates. The equimolarity was on average 98.7%, and the range of individual equimolarity determinations was 76.7-130.1%. The current analysis platform affords a promising approach to instant simultaneous qualitative and quantitative analysis of drugs in the absence of authentic reference standards, not only in forensic and clinical toxicology but also in other bioanalytical applications.

  9. Robustness of near-infrared calibration models for the prediction of milk constituents during the milking process.

    PubMed

    Melfsen, Andreas; Hartung, Eberhard; Haeussermann, Angelika

    2013-02-01

    The robustness of in-line raw milk analysis with near-infrared spectroscopy (NIRS) was tested with respect to the prediction of the raw milk contents fat, protein and lactose. Near-infrared (NIR) spectra of raw milk (n = 3119) were acquired on three different farms during the milking process of 354 milkings over a period of six months. Calibration models were calculated for: a random data set of each farm (fully random internal calibration); first two thirds of the visits per farm (internal calibration); whole datasets of two of the three farms (external calibration), and combinations of external and internal datasets. Validation was done either on the remaining data set per farm (internal validation) or on data of the remaining farms (external validation). Excellent calibration results were obtained when fully randomised internal calibration sets were used for milk analysis. In this case, RPD values of around ten, five and three for the prediction of fat, protein and lactose content, respectively, were achieved. Farm internal calibrations achieved much poorer prediction results especially for the prediction of protein and lactose with RPD values of around two and one respectively. The prediction accuracy improved when validation was done on spectra of an external farm, mainly due to the higher sample variation in external calibration sets in terms of feeding diets and individual cow effects. The results showed that further improvements were achieved when additional farm information was added to the calibration set. One of the main requirements towards a robust calibration model is the ability to predict milk constituents in unknown future milk samples. The robustness and quality of prediction increases with increasing variation of, e.g., feeding and cow individual milk composition in the calibration model.

  10. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; ...

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  11. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  12. Development of a Postcolumn Infused-Internal Standard Liquid Chromatography Mass Spectrometry Method for Quantitative Metabolomics Studies.

    PubMed

    Liao, Hsiao-Wei; Chen, Guan-Yuan; Wu, Ming-Shiang; Liao, Wei-Chih; Lin, Ching-Hung; Kuo, Ching-Hua

    2017-02-03

    Quantitative metabolomics has become much more important in clinical research in recent years. Individual differences in matrix effects (MEs) and the injection order effect are two major factors that reduce the quantification accuracy in liquid chromatography-electrospray ionization-mass spectrometry-based (LC-ESI-MS) metabolomics studies. This study proposed a postcolumn infused-internal standard (PCI-IS) combined with a matrix normalization factor (MNF) strategy to improve the analytical accuracy of quantitative metabolomics. The PCI-IS combined with the MNF method was applied for a targeted metabolomics study of amino acids (AAs). D8-Phenylalanine was used as the PCI-IS, and it was postcolumn-infused into the ESI interface for calibration purposes. The MNF was used to bridge the AA response in a standard solution with the plasma samples. The MEs caused signal changes that were corrected by dividing the AA signal intensities by the PCI-IS intensities after adjustment with the MNF. After the method validation, we evaluated the method applicability for breast cancer research using 100 plasma samples. The quantification results revealed that the 11 tested AAs exhibit an accuracy between 88.2 and 110.7%. The principal component analysis score plot revealed that the injection order effect can be successfully removed, and most of the within-group variation of the tested AAs decreased after the PCI-IS correction. Finally, targeted metabolomics studies on the AAs showed that tryptophan was expressed more in malignant patients than in the benign group. We anticipate that a similar approach can be applied to other endogenous metabolites to facilitate quantitative metabolomics studies.

  13. Second-tier test for quantification of underivatized amino acids in dry blood spot for metabolic diseases in newborn screening.

    PubMed

    Wang, Chunyan; Zhu, Hongbin; Zhang, Wenyan; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2013-02-01

    The quantitative analysis of amino acids (AAs) in single dry blood spot (DBS) samples is an important issue for metabolic diseases as a second-tier test in newborn screening. An analytical method for quantifying underivatized AAs in DBS was developed by using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The sample preparation in this method is simple and ion-pairing agent is not used in the mobile phase that could avoid ion suppression, which happens in mass spectrometry and avoids damage to the column. Through chromatographic separation, some isomeric compounds could be identified and quantified, which cannot be solved through only appropriate multiple reactions monitoring transitions by MS/MS. The concentrations of the different AAs were determined using non-deuterated internal standard. All calibration curves showed excellent linearity within test ranges. For most of the amino acids the accuracy of extraction recovery was between 85.3 and 115 %, and the precision of relative standard deviation was <7.0 %. The 35 AAs could be identified in DBS specimens by the developed LC-MS/MS method in 17-19 min, and eventually 24 AAs in DBS were quantified. The results of the present study prove that this method as a second-tier test in newborn screening for metabolic diseases could be performed by the quantification of free AAs in DBS using the LC-MS/MS method. The assay has advantages of high sensitive, specific, and inexpensive merits because non-deuterated internal standard and acetic acid instead of ion-pairing agent in mobile phase are used in this protocol.

  14. Nuclear Forensics and Radiochemistry: Radiation Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  15. Solution-based calibration strategy for laser ablation-inductively coupled plasma-mass spectrometry using desolvating nebulizer system

    NASA Astrophysics Data System (ADS)

    Zhang, Guoxia; Li, Qing; Zhu, Yan; Wang, Zheng

    2018-07-01

    An additional quantification strategy using a desolvating nebulizer system (DNS) for solution-based calibration was developed. For quantitative analysis, laser ablation (LA) and DNS-generated aerosols were coupled using a "Y" connector and introduced into the inductively coupled plasma (ICP). These aerosols were also observed by scanning electron microscopy following collection on a silicon chip. Internal standards (108Ag, 64Cu, 89Y) were used to correct for the different aerosol transport efficiencies between the DNS and LA. The correlation coefficients of the calibration curves for all elements ranged from 0.9986 to 0.9999. Standard reference materials (NIST 610-616 and GBW08407-08411) were used to demonstrate the accuracy and precision of the method. The results were in good agreement with certified values, and the relative standard deviation (RSD) of most elements was <3%. The limits of detection (LODs) for 50Cr, 55Mn, 59Co, 60Ni, 66Zn, 89Y, 110Cd, 139La, 140Ce, 146Nd, 147Sm, 157Gd, 163Dy, 166Er, and 208Pb were 23, 3, 3, 19, 31, 4, 12, 0.4, 0.9, 0.1, 0.2, 2, 0.3, 0.4, and 21 ng/g, respectively, which were significantly better than those obtained by other methods. Further, this approach was applied for the analysis of multiple elements in biological tissues, and the results were in good agreement with those obtained using solution-based inductively coupled plasma-mass spectrometry (ICP-MS).

  16. Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.

    2012-04-01

    We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.

  17. Simultaneous digital quantification and fluorescence-based size characterization of massively parallel sequencing libraries.

    PubMed

    Laurie, Matthew T; Bertout, Jessica A; Taylor, Sean D; Burton, Joshua N; Shendure, Jay A; Bielas, Jason H

    2013-08-01

    Due to the high cost of failed runs and suboptimal data yields, quantification and determination of fragment size range are crucial steps in the library preparation process for massively parallel sequencing (or next-generation sequencing). Current library quality control methods commonly involve quantification using real-time quantitative PCR and size determination using gel or capillary electrophoresis. These methods are laborious and subject to a number of significant limitations that can make library calibration unreliable. Herein, we propose and test an alternative method for quality control of sequencing libraries using droplet digital PCR (ddPCR). By exploiting a correlation we have discovered between droplet fluorescence and amplicon size, we achieve the joint quantification and size determination of target DNA with a single ddPCR assay. We demonstrate the accuracy and precision of applying this method to the preparation of sequencing libraries.

  18. 18O-labeled proteome reference as global internal standards for targeted quantification by selected reaction monitoring-mass spectrometry.

    PubMed

    Kim, Jong-Seo; Fillmore, Thomas L; Liu, Tao; Robinson, Errol; Hossain, Mahmud; Champion, Boyd L; Moore, Ronald J; Camp, David G; Smith, Richard D; Qian, Wei-Jun

    2011-12-01

    Selected reaction monitoring (SRM)-MS is an emerging technology for high throughput targeted protein quantification and verification in biomarker discovery studies; however, the cost associated with the application of stable isotope-labeled synthetic peptides as internal standards can be prohibitive for screening a large number of candidate proteins as often required in the preverification phase of discovery studies. Herein we present a proof of concept study using an (18)O-labeled proteome reference as global internal standards (GIS) for SRM-based relative quantification. The (18)O-labeled proteome reference (or GIS) can be readily prepared and contains a heavy isotope ((18)O)-labeled internal standard for every possible tryptic peptide. Our results showed that the percentage of heavy isotope ((18)O) incorporation applying an improved protocol was >99.5% for most peptides investigated. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into the labeled mouse plasma reference. Reliable quantification was observed with high reproducibility (i.e. coefficient of variance <10%) for analyte concentrations that were set at 100-fold higher or lower than those of the GIS based on the light ((16)O)/heavy ((18)O) peak area ratios. The utility of (18)O-labeled GIS was further illustrated by accurate relative quantification of 45 major human plasma proteins. Moreover, quantification of the concentrations of C-reactive protein and prostate-specific antigen was illustrated by coupling the GIS with standard additions of purified protein standards. Collectively, our results demonstrated that the use of (18)O-labeled proteome reference as GIS provides a convenient, low cost, and effective strategy for relative quantification of a large number of candidate proteins in biological or clinical samples using SRM.

  19. Examination of a Standardized Test for Evaluating the Degree of Cure of EVA Encapsulation (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.; Wohlgemuth, J.; Gu, X.

    2013-11-01

    The curing of cross-linkable encapsulation is a critical consideration for photovoltaic (PV) modules manufactured using a lamination process. Concerns related to ethylene-co-vinyl acetate (EVA) include the quality (e.g., expiration and uniformity) of the films or completion (duration) of the cross-linking of the EVA within a laminator. Because these issues are important to both EVA and module manufacturers, an international standard has recently been proposed by the Encapsulation Task-Group within the Working Group 2 (WG2) of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC82) for the quantification of the degree of cure for EVA encapsulation. The present draft of themore » standard calls for the use of differential scanning calorimetry (DSC) as the rapid, enabling secondary (test) method. Both the residual enthalpy- and melt/freeze-DSC methods are identified. The DSC methods are calibrated against the gel content test, the primary (reference) method. Aspects of other established methods, including indentation and rotor cure metering, were considered by the group. Key details of the test procedure will be described.« less

  20. Online restricted-access material combined with high-performance liquid chromatography and tandem mass spectrometry for the simultaneous determination of vanillin and its vanillic acid metabolite in human plasma.

    PubMed

    Li, De-Qiang; Zhang, Zhi-Qing; Yang, Xiu-Ling; Zhou, Chun-Hua; Qi, Jin-Long

    2016-09-01

    An automated online solid-phase extraction with restricted-access material combined with high-performance liquid chromatography and tandem mass spectrometry was developed and validated for the simultaneous quantification of vanillin and its vanillic acid metabolite in human plasma. After protein precipitation by methanol, which contained the internal standards, the supernatant of plasma samples was injected to the system, the endogenous large molecules were flushed out, and target analytes were trapped and enriched on the adsorbent, resulting in a minimization of sample complexity and ion suppression effects. Calibration curves were linear over the concentrations of 5-1000 ng/mL for vanillin and 10-5000 ng/mL for vanillic acid with a coefficient of determination >0.999 for the determined compounds. The lower limits of quantification of vanillin and vanillic acid were 5.0 and 10.0 ng/mL, respectively. The intra- and inter-run precisions expressed as the relative standard deviation were 2.6-8.6 and 3.2-10.2%, respectively, and the accuracies expressed as the relative error were in the range of -6.1 to 7.3%. Extraction recoveries of analytes were between 89.5 and 97.4%. There was no notable matrix effect for any analyte concentration. The developed method was proved to be sensitive, repeatable, and accurate for the quantification of vanillin and its vanillic acid metabolite in human plasma. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simultaneous quantitation of 2-acetyl-4-tetrahydroxybutylimidazole, 2- and 4-methylimidazoles, and 5-hydroxymethylfurfural in beverages by ultrahigh-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Jinyuan; Schnute, William C

    2012-02-01

    An ultrahigh-performance liquid chromatography (UHPLC) tandem mass spectrometric (MS/MS) method was developed for the simultaneous quantification of 2-acetyl-4-tetrahydroxybutylimidazole (THI), 2- and 4-methylimidazoles (2-MI and 4-MI), and 5-hydroxymethylfurfural (HMF) in beverage samples. A C30 reversed-phase column was used in this method, providing sufficient retention and total resolution for all targeted analytes, with an MS/MS instrument operated in selected reaction monitoring (SRM) mode for sensitive and selective detection using isotope-labeled 4-methyl-d(3)-imidazole (4-MI-d(3)) as the internal standard (IS). This method demonstrates lower limit of quantification (LLOQ) at 1 ng/mL and coefficient of determination (r(2)) >0.999 for each analyte with a calibration range established from 1 to 500 ng/mL. This method also demonstrates excellent quantification accuracy (84.6-105% at 5 ng/mL, n = 7), precision (RSD < 7% at 5 ng/mL, n = 7), and recovery (88.8-99.5% at 10, 100, and 200 ng/mL, n = 3). Seventeen carbonated beverage samples were tested (n = 2) in this study including 13 dark-colored beverage samples with different flavors and varieties and 4 light-colored beverage samples. Three target analytes were quantified in these samples with concentrations in the range from 284 to 644 ng/mL for 4-MI and from 706 to 4940 ng/mL for HMF. THI was detected in only one sample at 6.35 ng/mL.

  2. Rapid extraction, identification and quantification of drugs of abuse in hair by immunoassay and ultra-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Pichini, Simona; Gottardi, Massimo; Marchei, Emilia; Svaizer, Fiorenza; Pellegrini, Manuela; Rotolo, Maria Concetta; Algar, Oscar García; Pacifici, Roberta

    2014-05-01

    Drug testing in hair is a unique analysis in pharmacotoxicology for establishing a past repeated history of consumption or passive exposure to psychotropic substances. A rather lengthy sample treatment is usually required before parent drugs and eventual metabolites are amenable to quali-quantitative analysis. We evaluated a high throughput screening and confirmation analysis of drugs of abuse in hair by immunoassay and a validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) after applying a rapid digestion of the keratin matrix with VMA-T reagent before screening assay and M3 reagent before confirmatory analysis. Samples digestion with VMA-T reagent and immunometric screening analysis of hair calibrators, controls and clinical samples for a total of 150 samples was completed in 4 h. No false-positive and -negative results were found for the control material. UPLC-MS/MS analysis confirmed all of the 31 adult hair samples positive to the screening test using internationally established cut-offs, and identified and quantified drugs of abuse in 32 pediatric hair samples, applying lower limits of quantification from 0.01 to 0.1 ng analyte per mg hair. Analytical recovery was between 70.9% and 100.7%. Intra- and inter-assay imprecision and inaccuracy were always lower than 10%. Rapid extraction, identification and quantification of drugs of abuse in hair by immunoassay and UPLC-MS/MS was tested for its feasibility in clinical samples and provided excellent results for rapid and effective drug testing in hair in epidemiological studies.

  3. A gas chromatography-mass spectrometry assay to quantify camphor extracted from goat serum.

    PubMed

    Lee, Kyung-Min; Dai, Susie Y; Herrman, Timothy J; Musser, Jeffrey M B

    2012-09-15

    A sensitive gas chromatography-mass spectrometry (GC-MS) method was developed and validated for quantification and pharmacokinetics of camphor, a major monoterpene of juniper plant, in goat serum. Camphor and internal standard (terpinolene) eluates from solid phase extraction (SPE) with ethyl acetate yielded well resolved peaks and were clearly identified in total and selected ion chromatograms. The elution and injection volumes were optimized for improved detection and quantification of camphor based on peak shape, signal to noise ratio, recoveries, and repeatability. The matrix calibration curve with the good linearity (R(2)=0.998) and response in the range of 0.005-10.0 μg/mL was used to determine camphor concentration in goat serum. The GC-MS method offered sufficiently low limits of detection (1 ng/mL) and quantitation (3 ng/mL) for camphor concentration in goat serum for the pharmacokinetic study. The proposed method showed good intra- and inter-day variation with relative standard deviation (RSD) of 0.2-7.7% and produced good recovery (96.0-111.6%) and reproducibility (1.6-6.1%) at all spiked levels. Using this method on serum samples obtained from two goats orally dosed with camphor confirmed that the method is suitable for camphor studies in animals. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  5. Experimental design-based isotope-dilution SPME-GC/MS method development for the analysis of smoke flavouring products.

    PubMed

    Giri, Anupam; Zelinkova, Zuzana; Wenzl, Thomas

    2017-12-01

    For the implementation of Regulation (EC) No 2065/2003 related to smoke flavourings used or intended for use in or on foods a method based on solid-phase micro extraction (SPME) GC/MS was developed for the characterisation of liquid smoke products. A statistically based experimental design (DoE) was used for method optimisation. The best general conditions to quantitatively analyse the liquid smoke compounds were obtained with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, 60°C extraction temperature, 30 min extraction time, 250°C desorption temperature, 180 s desorption time, 15 s agitation time, and 250 rpm agitation speed. Under the optimised conditions, 119 wood pyrolysis products including furan/pyran derivatives, phenols, guaiacol, syringol, benzenediol, and their derivatives, cyclic ketones, and several other heterocyclic compounds were identified. The proposed method was repeatable (RSD% <5) and the calibration functions were linear for all compounds under study. Nine isotopically labelled internal standards were used for improving quantification of analytes by compensating matrix effects that might affect headspace equilibrium and extractability of compounds. The optimised isotope dilution SPME-GC/MS based analytical method proved to be fit for purpose, allowing the rapid identification and quantification of volatile compounds in liquid smoke flavourings.

  6. Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair.

    PubMed

    Zhu, Kevin Y; Leung, K Wing; Ting, Annie K L; Wong, Zack C F; Ng, Winki Y Y; Choi, Roy C Y; Dong, Tina T X; Wang, Tiejie; Lau, David T W; Tsim, Karl W K

    2012-03-01

    A microfluidic chip based nano-HPLC coupled to tandem mass spectrometry (nano-HPLC-Chip-MS/MS) has been developed for simultaneous measurement of abused drugs and metabolites: cocaine, benzoylecgonine, cocaethylene, norcocaine, morphine, codeine, 6-acetylmorphine, phencyclidine, amphetamine, methamphetamine, MDMA, MDA, MDEA, and methadone in the hair of drug abusers. The microfluidic chip was fabricated by laminating polyimide films and it integrated an enrichment column, an analytical column and a nanospray tip. Drugs were extracted from hairs by sonication, and the chromatographic separation was achieved in 15 min. The drug identification and quantification criteria were fulfilled by the triple quardropule tandem mass spectrometry. The linear regression analysis was calibrated by deuterated internal standards with all of the R(2) at least over 0.993. The limit of detection (LOD) and the limit of quantification (LOQ) were from 0.1 to 0.75 and 0.2 to 1.25 pg/mg, respectively. The validation parameters including selectivity, accuracy, precision, stability, and matrix effect were also evaluated here. In conclusion, the developed sample preparation method coupled with the nano-HPLC-Chip-MS/MS method was able to reveal the presence of drugs in hairs from the drug abusers, with the enhanced sensitivity, compared with the conventional HPLC-MS/MS.

  7. Simultaneous determination of eight major steroids from Polyporus umbellatus by high-performance liquid chromatography coupled with mass spectrometry detections.

    PubMed

    Zhao, Ying-yong; Cheng, Xian-long; Zhang, Yongmin; Zhao, Ye; Lin, Rui-chao; Sun, Wen-ji

    2010-02-01

    Polyporus umbellatus is a widely used diuretic herbal medicine. In this study, a high-performance liquid chromatography coupled with atmospheric pressure chemical ionization-mass spectrometric detection (HPLC-APCI-MS) method was developed for qualitative and quantitative analysis of steroids, as well as for the quality control of Polyporus umbellatus. The selectivity, reproducibility and sensitivity were compared with HPLC with photodiode array detection and evaporative light scattering detection (ELSD). Selective ion monitoring in positive mode was used for qualitative and quantitative analysis of eight major components and beta-ecdysterone was used as the internal standard. Limits of detection and quantification fell in the ranges 7-21 and 18-63 ng/mL for the eight analytes with an injection of 10 microL samples, and all calibration curves showed good linear regression (r(2) > 0.9919) within the test range. The quantitative results demonstrated that samples from different localities showed different qualities. Advantages, in comparison with conventional HPLC-diode array detection and HPLC-ELSD, are that reliable identification of target compounds could be achieved by accurate mass measurements along with characteristic retention time, and the great enhancement in selectivity and sensitivity allows identification and quantification of low levels of constituents in complex Polyporus umbellatus matrixes. (c) 2009 John Wiley & Sons, Ltd.

  8. Development of a LC-MS method for simultaneous determination of amoxicillin and metronidazole in human serum using hydrophilic interaction chromatography (HILIC).

    PubMed

    Kathriarachchi, Udani L; Vidhate, Sagar S; Al-Tannak, Naser; Thomson, Alison H; da Silva Neto, Michael J J; Watson, David G

    2018-07-01

    A method was developed for the determination of amoxicillin and metronidazole in human serum. The procedure used was hydrophilic interaction chromatography (HILIC) followed by mass spectrometric (MS) detection. Chromatographic separation was achieved on a ZIC-HILIC column and the mobile phase consisted of a mixture of 0.1% (v/v) formic acid in water and 0.1% (v/v) formic acid in acetonitrile. The method was validated with regard to selectivity, accuracy, precision, calibration, lower limit of quantification (LOQ), extraction recovery and matrix effect. The LOQs were 0.0138 and 0.008 μg/ml for amoxicillin and metronidazole respectively, while for quantification purposes linearity was achieved in the range of 0.1 μg/ml to 6.4 μg/ml for both drugs with correlation coefficients >0.9990. The intraday precision (expressed as %RSD) and the accuracy (expressed as the % deviation from the nominal value) was <15% for both antibiotics at all QC levels. Extraction recoveries for both drugs and internal standards were >80%, while a considerable matrix effect (<60%) was observed for amoxicillin. Finally, the method was applied to the determination of amoxicillin and metronidazole concentrations in serum for 20 patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Validated RP-HPLC/DAD Method for the Quantification of Insect Repellent Ethyl 2-Aminobenzoate in Membrane-Moderated Matrix Type Monolithic Polymeric Device.

    PubMed

    Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Sharma Bora, Nilutpal; Mandal, Santa; Pratim Pathak, Manash; Srinivas Raju, Pakalapati; Chattopadhyay, Pronobesh

    2017-07-01

    A simple, accurate and sensitive reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed for the estimation of ethyl 2-aminobenzoate (EAB) in a matrix type monolithic polymeric device and validated as per the International Conference on Harmonization guidelines. The analysis was performed isocratically on a ZORBAX Eclipse plus C18 analytical column (250 × 4.4 mm, 5 μm) and a diode array detector (DAD) using acetonitrile and water (75:25 v/v) as the mobile phase by keeping the flow-rate constant at 1.0 mL/min. Determination of EAB was not interfered in the presence of excipients. Inter- and intra-day relative standard deviations were not higher than 2%. Mean recovery was between 98.7 and 101.3%. Calibration curve was linear in the concentration range of 0.5-10 µg/mL. Limits of detection and quantification were 0.19 and 0.60 µg/mL, respectively. Thus, the present report put forward a novel method for the estimation of EAB, an emerging insect repellent, by using RP-HPLC technique. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Development and full validation of an UPLC-MS/MS method for the quantification of the plant-derived alkaloid indirubin in rat plasma.

    PubMed

    Jähne, Evelyn A; Sampath, Chethan; Butterweck, Veronika; Hamburger, Matthias; Oufir, Mouhssin

    2016-09-05

    An UPLC-MS/MS method for the quantification of indirubin in lithium heparinized rat plasma was developed and validated according to current international guidelines. Indirubin was extracted from rat plasma by using Waters Ostro™ pass-through sample preparation plates. The method was validated with a LLOQ of 5.00ng/mL and an ULOQ of 500ng/mL. The calibration curve was fitted by least-square quadratic regression, and a weighting factor of 1/X was applied. Recoveries of indirubin and I.S. were consistent and ≥75.5%. Stability studies demonstrated that indirubin was stable in lithium heparinized rat plasma for at least 3 freeze/thaw cycles, for 3h at RT, for 96h in the autosampler at 10°C, and for 84days when stored below -65°C. Preliminary pharmacokinetic (PK) data were obtained from Sprague Dawley rats after intravenous administration of indirubin (2mg/kg b.w.) and blood sampling up to 12h after injection. PK parameters were determined by non-compartmental analysis. Indirubin had a half-life (t1/2) of 35min, and a relatively high clearance (CL) of 2.71L/h/kg. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Rapid determination of amino acids in biological samples using a monolithic silica column.

    PubMed

    Song, Yanting; Funatsu, Takashi; Tsunoda, Makoto

    2012-05-01

    A high-performance liquid chromatography method in which fluorescence detection is used for the simultaneous determination of 21 amino acids is proposed. Amino acids were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) and then separated on a monolithic silica column (MonoClad C18-HS, 150 mm×3 mm i.d.). A mixture of 25 mM citrate buffer containing 25 mM sodium perchlorate (pH 5.5) and acetonitrile was used as the mobile phase. We found that the most significant factor in the separation was temperature, and a linear temperature gradient from 30 to 49°C was used to control the column temperature. The limits of detection and quantification for all amino acids ranged from 3.2 to 57.2 fmol and 10.8 to 191 fmol, respectively. The calibration curves for the NBD-amino acid had good linearity within the range of 40 fmol to 40 pmol when 6-aminocaproic acid was used as an internal standard. Using only conventional instruments, the 21 amino acids could be analyzed within 10 min. This method was found to be suitable for the quantification of the contents of amino acids in mouse plasma and adrenal gland samples.

  12. Quantification of Carbohydrates and Related Materials Using Sodium Ion Adducts Produced by Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Moon, Jeong Hee; Lee, Seong Hoon; Kim, Myung Soo

    2016-11-01

    The utility of sodium ion adducts produced by matrix-assisted laser desorption ionization for the quantification of analytes with multiple oxygen atoms was evaluated. Uses of homogeneous solid samples and temperature control allowed the acquisition of reproducible spectra. The method resulted in a direct proportionality between the ion abundance ratio I([A + Na]+)/I([M + Na]+) and the analyte concentration, which could be used as a calibration curve. This was demonstrated for carbohydrates, glycans, and polyether diols with dynamic range exceeding three orders of magnitude.

  13. Data Assimilation - Advances and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian J.

    2014-07-30

    This presentation provides an overview of data assimilation (model calibration) for complex computer experiments. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Utilization of surrogate models and empirical adjustment for model form error in code calibration form the basis for the statistical methodology considered. The role of probabilistic code calibration in supporting code validation is discussed. Incorporation of model form uncertainty in rigorous uncertainty quantification (UQ) analyses is also addressed. Design criteria used within a batchmore » sequential design algorithm are introduced for efficiently achieving predictive maturity and improved code calibration. Predictive maturity refers to obtaining stable predictive inference with calibrated computer codes. These approaches allow for augmentation of initial experiment designs for collecting new physical data. A standard framework for data assimilation is presented and techniques for updating the posterior distribution of the state variables based on particle filtering and the ensemble Kalman filter are introduced.« less

  14. Quantification of Training and Competition Loads in Endurance Sports: Methods and Applications.

    PubMed

    Mujika, Iñigo

    2017-04-01

    Training quantification is basic to evaluate an endurance athlete's responses to training loads, ensure adequate stress/recovery balance, and determine the relationship between training and performance. Quantifying both external and internal workload is important, because external workload does not measure the biological stress imposed by the exercise sessions. Generally used quantification methods include retrospective questionnaires, diaries, direct observation, and physiological monitoring, often based on the measurement of oxygen uptake, heart rate, and blood lactate concentration. Other methods in use in endurance sports include speed measurement and the measurement of power output, made possible by recent technological advances such as power meters in cycling and triathlon. Among subjective methods of quantification, rating of perceived exertion stands out because of its wide use. Concurrent assessments of the various quantification methods allow researchers and practitioners to evaluate stress/recovery balance, adjust individual training programs, and determine the relationships between external load, internal load, and athletes' performance. This brief review summarizes the most relevant external- and internal-workload-quantification methods in endurance sports and provides practical examples of their implementation to adjust the training programs of elite athletes in accordance with their individualized stress/recovery balance.

  15. Inverse models: A necessary next step in ground-water modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1997-01-01

    Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.

  16. Internal calibration on adjacent samples (InCAS) with Fourier transform mass spectrometry.

    PubMed

    O'Connor, P B; Costello, C E

    2000-12-15

    Using matrix-assisted laser desorption/ionization (MAL DI) on a trapped ion mass spectrometer such as a Fourier transform mass spectrometer (FTMS) allows accumulation of ions in the cell from multiple laser shots prior to detection. If ions from separate MALDI samples are accumulated simultaneously in the cell, ions from one sample can be used to calibrate ions from the other sample. Since the ions are detected simultaneously in the cell, this is, in effect, internal calibration, but there are no selective desorption effects in the MALDI source. This method of internal calibration with adjacent samples is demonstrated here on cesium iodide clusters, peptides, oligosaccharides, poly(propylene glycol), and fullerenes and provides typical FTMS internal calibration mass accuracy of < 1 ppm.

  17. Gaussian process based modeling and experimental design for sensor calibration in drifting environments

    PubMed Central

    Geng, Zongyu; Yang, Feng; Chen, Xi; Wu, Nianqiang

    2016-01-01

    It remains a challenge to accurately calibrate a sensor subject to environmental drift. The calibration task for such a sensor is to quantify the relationship between the sensor’s response and its exposure condition, which is specified by not only the analyte concentration but also the environmental factors such as temperature and humidity. This work developed a Gaussian Process (GP)-based procedure for the efficient calibration of sensors in drifting environments. Adopted as the calibration model, GP is not only able to capture the possibly nonlinear relationship between the sensor responses and the various exposure-condition factors, but also able to provide valid statistical inference for uncertainty quantification of the target estimates (e.g., the estimated analyte concentration of an unknown environment). Built on GP’s inference ability, an experimental design method was developed to achieve efficient sampling of calibration data in a batch sequential manner. The resulting calibration procedure, which integrates the GP-based modeling and experimental design, was applied on a simulated chemiresistor sensor to demonstrate its effectiveness and its efficiency over the traditional method. PMID:26924894

  18. Embedded Model Error Representation and Propagation in Climate Models

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Thornton, P. E.

    2017-12-01

    Over the last decade, parametric uncertainty quantification (UQ) methods have reached a level of maturity, while the same can not be said about representation and quantification of structural or model errors. Lack of characterization of model errors, induced by physical assumptions, phenomenological parameterizations or constitutive laws, is a major handicap in predictive science. In particular, e.g. in climate models, significant computational resources are dedicated to model calibration without gaining improvement in predictive skill. Neglecting model errors during calibration/tuning will lead to overconfident and biased model parameters. At the same time, the most advanced methods accounting for model error merely correct output biases, augmenting model outputs with statistical error terms that can potentially violate physical laws, or make the calibrated model ineffective for extrapolative scenarios. This work will overview a principled path for representing and quantifying model errors, as well as propagating them together with the rest of the predictive uncertainty budget, including data noise, parametric uncertainties and surrogate-related errors. Namely, the model error terms will be embedded in select model components rather than as external corrections. Such embedding ensures consistency with physical constraints on model predictions, and renders calibrated model predictions meaningful and robust with respect to model errors. Besides, in the presence of observational data, the approach can effectively differentiate model structural deficiencies from those of data acquisition. The methodology is implemented in UQ Toolkit (www.sandia.gov/uqtoolkit), relying on a host of available forward and inverse UQ tools. We will demonstrate the application of the technique on few application of interest, including ACME Land Model calibration via a wide range of measurements obtained at select sites.

  19. Correction of the lack of commutability between plasmid DNA and genomic DNA for quantification of genetically modified organisms using pBSTopas as a model.

    PubMed

    Zhang, Li; Wu, Yuhua; Wu, Gang; Cao, Yinglong; Lu, Changming

    2014-10-01

    Plasmid calibrators are increasingly applied for polymerase chain reaction (PCR) analysis of genetically modified organisms (GMOs). To evaluate the commutability between plasmid DNA (pDNA) and genomic DNA (gDNA) as calibrators, a plasmid molecule, pBSTopas, was constructed, harboring a Topas 19/2 event-specific sequence and a partial sequence of the rapeseed reference gene CruA. Assays of the pDNA showed similar limits of detection (five copies for Topas 19/2 and CruA) and quantification (40 copies for Topas 19/2 and 20 for CruA) as those for the gDNA. Comparisons of plasmid and genomic standard curves indicated that the slopes, intercepts, and PCR efficiency for pBSTopas were significantly different from CRM Topas 19/2 gDNA for quantitative analysis of GMOs. Three correction methods were used to calibrate the quantitative analysis of control samples using pDNA as calibrators: model a, or coefficient value a (Cva); model b, or coefficient value b (Cvb); and the novel model c or coefficient formula (Cf). Cva and Cvb gave similar estimated values for the control samples, and the quantitative bias of the low concentration sample exceeded the acceptable range within ±25% in two of the four repeats. Using Cfs to normalize the Ct values of test samples, the estimated values were very close to the reference values (bias -13.27 to 13.05%). In the validation of control samples, model c was more appropriate than Cva or Cvb. The application of Cf allowed pBSTopas to substitute for Topas 19/2 gDNA as a calibrator to accurately quantify the GMO.

  20. Measurement of Menadione in Urine by HPLC

    PubMed Central

    Rajabi, Ala Al; Peterson, James; Choi, Sang Woon; Suttie, John; Barakat, Susan; Booth, Sarah L

    2010-01-01

    Menadione is a metabolite of vitamin K that is excreted in urine. A high performance liquid chromatography (HPLC) method using a C30 column, post-column zinc reduction and fluorescence detection was developed to measure urinary menadione. The mobile phase was composed of 95% methanol with 0.55% aqueous solution and 5% DI H2O. Menaquinone-2 (MK-2) was used as an internal standard. The standard calibration curve was linear with a correlation coefficient (R2) of 0.999 for both menadione and MK-2. The lower limit of quantification (LLOQ) was 0.3 pmole menadione/mL urine. Sample preparation involved hydrolysis of menadiol conjugates and oxidizing the released menadiol to menadione. Using this method, urinary menadione was shown to increase in response to 3 years of phylloquinone supplementation. This HPLC method is a sensitive and reproducible way to detect menadione in urine. Research support: USDA ARS Cooperative Agreement 58-1950-7-707. PMID:20719580

  1. Measurement of menadione in urine by HPLC.

    PubMed

    Al Rajabi, Ala; Peterson, James; Choi, Sang-Woon; Suttie, John; Barakat, Susan; Booth, Sarah L

    2010-09-15

    Menadione is a metabolite of vitamin K that is excreted in urine. A high performance liquid chromatography (HPLC) method using a C(30) column, post-column zinc reduction and fluorescence detection was developed to measure urinary menadione. The mobile phase was composed of 95% methanol with 0.55% aqueous solution and 5% DI H(2)O. Menaquinone-2 (MK-2) was used as an internal standard. The standard calibration curve was linear with a correlation coefficient (R(2)) of 0.999 for both menadione and MK-2. The lower limit of quantification (LLOQ) was 0.3pmole menadione/mL urine. Sample preparation involved hydrolysis of menadiol conjugates and oxidizing the released menadiol to menadione. Using this method, urinary menadione was shown to increase in response to 3 years of phylloquinone supplementation. This HPLC method is a sensitive and reproducible way to detect menadione in urine. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Quantitative bioimaging of p-boronophenylalanine in thin liver tissue sections as a tool for treatment planning in boron neutron capture therapy.

    PubMed

    Reifschneider, Olga; Schütz, Christian L; Brochhausen, Christoph; Hampel, Gabriele; Ross, Tobias; Sperling, Michael; Karst, Uwe

    2015-03-01

    An analytical method using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was developed and applied to assess enrichment of 10B-containing p-boronophenylalanine-fructose (BPA-f) and its pharmacokinetic distribution in human tissues after application for boron neutron capture therapy (BNCT). High spatial resolution (50 μm) and limits of detection in the low parts-per-billion range were achieved using a Nd:YAG laser of 213 nm wavelength. External calibration by means of 10B-enriched standards based on whole blood proved to yield precise quantification results. Using this calibration method, quantification of 10B in cancerous and healthy tissue was carried out. Additionally, the distribution of 11B was investigated, providing 10B enrichment in the investigated tissues. Quantitative imaging of 10B by means of LA-ICP-MS was demonstrated as a new option to characterise the efficacy of boron compounds for BNCT.

  3. Setting Standards for Reporting and Quantification in Fluorescence-Guided Surgery.

    PubMed

    Hoogstins, Charlotte; Burggraaf, Jan Jaap; Koller, Marjory; Handgraaf, Henricus; Boogerd, Leonora; van Dam, Gooitzen; Vahrmeijer, Alexander; Burggraaf, Jacobus

    2018-05-29

    Intraoperative fluorescence imaging (FI) is a promising technique that could potentially guide oncologic surgeons toward more radical resections and thus improve clinical outcome. Despite the increase in the number of clinical trials, fluorescent agents and imaging systems for intraoperative FI, a standardized approach for imaging system performance assessment and post-acquisition image analysis is currently unavailable. We conducted a systematic, controlled comparison between two commercially available imaging systems using a novel calibration device for FI systems and various fluorescent agents. In addition, we analyzed fluorescence images from previous studies to evaluate signal-to-background ratio (SBR) and determinants of SBR. Using the calibration device, imaging system performance could be quantified and compared, exposing relevant differences in sensitivity. Image analysis demonstrated a profound influence of background noise and the selection of the background on SBR. In this article, we suggest clear approaches for the quantification of imaging system performance assessment and post-acquisition image analysis, attempting to set new standards in the field of FI.

  4. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics.

    PubMed

    Reis, Nádia; Franca, Adriana S; Oliveira, Leandro S

    2013-10-15

    The current study presents an application of Diffuse Reflectance Infrared Fourier Transform Spectroscopy for detection and quantification of fraudulent addition of commonly employed adulterants (spent coffee grounds, coffee husks, roasted corn and roasted barley) to roasted and ground coffee. Roasted coffee samples were intentionally blended with the adulterants (pure and mixed), with total adulteration levels ranging from 1% to 66% w/w. Partial Least Squares Regression (PLS) was used to relate the processed spectra to the mass fraction of adulterants and the model obtained provided reliable predictions of adulterations at levels as low as 1% w/w. A robust methodology was implemented that included the detection of outliers. High correlation coefficients (0.99 for calibration; 0.98 for validation) coupled with low degrees of error (1.23% for calibration; 2.67% for validation) confirmed that DRIFTS can be a valuable analytical tool for detection and quantification of adulteration in ground, roasted coffee. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.

  6. What reaches the antenna? How to calibrate odor flux and ligand-receptor affinities.

    PubMed

    Andersson, Martin N; Schlyter, Fredrik; Hill, Sharon Rose; Dekker, Teun

    2012-06-01

    Physiological studies on olfaction frequently ignore the airborne quantities of stimuli reaching the sensory organ. We used a gas chromatography-calibrated photoionization detector to estimate quantities released from standard Pasteur pipette stimulus cartridges during repeated puffing of 27 compounds and verified how lack of quantification could obscure olfactory sensory neuron (OSN) affinities. Chemical structure of the stimulus, solvent, dose, storage condition, puff interval, and puff number all influenced airborne quantities. A model including boiling point and lipophilicity, but excluding vapor pressure, predicted airborne quantities from stimuli in paraffin oil on filter paper. We recorded OSN responses of Drosophila melanogaster, Ips typographus, and Culex quinquefasciatus, to known quantities of airborne stimuli. These demonstrate that inferred OSN tuning width, ligand affinity, and classification can be confounded and require stimulus quantification. Additionally, proper dose-response analysis shows that Drosophila AB3A OSNs are not promiscuous, but highly specific for ethyl hexanoate, with other earlier proposed ligands 10- to 10 000-fold less potent. Finally, we reanalyzed published Drosophila OSN data (DoOR) and demonstrate substantial shifts in affinities after compensation for quantity and puff number. We conclude that consistent experimental protocols are necessary for correct OSN classification and present some simple rules that make calibration, even retroactively, readily possible.

  7. Quantification of sunscreen ethylhexyl triazone in topical skin-care products by normal-phase TLC/densitometry.

    PubMed

    Sobanska, Anna W; Pyzowski, Jaroslaw

    2012-01-01

    Ethylhexyl triazone (ET) was separated from other sunscreens such as avobenzone, octocrylene, octyl methoxycinnamate, and diethylamino hydroxybenzoyl hexyl benzoate and from parabens by normal-phase HPTLC on silica gel 60 as stationary phase. Two mobile phases were particularly effective: (A) cyclohexane-diethyl ether 1 : 1 (v/v) and (B) cyclohexane-diethyl ether-acetone 15 : 1 : 2 (v/v/v) since apart from ET analysis they facilitated separation and quantification of other sunscreens present in the formulations. Densitometric scanning was performed at 300 nm. Calibration curves for ET were nonlinear (second-degree polynomials), with R > 0.998. For both mobile phases limits of detection (LOD) were 0.03 and limits of quantification (LOQ) 0.1 μg spot(-1). Both methods were validated.

  8. Validating an Agency-based Tool for Measuring Women's Empowerment in a Complex Public Health Trial in Rural Nepal.

    PubMed

    Gram, Lu; Morrison, Joanna; Sharma, Neha; Shrestha, Bhim; Manandhar, Dharma; Costello, Anthony; Saville, Naomi; Skordis-Worrall, Jolene

    2017-01-02

    Despite the rising popularity of indicators of women's empowerment in global development programmes, little work has been done on the validity of existing measures of such a complex concept. We present a mixed methods validation of the use of the Relative Autonomy Index for measuring Amartya Sen's notion of agency freedom in rural Nepal. Analysis of think-aloud interviews ( n  = 7) indicated adequate respondent understanding of questionnaire items, but multiple problems of interpretation including difficulties with the four-point Likert scale, questionnaire item ambiguity and difficulties with translation. Exploratory Factor Analysis of a calibration sample ( n  = 511) suggested two positively correlated factors ( r  = 0.64) loading on internally and externally motivated behaviour. Both factors increased with decreasing education and decision-making power on large expenditures and food preparation. Confirmatory Factor Analysis on a validation sample ( n  = 509) revealed good fit (Root Mean Square Error of Approximation 0.05-0.08, Comparative Fit Index 0.91-0.99). In conclusion, we caution against uncritical use of agency-based quantification of women's empowerment. While qualitative and quantitative analysis revealed overall satisfactory construct and content validity, the positive correlation between external and internal motivations suggests the existence of adaptive preferences. High scores on internally motivated behaviour may reflect internalized oppression rather than agency freedom.

  9. Validating an Agency-based Tool for Measuring Women’s Empowerment in a Complex Public Health Trial in Rural Nepal

    PubMed Central

    Gram, Lu; Morrison, Joanna; Sharma, Neha; Shrestha, Bhim; Manandhar, Dharma; Costello, Anthony; Saville, Naomi; Skordis-Worrall, Jolene

    2017-01-01

    Abstract Despite the rising popularity of indicators of women’s empowerment in global development programmes, little work has been done on the validity of existing measures of such a complex concept. We present a mixed methods validation of the use of the Relative Autonomy Index for measuring Amartya Sen’s notion of agency freedom in rural Nepal. Analysis of think-aloud interviews (n = 7) indicated adequate respondent understanding of questionnaire items, but multiple problems of interpretation including difficulties with the four-point Likert scale, questionnaire item ambiguity and difficulties with translation. Exploratory Factor Analysis of a calibration sample (n = 511) suggested two positively correlated factors (r = 0.64) loading on internally and externally motivated behaviour. Both factors increased with decreasing education and decision-making power on large expenditures and food preparation. Confirmatory Factor Analysis on a validation sample (n = 509) revealed good fit (Root Mean Square Error of Approximation 0.05–0.08, Comparative Fit Index 0.91–0.99). In conclusion, we caution against uncritical use of agency-based quantification of women’s empowerment. While qualitative and quantitative analysis revealed overall satisfactory construct and content validity, the positive correlation between external and internal motivations suggests the existence of adaptive preferences. High scores on internally motivated behaviour may reflect internalized oppression rather than agency freedom. PMID:28303173

  10. Reversed-phase HPLC analysis of levetiracetam in tablets using monolithic and conventional C18 silica columns.

    PubMed

    Can, Nafiz O; Arli, Goksel

    2010-01-01

    Development and validation of an RP-HPLC method for determination of levetiracetam in pharmaceutical tablets is described. The separation and quantification of levetiracetam and caffeine (internal standard) were performed using a single analytical procedure with two different types of stationary phases, conventional Phenomenex Gemini C18 (100 x 4.6 mm, 5 microm) and Merck Chromolith Performance RP18e (100 x 4.6 mm, macropore size 2 mm, micropore size 13 nm) monolithic silica. Five-microliter aliquots of samples were injected into the system and eluted using water-acetonitrile (90 + 10, v/v) mobile phase pumped at the rate of 1 mL/min. The analyte peaks were detected at 200 nm using a diode array detector with adequate resolution. Validation studies were performed using the method recommended by the International Conference on Harmonization, the U.S. Pharmacopeia, and AOAC INTERNATIONAL, which includes accuracy, precision, range, limits, robustness, and system suitability parameters. Levetiracetam and caffeine were detected in about 7 min using the conventional column, whereas less than 5 min was required when the monolithic column was used. Calibration plots had r values close to unity in the range of 0.8-8.0 microg/mL. Assay of levetiracetam in a tablet formulation was demonstrated as an application to real samples.

  11. Spectral reproducibility and quantification of peptides in MALDI of samples prepared by micro-spotting.

    PubMed

    Bae, Yong Jin; Park, Kyung Man; Ahn, Sung Hee; Moon, Jeong Hee; Kim, Myung Soo

    2014-08-01

    Previously, we reported that MALDI spectra of peptides became reproducible when temperature was kept constant. Linear calibration curves derived from such spectral data could be used for quantification. Homogeneity of samples was one of the requirements. Among the three popular matrices used in peptide MALDI [i.e., α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and sinapinic acid (SA)], homogeneous samples could be prepared by conventional means only for CHCA. In this work, we showed that sample preparation by micro-spotting improved the homogeneity for all three cases.

  12. Assessment of opacimeter calibration according to International Standard Organization 10155.

    PubMed

    Gomes, J F

    2001-01-01

    This paper compares the calibration method for opacimeters issued by the International Standard Organization (ISO) 10155 with the manual reference method for determination of dust content in stack gases. ISO 10155 requires at least nine operational measurements, corresponding to three operational measurements per each dust emission range within the stack. The procedure is assessed by comparison with previous calibration methods for opacimeters using only two operational measurements from a set of measurements made at stacks from pulp mills. The results show that even if the international standard for opacimeter calibration requires that the calibration curve is to be obtained using 3 x 3 points, a calibration curve derived using 3 points could be, at times, acceptable in statistical terms, provided that the amplitude of individual measurements is low.

  13. Histamine quantification in human plasma using high resolution accurate mass LC-MS technology.

    PubMed

    Laurichesse, Mathieu; Gicquel, Thomas; Moreau, Caroline; Tribut, Olivier; Tarte, Karin; Morel, Isabelle; Bendavid, Claude; Amé-Thomas, Patricia

    2016-01-01

    Histamine (HA) is a small amine playing an important role in anaphylactic reactions. In order to identify and quantify HA in plasma matrix, different methods have been developed but present several disadvantages. Here, we developed an alternative method using liquid chromatography coupled with an ultra-high resolution and accurate mass instrument, Q Exactive™ (Thermo Fisher) (LCHRMS). The method includes a protein precipitation of plasma samples spiked with HA-d4 as internal standard (IS). LC separation was performed on a C18 Accucore column (100∗2.1mm, 2.6μm) using a mobile phase containing nonafluoropentanoic acid (3nM) and acetonitrile with 0.1% (v/v) formic acid on gradient mode. Separation of analytes was obtained within 10min. Analysis was performed from full scan mode and targeted MS2 mode using a 5ppm mass window. Ion transitions monitored for targeted MS2 mode were 112.0869>95.0607m/z for HA and 116.1120>99.0855m/z for HA-d4. Calibration curves were obtained by adding standard calibration dilution at 1 to 180nM in TrisBSA. Elution of HA and IS occurred at 4.1min. The method was validated over a range of concentrations from 1nM to 100nM. The intra- and inter-run precisions were <15% for quality controls. Human plasma samples from 30 patients were analyzed by LCHRMS, and the results were highly correlated with those obtained using the gold standard radioimmunoassay (RIA) method. Overall, we demonstrate here that LCHRMS is a sensitive method for histamine quantification in biological human plasmas, suitable for routine use in medical laboratories. In addition, LCHRMS is less time-consuming than RIA, avoids the use of radioactivity, and could then be considered as an alternative quantitative method. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Development and Bioanalytical Validation of a Liquid Chromatographic-Tandem Mass Spectrometric (LC-MS/MS) Method for the Quantification of the CCR5 Antagonist Maraviroc in Human Plasma

    PubMed Central

    Emory, Joshua F.; Seserko, Lauren A.; Marzinke, Mark A.

    2014-01-01

    Background Maraviroc is a CCR5 antagonist that has been utilized as a viral entry inhibitor in the management of HIV-1. Current clinical trials are pursuing maraviroc drug efficacy in both oral and topical formulations. Therefore, in order to fully understand drug pharmacokinetics, a sensitive method is required to quantify plasma drug concentrations. Methods Maraviroc-spiked plasma was combined with acetonitrile containing an isotopically-labeled internal standard, and following protein precipitation, samples were evaporated to dryness and reconstituted for liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis. Chromatographic separation was achieved on a Waters BEH C8, 50 × 2.1 mm UPLC column, with a 1.7 μm particle size and the eluent was analyzed using an API 4000 mass analyzer in selected reaction monitoring mode. The method was validated as per FDA Bioanalytical Method Validation guidelines. Results The analytical measuring range of the LC-MS/MS method is 0.5-1000 ng/ml. Calibration curves were generated using weighted 1/x2 quadratic regression. Inter-and intra-assay precision was ≤ 5.38% and ≤ 5.98%, respectively; inter-and intra-assay accuracy (%DEV) was ≤ 10.2% and ≤ 8.44%, respectively. Additional studies illustrated similar matrix effects between maraviroc and its internal standard, and that maraviroc is stable under a variety of conditions. Method comparison studies with a reference LC-MS/MS method show a slope of 0.948 with a Spearman coefficient of 0.98. Conclusions Based on the validation metrics, we have generated a sensitive and automated LC-MS/MS method for maraviroc quantification in human plasma. PMID:24561264

  15. Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education

    ERIC Educational Resources Information Center

    Schwalbe, Michelle Kristin

    2010-01-01

    This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…

  16. Modeling ephemeral gully erosion from unpaved roads: Equifinality and implications for scenario analysis

    USDA-ARS?s Scientific Manuscript database

    Modeling gully erosion in urban areas is challenging due to difficulties with equifinality and parameter identification, which complicates quantification of management impacts on runoff and sediment production. We calibrated a model (AnnAGNPS) of an ephemeral gully network that formed on unpaved ro...

  17. Quantification of Acetaminophen and Its Metabolites in Plasma Using UPLC-MS: Doors Open to Therapeutic Drug Monitoring in Special Patient Populations.

    PubMed

    Flint, Robert B; Mian, Paola; van der Nagel, Bart; Slijkhuis, Nuria; Koch, Birgit C P

    2017-04-01

    Acetaminophen (APAP, paracetamol) is the most commonly used drug for pain and fever in both the United States and Europe and is considered safe when used at registered dosages. Nevertheless, differences between specific populations lead to remarkable changes in exposure to potentially toxic metabolites. Furthermore, extended knowledge is required on metabolite formation after intoxication, to optimize antidote treatment. Therefore, the authors aimed to develop and validate a quick and easy analytical method for simultaneous quantification of APAP, APAP-glucuronide, APAP-sulfate, APAP-cysteine, APAP-glutathione, APAP-mercapturate, and protein-derived APAP-cysteine in human plasma by ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry. The internal standard was APAP-D4 for all analytes. Chromatographic separation was achieved with a reversed-phase Acquity ultraperformance liquid chromatography HSS T3 column with a runtime of only 4.5 minutes per injected sample. Gradient elution was performed with a mobile phase consisting of ammonium acetate, formic acid in Milli-Q ultrapure water or in methanol at flow rate of 0.4 mL/minute. A plasma volume of only 10 μL was required to achieve both adequate accuracy and precision. Calibration curves of all 6 analytes were linear. All analytes were stable for at least 48 hours in the autosampler; the high quality control of APAP-glutathione was stable for 24 hours. The method was validated according to the U.S. Food and Drug Administration guidelines. This method allows quantification of APAP and 6 metabolites, which serves purposes for research, as well as therapeutic drug monitoring. The advantage of this method is the combination of minimal injection volume, a short runtime, an easy sample preparation method, and the ability to quantify APAP and all 6 metabolites.

  18. Enantiomeric separation and quantification of R/S-amphetamine in urine by ultra-high performance supercritical fluid chromatography tandem mass spectrometry.

    PubMed

    Hegstad, S; Havnen, H; Helland, A; Spigset, O; Frost, J

    2018-03-01

    To distinguish between legal and illegal consumption of amphetamine reliable analytical methods for chiral separation of the R- and S-enantiomers of amphetamine in biological specimens are required. In this regard, supercritical fluid chromatography (SFC) has several potential advantages over liquid chromatography, including rapid separation of enantiomers due to low viscosity and high diffusivity of supercritical carbon dioxide, the main component in the SFC mobile phase. A method for enantiomeric separation and quantification of R- and S-amphetamine in urine was developed and validated using ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS). Sample preparation prior to UHPSFC-MS/MS analysis was a semi-automatic solid phase extraction method. The UHPSFC-MS/MS method used a Chiralpak AD-3 column with a mobile phase consisting of CO 2 and 0.2% cyclohexylamine in 2-propanol. The injection volume was 2 μL and run-time was 6 min. MS/MS detection was performed with positive electrospray ionization and two multiple reaction monitoring transitions (m/z 136.1 > 119.0 and m/z 136.1 > 91.0). The calibration range was 50-10,000 ng/mL for each enantiomer. The between-assay relative standard deviations were in the range of 3.7-7.6%. Recovery was 92-93% and matrix effects ranged from 100 to 104% corrected with internal standard. After development and validation, the method has been successfully implemented in routine use at our laboratory for both separation and quantification of R/S-amphetamine, and has proved to be a reliable and useful tool for distinguishing intake of R- and S-amphetamine in authentic patient samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Ultrahigh-performance liquid chromatography electrospray ionization Q-Orbitrap mass spectrometry for the analysis of 451 pesticide residues in fruits and vegetables: method development and validation.

    PubMed

    Wang, Jian; Chow, Willis; Chang, James; Wong, Jon W

    2014-10-22

    This paper presents an application of ultrahigh-performance liquid chromatography electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap MS) for the determination of 451 pesticide residues in fruits and vegetables. Pesticides were extracted from samples using the QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure. UHPLC/ESI Q-Orbitrap MS in full MS scan mode acquired full MS data for quantification, and UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) (i.e., data-dependent scan mode) obtained product ion spectra for identification. UHPLC/ESI Q-Orbitrap MS quantification was achieved using matrix-matched standard calibration curves along with the use of isotopically labeled standards or a chemical analogue as internal standards to achieve optimal method accuracy. The method performance characteristics include overall recovery, intermediate precision, and measurement uncertainty evaluated according to a nested experimental design. For the 10 matrices studied, 94.5% of the pesticides in fruits and 90.7% in vegetables had recoveries between 81 and 110%; 99.3% of the pesticides in fruits and 99.1% of the pesticides in vegetables had an intermediate precision of ≤20%; and 97.8% of the pesticides in fruits and 96.4% of the pesticides in vegetables showed measurement uncertainty of ≤50%. Overall, the UHPLC/ESI Q-Orbitrap MS demonstrated acceptable performance for the quantification of pesticide residues in fruits and vegetables. The UHPLC/ESI Q-Orbitrap Full MS/dd-MS(2) along with library matching showed great potential for identification and is being investigated further for routine practice.

  20. Internal Water Vapor Photoacoustic Calibration

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  1. Aspects of the optical system relevant for the KM3NeT timing calibration

    NASA Astrophysics Data System (ADS)

    Kieft, Gerard

    2016-04-01

    KM3NeT is a future research infrastructure in the Mediterranean Sea housing the large Cherenkov telescope arrays of optical modules for neutrino detection. The detector control and data transmission system is based on fibre optical technology. For timing calibration of the detector signals the optical system is used to send and fan-out an onshore clock signal, derived from a GPS receiver, to all optical modules in the deep sea. The optical modules use this clock signal to time stamp the light pulses detected by the photomultipliers inside the modules. The delay time between the GPS clock on shore and the clock in each optical module is measured with sub-nanosecond precision using a White Rabbit based timing calibration system. The aspects of the optical system relevant for the timing calibration and the quantification of their effect will be presented.

  2. Influence of Co-57 and CT Transmission Measurements on the Quantification Accuracy and Partial Volume Effect of a Small Animal PET Scanner.

    PubMed

    Mannheim, Julia G; Schmid, Andreas M; Pichler, Bernd J

    2017-12-01

    Non-invasive in vivo positron emission tomography (PET) provides high detection sensitivity in the nano- to picomolar range and in addition to other advantages, the possibility to absolutely quantify the acquired data. The present study focuses on the comparison of transmission data acquired with an X-ray computed tomography (CT) scanner or a Co-57 source for the Inveon small animal PET scanner (Siemens Healthcare, Knoxville, TN, USA), as well as determines their influences on the quantification accuracy and partial volume effect (PVE). A special focus included the impact of the performed calibration on the quantification accuracy. Phantom measurements were carried out to determine the quantification accuracy, the influence of the object size on the quantification, and the PVE for different sphere sizes, along the field of view and for different contrast ratios. An influence of the emission activity on the Co-57 transmission measurements was discovered (deviations up to 24.06 % measured to true activity), whereas no influence of the emission activity on the CT attenuation correction was identified (deviations <3 % for measured to true activity). The quantification accuracy was substantially influenced by the applied calibration factor and by the object size. The PVE demonstrated a dependency on the sphere size, the position within the field of view, the reconstruction and correction algorithms and the count statistics. Depending on the reconstruction algorithm, only ∼30-40 % of the true activity within a small sphere could be resolved. The iterative 3D reconstruction algorithms uncovered substantially increased recovery values compared to the analytical and 2D iterative reconstruction algorithms (up to 70.46 % and 80.82 % recovery for the smallest and largest sphere using iterative 3D reconstruction algorithms). The transmission measurement (CT or Co-57 source) to correct for attenuation did not severely influence the PVE. The analysis of the quantification accuracy and the PVE revealed an influence of the object size, the reconstruction algorithm and the applied corrections. Particularly, the influence of the emission activity during the transmission measurement performed with a Co-57 source must be considered. To receive comparable results, also among different scanner configurations, standardization of the acquisition (imaging parameters, as well as applied reconstruction and correction protocols) is necessary.

  3. Quantification of febuxostat polymorphs using powder X-ray diffraction technique.

    PubMed

    Qiu, Jing-bo; Li, Gang; Sheng, Yue; Zhu, Mu-rong

    2015-03-25

    Febuxostat is a pharmaceutical compound with more than 20 polymorphs of which form A is most widely used and usually exists in a mixed polymorphic form with form G. In the present study, a quantification method for polymorphic form A and form G of febuxostat (FEB) has been developed using powder X-ray diffraction (PXRD). Prior to development of a quantification method, pure polymorphic form A and form G are characterized. A continuous scan with a scan rate of 3° min(-1) over an angular range of 3-40° 2θ is applied for the construction of the calibration curve using the characteristic peaks of form A at 12.78° 2θ (I/I0100%) and form G at 11.72° 2θ (I/I0100%). The linear regression analysis data for the calibration plots shows good linear relationship with R(2)=0.9985 with respect to peak area in the concentration range 10-60 wt.%. The method is validated for precision, recovery and ruggedness. The limits of detection and quantitation are 1.5% and 4.6%, respectively. The obtained results prove that the method is repeatable, sensitive and accurate. The proposed developed PXRD method can be applied for the quantitative analysis of mixtures of febuxostat polymorphs (forms A and G). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Simultaneous quantification of methiocarb and its metabolites, methiocarb sulfoxide and methiocarb sulfone, in five food products of animal origin using tandem mass spectrometry.

    PubMed

    Rahman, Md Musfiqur; Abd El-Aty, A M; Na, Tae-Woong; Park, Joon-Seong; Kabir, Md Humayun; Chung, Hyung Suk; Lee, Han Sol; Shin, Ho-Chul; Shim, Jae-Han

    2017-08-15

    A simultaneous analytical method was developed for the determination of methiocarb and its metabolites, methiocarb sulfoxide and methiocarb sulfone, in five livestock products (chicken, pork, beef, table egg, and milk) using liquid chromatography-tandem mass spectrometry. Due to the rapid degradation of methiocarb and its metabolites, a quick sample preparation method was developed using acetonitrile and salts followed by purification via dispersive- solid phase extraction (d-SPE). Seven-point calibration curves were constructed separately in each matrix, and good linearity was observed in each matrix-matched calibration curve with a coefficient of determination (R 2 ) ≥ 0.991. The limits of detection and quantification were 0.0016 and 0.005mg/kg, respectively, for all tested analytes in various matrices. The method was validated in triplicate at three fortification levels (equivalent to 1, 2, and 10 times the limit of quantification) with a recovery rate ranging between 76.4-118.0% and a relative standard deviation≤10.0%. The developed method was successfully applied to market samples, and no residues of methiocarb and/or its metabolites were observed in the tested samples. In sum, this method can be applied for the routine analysis of methiocarb and its metabolites in foods of animal origins. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Simultaneous quantification of selective serotonin reuptake inhibitors and metabolites in human plasma by liquid chromatography-electrospray mass spectrometry for therapeutic drug monitoring.

    PubMed

    Ansermot, Nicolas; Brawand-Amey, Marlyse; Eap, Chin B

    2012-02-15

    A simple and sensitive liquid chromatography-electrospray ionization mass spectrometry method was developed for the simultaneous quantification in human plasma of all selective serotonin reuptake inhibitors (citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline) and their main active metabolites (desmethyl-citalopram and norfluoxetine). A stable isotope-labeled internal standard was used for each analyte to compensate for the global method variability, including extraction and ionization variations. After sample (250μl) pre-treatment with acetonitrile (500μl) to precipitate proteins, a fast solid-phase extraction procedure was performed using mixed mode Oasis MCX 96-well plate. Chromatographic separation was achieved in less than 9.0min on a XBridge C18 column (2.1×100mm; 3.5μm) using a gradient of ammonium acetate (pH 8.1; 50mM) and acetonitrile as mobile phase at a flow rate of 0.3ml/min. The method was fully validated according to Société Française des Sciences et Techniques Pharmaceutiques protocols and the latest Food and Drug Administration guidelines. Six point calibration curves were used to cover a large concentration range of 1-500ng/ml for citalopram, desmethyl-citalopram, paroxetine and sertraline, 1-1000ng/ml for fluoxetine and fluvoxamine, and 2-1000ng/ml for norfluoxetine. Good quantitative performances were achieved in terms of trueness (84.2-109.6%), repeatability (0.9-14.6%) and intermediate precision (1.8-18.0%) in the entire assay range including the lower limit of quantification. Internal standard-normalized matrix effects were lower than 13%. The accuracy profiles (total error) were mainly included in the acceptance limits of ±30% for biological samples. The method was successfully applied for routine therapeutic drug monitoring of more than 1600 patient plasma samples over 9 months. The β-expectation tolerance intervals determined during the validation phase were coherent with the results of quality control samples analyzed during routine use. This method is therefore precise and suitable both for therapeutic drug monitoring and pharmacokinetic studies in most clinical laboratories. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A quantitative, selective and fast ultra-high performance liquid chromatography tandem mass spectrometry method for the simultaneous analysis of 33 basic drugs in hair (amphetamines, cocaine, opiates, opioids and metabolites).

    PubMed

    Fernández, María Del Mar Ramírez; Di Fazio, Vincent; Wille, Sarah M R; Kummer, Natalie; Samyn, Nele

    2014-08-15

    Forensic testing for drugs of abuse in hair has become a useful diagnostic tool in determining chronic drug use as well as examining long-term drug history thorough segmental analysis. However, sensitive and specific analytical methods are needed. A simple, rapid and highly sensitive and specific method for the extraction and quantification of 33 opioids, opiates, cocaine, and amphetamines is presented. The method was fully validated according to international guidelines. Twenty milligrams of hair sample was pulverized and then incubated in the same disposable tube with methanol (under sonication at 45°C) during 4h. After centrifugation the supernatant was evaporated up to about 100 μL and a solid phase extraction (SPE) followed by separation and quantification using ultra performance liquid chromatography-tandem mass spectrometry (UHLC-MS/MS) were carried out. Chromatographic separation was achieved using a BEH phenyl column eluted with 0.1% formic acid: methanol (0.1% formic acid). Selectivity of the method was achieved by a combination of retention time, and two precursor-product ion transitions. Good intra-assay and inter-assay precision (relative standard deviations (RSDs) were observed (<15%) for most of the compounds. The lower limit of quantification was fixed at the lowest calibrator in the linearity experiments and it ranged from 0.006 to 0.063 ng/mg. No instability was observed in processed samples. Extraction efficiency varied from 37 to 107% (except for EDDP with a recovery of 5%) and matrix effects ranged from 52 to 160%, and for most of the compounds it was compensated by the internal standard (IS). The method was subsequently applied to authentic hair samples obtained from forensic and toxicology cases and to proficiency test (obtaining z-scores lower than 1 for most of the compounds). The validation and actual sample analysis results show that this method is rugged, precise, accurate, and well-suited for routine hair analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A calibration rig for multi-component internal strain gauge balance using the new design-of-experiment (DOE) approach

    NASA Astrophysics Data System (ADS)

    Nouri, N. M.; Mostafapour, K.; Kamran, M.

    2018-02-01

    In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.

  8. Validation of an assay for quantification of free normetanephrine, metanephrine and methoxytyramine in plasma by high performance liquid chromatography with coulometric detection: Comparison of peak-area vs. peak-height measurements.

    PubMed

    Nieć, Dawid; Kunicki, Paweł K

    2015-10-01

    Measurements of plasma concentrations of free normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MTY) constitute the most diagnostically accurate screening test for pheochromocytomas and paragangliomas. The aim of this article is to present the results from a validation of an analytical method utilizing high performance liquid chromatography with coulometric detection (HPLC-CD) for quantifying plasma free NMN, MN and MTY. Additionally, peak integration by height and area and the use of one calibration curve for all batches or individual calibration curve for each batch of samples was explored as to determine the optimal approach with regard to accuracy and precision. The method was validated using charcoal stripped plasma spiked with solutions of NMN, MN, MTY and internal standard (4-hydroxy-3-methoxybenzylamine) with the exception of selectivity which was evaluated by analysis of real plasma samples. Calibration curve performance, accuracy, precision and recovery were determined following both peak-area and peak-height measurements and the obtained results were compared. The most accurate and precise method of calibration was evaluated by analyzing quality control samples at three concentration levels in 30 analytical runs. The detector response was linear over the entire tested concentration range from 10 to 2000pg/mL with R(2)≥0.9988. The LLOQ was 10pg/mL for each analyte of interest. To improve accuracy for measurements at low concentrations, a weighted (1/amount) linear regression model was employed, which resulted in inaccuracies of -2.48 to 9.78% and 0.22 to 7.81% following peak-area and peak-height integration, respectively. The imprecisions ranged from 1.07 to 15.45% and from 0.70 to 11.65% for peak-area and peak-height measurements, respectively. The optimal approach to calibration was the one utilizing an individual calibration curve for each batch of samples and peak-height measurements. It was characterized by inaccuracies ranging from -3.39 to +3.27% and imprecisions from 2.17 to 13.57%. The established HPLC-CD method enables accurate and precise measurements of plasma free NMN, MN and MTY with reasonable selectivity. Preparing calibration curve based on peak-height measurements for each batch of samples yields optimal accuracy and precision. Copyright © 2015. Published by Elsevier B.V.

  9. Are LOD and LOQ Reliable Parameters for Sensitivity Evaluation of Spectroscopic Methods?

    PubMed

    Ershadi, Saba; Shayanfar, Ali

    2018-03-22

    The limit of detection (LOD) and the limit of quantification (LOQ) are common parameters to assess the sensitivity of analytical methods. In this study, the LOD and LOQ of previously reported terbium sensitized analysis methods were calculated by different methods, and the results were compared with sensitivity parameters [lower limit of quantification (LLOQ)] of U.S. Food and Drug Administration guidelines. The details of the calibration curve and standard deviation of blank samples of three different terbium-sensitized luminescence methods for the quantification of mycophenolic acid, enrofloxacin, and silibinin were used for the calculation of LOD and LOQ. A comparison of LOD and LOQ values calculated by various methods and LLOQ shows a considerable difference. The significant difference of the calculated LOD and LOQ with various methods and LLOQ should be considered in the sensitivity evaluation of spectroscopic methods.

  10. Quantification of Sunscreen Ethylhexyl Triazone in Topical Skin-Care Products by Normal-Phase TLC/Densitometry

    PubMed Central

    Sobanska, Anna W.; Pyzowski, Jaroslaw

    2012-01-01

    Ethylhexyl triazone (ET) was separated from other sunscreens such as avobenzone, octocrylene, octyl methoxycinnamate, and diethylamino hydroxybenzoyl hexyl benzoate and from parabens by normal-phase HPTLC on silica gel 60 as stationary phase. Two mobile phases were particularly effective: (A) cyclohexane-diethyl ether 1 : 1 (v/v) and (B) cyclohexane-diethyl ether-acetone 15 : 1 : 2 (v/v/v) since apart from ET analysis they facilitated separation and quantification of other sunscreens present in the formulations. Densitometric scanning was performed at 300 nm. Calibration curves for ET were nonlinear (second-degree polynomials), with R > 0.998. For both mobile phases limits of detection (LOD) were 0.03 and limits of quantification (LOQ) 0.1 μg spot−1. Both methods were validated. PMID:22629203

  11. Toward Increasing Fairness in Score Scale Calibrations Employed in International Large-Scale Assessments

    ERIC Educational Resources Information Center

    Oliveri, Maria Elena; von Davier, Matthias

    2014-01-01

    In this article, we investigate the creation of comparable score scales across countries in international assessments. We examine potential improvements to current score scale calibration procedures used in international large-scale assessments. Our approach seeks to improve fairness in scoring international large-scale assessments, which often…

  12. SPRT Calibration Uncertainties and Internal Quality Control at a Commercial SPRT Calibration Facility

    NASA Astrophysics Data System (ADS)

    Wiandt, T. J.

    2008-06-01

    The Hart Scientific Division of the Fluke Corporation operates two accredited standard platinum resistance thermometer (SPRT) calibration facilities, one at the Hart Scientific factory in Utah, USA, and the other at a service facility in Norwich, UK. The US facility is accredited through National Voluntary Laboratory Accreditation Program (NVLAP), and the UK facility is accredited through UKAS. Both provide SPRT calibrations using similar equipment and procedures, and at similar levels of uncertainty. These uncertainties are among the lowest available commercially. To achieve and maintain low uncertainties, it is required that the calibration procedures be thorough and optimized. However, to minimize customer downtime, it is also important that the instruments be calibrated in a timely manner and returned to the customer. Consequently, subjecting the instrument to repeated calibrations or extensive repeated measurements is not a viable approach. Additionally, these laboratories provide SPRT calibration services involving a wide variety of SPRT designs. These designs behave differently, yet predictably, when subjected to calibration measurements. To this end, an evaluation strategy involving both statistical process control and internal consistency measures is utilized to provide confidence in both the instrument calibration and the calibration process. This article describes the calibration facilities, procedure, uncertainty analysis, and internal quality assurance measures employed in the calibration of SPRTs. Data will be reviewed and generalities will be presented. Finally, challenges and considerations for future improvements will be discussed.

  13. A validated method for the quantification of fosfomycin on dried plasma spots by HPLC-MS/MS: application to a pilot pharmacokinetic study in humans.

    PubMed

    Parker, Suzanne L; Lipman, Jeffrey; Dimopoulos, George; Roberts, Jason A; Wallis, Steven C

    2015-11-10

    Quantification of fosfomycin in the plasma samples of patients is the basis of clinical pharmacokinetic studies from which evidence based dosing regimens can be devised to maximise antibiotic effectiveness against a pathogen. We have developed and validated a LC-MS/MS method to quantify fosfomycin using dried plasma spot sampling. Following HILIC chromatography, fosfomycin and ethylphosphonic acid, used as internal standard, were measured using negative-ion multiple reaction monitoring. The method was linear over the calibration range of 5-2000mg/L of fosfomycin. Intra-day assay results for dried plasma spot quality control samples at 15.6, 79.9 and 1581mg/L of fosfomycin had precision of ±4.2, 8.2, and 2.0%, respectively, and accuracy of +3.9, -0.1, and -1.2%, respectively. Recovery of fosfomycin from dried plasma spots was calculated as 83.6% and the dried plasma spot samples were found to be stable stored at room temperature for three months and when stored for four hours at 50°C. A Bland-Altman plot comparing DPS to plasma sampling found a negative bias of 16.6%, with all but one sample within the mean limits of agreement (-2.6 to 30.6%). Dried plasma spot sampling provides a useful tool for pharmacokinetic research of fosfomycin. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A simple and robust high-performance liquid chromatography coupled to a diode-array detector method for the analysis of genistein in mouse tissues.

    PubMed

    Tamames-Tabar, C; Imbuluzqueta, E; Campanero, M A; Horcajada, P; Blanco-Prieto, M J

    2013-09-15

    A simple liquid-liquid extraction procedure and quantification by high-performance liquid chromatography (HPLC) method coupled to a diode-array detector (DAD) of genistein (GEN) was developed in various mouse biological matrices. 7-ethoxycoumarin was used as internal standard (IS) and peaks were optimally separated using a Kinetex C18 column (2.6μm, 150mm×2.10mm I.D.) at 40°C with an isocratic elution of mobile phase with sodium dihydrogen phosphate 0.01M in water at pH 2.5 and methanol (55:45, v/v), at a flow rate of 0.25mL/min. The injection volume was 10μL. In all cases, the range of GEN recovery was higher than 61%. The low limit of quantification (LLOQ) was 25ng/mL. The linearity of the calibration curves was satisfactory in all cases as shown by correlation coefficients >0.996. The within-day and between-day precisions were <15% and the accuracy ranged in all cases between 90.14% and 106.05%. This method was successfully applied to quantify GEN in liver, spleen, kidney and plasma after intravenous administration of a single dose (30mg/kg) in female BALB/C mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Liquid chromatography-tandem mass spectrometry for the quantification of moxifloxacin, ciprofloxacin, daptomycin, caspofungin, and isavuconazole in human plasma.

    PubMed

    Hösl, Julian; Gessner, André; El-Najjar, Nahed

    2018-05-12

    A simple and precise ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous analysis of five anti-infective agents used to treat severe infections [three antibiotics (daptomycin, moxifloxacin, ciprofloxacin) and two antifungals (isavuconazole, caspofungin)] in human plasma. Sample preparation was based on protein precipitation with ice cold methanol. All five agents were analyzed with the corresponding isotopically labeled internal standards. All analytes were detected in multiple reactions monitoring (MRM) using API 4000 triple-quadrupole mass spectrometer with electrospray (ESI) source operating in positive mode. The calibration curves were linear over the selected ranges (r > 0.99). The method is precise and accurate with a total run time of 5.5 min. Accuracy of all target analytes ranged between 95.9-116.6%, measured with an imprecision of less than 10.8%. The lower limit of quantification was 1.25 mg/L for caspofungin, 0.3125 mg/L for isavuconazole, 3.125 mg/L for daptomycin, 0.075 mg/L for ciprofloxacin, and 0.1875 mg/L for moxifloxacin. The successful application of the method in patient samples proved its suitability for the medical surveillance of antimicrobial therapy in intensive care units as well as to other pharmacokinetic studies. Copyright © 2018. Published by Elsevier B.V.

  16. A Simple and Specific Stability- Indicating RP-HPLC Method for Routine Assay of Adefovir Dipivoxil in Bulk and Tablet Dosage Form.

    PubMed

    Darsazan, Bahar; Shafaati, Alireza; Mortazavi, Seyed Alireza; Zarghi, Afshin

    2017-01-01

    A simple and reliable stability-indicating RP-HPLC method was developed and validated for analysis of adefovir dipivoxil (ADV).The chromatographic separation was performed on a C 18 column using a mixture of acetonitrile-citrate buffer (10 mM at pH 5.2) 36:64 (%v/v) as mobile phase, at a flow rate of 1.5 mL/min. Detection was carried out at 260 nm and a sharp peak was obtained for ADV at a retention time of 5.8 ± 0.01 min. No interferences were observed from its stress degradation products. The method was validated according to the international guidelines. Linear regression analysis of data for the calibration plot showed a linear relationship between peak area and concentration over the range of 0.5-16 μg/mL; the regression coefficient was 0.9999and the linear regression equation was y = 24844x-2941.3. The detection (LOD) and quantification (LOQ) limits were 0.12 and 0.35 μg/mL, respectively. The results proved the method was fast (analysis time less than 7 min), precise, reproducible, and accurate for analysis of ADV over a wide range of concentration. The proposed specific method was used for routine quantification of ADV in pharmaceutical bulk and a tablet dosage form.

  17. Working towards accreditation by the International Standards Organization 15189 Standard: how to validate an in-house developed method an example of lead determination in whole blood by electrothermal atomic absorption spectrometry.

    PubMed

    Garcia Hejl, Carine; Ramirez, Jose Manuel; Vest, Philippe; Chianea, Denis; Renard, Christophe

    2014-09-01

    Laboratories working towards accreditation by the International Standards Organization (ISO) 15189 standard are required to demonstrate the validity of their analytical methods. The different guidelines set by various accreditation organizations make it difficult to provide objective evidence that an in-house method is fit for the intended purpose. Besides, the required performance characteristics tests and acceptance criteria are not always detailed. The laboratory must choose the most suitable validation protocol and set the acceptance criteria. Therefore, we propose a validation protocol to evaluate the performance of an in-house method. As an example, we validated the process for the detection and quantification of lead in whole blood by electrothermal absorption spectrometry. The fundamental parameters tested were, selectivity, calibration model, precision, accuracy (and uncertainty of measurement), contamination, stability of the sample, reference interval, and analytical interference. We have developed a protocol that has been applied successfully to quantify lead in whole blood by electrothermal atomic absorption spectrometry (ETAAS). In particular, our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics.

  18. Rapid quantitation of atorvastatin in process pharmaceutical powder sample using Raman spectroscopy and evaluation of parameters related to accuracy of analysis.

    PubMed

    Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo

    2018-07-05

    The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p=0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Rapid quantitation of atorvastatin in process pharmaceutical powder sample using Raman spectroscopy and evaluation of parameters related to accuracy of analysis

    NASA Astrophysics Data System (ADS)

    Lim, Young-Il; Han, Janghee; Woo, Young-Ah; Kim, Jaejin; Kang, Myung Joo

    2018-07-01

    The purpose of this study was to determine the atorvastatin (ATV) content in process pharmaceutical powder sample using Raman spectroscopy. To establish the analysis method, the influence of the type of Raman measurements (back-scattering or transmission mode), preparation of calibration sample (simple admixing or granulation), sample pre-treatment (pelletization), and spectral pretreatment on the Raman spectra was investigated. The characteristic peak of the active compound was more distinctively detected in transmission Raman mode with a laser spot size of 4 mm than in the back-scattering method. Preparation of calibration samples by wet granulation, identical to the actual manufacturing process, provided unchanged spectral patterns for the in process sample, with no changes and/or shifts in the spectrum. Pelletization before Raman analysis remarkably improved spectral reproducibility by decreasing the difference in density between the samples. Probabilistic quotient normalization led to accurate and consistent quantification of the ATV content in the calibration samples (standard error of cross validation: 1.21%). Moreover, the drug content in the granules obtained from five commercial batches were reliably quantified, with no statistical difference (p = 0.09) with that obtained by HPLC assay. From these findings, we suggest that transmission Raman analysis may be a fast and non-invasive method for the quantification of ATV in actual manufacturing processes.

  20. Calibration and Forward Uncertainty Propagation for Large-eddy Simulations of Engineering Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, Jeremy Alan; Blaylock, Myra L.; Domino, Stefan P.

    2015-09-01

    The objective of this work is to investigate the efficacy of using calibration strategies from Uncertainty Quantification (UQ) to determine model coefficients for LES. As the target methods are for engineering LES, uncertainty from numerical aspects of the model must also be quantified. 15 The ultimate goal of this research thread is to generate a cost versus accuracy curve for LES such that the cost could be minimized given an accuracy prescribed by an engineering need. Realization of this goal would enable LES to serve as a predictive simulation tool within the engineering design process.

  1. Chemometrics resolution and quantification power evaluation: Application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p-aminophenol

    NASA Astrophysics Data System (ADS)

    Yehia, Ali M.; Mohamed, Heba M.

    2016-01-01

    Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.

  2. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    DOE PAGES

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less

  3. Criteria for the use of regression analysis for remote sensing of sediment and pollutants

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.; Lecroy, S. R. (Principal Investigator)

    1982-01-01

    Data analysis procedures for quantification of water quality parameters that are already identified and are known to exist within the water body are considered. The liner multiple-regression technique was examined as a procedure for defining and calibrating data analysis algorithms for such instruments as spectrometers and multispectral scanners.

  4. International documentary standards and comparison of national physical measurement standards for the calibration of accelerometers

    NASA Astrophysics Data System (ADS)

    Evans, David J.

    2002-11-01

    The documentary standards defining internationally adopted methodologies and protocols for calibrating transducers used to measure vibration are currently developed under the International Organization for Standardization (ISO) Technical Committee 108 Sub Committee 3 (Use and calibration of vibration and shock measuring instruments). Recent revisions of the documentary standards on primary methods for the calibration of accelerometers used to measure rectilinear motion have been completed. These standards can be, and have been, used as references in the technical protocols of key international and regional comparisons between National Measurement Institutes (NMIs) on the calibration of accelerometers. These key comparisons are occurring in part as a result of the creation of the Mutual Recognition Arrangement between NMIs which has appendices that document the uncertainties, and the comparisons completed in support of the uncertainties, claimed by the National Laboratories that are signatories of the MRA. The measurements for the first international and the first Interamerican System of Metrology (SIM) regional key comparisons in vibration have been completed. These intercomparisons were promulgated via the relatively new Consultative Committee for Acoustics, Ultrasound and Vibration (CCAUV) of the International Committee for Weights and Measures (CIPM) and SIM Metrology Working Group (MWG) 9, respectively.

  5. Method validation using weighted linear regression models for quantification of UV filters in water samples.

    PubMed

    da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues

    2015-01-01

    This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A porphyrin-based fluorescence method for zinc determination in commercial propolis extracts without sample pretreatment.

    PubMed

    Pierini, Gastón Darío; Pinto, Victor Hugo A; Maia, Clarissa G C; Fragoso, Wallace D; Reboucas, Julio S; Centurión, María Eugenia; Pistonesi, Marcelo Fabián; Di Nezio, María Susana

    2017-11-01

    The quantification of zinc in over-the-counter drugs as commercial propolis extracts by molecular fluorescence technique using meso-tetrakis(4-carboxyphenyl)porphyrin (H 2 TCPP 4 ) was developed for the first time. The calibration curve is linear from 6.60 to 100 nmol L -1 of Zn 2+ . The detection and quantification limits were 6.22 nmol L -1 and 19.0 nmol L -1 , respectively. The reproducibility and repeatability calculated as the percentage variation of slopes of seven calibration curves were 6.75% and 4.61%, respectively. Commercial propolis extract samples from four Brazilian states were analyzed and the results (0.329-0.797 mg/100 mL) obtained with this method are in good agreement with that obtained with the Atomic Absorption Spectroscopy (AAS) technique. The method is simple, fast, of low cost and allows the analysis of the samples without pretreatment. Moreover the major advantage is that Zn-porphyrin complex presents fluorescent characteristic promoting the selectivity and sensitivity of the method. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Laser-induced plasma characterization through self-absorption quantification

    NASA Astrophysics Data System (ADS)

    Hou, JiaJia; Zhang, Lei; Zhao, Yang; Yan, Xingyu; Ma, Weiguang; Dong, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang

    2018-07-01

    A self-absorption quantification method is proposed to quantify the self-absorption degree of spectral lines, in which plasma characteristics including electron temperature, elemental concentration ratio, and absolute species number density can be deduced directly. Since there is no spectral intensity involved in the calculation, the analysis results are independent of the self-absorption effects and the additional spectral efficiency calibration is not required. In order to evaluate the practicality, the limitation for application and the precision of this method are also discussed. Experimental results of aluminum-lithium alloy prove that the proposed method is qualified to realize semi-quantitative measurements and fast plasma characteristics diagnostics.

  8. Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS.

    PubMed

    Sánchez-Patán, Fernando; Monagas, María; Moreno-Arribas, M Victoria; Bartolomé, Begoña

    2011-03-23

    The aim of the present work was to develop a reproducible, sensitive, and rapid UPLC-ESI-TQ MS analytical method for determination of microbial phenolic acids and other related compounds in faeces. A total of 47 phenolic compounds including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic, and hydroxymandelic acids and simple phenols were considered. To prepare an optimum pool standard solution, analytes were classified in 5 different groups with different starting concentrations according to their MS response. The developed UPLC method allowed a high resolution of the pool standard solution within an 18 min injection run time. The LOD of phenolic compounds ranged from 0.001 to 0.107 μg/mL and LOQ from 0.003 to 0.233 μg/mL. The method precision met acceptance criteria (<15% RSD) for all analytes, and accuracy was >80%. The method was applied to faecal samples collected before and after the intake of a flavan-3-ol supplement by a healthy volunteer. Both external and internal calibration methods were considered for quantification purposes, using 4-hydroxybenzoic-2,3,4,5-d4 acid as internal standard. For most analytes and samples, the level of microbial phenolic acids did not differ by using one or another calibration method. The results revealed an increase in protocatechuic, syringic, benzoic, p-coumaric, phenylpropionic, 3-hydroxyphenylacetic, and 3-hydroxyphenylpropionic acids, although differences due to the intake were only significant for the latter compound. In conclusion, the UPLC-DAD-ESI-TQ MS method developed is suitable for targeted analysis of microbial-derived phenolic metabolites in faecal samples from human intervention or in vitro fermentation studies, which requires high sensitivity and throughput.

  9. The Effect of Pressure and Temperature on Mid-Infrared Sensing of Dissolved Hydrocarbons in Water.

    PubMed

    Heath, Charles; Myers, Matthew; Pejcic, Bobby

    2017-12-19

    Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy using a polymer coated internal reflection element/waveguide is an established sensor platform for the detection of a range of organic and hydrocarbon molecules dissolved in water. The polymer coating serves two purposes: to concentrate hydrocarbons from the aqueous phase and to exclude water along with other interfering molecules from the surface of the internal reflection element. Crucial to reliable quantification and analytical performance is the calibration of the ATR-FTIR sensor which is commonly performed in water under mild ambient conditions (i.e., 25 °C and 1 atm). However, there is a pressing need to monitor environmental and industrial processes/events that may occur at high pressures and temperatures where this calibration approach is unsuitable. Using a ruggedized optical fiber probe with a diamond-based ATR, we have conducted mid-infrared sensor experiments to understand the influence of high pressure (up to 207 bar) and temperature (up to 80 °C) on the detection of toluene and naphthalene dissolved in water. Using a poly(isobutylene) film, we have shown that the IR spectroscopic response is relatively unaffected by changes in pressure; however, a diminished response was observed with increasing temperature. We reveal that changes in the refractive index of the polymer film with temperature have only a minor effect on sensitivity. A more plausible explanation for the observed significant change in sensor response with temperature is that the partitioning process is exothermic and becomes less favorable with increasing temperature. This Article shows that the sensitivity is relatively invariant to pressure; however, the thermal variations are significant and need to be considered when quantifying the concentration of hydrocarbons in water.

  10. Uncertainty quantification and propagation in dynamic models using ambient vibration measurements, application to a 10-story building

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas

    2018-07-01

    This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.

  11. Use of internal references for assessing CT density measurements of the pelvis as replacement for use of an external phantom.

    PubMed

    Boomsma, Martijn F; Slouwerhof, Inge; van Dalen, Jorn A; Edens, Mireille A; Mueller, Dirk; Milles, Julien; Maas, Mario

    2015-11-01

    The purpose of this research is to study the use of an internal reference standard for fat- and muscle as a replacement for an external reference standard with a phantom. By using a phantomless internal reference standard, Hounsfield unit (HU) measurements of various tissues can potentially be assessed in patients with a CT scan of the pelvis without an added phantom at time of CT acquisition. This paves the way for development of a tool for quantification of the change in tissue density in one patient over time and between patients. This could make every CT scan made without contrast available for research purposes. Fifty patients with unilateral metal-on-metal total hip replacements, scanned together with a calibration reference phantom used in bone mineral density measurements, were included in this study. On computed tomography scans of the pelvis without the use of intravenous iodine contrast, reference values for fat and muscle were measured in the phantom as well as within the patient's body. The conformity between the references was examined with the intra-class correlation coefficient. The mean HU (± SD) of reference values for fat for the internal- and phantom references were -91.5 (±7.0) and -90.9 (±7.8), respectively. For muscle, the mean HU (± SD) for the internal- and phantom references were 59.2 (±6.2) and 60.0 (±7.2), respectively. The intra-class correlation coefficients for fat and muscle were 0.90 and 0.84 respectively and show excellent agreement between the phantom and internal references. Internal references can be used with similar accuracy as references from an external phantom. There is no need to use an external phantom to asses CT density measurements of body tissue.

  12. Rapid planar chromatographic analysis of 25 water-soluble dyes used as food additives.

    PubMed

    Morlock, Gertrud E; Oellig, Claudia

    2009-01-01

    A rapid planar chromatographic method for identification and quantification of 25 water-soluble dyes in food was developed. In a horizontal developing chamber, the chromatographic separation on silica gel 60F254 high-performance thin-layer chromatography plates took 12 min for 40 runs in parallel, using 8 mL ethyl acetate-methanol-water-acetic acid (65 + 23 + 11 + 1, v/v/v/v) mobile phase up to a migration distance of 50 mm. However, the total analysis time, inclusive of application and evaluation, took 60 min for 40 runs. Thus, the overall time/run can be calculated as 1.5 min with a solvent consumption of 200 microL. A sample throughput of 1000 runs/8 h day can be reached by switching between the working stations (application, development, and evaluation) in a 20 min interval, which triples the analysis throughput. Densitometry was performed by absorption measurement using the multiwavelength scan mode in the UV and visible ranges. Repeatabilities [relative standard deviation (RSD), 4 determinations] at the first or second calibration level showed precisions of mostly < or = 2.7%, ranging between 0.2 and 5.2%. Correlation coefficient values (R > or = 0.9987) and RSD values (< or = 4.2%) of the calibration curves were highly satisfactory using classical quantification. However, digital evaluation of the plate image was also used for quantification, which resulted in RSD values of the calibration curves of mostly < or = 3.0%, except for two < or = 6.0%. The method was applied for the analysis of some energy drinks and bakery ink formulations, directly applied after dilution. By recording of absorbance spectra in the visible range, the identities of the dyes found in the samples were ascertained by comparison with the respective standard bands (correlation coefficients > or = 0.9996). If necessary for confirmation, online mass spectra were recorded within a minute.

  13. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine.

    PubMed

    Joyce, Richard; Kuziene, Viktorija; Zou, Xin; Wang, Xueting; Pullen, Frank; Loo, Ruey Leng

    2016-01-01

    An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (<15 %) and precision (<15 %) were observed using three quality control samples at a concentration of low, medium and high range of the calibration curve. The limits of detection (LOD) and lower limit of quantification of our method were ranging from approximately 1-300 nM and 0.01-0.5 µM, respectively. The stability of amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.

  14. Application of FTIR-ATR spectroscopy coupled with multivariate analysis for rapid estimation of butter adulteration.

    PubMed

    Fadzlillah, Nurrulhidayah Ahmad; Rohman, Abdul; Ismail, Amin; Mustafa, Shuhaimi; Khatib, Alfi

    2013-01-01

    In dairy product sector, butter is one of the potential sources of fat soluble vitamins, namely vitamin A, D, E, K; consequently, butter is taken into account as high valuable price from other dairy products. This fact has attracted unscrupulous market players to blind butter with other animal fats to gain economic profit. Animal fats like mutton fat (MF) are potential to be mixed with butter due to the similarity in terms of fatty acid composition. This study focused on the application of FTIR-ATR spectroscopy in conjunction with chemometrics for classification and quantification of MF as adulterant in butter. The FTIR spectral region of 3910-710 cm⁻¹ was used for classification between butter and butter blended with MF at various concentrations with the aid of discriminant analysis (DA). DA is able to classify butter and adulterated butter without any mistakenly grouped. For quantitative analysis, partial least square (PLS) regression was used to develop a calibration model at the frequency regions of 3910-710 cm⁻¹. The equation obtained for the relationship between actual value of MF and FTIR predicted values of MF in PLS calibration model was y = 0.998x + 1.033, with the values of coefficient of determination (R²) and root mean square error of calibration are 0.998 and 0.046% (v/v), respectively. The PLS calibration model was subsequently used for the prediction of independent samples containing butter in the binary mixtures with MF. Using 9 principal components, root mean square error of prediction (RMSEP) is 1.68% (v/v). The results showed that FTIR spectroscopy can be used for the classification and quantification of MF in butter formulation for verification purposes.

  15. Quantification of the Triazole Antifungal Compounds Voriconazole and Posaconazole in Human Serum or Plasma Using Liquid Chromatography Electrospray Tandem Mass Spectrometry (HPLC-ESI-MS/MS).

    PubMed

    Molinelli, Alejandro R; Rose, Charles H

    2016-01-01

    Voriconazole and posaconazole are triazole antifungal compounds used in the treatment of fungal infections. Therapeutic drug monitoring of both compounds is recommended in order to guide drug dosing to achieve optimal blood concentrations. In this chapter we describe an HPLC-ESI-MS/MS method for the quantification of both compounds in human plasma or serum following a simple specimen preparation procedure. Specimen preparation consists of protein precipitation using methanol and acetonitrile followed by a cleanup step that involves filtration through a cellulose acetate membrane. The specimen is then injected into an HPLC-ESI-MS/MS equipped with a C18 column and separated over an acetonitrile gradient. Quantification of the drugs in the specimen is achieved by comparing the response of the unknown specimen to that of the calibrators in the standard curve using multiple reaction monitoring.

  16. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study.

    PubMed

    Ding, Huanjun; Molloi, Sabee

    2012-08-07

    A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio of the dual energy image with respect to the square root of mean glandular dose, was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. For an average sized 4.5 cm thick breast, the FOM was maximized with a tube voltage of 46 kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (∼32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique.

  17. Detection and quantification of a toxic salt substitute (LiCl) by using laser induced breakdown spectroscopy (LIBS).

    PubMed

    Sezer, Banu; Velioglu, Hasan Murat; Bilge, Gonca; Berkkan, Aysel; Ozdinc, Nese; Tamer, Ugur; Boyaci, Ismail Hakkı

    2018-01-01

    The use of Li salts in foods has been prohibited due to their negative effects on central nervous system; however, they might still be used especially in meat products as Na substitutes. Lithium can be toxic and even lethal at higher concentrations and it is not approved in foods. The present study focuses on Li analysis in meatballs by using laser induced breakdown spectroscopy (LIBS). Meatball samples were analyzed using LIBS and flame atomic absorption spectroscopy. Calibration curves were obtained by utilizing Li emission lines at 610nm and 670nm for univariate calibration. The results showed that Li calibration curve at 670nm provided successful determination of Li with 0.965 of R 2 and 4.64ppm of limit of detection (LOD) value. While Li Calibration curve obtained using emission line at 610nm generated R 2 of 0.991 and LOD of 22.6ppm, calibration curve obtained at 670nm below 1300ppm generated R 2 of 0.965 and LOD of 4.64ppm. Copyright © 2017. Published by Elsevier Ltd.

  18. Automated saliva processing for LC-MS/MS: Improving laboratory efficiency in cortisol and cortisone testing.

    PubMed

    Antonelli, Giorgia; Padoan, Andrea; Artusi, Carlo; Marinova, Mariela; Zaninotto, Martina; Plebani, Mario

    2016-04-01

    The aim of this study was to implement in our routine practice an automated saliva preparation protocol for quantification of cortisol (F) and cortisone (E) by LC-MS/MS using a liquid handling platform, maintaining the previously defined reference intervals with the manual preparation. Addition of internal standard solution to saliva samples and calibrators and SPE on μ-elution 96-well plate were performed by liquid handling platform. After extraction, the eluates were submitted to LC-MS/MS analysis. The manual steps within the entire process were to transfer saliva samples in suitable tubes, to put the cap mat and transfer of the collection plate to the LC auto sampler. Transference of the reference intervals from the manual to the automated procedure was established by Passing Bablok regression on 120 saliva samples analyzed simultaneously with the two procedures. Calibration curves were linear throughout the selected ranges. The imprecision ranged from 2 to 10%, with recoveries from 95 to 116%. Passing Bablok regression demonstrated no significant bias. The liquid handling platform translates the manual steps into automated operations allowing for saving hands-on time, while maintaining assay reproducibility and ensuring reliability of results, making it implementable in our routine with the previous established reference intervals. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Skin microrelief as a diagnostic tool (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tchvialeva, Lioudmila; Phillips, Jamie; Zeng, Haishan; McLean, David; Lui, Harvey; Lee, Tim K.

    2017-02-01

    Skin surface roughness is an important property for differentiating skin diseases. Recently, roughness has also been identified as a potential diagnostic indicator in the early detection of skin cancer. Objective quantification is usually carried out by creating silicone replicas of the skin and then measuring the replicas. We have developed an alternative in-vivo technique to measure skin roughness based on laser speckle. Laser speckle is the interference pattern produced when coherent light is used to illuminate a rough surface and the backscattered light is imaged. Acquiring speckle contrast measurements from skin phantoms with controllable roughness, we created a calibration curve by linearly interpolating between measured points. This calibration curve accounts for internal scattering and is designed to evaluate skin microrelief whose root-mean-square roughness is in the range of 10-60 micrometers. To validate the effectiveness of our technique, we conducted a study to measure 243 skin lesions including actinic keratosis (8), basal cell carcinoma (24), malignant melanoma (31), nevus (73), squamous cell carcinoma (19), and seborrheic keratosis (79). The average roughness values ranged from 26 to 57 micrometers. Malignant melanoma was ranked as the smoothest and squamous cell carcinoma as the roughest lesion. An ANOVA test confirmed that malignant melanoma has significantly smaller roughness than other lesion types. Our results suggest that skin microrelief can be used to detect malignant melanoma from other skin conditions.

  20. Fast targeted analysis of 132 acidic and neutral drugs and poisons in whole blood using LC-MS/MS.

    PubMed

    Di Rago, Matthew; Saar, Eva; Rodda, Luke N; Turfus, Sophie; Kotsos, Alex; Gerostamoulos, Dimitri; Drummer, Olaf H

    2014-10-01

    The aim of this study was to develop an LC-MS/MS based screening technique that covers a broad range of acidic and neutral drugs and poisons by combining a small sample volume and efficient extraction technique with simple automated data processing. After protein precipitation of 100μL of whole blood, 132 common acidic and neutral drugs and poisons including non-steroidal anti-inflammatory drugs, barbiturates, anticonvulsants, antidiabetics, muscle relaxants, diuretics and superwarfarin rodenticides (47 quantitated, 85 reported as detected) were separated using a Shimadzu Prominence HPLC system with a C18 separation column (Kinetex XB-C18, 4.6mm×150mm, 5μm), using gradient elution with a mobile phase of 25mM ammonium acetate buffer (pH 7.5)/acetonitrile. The drugs were detected using an ABSciex(®) API 2000 LC-MS/MS system (ESI+ and -, MRM mode, two transitions per analyte). The method was fully validated in accordance with international guidelines. Quantification data obtained using one-point calibration compared favorably to that using multiple calibrants. The presented LC-MS/MS assay has proven to be applicable for determination of the analytes in blood. The fast and reliable extraction method combined with automated processing gives the opportunity for high throughput and fast turnaround times for forensic and clinical toxicology. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Vicarious calibrations of HICO data acquired from the International Space Station.

    PubMed

    Gao, Bo-Cai; Li, Rong-Rong; Lucke, Robert L; Davis, Curtiss O; Bevilacqua, Richard M; Korwan, Daniel R; Montes, Marcos J; Bowles, Jeffrey H; Corson, Michael R

    2012-05-10

    The Hyperspectral Imager for the Coastal Ocean (HICO) presently onboard the International Space Station (ISS) is an imaging spectrometer designed for remote sensing of coastal waters. The instrument is not equipped with any onboard spectral and radiometric calibration devices. Here we describe vicarious calibration techniques that have been used in converting the HICO raw digital numbers to calibrated radiances. The spectral calibration is based on matching atmospheric water vapor and oxygen absorption bands and extraterrestrial solar lines. The radiometric calibration is based on comparisons between HICO and the EOS/MODIS data measured over homogeneous desert areas and on spectral reflectance properties of coral reefs and water clouds. Improvements to the present vicarious calibration techniques are possible as we gain more in-depth understanding of the HICO laboratory calibration data and the ISS HICO data in the future.

  2. Multivariate Analysis for Quantification of Plutonium(IV) in Nitric Acid Based on Absorption Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Sinkov, Sergey I.

    Development of more effective, reliable, and fast methods for monitoring process streams is a growing opportunity for analytical applications. Many fields can benefit from on-line monitoring, including the nuclear fuel cycle where improved methods for monitoring radioactive materials will facilitate maintenance of proper safeguards and ensure safe and efficient processing of materials. On-line process monitoring with a focus on optical spectroscopy can provide a fast, non-destructive method for monitoring chemical species. However, identification and quantification of species can be hindered by the complexity of the solutions if bands overlap or show condition-dependent spectral features. Plutonium (IV) is one example ofmore » a species which displays significant spectral variation with changing nitric acid concentration. Single variate analysis (i.e. Beer’s Law) is difficult to apply to the quantification of Pu(IV) unless the nitric acid concentration is known and separate calibration curves have been made for all possible acid strengths. Multivariate, or chemometric, analysis is an approach that allows for the accurate quantification of Pu(IV) without a priori knowledge of nitric acid concentration.« less

  3. Sensitive quantification of apomorphine in human plasma using a LC-ESI-MS-MS method.

    PubMed

    Abe, Emuri; Alvarez, Jean-Claude

    2006-06-01

    An analytical method based on liquid chromatography coupled with ion trap mass spectrometry (MS) detection with electrospray ionization interface has been developed for the identification and quantification of apomorphine in human plasma. Apomorphine was isolated from 0.5 mL of plasma using a liquid-liquid extraction with diethyl ether and boldine as internal standard, with satisfactory extraction recoveries. Analytes were separated on a 5-microm C18 Highpurity (Thermohypersil) column (150 mm x 2.1 mm I.D.) maintained at 30 degrees C, coupled to a precolumn (C18, 5-microm, 10 mm x 2.0 mm I.D., Thermo). The elution was achieved isocratically with a mobile phase of 2 mM NH4COOH buffer pH 3.8/acetonitrile (50/50, vol/vol) at a flow rate of 200 microL per minute. Data were collected either in full-scan MS mode at m/z 150 to 500 or in full-scan tandem mass spectrometry mode, selecting the [M+H]ion at m/z 268.0 for apomorphine and m/z 328.0 for boldine. The most intense daughter ion of apomorphine (m/z 237.1) and boldine (m/z 297.0) were used for quantification. Retention times were 2.03 and 2.11 minutes for boldine and apomorphine, respectively. Calibration curves were linear in the 0.025 to 20 ng/mL range. The limits of detection and quantification were 0.010 ng/mL and 0.025 ng/mL, respectively. Accuracy and precision of the assay were measured by analyzing 54 quality control samples for 3 days. At concentrations of 0.075, 1.5, and 15 ng/mL, intraday precisions were less than 10.1%, 5.3%, and 3.8%, and interday precisions were less than 4.8%, 6.6%, and 6.5%, respectively. Accuracies were in the 99.5 to 104.2% range. An example of a patient who was given 6 mg of apomorphine subcutaneously is shown, with concentrations of 14.1 ng/mL after 30 minutes and 0.20 ng/mL after 6 hours. The method described enables the unambiguous identification and quantification of apomorphine with very good sensitivity using only 0.5 mL of sample, and is very convenient for therapeutic drug monitoring and pharmacokinetic studies.

  4. Development and validation of an UHPLC-ESI-QTOF-MS method for quantification of the highly hydrophilic amyloid-β oligomer eliminating all-D-enantiomeric peptide RD2 in mouse plasma.

    PubMed

    Hupert, Michelle; Elfgen, Anne; Schartmann, Elena; Schemmert, Sarah; Buscher, Brigitte; Kutzsche, Janine; Willbold, Dieter; Santiago-Schübel, Beatrix

    2018-01-15

    During preclinical drug development, a method for quantification of unlabeled compounds in blood plasma samples from treatment or pharmacokinetic studies in mice is required. In the current work, a rapid, specific, sensitive and validated liquid chromatography mass-spectrometric UHPLC-ESI-QTOF-MS method was developed for the quantification of the therapeutic compound RD2 in mouse plasma. RD2 is an all-D-enantiomeric peptide developed for the treatment of Alzheimer's disease, a progressive neurodegenerative disease finally leading to dementia. Due to RD2's highly hydrophilic properties, the sample preparation and the chromatographic separation and quantification were very challenging. The chromatographic separation of RD2 and its internal standard were accomplished on an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm particle size) within 6.5 min at 50 °C with a flow rate of 0.5 mL/min. Mobile phases consisted of water and acetonitrile with 1% formic acid and 0.025% heptafluorobutyric acid, respectively. Ions were generated by electrospray ionization (ESI) in the positive mode and the peptide was quantified by QTOF-MS. The developed extraction method for RD2 from mouse plasma revealed complete recovery. The linearity of the calibration curve was in the range of 5.3 ng/mL to 265 ng/mL (r 2  > 0.999) with a lower limit of detection (LLOD) of 2.65 ng/mL and a lower limit of quantification (LLOQ) of 5.3 ng/mL. The intra-day and inter-day accuracy and precision of RD2 in plasma ranged from -0.54% to 2.21% and from 1.97% to 8.18%, respectively. Moreover, no matrix effects were observed and RD2 remained stable in extracted mouse plasma at different conditions. Using this validated bioanalytical method, plasma samples of unlabeled RD2 or placebo treated mice were analyzed. The herein developed UHPLC-ESI-QTOF-MS method is a suitable tool for the quantitative analysis of unlabeled RD2 in plasma samples of treated mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Method development towards qualitative and semi-quantitative analysis of multiple pesticides from food surfaces and extracts by desorption electrospray ionization mass spectrometry as a preselective tool for food control.

    PubMed

    Gerbig, Stefanie; Stern, Gerold; Brunn, Hubertus E; Düring, Rolf-Alexander; Spengler, Bernhard; Schulz, Sabine

    2017-03-01

    Direct analysis of fruit and vegetable surfaces is an important tool for in situ detection of food contaminants such as pesticides. We tested three different ways to prepare samples for the qualitative desorption electrospray ionization mass spectrometry (DESI-MS) analysis of 32 pesticides found on nine authentic fruits collected from food control. Best recovery rates for topically applied pesticides (88%) were found by analyzing the surface of a glass slide which had been rubbed against the surface of the food. Pesticide concentration in all samples was at or below the maximum residue level allowed. In addition to the high sensitivity of the method for qualitative analysis, quantitative or, at least, semi-quantitative information is needed in food control. We developed a DESI-MS method for the simultaneous determination of linear calibration curves of multiple pesticides of the same chemical class using normalization to one internal standard (ISTD). The method was first optimized for food extracts and subsequently evaluated for the quantification of pesticides in three authentic food extracts. Next, pesticides and the ISTD were applied directly onto food surfaces, and the corresponding calibration curves were obtained. The determination of linear calibration curves was still feasible, as demonstrated for three different food surfaces. This proof-of-principle method was used to simultaneously quantify two pesticides on an authentic sample, showing that the method developed could serve as a fast and simple preselective tool for disclosure of pesticide regulation violations. Graphical Abstract Multiple pesticide residues were detected and quantified in-situ from an authentic set of food items and extracts in a proof of principle study.

  6. Black Carbon Measurement Intercomparison during the 2017 Black Carbon Shootout

    NASA Astrophysics Data System (ADS)

    Shingler, T.; Moore, R.; Winstead, E.; Robinson, C. E.; Shook, M.; Crosbie, E.; Ziemba, L. D.; Thornhill, K. L., II; Sorooshian, A.; Anderson, B. E.

    2017-12-01

    The NASA Langley Aerosol Research Group (LARGE) provides multiple black carbon (BC) based aerosol particle measurements and engine emission factors for airborne and ground-based field campaigns and laboratory studies. These datasets are made available to the general public where accuracy is key to enable further use in environmental assessments, models, and validation studies. Studies are needed to establish the accuracy and precision of BC measurements of particles with varying physical properties using a variety of detection techniques. Work is also needed to develop calibration and correction schemes for new sensors and to link these measurements to heritage instruments on which our understanding of BC emissions and characteristics has been established. A BC measurement intercomparison was performed at Langley Research Center using particles generated from a mini-CAST (Jing) diffusion flame soot generator. The particles were passed to instruments measuring optical absorption, extinction, scattering and black carbon mass. Filter based measurements of optical absorption were performed using a PSAP (Radiance Research) and a TAP (BMI). Absorption was also measured using two photoacoustic based instruments: the MSS-plus (AVL) and PASS-3 (DMT). Measurements of aerosol extinction were performed using three CAPS PM-ex (Aerodyne Research) instruments at multiple wavelengths. Two Artium LII-300 units (standard and high-sensitivity) were used to measure black carbon mass via laser incandescence. Black carbon measurements were correlated to mass collected concurrently on a filter and analyzed by OC/EC analysis (Sunset Labs). Black carbon quantification measurements are analyzed between instruments to assess agreement between platforms using manufacturer's calibration settings as well as after calibrations performed to a single standard soot source (mini-CAST). Sampling was also performed from behind a Falcon aircraft at multiple thrust settings and downwind of runway at an international airport with commercial takeoffs and landings.

  7. Calibration of mass spectrometric peptide mass fingerprint data without specific external or internal calibrants

    PubMed Central

    Wolski, Witold E; Lalowski, Maciej; Jungblut, Peter; Reinert, Knut

    2005-01-01

    Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%. PMID:16102175

  8. Development of a droplet digital PCR assay for population analysis of aflatoxigenic and atoxigenic Aspergillus flavus mixtures in soil

    USDA-ARS?s Scientific Manuscript database

    Application of atoxigenic strains to compete against aflatoxigenic strains of A. flavus strains has emerged as one of the practical strategy for reducing aflatoxins contamination in food. Droplet digital PCR (ddPCR) is a new DNA quantification platform without an external DNA calibrator. For ddPCR, ...

  9. A generic standard additions based method to determine endogenous analyte concentrations by immunoassays to overcome complex biological matrix interference.

    PubMed

    Pang, Susan; Cowen, Simon

    2017-12-13

    We describe a novel generic method to derive the unknown endogenous concentrations of analyte within complex biological matrices (e.g. serum or plasma) based upon the relationship between the immunoassay signal response of a biological test sample spiked with known analyte concentrations and the log transformed estimated total concentration. If the estimated total analyte concentration is correct, a portion of the sigmoid on a log-log plot is very close to linear, allowing the unknown endogenous concentration to be estimated using a numerical method. This approach obviates conventional relative quantification using an internal standard curve and need for calibrant diluent, and takes into account the individual matrix interference on the immunoassay by spiking the test sample itself. This technique is based on standard additions for chemical analytes. Unknown endogenous analyte concentrations within even 2-fold diluted human plasma may be determined reliably using as few as four reaction wells.

  10. Simultaneous UHPLC-UV analysis of hydroxychloroquine, minocycline and doxycycline from serum samples for the therapeutic drug monitoring of Q fever and Whipple's disease.

    PubMed

    Armstrong, Nicholas; Richez, Magali; Raoult, Didier; Chabriere, Eric

    2017-08-15

    A fast UHPLC-UV method was developed for the simultaneous analysis of Hydroxychloroquine, Minocycline and Doxycycline drugs from 100μL of human serum samples. Serum samples were extracted by liquid-liquid extraction and injected into a phenyl hexyl reverse phase column. Compounds were separated using a mobile phase linear gradient and monitored by UV detection at 343nm. Chloroquine and Oxytetracycline were used as internal standards. Lower and upper limits of quantifications, as well as the other levels of calibration, were validated with acceptable accuracy (<15% deviation) and precision (<15% coefficient of variation) according to the European Medicines Agency guidelines. This new method enables cost and time reduction and was considered suitable for the clinical laboratory. It is the first published assay for the therapeutic drug monitoring of patients diagnosed with Q fever or Whipple's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chemometrics resolution and quantification power evaluation: Application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p-aminophenol.

    PubMed

    Yehia, Ali M; Mohamed, Heba M

    2016-01-05

    Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dual quantification of dapivirine and maraviroc in cervicovaginal secretions from ophthalmic tear strips and polyester-based swabs via liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis.

    PubMed

    Parsons, Teresa L; Emory, Joshua F; Seserko, Lauren A; Aung, Wutyi S; Marzinke, Mark A

    2014-09-01

    Topical microbicidal agents are being actively pursued as a modality to prevent HIV viral transmission during sexual intercourse. Quantification of antiretroviral agents in specimen sources where antiviral activity is elicited is critical, and drug measurements in cervicovaginal fluid can provide key information on local drug concentrations. Two antiretroviral drugs, dapivirine and maraviroc, have gained interest as vaginal microbicidal agents, and rugged methods are required for their quantification in cervicovaginal secretions. Cervicovaginal fluid spiked with dapivirine and maraviroc were applied to ophthalmic tear strips or polyester-based swabs to mimic collection procedures used in clinical studies. Following sample extraction and the addition of isotopically labeled internal standards, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis using a Waters BEH C8, 50mm×2.1mm, 1.7μm particle size column, on an API 4000 mass analyzer operated in selective reaction monitoring mode. The method was validated according to FDA Bioanalytical Method Validation guidelines. Due to the disparate saturation capacity of the tested collection devices, the analytical measuring ranges for dapivirine and maravirocin cervicovaginal fluid on the ophthalmic tear strip were 0.05-25ng/tear strip, and 0.025-25ng/tear strip, respectively. As for the polyester-based swab, the analytical measuring ranges were 0.25-125ng/swab for dapivirine and 0.125-125ng/swab for maraviroc. Dilutional studies were performed for both analytes to extended ranges of 25,000ng/tear strip and 11,250ng/swab. Standard curves were generated via weighted (1/x(2)) linear or quadratic regression of calibrators. Precision, accuracy, stability and matrix effects studies were all performed and deemed acceptable according to the recommendations of the FDA Bioanalytical Method Validation guidelines. A rugged LC-MS/MS method for the dual quantification of dapivirine and maraviroc in cervicovaginal fluid using two unique collection devices has been developed and validated. The described method meets the criteria to support large research trials. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dual Quantification of Dapivirine and Maraviroc in Cervicovaginal Secretions from Ophthalmic Tear Strips and Polyester-Based Swabs via Liquid Chromatographic-Tandem Mass Spectrometric (LC-MS/MS) Analysis

    PubMed Central

    Parsons, Teresa L.; Emory, Joshua F.; Seserko, Lauren A.; Aung, Wutyi S.; Marzinke, Mark A.

    2014-01-01

    Background Topical microbicidal agents are being actively pursued as a modality to prevent HIV viral transmission during sexual intercourse. Quantification of antiretroviral agents in specimen sources where antiviral activity is elicited is critical, and drug measurements in cervicovaginal fluid can provide key information on local drug concentrations. Two antiretroviral drugs, dapivirine and maraviroc, have gained interest as vaginal microbicidal agents, and rugged methods are required for their quantification in cervicovaginal secretions. Methods Cervicovaginal fluid spiked with dapivirine and maraviroc were applied to ophthalmic tear strips or polyester-based swabs to mimic collection procedures used in clinical studies. Following sample extraction and the addition of isotopically-labeled internal standards, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis using a Waters BEH C8, 50 × 2.1 mm, 1.7 µm particle size column, on an API 4000 mass analyzer operated in selective reaction monitoring mode. The method was validated according to FDA Bioanalytical Method Validation guidelines. Results Due to the disparate saturation capacity of the tested collection devices, the analytical measuring ranges for dapivirine and maravirocin cervicovaginal fluid on the ophthalmic tear strip were 0.05 to 25 ng/tear strip, and 0.025 to 25 ng/tear strip, respectively. As for the polyester-based swab, the analytical measuring ranges were 0.25 to 125 ng/swab for dapivirine and 0.125 to 125 ng/swab for maraviroc. Dilutional studies were performed for both analytes to extended ranges of 25,000 ng/tear strip and 11,250 ng/swab. Standard curves were generated via weighted (1/x2) linear or quadratic regression of calibrators. Precision, accuracy, stability and matrix effects studies were all performed and deemed acceptable according to the recommendations of the FDA Bioanalytical Method Validation guidelines. Conclusions A rugged LC-MS/MS method for the dual quantification of dapivirine and maraviroc in cervicovaginal fluid using two unique collection devices has been developed and validated. The described method meets the criteria to support large research trials. PMID:25005891

  14. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsitt, Mitchell M., E-mail: goodsitt@umich.edu; Shenoy, Apeksha; Howard, David

    2014-05-15

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correctionmore » factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.« less

  15. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    PubMed Central

    Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.

    2014-01-01

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380

  16. Definitions in use by the visible and near-infrared, and thermal working groups

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Miller, ED; Martin, Bob; Kieffer, Hugh H.; Palmer, James M.

    1992-01-01

    The Calibration Advisory Panel (CAP) is composed of calibration experts from each of the Earth Observing System (EOS) instruments, science investigation, and cross-calibration teams. These members come from a variety of institutions and backgrounds. In order to facilitate an exchange of ideas, and assure a common basis for communication, it was desirable to assemble this list of definitions. These definitions were developed for use by the visible and near-infrared working group, and the thermal infrared working group. Where necessary or appropriate, deviations from these for specific instruments or other sensor types are given in the individual calibration plans. The definitions contained in this document are derived, wherever possible, from definitions accepted by international and national metrological commissions including the United States National Institute of Standards and Technology (NIST), the International Bureau of Weights and Measures (BIPM), the International Electrotechnical Commission (IEC), the International Organization for Standardization (ISO), and the International Organization of Legal Metrology (OIML).

  17. Quantitation of Human Cytochrome P450 2D6 Protein with Immunoblot and Mass Spectrometry Analysis

    PubMed Central

    Yu, Ai-Ming; Qu, Jun; Felmlee, Melanie A.; Cao, Jin; Jiang, Xi-Ling

    2009-01-01

    Accurate quantification of cytochrome P450 (P450) protein contents is essential for reliable assessment of drug safety, including the prediction of in vivo clearance from in vitro metabolism data, which may be hampered by the use of uncharacterized standards and existence of unknown allelic isozymes. Therefore, this study aimed to delineate the variability in absolute quantification of polymorphic CYP2D6 drug-metabolizing enzyme and compare immunoblot and nano liquid chromatography coupled to mass spectrometry (nano-LC/MS) methods in identification and relative quantification of CYP2D6.1 and CYP2D6.2 allelic isozymes. Holoprotein content of in-house purified CYP2D6 isozymes was determined according to carbon monoxide difference spectrum, and total protein was quantified with bicinchoninic acid protein assay. Holoprotein/total CYP2D6 protein ratio was markedly higher for purified CYP2D6.1 (71.0%) than that calculated for CYP2D6.1 Supersomes (35.5%), resulting in distinct linear calibration range (0.05–0.50 versus 0.025–0.25 pmol) that was determined by densitometric analysis of immunoblot bands. Likewise, purified CYP2D6.2 and CYP2D6.10 and the CYP2D6.10 Supersomes all showed different holoprotein/total CYP2D6 protein ratios and distinct immunoblot linear calibration ranges. In contrast to immunoblot, nano-LC/MS readily distinguished CYP2D6.2 (R296C and S486T) from CYP2D6.1 by isoform-specific proteolytic peptides that contain the altered amino acid residues. In addition, relative quantitation of the two allelic isozymes was successfully achieved with label-free protein quantification, consistent with the nominated ratio. Because immunoblot and nano-LC/MS analyses measure total P450 protein (holoprotein and apoprotein) in a sample, complete understanding of holoprotein and apoprotein contents in P450 standards is desired toward reliable quantification. Our data also suggest that nano-LC/MS not only facilitates P450 quantitation but also provides genotypic information. PMID:18832475

  18. Use of heat of adsorption to quantify amorphous content in milled pharmaceutical powders.

    PubMed

    Alam, Shamsul; Omar, Mahmoud; Gaisford, Simon

    2014-01-01

    Isothermal calorimetry operated in gas perfusion mode (IGPC) is often used to quantify the amorphous content of pharmaceutical powders. Typically, the calibration line is constructed using the heat of crystallisation as the sample is exposed to high levels of a plasticising vapour. However, since the physical form to which the amorphous fraction crystallises may be dependent on the presence of any crystalline seed, the calibration line is often seen to be non-linear, especially as the amorphous content of the sample approaches 100% w/w. Redesigning the experiment so that the calibration line is constructed with the heat of adsorption is an alternative approach that, because it is not dependent upon crystallisation to a physical form should ameliorate this problem. The two methods are compared for a model compound, salbutamol sulphate, which forms either a hydrate or an anhydrate depending on the amorphous content. The heat of adsorption method was linear between amorphous contents of 0 and 100% w/w and resulted in a detection limit of 0.3% w/w and a quantification limit of 0.92% w/w. The heat of crystallisation method was linear only between amorphous contents of 0 and 80% w/w and resulted in a detection limit of 1.7% w/w and a quantification limit of 5.28% w/w. Thus, the use of heat of adsorption is shown to be a better method for quantifying amorphous contents to better than 1% w/w. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Optimization of monitoring networks based on uncertainty quantification of model predictions of contaminant transport

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Harp, D.

    2010-12-01

    The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.

  20. GHRS Cycle 5 Echelle Wavelength Monitor

    NASA Astrophysics Data System (ADS)

    Soderblom, David

    1995-07-01

    This proposal defines the spectral lamp test for Echelle A. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. This proposal defines the spectral lamp test for Echelle B. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. It will be run every 4 months. The wavelengths may be out of range according to PEPSI or TRANS. Please ignore the errors.

  1. Iodine-Containing Mass-Defect-Tuned Dendrimers for Use as Internal Mass Spectrometry Calibrants

    NASA Astrophysics Data System (ADS)

    Giesen, Joseph A.; Diament, Benjamin J.; Grayson, Scott M.

    2018-03-01

    Calibrants based on synthetic dendrimers have been recently proposed as a versatile alternative to peptides and proteins for both MALDI and ESI mass spectrometry calibration. Because of their modular synthetic platform, dendrimer calibrants are particularly amenable to tailoring for specific applications. Utilizing this versatility, a set of dendrimers has been designed as an internal calibrant with a tailored mass defect to differentiate them from the majority of natural peptide analytes. This was achieved by incorporating a tris-iodinated aromatic core as an initiator for the dendrimer synthesis, thereby affording multiple calibration points ( m/z range 600-2300) with an optimized mass-defect offset relative to all peptides composed of the 20 most common proteinogenic amino acids. [Figure not available: see fulltext.

  2. Stereospecific analysis of sakuranetin by high-performance liquid chromatography: pharmacokinetic and botanical applications.

    PubMed

    Takemoto, Jody K; Remsberg, Connie M; Yáñez, Jaime A; Vega-Villa, Karina R; Davies, Neal M

    2008-11-01

    A stereospecific method for analysis of sakuranetin was developed. Separation was accomplished using a Chiralpak AD-RH column with UV (ultraviolet) detection at 288 nm. The stereospecific linear calibration curves ranged from 0.5 to 100 microg/mL. The mean extraction efficiency was >98%. Precision of the assay was <12% (relative standard deviation (R.S.D.)%), and within 10% at the limit of quantitation (0.5 microg/mL). Bias of the assay was lower than 10%, and within 5% at the limit of quantitation. The assay was applied successfully to pharmacokinetic quantification in rats, and the stereospecific quantification in oranges, grapefruit juice, and matico (Piper aduncum L.).

  3. Method and apparatus for calibrating a linear variable differential transformer

    DOEpatents

    Pokrywka, Robert J [North Huntingdon, PA

    2005-01-18

    A calibration apparatus for calibrating a linear variable differential transformer (LVDT) having an armature positioned in au LVDT armature orifice, and the armature able to move along an axis of movement. The calibration apparatus includes a heating mechanism with an internal chamber, a temperature measuring mechanism for measuring the temperature of the LVDT, a fixture mechanism with an internal chamber for at least partially accepting the LVDT and for securing the LVDT within the heating mechanism internal chamber, a moving mechanism for moving the armature, a position measurement mechanism for measuring the position of the armature, and an output voltage measurement mechanism. A method for calibrating an LVDT, including the steps of: powering the LVDT; heating the LVDT to a desired temperature; measuring the position of the armature with respect to the armature orifice; and measuring the output voltage of the LVDT.

  4. Lunar International Science Coordination/Calibration Targets

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Issacson, P.; Petro, N.; Runyon, C.; Ohtake, M.; Foing, B.; Grande, M.

    2007-01-01

    A new era of international lunar exploration has begun and will expand over the next four years with data acquired from at least four sophisticated remote sensing missions: KAGUYA (SELENE) [Japan], Chang'E [China], Chandrayaan-l [India], and LRO [United States]. It is recognized that this combined activity at the Moon with modern sophisticated sensors wi II provide unprecedented new information about the Moon and will dramatically improve our understanding of Earth's nearest neighbor. It is anticipated that the blooming of scientific exploration of the Moon by nations involved in space activities will seed and foster peaceful international coordination and cooperation that will benefit all. Summarized here are eight Lunar International Science Coordination/Calibration Targets (L-ISCT) that are intended to a) allow cross-calibration of diverse multi-national instruments and b) provide a focus for training young scientists about a range of lunar science issues. The targets, discussed at several scientific forums, were selected for coordinated science and instrument calibration of orbital data. All instrument teams are encouraged to participate in a coordinated activity of early-release data that will improve calibration and validation of data across independent and diverse instruments.

  5. First detection and quantification of N(δ)-monomethylarginine, a structural isomer of N(G)-monomethylarginine, in humans using MS(3).

    PubMed

    Martens-Lobenhoffer, Jens; Bode-Böger, Stefanie M; Clement, Bernd

    2016-01-15

    The L-arginine metabolites methylated at the guanidino moiety, such as N(G)-monomethyl-L-arginine (LNMMA), asymmetric N(G),N(G)-dimethyl-L-arginine (ADMA), and symmetric N(G),N(G')-dimethyl-L-arginine (SDMA), are long known to be present in human plasma. Far less is known about the structural isomer of LNMMA, N(δ)-monomethyl-L-arginine (δ-MMA). In prior work, it has been detected in yeast proteins, but it has not been investigated in mammalian plasma or cells. In this work, we present a method for the simultaneous and unambiguous quantification of LNMMA and δ-MMA in human plasma that is capable of detecting δ-MMA separately from LNMMA. The method comprises a simple protein precipitation sample preparation, hydrophilic interaction liquid chromatography (HILIC) gradient elution on an unmodified silica column, and triple stage mass spectrometric detection. Stable isotope-labeled D6-SDMA was used as internal standard. The calibration ranges were 25-1000 nmol/L for LNMMA and 5-350 nmol/L for δ-MMA. The intra- and inter-batch precision determinations resulted in relative standard deviations of less than 12% for both compounds with accuracies of less than 6% deviation from the expected values. In a pilot study enrolling 10 healthy volunteers, mean concentrations of 48.0 ± 7.4 nmol/L for LNMMA and 27.4 ± 7.7 nmol/L for δ-MMA were found. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. High-performance liquid chromatography assay using ultraviolet detection for urinary quantification of milrinone concentrations in cardiac surgery patients undergoing cardiopulmonary bypass.

    PubMed

    Gavra, Paul; Nguyen, Anne Q N; Beauregard, Natasha; Denault, André Y; Varin, France

    2014-08-01

    An analytical assay using liquid-liquid extraction and high-performance liquid chromatography with ultraviolet detection was developed for the quantification of total (conjugated and unconjugated) urinary concentrations of milrinone after the inhalation of a 5 mg dose in 15 cardiac patients undergoing cardiopulmonary bypass. Urine samples (700 μL) were extracted with ethyl-acetate and subsequently underwent acid back-extraction before and after deconjugation by mild acid hydrolysis. Milrinone was separated on a strong cation exchange analytical column. The mobile phase consisted of a constant mixture of acetonitrile:tetrahydrofurane-NaH2 PO4 buffer (40:60 v/v, pH 3.0). Thirteen calibration curves were linear in the concentration range of 31.25-4000 ng/mL, using olprinone as the internal standard (r(2) range 0.9911-0.9999, n = 13). Mean milrinone recovery and accuracy were respectively 85.2 ± 3.1% and ≥93%. Intra- and inter-day precisions (coefficients of variation) were ≤5% and ≤8%, respectively. Over a 24 h collection period, the cumulative urinary milrinone recovered from 15 patients was 26.1 ± 7.7% of the nominal 5 mg dose administered. The relative amount of milrinone glucuronic acid conjugate was negligible in the urine of patients undergoing cardiopulmonary bypass This method proved to be reliable, specific and accurate to determine the cumulative amount of total milrinone recovered in urine after inhalation. Copyright © 2014 John Wiley & Sons, Ltd.

  7. [Determination of triclosan and triclocarban in human breast milk by solid-phase extraction and ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Zhang, Pin; Zhang, Jing; Shi, Ying; Shao, Bing

    2015-03-01

    An analytical method was developed to simultaneously detect triclosan (TCS) and triclocarban (TCC) in human breast milk using solid-phase extraction (SPE) with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Samples were extracted by acetonitrile and purified with C -18 SPE cartridge after enzymolysis with β-glucuronidase/arylsulfatase. The chromatographic separation was performed on a Waters ACQUITY UPLC™ HSS T3 column (100 mm x 2. 1 mm, 1. 8 µm) with gradient elution using methanol and water at a flow rate of 0. 3 ml/min. The target analytes were assayed by triple quadrupole mass spectrometer operating in the negative ion mode. Quantification was performed by isotopic internal standard calibration. Satisfactory linearity (r2 > 0. 999) was obtained over the range of 0. 2 - 20. 0 µg/L and 0. 02 - 2. 0 µg/L for triclosan and triclocarban, respectively, with the limits of quantifications (LOQs) of 0. 41 and 0. 03 µg/kg. Average recoveries of two target compounds (spiked at three concentration levels) ranged from 100. 2% to 119. 3%, with the relative standard deviations (RSDs) between 5. 91% and 11. 31% (n =6). Twenty-five real samples (n = 25) were detected containing TCS and TCC at concentrations of < LOQ - 0. 77 µg/kg and < LOQ - 4. 28 µg/kg, respectively. Due to its high sensitivity and good reproductivity, this method can be applied to analyze TCS and TCC in human breast milk.

  8. Simultaneous determination of sibutramine and its active metabolites in human plasma by LC-MS/MS and its application to a pharmacokinetic study.

    PubMed

    Bae, Jung-Woo; Choi, Chang-Ik; Jang, Choon-Gon; Lee, Seok-Yong

    2011-11-01

    A simple and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) technique was developed and validated for the determination of sibutramine and its N-desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t-butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse-phase Luna C18 column with a mobile phase of acetonitrile-10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI-MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05-20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra- and inter-day validation for sibutramine, M1 and M2 were acceptable. This LC-MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Detection and quantification of α-keto-δ-(N(G),N(G)-dimethylguanidino)valeric acid: a metabolite of asymmetric dimethylarginine.

    PubMed

    Martens-Lobenhoffer, Jens; Rodionov, Roman N; Drust, Andreas; Bode-Böger, Stefanie M

    2011-12-15

    Nitric oxide is an ubiquitary cell signaling substance. Its enzymatic production rate by nitric oxide synthase is regulated by the concentrations of the substrate L-arginine and the competitive inhibitor asymmetric dimethylarginine (ADMA). A newly recognized elimination pathway for ADMA is the transamination to α-keto-δ-(N(G),N(G)-dimethylguanidino)valeric acid (DMGV) by the enzyme alanine-glyoxylate aminotransferase 2 (AGXT2). This pathway has been proven to be relevant for nitric oxide regulation, but up to now no method exists for the determination of DMGV in biological fluids. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of DMGV. D(6)-DMGV was used as internal standard. Samples were purified online by column switching, and separation was achieved on a porous graphitic carbon column. The calibration was linear over ranges of 10 to 200 nmol/L for plasma and 0.1 to 20 μmol/L for urine. The intra- and interday accuracies and precisions in plasma and urine were better than 10%. In plasma samples, DMGV was present in concentrations between 19.1 and 77.5 nmol/L. In urine samples, concentrations between 0.0114 and 1.03 μmol/mmol creatinine were found. This method can be used as a tool for the scientific investigation of the ADMA conversion to DMGV via the enzyme AGXT2. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer.

    PubMed

    Rankin, Keegan; Mabury, Scott A

    2015-05-19

    The degradation of fluorotelomer-based acrylate polymers (FTACPs) has been hypothesized to serve as a source of the environmental contaminants, perfluoroalkyl carboxylates (PFCAs). Studies have relied on indirect measurement of presumed degradation products to evaluate the environmental fate of FTACPs; however, this approach leaves a degree of uncertainty. The present study describes the development of a quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry method as the first direct analysis method for FTACPs. The model FTACP used in this study was poly(8:2 FTAC-co-HDA), a copolymer of 8:2 fluorotelomer acrylate (8:2 FTAC) and hexadecyl acrylate (HDA). Instead of relying on an internal standard polymer, the intensities of 40 poly(8:2 FTAC-co-HDA) signals (911-4612 Da) were normalized to the signal intensity of a matrix-sodium cluster (659 Da). We termed this value the normalized polymer response (P(N)). By using the same dithranol solution for the sample preparation of poly(8:2 FTAC-co-HDA) standards, calibration curves with coefficient of determinations (R(2)) typically >0.98 were produced. When poly(8:2 FTAC-co-HDA) samples were prepared with the same dithranol solution as the poly(8:2 FTAC-co-HDA) standards, quantification to within 25% of the theoretical concentration was achieved. This approach minimized the sample-to-sample variability that typically plagues MALDI-TOF, and is the first method developed to directly quantify FTACPs.

  11. Lithium adduct as precursor ion for sensitive and rapid quantification of 20 (S)-protopanaxadiol in rat plasma by liquid chromatography/quadrupole linear ion trap mass spectrometry and application to rat pharmacokinetic study.

    PubMed

    Bao, Yuanwu; Wang, Quanying; Tang, Pingming

    2013-03-01

    A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC-ESI-(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP-C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN-water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple-reaction-monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5-100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Evaluation of polyethersulfone performance for the microextraction of polar chlorinated herbicides from environmental water samples.

    PubMed

    Prieto, Ailette; Rodil, Rosario; Quintana, José Benito; Cela, Rafael; Möder, Monika; Rodríguez, Isaac

    2014-05-01

    In this work, the suitability of bulk polyethersulfone (PES) for sorptive microextraction of eight polar, chlorinated phenoxy acids and dicamba from environmental water samples is assessed and the analytical features of the optimized method are compared to those reported for other microextraction techniques. Under optimized conditions, extractions were performed with samples (18 mL) adjusted at pH 2 and containing a 30% (w/v) of sodium chloride, using a tubular PES sorbent (1 cm length × 0.7 mm o.d., sorbent volume 8 µL). Equilibrium conditions were achieved after 3h of direct sampling, with absolute extraction efficiencies ranging from 39 to 66%, depending on the compound. Analytes were recovered soaking the polymer with 0.1 mL of ethyl acetate, derivatized and determined by gas chromatography-mass spectrometry (GC-MS). Achieved quantification limits (LOQs) varied between 0.005 and 0.073 ng mL(-1). After normalization with the internal surrogate (IS), the efficiency of the extraction was only moderately affected by the particular characteristics of different water samples (surface and sewage water); thus, pseudo-external calibration, using spiked ultrapure water solutions, can be used as quantification technique. The reduced cost of the PES polymer allowed considering it as a disposable sorbent, avoiding variations in the performance of the extraction due to cross-contamination problems and/or surface modification with usage. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Uncertainty quantification in volumetric Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sayantan; Charonko, John; Vlachos, Pavlos

    2016-11-01

    Particle Image Velocimetry (PIV) uncertainty quantification is challenging due to coupled sources of elemental uncertainty and complex data reduction procedures in the measurement chain. Recent developments in this field have led to uncertainty estimation methods for planar PIV. However, no framework exists for three-dimensional volumetric PIV. In volumetric PIV the measurement uncertainty is a function of reconstructed three-dimensional particle location that in turn is very sensitive to the accuracy of the calibration mapping function. Furthermore, the iterative correction to the camera mapping function using triangulated particle locations in space (volumetric self-calibration) has its own associated uncertainty due to image noise and ghost particle reconstructions. Here we first quantify the uncertainty in the triangulated particle position which is a function of particle detection and mapping function uncertainty. The location uncertainty is then combined with the three-dimensional cross-correlation uncertainty that is estimated as an extension of the 2D PIV uncertainty framework. Finally the overall measurement uncertainty is quantified using an uncertainty propagation equation. The framework is tested with both simulated and experimental cases. For the simulated cases the variation of estimated uncertainty with the elemental volumetric PIV error sources are also evaluated. The results show reasonable prediction of standard uncertainty with good coverage.

  14. Interference-free spectrofluorometric quantification of aristolochic acid I and aristololactam I in five Chinese herbal medicines using chemical derivatization enhancement and second-order calibration methods

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Wu, Hai-Long; Yin, Xiao-Li; Gu, Hui-Wen; Xiao, Rong; Wang, Li; Fang, Huan; Yu, Ru-Qin

    2017-03-01

    A rapid interference-free spectrofluorometric method combined with the excitation-emission matrix fluorescence and the second-order calibration methods based on the alternating penalty trilinear decomposition (APTLD) and the self-weighted alternating trilinear decomposition (SWATLD) algorithms, was proposed for the simultaneous determination of nephrotoxic aristolochic acid I (AA-I) and aristololactam I (AL-I) in five Chinese herbal medicines. The method was based on a chemical derivatization that converts the non-fluorescent AA-I to high-fluorescent AL-I, achieving a high sensitive and simultaneous quantification of the analytes. The variables of the derivatization reaction that conducted by using zinc powder in acetose methanol aqueous solution, were studied and optimized for best quantification results of AA-I and AL-I. The satisfactory results of AA-I and AL-I for the spiked recovery assay were achieved with average recoveries in the range of 100.4-103.8% and RMSEPs < 0.78 ng mL- 1, which validate the accuracy and reliability of the proposed method. The contents of AA-I and AL-I in five herbal medicines obtained from the proposed method were also in good accordance with those of the validated LC-MS/MS method. In light of high sensitive fluorescence detection, the limits of detection (LODs) of AA-I and AL-I for the proposed method compare favorably with that of the LC-MS/MS method, with the LODs < 0.35 and 0.29 ng mL- 1, respectively. The proposed strategy based on the APTLD and SWATLD algorithms by virtue of the "second-order advantage", can be considered as an attractive and green alternative for the quantification of AA-I and AL-I in complex herbal medicine matrices without any prior separations and clear-up processes.

  15. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.

    PubMed

    Kwon, Young-Hoo; Casebolt, Jeffrey B

    2006-01-01

    One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a through review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.

  16. Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis.

    PubMed

    Kwon, Young-Hoo; Casebolt, Jeffrey B

    2006-07-01

    One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a thorough review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.

  17. Finite Element Model Calibration Approach for Area I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  18. Finite Element Model Calibration Approach for Ares I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  19. Diagnosing the impact of alternative calibration strategies on coupled hydrologic models

    NASA Astrophysics Data System (ADS)

    Smith, T. J.; Perera, C.; Corrigan, C.

    2017-12-01

    Hydrologic models represent a significant tool for understanding, predicting, and responding to the impacts of water on society and society on water resources and, as such, are used extensively in water resources planning and management. Given this important role, the validity and fidelity of hydrologic models is imperative. While extensive focus has been paid to improving hydrologic models through better process representation, better parameter estimation, and better uncertainty quantification, significant challenges remain. In this study, we explore a number of competing model calibration scenarios for simple, coupled snowmelt-runoff models to better understand the sensitivity / variability of parameterizations and its impact on model performance, robustness, fidelity, and transferability. Our analysis highlights the sensitivity of coupled snowmelt-runoff model parameterizations to alterations in calibration approach, underscores the concept of information content in hydrologic modeling, and provides insight into potential strategies for improving model robustness / fidelity.

  20. Pancam: A Multispectral Imaging Investigation on the NASA 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.

    2003-01-01

    One of the six science payload elements carried on each of the NASA Mars Exploration Rovers (MER; Figure 1) is the Panoramic Camera System, or Pancam. Pancam consists of three major components: a pair of digital CCD cameras, the Pancam Mast Assembly (PMA), and a radiometric calibration target. The PMA provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. The calibration target provides a set of reference color and grayscale standards for calibration validation, and a shadow post for quantification of the direct vs. diffuse illumination of the scene. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover in up to 12 unique wavelengths. The major characteristics of Pancam are summarized.

  1. Quantification of Residual Stress from Photonic Signatures of Fused Silica

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William E.

    2013-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress

  2. Quantification of residual stress from photonic signatures of fused silica

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William T.

    2014-02-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10-12 Pa-1. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.

  3. A frequentist approach to computer model calibration

    DOE PAGES

    Wong, Raymond K. W.; Storlie, Curtis Byron; Lee, Thomas C. M.

    2016-05-05

    The paper considers the computer model calibration problem and provides a general frequentist solution. Under the framework proposed, the data model is semiparametric with a non-parametric discrepancy function which accounts for any discrepancy between physical reality and the computer model. In an attempt to solve a fundamentally important (but often ignored) identifiability issue between the computer model parameters and the discrepancy function, the paper proposes a new and identifiable parameterization of the calibration problem. It also develops a two-step procedure for estimating all the relevant quantities under the new parameterization. This estimation procedure is shown to enjoy excellent rates ofmore » convergence and can be straightforwardly implemented with existing software. For uncertainty quantification, bootstrapping is adopted to construct confidence regions for the quantities of interest. As a result, the practical performance of the methodology is illustrated through simulation examples and an application to a computational fluid dynamics model.« less

  4. Performance evaluation and clinical applications of 3D plenoptic cameras

    NASA Astrophysics Data System (ADS)

    Decker, Ryan; Shademan, Azad; Opfermann, Justin; Leonard, Simon; Kim, Peter C. W.; Krieger, Axel

    2015-06-01

    The observation and 3D quantification of arbitrary scenes using optical imaging systems is challenging, but increasingly necessary in many fields. This paper provides a technical basis for the application of plenoptic cameras in medical and medical robotics applications, and rigorously evaluates camera integration and performance in the clinical setting. It discusses plenoptic camera calibration and setup, assesses plenoptic imaging in a clinically relevant context, and in the context of other quantitative imaging technologies. We report the methods used for camera calibration, precision and accuracy results in an ideal and simulated surgical setting. Afterwards, we report performance during a surgical task. Test results showed the average precision of the plenoptic camera to be 0.90mm, increasing to 1.37mm for tissue across the calibrated FOV. The ideal accuracy was 1.14mm. The camera showed submillimeter error during a simulated surgical task.

  5. Quick, sensitive and specific detection and evaluation of quantification of minor variants by high-throughput sequencing.

    PubMed

    Leung, Ross Ka-Kit; Dong, Zhi Qiang; Sa, Fei; Chong, Cheong Meng; Lei, Si Wan; Tsui, Stephen Kwok-Wing; Lee, Simon Ming-Yuen

    2014-02-01

    Minor variants have significant implications in quasispecies evolution, early cancer detection and non-invasive fetal genotyping but their accurate detection by next-generation sequencing (NGS) is hampered by sequencing errors. We generated sequencing data from mixtures at predetermined ratios in order to provide insight into sequencing errors and variations that can arise for which simulation cannot be performed. The information also enables better parameterization in depth of coverage, read quality and heterogeneity, library preparation techniques, technical repeatability for mathematical modeling, theory development and simulation experimental design. We devised minor variant authentication rules that achieved 100% accuracy in both testing and validation experiments. The rules are free from tedious inspection of alignment accuracy, sequencing read quality or errors introduced by homopolymers. The authentication processes only require minor variants to: (1) have minimum depth of coverage larger than 30; (2) be reported by (a) four or more variant callers, or (b) DiBayes or LoFreq, plus SNVer (or BWA when no results are returned by SNVer), and with the interassay coefficient of variation (CV) no larger than 0.1. Quantification accuracy undermined by sequencing errors could neither be overcome by ultra-deep sequencing, nor recruiting more variant callers to reach a consensus, such that consistent underestimation and overestimation (i.e. low CV) were observed. To accommodate stochastic error and adjust the observed ratio within a specified accuracy, we presented a proof of concept for the use of a double calibration curve for quantification, which provides an important reference towards potential industrial-scale fabrication of calibrants for NGS.

  6. Uncertainty quantification of overpressure buildup through inverse modeling of compaction processes in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Colombo, Ivo; Porta, Giovanni M.; Ruffo, Paolo; Guadagnini, Alberto

    2017-03-01

    This study illustrates a procedure conducive to a preliminary risk analysis of overpressure development in sedimentary basins characterized by alternating depositional events of sandstone and shale layers. The approach rests on two key elements: (1) forward modeling of fluid flow and compaction, and (2) application of a model-complexity reduction technique based on a generalized polynomial chaos expansion (gPCE). The forward model considers a one-dimensional vertical compaction processes. The gPCE model is then used in an inverse modeling context to obtain efficient model parameter estimation and uncertainty quantification. The methodology is applied to two field settings considered in previous literature works, i.e. the Venture Field (Scotian Shelf, Canada) and the Navarin Basin (Bering Sea, Alaska, USA), relying on available porosity and pressure information for model calibration. It is found that the best result is obtained when porosity and pressure data are considered jointly in the model calibration procedure. Uncertainty propagation from unknown input parameters to model outputs, such as pore pressure vertical distribution, is investigated and quantified. This modeling strategy enables one to quantify the relative importance of key phenomena governing the feedback between sediment compaction and fluid flow processes and driving the buildup of fluid overpressure in stratified sedimentary basins characterized by the presence of low-permeability layers. The results here illustrated (1) allow for diagnosis of the critical role played by the parameters of quantitative formulations linking porosity and permeability in compacted shales and (2) provide an explicit and detailed quantification of the effects of their uncertainty in field settings.

  7. User Guidelines and Best Practices for CASL VUQ Analysis Using Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Coleman, Kayla; Gilkey, Lindsay N.

    Sandia’s Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to enhance understanding of risk, improve products, and assess simulation credibility. In its simplest mode, Dakota can automate typical parameter variation studies through a generic interface to a physics-based computational model. This can lend efficiency and rigor to manual parameter perturbation studies already being conducted by analysts. However, Dakota also delivers advanced parametric analysis techniques enabling design exploration, optimization, model calibration, riskmore » analysis, and quantification of margins and uncertainty with such models. It directly supports verification and validation activities. Dakota algorithms enrich complex science and engineering models, enabling an analyst to answer crucial questions of - Sensitivity: Which are the most important input factors or parameters entering the simulation, and how do they influence key outputs?; Uncertainty: What is the uncertainty or variability in simulation output, given uncertainties in input parameters? How safe, reliable, robust, or variable is my system? (Quantification of margins and uncertainty, QMU); Optimization: What parameter values yield the best performing design or operating condition, given constraints? Calibration: What models and/or parameters best match experimental data? In general, Dakota is the Consortium for Advanced Simulation of Light Water Reactors (CASL) delivery vehicle for verification, validation, and uncertainty quantification (VUQ) algorithms. It permits ready application of the VUQ methods described above to simulation codes by CASL researchers, code developers, and application engineers.« less

  8. [Standardisation and validation of an HPLC method for determining serum posaconazole levels in Colombia].

    PubMed

    Cáceres, Diego H; Zapata, Juan David; Granada, Sinar D; Cano, Luz E; Naranjo, Tonny W

    Colombia currently does not have a specialised service for measuring antifungal levels in serum, which is of prime importance for the proper treatment and correct management of invasive fungal infections. To standardise and validate a simple, sensitive, and specific protocol, based on high performance liquid chromatography, complying with the parameters recommended by the Food and Drug Administration, to detect, identify, and quantify serum concentrations of posaconazole. A high performance liquid chromatography Agilent series-1 200 equipment was used with ultraviolet diode array detector and analytical column-Eclipse XDB-C18. Posaconazole-SCH56592 (batch IRQ-PAZ-10-X-103) was used as the primary control and itraconazole (batch ZR051211PUC921) was used as an internal control. The validation was performed taking into account all criteria recommended by the Food and Drug Administration (selectivity, calibration curves, recovery, accuracy, precision, sensitivity, reproducibility, and stability of the sample). The most suitable chromatographic conditions were the following: column temperature 25°C, ultraviolet detection at 261nm, 50μl injection volume, flow volume 0.8ml/min, 10min running time, mobile phase of acetonitrile:water (70:30), and final retention times of 3.4 and 7.2min for posaconazole and itraconazole, respectively, with a wide and reliable quantification range (0.125μg/ml to 16μg/ml). Using these parameters, the method was selective, R 2 in the calibration curves was≥0.99, and the percentage recovery was 98.7%, with a coefficient of variation less than 10%. The relative error for accuracy and the coefficient of variation for precision were less than 15%, all meeting the acceptance criteria recommended by the Food and Drug Administration. The selectivity and chromatographic purity of the obtained signal, as well as the standardised limits of detection and quantification, make this method an excellent tool for therapeutic monitoring of patients treated with posaconazole. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    NASA Astrophysics Data System (ADS)

    Bagán, H.; Tarancón, A.; Rauret, G.; García, J. F.

    2008-07-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach.

  10. Quantification of fructo-oligosaccharides based on the evaluation of oligomer ratios using an artificial neural network.

    PubMed

    Onofrejová, Lucia; Farková, Marta; Preisler, Jan

    2009-04-13

    The application of an internal standard in quantitative analysis is desirable in order to correct for variations in sample preparation and instrumental response. In mass spectrometry of organic compounds, the internal standard is preferably labelled with a stable isotope, such as (18)O, (15)N or (13)C. In this study, a method for the quantification of fructo-oligosaccharides using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS) was proposed and tested on raftilose, a partially hydrolysed inulin with a degree of polymeration 2-7. A tetraoligosaccharide nystose, which is chemically identical to the raftilose tetramer, was used as an internal standard rather than an isotope-labelled analyte. Two mathematical approaches used for data processing, conventional calculations and artificial neural networks (ANN), were compared. The conventional data processing relies on the assumption that a constant oligomer dispersion profile will change after the addition of the internal standard and some simple numerical calculations. On the other hand, ANN was found to compensate for a non-linear MALDI response and variations in the oligomer dispersion profile with raftilose concentration. As a result, the application of ANN led to lower quantification errors and excellent day-to-day repeatability compared to the conventional data analysis. The developed method is feasible for MS quantification of raftilose in the range of 10-750 pg with errors below 7%. The content of raftilose was determined in dietary cream; application can be extended to other similar polymers. It should be stressed that no special optimisation of the MALDI process was carried out. A common MALDI matrix and sample preparation were used and only the basic parameters, such as sampling and laser energy, were optimised prior to quantification.

  11. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  12. Literacy and Language Education: The Quantification of Learning

    ERIC Educational Resources Information Center

    Gibb, Tara

    2015-01-01

    This chapter describes international policy contexts of adult literacy and language assessment and the shift toward standardization through measurement tools. It considers the implications the quantification of learning outcomes has for pedagogy and practice and for the social inclusion of transnational migrants.

  13. dPCR: A Technology Review

    PubMed Central

    Quan, Phenix-Lan; Sauzade, Martin

    2018-01-01

    Digital Polymerase Chain Reaction (dPCR) is a novel method for the absolute quantification of target nucleic acids. Quantification by dPCR hinges on the fact that the random distribution of molecules in many partitions follows a Poisson distribution. Each partition acts as an individual PCR microreactor and partitions containing amplified target sequences are detected by fluorescence. The proportion of PCR-positive partitions suffices to determine the concentration of the target sequence without a need for calibration. Advances in microfluidics enabled the current revolution of digital quantification by providing efficient partitioning methods. In this review, we compare the fundamental concepts behind the quantification of nucleic acids by dPCR and quantitative real-time PCR (qPCR). We detail the underlying statistics of dPCR and explain how it defines its precision and performance metrics. We review the different microfluidic digital PCR formats, present their underlying physical principles, and analyze the technological evolution of dPCR platforms. We present the novel multiplexing strategies enabled by dPCR and examine how isothermal amplification could be an alternative to PCR in digital assays. Finally, we determine whether the theoretical advantages of dPCR over qPCR hold true by perusing studies that directly compare assays implemented with both methods. PMID:29677144

  14. Critical aspects of data analysis for quantification in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Motto-Ros, V.; Syvilay, D.; Bassel, L.; Negre, E.; Trichard, F.; Pelascini, F.; El Haddad, J.; Harhira, A.; Moncayo, S.; Picard, J.; Devismes, D.; Bousquet, B.

    2018-02-01

    In this study, a collaborative contest focused on LIBS data processing has been conducted in an original way since the participants did not share the same samples to be analyzed on their own LIBS experiments but a set of LIBS spectra obtained from one single experiment. Each participant was asked to provide the predicted concentrations of several elements for two glass samples. The analytical contest revealed a wide diversity of results among participants, even when the same spectral lines were considered for the analysis. Then, a parametric study was conducted to investigate the influence of each step during the data processing. This study was based on several analytical figures of merit such as the determination coefficient, uncertainty, limit of quantification and prediction ability (i.e., trueness). Then, it was possible to interpret the results provided by the participants, emphasizing the fact that the type of data extraction, baseline modeling as well as the calibration model play key roles in the quantification performance of the technique. This work provides a set of recommendations based on a systematic evaluation of the quantification procedure with the aim of optimizing the methodological steps toward the standardization of LIBS.

  15. Rapid quantification of clostridial epsilon toxin in complex food and biological matrixes by immunopurification and ultraperformance liquid chromatography-tandem mass spectrometry.

    PubMed

    Seyer, Alexandre; Fenaille, François; Féraudet-Tarisse, Cecile; Volland, Hervé; Popoff, Michel R; Tabet, Jean-Claude; Junot, Christophe; Becher, François

    2012-06-05

    Epsilon toxin (ETX) is one of the most lethal toxins produced by Clostridium species and is considered as a potential bioterrorist weapon. Here, we present a rapid mass spectrometry-based method for ETX quantification in complex matrixes. As a prerequisite, naturally occurring prototoxin and toxin species were first structurally characterized by top-down and bottom-up experiments, to identify the most pertinent peptides for quantification. Following selective ETX immunoextraction and trypsin digestion, two proteotypic peptides shared by all the toxin forms were separated by ultraperformance liquid chromatography (UPLC) and monitored by ESI-MS (electrospray ionization-mass spectrometry) operating in the multiple reaction monitoring mode (MRM) with collision-induced dissociation. Thorough protocol optimization, i.e., a 15 min immunocapture, a 2 h enzymatic digestion, and an UPLC-MS/MS detection, allowed the whole quantification process including the calibration curve to be performed in less than 4 h, without compromising assay robustness and sensitivity. The assay sensitivity in milk and serum was estimated at 5 ng·mL(-1) for ETX, making this approach complementary to enzyme linked immunosorbent assay (ELISA) techniques.

  16. Real-time PCR machine system modeling and a systematic approach for the robust design of a real-time PCR-on-a-chip system.

    PubMed

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  17. Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MS(n).

    PubMed

    Schütz, Katrin; Kammerer, Dietmar; Carle, Reinhold; Schieber, Andreas

    2004-06-30

    A method for the identification and quantification of phenolic compounds from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC with diode array and mass spectrometric detection was developed. Among the 22 major compounds, 11 caffeoylquinic acids and 8 flavonoids were detected. Quantification of individual compounds was carried out by external calibration. Apigenin 7-O-glucuronide was found to be the major flavonoid in all samples investigated. 1,5-Di-O-caffeoylquinic acid represented the major hydroxycinnamic acid, with 3890 mg/kg in artichoke heads and 3269 mg/kg in the pomace, whereas in the juice 1,3-di-O-caffeoylquinic acid (cynarin) was predominant, due to the isomerization during processing. Total phenolic contents of approximately 12 g/kg on a dry matter basis revealed that artichoke pomace is a promising source of phenolic compounds that might be recovered and used as natural antioxidants or functional food ingredients.

  18. Self-aliquoting micro-grooves in combination with laser ablation-ICP-mass spectrometry for the analysis of challenging liquids: quantification of lead in whole blood.

    PubMed

    Nischkauer, Winfried; Vanhaecke, Frank; Limbeck, Andreas

    2016-08-01

    We present a technique for the fast screening of the lead concentration in whole blood samples using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The whole blood sample is deposited on a polymeric surface and wiped across a set of micro-grooves previously engraved into the surface. The engraving of the micro-grooves was accomplished with the same laser system used for LA-ICP-MS analysis. In each groove, a part of the liquid blood is trapped, and thus, the sample is divided into sub-aliquots. These aliquots dry quasi instantly and are then investigated by means of LA-ICP-MS. For quantification, external calibration against aqueous standard solutions was relied on, with iron as an internal standard to account for varying volumes of the sample aliquots. The (208)Pb/(57)Fe nuclide ratio used for quantification was obtained via a data treatment protocol so far only used in the context of isotope ratio determination involving transient signals. The method presented here was shown to provide reliable results for Recipe ClinChek® Whole Blood Control levels I-III (nos. 8840-8842), with a repeatability of typically 3 % relative standard deviation (n = 6, for Pb at 442 μg L(-1)). Spiked and non-spiked real whole blood was analysed as well, and the results were compared with those obtained via dilution and sectorfield ICP-MS. A good agreement between both methods was observed. The detection limit (3 s) for lead in whole blood was established to be 10 μg L(-1) for the laser ablation method presented here. Graphical Abstract Micro-grooves are filled with whole blood, dried, and analyzed by laser ablation ICP-mass spectrometry. Notice that the laser moves in perpendicular direction with regard to the micro-grooves.

  19. Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: Method validation and application to a neonatal pharmacokinetic study.

    PubMed

    Cook, Sarah F; King, Amber D; van den Anker, John N; Wilkins, Diana G

    2015-12-15

    Drug metabolism plays a key role in acetaminophen (paracetamol)-induced hepatotoxicity, and quantification of acetaminophen metabolites provides critical information about factors influencing susceptibility to acetaminophen-induced hepatotoxicity in clinical and experimental settings. The aims of this study were to develop, validate, and apply high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) methods for simultaneous quantification of acetaminophen, acetaminophen-glucuronide, acetaminophen-sulfate, acetaminophen-glutathione, acetaminophen-cysteine, and acetaminophen-N-acetylcysteine in small volumes of human plasma and urine. In the reported procedures, acetaminophen-d4 and acetaminophen-d3-sulfate were utilized as internal standards (IS). Analytes and IS were recovered from human plasma (10μL) by protein precipitation with acetonitrile. Human urine (10μL) was prepared by fortification with IS followed only by sample dilution. Calibration concentration ranges were tailored to literature values for each analyte in each biological matrix. Prepared samples from plasma and urine were analyzed under the same HPLC-ESI-MS/MS conditions, and chromatographic separation was achieved through use of an Agilent Poroshell 120 EC-C18 column with a 20-min run time per injected sample. The analytes could be accurately and precisely quantified over 2.0-3.5 orders of magnitude. Across both matrices, mean intra- and inter-assay accuracies ranged from 85% to 112%, and intra- and inter-assay imprecision did not exceed 15%. Validation experiments included tests for specificity, recovery and ionization efficiency, inter-individual variability in matrix effects, stock solution stability, and sample stability under a variety of storage and handling conditions (room temperature, freezer, freeze-thaw, and post-preparative). The utility and suitability of the reported procedures were illustrated by analysis of pharmacokinetic samples collected from neonates receiving intravenous acetaminophen. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A simple, rapid and stability indicating validated method for quantification of lamotrigine in human plasma and dry plasma spot using LC-ESI-MS/MS: Application in clinical study.

    PubMed

    Namdev, Kuldeep Kumar; Dwivedi, Jaya; Chilkoti, Deepak Chandra; Sharma, Swapnil

    2018-01-01

    Lamotrigine (LTZ) is a phenyltriazine derivative which belongs to anti-epileptic drugs (AEDs) class and prescribed as mono- or adjunctive-therapy in treatment of epilepsy. Therapeutic drug monitoring (TDM) of AEDs provides a valid clinical tool in optimization of overall therapy. However, TDM is challenging due to the high biological samples (plasma/blood) storage/shipment costs and the limited availability of laboratories providing TDM services. Sampling in the form of dry plasma spot (DPS) or dry blood spot (DBS) are suitable alternative to overcome these issues. We developed and validated a new method for quantification of LTZ in human plasma and DPS. The extraction of LTZ from plasma and DPS was performed using liquid-liquid extraction with diethyl ether and an extraction solution composed of diethyl ether- methyl tert-butyl ether- acetone (50:30:20, v/v/v), respectively. Lamotrigine- 13C3, d3 was used as internal standard (ISTD) and the chromatographic separation was achieved on Hypurity Advance C18 column (150×4.6mm, 5μm). Quantitative estimation of LTZ and ISTD was performed on a liquid chromatography tandem mass spectrometer coupled with electrospray ionization interface operated under positive mode of ionization. Calibration curves were linear (r 2 >0.99) over the concentration range of 10-3020ng/mL for both plasma and DPS. Statistical analysis provides insignificant difference between LTZ concentration extracted from plasma and DPS samples. The method is found suitable for application in clinical study and in therapeutic monitoring of LTZ. To the best of our knowledge this is the first report which describing a validated stability indicating assay for quantification of LTZ in dry plasma spot. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development and validation of an LC-MS/MS method for quantification of Δ9-tetrahydrocannabinolic acid A (THCA-A), THC, CBN and CBD in hair.

    PubMed

    Roth, Nadine; Moosmann, Bjoern; Auwärter, Volker

    2013-02-01

    For analysis of hair samples derived from a pilot study ('in vivo' contamination of hair by sidestream marijuana smoke), an LC-MS/MS method was developed and validated for the simultaneous quantification of Δ9-tetrahydrocannabinolic acid A (THCA-A), Δ9-tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD). Hair samples were extracted in methanol for 4 h under occasional shaking at room temperature, after adding THC-D(3), CBN-D(3), CBD-D(3) and THCA-A-D(3) as an in-house synthesized internal standard. The analytes were separated by gradient elution on a Luna C18 column using 0.1% HCOOH and ACN + 0.1% HCOOH. Data acquisition was performed on a QTrap 4000 in electrospray ionization-multi reaction monitoring mode. Validation was carried out according to the guidelines of the German Society of Toxicological and Forensic Chemistry (GTFCh). Limit of detection and lower limit of quantification were 2.5 pg/mg for THCA-A and 20 pg/mg for THC, CBN and CBD. A linear calibration model was applicable for all analytes over a range of 2.5 pg/mg or 20 pg/mg to 1000 pg/mg, using a weighting factor 1/x. Selectivity was shown for 12 blank hair samples from different sources. Accuracy and precision data were within the required limits for all analytes (bias between -0.2% and 6.4%, RSD between 3.7% and 11.5%). The dried hair extracts were stable over a time period of one to five days in the dark at room temperature. Processed sample stability (maximum decrease of analyte peak area below 25%) was considerably enhanced by adding 0.25% lecithin (w/v) in ACN + 0.1% HCOOH for reconstitution. Extraction efficiency for CBD was generally very low using methanol extraction. Hence, for effective extraction of CBD alkaline hydrolysis is recommended. Copyright © 2013 John Wiley & Sons, Ltd.

  2. An enzyme-linked immuno-mass spectrometric assay with the substrate adenosine monophosphate.

    PubMed

    Florentinus-Mefailoski, Angelique; Soosaipillai, Antonius; Dufresne, Jaimie; Diamandis, Eleftherios P; Marshall, John G

    2015-02-01

    An enzyme-linked immuno-mass spectrometric assay (ELIMSA) with the specific detection probe streptavidin conjugated to alkaline phosphatase catalyzed the production of adenosine from the substrate adenosine monophosphate (AMP) for sensitive quantification of prostate-specific antigen (PSA) by mass spectrometry. Adenosine ionized efficiently and was measured to the femtomole range by dilution and direct analysis with micro-liquid chromatography, electrospray ionization, and mass spectrometry (LC-ESI-MS). The LC-ESI-MS assay for adenosine production was shown to be linear and accurate using internal (13)C(15)N adenosine isotope dilution, internal (13)C(15)N adenosine one-point calibration, and external adenosine standard curves with close agreement. The detection limits of LC-ESI-MS for alkaline phosphatase-streptavidin (AP-SA, ∼190,000 Da) was tested by injecting 0.1 μl of a 1 pg/ml solution, i.e., 100 attograms or 526 yoctomole (5.26E-22) of the alkaline-phosphatase labeled probe on column (about 315 AP-SA molecules). The ELIMSA for PSA was linear and showed strong signals across the picogram per milliliter range and could robustly detect PSA from all of the prostatectomy patients and all of the female plasma samples that ranged as low as 70 pg/ml with strong signals well separated from the background and well within the limit of quantification of the AP-SA probe. The results of the ELIMSA assay for PSA are normal and homogenous when independently replicated with a fresh standard over multiple days, and intra and inter diem assay variation was less than 10 % of the mean. In a blind comparison, ELIMSA showed excellent agreement with, but was more sensitive than, the present gold standard commercial fluorescent ELISA, or ECL-based detection, of PSA from normal and prostatectomy samples, respectively.

  3. A sensitive and selective liquid chromatography/tandem mass spectrometry method for quantitative analysis of efavirenz in human plasma.

    PubMed

    Srivastava, Praveen; Moorthy, Ganesh S; Gross, Robert; Barrett, Jeffrey S

    2013-01-01

    A selective and a highly sensitive method for the determination of the non-nucleoside reverse transcriptase inhibitor (NNRTI), efavirenz, in human plasma has been developed and fully validated based on high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Sample preparation involved protein precipitation followed by one to one dilution with water. The analyte, efavirenz was separated by high performance liquid chromatography and detected with tandem mass spectrometry in negative ionization mode with multiple reaction monitoring. Efavirenz and ¹³C₆-efavirenz (Internal Standard), respectively, were detected via the following MRM transitions: m/z 314.20243.90 and m/z 320.20249.90. A gradient program was used to elute the analytes using 0.1% formic acid in water and 0.1% formic acid in acetonitrile as mobile phase solvents, at a flow-rate of 0.3 mL/min. The total run time was 5 min and the retention times for the internal standard (¹³C₆-efavirenz) and efavirenz was approximately 2.6 min. The calibration curves showed linearity (coefficient of regression, r>0.99) over the concentration range of 1.0-2,500 ng/mL. The intraday precision based on the standard deviation of replicates of lower limit of quantification (LLOQ) was 9.24% and for quality control (QC) samples ranged from 2.41% to 6.42% and with accuracy from 112% and 100-111% for LLOQ and QC samples. The inter day precision was 12.3% and 3.03-9.18% for LLOQ and quality controls samples, and the accuracy was 108% and 95.2-108% for LLOQ and QC samples. Stability studies showed that efavirenz was stable during the expected conditions for sample preparation and storage. The lower limit of quantification for efavirenz was 1 ng/mL. The analytical method showed excellent sensitivity, precision, and accuracy. This method is robust and is being successfully applied for therapeutic drug monitoring and pharmacokinetic studies in HIV-infected patients.

  4. Development of a robust, sensitive and selective liquid chromatography-tandem mass spectrometry assay for the quantification of the novel macrocyclic peptide kappa opioid receptor antagonist [D-Trp]CJ-15,208 in plasma and application to an initial pharmacokinetic study.

    PubMed

    Khaliq, Tanvir; Williams, Todd D; Senadheera, Sanjeewa N; Aldrich, Jane V

    2016-08-15

    Selective kappa opioid receptor (KOR) antagonists may have therapeutic potential as treatments for substance abuse and mood disorders. Since [D-Trp]CJ-15,208 (cyclo[Phe-d-Pro-Phe-d-Trp]) is a novel potent KOR antagonist in vivo, it is imperative to evaluate its pharmacokinetic properties to assist the development of analogs as potential therapeutic agents, necessitating the development and validation of a quantitative method for determining its plasma levels. A method for quantifying [D-Trp]CJ-15,208 was developed employing high performance liquid chromatography-tandem mass spectrometry in mouse plasma. Sample preparation was accomplished through a simple one-step protein precipitation method with acetonitrile, and [D-Trp]CJ-15,208 analyzed following HPLC separation on a Hypersil BDS C8 column. Multiple reaction monitoring (MRM), based on the transitions m/z 578.1→217.1 and 245.0, was specific for [D-Trp]CJ-15,208, and MRM based on the transition m/z 566.2→232.9 was specific for the internal standard without interference from endogenous substances in blank mouse plasma. The assay was linear over the concentration range 0.5-500ng/mL with a mean r(2)=0.9987. The mean inter-day accuracy and precision for all calibration standards were 93-118% and 8.9%, respectively. The absolute recoveries were 85±6% and 81±9% for [D-Trp]CJ-15,208 and the internal standard, respectively. The analytical method had excellent sensitivity with a lower limit of quantification of 0.5ng/mL using a sample volume of 20μL. The method was successfully applied to an initial pharmacokinetic study of [D-Trp]CJ-15,208 following intravenous administration to mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Development of a robust, sensitive and selective liquid chromatography-tandem mass spectrometry assay for the quantification of the novel macrocyclic peptide kappa opioid receptor antagonist [D-Trp]CJ-15,208 in plasma and application to an initial pharmacokinetic study

    PubMed Central

    Khaliq, Tanvir; Williams, Todd D.; Senadheera, Sanjeewa N.; Aldrich, Jane V.

    2016-01-01

    Selective kappa opioid receptor (KOR) antagonists may have therapeutic potential as treatments for substance abuse and mood disorders. Since [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) is a novel potent KOR antagonist in vivo, it is imperative to evaluate its pharmacokinetic properties to assist the development of analogs as potential therapeutic agents, necessitating the development and validation of a quantitative method for determining its plasma levels. A method for quantifying [D-Trp]CJ-15,208 was developed employing high performance liquid chromatography-tandem mass spectrometry in mouse plasma. Sample preparation was accomplished through a simple one-step protein precipitation method with acetonitrile, and [D-Trp]CJ-15,208 analyzed following HPLC separation on a Hypersil BDS C8 column. Multiple reaction monitoring (MRM), based on the transitions m/z 578.1 → 217.1 and 245.0, was specific for [D-Trp]CJ-15,208, and MRM based on the transition m/z 566.2 → 232.9 was specific for the internal standard without interference from endogenous substances in blank mouse plasma. The assay was linear over the concentration range 0.5–500 ng/mL with a mean r2 = 0.9987. The mean inter-day accuracy and precision for all calibration standards was 93–118% and 8.9%, respectively. The absolute recoveries were 85±6% and 81±9% for [D-Trp]CJ-15,208 and the internal standard, respectively. The analytical method had excellent sensitivity with a lower limit of quantification of 0.5 ng/mL using a sample volume of 20 μL. The method was successfully applied to an initial pharmacokinetic study of [D-Trp]CJ-15,208 following intravenous administration to mice. PMID:27318293

  6. Stereoselective quantification of methadone and a d(6)-labeled isotopomer using high performance liquid chromatography-atmospheric pressure chemical ionization mass-spectrometry: application to a pharmacokinetic study in a methadone maintained subject.

    PubMed

    Foster, David J R; Morton, Erin B; Heinkele, Georg; Mürdter, Thomas E; Somogyi, Andrew A

    2006-08-01

    There is evidence that the apparent oral clearance of rac-methadone is induced during the early phase of methadone maintenance treatment. However, it is not known if this is due to changes in bioavailability or if this phenomenon is stereoselective. This knowledge can be obtained by administering a dose of stable-labeled methadone at selected times during ongoing treatment. Therefore, the authors developed a stereoselective high performance liquid chromatography-atmospheric pressure chemical ionization mass-spectrometry assay for the quantification of the enantiomers of methadone and a d(6)-labeled isotopomer. The compounds were quantified in a single assay after liquid-liquid extraction and stereoselective high performance liquid chromatograph with atmospheric pressure chemical ionization-mass spectrometry detection. The following ions were monitored: m/z 310.15 for unlabeled methadone; m/z 316.15 for methadone-d(6); and m/z 313.15 for the methadone-d(3) (internal standard). Calibration curves ranged from 0.5 to 75 ng/mL for each compound. Extraction recovery was approximately 80% for all analytes, without evidence of differences between the unlabeled and stable-labeled compounds or concentration dependency. Minor ion promotion was observed (<15%) but this was identical for all analytes including the d(3)-labeled internal standard, with peak area ratios in extracted samples identical to control injections. The isotopomers did not alter each others' ionisation, even at 10:1 concentration ratios, and 10-fold diluted samples were within 10% of the nominal concentration. Assay performance was acceptable, with interassay and intra-assay bias and precision <10% for all compounds, including the upper and lower limits of quantitation. In conclusion, the assay was successfully applied to quantify the concentration of the methadone enantiomers of both orally administered unlabeled methadone and an intravenous 5 mg dose of methadone-d(6) in a patient receiving chronic oral methadone maintenance therapy.

  7. Plasticity models of material variability based on uncertainty quantification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Reese E.; Rizzi, Francesco; Boyce, Brad

    The advent of fabrication techniques like additive manufacturing has focused attention on the considerable variability of material response due to defects and other micro-structural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. Lastly, we demonstrate that the new method provides predictive realizations that are superior to more traditional ones, and how these UQmore » techniques can be used in model selection and assessing the quality of calibrated physical parameters.« less

  8. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques.

    PubMed

    Douglas, R K; Nawar, S; Alamar, M C; Mouazen, A M; Coulon, F

    2018-03-01

    Visible and near infrared spectrometry (vis-NIRS) coupled with data mining techniques can offer fast and cost-effective quantitative measurement of total petroleum hydrocarbons (TPH) in contaminated soils. Literature showed however significant differences in the performance on the vis-NIRS between linear and non-linear calibration methods. This study compared the performance of linear partial least squares regression (PLSR) with a nonlinear random forest (RF) regression for the calibration of vis-NIRS when analysing TPH in soils. 88 soil samples (3 uncontaminated and 85 contaminated) collected from three sites located in the Niger Delta were scanned using an analytical spectral device (ASD) spectrophotometer (350-2500nm) in diffuse reflectance mode. Sequential ultrasonic solvent extraction-gas chromatography (SUSE-GC) was used as reference quantification method for TPH which equal to the sum of aliphatic and aromatic fractions ranging between C 10 and C 35 . Prior to model development, spectra were subjected to pre-processing including noise cut, maximum normalization, first derivative and smoothing. Then 65 samples were selected as calibration set and the remaining 20 samples as validation set. Both vis-NIR spectrometry and gas chromatography profiles of the 85 soil samples were subjected to RF and PLSR with leave-one-out cross-validation (LOOCV) for the calibration models. Results showed that RF calibration model with a coefficient of determination (R 2 ) of 0.85, a root means square error of prediction (RMSEP) 68.43mgkg -1 , and a residual prediction deviation (RPD) of 2.61 outperformed PLSR (R 2 =0.63, RMSEP=107.54mgkg -1 and RDP=2.55) in cross-validation. These results indicate that RF modelling approach is accounting for the nonlinearity of the soil spectral responses hence, providing significantly higher prediction accuracy compared to the linear PLSR. It is recommended to adopt the vis-NIRS coupled with RF modelling approach as a portable and cost effective method for the rapid quantification of TPH in soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: A feasibility study

    PubMed Central

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. Methods A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio (SNR) of the dual energy image with respect to the square root of mean glandular dose (MGD), was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. Results For an average sized breast of 4.5 cm thick, the FOM was maximized with a tube voltage of 46kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (~ 32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration function. The results from the modified fitting function, which integrated the tube voltage as a variable in the calibration, indicated a RMS error of approximately 1.35% for all four studies. Conclusions The results of the current study suggest that photon-counting spectral mammography systems may potentially be implemented for an accurate quantification of volumetric breast density, with an RMS error of less than 2%, using the proposed dual energy imaging technique. PMID:22771941

  10. Installation Restoration Program. Confirmation/Quantification Stage 1. Phase 2

    DTIC Science & Technology

    1985-03-07

    INSTALLATION RESTORATION PROGRAM i0 PHASE II - CONFIRMATION/QUANTIFICATION 0STAGE 1 KIRTLAND AFB KIRTLAND AFB, NEW MEXICO 87117 IIl PREPARED BY SCIENCE...APPLICATIONS INTERNATIONAL CORPORATION 505 MARQUETTE NW, SUITE 1200 ALBUQUERQUE, NEW MEXICO 871021 5MARCH 1985 FINAL REPORT FROM FEB 1983 TO MAR 1985...QUANTIFICATION STAGE 1 i FINAL REPORT FOR IKIRTLAND AFB KIRTLAND AFB, NEW MEXICO 87117U HEADQUARTERS MILITARY AIRLIFT COMMAND COMMAND SURGEON’S OFFICE (HQ MAC

  11. Standard Reference Materials (SRMs) for the Calibration and Validation of Analytical Methods for PCBs (as Aroclor Mixtures)

    PubMed Central

    Poster, Dianne L.; Schantz, Michele M.; Leigh, Stefan D.; Wise, Stephen A.

    2004-01-01

    Six Standard Reference Materials (SRMs®) have been prepared by the National Institute of Standards and Technology (NIST) for the determination of PCBs as different Aroclor mixtures in methanol. Six additional SRMs of the same Aroclors in transformer oil have also been prepared. Specifically, solutions of Aroclors 1016, 1232, 1242, 1254, and 1260 have been gravimetrically prepared (individually) in methanol and transformer oil, mixed, and transferred to amber glass ampoules in approximately 1.2 mL aliquots. Gas chromatography with electron capture detection (GC-ECD) has been used to verify the gravimetric data for each solution and transformer oil SRM. Liquid chromatography was used for the isolation of the Aroclors from the transformer oil SRMs prior to GC-ECD analysis. Separate calibration solutions and oils were prepared with Aroclor levels similar to those in each methanol solution and transformer oil SRM and were processed alongside the samples. The GC-ECD response of each Aroclor was monitored relative to internal standards that were added to the complex mixtures for quantification. The gravimetric concentrations of Aroclors 1242 and 1254 in methanol were also examined by the same method of analysis (GC-ECD) using several different sources of Aroclors and two different capillary GC columns: a 5 % phenyl methylpolysiloxane phase and a relatively non-polar phase. The preparation of the materials, the gas chromatographic results, and the certified concentration values for each Aroclor SRM are described in this paper. PMID:27366608

  12. Quantification of water in hydrous ringwoodite

    DOE PAGES

    Thomas, Sylvia -Monique; Jacobsen, Steven D.; Bina, Craig R.; ...

    2015-01-28

    Here, ringwoodite, γ-(Mg,Fe) 2SiO 4, in the lower 150 km of Earth’s mantle transition zone (410-660 km depth) can incorporate up to 1.5-2 wt% H 2O as hydroxyl defects. We present a mineral-specific IR calibration for the absolute water content in hydrous ringwoodite by combining results from Raman spectroscopy, secondary ion mass spectrometery (SIMS) and proton-proton (pp)-scattering on a suite of synthetic Mg- and Fe-bearing hydrous ringwoodites. H 2O concentrations in the crystals studied here range from 0.46 to 1.7 wt% H 2O (absolute methods), with the maximum H 2O in the same sample giving 2.5 wt% by SIMS calibration.more » Anchoring our spectroscopic results to absolute H-atom concentrations from pp-scattering measurements, we report frequency-dependent integrated IR-absorption coefficients for water in ringwoodite ranging from 78180 to 158880 L mol -1cm -2, depending upon frequency of the OH absorption. We further report a linear wavenumber IR calibration for H 2O quantification in hydrous ringwoodite across the Mg 2SiO 4-Fe 2SiO 4 solid solution, which will lead to more accurate estimations of the water content in both laboratory-grown and naturally occurring ringwoodites. Re-evaluation of the IR spectrum for a natural hydrous ringwoodite inclusion in diamond from the study of the crystal contains 1.43 ± 0.27 wt% H 2O, thus confirming near-maximum amounts of H 2O for this sample from the transition zone.« less

  13. Development and validation of an in-line NIR spectroscopic method for continuous blend potency determination in the feed frame of a tablet press.

    PubMed

    De Leersnyder, Fien; Peeters, Elisabeth; Djalabi, Hasna; Vanhoorne, Valérie; Van Snick, Bernd; Hong, Ke; Hammond, Stephen; Liu, Angela Yang; Ziemons, Eric; Vervaet, Chris; De Beer, Thomas

    2018-03-20

    A calibration model for in-line API quantification based on near infrared (NIR) spectra collection during tableting in the tablet press feed frame was developed and validated. First, the measurement set-up was optimised and the effect of filling degree of the feed frame on the NIR spectra was investigated. Secondly, a predictive API quantification model was developed and validated by calculating the accuracy profile based on the analysis results of validation experiments. Furthermore, based on the data of the accuracy profile, the measurement uncertainty was determined. Finally, the robustness of the API quantification model was evaluated. An NIR probe (SentroPAT FO) was implemented into the feed frame of a rotary tablet press (Modul™ P) to monitor physical mixtures of a model API (sodium saccharine) and excipients with two different API target concentrations: 5 and 20% (w/w). Cutting notches into the paddle wheel fingers did avoid disturbances of the NIR signal caused by the rotating paddle wheel fingers and hence allowed better and more complete feed frame monitoring. The effect of the design of the notched paddle wheel fingers was also investigated and elucidated that straight paddle wheel fingers did cause less variation in NIR signal compared to curved paddle wheel fingers. The filling degree of the feed frame was reflected in the raw NIR spectra. Several different calibration models for the prediction of the API content were developed, based on the use of single spectra or averaged spectra, and using partial least squares (PLS) regression or ratio models. These predictive models were then evaluated and validated by processing physical mixtures with different API concentrations not used in the calibration models (validation set). The β-expectation tolerance intervals were calculated for each model and for each of the validated API concentration levels (β was set at 95%). PLS models showed the best predictive performance. For each examined saccharine concentration range (i.e., between 4.5 and 6.5% and between 15 and 25%), at least 95% of future measurements will not deviate more than 15% from the true value. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Quantification of the HIV-integrase inhibitor raltegravir (MK-0518) in human plasma by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Poirier, Jean-Marie; Robidou, Pascal; Jaillon, Patrice

    2008-05-15

    A simple and sensitive HLPC method with fluorescence detection was developed for the accurate determination of the first licensed HIV integrase inhibitor raltegravir in human plasma. A 500-microL plasma sample was spiked with delavirdine as internal standard and subjected to liquid-liquid extraction based on a previously described assay i.e. using hexane/methylene chloride (1:1, v/v%) at pH 4.0. HPLC was performed using a Symmetry Shield RP18 column (150 mm x 4.6 mm), a gradient elution of acetonitrile -0.01% (v/v) triethylamine in water adjusted to pH 3.0 at a flow rate of 1 mL/min and a fluorimetric detector set at 299 and 396 nm as excitation and emission wavelengths, respectively. The retention time was 5.0 min for internal standard and 6.4 min for raltegravir. Calibration curves were linear in the range 5-1000 ng/mL and the accuracy of quality control samples in the range 10-750 ng/mL varied from 98.3 to 99.1% and 98.3 to 101.0% of the nominal concentrations for intra-day and day-to-day analysis, respectively with a precision of 6.3% or less. Among the other antiretroviral drugs which can be given in association to HIV-infected patients, none was found to interfere with internal standard or raltegravir. The described assay was developed for the purpose of therapeutic drug of this HIV integrase inhibitor.

  15. The moon as a radiometric reference source for on-orbit sensor stability calibration

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  16. Ariadne's Thread: A Robust Software Solution Leading to Automated Absolute and Relative Quantification of SRM Data.

    PubMed

    Nasso, Sara; Goetze, Sandra; Martens, Lennart

    2015-09-04

    Selected reaction monitoring (SRM) MS is a highly selective and sensitive technique to quantify protein abundances in complex biological samples. To enhance the pace of SRM large studies, a validated, robust method to fully automate absolute quantification and to substitute for interactive evaluation would be valuable. To address this demand, we present Ariadne, a Matlab software. To quantify monitored targets, Ariadne exploits metadata imported from the transition lists, and targets can be filtered according to mProphet output. Signal processing and statistical learning approaches are combined to compute peptide quantifications. To robustly estimate absolute abundances, the external calibration curve method is applied, ensuring linearity over the measured dynamic range. Ariadne was benchmarked against mProphet and Skyline by comparing its quantification performance on three different dilution series, featuring either noisy/smooth traces without background or smooth traces with complex background. Results, evaluated as efficiency, linearity, accuracy, and precision of quantification, showed that Ariadne's performance is independent of data smoothness and complex background presence and that Ariadne outperforms mProphet on the noisier data set and improved 2-fold Skyline's accuracy and precision for the lowest abundant dilution with complex background. Remarkably, Ariadne could statistically distinguish from each other all different abundances, discriminating dilutions as low as 0.1 and 0.2 fmol. These results suggest that Ariadne offers reliable and automated analysis of large-scale SRM differential expression studies.

  17. AQuA: An Automated Quantification Algorithm for High-Throughput NMR-Based Metabolomics and Its Application in Human Plasma.

    PubMed

    Röhnisch, Hanna E; Eriksson, Jan; Müllner, Elisabeth; Agback, Peter; Sandström, Corine; Moazzami, Ali A

    2018-02-06

    A key limiting step for high-throughput NMR-based metabolomics is the lack of rapid and accurate tools for absolute quantification of many metabolites. We developed, implemented, and evaluated an algorithm, AQuA (Automated Quantification Algorithm), for targeted metabolite quantification from complex 1 H NMR spectra. AQuA operates based on spectral data extracted from a library consisting of one standard calibration spectrum for each metabolite. It uses one preselected NMR signal per metabolite for determining absolute concentrations and does so by effectively accounting for interferences caused by other metabolites. AQuA was implemented and evaluated using experimental NMR spectra from human plasma. The accuracy of AQuA was tested and confirmed in comparison with a manual spectral fitting approach using the ChenomX software, in which 61 out of 67 metabolites quantified in 30 human plasma spectra showed a goodness-of-fit (r 2 ) close to or exceeding 0.9 between the two approaches. In addition, three quality indicators generated by AQuA, namely, occurrence, interference, and positional deviation, were studied. These quality indicators permit evaluation of the results each time the algorithm is operated. The efficiency was tested and confirmed by implementing AQuA for quantification of 67 metabolites in a large data set comprising 1342 experimental spectra from human plasma, in which the whole computation took less than 1 s.

  18. Quantification of taurine in energy drinks using ¹H NMR.

    PubMed

    Hohmann, Monika; Felbinger, Christine; Christoph, Norbert; Wachter, Helmut; Wiest, Johannes; Holzgrabe, Ulrike

    2014-05-01

    The consumption of so called energy drinks is increasing, especially among adolescents. These beverages commonly contain considerable amounts of the amino sulfonic acid taurine, which is related to a magnitude of various physiological effects. The customary method to control the legal limit of taurine in energy drinks is LC-UV/vis with postcolumn derivatization using ninhydrin. In this paper we describe the quantification of taurine in energy drinks by (1)H NMR as an alternative to existing methods of quantification. Variation of pH values revealed the separation of a distinct taurine signal in (1)H NMR spectra, which was applied for integration and quantification. Quantification was performed using external calibration (R(2)>0.9999; linearity verified by Mandel's fitting test with a 95% confidence level) and PULCON. Taurine concentrations in 20 different energy drinks were analyzed by both using (1)H NMR and LC-UV/vis. The deviation between (1)H NMR and LC-UV/vis results was always below the expanded measurement uncertainty of 12.2% for the LC-UV/vis method (95% confidence level) and at worst 10.4%. Due to the high accordance to LC-UV/vis data and adequate recovery rates (ranging between 97.1% and 108.2%), (1)H NMR measurement presents a suitable method to quantify taurine in energy drinks. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Report on International Spaceborne Imaging Spectroscopy Technical Committee Calibration and Validation Workshop, National Environment Research Council Field Spectroscopy Facility, University of Edinburgh

    NASA Technical Reports Server (NTRS)

    Ong, C,; Mueller, A.; Thome, K.; Bachmann, M.; Czapla-Myers, J.; Holzwarth, S.; Khalsa, S. J.; Maclellan, C.; Malthus, T.; Nightingale, J.; hide

    2016-01-01

    Calibration and validation are fundamental for obtaining quantitative information from Earth Observation (EO) sensor data. Recognising this and the impending launch of at least five sensors in the next five years, the International Spaceborne Imaging Spectroscopy Technical Committee instigated a calibration and validation initiative. A workshop was conducted recently as part of this initiative with the objective of establishing a good practice framework for radiometric and spectral calibration and validation in support of spaceborne imaging spectroscopy missions. This paper presents the outcomes and recommendations for future work arising from the workshop.

  20. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.

    2015-01-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872

  1. Multispectral scanner flight model (F-1) radiometric calibration and alignment handbook

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This handbook on the calibration of the MSS-D flight model (F-1) provides both the relevant data and a summary description of how the data were obtained for the system radiometric calibration, system relative spectral response, and the filter response characteristics for all 24 channels of the four band MSS-D F-1 scanner. The calibration test procedure and resulting test data required to establish the reference light levels of the MSS-D internal calibration system are discussed. The final set of data ("nominal" calibration wedges for all 24 channels) for the internal calibration system is given. The system relative spectral response measurements for all 24 channels of MSS-D F-1 are included. These data are the spectral response of the complete scanner, which are the composite of the spectral responses of the scan mirror primary and secondary telescope mirrors, fiber optics, optical filters, and detectors. Unit level test data on the measurements of the individual channel optical transmission filters are provided. Measured performance is compared to specification values.

  2. Calibration procedure of Hukseflux SR25 to Establish the Diffuse Reference for the Outdoor Broadband Radiometer Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, Ibrahim M.; Andreas, Afshin M.

    2017-08-01

    Accurate pyranometer calibrations, traceable to internationally recognized standards, are critical for solar irradiance measurements. One calibration method is the component summation method, where the pyranometers are calibrated outdoors under clear sky conditions, and the reference global solar irradiance is calculated as the sum of two reference components, the diffuse horizontal and subtended beam solar irradiances. The beam component is measured with pyrheliometers traceable to the World Radiometric Reference, while there is no internationally recognized reference for the diffuse component. In the absence of such a reference, we present a method to consistently calibrate pyranometers for measuring the diffuse component. Themore » method is based on using a modified shade/unshade method and a pyranometer with less than 0.5 W/m2 thermal offset. The calibration result shows that the responsivity of Hukseflux SR25 pyranometer equals 10.98 uV/(W/m2) with +/-0.86 percent uncertainty.« less

  3. On combination of strict Bayesian principles with model reduction technique or how stochastic model calibration can become feasible for large-scale applications

    NASA Astrophysics Data System (ADS)

    Oladyshkin, S.; Schroeder, P.; Class, H.; Nowak, W.

    2013-12-01

    Predicting underground carbon dioxide (CO2) storage represents a challenging problem in a complex dynamic system. Due to lacking information about reservoir parameters, quantification of uncertainties may become the dominant question in risk assessment. Calibration on past observed data from pilot-scale test injection can improve the predictive power of the involved geological, flow, and transport models. The current work performs history matching to pressure time series from a pilot storage site operated in Europe, maintained during an injection period. Simulation of compressible two-phase flow and transport (CO2/brine) in the considered site is computationally very demanding, requiring about 12 days of CPU time for an individual model run. For that reason, brute-force approaches for calibration are not feasible. In the current work, we explore an advanced framework for history matching based on the arbitrary polynomial chaos expansion (aPC) and strict Bayesian principles. The aPC [1] offers a drastic but accurate stochastic model reduction. Unlike many previous chaos expansions, it can handle arbitrary probability distribution shapes of uncertain parameters, and can therefore handle directly the statistical information appearing during the matching procedure. We capture the dependence of model output on these multipliers with the expansion-based reduced model. In our study we keep the spatial heterogeneity suggested by geophysical methods, but consider uncertainty in the magnitude of permeability trough zone-wise permeability multipliers. Next combined the aPC with Bootstrap filtering (a brute-force but fully accurate Bayesian updating mechanism) in order to perform the matching. In comparison to (Ensemble) Kalman Filters, our method accounts for higher-order statistical moments and for the non-linearity of both the forward model and the inversion, and thus allows a rigorous quantification of calibrated model uncertainty. The usually high computational costs of accurate filtering become very feasible for our suggested aPC-based calibration framework. However, the power of aPC-based Bayesian updating strongly depends on the accuracy of prior information. In the current study, the prior assumptions on the model parameters were not satisfactory and strongly underestimate the reservoir pressure. Thus, the aPC-based response surface used in Bootstrap filtering is fitted to a distant and poorly chosen region within the parameter space. Thanks to the iterative procedure suggested in [2] we overcome this drawback with small computational costs. The iteration successively improves the accuracy of the expansion around the current estimation of the posterior distribution. The final result is a calibrated model of the site that can be used for further studies, with an excellent match to the data. References [1] Oladyshkin S. and Nowak W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliability Engineering and System Safety, 106:179-190, 2012. [2] Oladyshkin S., Class H., Nowak W. Bayesian updating via Bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations. Computational Geosciences, 17 (4), 671-687, 2013.

  4. Validation and implementation of liquid chromatographic-mass spectrometric (LC-MS) methods for the quantification of tenofovir prodrugs.

    PubMed

    Hummert, Pamela; Parsons, Teresa L; Ensign, Laura M; Hoang, Thuy; Marzinke, Mark A

    2018-04-15

    The nucleotide reverse transcriptase inhibitor tenofovir (TFV) is widely administered in a disoproxil prodrug form (tenofovir disoproxil fumarate, TDF) for HIV management and prevention. Recently, novel prodrugs tenofovir alafenamide fumarate (TAF) and hexadecyloxypropyl tenofovir (CMX157) have been pursued for HIV treatment while minimizing adverse effects associated with systemic TFV exposure. Dynamic and sensitive bioanalytical tools are required to characterize the pharmacokinetics of these prodrugs in systemic circulation. Two parallel methods have been developed, one to combinatorially quantify TAF and TFV, and a second method for CMX157 quantification, in plasma. K 2 EDTA plasma was spiked with TAF and TFV, or CMX157. Following the addition of isotopically labeled internal standards and sample extraction via solid phase extraction (TAF and TFV) or protein precipitation (CMX157), samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis. For TAF and TFV, separation occurred using a Zorbax Eclipse Plus C18 Narrow Bore RR, 2.1 × 50 mm, 3.5 μm column and analytes were detected on an API5000 mass analyzer; CMX157 was separated using a Kinetex C8, 2.1 × 50 mm, 2.6 μm column and quantified using an API4500 mass spectrometer. Methods were validated according to FDA Bioanalytical Method Validation guidelines. Analytical methods: were optimized for the multiplexed monitoring of TAF and TFV, and CMX157 in plasma. The lower limits of quantification (LLOQs) for TAF, TFV, and CMX157 were 0.03, 1.0, and 0.25 ng/mL, respectively. Calibration curves were generated via weighted linear regression of standards. Intra- and inter-assay precision and accuracy studies demonstrated %CVs ≤ 14.4% and %DEVs ≤ ± 7.95%, respectively. Stability and matrix effects studies were also performed. All results were acceptable and in accordance with the recommended guidelines for bioanalytical methods. Assays were also applied to quantify in vivo concentrations of prodrugs and TFV in a preclinical study post-rectal administration. Sensitive, specific, and dynamic LC-MS/MS assays have been developed and validated for the multiplexed quantification TAF and TFV, as well as an independent assay for CMX157 quantification, in plasma. The described methods meet sufficient throughput criteria to support large research trials. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Quantification of maltol in Korean ginseng (Panax ginseng) products by high-performance liquid chromatography-diode array detector

    PubMed Central

    Jeong, Hyun Cheol; Hong, Hee-Do; Kim, Young-Chan; Rhee, Young Kyoung; Choi, Sang Yoon; Kim, Kyung-Tack; Kim, Sung Soo; Lee, Young-Chul; Cho, Chang-Won

    2015-01-01

    Background: Maltol, as a type of phenolic compounds, is produced by the browning reaction during the high-temperature treatment of ginseng. Thus, maltol can be used as a marker for the quality control of various ginseng products manufactured by high-temperature treatment including red ginseng. For the quantification of maltol in Korean ginseng products, an effective high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed. Materials and Methods: The HPLC-DAD method for maltol quantification coupled with a liquid-liquid extraction (LLE) method was developed and validated in terms of linearity, precision, and accuracy. An HPLC separation was performed on a C18 column. Results: The LLE methods and HPLC running conditions for maltol quantification were optimized. The calibration curve of the maltol exhibited good linearity (R2 = 1.00). The limit of detection value of maltol was 0.26 μg/mL, and the limit of quantification value was 0.79 μg/mL. The relative standard deviations (RSDs) of the data of the intra- and inter-day experiments were <1.27% and 0.61%, respectively. The results of the recovery test were 101.35–101.75% with an RSD value of 0.21–1.65%. The developed method was applied successfully to quantify the maltol in three ginseng products manufactured by different methods. Conclusion: The results of validation demonstrated that the proposed HPLC-DAD method was useful for the quantification of maltol in various ginseng products. PMID:26246746

  6. Design of multiplex calibrant plasmids, their use in GMO detection and the limit of their applicability for quantitative purposes owing to competition effects.

    PubMed

    Debode, Frédéric; Marien, Aline; Janssen, Eric; Berben, Gilbert

    2010-03-01

    Five double-target multiplex plasmids to be used as calibrants for GMO quantification were constructed. They were composed of two modified targets associated in tandem in the same plasmid: (1) a part of the soybean lectin gene and (2) a part of the transgenic construction of the GTS40-3-2 event. Modifications were performed in such a way that each target could be amplified with the same primers as those for the original target from which they were derived but such that each was specifically detected with an appropriate probe. Sequence modifications were done to keep the parameters of the new target as similar as possible to those of its original sequence. The plasmids were designed to be used either in separate reactions or in multiplex reactions. Evidence is given that with each of the five different plasmids used in separate wells as a calibrant for a different copy number, a calibration curve can be built. When the targets were amplified together (in multiplex) and at different concentrations inside the same well, the calibration curves showed that there was a competition effect between the targets and this limits the range of copy numbers for calibration over a maximum of 2 orders of magnitude. Another possible application of multiplex plasmids is discussed.

  7. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    NASA Astrophysics Data System (ADS)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and manufacture of the scanning infrared imaging system, the infrared remote sensing system, the infrared early-warning satellite, and so on.

  8. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.

  9. Development and validation of an UHPLC-LTQ-Orbitrap MS method for non-anthocyanin flavonoids quantification in Euterpe oleracea juice.

    PubMed

    Dias, Aécio L S; Rozet, Eric; Larondelle, Yvan; Hubert, Philippe; Rogez, Hervé; Quetin-Leclercq, Joëlle

    2013-11-01

    Euterpe oleracea fruits have gained much attention because of their phenolic constituents that have shown potential health benefits. The aim of this work was to quantify the major non-anthocyanin flavonoids (NAF) in the fruit juice by an accurate method coupling ultra-high pressure liquid chromatography with a linear ion trap-high resolution Orbitrap mass spectrometry system (UHPLC-LTQ-Orbitrap MS). Fruits were processed to juice, and then the juice was lyophilized and defatted. The residue was then extracted in the presence of methanol by sonication. The extraction time was optimized and recovery rates of the extraction were >90%. The extracts were dried and solubilized again in 40% MeOH, which showed the best compromise for MS detection. For the UHPLC quantification, a HSS C18 column (1.8 μm) was used with a gradient elution of methanol and water both with 0.1% formic acid. Total error and accuracy profiles were used as validation criteria. Seven compounds and their isomers were successfully separated, including the major NAF. Calibration in the matrix was found to be more accurate than calibration without matrix. Trueness (<15% relative bias), repeatability, and intermediate precision (<13% RSD), selectivity, response function, linearity, LOD (ranged from 0.04 to 0.81 μg/mL) and LOQ (0.15-5.78 μg/mL) for 12 compounds were evaluated and the quantification method was validated. Its applicability was demonstrated on real samples from different suppliers. Their qualitative and quantitative profiles were similar and some compounds were for the first time quantified. In addition, eriodictyol was identified for the first time in this fruit along with five other flavonoids for which possible structures were proposed.

  10. A New Strategy for Fast MRI-Based Quantification of the Myelin Water Fraction: Application to Brain Imaging in Infants

    PubMed Central

    Kulikova, Sofya; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine

    2016-01-01

    The volume fraction of water related to myelin (fmy) is a promising MRI index for in vivo assessment of brain myelination, that can be derived from multi-component analysis of T1 and T2 relaxometry signals. However, existing quantification methods require rather long acquisition and/or post-processing times, making implementation difficult both in research studies on healthy unsedated children and in clinical examinations. The goal of this work was to propose a novel strategy for fmy quantification within acceptable acquisition and post-processing times. Our approach is based on a 3-compartment model (myelin-related water, intra/extra-cellular water and unrestricted water), and uses calibrated values of inherent relaxation times (T1c and T2c) for each compartment c. Calibration was first performed on adult relaxometry datasets (N = 3) acquired with large numbers of inversion times (TI) and echo times (TE), using an original combination of a region contraction approach and a non-negative least-square (NNLS) algorithm. This strategy was compared with voxel-wise fitting, and showed robust estimation of T1c and T2c. The accuracy of fmy calculations depending on multiple factors was investigated using simulated data. In the testing stage, our strategy enabled fast fmy mapping, based on relaxometry datasets acquired with reduced TI and TE numbers (acquisition <6 min), and analyzed with NNLS algorithm (post-processing <5min). In adults (N = 13, mean age 22.4±1.6 years), fmy maps showed variability across white matter regions, in agreement with previous studies. In healthy infants (N = 18, aged 3 to 34 weeks), asynchronous changes in fmy values were demonstrated across bundles, confirming the well-known progression of myelination. PMID:27736872

  11. Simple quantification of phenolic compounds present in the minor fraction of virgin olive oil by LC-DAD-FLD.

    PubMed

    Godoy-Caballero, M P; Acedo-Valenzuela, M I; Galeano-Díaz, T

    2012-11-15

    This paper presents the results of the study on the extraction, identification and quantification of a group of important phenolic compounds in virgin olive oil (VOO) samples, obtained from olives of various varieties, by liquid chromatography coupled to UV-vis and fluorescence detection. Sixteen phenolic compounds belonging to different families have been identified and quantified spending a total time of 25 min. The linearity was examined by establishing the external standard calibration curves. Four order linear ranges and limits of detection ranging from 0.02 to 0.6 μg mL(-1) and 0.006 to 0.3 μg mL(-1) were achieved using UV-vis and fluorescence detection, respectively. Regarding the real samples, for the determination of the phenolic compounds in higher concentrations (hydroxytyrosol and tyrosol) a simple liquid-liquid extraction with ethanol was used to make the sample compatible with the mobile phase. Recovery values close to 100% were obtained. However, a previous solid phase extraction with Diol cartridges was necessary to concentrate and separate the minor phenolic compounds of the main interferences. The parameters affecting this step were carefully optimized and, after that, recoveries near 80-100% were obtained for the rest of the studied phenolic compounds. Also, the limits of detection were improved 15 times. Finally, the standard addition method was carried out for each of the analytes and no matrix effect was found, so the quantification of the 16 phenolic compounds from different monovarietal VOO was carried out by using the corresponding external standard calibration plot. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Determination of Sphingosine-1-Phosphate in Human Plasma Using Liquid Chromatography Coupled with Q-Tof Mass Spectrometry

    PubMed Central

    Egom, Emmanuel E.; Fitzgerald, Ross; Canning, Rebecca; Pharithi, Rebabonye B.; Murphy, Colin; Maher, Vincent

    2017-01-01

    Evidence suggests that high-density lipoprotein (HDL) components distinct from cholesterol, such as sphingosine-1-phosphate (S1P), may account for the anti-atherothrombotic effects attributed to this lipoprotein. The current method for the determination of plasma levels of S1P as well as levels associated with HDL particles is still cumbersome an assay method to be worldwide practical. Recently, a simplified protocol based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the sensitive and specific quantification of plasma levels of S1P with good accuracy has been reported. This work utilized a triple quadrupole (QqQ)-based LC-MS/MS system. Here we adapt that method for the determination of plasma levels of S1P using a quadrupole time of flight (Q-Tof) based LC-MS system. Calibration curves were linear in the range of 0.05 to 2 µM. The lower limit of quantification (LOQ) was 0.05 µM. The concentration of S1P in human plasma was determined to be 1 ± 0.09 µM (n = 6). The average accuracy over the stated range of the method was found to be 100 ± 5.9% with precision at the LOQ better than 10% when predicting the calibration standards. The concentration of plasma S1P in the prepared samples was stable for 24 h at room temperature. We have demonstrated the quantification of plasma S1P using Q-Tof based LC-MS with very good sensitivity, accuracy, and precision that can used for future studies in this field. PMID:28820460

  13. WE-DE-207B-04: Quantitative Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, H; Zhou, B; Beidokhti, D

    Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodinemore » signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.« less

  14. Segmental analysis of amphetamines in hair using a sensitive UHPLC-MS/MS method.

    PubMed

    Jakobsson, Gerd; Kronstrand, Robert

    2014-06-01

    A sensitive and robust ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxy methamphetamine in hair samples. Segmented hair (10 mg) was incubated in 2M sodium hydroxide (80°C, 10 min) before liquid-liquid extraction with isooctane followed by centrifugation and evaporation of the organic phase to dryness. The residue was reconstituted in methanol:formate buffer pH 3 (20:80). The total run time was 4 min and after optimization of UHPLC-MS/MS-parameters validation included selectivity, matrix effects, recovery, process efficiency, calibration model and range, lower limit of quantification, precision and bias. The calibration curve ranged from 0.02 to 12.5 ng/mg, and the recovery was between 62 and 83%. During validation the bias was less than ±7% and the imprecision was less than 5% for all analytes. In routine analysis, fortified control samples demonstrated an imprecision <13% and control samples made from authentic hair demonstrated an imprecision <26%. The method was applied to samples from a controlled study of amphetamine intake as well as forensic hair samples previously analyzed with an ultra high performance liquid chromatography time of flight mass spectrometry (UHPLC-TOF-MS) screening method. The proposed method was suitable for quantification of these drugs in forensic cases including violent crimes, autopsy cases, drug testing and re-granting of driving licences. This study also demonstrated that if hair samples are divided into several short segments, the time point for intake of a small dose of amphetamine can be estimated, which might be useful when drug facilitated crimes are investigated. Copyright © 2014 John Wiley & Sons, Ltd.

  15. A high-performance liquid chromatographic-tandem mass spectrometric method for the determination of ethyl glucuronide and ethyl sulfate in urine validated according to forensic guidelines.

    PubMed

    Albermann, M E; Musshoff, F; Madea, B

    2012-01-01

    Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are powerful markers for alcohol intake and abuse. Several analytical procedures for the quantification of EtG and EtG in serum and urine have been developed so far. Many of the published methods show limits of detections (LODs) or limits of quantifications (LOQs) for EtG in urine within the range of 0.1 mg/L or higher. Since this is the actual cutoff value for proving abstinence in Germany, problems may occur if urine samples are highly diluted. In this paper, the validation of a highly sensitive, fast and simple LC-MS-MS for the determination of EtG and EtS in urine is described. The calibration curves for EtG and EtS is linear over the whole range (0.025-2.0 mg/L). Very low detection limits can be achieved (LOD: EtG 0.005 mg/L, EtS 0.005 mg/L; and LOQ: EtG 0.019 mg/L, EtS 0.015 mg/L). All data for selectivity, precision and accuracy, recovery, as well as for the processed sample and the freeze/thaw stability, comply with the guidelines of the German Society of Toxicological and Forensic Chemistry. Strong matrix-related effects can be compensated for by using an internal standard. Finally, the applicability of the procedure is proven by analysis of 87 human urine samples and by successful participation in interlaboratory comparison tests. © The Author [2011]. Published by Oxford University Press. All rights reserved.

  16. Quantification of almond skin polyphenols by liquid chromatography-mass spectrometry.

    PubMed

    Bolling, Bradley W; Dolnikowski, Gregory; Blumberg, Jeffrey B; Oliver Chen, C Y

    2009-01-01

    Reverse phase HPLC coupled to negative mode electrospray ionization (ESI) mass spectrometry (MS) was used to quantify 16 flavonoids and 2 phenolic acids from almond skin extracts. Calibration curves of standard compounds were run daily and daidzein was used as an internal standard. The inter-day relative standard deviation (RSD) of standard curve slopes ranged from 13% to 25% of the mean. On column (OC) limits of detection (LOD) for polyphenols ranged from 0.013 to 1.4 pmol, and flavonoid glycosides had a 7-fold greater sensitivity than aglycones. Limits of quantification were 0.043 to 2.7 pmol OC, with a mean of 0.58 pmol flavonoid OC. Mean inter-day RSD of polyphenols in almond skin extract was 6.8% with a range of 4% to 11%, and intra-day RSD was 2.4%. Liquid nitrogen (LN(2)) or hot water (HW) blanching was used to facilitate removal of the almond skins prior to extraction using assisted solvent extraction (ASE) or steeping with acidified aqueous methanol. Recovery of polyphenols was greatest in HW blanched almond extracts with a mean value of 2.1 mg/g skin. ASE and steeping extracted equivalent polyphenols, although ASE of LN(2) blanched skins yielded 52% more aglycones and 23% less flavonoid glycosides. However, the extraction methods did not alter flavonoid profile of HW blanched almond skins. The recovery of polyphenolic components that were spiked into almond skins before the steeping extraction was 97% on a mass basis. This LC-MS method presents a reliable means of quantifying almond polyphenols.

  17. Quantification of Almond Skin Polyphenols by Liquid Chromatography-Mass Spectrometry

    PubMed Central

    Bolling, Bradley W.; Dolnikowski, Gregory; Blumberg, Jeffrey B.; Oliver Chen, C.Y.

    2014-01-01

    Reverse phase HPLC coupled to negative mode electrospray ionization (ESI) mass spectrometry (MS) was used to quantify 16 flavonoids and 2 phenolic acids from almond skin extracts. Calibration curves of standard compounds were run daily and daidzein was used as an internal standard. The inter-day relative standard deviation (RSD) of standard curve slopes ranged from 13% to 25% of the mean. On column (OC) limits of detection (LOD) for polyphenols ranged from 0.013 to 1.4 pmol, and flavonoid glycosides had a 7-fold greater sensitivity than aglycones. Limits of quantification were 0.043 to 2.7 pmol OC, with a mean of 0.58 pmol flavonoid OC. Mean inter-day RSD of polyphenols in almond skin extract was 6.8% with a range of 4% to 11%, and intra-day RSD was 2.4%. Liquid nitrogen (LN2) or hot water (HW) blanching was used to facilitate removal of the almond skins prior to extraction using assisted solvent extraction (ASE) or steeping with acidified aqueous methanol. Recovery of polyphenols was greatest in HW blanched almond extracts with a mean value of 2.1 mg/g skin. ASE and steeping extracted equivalent polyphenols, although ASE of LN2 blanched skins yielded 52% more aglycones and 23% less flavonoid glycosides. However, the extraction methods did not alter flavonoid profile of HW blanched almond skins. The recovery of polyphenolic components that were spiked into almond skins before the steeping extraction was 97% on a mass basis. This LC-MS method presents a reliable means of quantifying almond polyphenols. PMID:19490319

  18. A sensitive UPLC-MS/MS method for simultaneous determination of eleven bioactive components of Tong-Xie-Yao-Fang decoction in rat biological matrices.

    PubMed

    Li, Tian-xue; Hu, Lang; Zhang, Meng-meng; Sun, Jian; Qiu, Yue; Rui, Jun-qian; Yang, Xing-hao

    2014-01-01

    There is a growing concern for the sensitive quantification of multiple components using advanced data acquisition method in herbal medicines (HMs). An improved and rugged UPLC-MS/MS method has been developed and validated for sensitive and rapid determination of multiply analytes from Tong-Xie-Yao-Fang (TXYF) decoction in three biological matrices (plasma/brain tissue/urine) using geniposide and formononetin as internal standards. After solid-phase extraction, chromatographic separation was performed on a C18 column using gradient elution. Quantifier and qualifier transitions were monitored using novel Triggered Dynamic multiple reaction monitoring (TdMRM) in the positive ionization mode. A significant peak symmetry and sensitivity improvement in the TdMRM mode was achieved as compared to conventional MRM. The reproducibility (RSD%) was ≤7.9% by applying TdMRM transition while the values were 6.8-20.6% for MRM. Excellent linear calibration curves were obtained under TdMRM transitions over the tested concentration ranges. Intra- and inter-day precisions (RSD%) were ≤14.2% and accuracies (RE%) ranged from -9.6% to 10.6%. The validation data of specificity, carryover, recovery, matrix effect and stability were within the required limits. The method was effectively applied to simultaneously detect and quantify 1 lactone, 2 monoterpene glucosides, 1 alkaloid, 5 flavonoids and 2 chromones in plasma, brain tissue and urine after oral administration of TXYF decoction. In conclusion, this new and reliable method is beneficial for quantification and confirmation assays of multiply components in complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles.

    PubMed

    Bouby, M; Geckeis, H; Geyer, F W

    2008-12-01

    A straightforward quantification method is presented for the application of asymmetric flow field-flow fractionation (AsFlFFF) combined with inductively coupled plasma mass spectrometry (ICPMS) to the characterization of colloid-borne metal ions and nanoparticles. Reproducibility of the size calibration and recovery of elements are examined. Channel flow fluctuations are observed notably after initiation of the fractionation procedure. Their impact on quantification is considered by using (103)Rh as internal reference. Intensity ratios measured for various elements and Rh are calculated for each data point. These ratios turned out to be independent of the metal concentration and total sample solution flow introduced into the nebulizer within a range of 0.4-1.2 mL min(-1). The method is applied to study the interaction of Eu, U(VI) and Th with a mixture of humic acid and clay colloids and to the characterization of synthetic nanoparticles, namely CdSe/ZnS-MAA (mercaptoacetic acid) core/shell-coated quantum dots (QDs). Information is given not only on inorganic element composition but also on the effective hydrodynamic size under relevant conditions. Detection limits (DLs) are estimated for Ca, Al, Fe, the lanthanide Ce and the natural actinides Th and U in colloid-containing groundwater. For standard crossflow nebulizer, estimated values are 7 x 10(3), 20, 3 x 10(2), 0.1, 0.1 and 7 x 10(-2) microg L(-1), respectively. DLs for Zn and Cd in QD characterization are 28 and 11 microg L(-1), respectively.

  20. A sharp, robust, and quantitative method by liquid chromatography tandem mass spectrometry for the measurement of EAD for acute radiation syndrome and its application.

    PubMed

    Zhang, Yiwei; Li, Jian; Meng, Zhiyun; Zhu, Xiaoxia; Gan, Hui; Gu, Ruolan; Wu, Zhuona; Zheng, Ying; Wei, Jinbin; Dou, Guifang

    2017-06-15

    17-Ethinyl-3,17-dihydroxyandrost-5-ene (EAD) is an agent designed for the treatment of acute radiation syndrome (ARS). Given its vital role played in the prevention and mitigation of ARS, the development of a sharp, sensitive and robust liquid chromatography tandem mass spectrometry (LC-MS/MS) method to monitor the metabolism of EAD in vivo was crucial. A new method was constructed and validated for the determination of EAD with the internal standard of androst-5-ene-3β,17β-diol (5-AED). The blood samples were precipitated with methanol, centrifuged, from which the supernatant was separated on UPLC with C18 column and eluted in gradient with acetonitrile and Milli-Q water both containing 0.1% formic acid (FA). Quantification was performed by a triple quadrupole mass spectrometer with electro spray ionization (ESI) in multiple reactive monitoring (MRM) positive mode. A good linearity was obtained with R>0.99 for EAD within its calibration range from 5 to 1000ngmL -1 with a lowest limit of quantification (LLOQ) of 5ngmL -1 . Inter- and intra-day accuracy and precision of three levels of quality control (QC) samples were within the range of 15%, while the LLOQ was within 20%. Samples were stable under the circumstances of the experiments. The method was simple, accurate and robust applied to determine the concentrations of EAD in Wistar rat after a single administration of EAD orally at the dose of 100mgkg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of the Marker Diarylheptanoid Phytoestrogens in Curcuma comosa Rhizomes and Selected Herbal Medicinal Products by HPLC-DAD.

    PubMed

    Yingngam, Bancha; Brantner, Adelheid; Jinarat, Damrongsak; Kaewamatawong, Rawiwun; Rungseevijitprapa, Wandee; Suksamrarn, Apichart; Piyachaturawat, Pawinee; Chokchaisiri, Ratchanaporn

    2018-01-01

    A method for quantification of diarylheptanoids in Curcuma comosa rhizomes and selected pharmaceutical preparations was established by using HPLC-diode array detector (DAD). The chromatographic separation of three diarylheptanoids [(3S)-1-(3,4-dihydroxy-phenyl)-7-phenyl-(6E)-6-hepten-3-ol (1), (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (2), and (3S)-1,7-diphenyl-(6E)-6-hepten-3-ol (3)] was performed on a Luna C 18 analytical column using gradient elution with 0.5% acetic acid in water and acetonitrile with a flow rate of 1 mL/min and a column temperature of 35°C. The calibration curves for the analytes showed good linearity (R 2 >0.999), high precision (relative standard deviation (RSD) <2%) and acceptable recovery (98.35-103.90%, RSD <2%). The limit of detection (LOD) and limit of quantification (LOQ) were 0.06-0.22 and 0.18-0.69 µg/mL, respectively. The results of all validated parameters were within the limits according to the International Conference on Harmonization (ICH) Guidelines. The established method was successfully applied for qualitative and quantitative determination of the three constituents in different samples of C. comosa and some commercial products in capsules. The simplicity, rapidity, and reliability of the method could be useful for the fingerprint analysis and standardization of diarylheptanoids, which are responsible for the estrogenic activity in raw materials and herbal medicinal products of C. comosa.

  2. Trace analysis of high-purity graphite by LA-ICP-MS.

    PubMed

    Pickhardt, C; Becker, J S

    2001-07-01

    Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.

  3. Multiresidue determination of pesticides in crop plants by the quick, easy, cheap, effective, rugged, and safe method and ultra-high-performance liquid chromatography tandem mass spectrometry using a calibration based on a single level standard addition in the sample.

    PubMed

    Viera, Mariela S; Rizzetti, Tiele M; de Souza, Maiara P; Martins, Manoel L; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato

    2017-12-01

    In this study, a QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, optimized by a 2 3 full factorial design, was developed for the determination of 72 pesticides in plant parts of carrot, corn, melon, rice, soy, silage, tobacco, cassava, lettuce and wheat by ultra-high-performance liquid chromatographic tandem mass spectrometry (UHPLC-MS/MS). Considering the complexity of these matrices and the need of use calibration in matrix, a new calibration approach based on single level standard addition in the sample (SLSAS) was proposed in this work and compared with the matrix-matched calibration (MMC), the procedural standard calibration (PSC) and the diluted standard addition calibration (DSAC). All approaches presented satisfactory validation parameters with recoveries from 70 to 120% and relative standard deviations≤20%. SLSAS was the most practical from the evaluated approaches and proved to be an effective way of calibration. Method limit of detection were between 4.8 and 48μgkg -1 and limit of quantification were from 16 to 160μgkg -1 . Method application to different kinds of plants found residues of 20 pesticides that were quantified with z-scores values≤2 in comparison with other calibration approaches. The proposed QuEChERS method combined with UHPLC-MS/MS analysis and using an easy and effective calibration procedure presented satisfactory results for pesticide residues determination in different crop plants and is a good alternative for routine analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification of key aroma volatiles for fruit and sap of Australian mango cultivars.

    PubMed

    San, Anh T; Joyce, Daryl C; Hofman, Peter J; Macnish, Andrew J; Webb, Richard I; Matovic, Nicolas J; Williams, Craig M; De Voss, James J; Wong, Siew H; Smyth, Heather E

    2017-04-15

    Reported herein is a high throughput method to quantify in a single analysis the key volatiles that contribute to the aroma of commercially significant mango cultivars grown in Australia. The method constitutes stable isotope dilution analysis (SIDA) in conjunction with headspace (HS) solid-phase microextraction (SPME) coupled with gas-chromatography mass spectrometry (GCMS). Deuterium labelled analogues of the target analytes were either purchased commercially or synthesised for use as internal standards. Seven volatiles, hexanal, 3-carene, α-terpinene, p-cymene, limonene, α-terpinolene and ethyl octanoate, were targeted. The resulting calibration functions had determination coefficients (R 2 ) ranging from 0.93775 to 0.99741. High recovery efficiencies for spiked mango samples were also achieved. The method was applied to identify the key aroma volatile compounds produced by 'Kensington Pride' and 'B74' mango fruit and by 'Honey Gold' mango sap. This method represents a marked improvement over current methods for detecting and measuring concentrations of mango fruit and sap volatiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Reliable glucose monitoring by ex-vivo blood microdialysis and infrared spectrometry for patients in critical care

    NASA Astrophysics Data System (ADS)

    Vahlsing, Thorsten; Delbeck, Sven; Budde, Janpeter; Ihrig, Dieter; Leonhardt, Steffen; Heise, H. Michael

    2017-02-01

    Blood glucose monitoring has been realised by biosensors in combination with micro-dialysis, using either subcutaneously or intravascularly implanted catheters. Another alternative is ex-vivo micro-dialysis of continuously sampled heparinized whole blood available from the patient even under critical care conditions. However, most devices suffer from inaccuracies due to variable recovery rates. Infrared spectrometry has been suggested for analyte quantification, since besides glucose other clinically relevant analytes can be simultaneously determined that are, e.g., important for intensive care patients. Perfusates with acetate and mannitol have been investigated as recovery markers (internal standards). In contrast to the previously used acetate, an almost linear dependency between mannitol loss and glucose recovery was observed for micro-dialysis of glucose spiked aqueous albumin solutions or porcine heparinized whole blood when testing flat membranes within a custom-made micro-dialysator. By this, a straightforward compensation of any dialysis recovery rate variation during patient monitoring is possible. The combination of microdialysis with infrared spectrometry provides a calibration-free assay for accurate continuous glucose monitoring, as reference spectra of dialysate components can be a-priori allocated.

  6. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  7. [Determination of icaritin in rat plasma by HPLC-MS/MS].

    PubMed

    Liu, Hai-Pei; Meng, Fan-Hua; Guo, Ji-Fen; Si, Duan-Yun; Zhu, Xiao-Wei; Zhao, Yi-Min

    2009-10-01

    The paper is to report the development of a high-performance liquid chromatographic/tandem mass spectrometry (HPLC-MS/MS) method for the determination of icaritin (ICT) in rat plasma. After precipitated with acetonitrile from the plasma, ICT was isolated chromatographically on a Dikma C18 column. The mobile phase consisted of acetonitrile-water-acetic acid (72 : 28 : 1.5, v/v/v). Electrospray ionization (ESI) source was applied and operated in the positive ion mode. Multiple reaction monitoring (MRM) mode with the transitions of m/z 387 --> m/z 313 and m/z 331 --> m/z 315 were used to quantify ICT and the internal standard, respectively. The linear calibration curve was obtained in the concentration range of 2.5-1,000 ng x mL(-1). The lower limit of quantification was 2.5 ng x mL(-1). The inter- and intra-day precision (RSD) were less than 9.63%, and the accuracy (relative error) was within +/-7.42%. The method was proved to be suitable for the pharmacokinetics of ICT, which offers advantages of high sensitivity and selectivity.

  8. Optimization and validation of a high-performance liquid chromatographic method with UV detection for the determination of ketoconazole in canine plasma.

    PubMed

    Vertzoni, M V; Reppas, C; Archontaki, H A

    2006-07-24

    An isocratic high-performance liquid chromatographic method with detection at 240 nm was developed, optimized and validated for the determination of ketoconazole in canine plasma. 9-Acetylanthracene was used as internal standard. A Hypersil BDS RP-C18 column (250 mm x 4.6 mm, 5 microm particle size), was equilibrated with a mobile phase composed of methanol, water and diethylamine 74:26:0.1 (v/v/v). Its flow rate was 1 ml/min. The elution time for ketoconazole and 9-acetylanthracene was approximately 9 and 8 min, respectively. Calibration curves of ketoconazole in plasma were linear in the concentration range of 0.015-10 microg/ml. Limits of detection and quantification in plasma were 5 and 15 ng/ml, respectively. Recovery was greater than 95%. Intra- and inter-day relative standard deviation for ketoconazole in plasma was less than 3.1 and 4.7%, respectively. This method was applied to the determination of ketoconazole plasma levels after administration of a commercially available tablet to dogs.

  9. Extraction, detection, and quantification of flavano-ellagitannins and ethylvescalagin in a Bordeaux red wine aged in oak barrels.

    PubMed

    Saucier, Cedric; Jourdes, Michael; Glories, Yves; Quideau, Stephane

    2006-09-20

    An extraction procedure and an analytical method have been developed to detect and quantify for the first time a series of ellagitannin derivatives formed in wine during aging in oak barrels. The method involves a preliminary purification step on XAD7 HP resin followed by a second purification step on TSK 40 HW gel. The resulting extract is analyzed for compound identification and quantitative determination by high-performance liquid chromatography-electrospray ionization-mass spectrometry in single ion recording mode. Reference compounds, which are accessible through hemisynthesis from the oak C-glycosidic ellagitannin vescalagin, were used to build calibration curves, and chlorogenic acid was selected as an internal standard. This method enabled us to estimate the content of four flavano-ellagitannins and that of another newly identified wine polyphenol, beta-1-O-ethylvescalagin, in a Bordeaux red wine aged for 18 months in oak barrels. All five ellagitannin derivatives are derived from the nucleophilic substitution reaction of vescalagin with the grape flavan-3-ols catechin and epicatechin or ethanol.

  10. Electrochemical characterization of repaglinide and its determination in human plasma using liquid chromatography with dual-channel coulometric detection.

    PubMed

    Jirovský, David; Bartošová, Zdenka; Skopalová, Jana; Maier, Vítezslav

    2010-12-01

    A simple, fast and sensitive HPLC method employing dual-channel coulometric detection for the determination of repaglinide in human plasma is presented. The assay involved extraction of repaglinide by ethyl acetate and isocratic reversed-phase liquid chromatography with dual-channel coulometric detection. The mobile phase composition was 50mM disodium hydrogen phosphate/acetonitrile (60:40, v/v), pH of the mobile phase 7.5 set up with phosphoric acid. For all analyses, the first cell working potential was +380mV, the second was +750mV (vs. Pd/H(2)). Calibration curve was linear over the concentration range of 5-500nmolL(-1). Rosiglitazone was used as an internal standard. The limit of detection (LOD) was established at 2.8nmolL(-1), and the lower limit of quantification (LLOQ) at 8.5nmolL(-1). The developed method was applied to human plasma samples spiked with repaglinide at therapeutical concentrations. It was confirmed that the method is suitable for pharmacokinetic studies or therapeutic monitoring. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. RGB color calibration for quantitative image analysis: the "3D thin-plate spline" warping approach.

    PubMed

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data.

  12. RF Microalgal lipid content characterization

    PubMed Central

    Ahmad, Mahmoud Al; Al-Zuhair, Sulaiman; Taher, Hanifa; Hilal-Alnaqbi, Ali

    2014-01-01

    Most conventional techniques for the determination of microalgae lipid content are time consuming and in most cases are indirect and require excessive sample preparations. This work presents a new technique that utilizes radio frequency (RF) for rapid lipid quantification, without the need for sample preparation. Tests showed that a shift in the resonance frequency of a RF open-ended coaxial resonator and a gradual increase in its resonance magnitude may occur as the lipids content of microalgae cells increases. These response parameters can be then calibrated against actual cellular lipid contents and used for rapid determination of the cellular lipids. The average duration of lipid quantification using the proposed technique was of about 1 minute, which is significantly less than all other conventional techniques, and was achieved without the need for any time consuming treatment steps. PMID:24870372

  13. Histogram analysis for smartphone-based rapid hematocrit determination

    PubMed Central

    Jalal, Uddin M.; Kim, Sang C.; Shim, Joon S.

    2017-01-01

    A novel and rapid analysis technique using histogram has been proposed for the colorimetric quantification of blood hematocrits. A smartphone-based “Histogram” app for the detection of hematocrits has been developed integrating the smartphone embedded camera with a microfluidic chip via a custom-made optical platform. The developed histogram analysis shows its effectiveness in the automatic detection of sample channel including auto-calibration and can analyze the single-channel as well as multi-channel images. Furthermore, the analyzing method is advantageous to the quantification of blood-hematocrit both in the equal and varying optical conditions. The rapid determination of blood hematocrits carries enormous information regarding physiological disorders, and the use of such reproducible, cost-effective, and standard techniques may effectively help with the diagnosis and prevention of a number of human diseases. PMID:28717569

  14. Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique

    PubMed Central

    Blocquet, Marion; Schoemaecker, Coralie; Amedro, Damien; Herbinet, Olivier; Battin-Leclerc, Frédérique; Fittschen, Christa

    2013-01-01

    •OH and •HO2 radicals are known to be the key species in the development of ignition. A direct measurement of these radicals under low-temperature oxidation conditions (T = 550–1,000 K) has been achieved by coupling a technique named fluorescence assay by gas expansion, an experimental technique designed for the quantification of these radicals in the free atmosphere, to a jet-stirred reactor, an experimental device designed for the study of low-temperature combustion chemistry. Calibration allows conversion of relative fluorescence signals to absolute mole fractions. Such radical mole fraction profiles will serve as a benchmark for testing chemical models developed to improve the understanding of combustion processes. PMID:24277836

  15. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.

    PubMed

    Dittrich, Julia; Ceglarek, Uta

    2017-01-01

    The increasing number of peptide and protein biomarker candidates requires expeditious and reliable quantification strategies. The utilization of liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) for the absolute quantitation of plasma proteins and peptides facilitates the multiplexed verification of tens to hundreds of biomarkers from smallest sample quantities. Targeted proteomics assays derived from bottom-up proteomics principles rely on the identification and analysis of proteotypic peptides formed in an enzymatic digestion of the target protein. This protocol proposes a procedure for the establishment of a targeted absolute quantitation method for middle- to high-abundant plasma proteins waiving depletion or enrichment steps. Essential topics as proteotypic peptide identification and LC-MS/MS method development as well as sample preparation and calibration strategies are described in detail.

  16. Bayesian Treatment of Uncertainty in Environmental Modeling: Optimization, Sampling and Data Assimilation Using the DREAM Software Package

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.

    2012-12-01

    In the past decade much progress has been made in the treatment of uncertainty in earth systems modeling. Whereas initial approaches has focused mostly on quantification of parameter and predictive uncertainty, recent methods attempt to disentangle the effects of parameter, forcing (input) data, model structural and calibration data errors. In this talk I will highlight some of our recent work involving theory, concepts and applications of Bayesian parameter and/or state estimation. In particular, new methods for sequential Monte Carlo (SMC) and Markov Chain Monte Carlo (MCMC) simulation will be presented with emphasis on massively parallel distributed computing and quantification of model structural errors. The theoretical and numerical developments will be illustrated using model-data synthesis problems in hydrology, hydrogeology and geophysics.

  17. Coping with matrix effects in headspace solid phase microextraction gas chromatography using multivariate calibration strategies.

    PubMed

    Ferreira, Vicente; Herrero, Paula; Zapata, Julián; Escudero, Ana

    2015-08-14

    SPME is extremely sensitive to experimental parameters affecting liquid-gas and gas-solid distribution coefficients. Our aims were to measure the weights of these factors and to design a multivariate strategy based on the addition of a pool of internal standards, to minimize matrix effects. Synthetic but real-like wines containing selected analytes and variable amounts of ethanol, non-volatile constituents and major volatile compounds were prepared following a factorial design. The ANOVA study revealed that even using a strong matrix dilution, matrix effects are important and additive with non-significant interaction effects and that it is the presence of major volatile constituents the most dominant factor. A single internal standard provided a robust calibration for 15 out of 47 analytes. Then, two different multivariate calibration strategies based on Partial Least Square Regression were run in order to build calibration functions based on 13 different internal standards able to cope with matrix effects. The first one is based in the calculation of Multivariate Internal Standards (MIS), linear combinations of the normalized signals of the 13 internal standards, which provide the expected area of a given unit of analyte present in each sample. The second strategy is a direct calibration relating concentration to the 13 relative areas measured in each sample for each analyte. Overall, 47 different compounds can be reliably quantified in a single fully automated method with overall uncertainties better than 15%. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Comparison of colorimetric assays with quantitative amino acid analysis for protein quantification of Generalized Modules for Membrane Antigens (GMMA).

    PubMed

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A; Saul, Allan; Gerke, Christiane

    2015-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Interfering assays using bovine serum albumin (BSA) as standard with quantitative amino acid (AA) analysis, the most accurate currently available method for protein quantification. The Lowry assay has the lowest inter- and intra-assay variation and gives the best linearity between protein amount and absorbance. In all three assays, the color yield (optical density per mass of protein) of GMMA was markedly different from that of BSA with a ratio of approximately 4 for the Bradford assay, and highly variable between different GMMA; and approximately 0.7 for the Lowry and Non-Interfering assays, highlighting the need for calibrating the standard used in the colorimetric assay against GMMA quantified by AA analysis. In terms of a combination of ease, reproducibility, and proportionality of protein measurement, and comparability between samples, the Lowry assay was superior to Bradford and Non-Interfering assays for GMMA quantification.

  19. Overcoming biofluid protein complexity during targeted mass spectrometry detection and quantification of protein biomarkers by MRM cubed (MRM3).

    PubMed

    Jeudy, Jeremy; Salvador, Arnaud; Simon, Romain; Jaffuel, Aurore; Fonbonne, Catherine; Léonard, Jean-François; Gautier, Jean-Charles; Pasquier, Olivier; Lemoine, Jerome

    2014-02-01

    Targeted mass spectrometry in the so-called multiple reaction monitoring mode (MRM) is certainly a promising way for the precise, accurate, and multiplexed measurement of proteins and their genetic or posttranslationally modified isoforms. MRM carried out on a low-resolution triple quadrupole instrument faces a lack of specificity when addressing the quantification of weakly concentrated proteins. In this case, extensive sample fractionation or immunoenrichment alleviates signal contamination by interferences, but in turn decreases assay performance and throughput. Recently, MRM(3) was introduced as an alternative to MRM to improve the limit of quantification of weakly concentrated protein biomarkers. In the present work, we compare MRM and MRM(3) modes for the detection of biomarkers in plasma and urine. Calibration curves drawn with MRM and MRM(3) showed a similar range of linearity (R(2) > 0.99 for both methods) with protein concentrations above 1 μg/mL in plasma and a few nanogram per milliliter in urine. In contrast, optimized MRM(3) methods improve the limits of quantification by a factor of 2 to 4 depending on the targeted peptide. This gain arises from the additional MS(3) fragmentation step, which significantly removes or decreases interfering signals within the targeted transition channels.

  20. USING CARBOHYDRATES AS MOLECULAR MARKERS TO DETERMINE THE CONTRIBUTION OF AGRICULTURAL SOIL TO AMBIENT FINE AND COURSE PM

    EPA Science Inventory

    Project research optimized the quantification technique for carbohydrates that also allows quantification of other non-polar molecular markers based on using an isotopically labeled internal standard (D-glucose-1,2,3,4,5,6,6-d7) to monitor extraction efficiency, extraction usi...

  1. Quantification of extra virgin olive oil in dressing and edible oil blends using the representative TMS-4,4'-desmethylsterols gas-chromatographic-normalized fingerprint.

    PubMed

    Pérez-Castaño, Estefanía; Sánchez-Viñas, Mercedes; Gázquez-Evangelista, Domingo; Bagur-González, M Gracia

    2018-01-15

    This paper describes and discusses the application of trimethylsilyl (TMS)-4,4'-desmethylsterols derivatives chromatographic fingerprints (obtained from an off-line HPLC-GC-FID system) for the quantification of extra virgin olive oil in commercial vinaigrettes, dressing salad and in-house reference materials (i-HRM) using two different Partial Least Square-Regression (PLS-R) multivariate quantification methods. Different data pre-processing strategies were carried out being the whole one: (i) internal normalization; (ii) sampling based on The Nyquist Theorem; (iii) internal correlation optimized shifting, icoshift; (iv) baseline correction (v) mean centering and (vi) selecting zones. The first model corresponds to a matrix of dimensions 'n×911' variables and the second one to a matrix of dimensions 'n×431' variables. It has to be highlighted that the proposed two PLS-R models allow the quantification of extra virgin olive oil in binary blends, foodstuffs, etc., when the provided percentage is greater than 25%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Contaminant concentration in environmental samples using LIBS and CF-LIBS

    NASA Astrophysics Data System (ADS)

    Pandhija, S.; Rai, N. K.; Rai, A. K.; Thakur, S. N.

    2010-01-01

    The present paper deals with the detection and quantification of toxic heavy metals like Cd, Co, Pb, Zn, Cr, etc. in environmental samples by using the technique of laser-induced breakdown spectroscopy (LIBS) and calibration-free LIBS (CF-LIBS). A MATLABTM program has been developed based on the CF-LIBS algorithm given by earlier workers and concentrations of pollutants present in industrial area soil have been determined. LIBS spectra of a number of certified reference soil samples with varying concentrations of toxic elements (Cd, Zn) have been recorded to obtain calibration curves. The concentrations of Cd and Zn in soil samples from the Jajmau area, Kanpur (India) have been determined by using these calibration curves and also by the CF-LIBS approach. Our results clearly demonstrate that the combination of LIBS and CF-LIBS is very useful for the study of pollutants in the environment. Some of the results have also been found to be in good agreement with those of ICP-OES.

  3. Assessment of bitterness intensity and suppression effects using an Electronic Tongue

    NASA Astrophysics Data System (ADS)

    Legin, A.; Rudnitskaya, A.; Kirsanov, D.; Frolova, Yu.; Clapham, D.; Caricofe, R.

    2009-05-01

    Quantification of bitterness intensity and effectivness of bitterness suppression of a novel active pharmacological ingredient (API) being developed by GSK was performed using an Electronic Tongue (ET) based on potentiometric chemical sensors. Calibration of the ET was performed with solutions of quinine hydrochloride in the concentration range 0.4-360 mgL-1. An MLR calibration model was developed for predicting bitterness intensity expressed as "equivalent quinine concentration" of a series of solutions of quinine, bittrex and the API. Additionally the effectiveness of sucralose, mixture of aspartame and acesulfame K, and grape juice in masking the bitter taste of the API was assessed using two approaches. PCA models were produced and distances between compound containing solutions and corresponding placebos were calculated. The other approach consisted in calculating "equivalent quinine concentration" using a calibration model with respect to quinine concentration. According to both methods, the most effective taste masking was produced by grape juice, followed by the mixture of aspartame and acesulfame K.

  4. Two Analyte Calibration From The Transient Response Of Potentiometric Sensors Employed With The SIA Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartas, Raul; Mimendia, Aitor; Valle, Manel del

    2009-05-23

    Calibration models for multi-analyte electronic tongues have been commonly built using a set of sensors, at least one per analyte under study. Complex signals recorded with these systems are formed by the sensors' responses to the analytes of interest plus interferents, from which a multivariate response model is then developed. This work describes a data treatment method for the simultaneous quantification of two species in solution employing the signal from a single sensor. The approach used here takes advantage of the complex information recorded with one electrode's transient after insertion of sample for building the calibration models for both analytes.more » The departure information from the electrode was firstly processed by discrete wavelet for transforming the signals to extract useful information and reduce its length, and then by artificial neural networks for fitting a model. Two different potentiometric sensors were used as study case for simultaneously corroborating the effectiveness of the approach.« less

  5. Quantification of residual stress from photonic signatures of fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, K. Elliott; Yost, William T.; Hayward, Maurice

    2014-02-18

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10{sup −12} Pa{sup −1}. Fused silica specimens containing impacts artificially made at NASA’s Hypervelocity Impact Technologymore » Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.« less

  6. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using High Performance Thin Layer Chromatography.

    PubMed

    Hynstova, Veronika; Sterbova, Dagmar; Klejdus, Borivoj; Hedbavny, Josef; Huska, Dalibor; Adam, Vojtech

    2018-01-30

    In this study, 14 commercial products (dietary supplements) containing alga Chlorella vulgaris and cyanobacteria Spirulina platensis, originated from China and Japan, were analysed. UV-vis spectrophotometric method was applied for rapid determination of chlorophylls, carotenoids and pheophytins; as degradation products of chlorophylls. High Performance Thin-Layer Chromatography (HPTLC) was used for effective separation of these compounds, and also Atomic Absorption Spectrometry for determination of heavy metals as indicator of environmental pollution. Based on the results obtained from UV-vis spectrophotometric determination of photosynthetic pigments (chlorophylls and carotenoids), it was confirmed that Chlorella vulgaris contains more of all these pigments compared to the cyanobacteria Spirulina platensis. The fastest mobility compound identified in Chlorella vulgaris and Spirulina platensis using HPTLC method was β-carotene. Spectral analysis and standard calibration curve method were used for identification and quantification of separated substances on Thin-Layer Chromatographic plate. Quantification of copper (Cu 2+ , at 324.7 nm) and zinc (Zn 2+ , at 213.9nm) was performed using Flame Atomic Absorption Spectrometry with air-acetylene flame atomization. Quantification of cadmium (Cd 2+ , at 228.8 nm), nickel (Ni 2+ , at 232.0nm) and lead (Pb 2+ , at 283.3nm) by Electrothermal Graphite Furnace Atomic Absorption Spectrometry; and quantification of mercury (Hg 2+ , at 254nm) by Cold Vapour Atomic Absorption Spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Analyte quantification with comprehensive two-dimensional gas chromatography: assessment of methods for baseline correction, peak delineation, and matrix effect elimination for real samples.

    PubMed

    Samanipour, Saer; Dimitriou-Christidis, Petros; Gros, Jonas; Grange, Aureline; Samuel Arey, J

    2015-01-02

    Comprehensive two-dimensional gas chromatography (GC×GC) is used widely to separate and measure organic chemicals in complex mixtures. However, approaches to quantify analytes in real, complex samples have not been critically assessed. We quantified 7 PAHs in a certified diesel fuel using GC×GC coupled to flame ionization detector (FID), and we quantified 11 target chlorinated hydrocarbons in a lake water extract using GC×GC with electron capture detector (μECD), further confirmed qualitatively by GC×GC with electron capture negative chemical ionization time-of-flight mass spectrometer (ENCI-TOFMS). Target analyte peak volumes were determined using several existing baseline correction algorithms and peak delineation algorithms. Analyte quantifications were conducted using external standards and also using standard additions, enabling us to diagnose matrix effects. We then applied several chemometric tests to these data. We find that the choice of baseline correction algorithm and peak delineation algorithm strongly influence the reproducibility of analyte signal, error of the calibration offset, proportionality of integrated signal response, and accuracy of quantifications. Additionally, the choice of baseline correction and the peak delineation algorithm are essential for correctly discriminating analyte signal from unresolved complex mixture signal, and this is the chief consideration for controlling matrix effects during quantification. The diagnostic approaches presented here provide guidance for analyte quantification using GC×GC. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Development and validation of a liquid chromatography isotope dilution mass spectrometry method for the reliable quantification of alkylphenols in environmental water samples by isotope pattern deconvolution.

    PubMed

    Fabregat-Cabello, Neus; Sancho, Juan V; Vidal, Andreu; González, Florenci V; Roig-Navarro, Antoni Francesc

    2014-02-07

    We present here a new measurement method for the rapid extraction and accurate quantification of technical nonylphenol (NP) and 4-t-octylphenol (OP) in complex matrix water samples by UHPLC-ESI-MS/MS. The extraction of both compounds is achieved in 30min by means of hollow fiber liquid phase microextraction (HF-LPME) using 1-octanol as acceptor phase, which provides an enrichment (preconcentration) factor of 800. On the other hand we have developed a quantification method based on isotope dilution mass spectrometry (IDMS) and singly (13)C1-labeled compounds. To this end the minimal labeled (13)C1-4-(3,6-dimethyl-3-heptyl)-phenol and (13)C1-t-octylphenol isomers were synthesized, which coelute with the natural compounds and allows the compensation of the matrix effect. The quantification was carried out by using isotope pattern deconvolution (IPD), which permits to obtain the concentration of both compounds without the need to build any calibration graph, reducing the total analysis time. The combination of both extraction and determination techniques have allowed to validate for the first time a HF-LPME methodology at the required levels by legislation achieving limits of quantification of 0.1ngmL(-1) and recoveries within 97-109%. Due to the low cost of HF-LPME and total time consumption, this methodology is ready for implementation in routine analytical laboratories. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effect of fungal mycelia on the HPLC-UV and UV-vis spectrophotometric assessment of mycelium-bound epoxide hydrolase using glycidyl phenyl ether.

    PubMed

    Dolcet, Marta M; Torres, Mercè; Canela, Ramon

    2016-06-25

    The use of mycelia as biocatalysts has technical and economic advantages. However, there are several difficulties in obtaining accurate results in mycelium-catalysed reactions. Firstly, sample extraction, indispensable because of the presence of mycelia, can bring into the extract components with a similar structure to that of the analyte of interest; secondly, mycelia can influence the recovery of the analyte. We prepared calibration standards of 3-phenoxy-1,2-propanediol (PPD) in the pure solvent and in the presence of mycelia (spiked before or after extraction) from five fungi (Aspergillus niger, Aspergillus tubingensis, Penicillium aurantiogriseum, Penicillium sp. and Aspergillus terreus). The quantification of PPD was carried out by HPLC-UV and UV-vis spectrophotometry. The manuscript shows that the last method is as accurate as the HPLC method. However, the colorimetric method led to a higher data throughput, which allowed the study of more samples in a shorter time. Matrix effects were evaluated visually from the plotted calibration data and statistically by simultaneously comparing the intercept and slope of calibration curves performed with solvent, post-extraction spiked standards and pre-extraction spiked standards. Significant differences were found between the post- and pre-extraction spiked matrix-matched functions. Pre-extraction spiked matrix-matched functions based on A. tubingensis mycelia, selected as the reference, were validated and used to compensate for low recoveries. These validated functions were successfully applied to the quantification of PPD achieved during the hydrolysis of glycidyl phenyl ether by mycelium-bound epoxide hydrolases and equivalent hydrolysis yields were determined by HPLC-UV and UV-vis spectrophotometry. This study may serve as starting point to implement matrix effects evaluation when mycelium-bound epoxide hydrolases are studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Correction for isotopic interferences between analyte and internal standard in quantitative mass spectrometry by a nonlinear calibration function.

    PubMed

    Rule, Geoffrey S; Clark, Zlatuse D; Yue, Bingfang; Rockwood, Alan L

    2013-04-16

    Stable isotope-labeled internal standards are of great utility in providing accurate quantitation in mass spectrometry (MS). An implicit assumption has been that there is no "cross talk" between signals of the internal standard and the target analyte. In some cases, however, naturally occurring isotopes of the analyte do contribute to the signal of the internal standard. This phenomenon becomes more pronounced for isotopically rich compounds, such as those containing sulfur, chlorine, or bromine, higher molecular weight compounds, and those at high analyte/internal standard concentration ratio. This can create nonlinear calibration behavior that may bias quantitative results. Here, we propose the use of a nonlinear but more accurate fitting of data for these situations that incorporates one or two constants determined experimentally for each analyte/internal standard combination and an adjustable calibration parameter. This fitting provides more accurate quantitation in MS-based assays where contributions from analyte to stable labeled internal standard signal exist. It can also correct for the reverse situation where an analyte is present in the internal standard as an impurity. The practical utility of this approach is described, and by using experimental data, the approach is compared to alternative fits.

  11. Spectroradiometric calibration of the Thematic Mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1985-01-01

    The eleventh quarterly report on Spectroradiometric Calibration of the Thematic Mapper (Contract NAS5-27832) discusses calibrations made at White Sands on 24 May 1985. An attempt is made to standardize test results. Critical values used in the final steps of the data reduction and the comparison of the results of the pre-flight and internal calibration (IC) data are summarized.

  12. Optimizing total reflection X-ray fluorescence for direct trace element quantification in proteins I: Influence of sample homogeneity and reflector type

    NASA Astrophysics Data System (ADS)

    Wellenreuther, G.; Fittschen, U. E. A.; Achard, M. E. S.; Faust, A.; Kreplin, X.; Meyer-Klaucke, W.

    2008-12-01

    Total reflection X-ray fluorescence (TXRF) is a very promising method for the direct, quick and reliable multi-elemental quantification of trace elements in protein samples. With the introduction of an internal standard consisting of two reference elements, scandium and gallium, a wide range of proteins can be analyzed, regardless of their salt content, buffer composition, additives and amino acid composition. This strategy also enables quantification of matrix effects. Two potential issues associated with drying have been considered in this study: (1) Formation of heterogeneous residues of varying thickness and/or density; and (2) separation of the internal standard and protein during drying (which has to be prevented to allow accurate quantification). These issues were investigated by microbeam X-ray fluorescence (μXRF) with special emphasis on (I) the influence of sample support and (II) the protein / buffer system used. In the first part, a model protein was studied on well established sample supports used in TXRF, PIXE and XRF (Mylar, siliconized quartz, Plexiglas and silicon). In the second part we imaged proteins of different molecular weight, oligomerization state, bound metals and solubility. A partial separation of protein and internal standard was only observed with untreated silicon, suggesting it may not be an adequate support material. Siliconized quartz proved to be the least prone to heterogeneous drying of the sample and yielded the most reliable results.

  13. Improved GPS-based time link calibration involving ROA and PTB.

    PubMed

    Esteban, Héctor; Palacio, Juan; Galindo, Francisco Javier; Feldmann, Thorsten; Bauch, Andreas; Piester, Dirk

    2010-03-01

    The calibration of time transfer links is mandatory in the context of international collaboration for the realization of International Atomic Time. In this paper, we present the results of the calibration of the GPS time transfer link between the Real Instituto y Observatorio de la Armada (ROA) and the Physikalisch-Technische Bundesanstalt (PTB) by means of a traveling geodetic-type GPS receiver and an evaluation of the achieved type A and B uncertainty. The time transfer results were achieved by using CA, P3, and also carrier phase PPP comparison techniques. We finally use these results to re-calibrate the two-way satellite time and frequency transfer (TWSTFT) link between ROA and PTB, using one month of data. We show that a TWSTFT link can be calibrated by means of GPS time comparisons with an uncertainty below 2 ns, and that potentially even sub-nanosecond uncertainty can be achieved. This is a novel and cost-effective approach compared with the more common calibration using a traveling TWSTFT station.

  14. A new dimethyl labeling-based SID-MRM-MS method and its application to three proteases involved in insulin maturation.

    PubMed

    Cheng, Dongwan; Zheng, Li; Hou, Junjie; Wang, Jifeng; Xue, Peng; Yang, Fuquan; Xu, Tao

    2015-01-01

    The absolute quantification of target proteins in proteomics involves stable isotope dilution coupled with multiple reactions monitoring mass spectrometry (SID-MRM-MS). The successful preparation of stable isotope-labeled internal standard peptides is an important prerequisite for the SID-MRM absolute quantification methods. Dimethyl labeling has been widely used in relative quantitative proteomics and it is fast, simple, reliable, cost-effective, and applicable to any protein sample, making it an ideal candidate method for the preparation of stable isotope-labeled internal standards. MRM mass spectrometry is of high sensitivity, specificity, and throughput characteristics and can quantify multiple proteins simultaneously, including low-abundance proteins in precious samples such as pancreatic islets. In this study, a new method for the absolute quantification of three proteases involved in insulin maturation, namely PC1/3, PC2 and CPE, was developed by coupling a stable isotope dimethyl labeling strategy for internal standard peptide preparation with SID-MRM-MS quantitative technology. This method offers a new and effective approach for deep understanding of the functional status of pancreatic β cells and pathogenesis in diabetes.

  15. A liquid chromatography method with single quadrupole mass spectrometry for quantitative determination of indomethacin in maternal plasma and urine of pregnant patients

    PubMed Central

    Wang, Xiaoming; Vernikovskaya, Daria I.; Nanovskaya, Tatiana N.; Rytting, Erik; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2013-01-01

    A liquid chromatography with single quadrupole mass spectrometry method was developed for the quantitative determination of indomethacin in the maternal plasma and urine of pregnant patients under treatment. A deuterium-labeled isotope of indomethacin (d4-indomethacin) was used as an internal standard. The maternal plasma and urine samples were acidified with 1.0 MHCl then extracted with chloroform to achieve the extraction recovery range of 94% to 104% with variation less than 11%. Chromatographic separation was achieved by a Waters Symmetry C18 column with isocratic elution of 0.05% (v/v) formic acid aqueous solution and acetonitrile (47:53, v/v). An in-source fragmentation was applied on the single quadrupole mass spectrometer equipped with an electrospray ionization source at positive mode. The LC-ESI-MS quantification was performed in the selected ion monitoring mode targeting ions at m/z 139 for indomethacin and m/z 143 for its internal standard. The calibration curves were linear in the concentration ranges between 14.8 and 2.97×103 ng/mL for plasma samples and between 10.5 and 4.21×103 ng/mL for urine samples. The relative standard deviation of this method was less than 8% for intra- and inter-day assays, and the accuracy ranged between 90% and 108%. PMID:23474812

  16. Validation of an LC-MS/MS Method for Urinary Lactulose and Mannitol Quantification: Results in Patients with Irritable Bowel Syndrome.

    PubMed

    Gervasoni, Jacopo; Schiattarella, Arcangelo; Giorgio, Valentina; Primiano, Aniello; Russo, Consuelo; Tesori, Valentina; Scaldaferri, Franco; Urbani, Andrea; Zuppi, Cecilia; Persichilli, Silvia

    2016-01-01

    Aim . Lactulose/mannitol ratio is used to assess intestinal barrier function. Aim of this work was to develop a robust and rapid method for the analysis of lactulose and mannitol in urine by liquid chromatography coupled to tandem mass spectrometry. Lactulose/mannitol ratio has been measured in pediatric patients suffering from irritable bowel syndrome. Methods . Calibration curves and raffinose, used as internal standard, were prepared in water : acetonitrile 20 : 80. Fifty μ L of urine sample was added to 450  μ L of internal standard solution. The chromatographic separation was performed using a Luna NH 2 column operating at a flow rate of 200  μ L/min and eluted with a linear gradient from 20% to 80% water in acetonitrile. Total run time is 9 minutes. The mass spectrometry operates in electrospray negative mode. Method was fully validated according to European Medicine Agency guidelines. Results and Conclusions . Linearity ranged from 10 to 1000 mg/L for mannitol and 2.5 to 1000 mg/L for lactulose. Imprecision in intra- and interassay was lower than 15% for both analytes. Accuracy was higher than 85%. Lactulose/mannitol ratio in pediatric patients is significantly higher than that measured in controls. The presented method, rapid and sensitive, is suitable in a clinical laboratory.

  17. Development and validation of reversed-phase HPLC gradient method for the estimation of efavirenz in plasma.

    PubMed

    Gupta, Shweta; Kesarla, Rajesh; Chotai, Narendra; Omri, Abdelwahab

    2017-01-01

    Efavirenz is an anti-viral agent of non-nucleoside reverse transcriptase inhibitor category used as a part of highly active retroviral therapy for the treatment of infections of human immune deficiency virus type-1. A simple, sensitive and rapid reversed-phase high performance liquid chromatographic gradient method was developed and validated for the determination of efavirenz in plasma. The method was developed with high performance liquid chromatography using Waters X-Terra Shield, RP18 50 x 4.6 mm, 3.5 μm column and a mobile phase consisting of phosphate buffer pH 3.5 and Acetonitrile. The elute was monitored with the UV-Visible detector at 260 nm with a flow rate of 1.5 mL/min. Tenofovir disoproxil fumarate was used as internal standard. The method was validated for linearity, precision, accuracy, specificity, robustness and data obtained were statistically analyzed. Calibration curve was found to be linear over the concentration range of 1-300 μg/mL. The retention times of efavirenz and tenofovir disoproxil fumarate (internal standard) were 5.941 min and 4.356 min respectively. The regression coefficient value was found to be 0.999. The limit of detection and the limit of quantification obtained were 0.03 and 0.1 μg/mL respectively. The developed HPLC method can be useful for quantitative pharmacokinetic parameters determination of efavirenz in plasma.

  18. Assessment of spill flow emissions on the basis of measured precipitation and waste water data

    NASA Astrophysics Data System (ADS)

    Hochedlinger, Martin; Gruber, Günter; Kainz, Harald

    2005-09-01

    Combined sewer overflows (CSOs) are substantial contributors to the total emissions into surface water bodies. The emitted pollution results from dry-weather waste water loads, surface runoff pollution and from the remobilisation of sewer deposits and sewer slime during storm events. One possibility to estimate overflow loads is a calculation with load quantification models. Input data for these models are pollution concentrations, e.g. Total Chemical Oxygen Demand (COD tot), Total Suspended Solids (TSS) or Soluble Chemical Oxygen Demand (COD sol), rainfall series and flow measurements for model calibration and validation. It is important for the result of overflow loads to model with reliable input data, otherwise this inevitably leads to bad results. In this paper the correction of precipitation measurements and the sewer online-measurements are presented to satisfy the load quantification model requirements already described. The main focus is on tipping bucket gauge measurements and their corrections. The results evidence the importance of their corrections due the effects on load quantification modelling and show the difference between corrected and not corrected data of storm events with high rain intensities.

  19. Quantification of polychlorinated dibenzo-p-dioxins and dibenzofurans by direct injection of sample extract into the comprehensive multidimensional gas chromatograph/high-resolution time-of-flight mass spectrometer.

    PubMed

    Shunji, Hashimoto; Yoshikatsu, Takazawa; Akihiro, Fushimi; Hiroyasu, Ito; Kiyoshi, Tanabe; Yasuyuki, Shibata; Masa-aki, Ubukata; Akihiko, Kusai; Kazuo, Tanaka; Hideyuki, Otsuka; Katsunori, Anezaki

    2008-01-18

    Polychlorinated dibenzo-p-dioxins and dibenzofurans in crude extracts of fly ash and flue gas from municipal waste incinerators were quantified using a comprehensive multidimensional gas chromatograph (GC x GC) coupled to a high-resolution time-of-flight mass spectrometer (HR-TOFMS). For identification and quantification, we developed our own program to prepare 3D chromatograms of selected mass numbers from the data of the GC x GC/HR-TOFMS. Isolation of all congeners with a TCDD toxic equivalency factor from the other isomers by only one injection was confirmed. The instrumental detection limit of TCDD on the GC x GC/HR-TOFMS was 0.9 pg by the relative calibration method. Quantification of these substances in the crude extracts was achieved by direct injection to the GC x GC/HR-TOFMS. The results agree with the values obtained using a generic gas chromatography/high-resolution mass spectrometry (GC/HRMS) system. It was confirmed that measurement by high-resolution TOFMS and GC x GC effectively reduces interference from other chemicals.

  20. Detection and quantification of cocaine and benzoylecgonine in meconium using solid phase extraction and UPLC/MS/MS.

    PubMed

    Gunn, Josh; Kriger, Scott; Terrell, Andrea R

    2010-01-01

    The simultaneous determination and quantification of cocaine and its major metabolite, benzoylecgonine, in meconium using UPLC-MS/MS is described. Ultra-performance liquid chromatography (UPLC) is an emerging analytical technique which draws upon the principles of chromatography to run separations at higher flow rates for increased speed, while simultaneously achieving superior resolution and sensitivity. Extraction of cocaine and benzoylecgonine from the homogenized meconium matrix was achieved with a preliminary protein precipitation or protein 'crash' employing cold acetonitrile, followed by a mixed mode solid phase extraction (SPE). Following elution from the SPE cartridge, eluents were dried down under nitrogen, reconstituted in 200 microL of DI water:acetonitrile (ACN) (75:25), and injected onto the UPLC/MS/MS for analysis. The increased speed and separation efficiency afforded by UPLC, allowed for the separation and subsequent quantification of both analytes in less than 2 min. Analytes were quantified using multiple reaction monitoring (MRM) and six-point calibration curves constructed in negative blood. Limits of detection for both analytes were 3 ng/g and the lower limit of quantitation (LLOQ) was 30 ng/g.

  1. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    PubMed Central

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563

  2. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    PubMed

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    PubMed

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-03-02

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.

  4. The validation of the Z-Scan technique for the determination of plasma glucose

    NASA Astrophysics Data System (ADS)

    Alves, Sarah I.; Silva, Elaine A. O.; Costa, Simone S.; Sonego, Denise R. N.; Hallack, Maira L.; Coppini, Ornela L.; Rowies, Fernanda; Azzalis, Ligia A.; Junqueira, Virginia B. C.; Pereira, Edimar C.; Rocha, Katya C.; Fonseca, Fernando L. A.

    2013-11-01

    Glucose is the main energy source for the human body. The concentration of blood glucose is regulated by several hormones including both antagonists: insulin and glucagon. The quantification of glucose in the blood is used for diagnosing metabolic disorders of carbohydrates, such as diabetes, idiopathic hypoglycemia and pancreatic diseases. Currently, the methodology used for this determination is the enzymatic colorimetric with spectrophotometric. This study aimed to validate the use of measurements of nonlinear optical properties of plasma glucose via the Z-Scan technique. For this we used samples of calibrator patterns that simulate commercial samples of patients (ELITech ©). Besides calibrators, serum glucose levels within acceptable reference values (normal control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) and also overestimated (pathological control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) were used in the methodology proposal. Calibrator dilutions were performed and determined by the Z-Scan technique for the preparation of calibration curve. In conclusion, Z-Scan method can be used to determinate glucose levels in biological samples with enzymatic colorimetric reaction and also to apply the same quality control parameters used in biochemistry clinical.

  5. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    PubMed Central

    Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  6. Quantification of Lignin and Its Structural Features in Plant Biomass Using 13C Lignin as Internal Standard for Pyrolysis-GC-SIM-MS.

    PubMed

    van Erven, Gijs; de Visser, Ries; Merkx, Donny W H; Strolenberg, Willem; de Gijsel, Peter; Gruppen, Harry; Kabel, Mirjam A

    2017-10-17

    Understanding the mechanisms underlying plant biomass recalcitrance at the molecular level can only be achieved by accurate analyses of both the content and structural features of the molecules involved. Current quantification of lignin is, however, majorly based on unspecific gravimetric analysis after sulfuric acid hydrolysis. Hence, our research aimed at specific lignin quantification with concurrent characterization of its structural features. Hereto, for the first time, a polymeric 13 C lignin was used as internal standard (IS) for lignin quantification via analytical pyrolysis coupled to gas chromatography with mass-spectrometric detection in selected ion monitoring mode (py-GC-SIM-MS). In addition, relative response factors (RRFs) for the various pyrolysis products obtained were determined and applied. First, 12 C and 13 C lignin were isolated from nonlabeled and uniformly 13 C labeled wheat straw, respectively, and characterized by heteronuclear single quantum coherence (HSQC), nuclear magnetic resonance (NMR), and py-GC/MS. The two lignin isolates were found to have identical structures. Second, 13 C-IS based lignin quantification by py-GC-SIM-MS was validated in reconstituted biomass model systems with known contents of the 12 C lignin analogue and was shown to be extremely accurate (>99.9%, R 2 > 0.999) and precise (RSD < 1.5%). Third, 13 C-IS based lignin quantification was applied to four common poaceous biomass sources (wheat straw, barley straw, corn stover, and sugar cane bagasse), and lignin contents were in good agreement with the total gravimetrically determined lignin contents. Our robust method proves to be a promising alternative for the high-throughput quantification of lignin in milled biomass samples directly and simultaneously provides a direct insight into the structural features of lignin.

  7. Quantification of Lignin and Its Structural Features in Plant Biomass Using 13C Lignin as Internal Standard for Pyrolysis-GC-SIM-MS

    PubMed Central

    2017-01-01

    Understanding the mechanisms underlying plant biomass recalcitrance at the molecular level can only be achieved by accurate analyses of both the content and structural features of the molecules involved. Current quantification of lignin is, however, majorly based on unspecific gravimetric analysis after sulfuric acid hydrolysis. Hence, our research aimed at specific lignin quantification with concurrent characterization of its structural features. Hereto, for the first time, a polymeric 13C lignin was used as internal standard (IS) for lignin quantification via analytical pyrolysis coupled to gas chromatography with mass-spectrometric detection in selected ion monitoring mode (py-GC-SIM-MS). In addition, relative response factors (RRFs) for the various pyrolysis products obtained were determined and applied. First, 12C and 13C lignin were isolated from nonlabeled and uniformly 13C labeled wheat straw, respectively, and characterized by heteronuclear single quantum coherence (HSQC), nuclear magnetic resonance (NMR), and py-GC/MS. The two lignin isolates were found to have identical structures. Second, 13C-IS based lignin quantification by py-GC-SIM-MS was validated in reconstituted biomass model systems with known contents of the 12C lignin analogue and was shown to be extremely accurate (>99.9%, R2 > 0.999) and precise (RSD < 1.5%). Third, 13C-IS based lignin quantification was applied to four common poaceous biomass sources (wheat straw, barley straw, corn stover, and sugar cane bagasse), and lignin contents were in good agreement with the total gravimetrically determined lignin contents. Our robust method proves to be a promising alternative for the high-throughput quantification of lignin in milled biomass samples directly and simultaneously provides a direct insight into the structural features of lignin. PMID:28926698

  8. Quantitative estimation of α-PVP metabolites in urine by GC-APCI-QTOFMS with nitrogen chemiluminescence detection based on parent drug calibration.

    PubMed

    Mesihää, Samuel; Rasanen, Ilpo; Ojanperä, Ilkka

    2018-05-01

    Gas chromatography (GC) hyphenated with nitrogen chemiluminescence detection (NCD) and quadrupole time-of-flight mass spectrometry (QTOFMS) was applied for the first time to the quantitative analysis of new psychoactive substances (NPS) in urine, based on the N-equimolar response of NCD. A method was developed and validated to estimate the concentrations of three metabolites of the common stimulant NPS α-pyrrolidinovalerophenone (α-PVP) in spiked urine samples, simulating an analysis having no authentic reference standards for the metabolites and using the parent drug instead for quantitative calibration. The metabolites studied were OH-α-PVP (M1), 2″-oxo-α-PVP (M3), and N,N-bis-dealkyl-PVP (2-amino-1-phenylpentan-1-one; M5). Sample preparation involved liquid-liquid extraction with a mixture of ethyl acetate and butyl chloride at a basic pH and subsequent silylation of the sec-hydroxyl and prim-amino groups of M1 and M5, respectively. Simultaneous compound identification was based on the accurate masses of the protonated molecules for each compound by QTOFMS following atmospheric pressure chemical ionization. The accuracy of quantification of the parent-calibrated NCD method was compared with that of the corresponding parent-calibrated QTOFMS method, as well as with a reference QTOFMS method calibrated with the authentic reference standards. The NCD method produced an equally good accuracy to the reference method for α-PVP, M3 and M5, while a higher negative bias (25%) was obtained for M1, best explainable by recovery and stability issues. The performance of the parent-calibrated QTOFMS method was inferior to the reference method with an especially high negative bias (60%) for M1. The NCD method enabled better quantitative precision than the QTOFMS methods To evaluate the novel approach in casework, twenty post- mortem urine samples previously found positive for α-PVP were analyzed by the parent calibrated NCD method and the reference QTOFMS method. The highest difference in the quantitative results between the two methods was only 33%, and the NCD method's precision as the coefficient of variation was better than 13%. The limit of quantification for the NCD method was approximately 0.25μg/mL in urine, which generally allowed the analysis of α-PVP and the main metabolite M1. However, the sensitivity was not sufficient for the low concentrations of M3 and M5. Consequently, while having potential for instant analysis of NPS and metabolites in moderate concentrations without reference standards, the NCD method should be further developed for improved sensitivity to be more generally applicable. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification

    NASA Astrophysics Data System (ADS)

    Illien, Françoise; Rodriguez, Nicolas; Amoura, Mehdi; Joliot, Alain; Pallerla, Manjula; Cribier, Sophie; Burlina, Fabienne; Sagan, Sandrine

    2016-11-01

    The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.

  10. Expansion of the Scope of AOAC First Action Method 2012.25--Single-Laboratory Validation of Triphenylmethane Dye and Leuco Metabolite Analysis in Shrimp, Tilapia, Catfish, and Salmon by LC-MS/MS.

    PubMed

    Andersen, Wendy C; Casey, Christine R; Schneider, Marilyn J; Turnipseed, Sherri B

    2015-01-01

    Prior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a single-laboratory validation of method 2012.25 was performed to expand the scope of the method to other seafood matrixes including salmon, catfish, tilapia, and shrimp. The validation included the analysis of fortified and incurred residues over multiple weeks to assess analyte stability in matrix at -80°C, a comparison of calibration methods over the range 0.25 to 4 μg/kg, study of matrix effects for analyte quantification, and qualitative identification of targeted analytes. Method accuracy ranged from 88 to 112% with 13% RSD or less for samples fortified at 0.5, 1.0, and 2.0 μg/kg. Analyte identification and determination limits were determined by procedures recommended both by the U. S. Food and Drug Administration and the European Commission. Method detection limits and decision limits ranged from 0.05 to 0.24 μg/kg and 0.08 to 0.54 μg/kg, respectively. AOAC First Action Method 2012.25 with an extracted matrix calibration curve and internal standard correction is suitable for the determination of triphenylmethane dyes and leuco metabolites in salmon, catfish, tilapia, and shrimp by LC-MS/MS at a residue determination level of 0.5 μg/kg or below.

  11. A sensitive LC-MS/MS method for measurement of organophosphorus pesticides and their oxygen analogs in air sampling matrices

    PubMed Central

    ARMSTRONG, JENNA L.; DILLS, RUSSELL L.; YU, JIANBO; YOST, MICHAEL G.; FENSKE, RICHARD A.

    2018-01-01

    A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for determination of levels of the organophosphorus (OP) pesticides chlorpyrifos (CPF), azinphos methyl (AZM), and their oxygen analogs chlorpyrifos-oxon (CPF-O) and azinphos methyl-oxon (AZM-O) on common active air sampling matrices. XAD-2 resin and polyurethane foam (PUF) matrices were extracted with acetonitrile containing stable-isotope labeled internal standards (ISTD). Analysis was accomplished in Multiple Reaction Monitoring (MRM) mode, and analytes in unknown samples were identified by retention time (±0.1 min) and qualifier ratio (±30% absolute) as compared to the mean of calibrants. For all compounds, calibration linearity correlation coefficients were ≥0.996. Limits of detection (LOD) ranged from 0.15–1.1 ng/sample for CPF, CPF-O, AZM, and AZM-O on active sampling matrices. Spiked fortification recoveries were 78–113% from XAD-2 active air sampling tubes and 71–108% from PUF active air sampling tubes. Storage stability tests also yielded recoveries ranging from 74–94% after time periods ranging from 2–10 months. The results demonstrate that LC-MS/MS is a sensitive method for determining these compounds from two different matrices at the low concentrations that can result from spray drift and long range transport in non-target areas following agricultural applications. In an inter-laboratory comparison, the limit of quantification (LOQ) for LC-MS/MS was 100 times lower than a typical gas chromatography-mass spectrometry (GC-MS) method. PMID:24328542

  12. A sensitive LC-MS/MS method for measurement of organophosphorus pesticides and their oxygen analogs in air sampling matrices.

    PubMed

    Armstrong, Jenna L; Dills, Russell L; Yu, Jianbo; Yost, Michael G; Fenske, Richard A

    2014-01-01

    A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for determination of levels of the organophosphorus (OP) pesticides chlorpyrifos (CPF), azinphos methyl (AZM), and their oxygen analogs chlorpyrifos-oxon (CPF-O) and azinphos methyl-oxon (AZM-O) on common active air sampling matrices. XAD-2 resin and polyurethane foam (PUF) matrices were extracted with acetonitrile containing stable-isotope labeled internal standards (ISTD). Analysis was accomplished in Multiple Reaction Monitoring (MRM) mode, and analytes in unknown samples were identified by retention time (±0.1 min) and qualifier ratio (±30% absolute) as compared to the mean of calibrants. For all compounds, calibration linearity correlation coefficients were ≥0.996. Limits of detection (LOD) ranged from 0.15-1.1 ng/sample for CPF, CPF-O, AZM, and AZM-O on active sampling matrices. Spiked fortification recoveries were 78-113% from XAD-2 active air sampling tubes and 71-108% from PUF active air sampling tubes. Storage stability tests also yielded recoveries ranging from 74-94% after time periods ranging from 2-10 months. The results demonstrate that LC-MS/MS is a sensitive method for determining these compounds from two different matrices at the low concentrations that can result from spray drift and long range transport in non-target areas following agricultural applications. In an inter-laboratory comparison, the limit of quantification (LOQ) for LC-MS/MS was 100 times lower than a typical gas chromatography-mass spectrometry (GC-MS) method.

  13. High-sensitive LC-MS/MS method for the simultaneous determination of mirodenafil and its major metabolite, SK-3541, in human plasma: application to microdose clinical trials of mirodenafil.

    PubMed

    Cho, Doo-Yeoun; Bae, Soo Hyeon; Shon, Ji-Hong; Bae, Soo Kyung

    2013-03-01

    A high-sensitivity LC/MS/MS method was developed and validated for the simultaneous determination of mirodenafil and its major metabolite, SK-3541, in human plasma. Mirodenafil, SK-3541, and udenafil as an internal standard were extracted from plasma samples with methyl tert-butyl ether. Chromatographic separation was performed on a Luna phenyl-hexyl column (100 × 2.0 mm) with an isocratic mobile phase consisting of 5 mM ammonium formate and ACN (23:77, v/v) at a flow rate of 0.35 mL/min. Detection and quantification were performed using a mass spectrometer in selected reaction monitoring mode with positive ESI at m/z 532.3 → 296.1 for mirodenafil, m/z 488.1 → 296.1 for SK-3541, and m/z 517.3 → 283.2 for udenafil. The calibration curves were linear over a concentration range of 2-500 pg/mL using 0.5 mL plasma for the microdose of mirodenafil (100 μg). Analytical method validation of the clinical dose (100 mg), with a calibration curve range of 2-500 ng/mL using 0.025-mL plasma, was also conducted. The other LC-MS/MS conditions were similar to those used for the microdosing. Each method was applied successfully to pharmacokinetic studies after a microdose or clinical dose of mirodenafil to six healthy Korean male volunteers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Inductively Coupled Plasma Mass Spectrometry: Sample Analysis of Zirconium and Ruthenium in Metal Organic Frameworks

    DTIC Science & Technology

    2018-02-01

    international proficiency testing sponsored by the Organisation for the Prohibition of Chemical Weapons (The Hague, Netherlands). Traditionally...separate batch of standards at each level for a total of six analyses at each calibration level. Concentrations of the tested calibration levels are...and ruthenium at each calibration level. 11 REFERENCES 1. General Requirements for the Competence of Testing and Calibration Laboratories

  15. Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2013-03-01

    We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.

  16. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  17. High-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe

    USGS Publications Warehouse

    Chou, I.-Ming; Pasteris, J.D.; Seitz, J.C.

    1990-01-01

    Three methods have been used to produce high-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe (LRM): synthetic fluid-inclusion, sealed fused-quartz-tube, and high-pressure-cell methods. Because quantitative interpretation of a Raman spectrum of mixed-volatile fluid inclusions requires accurate knowledge of pressure- and composition-sensitive Raman scattering efficiencies or quantification factors for each species, calibrations of these parameters for mixtures of volatiles of known composition and pressure are necessary. Two advantages of the synthetic fluid-inclusion method are that the inclusions can be used readily in complementary microthermometry (MT) studies and that they have sizes and optical properties like those in natural samples. Some disadvantages are that producing H2O-free volatile mixtures is difficult, the composition may vary from one inclusion to another, the exact composition and density of the inclusions are difficult to obtain, and the experimental procedures are complicated. The primary advantage of the method using sealed fused-quartz tubes is its simplicity. Some disadvantages are that exact compositions for complex volatile mixtures are difficult to predict, densities can be approximated only, and complementary MT studies on the tubes are difficult to conduct. The advantages of the high-pressure-cell method are that specific, known compositions of volatile mixtures can be produced and that their pressures can be varied easily and are monitored during calibration. Some disadvantages are that complementary MT analysis is impossible, and the setup is bulky. Among the three methods for the calibration of an LRM, the high-pressure-cell method is the most reliable and convenient for control of composition and total pressure. We have used the high-pressure cell to obtain preliminary data on 1. (1) the ratio of the Raman quantification factors for CH4 and N2 in an equimolar CH4N2 mixture and 2. (2) the spectral peak position of ??1 of CH4 in that mixture, as well as in pure CH4, at pressures up to 690 bars. These data were successfully applied to natural inclusions from the Duluth Complex in order to derive their compositions and total pressures. ?? 1990.

  18. Uncertainty quantification in LES of channel flow

    DOE PAGES

    Safta, Cosmin; Blaylock, Myra; Templeton, Jeremy; ...

    2016-07-12

    Here, in this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence andmore » are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for.« less

  19. Photogrammetric camera calibration

    USGS Publications Warehouse

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  20. Calibration of Hurricane Imaging Radiometer C-Band Receivers

    NASA Technical Reports Server (NTRS)

    Biswas, Sayak K.; Cecil, Daniel J.; James, Mark W.

    2017-01-01

    The laboratory calibration of airborne Hurricane Imaging Radiometer's C-Band multi-frequency receivers is described here. The method used to obtain the values of receiver frontend loss, internal cold load brightness temperature and injected noise diode temperature is presented along with the expected RMS uncertainty in the final calibration.

  1. Quantitative analysis of factor P (Properdin) in monkey serum using immunoaffinity capturing in combination with LC-MS/MS.

    PubMed

    Gao, Xinliu; Lin, Hui; Krantz, Carsten; Garnier, Arlette; Flarakos, Jimmy; Tse, Francis L S; Li, Wenkui

    2016-01-01

    Factor P (Properdin), an endogenous glycoprotein, plays a key role in innate immune defense. Its quantification is important for understanding the pharmacodynamics (PD) of drug candidate(s). In the present work, an immunoaffinity capturing LC-MS/MS method has been developed and validated for the first time for the quantification of factor P in monkey serum with a dynamic range of 125 to 25,000 ng/ml using the calibration standards and QCs prepared in factor P depleted monkey serum. The intra- and inter-run precision was ≤7.2% (CV) and accuracy within ±16.8% (%Bias) across all QC levels evaluated. Results of other evaluations (e.g., stability) all met the acceptance criteria. The validated method was robust and implemented in support of a preclinical PK/PD study.

  2. Management of groundwater in-situ bioremediation system using reactive transport modelling under parametric uncertainty: field scale application

    NASA Astrophysics Data System (ADS)

    Verardo, E.; Atteia, O.; Rouvreau, L.

    2015-12-01

    In-situ bioremediation is a commonly used remediation technology to clean up the subsurface of petroleum-contaminated sites. Forecasting remedial performance (in terms of flux and mass reduction) is a challenge due to uncertainties associated with source properties and the uncertainties associated with contribution and efficiency of concentration reducing mechanisms. In this study, predictive uncertainty analysis of bio-remediation system efficiency is carried out with the null-space Monte Carlo (NSMC) method which combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on remedial efficiency. The first step in the NSMC methodology for uncertainty analysis is model calibration. The model calibration was conducted by matching simulated BTEX concentration to a total of 48 observations from historical data before implementation of treatment. Two different bio-remediation designs were then implemented in the calibrated model. The first consists in pumping/injection wells and the second in permeable barrier coupled with infiltration across slotted piping. The NSMC method was used to calculate 1000 calibration-constrained parameter sets for the two different models. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. The first variant implementation of the NSMC is based on a single calibrated model. In the second variant, models were calibrated from different initial parameter sets. NSMC calibration-constrained parameter sets were sampled from these different calibrated models. We demonstrate that in context of nonlinear model, second variant avoids to underestimate parameter uncertainty which may lead to a poor quantification of predictive uncertainty. Application of the proposed approach to manage bioremediation of groundwater in a real site shows that it is effective to provide support in management of the in-situ bioremediation systems. Moreover, this study demonstrates that the NSMC method provides a computationally efficient and practical methodology of utilizing model predictive uncertainty methods in environmental management.

  3. Identification and quantification of nitrofurazone metabolites by ultraperformance liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry with precolumn derivatization.

    PubMed

    Zhang, Shuai; Li, PeiPei; Yan, Zhongyong; Long, Ju; Zhang, Xiaojun

    2017-03-01

    An ultraperformance liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry method was developed and validated for the determination of nitrofurazone metabolites. Precolumn derivatization with 2,4-dinitrophenylhydrazine and p-dimethylaminobenzaldehyde as an internal standard was used successfully to determine the biomarker 5-nitro-2-furaldehyde. In negative electrospray ionization mode, the precise molecular weights of the derivatives were 320.0372 for the biomarker and 328.1060 for the internal standard (relative error 1.08 ppm). The matrix effect was evaluated and the analytical characteristics of the method and derivatization reaction conditions were validated. For comparison purposes, spiked samples were tested by both internal and external standard methods. The results show high precision can be obtained with p-dimethylaminobenzaldehyde as an internal standard for the identification and quantification of nitrofurazone metabolites in complex biological samples. Graphical Abstract A simplified preparation strategy for biological samples.

  4. Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic

    PubMed Central

    Guillas, S.; Georgiopoulou, A.; Dias, F.

    2017-01-01

    Statistical methods constitute a useful approach to understand and quantify the uncertainty that governs complex tsunami mechanisms. Numerical experiments may often have a high computational cost. This forms a limiting factor for performing uncertainty and sensitivity analyses, where numerous simulations are required. Statistical emulators, as surrogates of these simulators, can provide predictions of the physical process in a much faster and computationally inexpensive way. They can form a prominent solution to explore thousands of scenarios that would be otherwise numerically expensive and difficult to achieve. In this work, we build a statistical emulator of the deterministic codes used to simulate submarine sliding and tsunami generation at the Rockall Bank, NE Atlantic Ocean, in two stages. First we calibrate, against observations of the landslide deposits, the parameters used in the landslide simulations. This calibration is performed under a Bayesian framework using Gaussian Process (GP) emulators to approximate the landslide model, and the discrepancy function between model and observations. Distributions of the calibrated input parameters are obtained as a result of the calibration. In a second step, a GP emulator is built to mimic the coupled landslide-tsunami numerical process. The emulator propagates the uncertainties in the distributions of the calibrated input parameters inferred from the first step to the outputs. As a result, a quantification of the uncertainty of the maximum free surface elevation at specified locations is obtained. PMID:28484339

  5. INFLUENCE OF IRON CHELATION ON R1 AND R2 CALIBRATION CURVES IN GERBIL LIVER AND HEART

    PubMed Central

    Wood, John C.; Aguilar, Michelle; Otto-Duessel, Maya; Nick, Hanspeter; Nelson, Marvin D.; Moats, Rex

    2008-01-01

    MRI is gaining increasing importance for the noninvasive quantification of organ iron burden. Since transverse relaxation rates depend on iron distribution as well as iron concentration, physiologic and pharmacologic processes that alter iron distribution could change MRI calibration curves. This paper compares the effect of three iron chelators, deferoxamine, deferiprone, and deferasirox on R1 and R2 calibration curves according to two iron loading and chelation strategies. 33 Mongolian gerbils underwent iron loading (iron dextran 500 mg/kg/wk) for 3 weeks followed by 4 weeks of chelation. An additional 56 animals received less aggressive loading (200 mg/kg/week) for 10 weeks, followed by 12 weeks of chelation. R1 and R2 calibration curves were compared to results from 23 iron-loaded animals that had not received chelation. Acute iron loading and chelation biased R1 and R2 from the unchelated reference calibration curves but chelator-specific changes were not observed, suggesting physiologic rather than pharmacologic differences in iron distribution. Long term chelation deferiprone treatment increased liver R1 50% (p<0.01), while long term deferasirox lowered liver R2 30.9% (p<0.0001). The relationship between R1 and R2 and organ iron concentration may depend upon the acuity of iron loading and unloading as well as the iron chelator administered. PMID:18581418

  6. RGB Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warping Approach

    PubMed Central

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data. PMID:22969337

  7. Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic.

    PubMed

    Salmanidou, D M; Guillas, S; Georgiopoulou, A; Dias, F

    2017-04-01

    Statistical methods constitute a useful approach to understand and quantify the uncertainty that governs complex tsunami mechanisms. Numerical experiments may often have a high computational cost. This forms a limiting factor for performing uncertainty and sensitivity analyses, where numerous simulations are required. Statistical emulators, as surrogates of these simulators, can provide predictions of the physical process in a much faster and computationally inexpensive way. They can form a prominent solution to explore thousands of scenarios that would be otherwise numerically expensive and difficult to achieve. In this work, we build a statistical emulator of the deterministic codes used to simulate submarine sliding and tsunami generation at the Rockall Bank, NE Atlantic Ocean, in two stages. First we calibrate, against observations of the landslide deposits, the parameters used in the landslide simulations. This calibration is performed under a Bayesian framework using Gaussian Process (GP) emulators to approximate the landslide model, and the discrepancy function between model and observations. Distributions of the calibrated input parameters are obtained as a result of the calibration. In a second step, a GP emulator is built to mimic the coupled landslide-tsunami numerical process. The emulator propagates the uncertainties in the distributions of the calibrated input parameters inferred from the first step to the outputs. As a result, a quantification of the uncertainty of the maximum free surface elevation at specified locations is obtained.

  8. Quantification of calcium using localized normalization on laser-induced breakdown spectroscopy data

    NASA Astrophysics Data System (ADS)

    Sabri, Nursalwanie Mohd; Haider, Zuhaib; Tufail, Kashif; Aziz, Safwan; Ali, Jalil; Wahab, Zaidan Abdul; Abbas, Zulkifly

    2017-03-01

    This paper focuses on localized normalization for improved calibration curves in laser-induced breakdown spectroscopy (LIBS) measurements. The calibration curves have been obtained using five samples consisting of different concentrations of calcium (Ca) in potassium bromide (KBr) matrix. The work has utilized Q-switched Nd:YAG laser installed in LIBS2500plus system with fundamental wavelength and laser energy of 650 mJ. Optimization of gate delay can be obtained from signal-to-background ratio (SBR) of Ca II 315.9 and 317.9 nm. The optimum conditions are determined in which having high spectral intensity and SBR. The highest spectral lines of ionic and emission lines of Ca at gate delay of 0.83 µs. From SBR, the optimized gate delay is at 5.42 µs for both Ca II spectral lines. Calibration curves consist of three parts; original intensity from LIBS experimentation, normalization and localized normalization of the spectral line intensity. The R2 values of the calibration curves plotted using locally normalized intensities of Ca I 610.3, 612.2 and 616.2 nm spectral lines are 0.96329, 0.97042, and 0.96131, respectively. The enhancement from calibration curves using the regression coefficient allows more accurate analysis in LIBS. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.

  9. Infrared non-destructive evaluation method and apparatus

    DOEpatents

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  10. Inspection of feasible calibration conditions for UV radiometer detectors with the KI/KIO3 actinometer.

    PubMed

    Qiang, Zhimin; Li, Wentao; Li, Mengkai; Bolton, James R; Qu, Jiuhui

    2015-01-01

    UV radiometers are widely employed for irradiance measurements, but their periodical calibrations not only induce an extra cost but also are time-consuming. In this study, the KI/KIO3 actinometer was applied to calibrate UV radiometer detectors at 254 nm with a quasi-collimated beam apparatus equipped with a low-pressure UV lamp, and feasible calibration conditions were identified. Results indicate that a washer constraining the UV light was indispensable, while the size (10 or 50 mL) of a beaker containing the actinometer solution had little influence when a proper washer was used. The absorption or reflection of UV light by the internal beaker wall led to an underestimation or overestimation of the irradiance determined by the KI/KIO3 actinometer, respectively. The proper range of the washer internal diameter could be obtained via mathematical analysis. A radiometer with a longer service time showed a greater calibration factor. To minimize the interference from the inner wall reflection of the collimating tube, calibrations should be conducted at positions far enough away from the tube bottom. This study demonstrates that after the feasible calibration conditions are identified, the KI/KIO3 actinometer can be applied readily to calibrate UV radiometer detectors at 254 nm. © 2014 The American Society of Photobiology.

  11. The Effect of Inappropriate Calibration: Three Case Studies in Molecular Ecology

    PubMed Central

    Ho, Simon Y. W.; Saarma, Urmas; Barnett, Ross; Haile, James; Shapiro, Beth

    2008-01-01

    Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events. PMID:18286172

  12. The effect of inappropriate calibration: three case studies in molecular ecology.

    PubMed

    Ho, Simon Y W; Saarma, Urmas; Barnett, Ross; Haile, James; Shapiro, Beth

    2008-02-20

    Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events.

  13. USAF Dental Service Mercury Hygiene Report, Calendar Year 1980.

    DTIC Science & Technology

    1981-12-01

    the floor. Mercury Vapor Analyzer Used No. calibration No. of clinics Percent reported MV2 - Bacharach 81 67.5 14 Hopcalite tubes 8 6.7 Jerome model...instruments which could determine TWA: hopcalite tubes (8), Jerome with dosimeter coils (5), and 3M monitor (3). All 16 of these surveys showed mercury...vapor levels. This quantification requires sampling using the Jerome with a dosimeter coil, hopcalite tubes, or the 3M monitor. The USAF Occupational

  14. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry - A tutorial review.

    PubMed

    Rzagalinski, Ignacy; Volmer, Dietrich A

    2017-07-01

    Matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) permits label-free in situ analysis of chemical compounds directly from the surface of two-dimensional biological tissue slices. It links qualitative molecular information of compounds to their spatial coordinates and distribution within the investigated tissue. MALDI-MSI can also provide the quantitative amounts of target compounds in the tissue, if proper calibration techniques are performed. Obviously, as the target molecules are embedded within the biological tissue environment and analysis must be performed at their precise locations, there is no possibility for extensive sample clean-up routines or chromatographic separations as usually performed with homogenized biological materials; ion suppression phenomena therefore become a critical side effect of MALDI-MSI. Absolute quantification by MALDI-MSI should provide an accurate value of the concentration/amount of the compound of interest in relatively small, well-defined region of interest of the examined tissue, ideally in a single pixel. This goal is extremely challenging and will not only depend on the technical possibilities and limitations of the MSI instrument hardware, but equally on the chosen calibration/standardization strategy. These strategies are the main focus of this article and are discussed and contrasted in detail in this tutorial review. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. SAM Gcms Chromatography Performed at Mars : Elements of Interpretation

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Buch, A.; François, P.; Cabane, M.; Coscia, D.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Mahaffy, P. R.

    2013-12-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Interpretation of the data collected after SAM pyrolysis evolved gas analysis (EGA) and gas chromatography mass spectrometry (GC-MS) experiments on the first soil samples collected by MSL at the Rocknest Aeolian Deposit in Gale Crater has been challenging due to the concomitant presence in the ovens of an oxychlorine phase present in the samples, and a derivatization agent coming from the SAM wet chemistry experiment (Glavin et al., 2013). Moreover, accurate identification and quantification, in the SAM EGA mode, of volatiles released from the heated sample, or generated by reactions occurring in the SAM pyrolysis oven, is also difficult for a few compounds due to evolution over similar temperature ranges and overlap of their MS signatures. Hence, the GC analyses, coupled with MS, enabled the separation and identification and quantification of most of the volatile compounds detected. These results can have been obtained through tests and calibration done with GC individual spare components and with the SAM testbed. This paper will present a view of the interpretation of the chromatograms obtained when analyzing the Rocknest and John Klein solid samples delivered to SAM, on sols 96 and 199 respectively, supported by laboratory calibrations.

  16. Relaxivity-iron calibration in hepatic iron overload: Probing underlying biophysical mechanisms using a Monte Carlo model

    PubMed Central

    Ghugre, Nilesh R.; Wood, John C.

    2010-01-01

    Iron overload is a serious condition for patients with β-thalassemia, transfusion-dependent sickle cell anemia and inherited disorders of iron metabolism. MRI is becoming increasingly important in non-invasive quantification of tissue iron, overcoming the drawbacks of traditional techniques (liver biopsy). R2*(1/T2*) rises linearly with iron while R2(1/T2) has a curvilinear relationship in human liver. Although recent work has demonstrated clinically-valid estimates of human liver iron, the calibration varies with MRI sequence, field strength, iron chelation therapy and organ imaged, forcing recalibration in patients. To understand and correct these limitations, a thorough understanding of the underlying biophysics is of critical importance. Toward this end, a Monte Carlo based approach, using human liver as a ‘model’ tissue system, was employed to determine the contribution of particle size and distribution on MRI signal relaxation. Relaxivities were determined for hepatic iron concentrations (HIC) ranging from 0.5–40 mg iron/ g dry tissue weight. Model predictions captured the linear and curvilinear relationship of R2* and R2 with HIC respectively and were within in vivo confidence bounds; contact or chemical exchange mechanisms were not necessary. A validated and optimized model will aid understanding and quantification of iron-mediated relaxivity in tissues where biopsy is not feasible (heart, spleen). PMID:21337413

  17. High performance liquid chromatography with mid-infrared detection based on a broadly tunable quantum cascade laser.

    PubMed

    Beskers, Timo F; Brandstetter, Markus; Kuligowski, Julia; Quintás, Guillermo; Wilhelm, Manfred; Lendl, Bernhard

    2014-05-07

    This work introduces a tunable mid-infrared (mid-IR) external cavity quantum cascade laser (EC-QCL) as a new molecular specific detector in liquid chromatography. An EC-QCL with a maximum tunability of 200 cm(-1) (1030-1230 cm(-1)) was coupled to isocratic high performance liquid chromatography (HPLC) for the separation of sugars with a cation exchange column (counter ion: Ca(2+)) and distilled water as the mobile phase. Transmission measurements in a 165 μm thick flow cell allowed for on-line coupling and independent quantification of glucose, fructose and sucrose in the concentration range from 5 mg mL(-1) to 100 mg mL(-1) in several beverages. The results obtained with the EC-QCL detector were found to be in good agreement with those obtained using a differential refractive index detector as a reference. The standard deviation of the method for the linear calibration was better than 5 mg mL(-1) for all sugars and reached a minimum of 1.9 mg mL(-1), while the DRI detector reached a minimum of 1 mg mL(-1). Besides the quantification of sugars for which a calibration was performed, also chromatographic peaks of other components could be identified on the basis of their IR absorption spectra. This includes taurine, ethanol, and sorbitol.

  18. Definition of the limit of quantification in the presence of instrumental and non-instrumental errors. Comparison among various definitions applied to the calibration of zinc by inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Badocco, Denis; Lavagnini, Irma; Mondin, Andrea; Favaro, Gabriella; Pastore, Paolo

    2015-12-01

    The limit of quantification (LOQ) in the presence of instrumental and non-instrumental errors was proposed. It was theoretically defined combining the two-component variance regression and LOQ schemas already present in the literature and applied to the calibration of zinc by the ICP-MS technique. At low concentration levels, the two-component variance LOQ definition should be always used above all when a clean room is not available. Three LOQ definitions were accounted for. One of them in the concentration and two in the signal domain. The LOQ computed in the concentration domain, proposed by Currie, was completed by adding the third order terms in the Taylor expansion because they are of the same order of magnitude of the second ones so that they cannot be neglected. In this context, the error propagation was simplified by eliminating the correlation contributions by using independent random variables. Among the signal domain definitions, a particular attention was devoted to the recently proposed approach based on at least one significant digit in the measurement. The relative LOQ values resulted very large in preventing the quantitative analysis. It was found that the Currie schemas in the signal and concentration domains gave similar LOQ values but the former formulation is to be preferred as more easily computable.

  19. Sulfur determination in concrete samples using laser-induced breakdown spectroscopy and limestone standards

    NASA Astrophysics Data System (ADS)

    Hrdlička, Aleš; Hegrová, Jitka; Novotný, Karel; Kanický, Viktor; Prochazka, David; Novotný, Jan; Modlitbová, Pavlína; Sládková, Lucia; Pořízka, Pavel; Kaiser, Jozef

    2018-04-01

    A LIBS equipment operating at 532 nm was optimized and used for sulfur determination in concrete samples. The influence of He atmosphere in a gas-tight chamber (1000-200 mbar) on S I 921.29 nm line sensitivity, signal-to-background and signal-to-noise ratio was studied at gate delays 100-2000 ns. Wide range of gate delays from 500 to about 1000 ns and pressures from several hundreds of mbar to the atmospheric pressure can be used for the desired detection of sulfur. The LIBS quantification was done using a simple calibration method. A synthetic limestone enriched by defined amounts of sodium sulfate was newly employed for direct quantification of S in concrete. This powder material was pressed into pellets and ablated with the LIBS system. The average content of sulfur as SO3 in the samples was 0.41-0.70 wt% by LIBS and 0.43-0.61 wt% by a reference standard procedure employing gravimetry and Inductively Coupled Plasma Triple Quad Mass Spectrometry (ICP-QQQMS). The uncertainty of the yielded LIBS results covers also the dispersion of the points in the calibration line and ranges from 16 to 28% at the probability level of 95%. The uncertainty of the ICP-QQQMS results was almost 10%. No correction on different signal response on the limestone and on the concrete was necessary.

  20. SU-E-I-65: Estimation of Tagging Efficiency in Pseudo-Continuous Arterial Spin Labeling (pCASL) MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jen, M; Yan, F; Tseng, Y

    2015-06-15

    Purpose: pCASL was recommended as a potent approach for absolute cerebral blood flow (CBF) quantification in clinical practice. However, uncertainties of tagging efficiency in pCASL remain an issue. This study aimed to estimate tagging efficiency by using short quantitative pulsed ASL scan (FAIR-QUIPSSII) and compare resultant CBF values with those calibrated by using 2D Phase Contrast (PC) MRI. Methods: Fourteen normal volunteers participated in this study. All images, including whole brain (WB) pCASL, WB FAIR-QUIPSSII and single-slice 2D PC, were collected on a 3T clinical MRI scanner with a 8-channel head coil. DeltaM map was calculated by averaging the subtractionmore » of tag/control pairs in pCASL and FAIR-QUIPSSII images and used for CBF calculation. Tagging efficiency was then calculated by the ratio of mean gray matter CBF obtained from pCASL and FAIR-QUIPSSII. For comparison, tagging efficiency was also estimated with 2D PC, a previously established method, by contrast WB CBF in pCASL and 2D PC. Feasibility of estimation from a short FAIR-QUIPSSII scan was evaluated by number of averages required for obtaining a stable deltaM value. Setting deltaM calculated by maximum number of averaging (50 pairs) as reference, stable results were defined within ±10% variation. Results: Tagging efficiencies obtained by 2D PC MRI (0.732±0.092) were significantly lower than which obtained by FAIRQUIPPSSII (0.846±0.097) (P<0.05). Feasibility results revealed that four pairs of images in FAIR-QUIPPSSII scan were sufficient to obtain a robust calibration of less than 10% differences from using 50 pairs. Conclusion: This study found that reliable estimation of tagging efficiency could be obtained by a few pairs of FAIR-QUIPSSII images, which suggested that calibration scan in a short duration (within 30s) was feasible. Considering recent reports concerning variability of PC MRI-based calibration, this study proposed an effective alternative for CBF quantification with pCASL.« less

  1. Integral Quantification of Soil Water Content at the Intermediate Catchment Scale by Ground Albedo Neutron Sensing (GANS)

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2012-04-01

    Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. One new measurement methodology for integral quantifications of mean areal soil water content at the intermediate catchment scale is the aboveground sensing of cosmic-ray neutrons, more precisely ground albedo neutron sensing (GANS). Ground albedo natural neutrons, are generated by collisions of secondary cosmic rays with land surface materials (soil, water, biomass, snow, etc). Neutrons measured at the air/ground interface correlate with soil moisture contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters. This correlation is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. The present study performed ground albedo neutron sensing in different locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam (Brandenburg, Germany) cropped with corn in 2010 and sunflowers in 2011, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains, Germany) in 2011. In order to test this method, classical soil moisture devices and meteorological data were used for comparison. Moreover, calibration approach, and transferability of calibration parameters to different times and locations are also evaluated. Our observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil water content from GANS compared quantitatively with mean water content values derived from a network of classical devices (RMSE = 0.02 m3/m3 and r2 = 0.98) in three calibration periods with cropped-field conditions. Then, same calibration parameters corresponded well under different field conditions. Moreover, GANS approach responded well to precipitation events in both experimental sites through summer and autumn, and soil water content estimations were affected by water stored in snow.

  2. Assessment and Reduction of Model Parametric Uncertainties: A Case Study with A Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.

    2017-12-01

    The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.

  3. Externally calibrated parallel imaging for 3D multispectral imaging near metallic implants using broadband ultrashort echo time imaging.

    PubMed

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B

    2017-06-01

    To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Validation and evaluation of an HPLC methodology for the quantification of the potent antimitotic compound (+)-discodermolide in the Caribbean marine sponge Discodermia dissoluta.

    PubMed

    Valderrama, Katherine; Castellanos, Leonardo; Zea, Sven

    2010-08-01

    The sponge Discodermia dissoluta is the source of the potent antimitotic compound (+)-discodermolide. The relatively abundant and shallow populations of this sponge in Santa Marta, Colombia, allow for studies to evaluate the natural and biotechnological supply options of (+)-discodermolide. In this work, an RP-HPLC-UV methodology for the quantification of (+)-discodermolide from sponge samples was tested and validated. Our protocol for extracting this compound from the sponge included lyophilization, exhaustive methanol extraction, partitioning using water and dichloromethane, purification of the organic fraction in RP-18 cartridges and then finally retrieving the (+)-discodermolide in the methanol-water (80:20 v/v) fraction. This fraction was injected into an HPLC system with an Xterra RP-18 column and a detection wavelength of 235 nm. The calibration curve was linear, making it possible to calculate the LODs and quantification in these experiments. The intra-day and inter-day precision showed relative standard deviations lower than 5%. The accuracy, determined as the percentage recovery, was 99.4%. Nine samples of the sponge from the Bahamas, Bonaire, Curaçao and Santa Marta had concentrations of (+)-discodermolide ranging from 5.3 to 29.3 microg/g(-1) of wet sponge. This methodology is quick and simple, allowing for the quantification in sponges from natural environments, in situ cultures or dissociated cells.

  5. Potential of Visible and Near Infrared Spectroscopy and Pattern Recognition for Rapid Quantification of Notoginseng Powder with Adulterants

    PubMed Central

    Nie, Pengcheng; Wu, Di; Sun, Da-Wen; Cao, Fang; Bao, Yidan; He, Yong

    2013-01-01

    Notoginseng is a classical traditional Chinese medical herb, which is of high economic and medical value. Notoginseng powder (NP) could be easily adulterated with Sophora flavescens powder (SFP) or corn flour (CF), because of their similar tastes and appearances and much lower cost for these adulterants. The objective of this study is to quantify the NP content in adulterated NP by using a rapid and non-destructive visible and near infrared (Vis-NIR) spectroscopy method. Three wavelength ranges of visible spectra, short-wave near infrared spectra (SNIR) and long-wave near infrared spectra (LNIR) were separately used to establish the model based on two calibration methods of partial least square regression (PLSR) and least-squares support vector machines (LS-SVM), respectively. Competitive adaptive reweighted sampling (CARS) was conducted to identify the most important wavelengths/variables that had the greatest influence on the adulterant quantification throughout the whole wavelength range. The CARS-PLSR models based on LNIR were determined as the best models for the quantification of NP adulterated with SFP, CF, and their mixtures, in which the rP values were 0.940, 0.939, and 0.867 for the three models respectively. The research demonstrated the potential of the Vis-NIR spectroscopy technique for the rapid and non-destructive quantification of NP containing adulterants. PMID:24129019

  6. A novel sample preparation procedure for effect-directed analysis of micro-contaminants of emerging concern in surface waters.

    PubMed

    Osorio, Victoria; Schriks, Merijn; Vughs, Dennis; de Voogt, Pim; Kolkman, Annemieke

    2018-08-15

    A novel sample preparation procedure relying on Solid Phase Extraction (SPE) combining different sorbent materials on a sequential-based cartridge was optimized and validated for the enrichment of 117 widely diverse contaminants of emerging concern (CECs) from surface waters (SW) and further combined chemical and biological analysis on subsequent extracts. A liquid chromatography coupled to high resolution tandem mass spectrometry LC-(HR)MS/MS protocol was optimized and validated for the quantitative analysis of organic CECs in SW extracts. A battery of in vitro CALUX bioassays for the assessment of endocrine, metabolic and genotoxic interference and oxidative stress were performed on the same SW extracts. Satisfactory recoveries ([70-130]%) and precision (< 30%) were obtained for the majority of compounds tested. Internal standard calibration curves used for quantification of CECs, achieved the linearity criteria (r 2 > 0.99) over three orders of magnitude. Instrumental limits of detection and method limits of quantification were of [1-96] pg injected and [0.1-58] ng/L, respectively; while corresponding intra-day and inter-day precision did not exceed 11% and 20%. The developed procedure was successfully applied for the combined chemical and toxicological assessment of SW intended for drinking water supply. Levels of compounds varied from < 10 ng/L to < 500 ng/L. Endocrine (i.e. estrogenic and anti-androgenic) and metabolic interference responses were observed. Given the demonstrated reliability of the validated sample preparation method, the authors propose its integration in an effect-directed analysis procedure for a proper evaluation of SW quality and hazard assessment of CECs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Comparison of Standardized Cytomegalovirus (CMV) Viral Load Thresholds in Whole Blood and Plasma of Solid Organ and Hematopoietic Stem Cell Transplant Recipients with CMV Infection and Disease.

    PubMed

    Dioverti, M Veronica; Lahr, Brian D; Germer, Jeffrey J; Yao, Joseph D; Gartner, Michelle L; Razonable, Raymund R

    2017-01-01

    Quantification of cytomegalovirus (CMV) deoxyribonucleic acid (DNA) has important diagnostic, prognostic, and therapeutic implications in the management of transplant recipients. We aimed to assess a viral load in plasma and whole blood that distinguishes CMV disease from asymptomatic infection in a cohort of solid organ and hematopoietic stem cell transplantation. We prospectively measured and compared CMV viral load in paired plasma and whole blood samples collected from transplant recipients with CMV infection and disease. Cytomegalovirus viral loads were determined by a commercially available US Food and Drug Administration-approved quantitative assay (COBAS AmpliPrep/COBAS TaqMan CMV Test [CAP/CTM CMV]) calibrated to the first World Health Organization International Standard for CMV DNA quantification. Moderate agreement of CMV viral load was observed between plasma and whole blood, with 31% of samples having discordant findings, particularly among samples with low DNA levels. Among the subset of samples where both paired samples had quantifiable levels, we observed a systematic bias that reflected higher viral load in whole blood compared with plasma. Based on receiver operating curve analysis, an initial plasma CMV viral load threshold of 1700 IU/mL in solid organ transplant recipients (sensitivity 80%, specificity 74%) and 1350 IU/mL in allogeneic hematopoietic stem cell transplant recipients (sensitivity 87%, specificity 87%) distinguished CMV disease and asymptomatic infection. This study identifies standardized viral load thresholds that distinguish CMV disease from asymptomatic infection using CAP/CTM CMV assay. We propose these thresholds as potential triggers to be evaluated in prospective studies of preemptive therapy. Plasma was better than whole blood for measuring viral load using the CAP/CTM CMV assay.

  8. Standardization and performance evaluation of "modified" and "ultrasensitive" versions of the Abbott RealTime HIV-1 assay, adapted to quantify minimal residual viremia.

    PubMed

    Amendola, Alessandra; Bloisi, Maria; Marsella, Patrizia; Sabatini, Rosella; Bibbò, Angela; Angeletti, Claudio; Capobianchi, Maria Rosaria

    2011-09-01

    Numerous studies investigating clinical significance of HIV-1 minimal residual viremia (MRV) suggest potential utility of assays more sensitive than those routinely used to monitor viral suppression. However currently available methods, based on different technologies, show great variation in detection limit and input plasma volume, and generally suffer from lack of standardization. In order to establish new tools suitable for routine quantification of minimal residual viremia in patients under virological suppression, some modifications were introduced into standard procedure of the Abbott RealTime HIV-1 assay leading to a "modified" and an "ultrasensitive" protocols. The following modifications were introduced: calibration curve extended towards low HIV-1 RNA concentration; 4 fold increased sample volume by concentrating starting material; reduced volume of internal control; adoption of "open-mode" software for quantification. Analytical performances were evaluated using the HIV-1 RNA Working Reagent 1 for NAT assays (NIBSC). Both tests were applied to clinical samples from virologically suppressed patients. The "modified" and the "ultrasensitive" configurations of the assay reached a limit of detection of 18.8 (95% CI: 11.1-51.0 cp/mL) and 4.8 cp/mL (95% CI: 2.6-9.1 cp/mL), respectively, with high precision and accuracy. In clinical samples from virologically suppressed patients, "modified" and "ultrasensitive" protocols allowed to detect and quantify HIV RNA in 12.7% and 46.6%, respectively, of samples resulted "not-detectable", and in 70.0% and 69.5%, respectively, of samples "detected <40 cp/mL" in the standard assay. The "modified" and "ultrasensitive" assays are precise and accurate, and easily adoptable in routine diagnostic laboratories for measuring MRV. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. An analytical strategy to characterize the pharmacokinetics and pharmacodynamics of triptorelin in rats based on simultaneous LC-MS/MS analysis of triptorelin and endogenous testosterone in rat plasma.

    PubMed

    Han, Jiangbin; Zhang, Shu; Liu, Wanhui; Leng, Guangyi; Sun, Kaoxiang; Li, Youxin; Di, Xin

    2014-04-01

    Triptorelin, a gonadotropin-releasing hormone agonist, has been used in the treatment of hormone-responsive prostate cancer by inducing testosterone suppression. Research on the relationship between the time courses of triptorelin and testosterone is very important, but accurate quantification of triptorelin and testosterone simultaneously in biological specimens is a challenging analytical problem. In the present study, a rapid, sensitive, and selective method for simultaneous determination of triptorelin and testosterone in rat plasma by solid-phase extraction and liquid chromatography-tandem mass spectrometry was developed using a ZORBAX RRHD Eclipse Plus C8 column (2.1 × 50 mm, 1.8 μm) with a 0.05% propionic acid/methanol gradient. In view of the polarity difference between the two analytes, two internal standards, i.e., leuprolide and testosterone-(13)C3, were used for individual quantitation of triptorelin and testosterone. Endogenous testosterone was determined by reference to a calibration curve prepared using testosterone-D3 as a surrogate analyte. The method exhibits excellent linearity over three orders of magnitude for each analyte. The lower limit of quantification was 0.01 ng/mL for triptorelin and 0.05 ng/mL for testosterone, with consumption of 100 μL of plasma. The method was successfully applied to characterize the pharmacokinetics and pharmacodynamics of slow-release 28-day form triptorelin acetate biodegradable microspheres in rats after intramuscular injections of three consecutive doses of 0.6 mg/kg per 28 days. The results revealed that the pharmacokinetic profile of triptorelin produced an initial flare-up in testosterone levels, rapid castration within 5 days after injection, and long-term castration until the next dose.

  10. Distribution of caffeine levels in urine in different sports in relation to doping control before and after the removal of caffeine from the WADA doping list.

    PubMed

    Van Thuyne, W; Delbeke, F T

    2006-09-01

    Caffeine concentrations were measured in the urine of 4633 athletes tested for doping control in the Ghent Doping Control Laboratory in 2004. Determination of these concentrations was done using an alkaline extraction with a mixture of dichloromethane and methanol (9 : 1; v/v) followed by high performance liquid chromatography and ultraviolet detection (HPLC-UV). The method was validated according to ISO 17 025 standards (International Organisation for Standardisation). Quantification was done by using a linear calibration curve in the range from 0 to 20 microg/ml. The limit of quantification (LOQ) was 0.10 microg/ml. Because the results were not normally distributed, transformation of the data was done to evaluate the difference in detected concentrations in several sports. This resulted in an overall average concentration of 1.12 +/- 2.68 microg/ml. Comparison of the most frequently tested sports in 2004 demonstrated that caffeine concentrations in samples originating from power lifters are significantly higher in comparison to urines taken in other sports. Also, a significant difference between caffeine concentrations found in cycling and concentrations found in other sports, including athletics and some ball sports, was observed. A comparison was made between results obtained in 2004 and results obtained before the removal of caffeine from the WADA (World Anti-Doping Agency) doping list indicating that average caffeine concentrations decreased after the withdrawal of caffeine from the list of prohibited substances. The overall percentage of positive samples between the two periods remained the same although the percentage of positive samples noticed in cycling increased after the removal of caffeine from the doping list.

  11. Precision phenotyping, panomics, and system-level bioinformatics to delineate complex biologies of atherosclerosis: rationale and design of the "Genetic Loci and the Burden of Atherosclerotic Lesions" study.

    PubMed

    Voros, Szilard; Maurovich-Horvat, Pal; Marvasty, Idean B; Bansal, Aruna T; Barnes, Michael R; Vazquez, Gustavo; Murray, Sarah S; Voros, Viktor; Merkely, Bela; Brown, Bradley O; Warnick, G Russell

    2014-01-01

    Complex biological networks of atherosclerosis are largely unknown. The main objective of the Genetic Loci and the Burden of Atherosclerotic Lesions study is to assemble comprehensive biological networks of atherosclerosis using advanced cardiovascular imaging for phenotyping, a panomic approach to identify underlying genomic, proteomic, metabolomic, and lipidomic underpinnings, analyzed by systems biology-driven bioinformatics. By design, this is a hypothesis-free unbiased discovery study collecting a large number of biologically related factors to examine biological associations between genomic, proteomic, metabolomic, lipidomic, and phenotypic factors of atherosclerosis. The Genetic Loci and the Burden of Atherosclerotic Lesions study (NCT01738828) is a prospective, multicenter, international observational study of atherosclerotic coronary artery disease. Approximately 7500 patients are enrolled and undergo non-contrast-enhanced coronary calcium scanning by CT for the detection and quantification of coronary artery calcium, as well as coronary artery CT angiography for the detection and quantification of plaque, stenosis, and overall coronary artery disease burden. In addition, patients undergo whole genome sequencing, DNA methylation, whole blood-based transcriptome sequencing, unbiased proteomics based on mass spectrometry, as well as metabolomics and lipidomics on a mass spectrometry platform. The study is analyzed in 3 subsequent phases, and each phase consists of a discovery cohort and an independent validation cohort. For the primary analysis, the primary phenotype will be the presence of any atherosclerotic plaque, as detected by cardiac CT. Additional phenotypic analyses will include per patient maximal luminal stenosis defined as 50% and 70% diameter stenosis. Single-omic and multi-omic associations will be examined for each phenotype; putative biomarkers will be assessed for association, calibration, discrimination, and reclassification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Development and validation of an HPLC method for the determination of dibenzoylmethane in rat plasma and its application to the pharmacokinetic study.

    PubMed

    Shen, Guoxiang; Hong, Jin-Liern; Kong, Ah-Ng Tony

    2007-06-01

    A highly sensitive and simple high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantification of dibenzoylmethane (DBM) in rat plasma. DBM and internal standard (I.S.) 1-(5-chloro-2-hydroxy-4-methylphenyl)-3-phenyl-1,3-propanedione (CHMPP) were extracted from rat plasma by ethyl acetate/methanol (95:5, v/v) and analyzed using reverse-phase gradient elution with a Phenomenex Gemini C18 5-mum column. A gradient of mobile phase (mobile phase A: water/methanol (80:20, v/v) with 0.1% TFA and mobile phase B: acetonitrile with 0.1% TFA) at a flow rate of 0.2 mL/min, and ultraviolet (UV) detection at 335 nm were utilized. The lower limit of quantification (LLOQ) using 50 microL rat plasma was 0.05 microg/mL. The calibration curve was linear over a concentration range of 0.05-20 microg/mL. The mean recoveries were 80.6+/-5.7, 83.4+/-1.6 and 77.1+/-3.4% with quality control (QC) level of 0.05, 1 and 20 microg/mL, respectively. Intra- and inter-day assay accuracy and precision fulfilled US FDA guidance for industry bioanalytical method validation. Stability studies showed that DBM was stable in rat plasma after 4h incubation at room temperature, one month storage at -80 degrees C and three freeze/thaw cycles, as well as in reconstitute buffer for 48 h at 4 degrees C. The utility of the assay was confirmed by the successful analysis of plasma samples from DBM pharmacokinetics studies in the rats after oral and intravenous administrations.

  13. Determination of the total drug-related chlorine and bromine contents in human blood plasma using high performance liquid chromatography-tandem ICP-mass spectrometry (HPLC-ICP-MS/MS).

    PubMed

    Klencsár, Balázs; Bolea-Fernandez, Eduardo; Flórez, María R; Balcaen, Lieve; Cuyckens, Filip; Lynen, Frederic; Vanhaecke, Frank

    2016-05-30

    A fast, accurate and precise method for the separation and determination of the total contents of drug-related Cl and Br in human blood plasma, based on high performance liquid chromatography - inductively coupled plasma - tandem mass spectrometry (HPLC-ICP-MS/MS), has been developed. The novel approach was proved to be a suitable alternative to the presently used standard methodology (i.e. based on a radiolabelled version of the drug molecule and radiodetection), while eliminating the disadvantages of the latter. Interference-free determination of (35)Cl has been accomplished via ICP-MS/MS using H2 as reaction gas and monitoring the (35)ClH2(+) reaction product at mass-to-charge ratio of 37. Br could be measured "on mass" at a mass-to-charge of 79. HPLC was relied on for the separation of the drug-related entities from the substantial amount of inorganic Cl. The method developed was found to be sufficiently precise (repeatability <10% RSD) and accurate (recovery between 95 and 105%) and shows a linear dynamic range (R(2)>0.990) from the limit of quantification (0.05 and 0.01 mg/L for Cl and Br in blood plasma, respectively) to at least 5 and 1mg/L for Cl and Br, respectively. Quantification via either external or internal standard calibration provides reliable results for both elements. As a proof-of-concept, human blood plasma samples from a clinical study involving a newly developed Cl- and Br-containing active pharmaceutical ingredient were analysed and the total drug exposure was successfully described. Cross-validation was achieved by comparing the results obtained on Cl- and on Br-basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Collaborative study on saccharide quantification of the Haemophilus influenzae type b component in liquid vaccine presentations.

    PubMed

    Rosskopf, U; Daas, A; Terao, E; von Hunolstein, C

    2017-01-01

    Before release onto the market, it must be demonstrated that the total and free polysaccharide (poly ribosyl-ribitol-phosphate, PRP) content of Haemophilus influenzae type b (Hib) vaccine complies with requirements. However, manufacturers use different methods to assay PRP content: a national control laboratory must establish and validate the relevant manufacturer methodology before using it to determine PRP content. An international study was organised by the World Health Organization (WHO), in collaboration with the Biological Standardisation Programme (BSP) of the Council of Europe/European Directorate for the Quality of Medicines & HealthCare (EDQM) and of the European Union Commission, to verify the suitability of a single method for determining PRP content in liquid pentavalent vaccines (DTwP-HepB-Hib) containing a whole-cell pertussis component. It consists of HCl hydrolysis followed by chromatographic separation and quantification of ribitol on a CarboPac MA1 column using high-performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). The unconjugated, free, PRP is separated from the total PRP using C4 solid-phase extraction cartridges (SPE C4). Ten quality control laboratories performed two independent analyses applying the proposed analytical test protocol to five vaccine samples, including a vaccine lot with sub-potent PRP content and very high free PRP content. Both WHO PRP standard and ribitol reference standard were included as calibrating standards. A significant bias between WHO PRP standard and ribitol reference standard was observed. Study results showed that the proposed analytical method is, in principle, suitable for the intended use provided that a validation is performed as usually expected from quality control laboratories.

  15. International collaborative study for the calibration of proposed International Standards for thromboplastin, rabbit, plain, and for thromboplastin, recombinant, human, plain.

    PubMed

    van den Besselaar, A M H P; Chantarangkul, V; Angeloni, F; Binder, N B; Byrne, M; Dauer, R; Gudmundsdottir, B R; Jespersen, J; Kitchen, S; Legnani, C; Lindahl, T L; Manning, R A; Martinuzzo, M; Panes, O; Pengo, V; Riddell, A; Subramanian, S; Szederjesi, A; Tantanate, C; Herbel, P; Tripodi, A

    2018-01-01

    Essentials Two candidate International Standards for thromboplastin (coded RBT/16 and rTF/16) are proposed. International Sensitivity Index (ISI) of proposed standards was assessed in a 20-centre study. The mean ISI for RBT/16 was 1.21 with a between-centre coefficient of variation of 4.6%. The mean ISI for rTF/16 was 1.11 with a between-centre coefficient of variation of 5.7%. Background The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current Fourth International Standards are running low. Candidate replacement materials have been prepared. This article describes the calibration of the proposed Fifth International Standards for thromboplastin, rabbit, plain (coded RBT/16) and for thromboplastin, recombinant, human, plain (coded rTF/16). Methods An international collaborative study was carried out for the assignment of International Sensitivity Indexes (ISIs) to the candidate materials, according to the World Health Organization (WHO) guidelines for thromboplastins and plasma used to control oral anticoagulant therapy with vitamin K antagonists. Results Results were obtained from 20 laboratories. In several cases, deviations from the ISI calibration model were observed, but the average INR deviation attributabled to the model was not greater than 10%. Only valid ISI assessments were used to calculate the mean ISI for each candidate. The mean ISI for RBT/16 was 1.21 (between-laboratory coefficient of variation [CV]: 4.6%), and the mean ISI for rTF/16 was 1.11 (between-laboratory CV: 5.7%). Conclusions The between-laboratory variation of the ISI for candidate material RBT/16 was similar to that of the Fourth International Standard (RBT/05), and the between-laboratory variation of the ISI for candidate material rTF/16 was slightly higher than that of the Fourth International Standard (rTF/09). The candidate materials have been accepted by WHO as the Fifth International Standards for thromboplastin, rabbit plain, and thromboplastin, recombinant, human, plain. © 2017 International Society on Thrombosis and Haemostasis.

  16. Determination of synthetic ferric chelates used as fertilizers by liquid chromatography-electrospray/mass spectrometry in agricultural matrices.

    PubMed

    Alvarez-Fernández, Ana; Orera, Irene; Abadía, Javier; Abadía, Anunciación

    2007-01-01

    A high-performance liquid chromatography-electrospray ionization/mass spectrometry (time of flight) method has been developed for the simultaneous determination of synthetic Fe(III)-chelates used as fertilizers. Analytes included the seven major Fe(III)-chelates used in agriculture, Fe(III)-EDTA, Fe(III)-DTPA, Fe(III)-HEDTA, Fe(III)-CDTA, Fe(III)-o,oEDDHA, Fe(III)-o,pEDDHA, and Fe(III)-EDDHMA, and the method was validated using isotope labeled (57)Fe(III)-chelates as internal standards. Calibration curves had R values in the range 0.9962-0.9997. Limits of detection and quantification were in the ranges 3-164 and 14-945 pmol, respectively. Analyte concentrations could be determined between the limits of quantification and 25 muM (racemic and meso Fe(III)-o,oEDDHA and Fe(III)-EDDHMA) or 50 muM (Fe(III)-EDTA, Fe(III)-HEDTA, Fe(III)-DTPA, Fe(III)-CDTA and Fe(III)-o,pEDDHA). The average intraday repeatability values were approximately 0.5 and 5% for retention time and peak area, respectively, whereas the interday repeatability values were approximately 0.7 and 8% for retention time and peak area, respectively. The method was validated using four different agricultural matrices, including nutrient solution, irrigation water, soil solution, and plant xylem exudates, spiked with Fe(III)-chelate standards and their stable isotope-labeled corresponding chelates. Analyte recoveries found were in the ranges 92-101% (nutrient solution), 89-102% (irrigation water), 82-100% (soil solution), and 70-111% (plant xylem exudates). Recoveries depended on the analyte, with Fe(III)-EDTA and Fe(III)-DTPA showing the lowest recoveries (average values of 87 and 88%, respectively, for all agricultural matrices used), whereas for other analytes recoveries were between 91 and 101%. The method was also used to determine the real concentrations of Fe(III)-chelates in commercial fertilizers. Furthermore, the method is also capable of resolving two more synthetic Fe(III)-chelates, Fe(III)-EDDHSA and Fe(III)-EDDCHA, whose exact quantification is not currently possible because of lack of commercial standards.

  17. Status of Photovoltaic Calibration and Measurement Standards

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo; Bailey, Sheila; Curtis, Henry; Brinker, David; Jenkins, Phillip; Scheiman, David

    2001-01-01

    The 7th International Workshop on Space Solar Cell Calibration and Measurement was held on September 25-27, 2000 in Girdwood, Alaska. Representatives from eight countries discussed international standards for single and multijunction solar cell measurement and calibration methods, round robin intercomparisons, and irradiation test methods for space solar cells. Progress toward adoption of an ISO standard on single junction cells was made. Agreement was reached to begin work on new standards for multijunction cells and irradiation testing. Progress on present single junction round robin measurements was discussed and future multijunction round robins were planned. The next workshop will be held in Germany in October 2001.

  18. Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations

    NASA Astrophysics Data System (ADS)

    von Martens, Hans-Jürgen

    2010-05-01

    The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s2). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.

  19. A Sensitive and Selective Liquid Chromatography/Tandem Mass Spectrometry Method for Quantitative Analysis of Efavirenz in Human Plasma

    PubMed Central

    Srivastava, Praveen; Moorthy, Ganesh S.; Gross, Robert; Barrett, Jeffrey S.

    2013-01-01

    A selective and a highly sensitive method for the determination of the non-nucleoside reverse transcriptase inhibitor (NNRTI), efavirenz, in human plasma has been developed and fully validated based on high performance liquid chromatography tandem mass spectrometry (LC–MS/MS). Sample preparation involved protein precipitation followed by one to one dilution with water. The analyte, efavirenz was separated by high performance liquid chromatography and detected with tandem mass spectrometry in negative ionization mode with multiple reaction monitoring. Efavirenz and 13C6-efavirenz (Internal Standard), respectively, were detected via the following MRM transitions: m/z 314.20243.90 and m/z 320.20249.90. A gradient program was used to elute the analytes using 0.1% formic acid in water and 0.1% formic acid in acetonitrile as mobile phase solvents, at a flow-rate of 0.3 mL/min. The total run time was 5 min and the retention times for the internal standard (13C6-efavirenz) and efavirenz was approximately 2.6 min. The calibration curves showed linearity (coefficient of regression, r>0.99) over the concentration range of 1.0–2,500 ng/mL. The intraday precision based on the standard deviation of replicates of lower limit of quantification (LLOQ) was 9.24% and for quality control (QC) samples ranged from 2.41% to 6.42% and with accuracy from 112% and 100–111% for LLOQ and QC samples. The inter day precision was 12.3% and 3.03–9.18% for LLOQ and quality controls samples, and the accuracy was 108% and 95.2–108% for LLOQ and QC samples. Stability studies showed that efavirenz was stable during the expected conditions for sample preparation and storage. The lower limit of quantification for efavirenz was 1 ng/mL. The analytical method showed excellent sensitivity, precision, and accuracy. This method is robust and is being successfully applied for therapeutic drug monitoring and pharmacokinetic studies in HIV-infected patients. PMID:23755102

  20. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification.

  1. Uncertainty quantification for constitutive model calibration of brain tissue.

    PubMed

    Brewick, Patrick T; Teferra, Kirubel

    2018-05-31

    The results of a study comparing model calibration techniques for Ogden's constitutive model that describes the hyperelastic behavior of brain tissue are presented. One and two-term Ogden models are fit to two different sets of stress-strain experimental data for brain tissue using both least squares optimization and Bayesian estimation. For the Bayesian estimation, the joint posterior distribution of the constitutive parameters is calculated by employing Hamiltonian Monte Carlo (HMC) sampling, a type of Markov Chain Monte Carlo method. The HMC method is enriched in this work to intrinsically enforce the Drucker stability criterion by formulating a nonlinear parameter constraint function, which ensures the constitutive model produces physically meaningful results. Through application of the nested sampling technique, 95% confidence bounds on the constitutive model parameters are identified, and these bounds are then propagated through the constitutive model to produce the resultant bounds on the stress-strain response. The behavior of the model calibration procedures and the effect of the characteristics of the experimental data are extensively evaluated. It is demonstrated that increasing model complexity (i.e., adding an additional term in the Ogden model) improves the accuracy of the best-fit set of parameters while also increasing the uncertainty via the widening of the confidence bounds of the calibrated parameters. Despite some similarity between the two data sets, the resulting distributions are noticeably different, highlighting the sensitivity of the calibration procedures to the characteristics of the data. For example, the amount of uncertainty reported on the experimental data plays an essential role in how data points are weighted during the calibration, and this significantly affects how the parameters are calibrated when combining experimental data sets from disparate sources. Published by Elsevier Ltd.

  2. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    NASA Technical Reports Server (NTRS)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  3. Calibrant-Free Analyte Quantitation via a Variable Velocity Flow Cell.

    PubMed

    Beck, Jason G; Skuratovsky, Aleksander; Granger, Michael C; Porter, Marc D

    2017-01-17

    In this paper, we describe a novel method for analyte quantitation that does not rely on calibrants, internal standards, or calibration curves but, rather, leverages the relationship between disparate and predictable surface-directed analyte flux to an array of sensing addresses and a measured resultant signal. To reduce this concept to practice, we fabricated two flow cells such that the mean linear fluid velocity, U, was varied systematically over an array of electrodes positioned along the flow axis. This resulted in a predictable variation of the address-directed flux of a redox analyte, ferrocenedimethanol (FDM). The resultant limiting currents measured at a series of these electrodes, and accurately described by a convective-diffusive transport model, provided a means to calculate an "unknown" concentration without the use of calibrants, internal standards, or a calibration curve. Furthermore, the experiment and concentration calculation only takes minutes to perform. Deviation in calculated FDM concentrations from true values was minimized to less than 0.5% when empirically derived values of U were employed.

  4. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    USGS Publications Warehouse

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  5. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  6. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    NASA Astrophysics Data System (ADS)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.

  7. Auto-calibrated scanning-angle prism-type total internal reflection microscopy for nanometer-precision axial position determination and optional variable-illumination-depth pseudo total internal reflection microscopy

    DOEpatents

    Fang, Ning; Sun, Wei

    2015-04-21

    A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.

  8. Nondestructive quantification of the soluble-solids content and the available acidity of apples by Fourier-transform near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ying, Yibin; Liu, Yande; Tao, Yang

    2005-09-01

    This research evaluated the feasibility of using Fourier-transform near-infrared (FT-NIR) spectroscopy to quantify the soluble-solids content (SSC) and the available acidity (VA) in intact apples. Partial least-squares calibration models, obtained from several preprocessing techniques (smoothing, derivative, etc.) in several wave-number ranges were compared. The best models were obtained with the high coefficient determination (r) 0.940 for the SSC and a moderate r of 0.801 for the VA, root-mean-square errors of prediction of 0.272% and 0.053%, and root-mean-square errors of calibration of 0.261% and 0.046%, respectively. The results indicate that the FT-NIR spectroscopy yields good predictions of the SSC and also showed the feasibility of using it to predict the VA of apples.

  9. Efficient quantification of water content in edible oils by headspace gas chromatography with vapour phase calibration.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-06-01

    An automated and accurate headspace gas chromatographic (HS-GC) technique was investigated for rapidly quantifying water content in edible oils. In this method, multiple headspace extraction (MHE) procedures were used to analyse the integrated water content from the edible oil sample. A simple vapour phase calibration technique with an external vapour standard was used to calibrate both the water content in the gas phase and the total weight of water in edible oil sample. After that the water in edible oils can be quantified. The data showed that the relative standard deviation of the present HS-GC method in the precision test was less than 1.13%, the relative differences between the new method and a reference method (i.e. the oven-drying method) were no more than 1.62%. The present HS-GC method is automated, accurate, efficient, and can be a reliable tool for quantifying water content in edible oil related products and research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Peroxy Radical Measurements during the IRRONIC Field Project by C2H6 - NO Chemical Amplification

    NASA Astrophysics Data System (ADS)

    Wood, E. C. D.; Kundu, S.; Deming, B.; Lew, M.; Stevens, P. S.; Sklaveniti, S.; Dusanter, S.

    2015-12-01

    We present measurements of total peroxy radicals (HO2 + RO2) during the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) field project in Bloomington, Indiana during July 2015. Peroxy radicals were measured by chemical amplification using ethane and nitric oxide in dual PFA reaction chambers, and the amplification product NO2 was quantified by cavity attenuated phase shift spectroscopy. On sunny days mid-day peroxy radical mixing ratios were typically between 20 and 70 ppt and were well correlated with "HO2*" measured by the Indiana University Laser-Induced Fluorescence with Fluorescence Assay by Gas Expansion (IU-FAGE) instrument. The ratio of total peroxy radicals (UMass) to the IU-FAGE HO2* measurements was greater than two. We also describe results from an informal intercomparison of the two instruments' calibration sources, which are based on acetone photolysis (UMass) and water photolysis (IU). In addition to sampling the IU calibration source in "amplification" mode, the UMass instrument also separately quantified the HO2 mixing ratio in the IU calibration gas by reaction with excess NO and subsequent quantification of the NO2 produced.

  11. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals

    NASA Astrophysics Data System (ADS)

    Bancelin, Stéphane; Aimé, Carole; Gusachenko, Ivan; Kowalczuk, Laura; Latour, Gaël; Coradin, Thibaud; Schanne-Klein, Marie-Claire

    2014-09-01

    The quantification of collagen fibril size is a major issue for the investigation of pathological disorders associated with structural defects of the extracellular matrix. Second-harmonic generation microscopy is a powerful technique to characterize the macromolecular organization of collagen in unstained biological tissues. Nevertheless, due to the complex coherent building of this nonlinear optical signal, it has never been used to measure fibril diameter so far. Here we report absolute measurements of second-harmonic signals from isolated fibrils down to 30 nm diameter, via implementation of correlative second-harmonic-electron microscopy. Moreover, using analytical and numerical calculations, we demonstrate that the high sensitivity of this technique originates from the parallel alignment of collagen triple helices within fibrils and the subsequent constructive interferences of second-harmonic radiations. Finally, we use these absolute measurements as a calibration for ex vivo quantification of fibril diameter in the Descemet’s membrane of a diabetic rat cornea.

  12. Direct Quantification of Carotenoids in Low Fat Baby Foods Via Laser Photoacoustics and Colorimetric Index *

    NASA Astrophysics Data System (ADS)

    Dóka, O.; Ajtony, Zs.; Bicanic, D.; Valinger, D.; Végvári, Gy.

    2014-12-01

    Carotenoids are important antioxidants found in various foods including those for nutrition of infants. In this investigation, the total carotenoid content (TCC) of nine different commercially available baby foods was quantified using colorimetric index * obtained via reflectance colorimetry (RC) and by laser photoacoustic spectroscopy (LPAS) at 473 nm. The latter requires a minimum of sample preparation and only a one time calibration step which enables practically direct quantification of TCC. Results were verified versus UV-Vis spectrophotometry (SP) as the reference technique. It was shown that RC and LPAS (at 473 nm) provide satisfactory results for *, = 0.9925 and = 0.9972, respectively. Other color indices do not show a correlation with TCC. When determining the TCC in baby foods containing tomatoes, it is necessary to select a different analytical wavelength to compensate for the effect of lycopene's presence in the test samples.

  13. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics

    PubMed Central

    2012-01-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope dilution (SID) is increasingly becoming a widely accepted assay for the quantification of proteins and peptides. These assays have shown great promise in relatively high throughput verification of candidate biomarkers. While the use of MRM-MS assays is well established in the small molecule realm, their introduction and use in proteomics is relatively recent. As such, statistical and computational methods for the analysis of MRM-MS data from proteins and peptides are still being developed. Based on our extensive experience with analyzing a wide range of SID-MRM-MS data, we set forth a methodology for analysis that encompasses significant aspects ranging from data quality assessment, assay characterization including calibration curves, limits of detection (LOD) and quantification (LOQ), and measurement of intra- and interlaboratory precision. We draw upon publicly available seminal datasets to illustrate our methods and algorithms. PMID:23176545

  14. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics.

    PubMed

    Mani, D R; Abbatiello, Susan E; Carr, Steven A

    2012-01-01

    Multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope dilution (SID) is increasingly becoming a widely accepted assay for the quantification of proteins and peptides. These assays have shown great promise in relatively high throughput verification of candidate biomarkers. While the use of MRM-MS assays is well established in the small molecule realm, their introduction and use in proteomics is relatively recent. As such, statistical and computational methods for the analysis of MRM-MS data from proteins and peptides are still being developed. Based on our extensive experience with analyzing a wide range of SID-MRM-MS data, we set forth a methodology for analysis that encompasses significant aspects ranging from data quality assessment, assay characterization including calibration curves, limits of detection (LOD) and quantification (LOQ), and measurement of intra- and interlaboratory precision. We draw upon publicly available seminal datasets to illustrate our methods and algorithms.

  15. Monitoring of chlorsulfuron in biological fluids and water samples by molecular fluorescence using rhodamine B as fluorophore.

    PubMed

    Alesso, Magdalena; Escudero, Luis A; Talio, María Carolina; Fernández, Liliana P

    2016-11-01

    A new simple methodology is proposed for chlorsufuron (CS) traces quantification based upon enhancement of rhodamine B (RhB) fluorescent signal. Experimental variables that influence fluorimetric sensitivity have been studied and optimized. The zeroth order regression calibration was linear from 0.866 to 35.800µgL(-1) CS, with a correlation coefficient of 0.99. At optimal experimental conditions, a limit of detection of 0.259µgL(-1) and a limit of quantification of 0.866µgL(-1) were obtained. The method showed good sensitivity and adequate selectivity and was applied to the determination of trace amounts of CS in plasma, serum and water samples with satisfactory results analyzed by ANOVA test. The proposed methodology represents an alternative to traditional chromatographic techniques for CS monitoring in complex samples, using an accessible instrument in control laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ultrafast gas chromatography method with direct injection for the quantitative determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline.

    PubMed

    Miranda, Nahieh Toscano; Sequinel, Rodrigo; Hatanaka, Rafael Rodrigues; de Oliveira, José Eduardo; Flumignan, Danilo Luiz

    2017-04-01

    Benzene, toluene, ethylbenzene, and xylenes are some of the most hazardous constituents found in commercial gasoline samples; therefore, these components must be monitored to avoid toxicological problems. We propose a new routine method of ultrafast gas chromatography coupled to flame ionization detection for the direct determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline. This method is based on external standard calibration to quantify each compound, including the validation step of the study of linearity, detection and quantification limits, precision, and accuracy. The time of analysis was less than 3.2 min, with quantitative statements regarding the separation and quantification of all compounds in commercial gasoline samples. Ultrafast gas chromatography is a promising alternative method to official analytical techniques. Government laboratories could consider using this method for quality control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  18. Characterization and quantification of anthocyanins in selected artichoke (Cynara scolymus L.) cultivars by HPLC-DAD-ESI-MSn.

    PubMed

    Schütz, Katrin; Persike, Markus; Carle, Reinhold; Schieber, Andreas

    2006-04-01

    The anthocyanin pattern of artichoke heads (Cynara scolymus L.) has been investigated by high-performance liquid chromatography-electrospray ionization mass spectrometry. For this purpose a suitable extraction and liquid chromatographic method was developed. Besides the main anthocyanins-cyanidin 3,5-diglucoside, cyanidin 3-glucoside, cyanidin 3,5-malonyldiglucoside, cyanidin 3-(3''-malonyl)glucoside, and cyanidin 3-(6''-malonyl)glucoside-several minor compounds were identified. Among these, two peonidin derivatives and one delphinidin derivative were characterized on the basis of their fragmentation patterns. To the best of our knowledge this is the first report on anthocyanins in artichoke heads consisting of aglycones other than those of cyanidin. Quantification of individual compounds was performed by external calibration. Cyanidin 3-(6''-malonyl)glucoside was found to be the major anthocyanin in all the samples analyzed. Total anthocyanin content ranged from 8.4 to 1,705.4 mg kg(-1) dry mass.

  19. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam.

    PubMed

    Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K

    2012-04-07

    Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. II. Methods of detection and quantification and overall long-term performance.

    PubMed

    Mengerink, Y; Peters, R; Kerkhoff, M; Hellenbrand, J; Omloo, H; Andrien, J; Vestjens, M; van der Wal, S

    2000-05-05

    By separating the first six linear and cyclic oligomers of polyamide-6 on a reversed-phase high-performance liquid chromatographic system after sandwich injection, quantitative determination of these oligomers becomes feasible. Low-wavelength UV detection of the different oligomers and selective post-column reaction detection of the linear oligomers with o-phthalic dicarboxaldehyde (OPA) and 3-mercaptopropionic acid (3-MPA) are discussed. A general methodology for quantification of oligomers in polymers was developed. It is demonstrated that the empirically determined group-equivalent absorption coefficients and quench factors are a convenient way of quantifying linear and cyclic oligomers of nylon-6. The overall long-term performance of the method was studied by monitoring a reference sample and the calibration factors of the linear and cyclic oligomers.

  1. Covalent functionalization of single-walled carbon nanotubes with polytyrosine: Characterization and analytical applications for the sensitive quantification of polyphenols.

    PubMed

    Eguílaz, Marcos; Gutiérrez, Alejandro; Gutierrez, Fabiana; González-Domínguez, Jose Miguel; Ansón-Casaos, Alejandro; Hernández-Ferrer, Javier; Ferreyra, Nancy F; Martínez, María T; Rivas, Gustavo

    2016-02-25

    This work reports the synthesis and characterization of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr); the critical analysis of the experimental conditions to obtain the efficient dispersion of the modified carbon nanotubes; and the analytical performance of glassy carbon electrodes (GCE) modified with the dispersion (GCE/SWCNT-Polytyr) for the highly sensitive quantification of polyphenols. Under the optimal conditions, the calibration plot for the amperometric response of gallic acid (GA) shows a linear range between 5.0 × 10(-7) and 1.7 × 10(-4) M, with a sensitivity of (518 ± 5) m AM(-1) cm(-2), and a detection limit of 8.8 nM. The proposed sensor was successfully used for the determination of total polyphenolic content in tea extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. On a PLIF quantification methodology in a nonlinear dye response regime

    NASA Astrophysics Data System (ADS)

    Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.

    2016-06-01

    A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.

  3. Quantitative bioanalysis of strontium in human serum by inductively coupled plasma-mass spectrometry

    PubMed Central

    Somarouthu, Srikanth; Ohh, Jayoung; Shaked, Jonathan; Cunico, Robert L; Yakatan, Gerald; Corritori, Suzana; Tami, Joe; Foehr, Erik D

    2015-01-01

    Aim: A bioanalytical method using inductively-coupled plasma-mass spectrometry to measure endogenous levels of strontium in human serum was developed and validated. Results & methodology: This article details the experimental procedures used for the method development and validation thus demonstrating the application of the inductively-coupled plasma-mass spectrometry method for quantification of strontium in human serum samples. The assay was validated for specificity, linearity, accuracy, precision, recovery and stability. Significant endogenous levels of strontium are present in human serum samples ranging from 19 to 96 ng/ml with a mean of 34.6 ± 15.2 ng/ml (SD). Discussion & conclusion: Calibration procedures and sample pretreatment were simplified for high throughput analysis. The validation demonstrates that the method was sensitive, selective for quantification of strontium (88Sr) and is suitable for routine clinical testing of strontium in human serum samples. PMID:28031925

  4. Calibrated FMRI.

    PubMed

    Hoge, Richard D

    2012-08-15

    Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Phantom-based standardization of CT angiography images for spot sign detection.

    PubMed

    Morotti, Andrea; Romero, Javier M; Jessel, Michael J; Hernandez, Andrew M; Vashkevich, Anastasia; Schwab, Kristin; Burns, Joseph D; Shah, Qaisar A; Bergman, Thomas A; Suri, M Fareed K; Ezzeddine, Mustapha; Kirmani, Jawad F; Agarwal, Sachin; Shapshak, Angela Hays; Messe, Steven R; Venkatasubramanian, Chitra; Palmieri, Katherine; Lewandowski, Christopher; Chang, Tiffany R; Chang, Ira; Rose, David Z; Smith, Wade; Hsu, Chung Y; Liu, Chun-Lin; Lien, Li-Ming; Hsiao, Chen-Yu; Iwama, Toru; Afzal, Mohammad Rauf; Cassarly, Christy; Greenberg, Steven M; Martin, Renee' Hebert; Qureshi, Adnan I; Rosand, Jonathan; Boone, John M; Goldstein, Joshua N

    2017-09-01

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p < 0.001). All spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion.

  6. Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration.

    PubMed

    Inácio, Maria Raquel Cavalcanti; de Lima, Kássio Michell Gomes; Lopes, Valquiria Garcia; Pessoa, José Dalton Cruz; de Almeida Teixeira, Gustavo Henrique

    2013-02-15

    The aim of this study was to evaluate near-infrared reflectance spectroscopy (NIR), and multivariate calibration potential as a rapid method to determinate anthocyanin content in intact fruit (açaí and palmitero-juçara). Several multivariate calibration techniques, including partial least squares (PLS), interval partial least squares, genetic algorithm, successive projections algorithm, and net analyte signal were compared and validated by establishing figures of merit. Suitable results were obtained with the PLS model (four latent variables and 5-point smoothing) with a detection limit of 6.2 g kg(-1), limit of quantification of 20.7 g kg(-1), accuracy estimated as root mean square error of prediction of 4.8 g kg(-1), mean selectivity of 0.79 g kg(-1), sensitivity of 5.04×10(-3) g kg(-1), precision of 27.8 g kg(-1), and signal-to-noise ratio of 1.04×10(-3) g kg(-1). These results suggest NIR spectroscopy and multivariate calibration can be effectively used to determine anthocyanin content in intact açaí and palmitero-juçara fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Identification and quantification of ciprofloxacin in urine through excitation-emission fluorescence and three-way PARAFAC calibration.

    PubMed

    Ortiz, M C; Sarabia, L A; Sánchez, M S; Giménez, D

    2009-05-29

    Due to the second-order advantage, calibration models based on parallel factor analysis (PARAFAC) decomposition of three-way data are becoming important in routine analysis. This work studies the possibility of fitting PARAFAC models with excitation-emission fluorescence data for the determination of ciprofloxacin in human urine. The finally chosen PARAFAC decomposition is built with calibration samples spiked with ciprofloxacin, and with other series of urine samples that were also spiked. One of the series of samples has also another drug because the patient was taking mesalazine. The mesalazine is a fluorescent substance that interferes with the ciprofloxacin. Finally, the procedure is applied to samples of a patient who was being treated with ciprofloxacin. The trueness has been established by the regression "predicted concentration versus added concentration". The recovery factor is 88.3% for ciprofloxacin in urine, and the mean of the absolute value of the relative errors is 4.2% for 46 test samples. The multivariate sensitivity of the fit calibration model is evaluated by a regression between the loadings of PARAFAC linked to ciprofloxacin versus the true concentration in spiked samples. The multivariate capability of discrimination is near 8 microg L(-1) when the probabilities of false non-compliance and false compliance are fixed at 5%.

  8. Synthetic signal injection using inductive coupling

    PubMed Central

    Marro, Kenneth I.; Lee, Donghoon; Shankland, Eric G.; Mathis, Clinton M.; Hayes, Cecil E.; Amara, Catherine E.; Kushmerick, Martin J.

    2009-01-01

    Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content. PMID:18595750

  9. Synthetic signal injection using inductive coupling.

    PubMed

    Marro, Kenneth I; Lee, Donghoon; Shankland, Eric G; Mathis, Clinton M; Hayes, Cecil E; Amara, Catherine E; Kushmerick, Martin J

    2008-09-01

    Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content.

  10. Synthetic signal injection using inductive coupling

    NASA Astrophysics Data System (ADS)

    Marro, Kenneth I.; Lee, Donghoon; Shankland, Eric G.; Mathis, Clinton M.; Hayes, Cecil E.; Amara, Catherine E.; Kushmerick, Martin J.

    2008-09-01

    Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content.

  11. Model calibration criteria for estimating ecological flow characteristics

    USGS Publications Warehouse

    Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William J.; Seibert, Jan; Breuer, Lutz; Kraft, Philipp

    2016-01-01

    Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.

  12. Hierarchical calibration and validation of computational fluid dynamics models for solid sorbent-based carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Zhijie; Pan, Wenxiao

    2016-01-01

    To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesianmore » calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.« less

  13. A reliable and rapid tool for plasma quantification of 18 psychotropic drugs by ESI tandem mass spectrometry.

    PubMed

    Vecchione, Gennaro; Casetta, Bruno; Chiapparino, Antonella; Bertolino, Alessandro; Tomaiuolo, Michela; Cappucci, Filomena; Gatta, Raffaella; Margaglione, Maurizio; Grandone, Elvira

    2012-01-01

    A simple liquid chromatographic tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous analysis of 17 basic and one acid psychotropic drugs in human plasma. The method relies on a protein precipitation step for sample preparation and offers high sensitivity, wide linearity without interferences from endogenous matrix components. Chromatography was run on a reversed-phase column with an acetonitrile-H₂O mixture. The quantification of target compounds was performed in multiple reaction monitoring (MRM) and by switching the ionization polarity within the analytical run. A further sensitivity increase was obtained by implementing the functionality "scheduled multiple reaction monitoring" (sMRM) offered by the recent version of the software package managing the instrument. The overall injection interval was less than 5.5 min. Regression coefficients of the calibration curves and limits of quantification (LOQ) showed a good coverage of over-therapeutic, therapeutic and sub-therapeutic ranges. Recovery rates, measured as percentage of recovery of spiked plasma samples, were ≥ 94%. Precision and accuracy data have been satisfactory for a therapeutic drug monitoring (TDM) service as for managing plasma samples from patients receiving psycho-pharmacological treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Rapid quantification of resveratrol in mouse plasma by ultra high pressure liquid chromatography (UPLC) coupled to tandem mass spectrometry.

    PubMed

    Castillo-Pichardo, Linette; Dharmawardhane, Suranganie; Rodríguez-Orengo, José F

    2014-12-01

    The objective of this study was to develop a rapid and sensitive method for the quantification of resveratrol, a polyphenolic compound with multiple health beneficial effects, in mouse plasma. We used reversed-phase ultra high pressure-liquid chromatography with tandem mass spectrometry detection for the determination of resveratrol levels in mouse plasma. An Agilent Zorbax Eclipse Plus C18 column (2.1 mm x 50 mm, 1.8 μm) was used as the stationary phase. The mobile phase consisted of a gradient formed using 1 mM ammonium fluoride and methanol. Using this improved method, we obtained a retention time of 2.2 min and a total run time of 5 min, for resveratrol. The calibration curve for resveratrol showed a linear range from 0.5 to 100 ng/mL. The average coefficient of variation was 6% for interday variation and 4% for intraday variation. The recovery for resveratrol in mouse plasma was 85 ± 10% (mean ± standard deviation). The method presented herein allows a rapid and very sensitive quantification of resveratrol in mouse plasma at concentrations as low as 500 ppt.

  15. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation.

    PubMed

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-03-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.

  16. A simple and selective method for the measurement of azadirachtin and related azadirachtoid levels in fruits and vegetables using liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Sarais, Giorgia; Caboni, Pierluigi; Sarritzu, Erika; Russo, Mariateresa; Cabras, Paolo

    2008-05-14

    Neem-based insecticides containing azadirachtin and related azadirachtoids are widely used in agriculture. Here, we report an analytical method for the rapid and accurate quantification of the insecticide azadirachtin A and B and other azadirachtoids such as salannin, nimbin, and their deacetylated analogues on tomatoes and peaches. Azadirachtoids were extracted from fruits and vegetables with acetonitrile. Using high-performance liquid chromatography/electrospray ionization tandem mass spectrometer, azadirachtoids were selectively detected monitoring the multiple reaction transitions of sodium adduct precursor ions. For azadirachtin A, calibration was linear over a working range of 1-1000 microg/L with r > 0.996. The limit of detection and limit of quantification for azadirachtin A were 0.4 and 0.8 microg/kg, respectively. The presence of interfering compounds in the peach and tomato extracts was evaluated and found to be minimal. Because of the linear behavior, it was concluded that the multiple reaction transitions of sodium adduct ions can be used for analytical purposes, that is, for the identification and quantification of azadirachtin A and B and related azadirachtoids in fruit and vegetable extracts at trace levels.

  17. Mixture quantification using PLS in plastic scintillation measurements.

    PubMed

    Bagán, H; Tarancón, A; Rauret, G; García, J F

    2011-06-01

    This article reports the capability of plastic scintillation (PS) combined with multivariate calibration (Partial least squares; PLS) to detect and quantify alpha and beta emitters in mixtures. While several attempts have been made with this purpose in mind using liquid scintillation (LS), no attempt was done using PS that has the great advantage of not producing mixed waste after the measurements are performed. Following this objective, ternary mixtures of alpha and beta emitters ((241)Am, (137)Cs and (90)Sr/(90)Y) have been quantified. Procedure optimisation has evaluated the use of the net spectra or the sample spectra, the inclusion of different spectra obtained at different values of the Pulse Shape Analysis parameter and the application of the PLS1 or PLS2 algorithms. The conclusions show that the use of PS+PLS2 applied to the sample spectra, without the use of any pulse shape discrimination, allows quantification of the activities with relative errors less than 10% in most of the cases. This procedure not only allows quantification of mixtures but also reduces measurement time (no blanks are required) and the application of this procedure does not require detectors that include the pulse shape analysis parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    PubMed Central

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. PMID:29494545

  19. Fluorescence dye tagging scheme for mercury quantification and speciation

    DOEpatents

    Jiao, Hong; Catterall, Hannah

    2015-09-22

    A fluorescent dye or fluorophore capable of forming complexes with mercury comprises 6,8-difluoro-7-hydroxy-2-oxo-2H-chromene-3-carboxylate amide, wherein the amide is formed by reacting the succinimidyl ester (Pacific Blue.TM.) with an amino acid containing a thiol group, such as cysteine or glutathione. Mercury complexes of the fluorophore fluoresce when excited by a UV or violet laser diode, and the detected intensity can be calibrated to quantify the concentration of mercury in a sample reacted with the fluorophore.

  20. Development of landsat-5 thematic mapper internal calibrator gain and offset table

    USGS Publications Warehouse

    Barsi, J.A.; Chander, G.; Micijevic, E.; Markham, B.L.; Haque, Md. O.

    2008-01-01

    The National Landsat Archive Production System (NLAPS) has been the primary processing system for Landsat data since U.S. Geological Survey (USGS) Earth Resources Observation and Science Center (EROS) started archiving Landsat data. NLAPS converts raw satellite data into radiometrically and geometrically calibrated products. NLAPS has historically used the Internal Calibrator (IC) to calibrate the reflective bands of the Landsat-5 Thematic Mapper (TM), even though the lamps in the IC were less stable than the TM detectors, as evidenced by vicarious calibration results. In 2003, a major effort was made to model the actual TM gain change and to update NLAPS to use this model rather than the unstable IC data for radiometric calibration. The model coefficients were revised in 2007 to reflect greater understanding of the changes in the TM responsivity. While the calibration updates are important to users with recently processed data, the processing system no longer calculates the original IC gain or offset. For specific applications, it is useful to have a record of the gain and offset actually applied to the older data. Thus, the NLAPS calibration database was used to generate estimated daily values for the radiometric gain and offset that might have been applied to TM data. This paper discusses the need for and generation of the NLAPSIC gain and offset tables. A companion paper covers the application of and errors associated with using these tables.

Top