Science.gov

Sample records for international ash utilization

  1. Proceedings: Eighth international ash utilization symposium: Volume 1

    SciTech Connect

    Not Available

    1987-10-01

    The two-volume publication contains 65 papers, including six abstracts, presented at ten sessions during the October 1987 event. Some topics covered basic research themes, such as: new studies of fly ash, fly ash concrete, and important properties and construction uses; updated ash sampling and testing procedures; advances in fluidized bed combustion (FBC), flue gas desulfurization (FGD), and other sulfur dioxide control products; and latest pozzolan programs of the Cement and Concrete Reference Laboratory (CCRL) of the National Bureau of Standards. Other topics focused on applied coal ash technology, including: airport, highway and dam construction; structural fills; flowable fill; roller compacted concrete;lightweight building products; recovery of metals from coal ash; fillers for paints and plastics; and new coal ash uses in agriculture and reclamation.

  2. Proceedings: Eighth international ash utilization symposium: Volume 2

    SciTech Connect

    Not Available

    1987-10-01

    The two-volume publication contains 65 papers, including six abstracts, presented at ten sessions during the October 1987 event. Some topics covered basic research themes, such as new studies of fly ash, fly ash concrete, and important properties and construction uses; updated ash sampling and testing procedures; advances in fluidized bed combustion (FBC), flue gas desulfurization (FGD), and other sulfur dioxide control products; and latest pozzolan programs of the Cement and Concrete Reference Laboratory (CCRL) of the National Bureau of Standards. Other topics focused on applied coal ash technology including: airport, highway and dam construction; structural fills; flowable fill; roller compacted concrete; lightweight building products; recovery of metals from coal ash; fillers for paints and plastics; and new coal ash uses in agriculture and reclamation.

  3. Coal ash utilization in India

    SciTech Connect

    Michalski, S.R.; Brendel, G.F.; Gray, R.E.

    1998-12-31

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  4. Fly ash quality and utilization

    SciTech Connect

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  5. Eco-friendly fly ash utilization: potential for land application

    SciTech Connect

    Malik, A.; Thapliyal, A.

    2009-07-01

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

  6. Environmental assessment and utilization CFB ash

    SciTech Connect

    Conn, R.

    1997-12-31

    Landfill disposal has generally been accepted as the most common option for ash management in CFB power plants. However, the cost of ash disposal continues to increase due to a reduction in landfill capacity and more stringent environmental regulations. As a result, beneficial uses of CFB ashes (versus landfilling) are being investigated in order to provide a more cost effective ash management program. The chemical and physical characteristics of CFB by-products will influence both their environmental impact and potential utilization options. Compared to conventional pulverized coal boiler ashes, CFB ashes generally have different chemical properties which may limit their utilization for production of Portland cement. Other diverse utilization options have been identified for CFB residues which include: agricultural applications, structural fill, and waste stabilization. Most of these applications have to meet specifications by following certain test methods. The exact utilization options for CFB by-products will depend primarily on the type of fuel being fired, and to a lesser extent, the type of sorbent utilized for sulfur capture. Based on laboratory investigation of ash characteristics, utilization options were concluded for different Foster Wheeler commercial boilers throughout the US and abroad. Based on the results of this study, it was demonstrated that most CFB ashes could be utilized for one or more of the purposes noted above.

  7. International Database of Volcanic Ash Impacts

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.

    2015-12-01

    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  8. International utilization and operations

    NASA Technical Reports Server (NTRS)

    Goldberg, Stanley R.

    1989-01-01

    The international framework of the Space Station Freedom Program is described. The discussion covers the U.S. space policy, international agreements, international Station elements, overall program management structure, and utilization and operations management. Consideration is also given to Freedom's user community, Freedom's crew, pressurized payload and attached payload accommodations, utilization and operations planning, user integration, and user operations.

  9. Proceedings: Tenth international ash use symposium

    SciTech Connect

    Not Available

    1993-01-01

    The objective of the 1993 International Coal Ash Use Symposium, the tenth in a series since 1967, is to publicize innovations in coal ash technology. These symposia support the mission of the American Coal Ash Association (ACAA) to promote coal ash use in a variety of markets through technology transfer and commercialization. The two-volume publication contains 82 papers arranged in fourteen sections which include: waste solidification and stabilization; aggregate; agriculture; structural fill; mine reclamation; aquatic uses; environmental considerations; concrete and flowable fill; base stabilization; clean coal by-products; international and regional perspectives; research and development; fillers in plastic and aluminum; and manufactured products--marketable gypsum, masonry blocks, cast in-situ and precast houses, bricks, mineral wool fibers and ready-mixed concrete. The 82 papers were submitted to ACAA by authors from sixteen countries including. The symposium, with 45 percent of the papers from locations outside the USA, represents a truly international interest in the development of uses for coal ash. Individual reports are processed separately for the data bases.

  10. Utilization of CFB fly ash for construction applications

    SciTech Connect

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  11. Utilization of coal fly ash. Master's thesis

    SciTech Connect

    Openshaw, S.C.

    1992-01-01

    Coal-fired power plants produce approximately 80 million tons of fly ash each year. Efforts to use fly ash have reached only a twenty to thirty percent reutilization rate. A literature review was performed to provide a consensus of the available information regarding fly ash. Fly ash is highly variable depending on the coal source, plant operations, and several other parameters. The various fly ash characteristics are discussed including classifications, physical characteristics, chemical properties and chemical compositions. Although extensive research has been performed on the use of fly ash, very little of this research has monitored any environmental impacts. The environmental concerns addressed include mobilization of toxic elements, biota impact, microbial impact, handling dangers, and pertinent regulations. Finally, the various disposal and reutilization options for fly ash are examined. A recommendation is provided for further research to cover deficiencies found in the literature.

  12. Fundamental Study of Low NOx Combustion Fly Ash Utilization

    SciTech Connect

    E. M. Suubert; I. Kuloats; K. Smith; N. Sabanegh; R.H. Hurt; W. D. Lilly; Y. M. Gao

    1997-05-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over forty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

  13. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    SciTech Connect

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  14. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  15. Tests and specifications pertinent to coal ash utilization

    SciTech Connect

    Manz, O.

    1994-12-31

    Fortunately, in the United States, most of the test methods and specifications for the use of coal ash in cement, concrete, lime, or soil-related products are found in the American Society for Testing and Materials (ASTM) books of standards. Many of the same or slightly different specifications are also found in the American Association of State Highway and Transportation Officials (AASHTO) books of standards, as well as those of the various Departments of Transportation (DOTs). Other specifications for selected uses are found in publications of the American Petroleum Institute (API), the Sulfur Institute, the mineral wool industry, and West Virginia University. It is difficult to keep up with the most recent printed specifications, particularly in ASTM, since the committees meet twice yearly and have many time-consuming ballots. This paper summarizes the critical engineering properties required to assess the utilization applications of coal ash products. For most uses, both physical and chemical limits are specified. There are specifications for blended cement containing fly ash, for sulfate resistance, and for alkali aggregate reaction, also for fly ash for use in concrete, in oil well cement, and in grout. Coal ash is specified for use in ash-lime stabilization, as lightweight aggregate, and for mineral filler, as well as for structural fill and flowable fill. Other uses include sulfur concrete, high flexural strength ceramics, mineral wool, brick, cenospheres, and filler.

  16. ENVIRONMENTAL EVALUATION FOR UTILIZATION OF ASH IN SOIL STABILIZATION

    SciTech Connect

    David J. Hassett; Loreal V. Heebink

    2001-08-01

    The Minnesota Pollution Control Agency (MPCA) approved the use of coal ash in soil stabilization, indicating that environmental data needed to be generated. The overall project goal is to evaluate the potential for release of constituents into the environment from ash used in soil stabilization projects. Supporting objectives are: (1) To ensure sample integrity through implementation of a sample collection, preservation, and storage protocol to avoid analyte concentration or loss. (2) To evaluate the potential of each component (ash, soil, water) of the stabilized soil to contribute to environmental release of analytes of interest. (3) To use laboratory leaching methods to evaluate the potential for release of constituents to the environment. (4) To facilitate collection of and to evaluate samples from a field runoff demonstration effort. The results of this study indicated limited mobility of the coal combustion fly ash constituents in laboratory tests and the field runoff samples. The results presented support previous work showing little to negligible impact on water quality. This and past work indicates that soil stabilization is an environmentally beneficial CCB utilization application as encouraged by the U.S. Environmental Protection Agency. This project addressed the regulatory-driven environmental aspect of fly ash use for soil stabilization, but the demonstrated engineering performance and economic advantages also indicate that the use of CCBs in soil stabilization can and should become an accepted engineering option.

  17. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  18. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  19. Ash utilization for elimination of acid mine drainage

    SciTech Connect

    Petzrick, P.

    1997-09-01

    Maryland is surrounded by states whose coal production exceeds its own, namely West Virginia, Pennsylvania, and Virginia. Because of the State`s relatively limited coal production, the distribution of Abandoned Mine Land (AML) funds mandated by law leaves the State at a disadvantage. In order to support maryland`s overall ash utilization program, the State solicits assistance from electric utilities and any other parties who may benefit from the development of a cost-effective technology to seal abandoned underground mines with CCB-based grouts, replacing the conventional use of more costly Portland cement for such applications. The development of these mine sealing techniques can be used to abate Maryland`s AMD discharges, because sealing prevents the exposure of sulfur-bearing minerals in coal seams to oxygen and water, which causes AMD. Ultimately, it is for this reason that Maryland`s overall ash utilization program was developed: to coordinate and encourage the large-scale utilization of CCBs to eliminate AMD in Maryland waters.

  20. Utilization of SRS pond ash in controlled low strength material. Technical report

    SciTech Connect

    Langton, C.A.; Rajendran, N.

    1995-12-01

    Design mixes for Controlled Low Strength Material (CLSM) were developed which incorporate pond ashes (fly ashes) from the A-Area Ash Pile, the old F-Area Ash Basin and the D-Area Ash Basin. CLSM is a pumpable, flowable, excavatable backfill used in a variety of construction applications at SRS. Results indicate that CLSM which meets all of the SRS design specifications for backfill, can be made with the A-, D-, and F-Area pond ashes. Formulations for the design mixes are provided in this report. Use of the pond ashes may result in a cost savings for CLSM used at SRS and will utilize a by-product waste material, thereby decreasing the amount of material requiring disposal.

  1. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  2. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    PubMed

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  3. Utilization of ash from municipal solid waste combustion. Final report, Phase I

    SciTech Connect

    Jones, C.M.; Hartman, R.M.; Kort, D.; Rapues, N.

    1994-09-01

    This ash study investigates several aspects of Municipal Waste Combustion (MWC) ash utilization to develop an alternative to the present disposal practice of landfilling in a lined monofill. Ash was investigated as a daily or final cover for municipal waste in the landfill to prevent erosion and as a road construction aggregate. Samples of eight mixtures of ash and other materials, and one sample of soil were analyzed for chemical constituents. Biological tests on these mixters were conducted, along with erosion tests and sieve analyses. A chemical analysis of each sieve size was conducted. Geotechnical properties of the most promising materials were made. Findings to this point include: all ash samples take have passed the EPA TCLP testing; chemical analysis of bottom and combined ash samples indicate less than expected variability; selected ash mixtures exhibited very low coefficients of hydraulic conductivity; all but one of the ash mixtures exhibited greater erosion resistance than the currently used landfill cover material; MWC combined analysis indicates this is a viable alternative for landfill cover; MWC ash size reactions and chemical analysis show bottom and combined ash to be a viable alternative for road construction.

  4. High-volume fly ash utilization projects in the United States and Canada. Final report

    SciTech Connect

    Patelunas, G.M.

    1986-02-01

    The purpose of this report is to document existing high-volume applications of fly ash. Examples of high-volume projects are: backfills, embankments, fills, landfill cover, pavement base course, soil amendment, subgrade stabilization, grouts and hydraulic fills. Information was solicited from electric utilities, state highway agencies, ash marketers, engineering firms and other organizations in the United States and Canada. Over 270 separate projects that used fly ash in high-volume applications were identified. Class F fly ash was used in 172 projects, and Class C fly ash was used in 108 projects. The most frequent high-volume use of Class F fly ash was for fills, embankments and pavement base courses. These projects are primarily located in the north central and mid-Atlantic states. The most frequent use of Class C fly ash was for subgrade stabilization. Most of these projects are located in the midwestern and southwestern United States. The existence of many different applications of fly ash documented during this project demonstrates that fly ash is a practical high-volume construction material.

  5. Power-plant fly-ash utilization: a chemical processing perspective

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1981-01-01

    The 1976 Resource Conservation and Recovery Act (RCRA) deals with the management of solid and hazardous wastes, and encourages energy and resource recovery. Recent research has indicated that solid wastes from coal combustion, including fly ash, could be classified as hazardous under present EPA definitions. The seriousness of this possibility has been recognized and new rules for coal ash waste disposal are being considered. Ames Laboratory research on fly ash utilization as an alternative to disposal includes extraction of metals from the ash and discovery of uses for the process residues. Recovery of alumina and iron oxides by physical and chemical processing would permit large scale utilization of fly ash and help reduce dependency on imports. One of the processes investigated uses a lime-soda sinter method to form soluble aluminate compounds from mixtures of fly ash, limestone, and soda ash. The aluminates are extracted, treated to remove silicates, and precipitated: the precipitate is calcined to metallurgical grade alumina. The extract residue shows promise as a raw material for the production of Portland cement. Process economics are presented, and the effects of alumina and silica contents of the fly ash, sintering temperatures and time, and sales credits for by-products are discussed.

  6. Advanced research and technology: Direct utilization recovery of minerals from coal fly ash. Fossil energy program

    NASA Astrophysics Data System (ADS)

    Burnet, G.; Murtha, M. J.; Adelman, D. J.

    1980-12-01

    Methods for utilizing coal fly ash through processes for the extraction of alumina and titania, and for the separation and use of an iron-rich fraction are described. Research of the HiChlor process for the extraction of alumina and titania by high temperature chlorination of a fly ash reductant mixture is described. An engineering cost evaluation is presented for a centralized HiChlor processing facility to process the fly ash of several large coal fueled power stations. Investigations for a high temperature lime soda process for extraction of alumina from fly ash included the use of several types of quarry limestones and waste materials to replace the limestone and/or soda ash.

  7. Critical aspects of biomass ashes utilization in soils: Composition, leachability, PAH and PCDD/F.

    PubMed

    Freire, Márcia; Lopes, Helena; Tarelho, Luís A C

    2015-12-01

    Bottom and fly ashes streams collected along a year in several biomass thermal plants were studied. The bulk composition of ashes and other chemical characteristics that may impact soil application showed a high variability depending on the ash stream, combustion technology and ash management practice at the power plants. The acid neutralization capacity (ANC) and metal's availability for leaching at fixed pH 7 and 4 was performed according with EA NEN 7371, as a quick evaluation method to provide information on the long-term behavior of ashes, regarding heavy metals and also plant nutrients release. Also the pH dependence leachability study was performed according to CEN/TS 14429 for predicting the leaching behavior under different scenarios. Leachability profiles were established between pH 3 and 12, allowing to distinguish different solubility control phenomena of toxic heavy metals (Cu, Cr, Mn, Ni, Zn, Pb) as well as other salts (Ca, K, Mg, Na, Cl). The ANC of fly ashes at pH 4 (3.6-9.6 molH(+)/kg) were higher than that observed for the bottom ashes (1.2-2.1 molH(+)/kg). Ashes were also characterized for persistent organic pollutants (POP), such as polycyclic aromatic hydrocarbons (PAH) and paradibenzodioxines and furanes (PCDD/F). Contents were found to be much higher in fly ash than in bottom ash streams. None of the PAH levels did reach the current national limit value of sewage sludge application in soils or the guide value for ash in north European countries. However, PCDD/F contents, which are not regulated, varied from non-detectable levels to high amounts, regardless the level of loss on ignition (LOI) or unburned carbon content in fly ashes. Given the current ash management practices and possible use of blends of bottom and fly ash streams as soil conditioners resembles clear the urgent need to regulate ash utilization in soils, incorporating limit values both for heavy metals, PAH and PCDD/F.

  8. Artificial lightweight aggregates as utilization for future ashes - A case study.

    PubMed

    Sarabèr, Angelo; Overhof, Robert; Green, Terry; Pels, Jan

    2012-01-01

    In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative.

  9. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications

    SciTech Connect

    Lu, X.F.; Amano, R.S.

    2006-12-15

    CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

  10. The Indian perspective of utilizing fly ash in phytoremediation, phytomanagement and biomass production.

    PubMed

    Pandey, Vimal Chandra; Abhilash, P C; Singh, Nandita

    2009-07-01

    Coal-based power generation is a principal source of electricity in India and many other countries. About 15-30% of the total amount of residue generated during coal combustion is fly ash (FA). FA is generally alkaline in nature and contains many toxic metals like Cr, Pb, Hg, As and Cd along with many essential elements like S, B, Ca, Na, Fe, Zn, Mn and P. Dumped FA contaminates the biosphere by mobilization of its fine particles and hazardous metals. Despite the negative environmental impact of FA, coal continues to be a major source of power production in India and therefore FA disposal is a major environmental issue. To overcome this problem, FA dumping sites have been started as a potential resource for biomass production of tree species. Phytoremediation is a strategy that uses plants to degrade, stabilize, and remove contaminants from soils, water and waste FA. Phytomanagement of FA is based on the plants' root systems, high biomass, woody nature, native nature, and resistance to pH, salinity, and toxic metals. Recently Indian researchers mostly from the National Botanical Research Institute have been working on phytoremediation and revegetation of FA dykes, inoculation of bacterial strains for reducing FA stress and biomass production from FA dykes. Many international researchers have worked on reclamation, revegetation and utilization of FA. FA utilization saves resources, mainly land (topsoil), water, coal, limestone and chemical fertilizer. Safe utilization of FA is a major concern around the world and regulatory bodies are enforcing stringent rules for the proper management of FA. This article summarizes various viable avenues in India for FA utilization and environmental management.

  11. Selenium and arsenic speciation in fly ash from full-scale coal-burning utility plants.

    PubMed

    Huggins, Frank E; Senior, Constance L; Chu, Paul; Ladwig, Ken; Huffman, Gerald P

    2007-05-01

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO3(2-)) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO4(3-)) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the postcombustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  12. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  13. International Students' Utilization of Counseling Services

    ERIC Educational Resources Information Center

    Hwang, Bong Joo; Bennett, Robert; Beauchemin, James

    2014-01-01

    Utilization rates of counseling services by international students continue to be low despite the growing presence of this population in American colleges and universities. There are a number of adjustment factors and stressors that can have a detrimental impact on the mental health and well-being of international students, as well as a variety of…

  14. A survey of the technical and regulatory issues concerning unburned carbon on utility fly ash

    SciTech Connect

    Sarkus, T.A.; Renninger, Scott; Ruppel, T.C.

    1998-12-31

    The phenomenon of unburned carbon on/in utility fly ash has become a major imminent problem for the electric utility industry. The deadlines set by the Clean Air Act Amendments of 1990 limiting nitrogen oxides emissions and the Environmental Protection Agency`s regulations implementing the statute are beginning to take effect. This survey discusses the technical and regulatory issues pertaining to the phenomenon and possible courses of action/solutions.

  15. Present status and future initiatives regarding coal ash utilization in the United States

    SciTech Connect

    Blackstock, T.H.; Tyson, S.S.

    1996-11-01

    The American Coal Ash Association, Inc., (ACAA) has represented the coal combustion byproduct (CCB) industry in the US since 1968. ACAA`s mission is to advance the management and use of CCBs in ways that are technically sound, commercially competitive and environmentally safe. ACAA conducts an annual survey of coal-burning electric utilities in the US to determine the quantities of CCBs that are produced and used. In 1994 approximately 80.8 million metric tons (89.0 million short tons) of CCBs were produced in the US in the form of fly ash, bottom ash, boiler slag and flue gas desulfurization (FGD) material. About 25% of the combined production of these CCBs was used, while the remainder was disposed. Quantities for CCB production and use in the US for calendar-year 1994 are summarized. In 1994 fly ash production alone amounted to 49.7 million metric tons (54.8 million short tons), and of that amount approximately 24%, some 11.7 million metric tons (12.9 million short tons), was used. The major applications for fly ash were: cement and concrete products (57.0%); structural fill (9.4%); road base (5.5%); flowable fill (5.0%); waste solidification and stabilization (1.9%); mineral filler applications (1.0%); mining applications (0.7%); and various other applications (19.5%). This information is shown.

  16. Ash chemistry aspects of straw and coal-straw co-firing in utility boilers

    SciTech Connect

    Frandsen, F.J.; Nielsen, H.P.; Hansen, L.A.; Hansen, P.F.B.; Andersen, K.H.

    1998-12-31

    Deposits formed in straw-fired grate-boilers showed significant amounts of KCl (40--80% (w/w)) and KCl-coated Ca-Si-rich particles. CFB co-firing of straw and coal caused deposits in the convective pass containing predominantly K{sub 2}SO{sub 4} (50--60% (w/w)) with small amounts of KCl close to the metal surface. In pulverized coal-straw co-fired boilers, deposits almost free of KCl were found. Most of the potassium in these deposits is derived from K-Al-Si-rich fly ash particles and the rest occurs as K{sub 2}SO{sub 4}. The presence of K-Al-Si-rich fly ash particles indicates that solid residue quality and reuse of fly ash in cement and concrete production rather than deposit formation may be of concern when utilizing straw in pulverized fuel boilers. This paper provides a review of Danish experiences with high-temperature ash deposit formation in the following full-scale utility boilers: Slagelse CHP (31 MWth), Haslev CHP (23 MWth) and Rudkoebing CHP (10.7 MWth), all straw-fired grate-boilers; Grenaa CHP (80 MWth), a coal-straw co-fired Circulating Fluidized Bed (CFB) boiler; and the Midtkraft-Studstrup Power Station, Unit 1 (380 MWth), a coal-straw co-fired PF-boiler.

  17. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    NASA Astrophysics Data System (ADS)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  18. In-situ study of beneficial utilization of coal fly ash in reactive mine tailings.

    PubMed

    Lee, Joon Kyu; Shang, Julie Q; Wang, Hongliu; Zhao, Cheng

    2014-03-15

    Oxidation of reactive mine tailings and subsequent generation of acid mine drainage (AMD) have been long recognized as the largest environmental concern for the mining industry. Laboratory studies on utilization of coal fly ash in management of reactive mine tailings have shown reducing water and oxygen infiltration into tailings matrix, thus preventing oxidation of sulphide minerals and acid generation. However, few data from field studies to evaluate the performance of co-placement of mine tailings and fly ash (CMF hereafter) are reported in the open literature. This paper documents the construction and instrumentation of three CMF systems on the Musselwhite mine located in Ontario, Canada and presents results of 3-year real time monitoring. The field data indicates that the CMFs reduced the ingress of water due to cementation generated by hydration of fly ash. It was also found that the electrical conductivity of leachate from CMFs decreased in the early stage of co-placement, compared to the control. With further study, the principle and approach demonstrated in this paper can be adopted as a sustainable technology in the mine tailings management.

  19. Co-utilization of pulverized coal ash and flue gas scrubber sludge

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Harnby, N.

    1984-01-01

    The increased use of coal to generate electricity and of scrubbers to reduce SO/sub x/ emissions is creating solid waste disposal problems of increasing magnitude. The lime-sinter process for the recovery of alumina from pulverized fuel ash (PFA) provides a means for co-utilization of these wastes. The FGD scrubber sludge is used as a mineralizer and partial replacement for the limestone. Extractable alumina-containing compounds are formed and high alumina yields result at moderate sintering temperatures. The process residue formed shows promise as a raw material for the manufacture of portland cement. 8 references, 6 figures, 3 tables.

  20. Plasma etching and ashing: a technique for demonstrating internal structures of helminths using scanning electron microscopy.

    PubMed

    Veltkamp, C J; Chubb, J C

    2006-03-01

    Plasma etching and ashing for demonstrating the three-dimensional ultrastructure of the internal organs of helminths is described. Adult worms of the cestode Caryophyllaeides fennica were dehydrated through an ethanol series, critical point dried (Polaron E3000) and sputter coated with 60% gold-palladium (Polaron E5100) and glued to a standard scanning electron microscope (SEM) stub positioned as required for ashing. After initial SEM viewing of worm surfaces for orientation, stubs were placed individually in the reactor chamber of a PT7150 plasma etching and ashing machine. Worms were exposed to a radio frequency (RF) potential in a low pressure (0.2 mbar) oxygen atmosphere at room temperature. The oxidation process was controlled by varying the times of exposure to the RF potential between 2 to 30 min, depending on the depth of surface tissue to be removed to expose target organs or tissues. After each exposure the oxidized layer was blown from the surface with compressed air, the specimen sputter-coated, and viewed by SEM. The procedure was repeated as necessary, to progressively expose successive layers. Fine details of organs, cells within, and cell contents were revealed. Ashing has the advantage of providing three dimensional images of the arrangement of organs that are impossible to visualize by any other procedure, for example facilitating testes counts in cestodes. Both freshly-fixed and long-term stored helminths can be ashed. Ashing times to obtain the desired results were determined by trial so that some duplicate material was needed.

  1. Environmental impact assessment of wood ash utilization in forest road construction and maintenance--A field study.

    PubMed

    Oburger, Eva; Jäger, Anna; Pasch, Alexander; Dellantonio, Alex; Stampfer, Karl; Wenzel, Walter W

    2016-02-15

    The ever increasing use of wood material as fuel for green energy production requires innovative, environmentally safe strategies for recycling of the remaining wood ash. Utilizing wood ash in forest road construction and maintenance to improve mechanical stability has been suggested as a feasible recycling option. To investigate the environmental impact of wood ash application in forest road maintenance, a two-year field experiment was conducted at two Austrian forest sites (Kobernausserwald (KO) (soil pH 5.5) and Weyregg (WE) (pH 7.7)) differing in their soil chemical properties. Two different ashes, one produced by grate incineration (GA) and the other by fluidized bed incineration in a mixture with 15 vol% burnt lime (FBA), were incorporated in repeated road sections at a 15:85% (V/V) ash-to-soil rate. Leaching waters from the road body were collected and analyzed for 32 environmentally relevant parameters over two years. Upon termination of the experiment, sub-road soil samples were collected and analyzed for ash-related changes in soil chemistry. Even though a larger number of parameters was affected by the ash application at the alkaline site (WE), we observed the most pronounced initial increases of pH as well as Al, As, Fe, Mn, Ni, Co, Cu, Mo, and NO2(−) concentrations in leachates beneath GA-treated road bodies at Kobernausserwald due to the lower soil buffer capacity at this site. Despite the observed effects our results indicate that, when specific requirements are met (i.e. appropriate ash quality, sufficient soil buffer capacity below the road body, and single time-point ash incorporation within several decades), wood ash application in forest road construction is generally environmentally acceptable.

  2. Use of FBC ash to stablize dairy barn feedlots, minimize nutrient pollution, and develop new utilization outlets

    SciTech Connect

    Korcak, R.F.; Stout, W.

    1995-11-01

    Using technology developed by the USDA/ARS and US DOE, the Ahlstrom Ash Development Corporation has been successfully using fluidized bed combustion (FBC) ash from the Black River Co-Gen plant in Watertown, NY as an agricultural soil amendment. This permitted land application was based primarily on the jointly derived handbook on FBC utilization. During times of the year when ash cannot be spread on crop land, Ahlstrom has been using the ash as a low strength concrete to stabilize dairy barn feedlots. The stabilized feedlots provide a place for cattle to escape from muddy conditions in the spring and fall. Farmer acceptance of these stabilized feedlots is very positive. However, there is a need to provide data on the leachates from and through these barnyard pads.

  3. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.

    2016-01-01

    Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary

  4. Modernization of the International Volcanic Ash Website - a global resource for ashfall preparedness and impact guidance.

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Leonard, G.; Stewart, C.; Wilson, T. M.; Randall, M.; Stovall, W. K.

    2015-12-01

    The internationally collaborative volcanic ash website (http://volcanoes.usgs.gov/ash/) has been an important global information resource for ashfall preparedness and impact guidance since 2004. Recent volcanic ashfalls with significant local, regional, and global impacts highlighted the need to improve the website to make it more accessible and pertinent to users worldwide. Recently, the Volcanic Ash Impacts Working Group (Cities and Volcanoes Commission of IAVCEI) redesigned and modernized the website. Improvements include 1) a database-driven back end, 2) reorganized menu navigation, 3) language translation, 4) increased downloadable content, 5) addition of ash-impact case studies, 7) expanded and updated references , 8) an image database, and 9) inclusion of cooperating organization's logos. The database-driven platform makes the website more dynamic and efficient to operate and update. New menus provide information about specific impact topics (buildings, transportation, power, health, agriculture, water and waste water, equipment and communications, clean up) and updated content has been added throughout all topics. A new "for scientists" menu includes information on ash collection and analysis. Website translation using Google translate will significantly increase user base. Printable resources (e.g. checklists, pamphlets, posters) provide information to people without Internet access. Ash impact studies are used to improve mitigation measures during future eruptions, and links to case studies will assist communities' preparation and response plans. The Case Studies menu is intended to be a living topic area, growing as new case studies are published. A database of all images from the website allows users to access larger resolution images and additional descriptive details. Logos clarify linkages among key contributors and assure users that the site is authoritative and science-based.

  5. Direct utilization - recovery of minerals from coal fly ash. Technical progress report, October 1, 1982-December 31, 1982

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Seaverson, L.M.

    1983-02-01

    Research included an examination of the adsorbed water on coal fly ash, the utilization of phosgene as a chlorination agent, the physical adsorption and chemisorption of phosgene on fly ash particles, and the aqueous separation of chlorination products. Results of an investigation of coal fly ash powder samples using photoacoustic infrared spectroscopy showed almost complete removal of adsorbed water after drying for 30 hours at 700/sup 0/C. A thermodynamic computer simulation of the chlorination of an SiO/sub 2/ and Al/sub 2/O/sub 3/ mixture of 2:1 molar ratio with a stoichiometric amount of carbon present revealed that silica is the preferred reactant at lower temperature, but that alumina chlorination is preferred at 800/sup 0/C. Experiments using phosgene to chlorinate acid-leached Texas lignite fly ash gave information about the kinetic rate dependence of the reaction involved. Work to determine the amount of chemisorption and physical adsorption of phosgene on pellets of the leached Texas lignite ash was initiated to permit the calculation of surface reaction rates. Separation of FeCl/sub 3/ by solvent extraction improved as the chloride ion concentration of the aqueous phase increased, regardless of whether the associated cation was hydrogen or aluminum. A static equilibrium cell/furnace arrangement with ultraviolet spectroscopy capability has been confirmed to be suitable for measurement of the absorbance of vapor species. A Harper 6 in. dia rotary kiln was used to continuously sinter a limestone-soda ash-fly ash mixture in the form of 1/8 in. dia pellets. Extraction of sintered material with dilute aqueous soda ash solution gave aluminate recoveries comparable to those obtained when small samples were sintered in a benchscale tube furnace. Results are presented which show that x-ray diffraction data can be used to calculate the amounts of individual compounds in sintered samples.

  6. Simultaneous utilization of soju industrial waste for silica production and its residue ash as effective cationic dye adsorbent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soju industrial waste is an important biomass resource. The present study is aimed to utilize soju industrial waste for silica extraction, and residual ash as a low cost adsorbent for the removal of Methylene Blue (MB) from aqueous solution. High percentage of pure amorphous nanosilica was obtained ...

  7. A Procedure for Determining the Resource Utilization Potential of Coal Ash.

    DTIC Science & Technology

    1981-09-01

    can re- place clinker in the production of blended cement . The replacement of 20 tons of clinker with fly ash in 100 tons of cement during the final...admixture to concrete. In most cases fly ash/bottom ash is used as an admixture to the concrete rather than a replacement for the cement clinker (27: 1...consisting of an intimate and uniform blend of Portland cement and fine pozzolan produced either by intergrinding Portland- cement clinker and pozzolan

  8. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.

    PubMed

    Acharya, Prasanna K; Patro, Sanjaya K

    2016-08-01

    Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test.

  9. Alkaline hydrothermal conversion of fly ash filtrates into zeolites 2: utilization in wastewater treatment.

    PubMed

    Somerset, Vernon; Petrik, Leslie; Iwuoha, Emmanuel

    2005-01-01

    Filtrates were collected using a codisposal reaction wherein fly ash was reacted with acid mine drainage. These codisposal filtrates were then analyzed by X-ray Fluorescence spectrometry for quantitative determination of the SiO2 and Al2O3 content. Alkaline hydrothermal zeolite synthesis was then applied to the filtrates to convert the fly ash material into zeolites. The zeolites formed under the experimental conditions were faujasite, sodalite, and zeolite A. The use of the fly ash-derived zeolites and a commercial zeolite was explored in wastewater decontamination experiments as it was applied to acid mine drainage in different dosages. The concentrations of Ni, Zn, Cd, As, and Pb metal ions in the treated wastewater were investigated. The results of the treatment of the acid mine drainage with the prepared fly ash zeolites showed that the concentrations of Ni, Zn, Cd, and Hg were decreased as the zeolite dosages of the fly ash zeolite (FAZ1) increased.

  10. International collaboration between Volcanic Ash Advisory Centers: Geospatially enabled tools to ensure forecast harmonization across global air routes

    NASA Astrophysics Data System (ADS)

    Osiensky, J. M.; Moore, D.; Kibler, J.; Bensimon, D.

    2013-12-01

    Volcanic plumes and drifting ash clouds pose a risk to flight operations somewhere across the globe every day. Airborne ash plumes pose a significant hazard to aircraft and timely and accurate forecasts greatly help mitigate the risk of an encounter. The world's nine (9) Volcanic Ash Advisory Centers (VAACs) provide products and services to address the volcanic ash hazard to aviation. These nine centers are operated by the meteorological authority within the state in which they are located. Each VAAC has its unique set of tools and procedures on how the data will be captured, displayed, analyzed and turned into a suite of products. The end products (e.g. Volcanic Ash Advisories (VAA) and Volcanic Ash Graphic (VAG)) are standardized through the International Civil Aviation Organization's International Airways Volcano Watch Operations Group (ICAO IAVWOPSG). Improvements in methods of collaboration between the VAACs are needed to allow for a seamless global harmonization of volcanic ash products. A geospatially enabled tool would allow for a common operating platform, data sharing, and situational awareness. The North American VAACs have been testing a capability to provide this environment to make forecast collaboration simple across the globe. This presentation highlights work that has been done to demonstrate this capability.

  11. Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L.: implication for safe utilization of fly ash for agricultural production.

    PubMed

    Pandey, Vimal Chandra; Abhilash, P C; Upadhyay, Raj Narayan; Tewari, D D

    2009-07-15

    The present study was undertaken to examine the influence of the application of fly ash (FA) into garden soil for Cajanus cajan L. cultivation and on accumulation and translocation of hazardous metals from FA to edible part. Numerous studies have been reported on the growth and yield of agricultural crops under FA stress; however, there is a dearth of studies recommending the safe utilization of fly ash for crop production. Pot experiments were conducted on C. cajan L., a widely cultivating legume in India for its highly nutritious seeds. C. cajan L. were grown in garden soil and amended with varying concentrations of FA in a weight/weight ratio (0%, 25%, 50% and 100%; w/w). Incorporation of fly ash from 25% to 100% in garden soil increases the levels of pH, particle density, porosity and water holding capacity from 3.47% to 26.39%, 3.98% to 26.14%, 37.50% to 147.92% and 163.16% to 318.42%, respectively, than the control while bulk density decrease respectively from 8.94% to 48.89%. Pot experiment found that accumulation and translocation of heavy metals in tested plant depends on the concentration of FA. Addition of FA at lower concentration (25%) had shown positive results in most of the studied parameters of growth and yield (14.23% than control). The experimental results confirmed that lower concentration of FA (25%) is safe for C. cajan cultivation, which not only enhanced the yield of C. cajan L. significantly but also ensured the translocation of heavy metals to edible parts within the critical limits.

  12. Coal ash utilization for soil amendment to enhance water relations and turf growth. Final report

    SciTech Connect

    Adriano, D.C.; Weber, J.T.

    1998-10-01

    A long-term (1993--96) field study assessed the effects of applying high rates of coal fly-ash as a soil amendment for the growth of the turf species, centipedegrass (Eremochloa ophiroides). A Latin Square plot design was employed with a control (no ash applied), and 280, 560, and 1,120 Mg ha{sup {minus}1} (i.e., tonne/ha) application rates of unweathered baghouse fly-ash from a power station of the South Carolina Electric and Gas Company. The applied fly-ash was spread evenly over each plot area, rototilled, and allowed to weather for 8 months before seeding to centipedegrass. High levels of soluble salts, indicated by the electrical conductivity of the soil extracts, in tandem with the phytotoxic effect of B, apparently inhibited the initial plant establishment as shown by substantially lower germination counts in ashed soils. The plant height and root length, however, were not adversely affected, nor were the dry matter yields throughout the study period. Ash treatment did not significantly influence infiltration rate, bulk density, or temperature of the soil, but substantially improved its water holding capacity and plant available water. This enhanced water retention capacity apparently rendered the soil less droughty and improved the coherence and handling property of the harvested sod.

  13. DETAIL OF UTILITY PIPES AT THE BOTTOM LEVEL OF INTERNAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF UTILITY PIPES AT THE BOTTOM LEVEL OF INTERNAL PLATFORMS, ALTITUDE CHAMBER L, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  14. Direct utilization - recovery of minerals from coal fly ash. Advanced research and technology. Technical progress report, 1 January 1983-31 March 1983

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1983-05-01

    The primary objective is to develop and/or improve methods for utilization of coal fly ash as a source of minerals. Processes are being studied for the recovery of aluminium, iron, and titanium from fly ash and for the utilization of residues. There are 4 tasks which include: development of the HiChlor process; improvement of the Lime-Soda Sinter Process; improvement of the Lime-Flyash Sinter Process; and the recovery and use of an iron-rich fly ash fraction. Progress accomplished during the quarter ending March 31, 1983, is reported. 6 references, 21 figures, 9 tables. (DMC)

  15. Value-added utilization of oil palm ash: a superior recycling of the industrial agricultural waste.

    PubMed

    Foo, K Y; Hameed, B H

    2009-12-30

    Concern about environmental protection has increased over the years from a global viewpoint. To date, the infiltration of oil palm ash into the groundwater tables and aquifer systems which poses a potential risk and significant hazards towards the public health and ecosystems, remain an intricate challenge for the 21st century. With the revolution of biomass reutilization strategy, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of oil palm ash industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of oil palm ash in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy.

  16. Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste.

    PubMed

    Foo, K Y; Hameed, B H

    2009-11-30

    Concern about environmental protection has aroused over the years from a global viewpoint. To date, the ever-increasing importance of biomass as the energy and material resources has lately been accounted by the rising prices for the crude petroleum oil. Rice husk ash, the most appropriate representative of the high ash biomass waste, is currently obtaining sufficient attraction, owning to its wide usefulness and potentiality in environmental conservation. Confirming the assertion, this paper presents a state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications. Moreover, the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed. Conclusively, the expanding of rice husk ash in the field of adsorption science represents a viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.

  17. Effect of coal quality on maintenance costs at utility plants. Final report. [Effect of ash and sulfur content of coal

    SciTech Connect

    Holt, E.C. Jr.

    1980-06-01

    In an attempt to determine if correlation exists between coal quality, as measured by its ash and sulfur contents, and the maintenance cost at utility plants, an examination was made of the actual maintenance cost experience of selected portions of five TVA coal-fired power plants as a function of the fuel quality consumed during an extended period of time. The results indicate that, according to our decision rules developed in compliance with accepted statistical practices, correlation does exist in many portions of the coal-fired plants for which sufficient maintenance cost records were available. The degree of correlation varies significantly among the individual portions of a particular plant as well as among the various plants. However, the indicators are sufficient to confirm that a change (within the design constraints of the unit) in the ash and/or sulfur content of the coal being consumed by a utility boiler will have a proportionate effect on the maintenance cost at the plant. In the cases examined, each percent variation in ash content could have a monetary effect of from $0.05 to $0.10 per ton of coal consumed. Similarly, each percent variation in sulfur content could influence maintenance costs from $0.30 to $0.50 per ton of coal. Since these values are based on preliminary analysis of limited data, they must be approached with caution and not removed from the context in which they are presented. However, if borne out by further study, the potential magnitude of such savings may be sufficient to justify the acquisition of superior coal supplies, either by changing the source and/or using preparation to obtain a lower ash and sulfur fuel.

  18. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis.

    PubMed

    Fan, Yun; Zhang, Fu-Shen; Zhu, Jianxin; Liu, Zhengang

    2008-05-01

    The solid by-product from power plant fueled with municipal solid waste and coal was used as a raw material to synthesize zeolite by fusion-hydrothermal process in order to effectively use this type of waste material. The effects of treatment conditions, including NaOH/ash ratio, operating temperature and hydrothermal reaction time, were investigated, and the product was applied to simulated wastewater treatment. The optimal conditions for zeolite X synthesis were: NaOH/ash ratio=1.2:1, fusion temperature=550 degrees C, crystallization time=6-10 h and crystallization temperature=90 degrees C. In the synthesis process, it was found that zeolite X tended to transform into zeolite HS when NaOH/ash ratio was 1.8 or higher, crystallization time was 14-18 h, operating temperature was 130 degrees C or higher. The CEC value, BET surface area and pore volume for the synthesized product at optimal conditions were 250 cmol kg(-1), 249 m(2) g(-1) and 0.46 cm(3) g(-1) respectively, higher than coal fly ash based zeolite. Furthermore, when applied to Zn(2+) contaminated wastewater treatment, the synthesized product presented larger adsorption capacity and bond energy than coal fly ash based zeolite, and the adsorption isotherm data could be well described by Langmuir and Freundlich isotherm models. These results demonstrated that the special type of co-combustion ash from power plant is suitable for synthesizing high quality zeolite, and the products are suitable for heavy metal removal from wastewater.

  19. Sinabung Volcanic Ash Utilization As The Additive for Paving Block Quality A and B

    NASA Astrophysics Data System (ADS)

    Sembiring, I. S.; Hastuty, I. P.

    2017-03-01

    Paving block is one of the building materials used as the top layer of the road structure besides asphalt and concrete. Paving block is made of mixed materials such as portland cement or other adhesive materials, water and aggregate. In this research, the material used as the additive of cement and concrete is volcanic ash from Mount Sinabung, it is based on the results of the material testing, Sinabung ash contains 74.3% silica (SiO2). The purpose of this research aims to analyze the behavior of the paving blocks quality A and B with and without a mixture of Sinabung ash, to analyze the workability of fresh concrete using Sinabung ash as an additive in concrete, and to compare the test results of paving blocks with and without using Sinabung ash. The samples that we made consist of four variations of the concrete mix to experiment a mixture of normal sample without additive, samples which are mixed with the addition of Sinabung ash 5%, 10%, 15%, 20% and 25% of the volume of concrete/m3. Each variation consists of 10 samples of the concrete with 28 days curing time period. We will do the compressive strength and water absorption test to the samples to determine whether the samples are in accordance with the type needed. According to the test result, paving blocks with Sinabung ash and curing time reach quality A at 0%, 5% and 10% mixture with the compressive strength of each 50.14 MPa, 46.20 MPa and 1.49Mpa, and reach quality B at 15%, 20 %,25% mixture with curing time and 0%, 5%, 10%, 15%, 20% and 25% mixture without curing time. According to the absorption values we got from the test which are 6.66%, 6.73%, 6.88%, 7.03%, 7.09% and 7.16%, the entire sample have average absorption exceeding SNI standardization which is above 6% and reach quality C. Based on compressive strength and absorption data obtained Sinabung ash can’t fully replace cement as the binder because of the low CaO content.

  20. Utilization of coal ash/coal combustion products for mine reclamation

    SciTech Connect

    Dolence, R.C.; Giovannitti, E.

    1997-09-01

    Society`s demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations.

  1. Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials

    NASA Astrophysics Data System (ADS)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk; Vongvoradit, Pimdao; Jenjirapanya, Supichart

    2012-09-01

    The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110°C and calcined at 400 to 1000°C. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000°C resulted in the phase transformation. The more active alumina phase of active γ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000°C possessed the 7-d compressive strength of 34.2 MPa.

  2. Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater.

    PubMed

    Wang, Y R; Tsang, Daniel C W; Olds, William E; Weber, Paul A

    2013-01-01

    This study aims to investigate a new and sustainable approach for the reuse of industrial by-products from wastewater treatment. The dairy industry produces huge volumes of wastewater, characterized by high levels of phosphate that can result in eutrophication and degradation of aquatic ecosystems. This study evaluated the application of acid mine drainage (AMD) sludge, coal fly ash, and lignite as low-cost adsorbents for the removal of phosphate from dairy wastewater. Material characterization using X-ray fluorescence, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis revealed significant amounts of crystalline/amorphous Fe/Al/Si/Ca-based minerals and large surface areas of AMD sludge and fly ash. Batch adsorption isotherms were best described using the Freundlich model. The Freundlich distribution coefficients were 13.7 mg(0.577) L(0.423) g(-1) and 16.9 mg(0.478) L(0.522) g(-1) for AMD sludge and fly ash, respectively, and the nonlinearity constants suggested favourable adsorption for column applications. The breakthrough curves of fixed-bed columns, containing greater than 10 wt% of the waste materials (individual or composite blends) mixed with sand, indicated that phosphate breakthrough did not occur within 100 pore volumes while the cumulative removal was 522 and 490 mg kg(-1) at 10 wt% AMD sludge and 10 wt% fly ash, respectively. By contrast, lignite exhibited negligible phosphate adsorption, possibly due to small amounts of inorganic minerals suitable for phosphate complexation and limited surface area. The results suggest that both AMD sludge and fly ash were potentially effective adsorbents if employed individually at a ratio of 10 wt% or above for column application.

  3. Possible utilization of flue-gas desulfurization gypsum and fly ash for citrus production: Evaluation of crop growth response

    SciTech Connect

    Alva, A.K. . Citrus Research and Education Center)

    1994-01-01

    The application of industrial by-products to agricultural land has been a topic of considerable interest during recent years. For the industries, this is an attractive avenue to utilize the by-products rather than land filling. Agriculturists/horticulturists are faced with a new challenge to evaluate the potential advantages of this practice in terms of crop growth, production, and quality as well as effects of such practices on environmental quality. Fly ash and flue-gas desulfurization (FGD) gypsum are by-products produced from coal-fired electric power generation plants. There is a growing interest in evaluation of potential benefits of land application of coal combustion by products mixed with organic by-products. The objective of this study was to investigate the effects of application of FGD gypsum, fly ash or chicken manure,, or application of the former two in combination with the latter, on soil properties as well as on growth and mineral nutrition of Cleopatra mandarin and Swingle citrumelo rootstock seedlings grown on a Myakka sand. The growth of seedlings of either rootstock improved significantly in soils amended with either FGD gypsum, fly ash, or chicken manure, individually or in combination of either by-product with chicken manure. However, the ranking of various amendments in relation to growth response differed between the two rootstocks. The combined application of all three amendments decreased the growth of both rootstock seedlings significantly as compared to that of seedlings in unamended soil. The application of either FGD gypsum, fly ash, or chicken manure each at 2 g/kg soil increased the concentration of Ca, Ca and K, and Ca and P in the leaves of seedlings, respectively.

  4. Advanced research and technology: direct utilization, recovery of minerals from coal fly ash. Fossil energy program. Technical progress report, July 1-September 30, 1980

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Adelman, D.J.

    1980-12-01

    This investigation is to develop methods for utilizing coal fly ash through processes for the extraction of alumina and titania, and for the separation and use of an iron-rich fraction. Research of the HiChlor process for the extraction of alumina and titania by high-temperature chlorination of a fly ash-reductant mixture is described. An engineering cost evaluation is presented for a centralized HiChlor processing facility to process the fly ash of several large coal-fueled power stations. Investigations for a high-temperature lime-soda process for extraction of alumina from fly ash included the use of several types of quarry limestones and waste materials to replace the limestone and/or soda ash. A breakthrough was made on the development of a limestone-fly ash process without soda. The addition of less than 5% by weight waste coal refuse to the sinter mixtures increased alumina recoveries from a 55 to 90%, at a much lower sintering temperature of 1200/sup 0/C. For the lime-soda sinter process, an engineering cost evaluation was prepared for a facility to process the fly ash from a 1000 MWe coal-fueled power station to produce alumina and Portland cement. This facility will process and dispose of the total generated fly ash volume as products rather than as waste, and the facility investment will be less than 10% of the cost of the corresponding power station. The magnetic fly ash fraction, separated before either HiChlor or sinter processing, was shown to have a market value as a heavy medium material for coal and ore beneficiation. Research was also conducted on the upgrading of magnetic fly ash to iron ore quality. Research of coal beneficiation using magnetic fly ash media was expanded.

  5. Assessment and comparison of three high-aluminum fly ash utilization scenarios in Inner Mongolia, China using an eco-efficiency indicator.

    PubMed

    Yang, Shuo; Lin, Ling; Li, Shao Peng; Li, Qiang; Wang, Xiu Teng; Sun, Liang

    2017-01-01

    Utilization of fly ash is of great importance in China in the context of resource and environmental crises. Different fly ash utilization processes are proposed, and some have been practically applied. However, none of these fly ash utilization pathways has been evaluated comprehensively by integrating both environmental and economic perspectives. In this study, three high-aluminum fly ash utilization methods in Mongolia were assessed and compared based on the concept of eco-efficiency. The environmental assessment was conducted in accordance with life-cycle assessment principles, and a monetization-weighting approach was applied to obtain social willingness-to-pay as a reflection of environmental impact. The environmental assessment results revealed that the reuse of fly ash had significant advantage for saving primary resource, while solid waste, depletion of water, and global warming were the three highest environmental impacts from the life cycle perspective. The economic performance assessment showed positive net profits for fly ash utilization, but high value-added products were not necessarily indicative of better economic performance due to the relatively high operation cost. Comparison of the eco-efficiency indicators (EEIs) implied that the process of scenario 1#, which produced mullite ceramic and active calcium silicate, was the most recommended out of the three scenarios on the present scale. This judgment was consistent with the evaluation of the resource utilization rate. The present study showed that the EEI could be used to compare different fly ash utilization processes in a comprehensive and objective manner, thus providing definitive and insightful suggestions for decision-making and technical improvement.

  6. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    PubMed

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  7. Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters.

    PubMed

    Moreno, N; Querol, X; Ayora, C; Pereira, C F; Janssen-Jurkovicová, M

    2001-09-01

    Two pilot plant products containing 65 and 45% NaP1 zeolite were obtained from two Spanish coal fly ashes (Narcea and Teruel Power Station, respectively). The zeolitic product obtained showed a cation exchange capacity (CEC) of 2.7 and 2.0 mequiv/g, respectively. Decontamination tests of three acid mine waters from southwestern Spain were carried out using the zeolite derived from fly ash and commercial synthetic zeolite. The results demonstrate that the zeolitic material could be employed for heavy metal uptake in the water purification process. Doses of 5-30 g of zeolite/L have been applied according on the zeolite species and the heavy metal levels. Moreover, the application of zeolites increases the pH. This causes metal-bearing solid phases to precipitate and enhances the efficiency of the decontamination process.

  8. Characterization of MSWI bottom ashes towards utilization as glass raw material.

    PubMed

    Monteiro, R C C; Figueiredo, C F; Alendouro, M S; Ferro, M C; Davim, E J R; Fernandes, M H V

    2008-01-01

    The characterization of the bottom ashes produced by two Portuguese municipal solid waste incinerators (MSWI) was performed with the aim of assessing the feasibility of using this waste as raw material in the production of glass that can be further processed as glass-ceramics for application in construction. Density and particle size distribution measurements were carried out for physical characterization. Chemical characterization revealed that SiO(2), a network glass former oxide, was present in a relatively high content (52-58wt%), indicating the suitability for this waste to be employed in the development of vitreous materials. CaO, Na(2)O and K(2)O, which act as fluxing agents, were present in various amounts (2-17wt%) together with several other oxides normally present in ceramic and glass raw materials. Mineralogical characterization revealed that the main crystalline phases were quartz (SiO(2)) and calcite (CaCO(3)) and that minor amounts of different alkaline and alkaline-earth aluminosilicate phases were also present. Thermal characterization showed that the decomposition of the different compounds occurred up to 1100 degrees C and that total weight loss was <10wt%. Heating both bottom ashes at 1400 degrees C for 2h resulted in a melt with suitable viscosity to be poured into a mould, and homogeneous black-coloured glasses with a smooth shiny surface were obtained after cooling. The vitrified bottom ashes were totally amorphous as confirmed by X-ray diffraction. The results from the present experimental work indicate that the examined bottom ashes can be a potential material to melt and to obtain a glass that can be further processed as glass-ceramics to be applied in construction.

  9. Characterization of MSWI bottom ashes towards utilization as glass raw material

    SciTech Connect

    Monteiro, R.C.C. Figueiredo, C.F.; Alendouro, M.S.; Ferro, M.C.; Davim, E.J.R.; Fernandes, M.H.V.

    2008-07-01

    The characterization of the bottom ashes produced by two Portuguese municipal solid waste incinerators (MSWI) was performed with the aim of assessing the feasibility of using this waste as raw material in the production of glass that can be further processed as glass-ceramics for application in construction. Density and particle size distribution measurements were carried out for physical characterization. Chemical characterization revealed that SiO{sub 2}, a network glass former oxide, was present in a relatively high content (52-58 wt%), indicating the suitability for this waste to be employed in the development of vitreous materials. CaO, Na{sub 2}O and K{sub 2}O, which act as fluxing agents, were present in various amounts (2-17 wt%) together with several other oxides normally present in ceramic and glass raw materials. Mineralogical characterization revealed that the main crystalline phases were quartz (SiO{sub 2}) and calcite (CaCO{sub 3}) and that minor amounts of different alkaline and alkaline-earth aluminosilicate phases were also present. Thermal characterization showed that the decomposition of the different compounds occurred up to 1100 deg. C and that total weight loss was <10 wt%. Heating both bottom ashes at 1400 deg. C for 2 h resulted in a melt with suitable viscosity to be poured into a mould, and homogeneous black-coloured glasses with a smooth shiny surface were obtained after cooling. The vitrified bottom ashes were totally amorphous as confirmed by X-ray diffraction. The results from the present experimental work indicate that the examined bottom ashes can be a potential material to melt and to obtain a glass that can be further processed as glass-ceramics to be applied in construction.

  10. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production

    SciTech Connect

    Wu Kai; Shi Huisheng; Guo Xiaolu

    2011-09-15

    Highlights: > The replacement can be taken up to 30% of MSWI fly ash in the raw mix. > The novelty compositional parameters were defined, their optimum values were determined. > Expansive property of SAC is strongly depended on gypsum content. > Three leaching test methods are used to assess the environmental impact. - Abstract: The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C{sub m}) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0{approx}3.0 and firing the raw mixes at 1250 deg. C for 2 h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.

  11. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils

    SciTech Connect

    Dermatas, D.; Meng, X.

    1995-12-01

    Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic technological alternative to immobilize heavy metals in contaminated soils and sludges. Fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive x-ray (SEM-EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. Results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of fly ash to the contaminated soils effectively reduced heavy metal leachability well below the non-hazardous regulatory limits. However, quicklime addition was necessary in order to attain satisfactory immobilization levels. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime/fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation.

  12. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production.

    PubMed

    Wu, Kai; Shi, Huisheng; Guo, Xiaolu

    2011-01-01

    The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C(m)) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0~3.0 and firing the raw mixes at 1250 °C for 2h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.

  13. Fly ash utilization in McLean County, North Dakota. Topical report, Task 7.25

    SciTech Connect

    Moretti, C.J.

    1993-03-01

    In 1989, the McLean County Commissioners requested assistance from personnel at the University of North Dakota Energy and Environmental Research Center (EERC) with the construction of a section of road and a boat ramp in their county. Assistance was sought from the EERC because the county`s construction plans called for partial replacement of the lime and portland cement normally used for soil stabilization with fly ash. Since the EERC had recently conducted several research projects dealing with the use of coal combustion by-products for road construction, the commissioners requested that EERC personnel help to determine appropriate formulas for the stabilized soil mixtures to be used for both the road and boat ramp applications. An additional incentive was provided when the management of the Coal Creek Power Plant offered to donate the necessary fly ash at no cost. This project was performed as a joint venture between McLean County and the EERC. The EERC was primarily responsible for conducting a laboratory testing program to develop soil stabilization mixtures for the two construction activities. These mixtures were to contain a relatively high percentage of fly ash and to exhibit sufficient strength and durability so that the road and boat ramp would both have a service life of 20 years or more. McLean County would be primarily responsible for the road and boat ramp construction activities. The funding for the EERC portion of the project was provided by the US Department of Energy through a joint venture support program.

  14. Impacts of combustion and post-combustion NO{sub x} reduction technologies on the properties and utilization potential of coal fly ash

    SciTech Connect

    Venta, G.J.; Hemmings, R.T.; Golden, D.M.

    1995-12-31

    The paper describes the findings of a study in progress being carried out by Radian Corporation for the Electric Power Research Institute under EPRI RP3176-17. The purpose of the study is to provide utilities with vital information on the impact of current NO{sub x} control technologies on coal ash quality, how it impacts the reuse options, and to explore process options for improving the ash quality. The study also addresses other ash use options that do not require a low carbon content and/or are not sensitive to ammonia-related chemical impurities.

  15. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect

    Roy Scandrol

    2004-11-01

    This quarterly report covers the period from July 1st, 2004 through September 30th, 2004. It covers: technical development, permitting status, engineering status, construction status, operations summary and marketing support activities for this period. Plant startup, including equipment and system debugging, is underway. Minor adjustments to the SDA feed system, pug mill, and extruder were completed. Testing of admixtures to prevent the wetted SDA from sticking is continuing. The power plant is implementing a lime optimization program to reduce the calcium hydroxide values in the ash.

  16. Advanced research and technology: direct utilization-recovery of minerals from coal fly ash. Technical progress report, 1 October 1978-30 September 1979

    SciTech Connect

    Burnet, G.; Murtha, M.

    1980-01-01

    Research focused on technical development of promising methods for recovering minerals from power plant fly ash. Development of the high-temperature (HiChlor) gas chlorination process and refinement and definition of the recovery steps of extraction and desilication for the lime-soda sinter process were emphasized. A preliminary design and cost estimate for commercialization of the HiChlor process and a proposal for a process development unit for scale-up of the lime-soda sinter process were prepared. Both physical and chemical beneficiation techniques to upgrade the iron content of the magnetic fly ash were tested; chemical beneficiation using high-temperature NaOH leaching was found to be the most effective method. Pretreatment for each of the processes includes magnetic separation of coal fly ash. Bituminous coal fly ashes contain magnetic iron oxide particles which can be removed by magnetic separation. The magnetic material consists primarily of iron oxides, with small amounts of silica and alumina. Removal of additional silica and alumina will give a product which can be used for steel production. Physical investigations included careful study of internal structure of fly ash particles. Fly ash samples were separated for a range of electromagnetic power settings and the fractions were analyzed for size determinations, chemical compositions, and morphological contents. Chemical analyses showed that, for the nonmagnetic fly ash fractions, the silica and iron contents are independent of size, and that the alumina content is highest in the smaller particles.

  17. International Space Station External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  18. Advanced research and technology: direct utilization-recovery of minerals from coal fly ash. Fossil energy program. Technical progress report, 1 April-30 June 1980

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Frederick, J.

    1980-08-01

    The purpose of this investigation is to develop methods to utilize coal fly ashes through processes for the extraction of alumina and titania, and for the separation and utilization of an iron-rich fraction. Research of the HiChlor process for the extraction of alumina and titania by high-temperature chlorination of a fly ash-reductant mixture has involved comparative calculations for several fly ashes, and the design of a bench-scale fluidized chlorination system. The initial chlorination research of the high-volume fly ashes from western coals was begun. Process development of the sinter process for alumina recovery has included the investigation of several variables for improving the quantity and quality of the alumina extracted from sintered materials. As a result of this work, it is clear that further optimization of the sintering and extraction variables is required for commercialization of the fly ash sinter process. Iron-rich, magnetically separated coal fly ash particles were beneficiated to a quality equal to high grade, naturally mined iron ore by a high-temperature pressurized caustic treatment. About 95% of the contained silica and 65% of the alumina was extracted. Work was begun on the assembly of equipment for a detailed comparison of magnetically separated iron-rich fly ashes and commercial magnetities for use in heavy media coal beneficiation. Characterization of the particles, ad stability and rheological properties of media solutions prepared with these materials will provide data for further evaluating magnetic fly ash as a heavy media material. A circuit is also being built for long-term flow tests of the media suspensions for measurement of construction material erosion and solid medium particle friability.

  19. Adsorption of sulfur compound utilizing rice husk ash modified with niobium

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Rodrigo M.; Pessoa Júnior, Wanison A. G.; Braga, Valdeilson S.; Barros, Ivoneide de C. L.

    2015-11-01

    Adsorbents based in rice husk ash (RHA) modified with niobium pentoxide were prepared for impregnation methods and applied in sulfur removal in liquid fuels. The solids were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen physisorption and thermal analysis; they show that there was no qualitative change in the amorphous structure of the RHA; however, the method of impregnation could modify the particle size and topology of RHA particles. The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% Nb2O5 at a dosage of 10 g L-1, after 4 h of contact with the model fuel. The kinetic study of adsorption of thiophene showed that the models of pseudo-second order and intra-particle diffusion best fit the experimental data. The adsorption experiments with the thiophenic derivatives compounds show a large selectivity of the adsorbent.

  20. Investigation on the utilization of coal fly ash as amendment to compost for vegetation in acid soil

    SciTech Connect

    Menon, M.P.

    1990-04-16

    The use of fly ash as amendment to compost is presented. Plant growth/yields of corn collard greens, mustard greens, and sorgum is described. The treatment parameters such as fly ash to compost ratio, fly ash-amended compost to soil ratio, type of compost used for treatment etc. are discussed. 2 refs., 5 figs., 8 tabs. (CBS)

  1. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    PubMed

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22

  2. Utilization of municipal solid waste bottom ash and recycled aggregate in concrete.

    PubMed

    Juric, B; Hanzic, L; Ilić, R; Samec, N

    2006-01-01

    In the combustion process of municipal solid waste (MSW), bottom ash (BA) represents the major portion of the solid residue. Since BA is composed of oxides, especially SiO(2) and CaO, the feasibility of its application in concrete as a substitute for cement was tested. It was found that at the age of 28 days, the flexural and compressive strengths of the binder linearly decrease at the rate of 0.03 and 0.02 MPa per wt% of BA in the binder, respectively. According to the results it may be recommended to replace up to 15 wt% of cement by BA and to use such binder where a low strength of concrete elements is required. Furthermore, the aggregate used for low strength concrete need not be of a very good quality. Therefore, gravel aggregate was partially replaced by recycled aggregate (RA). Consistency measured by slump was significantly reduced (>50%) when BA or/and RA were introduced into the mixture. However, concrete density and compressive strength were not affected and were approximately 2300 kg/m(3) and approximately 40 MPa, respectively.

  3. High-value zeolitic material from bagasse fly ash: utilization for dye elimination.

    PubMed

    Shah, Bhavna A; Shah, Ajay V; Patel, Harendra D; Mistry, Chirag B

    2013-06-01

    Bagasse fly ash (BFA), a sugar industry waste, was used to prepare zeolitic material (ZFA) by means of alkaline hydrothermal treatment. ZFA showed improved morphology as a result of this treatment. The adsorption of the reactive dyes turquoise blue (TB) and brilliant magenta (BM), on both BFA and ZFA, was investigated in a batch contact system. A series of batch experiments revealed that optimal dye removal occurs at a 200 mg/L to 300 mg/L solute concentration, 60 minutes of agitation time, 5 g/L to 10 g/L adsorbent dose, a pH level of 2 to 4, and a temperature of 298 K. ZFA showed enhanced adsorption capacity as compared to BFA. According to the Langmuir equation, the maximum adsorption capacity was 12.66 mg/g and 45.45 mg/g for turquoise blue and brilliant magenta dyes, respectively, on BFA; and 21.74 mg/g and 100.00 mg/g for turquoise blue and brilliant magenta dyes, respectively, on ZFA. Kinetic studies showed that the correlation coefficients best fit with the pseudo-second-order kinetic model, confirming that the adsorption rate was controlled by a hemisorptions process.

  4. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant

  5. Eulusmap: An international land resources map utilizing satellite imagery

    NASA Technical Reports Server (NTRS)

    Paludan, T.; Csati, E.

    1978-01-01

    In 1972, the International Geographical Union's Commission on World Land Use Survey adopted a project for a land-use map of Europe. Such a map, under the name Eulusmap was started earlier under sponsorship of several government offices in Hungary. Although there was great response from a number of contributors in many countries, it became evident by mid-1974 that the map would contain gaps and some inaccuracies unless additional data sources were utilized. By then, the satellite Landsat-1 had obtained imagery of most of Europe. Using theme extraction techniques, the map was completed in draft form and portions of it displayed at the 23d International Geographical Congress in Moscow during July 1976. Printing of the completed map was accomplished in May 1978.

  6. Fundamental study of low-NOx combustion fly ash utilization. Semiannual report, May 1, 1998--October 31, 1998

    SciTech Connect

    Hurt, R.H.; Suuberg, E.M.

    1999-10-20

    The objective of the current work was to investigate the oxidation reactivity of fly ash carbons, using thermogravimetric analysis techniques. Good measures of the oxidation reactivity of fly ash carbon were the critical temperature (T{sub cr}) and the late burnout temperature (T{sub late}). The lower the critical temperature of the fly ash carbon, the more reactive the sample. By contrast, the higher T{sub late}, the less reactive the fly ash carbon. The difference between T{sub cr} and T{sub late} provided information about the reactivity distribution and was mainly dependent on fly ash carbon content (Loss-On-Ignition (LOI)). Fly ash carbons having different origins, some from lower rank coals and some from higher rank coals had slightly different reactivities. Class C fly ash carbons from low rank coals were more reactive than the typical class F fly ash carbons from higher rank coals. The reactivity parameters did not, however, provide any additional ability to predict the suitability of a given ash for use in concrete.

  7. Simulation of the alpha particle heating and the helium ash source in an International Thermonuclear Experimental Reactor-like tokamak with an internal transport barrier

    SciTech Connect

    Ye, Lei Guo, Wenfeng; Xiao, Xiaotao; Dai, Zongliang; Wang, Shaojie

    2014-12-15

    A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile can be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.

  8. Investigation on the utilization of coal fly ash as amendment to compost for vegetation in acid soil

    SciTech Connect

    Menon, M.P.

    1991-08-01

    Application of fly ash-amended composts as manure enhances the crop yield of certain plants like corn, sorghum, collard and mustard greens. Organic compost made out of grass and leaves (home-made) is better than the commercial composts for amendment with fly ash. A 20--40% fly ash in the amended compost and a soil to ash-amended compost ratio of 3:1 are recommended for making bed for plantation. Organic compost mixed with fly ash, due to reduced porosity, will help the bed to retain water and conserve water supply to plants. Organic compost will release to the manure additional quantities of N, P, and S that are not substantially available in fly ash. It appears that chemical reaction and/or mineralization occurs during composting of fly ash with organic manure to release more N, P, K and S to the system. Potassium is more elevated in all plants grown in potted soil treated with fly ash-amended compost than in those grown in soil or soil treated with organic manure. Contrary to expectation Ca in fly ash is not effectively used by plants as the latter treated with ash- amended compost is not rich in Ca. This suggests that Ca may be tied up as insoluble CaSO{sub 4} in the manure so that it may not be bioavailable to the plant. Uptake of boron by bean, bell pepper and egg plant is considerably higher than that absorbed by corn, sorghum and greens resulting in poor yield for the former.

  9. Investigation on the utilization of coal fly ash as amendment to compost for vegetation in acid soil. Technical terminal report

    SciTech Connect

    Menon, M.P.

    1991-08-01

    Application of fly ash-amended composts as manure enhances the crop yield of certain plants like corn, sorghum, collard and mustard greens. Organic compost made out of grass and leaves (home-made) is better than the commercial composts for amendment with fly ash. A 20--40% fly ash in the amended compost and a soil to ash-amended compost ratio of 3:1 are recommended for making bed for plantation. Organic compost mixed with fly ash, due to reduced porosity, will help the bed to retain water and conserve water supply to plants. Organic compost will release to the manure additional quantities of N, P, and S that are not substantially available in fly ash. It appears that chemical reaction and/or mineralization occurs during composting of fly ash with organic manure to release more N, P, K and S to the system. Potassium is more elevated in all plants grown in potted soil treated with fly ash-amended compost than in those grown in soil or soil treated with organic manure. Contrary to expectation Ca in fly ash is not effectively used by plants as the latter treated with ash- amended compost is not rich in Ca. This suggests that Ca may be tied up as insoluble CaSO{sub 4} in the manure so that it may not be bioavailable to the plant. Uptake of boron by bean, bell pepper and egg plant is considerably higher than that absorbed by corn, sorghum and greens resulting in poor yield for the former.

  10. Nickel and sulfur speciation of residual oil fly ashes from two electric utility steam-generating units.

    PubMed

    Galbreath, Kevin C; Schulz, Richard L; Toman, Donald L; Nyberg, Carolyn M; Huggins, Frank E; Huffman, Gerald P; Zillioux, Edward J

    2005-03-01

    Representative duplicate fly ash samples were obtained from the stacks of 400- and 385-MW utility boilers (Unit A and Unit B, respectively) using a modified U.S. Environmental Protection Agency (EPA) Method 17 sampling train assembly as they burned 0.9 and 0.3 wt % S residual (No. 6 fuel) oils, respectively, during routine power plant operations. Residual oil fly ash (ROFA) samples were analyzed for Ni concentrations and speciation using inductively coupled plasma-atomic emission spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, and X-ray diffraction (XRD). ROFA deionized H2O extraction residues were also analyzed for Ni speciation using XAFS and XRD. Total Ni concentrations in the ROFAs were similar, ranging from 1.3-1.5 wt%; however, stack gas Ni concentrations in the Unit A were 0.990 microg/Nm3 compared with 0.620 microg/Nm3 for Unit B because of the greater residual oil feed rates employed at Unit A to attain higher 400-MW load conditions with a lower heating value oil. Ni speciation analysis results indicated that ROFAs from Unit A contain approximately 3 wt % NiSO4 x xH2O (where x is assumed to be 6 for calculation purposes) and appoximately 4.5 wt% of a Ni-containing spinel compound, similar in composition to (Mg,Ni)(Al,Fe)2O4. ROFAs from Unit B contain on average 2 wt% NiSO4 x 6 H20 and 1.1 wt% NiO. XAFS and XRD analyses did not detect any nickel sulfide compounds, including carcinogenic nickel subsulfide (Ni3S2) (XAFS detection limit is 5% of the total Ni concentration). In addition, XAFS measurements indicated that inorganic sulfate and organic thiophene species accounted for > 97% of the total S in the ROFAs. Unit A ROFAs contained much lower thiophene proportions because cyclone-separated ROFA reinjection is employed on this unit to collect and reburn the larger carbonaceous particles.

  11. The Era of International Space Station Utilization Begins: Research Strategy, International Collaboration, and Realized Potential

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Ruttley, Tara; Johnson-Green, Perry; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Jean, Sabbagh

    2010-01-01

    With the assembly of the International Space Station (ISS) nearing completion and the support of a full-time crew of six, a new era of utilization for research is beginning. For more than 15 years, the ISS international partnership has weathered financial, technical and political challenges proving that nations can work together to complete assembly of the largest space vehicle in history. And while the ISS partners can be proud of having completed one of the most ambitious engineering projects ever conceived, the challenge of successfully using the platform remains. During the ISS assembly phase, the potential benefits of space-based research and development were demonstrated; including the advancement of scientific knowledge based on experiments conducted in space, development and testing of new technologies, and derivation of Earth applications from new understanding. The configurability and human-tended capabilities of the ISS provide a unique platform. The international utilization strategy is based on research ranging from physical sciences, biology, medicine, psychology, to Earth observation, human exploration preparation and technology demonstration. The ability to complete follow-on investigations in a period of months allows researchers to make rapid advances based on new knowledge gained from ISS activities. During the utilization phase, the ISS partners are working together to track the objectives, accomplishments, and the applications of the new knowledge gained. This presentation will summarize the consolidated international results of these tracking activities and approaches. Areas of current research on ISS with strong international cooperation will be highlighted including cardiovascular studies, cell and plant biology studies, radiation, physics of matter, and advanced alloys. Scientific knowledge and new technologies derived from research on the ISS will be realized through improving quality of life on Earth and future spaceflight endeavours

  12. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash.

    PubMed

    Aubert, J E; Husson, B; Sarramone, N

    2006-08-25

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called "A", based on the washing, phosphation and calcination of the ash, and a modified process, called "B", intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at landfills for non

  13. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction

    SciTech Connect

    Chen, Maozhe; Blanc, Denise; Gautier, Mathieu; Mehu, Jacques; Gourdon, Rémy

    2013-05-15

    Highlights: ► We used sewage sludge ashes in ready-mix concrete recipe. ► SSAs were used as a substitution of cement. ► Compressive strength of ready-mix concrete incorporating SSAs were similar as blank one. ► Contaminants leaching from concrete monoliths were above threshold limits. - Abstract: Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials, provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO{sub 2} as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar

  14. Health and environmental impacts of increased generation of coal ash and FGD sludges. Report to the Committee on Health and Ecological Effects of Increased Coal Utilization.

    PubMed Central

    Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W

    1979-01-01

    This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of

  15. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction.

    PubMed

    Chen, Maozhe; Blanc, Denise; Gautier, Mathieu; Mehu, Jacques; Gourdon, Rémy

    2013-05-01

    Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials, provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO2 as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar compressive strengths as the blank samples. The most appropriate ratios were found to be 10% substitution of cement and 2% substitution of sand. The leaching tests conducted on the ashes in their powdery form revealed that amongst the potential contaminants analyzed only Mo and Se were leached at

  16. Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 3. Technical and economic feasibility of bulk utilization and metal recovery for ashes from an integrated coal-gasification facility. Final report, April 1983-June 1986

    SciTech Connect

    Manz, O.E.; Hassett, D.J.; Laudal, D.L.; Ellman, R.C.

    1986-06-01

    Coal-gasification waste products, including those from Lurgi gasification, have different properties from the combustion ashes, especially with respect to mineralogy. To date, comparatively little effort has been directed toward the investigation of bulk utilization or metals extraction. This project was directed towards correction of that deficiency by matching properties of the Great Plains Gasification Plant gasifier ash and the Antelope Valley Power Plant combustion explored: mineral wool; sulfur concrete; high-flexural-strength ceramics; ceramic glazed wall tile and vitrified floor tile; dual concrete replacement; road stabilization; blended cement; and recovery of aluminum. Mineral wool of similar physical character to commercial wool and at lower potential cost was produced using the ashes from the GPGA complex. Sulfur concrete utilizing 80% ash and 20% modified sulfur developed flexural and compressive strengths in excess of 2250 and 6000 psi, respectively. A vitrified ceramic product with flexural strength above 7800 psi was produced from a mixture of 50% AVS scrubber ash 45% sand, and 5% clay. By using a total ash mixture of 26% gasifier ash and 74% combustion ash, a very satisfactory, economical, and durable road-base material was developed. The replacement of up to 50% of the cement in concrete with AVS scrubber ash produces higher strength. A modified lime-soda sinter process for aluminum recovery was developed, but is not economical.

  17. Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer.

    PubMed

    Li, Jing; Zhuang, Xinguo; Font, Oriol; Moreno, Natalia; Vallejo, V Ramon; Querol, Xavier; Tobias, Aurelio

    2014-01-30

    This study focuses on the synthesis of merlinoite from Chinese coal fly ashes by KOH direct conversion method, with special emphasis on the application of synthetic merlinoite as fertilizer. These fly ashes were collected from two pulverized-coal combustion (PCC) power plants in Xinjiang, Northwest China. The synthesis results are influenced by fly ash characteristics and different synthesis conditions (KOH solution concentrations, activation temperature, time, and KOH/fly ash ratios). A high quality merlinoite-rich product was synthesized under optimal activation conditions (KOH concentration of 5M, activation temperature of 150°C, activation time of 8h and KOH/fly ash ratio of 2l/kg), with a cation exchange capacity (CEC) of 160cmolkg(-1). The synthetic merlinoite is proved to be an efficient slow release K-fertilizer for plant growth, indicating that it can be widely used for high-nutrient demanding crops growing in nutrient-limited soils and for large-area poor soil amendment in opencast coal mine areas around the power plants that will substantially grow with the increasing coal combustion in Xinjiang in the near future.

  18. Direct utilization: recovery of minerals from coal fly ash. Fossil Energy program. Technical progress report, 1 January-30 March 1980

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1980-05-01

    Research is focused on the development of methods for recovering minerals from power station fly ash, use of less costly reactants, improvement of energy efficiency, and development of uses for by-products. A research plan developed for collection of kinetic data for fly ash chlorination (HiChlor process) includes the use of different reactant gas mixtures contacting a small bed of fly ash in a new, vertical, down-flow reactor. In work on the lime-soda sinter process, research includes the common ion effect on the concentrations of dissolved alumina, silica, and calcium in the filtrates obtained from extraction of the sintered clinker. Experiments conducted to determine decomposition data for several samples of limestone scrubber sludge are reported. These experiments are the first step toward the possible use of the waste sludge as a replacement for limestone in the sintering process. A series of experiments conducted to evaluate the reactivity of commercial limestones showed that high grade limestone gave alumina recoveries equivalent to those obtained using reagent-grade CaCO/sub 3/ for nine sinter mixtures which were tested. Increased interest use of the iron-rich magnetic fly ash fraction as a heavy media material for coal beneficiation led to preparation of a research proposal to increase the scale of testing by use of commercial heavy media cyclones. The scope of the research is to be expanded to include a range of fly ashes and several commercial magnetite samples. Hydrochemical beneficiation tests of the iron-rich fraction to produce iron ore indicate that the limited dissolution of alumina from the ash is probably due to secondary precipitation reactions during digestion.

  19. Evaluation of quantitative satellite-based retrievals of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Pavolonis, M. J.; Bojinski, S.; Siddans, R.; Thomas, G.

    2015-12-01

    Volcanic ash clouds are a serious hazard to aviation, and mitigation requires a robust system of volcano monitoring, eruption detection, characterization of cloud properties, forecast of cloud movement, and communication of warnings. Several research groups have developed quantitative satellite-based volcanic ash products and some of these are in operational use by Volcanic Ash Advisory Centers around the world to aid in characterizing cloud properties and forecasting regions of ash hazard. The algorithms applied to the satellite data utilize a variety of techniques, and thus produce results that differ. The World Meteorological Organization has recently sponsored an intercomparison study of satellite-based retrievals with four goals: 1) to establish a validation protocol for satellite-based volcanic ash products, 2) to quantify and understand differences in products, 3) to develop best practices, and 4) to standardize volcanic cloud geophysical parameters. Six volcanic eruption cases were considered in the intercomparison: Eyjafallajökull, Grimsvötn, Kelut, Kirishimayama, Puyehue-Cordón Caulle, and Sarychev Peak. Twenty-four algorithms were utilized, which retrieved parameters including: ash cloud top height, ash column mass loading, ash effective radius, and ash optical depth at visible and thermal-infrared wavelengths. Results were compared to space-based, airborne, and ground-based lidars; complementary satellite retrievals; and manual "expert evaluation" of ash extent. The intercomparison results will feed into the International Civil Aviation Organization "Roadmap for International Airways Volcano Watch", which integrates volcanic meteorological information into decision support systems for aircraft operations.

  20. Cost Sharing, Health Care Expenditures, and Utilization: An International Comparison.

    PubMed

    Perkowski, Patryk; Rodberg, Leonard

    2016-01-01

    Health systems implement cost sharing to help reduce health care expenditure and utilization by discouraging the use of unnecessary health care services. We examine cost sharing in 28 countries in the Organisation for Economic Co-operation and Development from 1999 through 2009 in the areas of medical care, hospital care, and pharmaceuticals. We investigate associations between cost sharing, health care expenditures, and health care utilization and find no significant association between cost sharing and health care expenditures or utilization in these countries.

  1. International Utilization at the Threshold of "Assembly Complete"- Science Returns from the International Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    The European Columbus and Japanese Kibo laboratories are now fully operational on the International Space Station (ISS), bringing decades of international planning to fruition. NASA is now completing launch and activation of major research facilities that will be housed in the Destiny U.S. Laboratory, Columbus, and Kibo. These facilities include major physical sciences capabilities for combustion, fluid physics, and materials science, as well as additional multipurpose and supporting infrastructure. Expansion of the laboratory space and expansion to a 6-person crew (planned for May 2009), is already leading to significant increases in research throughput even before assembly is completed. International research on the ISS includes exchanges of results, sharing of facilities, collaboration on experiments, and joint publication and communication of accomplishments. Significant and ongoing increases in research activity on ISS have occurred over the past year. Although research results lag behind on-orbit operations by 2-5 years, the surge of early research activities following Space Shuttle return to flight in 2005 is now producing an accompanying surge in scientific publications. Evidence of scientific productivity from early utilization opportunities combined with the current pace of research activity in orbit are both important parts of the evidence base for evaluating the potential future achievements of a complete and active ISS.

  2. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations.

    PubMed

    Brown, Patrick; Jones, Tim; BéruBé, Kelly

    2011-12-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA.

  3. Advances in the biology and therapy of chronic myeloid leukemia: proceedings from the 6th Post-ASH International Chronic Myeloid Leukemia and Myeloproliferative Neoplasms Workshop.

    PubMed

    Van Etten, Richard A; Mauro, Michael; Radich, Jerald P; Goldman, John M; Saglio, Giuseppe; Jamieson, Catriona; Soverini, Simona; Gambacorti-Passerini, Carlo; Hehlmann, Rüdiger; Martinelli, Giovanni; Perrotti, Danilo; Scadden, David T; Skorski, Tomasz; Tefferi, Ayalew; Mughal, Tariq I

    2013-06-01

    Following the 53rd annual meeting of the American Society of Hematology (ASH) in San Diego in December 2011, a group of clinical and laboratory investigators convened for the 6th Post-ASH International Workshop on Chronic Myeloid Leukemia (CML) and Myeloproliferative Neoplasms (MPN). The Workshop took place on 13-14 December at the Estancia, La Jolla, California, USA. This report summarizes the most recent advances in the biology and therapy of CML that were presented at the ASH meeting and discussed at the Workshop. Preclinical studies focused on the CML stem cell and its niche, and on early results of deep sequencing of CML genomes. Clinical advances include updates on second- and third-generation tyrosine kinase inhibitors (TKIs), molecular monitoring, TKI discontinuation studies and new therapeutic agents. A report summarizing the pertinent advances in MPN has been published separately.

  4. Utilize Cementitious High Carbon Fly Ash (CHCFA) to Stabilize Cold In-Place Recycled (CIR) Asphalt Pavement as Base Coarse

    SciTech Connect

    Wen, Haifang; Li, Xiaojun; Edil, Tuncer; O'Donnell, Jonathan; Danda, Swapna

    2011-02-05

    The purpose of this study was to evaluate the performance of cementitious high carbon fly ash (CHCFA) stabilized recycled asphalt pavement as a base course material in a real world setting. Three test road cells were built at MnROAD facility in Minnesota. These cells have the same asphalt surface layers, subbases, and subgrades, but three different base courses: conventional crushed aggregates, untreated recycled pavement materials (RPM), and CHCFA stabilized RPM materials. During and after the construction of the three cells, laboratory and field tests were carried out to characterize the material properties. The test results were used in the mechanistic-empirical pavement design guide (MEPDG) to predict the pavement performance. Based on the performance prediction, the life cycle analyses of cost, energy consumption, and greenhouse gasses were performed. The leaching impacts of these three types of base materials were compared. The laboratory and field tests showed that fly ash stabilized RPM had higher modulus than crushed aggregate and RPM did. Based on the MEPDG performance prediction, the service life of the Cell 79 containing fly ash stabilized RPM, is 23.5 years, which is about twice the service life (11 years) of the Cell 77 with RPM base, and about three times the service life (7.5 years) of the Cell 78 with crushed aggregate base. The life cycle analysis indicated that the usage of the fly ash stabilized RPM as the base of the flexible pavement can significantly reduce the life cycle cost, the energy consumption, the greenhouse gases emission. Concentrations of many trace elements, particularly those with relatively low water quality standards, diminish over time as water flows through the pavement profile. For many elements, concentrations below US water drinking water quality standards are attained at the bottom of the pavement profile within 2-4 pore volumes of flow.

  5. Space Station - Opportunity for international cooperation and utilization

    NASA Technical Reports Server (NTRS)

    Pedersen, K. S.

    1984-01-01

    In connection with his announcement regarding the development of a permanently manned Space Station, President Reagan invited the United States' friends and allies to join in the Space Station program. The President's invitation was preceded by more than two years of interaction between NASA and some of its potential partners in Space Station planning activities. Attention is given to international participation in Space Station planning, international cooperation on the Space Station, the guidelines for international cooperation, and the key challenges. Questions regarding quid pro quos are considered along with aspects of technology transfer, commercial use, problems of management, and the next steps concerning the Space Station program.

  6. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    SciTech Connect

    J.G. Groppo; T.L. Robl

    2005-09-30

    Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable

  7. DTN Implementation and Utilization Options on the International Space Station

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin; Holbrook, Mark; Pitts, Lee; Gifford, Kevin; Jenkins, Andrew; Kuzminsky, Sebastian

    2010-01-01

    This slide presentation reviews the implementation and future uses of Delay/Disruption Tolerant Networking (DTN) for space communication, using the International Space Station as the primary example. The presentation includes: (1) A brief introduction of the current communications architecture of the ISS (2) How current payload operations are handled in the non-DTN environment (3) Making the case to implement DTN into the current payload science operations model (4) Phase I DTN Operations: early implementation with BioServe's CGBA Payload (5) Phase II DTN Operations: Developing the HOSC DTN Gateway

  8. The child brain computes and utilizes internalized maternal choices

    PubMed Central

    Lim, Seung-Lark; Cherry, J. Bradley C.; Davis, Ann M.; Balakrishnan, S. N.; Ha, Oh-Ryeong; Bruce, Jared M.; Bruce, Amanda S.

    2016-01-01

    As children grow, they gradually learn how to make decisions independently. However, decisions like choosing healthy but less-tasty foods can be challenging for children whose self-regulation and executive cognitive functions are still maturing. We propose a computational decision-making process in which children estimate their mother's choices for them as well as their individual food preferences. By employing functional magnetic resonance imaging during real food choices, we find that the ventromedial prefrontal cortex (vmPFC) encodes children's own preferences and the left dorsolateral prefrontal cortex (dlPFC) encodes the projected mom's choices for them at the time of children's choice. Also, the left dlPFC region shows an inhibitory functional connectivity with the vmPFC at the time of children's own choice. Our study suggests that in part, children utilize their perceived caregiver's choices when making choices for themselves, which may serve as an external regulator of decision-making, leading to optimal healthy decisions. PMID:27218420

  9. Mutations with epigenetic effects in myeloproliferative neoplasms and recent progress in treatment: Proceedings from the 5th International Post-ASH Symposium

    PubMed Central

    Tefferi, A; Abdel-Wahab, O; Cervantes, F; Crispino, J D; Finazzi, G; Girodon, F; Gisslinger, H; Gotlib, J; Kiladjian, J-J; Levine, R L; Licht, J D; Mullally, A; Odenike, O; Pardanani, A; Silver, R T; Solary, E; Mughal, T

    2011-01-01

    Immediately following the 2010 annual American Society of Hematology (ASH) meeting, the 5th International Post-ASH Symposium on Chronic Myelogenous Leukemia and BCR-ABL1-Negative Myeloproliferative Neoplasms (MPNs) took place on 7–8 December 2010 in Orlando, Florida, USA. During this meeting, the most recent advances in laboratory research and clinical practice, including those that were presented at the 2010 ASH meeting, were discussed among recognized authorities in the field. The current paper summarizes the proceedings of this meeting in BCR-ABL1-negative MPN. We provide a detailed overview of new mutations with putative epigenetic effects (TET oncogene family member 2 (TET2), additional sex comb-like 1 (ASXL1), isocitrate dehydrogenase (IDH) and enhancer of zeste homolog 2 (EZH2)) and an update on treatment with Janus kinase (JAK) inhibitors, pomalidomide, everolimus, interferon-α, midostaurin and cladribine. In addition, the new ‘Dynamic International Prognostic Scoring System (DIPSS)-plus' prognostic model for primary myelofibrosis (PMF) and the clinical relevance of distinguishing essential thrombocythemia from prefibrotic PMF are discussed. PMID:23471017

  10. Diagnostic ultrasound and telemedicine utilization in the international space station

    NASA Astrophysics Data System (ADS)

    Carter, Stephen J.; Stewart, Brent K.; Kushmerick, Martin J.; Langer, Steve G.; Schmiedl, Udo P.; Winter, Thomas C.; Conley, Kevin E.; Jubrias, Sharon A.

    1999-01-01

    Clinical diagnostic ultrasound (US) is experiencing an expanding role that is well suited to application on the International Space Station (ISS). Diagnostic US can be used to reduce the risks associated with long duration human space flight by providing a non-invasive tool with head-to-toe diagnostic capability in both biomedical research and crew health care. General health care of the astronauts will be diagnosed with US, e.g., kidney stones, gall bladder disease, appendicitis, etc. Initial studies will focus on detection of ``ureteral jets'' in the bladder. This is a non-invasive test to rule out obstructive uropathy from kidney stones with minimal requirements for crew training. Biomedical research experiments, focusing on the effects of the microgravity environment, will be performed using both the HHU and the HDI 5000. US will be used to evaluate bone density and muscle mass in this environment. Prolonged or emergency EVAs may occur with the ISS. The hand-held ultrasound unit (HHU) and its telemedicine capability will be used in EVA settings to monitor events such as decompression sickness (DCS) microbubble formation in the cardiovascular system. There will be telemetry links between the HHU and the ATL/Lockheed Martin rack mounted HDI 5000 in the ISS Human Research Facility (HRF), as well as between the HRF and medical expertise on the ground. These links will provide the ISS with both real-time and store-and-forward telemedicine capabilities. The HHU can also be used with the existing telemedicine instrument pack (TIP).

  11. The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance

    NASA Astrophysics Data System (ADS)

    Dellino, P.; Liotino, G.

    2002-03-01

    Image processing analysis is used to check the ability of the fractal dimension for quantitatively describing the shape of volcanic ash particles. Digitized scanning electron microscopy images of fine pyroclasts from the eruptions of Monte Pilato-Rocche Rosse (Lipari, Italy) are investigated to test the efficiency of the fractal dimension to discriminate between particles of different eruptive processes. Multivariate analysis of multiple fractal components allows distinction between magmatic particles and phreatomagmatic particles, which however is less significant than the discrimination obtained in previous studies by the use of simple 'adimensional' shape parameters. Approximation of the actual particle boundary and the not rotation invariant nature of the fractal data frequently result in a significant scatter of data points in the Mandelbrot-Richardson plot. Such behavior obscures in some cases the actual information of particle shape and renders the discriminating power of fractal analysis less effective than classical shape descriptors. Data less affected by scatter reveal that phreatomagmatic particles of the Monte Pilato-Rocche Rosse eruptions are true (mono) fractals, whereas magmatic particles are multifractals. The textural (small-scale) fractal of magmatic particles is similar to the fractal dimension value of phreatomagmatic particles, and is attributed to the rheological behavior of melt upon brittle fragmentation. The structural (large-scale) fractal of magmatic particles refers to the walls of ruptured vesicles that lay on the particle outline. The high difference between the values of the textural and structural fractals of magmatic particles of the Monte Pilato-Rocche Rosse eruptions suggests two distinct and independent processes in the formation of such pyroclasts. At the scales corresponding to the textural fractal, the fragmentation process is independent of vesicles. Magmatic fragmentation is not simply related to growth, expansion

  12. Using fly ash for construction

    SciTech Connect

    Valenti, M.

    1995-05-01

    Each year electrical utilities generate 80 million tons of fly ash, primarily from coal combustion. Typically, utilities dispose of fly ash by hauling it to landfills, but that is changing because of the increasing cost of landfilling, as well as environmental regulations. Now, the Electric Power Research Institute (EPRI), in Palo Alto, Calif., its member utilities, and manufacturers of building materials are finding ways of turning this energy byproduct into the building blocks of roads and structures by converting fly ash into construction materials. Some of these materials include concrete and autoclaved cellular concrete (ACC, also known as aerated concrete), flowable fill, and light-weight aggregate. EPRI is also exploring uses for fly ash other than in construction materials. One of the more high-end uses for the material is in metal matrix composites. In this application, fly ash is mixed with softer metals, such as aluminum and magnesium, to strengthen them, while retaining their lighter weight.

  13. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Wollack, Edward J.; Wright, Kenneth H.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Albert C.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update.

  14. Ecological Unequal Exchange: International Trade and Uneven Utilization of Environmental Space in the World System

    ERIC Educational Resources Information Center

    Rice, James

    2007-01-01

    We evaluate the argument that international trade influences disproportionate cross-national utilization of global renewable natural resources. Such uneven dynamics are relevant to the consideration of inequitable appropriation of environmental space in particular and processes of ecological unequal exchange more generally. Using OLS regression…

  15. Utility of the International Classification of Functioning, Disability and Health (ICF) for Educational Psychologists' Work

    ERIC Educational Resources Information Center

    Aljunied, Mariam; Frederickson, Norah

    2014-01-01

    Despite embracing a bio-psycho-social perspective, the World Health Organization's International Classification of Functioning, Disability and Health (ICF) assessment framework has had limited application to date with children who have special educational needs (SEN). This study examines its utility for educational psychologists' work with…

  16. NASA UTILIZATION OF THE INTERNATIONAL SPACE STATION AND THE VISION FOR SPACE EXPLORATION

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.

    2006-01-01

    Under U.S. President Bush s Vision for Space Exploration (January 14, 2004), NASA has refocused its utilization plans for the International Space Station (ISS). This use will now focus on: (1) the development of countermeasures that will protect crews from the hazards of the space environment, (2) testing and validating technologies that will meet information and systems needs for future exploration missions.

  17. Utilization of Counseling Services: Comparing International and U.S. College Students

    ERIC Educational Resources Information Center

    Mitchell, Sharon L.; Greenwood, Andrea K.; Guglielmi, Maggie C.

    2007-01-01

    Counseling center utilization patterns during a 2-year period for 218 international and 222 U.S. college students were examined. Significant between-group differences were found with regard to age, academic status, referral source, relationship status, self-reported concerns, counselor diagnosis, disposition, hospitalization rates, prior…

  18. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  19. Advanced research and technology direct utilization: recovery of minerals from coal fly ash. Fossil energy program technical progress report, 1 April 1981-30 June 1981

    SciTech Connect

    Burnet, G.; Dunker, J.W.; Murtha, M.J.

    1981-09-01

    The purpose of this research is to develop methods to process fly ash for (1) the separation and use of an iron-rich fraction; (2) the recovery of metals (primarily Al, Fe, and Ti); and (3) the use of the process residues. During this report period, research on the HiChlor process for the high-temperature chlorination of fly ash included investigation of prechlorinations using Cl/sub 2/-CO gas mixtures to selectively remove iron and titanium, and the physical characterization of fly ash pellets. Gas diffusion coefficients, surface areas, and pore size distributions were measured for both gamma-alumina and fly ash pellets. Experiments on the high temperature sintering of limestone-fly ash mixtures include alumina extractions from sinters prepared using waste materials. High alumina recoveries were obtained for sinters prepared using cement kiln dust as the lime source, and with small amounts of coal refuse added as a mineralizer. Sinter feed mixtures prepared from fly ash, kiln dust, and soda ash were also tested. X-ray diffraction measurements were used to identify the soluble and insoluble compounds found in the clinkers produced. Research has been initiated on methods to agglomerate fly ash mixtures for processing. Agglomerators rather than finely-divided powder mixtures will be more easily handled, transported, and processed. Feed mixtures for both the lime-sinter and HiChlor processes are being studied. A balling disc unit is being used to form agglomerate spheroids. A theoretical analysis of the magnetic separation of fly ash has been completed.

  20. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  1. Development of new ash cooling method for atmospheric fluidized beds

    SciTech Connect

    Li Xuantian; Luo Zhongyang; Ni Mingjiang; Cheng Leming; Gao Xiang; Fang Mengxiang; Cen Kefa

    1995-12-31

    The pollution caused by hot ash drained from the bed is another challenge to atmospheric fluidized bed combustion technology when low-rank, high ash fuels are used. A new technique is developed for ash cooling and utilization of the waste heat of ash. Results from the demonstration of an 1.5 T/H patented device have shown the potential to use this type of ash cooler for drying and secondary air preheating. Bottom ash sized in the range 0--13 mm can be cooled from 1,650 F (900 C) to tolerable temperatures for conveying machinery, and the cooled ash can be re-utilized for cement production.

  2. Advanced research and technology: direct utilization, recovery of minerals from coal fly ash. Fossil-Energy Program technical progress report, October 1, 1981-December 31, 1981

    SciTech Connect

    Burnet, G.; Dunker, J.W.; Murtha, M.J.

    1982-03-01

    Research on the chlorination of alpha-alumina with CO and Cl/sub 2/ indicates that mass transfer limitations of the reaction can be minimized through use of the thin layer technique. Kinetic studies of the reaction indicate that it is first order with respect to both CO and Cl/sub 2/, and has an apparent activation energy of 13.35 kcal/mole. Preliminary results show that the chlorination of a leached Texas lignite fly ash with CO and Cl/sub 2/ is about 50 times slower than the chlorination of alpha-alumina. Work continues to explain this phenomenon. The development of sintering processes for alumina solubilization focuses on the collection of additional data for limestone-kiln dust-fly ash sinters, and for limestone-soda ash-fly ash sinters. These results more clearly describe the relationship between sinter mixture compositions and the extraction of high percentages of alumina. X-ray diffraction analysis techniques are also used to identify the compounds formed and to describe the sinter reaction mechanisms. Research conducted on the use of magnetically separated iron-rich fly ash as heavy medium material in coal beneficiation included: determination of the magnetic content of samples, a study of the effects of grinding on the stability of fly ash heavy media suspensions, measurement of corrosion and abrasion caused by flowing heavy media slurries, and measurement of the rheological properties of fly ash suspensions. Performance of suspensions of iron-rich fly ash and commercial magnetites is compared.

  3. Direct utilization - recovery of minerals from coal fly ash. Fossil Energy Program. Technical progress report, 1 July 1984-30 September 1984 including summary of work for FY84

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Benson, J.D.

    1985-03-01

    The research discussed in this report deals with resource recovery from coal conversion solid wastes. Progress is reported on two methods (the HiChlor and Lime-Sinter processes) for extracting metal values from power plant fly ash. Preliminary work is also reported on a method of making cement from the residue of the lime-sinter process. In the HiChlor Process, metal oxides in the fly ash are converted to volatile chlorides by reaction with chlorine in the presence of a reductant. Several versions of this approach are being investigated. The Lime-Sinter Process utilizes a solid state reaction to selectively convert the alumina in fly ash to a soluble form. Fly ash is mixed with limestone and a suitable mineralizer (to reduce the temperature required for sintering and to enhance alumina recovery) and then sintered in a high temperature kiln. Alumina is recovered by leaching the resulting clinker. A complex relationship between the calcium, alumina, silica, and sulfur constituents in the feed mixture controls the formation and extraction of aluminate compounds. Alumina recovery levels are enhanced by promoting the formation of less-soluble calcium compounds and/or more-soluble aluminum compounds. A study is underway to determine the degree to which flue gas scrubber sludge can be used both as a limestone substitute and as a sulfur bearing mineralizer. Results show that 20 to 25% of the limestone can be provided by the scrubber sludges. 25 refs.,25 figs., 10 tabs.

  4. Utility of the International Classification of Functioning, Disability and Health (ICF) for educational psychologists’ work

    PubMed Central

    Aljunied, Mariam; Frederickson, Norah

    2014-01-01

    Despite embracing a bio-psycho-social perspective, the World Health Organization’s International Classification of Functioning, Disability and Health (ICF) assessment framework has had limited application to date with children who have special educational needs (SEN). This study examines its utility for educational psychologists’ work with children who have Autism Spectrum Disorders (ASD). Mothers of 40 children with ASD aged eight to 12 years were interviewed using a structured protocol based on the ICF framework. The Diagnostic Interview for Social and Communication Disorder (DISCO) was completed with a subset of 19 mothers. Internal consistency and inter-rater reliability of the interview assessments were found to be acceptable and there was evidence for concurrent and discriminant validity. Despite some limitations, initial support for the utility of the ICF model suggests its potential value across educational, health and care fields. Further consideration of its relevance to educational psychologists in new areas of multi-agency working is warranted. PMID:26157197

  5. Utilization of Coal Fly Ash

    DTIC Science & Technology

    1992-01-01

    the animals. However, no growth, strength, or pathological damage was noted. Stoewsand etal. (1990) performed a study on rats fed rutabagas grown on a...519 (1987). Stoewsand, G., J. Anderson, L. Weinstein, J. Osmeloski, W. Gutenmann, and D. Lisk, "Selenium in Tissues of Rats Fed Rutabagas Grown on Soil

  6. Adsorptive properties of fly ash carbon

    SciTech Connect

    Graham, U.M.; Robl, T.L.; Rathbone, R.F.

    1996-12-31

    The driving force behind the development of this research project has been the increasing concerns about the detrimental effects of high carbon carryover into combustion ash. Without the carbon, combustion ash can be utilized in cement industry avoiding environmental implications in landfill operations. Because the carbon surfaces have been structurally altered while passing through the combustor, including the formation of a macro-porous surface, fly ash carbons, after separation from the ash, may constitute a unique precursor for the production of adsorbents. This paper discusses a novel approach for using fly ash carbons in the cleanup of organic pollutants.

  7. Direct utilization - recovery of minerals from coal fly ash. Technical progress report, April 1-June 30, 1982. [HiChlor process

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1982-08-01

    Research on the chlorination of coal fly ash has included the evaluation of several reducing and chlorinating agents for use in the HiChlor process. Several additional coal fly ashes were chlorinated to demonstrate that processing is usable for a range of bituminous coal fly ash compositions. Aqueous separation research for purification of the mixed metal chloride products was initiated. Exploratory evaluation of the potential for using a fused salt media for coal fly ash chlorination coupled with a thermodynamic study of the possible reactions provided encouragement for pursuing this alternative chlorination procedure. The use of a fused salt should significantly improve the process reaction kinetics and the potential for more selective chlorination of specific oxides. Research was continued on the development of a desilication procedure to remove dissolved silica from lime-soda filtrates. Essentially all of the silica (less than 150 ppM) must be removed from solution before an alumina product suitable for aluminum metal production can be recovered. Further experiments were conducted on the magnetic separation of coal fly ash - water slurries. Counter-current air sparging was used to increase the agitation inside the magnetic grid volume but the separated products were still not of comparable quality to those obtained by dry separation using a moving-field electromagnet.

  8. Direct utilization: recovery of minerals from coal fly ash. Fossil Energy program, technical progress report, July 1, 1983-September 30, 1983

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1984-01-01

    Work has focused on two methods for resource recovery from coal conversion solid wastes. The HiChlor Process recovers Al, Fe, and Ti minerals from coal fly ash by high temperature chlorination in the presence of a reductant. An understanding of the mechanisms of the gas-solid reactions involved is essential to the design and development of the reactor system. Three possible reaction mechanisms are considered, evaluated, and tested. The second method involves a lime-sinter step to produce soluble aluminates. Research on the process includes scale-up of the sinter step using a 5 in. diam electrically heated kilm. Batch samples of limestone-fly ash-soda ash mixtures are processed, at a rate of about 4 lb/hr. The resulting clinker is used to fully evaluate processing conditions for the extraction, desilication, and product recovery steps. Experiments are completed which evaluate raw material preparation requirements, for sintering and clinker crushing requirements for extraction.

  9. Economic evaluation of losses to electric power utilities caused by ash fouling. Final technical report, November 1, 1979-April 30, 1980

    SciTech Connect

    Burkhardt, F.R.; Persnger, M.M.

    1980-01-01

    Problems with convection ash fouling and wall slagging were considerable during our study. The Dakota lignites posed the greatest problems, particularly with fouling. The subbituminous coals had considerable problems, related mostly with wall slagging. The Texas lignites had few problems, and those were only associated with wall slagging. The generation losses were as follows: The Dakota lignite burning stations averaged an overall availability of 87.13%. Convection fouling outages were responsible for 57.75% of this outage time for a decrease in availability of 7.43%. Fouling was responsible for curtailment losses of 317,649 Mwh or 8.25% of the remaining available generation. Slagging was responsible for losses of 2732 megawatt hours or .07% of the remaining available generation. Total ash related losses amounted to 16.08% of the total available generation. The subbituminous burning stations averaged an overall availability of 78.36%. Total ash related losses amounted to 1.54% of the total available generation. The Texas lignite burning stations averaged an overall availability of 80.63%. No ash related outage losses occurred. Slagging curtailments accounted 0.08% of the total available generation. Costs due to ash fouling and slagging related curtailments are a tremendous sum. Seven power stations were studied for a six month period to assess costs. The total cost directly attributable to ash slagging and fouling condition was $20,638,113. Recommendations for reducing the problems involve soot blowers, control of furnace gas exit temperature, water blowers and more conservative boiler design.

  10. ACAA fly ash basics: quick reference card

    SciTech Connect

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  11. Fly ash beneficiation by carbon burnout

    SciTech Connect

    Cochran, J.W.; Boyd, T.J.

    1995-03-01

    The CBO process for fly ash beneficiation shows excellent potential. Values derived from avoided disposal costs, revenue from fly ash sales, environmental attributes and the ability to process 100% of the ash indicate the potential market for this process. Work has begun on the next phase of process development and commercialization and includes site specific application studies (technical and economic investigations for specific sites). Demonstration plant designs at approximately 100,000 TPY are being considered by several participating utilities.

  12. Characterization and valorization of biomass ashes.

    PubMed

    Trivedi, Nikhilesh S; Mandavgane, Sachin A; Mehetre, Sayaji; Kulkarni, Bhaskar D

    2016-10-01

    In India, farming is the primary source of income for many families. Following each harvest, a huge amount of biomass is generated. These are generally discarded as "agrowaste," but recent reports have indicated several beneficial uses for these biomasses and their ashes. However, before the utilization of biomass ashes (BMAs), their chemical and physical properties need to be investigated (characterized) so as to utilize their potential benefit to the fullest. In this paper, eight different biomass ashes (soybean plant ash, mustard plant ash, maize ash, groundnut plant ash, cotton plant ash, wheat plant ash, pigeon peas ash, and groundnut shell ash) were characterized, and their chemical properties are discussed. Surface chemical composition analysis, proximate analysis, and ultimate analysis were performed on all BMA samples, and properties such as porosity, particle density, bulk density, point of zero charge, BET surface area, water-absorption capacity, and bulk parameters such as surface pH and surface charges were determined. BMAs were characterized by SEM and FTIR. The surface areas of biomass ashes vary from 1.9 to 46 m(2)/g, and point of zero charge for all BMAs exceed 9.8, which confirmed the alkaline nature of these samples. Based on the chemical composition, BMAs are categorized into four types (S, C, K, and CK), and their utilization is proposed based on the type. BMAs find applications in agriculture and construction industries; glass, rubber, and zeolite manufacturing; and in adsorption (as a source of silica/zeolites). The paper also discusses the research challenges and opportunities in utilization of BMAs.

  13. Apparent digestibility of wheat bran and extruded flax in horses determined from the total collection of feces and acid-insoluble ash as an internal marker.

    PubMed

    De Marco, M; Miraglia, N; Peiretti, P G; Bergero, D

    2012-02-01

    Several studies have reported data on comparisons between two methods: the total collection of feces and the internal markers method. The aim of this study was to assess the apparent digestibility of two concentrates and to compare the apparent digestion coefficients using the total collection of feces and acid-insoluble ash (AIA) as the internal marker method. In 2009, six adult geldings aged between 3 and 11 years, with an average weight per trial of 543, 540 and 542 kg, respectively, were used to determine the apparent digestibility by means of three in vivo digestibility trials on hay, hay plus wheat bran (60 : 40) and hay plus extruded flax (80 : 20). Feces were collected over a 6-day period with a previous 14-day adaptation period. The three digestibility trials were carried out to determine the digestion coefficients of the three diets and, indirectly, of the two concentrates. The digestion coefficients of the diets were determined for the dry matter, organic matter, crude protein and gross energy, whereas the apparent digestion coefficients of the same parameters were calculated for wheat bran and extruded flax, by calculating the difference from the previous results. The data were analyzed using the Student t-test for paired samples. The digestion coefficients obtained were similar when the total collection of feces and the AIA method were used. Higher data variability, confirmed by a greater standard deviation, was observed using the AIA method to estimate the apparent digestion coefficients. It can be concluded that the use of AIA as an internal marker in digestibility trials on average leads to values similar to those obtained with the total collection of feces and can therefore be considered a less-expensive method to determine apparent digestion coefficients. Nevertheless, the total collection of feces should still be considered the best choice to determine the digestibility of some specific feedstuffs.

  14. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    early pyroclastic phase of the formation of Kima'Kho, a tuya in northern B.C., Canada produced a subaqueous pyroclastic cone which became emergent during the latter stages of formation. Armoured lapilli are pervasive within the emergent upper third of the sequence. No other types of ash aggregates have been observed. Petrographic and textural analysis of the armoured lapilli shows them to comprise a central 2-30 mm-sized, juvenile, vesiculated pyroclast, concentrically coated by mm-scale layers of 10-250 μm sized ash particles. At Kima'Kho, the armoured lapilli are shown to be a direct indicator of fallout from a sustained plume attended by concomitant production of pyroclastic density currents. The size and internal structure of the armoured lapilli provide constraints on the nature of the initial explosive phase of eruption at Kima'Kho. Their proximity to the vent also indicates rapid aggregation within the eruption plume. Within both sequences rapid aggregation of ash particles occurred in proximity to the vent. However, the conditions were substantially different leading to the production of armoured lapilli (no accretionary lapilli) at Kima'Kho and diverse ash aggregates but no armoured lapilli at A418. Here we investigate vent-proximal ash aggregation and the specific conditions which lead to the formation of coated ash pellets and armoured lapilli.

  15. Direct utilization - recovery of minerals from coal fly ash. Fossil Energy Program. Technical progress report, 1 April 1984-30 June 1984

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1984-08-01

    Research progress is reported on two methods for extracting metal values from power plant fly ash. In the first method (the HiChlor process), a carbochlorination reaction is used to produce a mixture of volatile metal chlorides from the oxides in the ash. Developmental research is underway on a unique slurry reactor in which the ash is contacted by gaseous chlorine while suspended with finely divided carbon in a molten salt (NaCl + AlCl/sub 3/). Experimental apparatus is being tested and the necessary analytical procedures are being developed. In the second method, a lime-sinter solid state reaction is used to selectively convert the alumina in the ash to a soluble form. The alumina is recovered by leaching the finely divided clinker. This report deals with the effects of mineralizers on the sinter reaction as a means for increasing alumina yield and reducing the required temperature. Dissolved silica in the alumina-containing extract from the leaching of the lime-sinter clinker can result in an alumina product that fails to meet electrolytic cell feed specifications. Research has shown that the silica content can be reduced by digestion with a small amount of lime. The amount of lime addition, digestion temperatures required, and desilication reactions occurring are reported. New data are also presented on the recovery and purification of the alumina product. Preliminary research on the production of low-alumina, sulfate resistant cement from the extracted sinter residue has resulted in information on the need for such cement, estimated costs, and experimental work required. 5 references, 4 figures, 3 tables.

  16. Direct utilization-recovery of minerals from coal fly ash. Fossil Energy Program. Technical progress report, 1 October 1979-31 December 1979

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1980-03-01

    Research is focused on the development of methods for recovering minerals from power plant fly ash. Definition and refinement of steps in the high-temperature (HiChlor) gas chlorination process and in the lime-soda sinter process are emphasized. Samples of chlorinated ash residues were analyzed to determine changes in physical structure and to measure compositions of individual particles. The results show that when ash particles are fractured by heat treatment the chlorination of contained alumina and iron is more complete. The use of SiCl/sub 4/ as a chlorination agent in addition to chlorine was studied as a method to reduce the amount of silica being chlorinated. Optimum conditions for SiCl/sub 4/ partial pressure and reaction temperature reduced the percentage of silica chlorinated from 20% without SiCl/sub 4/ to about 5%, with minimal reduction in the percentage of alumina reacted. Evaluation of waste FGD sludges and FBC residues for use as lime resources in the lime-soda sinter process has begun, and further research was conducted on high-pressure desilication of sinter extraction filtrates. At optimum conditions, the concentration of dissolved silica was reduced by 60%, but this is still in excess of the silica specification for alumina used in metal production. Chemical beneficiation of magnetically separated fly ash showed that the contained silica dissolves quickly during a high-pressure alkali extraction, and that most of the contained alumina is dissolved after one-half hour. Development of a two-stage process, first dissolving the silica and then the alumina in even less time, shows promise of further reducing the size and cost of the extraction equipment required.

  17. Advanced research and technology, direct utilization: recovery of minerals from coal fly ash. Fossil energy program. Technical progress report, 1 October 1980-31 December 1980

    SciTech Connect

    Burnet, G.; Weiss, S.J.; Murtha, M.J.

    1981-02-01

    The purpose of this research is to develop methods to process fly ash for the separation and use of an iron-rich fraction, for the recovery of metals, primarily Al and Ti, and for use of the process residues. Research during this report period of the HiChlor process for the extraction of alumina and titania by high-temperature chlorination of a fly ash-reductant mixture included investigation of the simulation of the reactions as a design tool, the assembly of a unit to measure reaction kinetic rates and particle specific surface areas and porosities, and the design of equipment to measure necessary chloride product separation data. A pretreatment chlorination reaction using CO and Cl/sub 2/ was found to be capable of removing 80% of the iron with only minimal alumina and silica reaction. Development of the lime-soda sinter process includes the collection of data on the phenomenon of auto-disintegration of lime-fly ash sinters. Results indicate that it is the presence of minor constituents having +5 pr +6 valence cations of a size that can enter the lattice of the calcium silicate which prevent sinter auto-disintegration.

  18. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments.

    PubMed

    Pérez-López, Rafael; Nieto, José Miguel; de Almodóvar, Gabriel Ruiz

    2007-04-01

    The production of Acid Mine Drainage (AMD) as a result of the oxidative dissolution of sulphides is one of the main pollution problems affecting natural watercourses in mining environments with sulphide-rich residues. In this work, the generation of AMD was prevented by means of the addition of fly ash to sulphide-rich residues in non-saturated column experiments. A column experiment filled with a pyrite-rich sludge with artificial irrigation leached acid drainages (pH approx. 2) containing high concentrations of sulphate, iron and other metals. However, non-saturated column experiments filled with pyritic-rich sludge and fly ash drained leachates characterized by alkaline pH (pH up to 10), low sulphate concentration, and lack of iron and other metals in solution. The pyrite oxidative dissolution at high pH, as a consequence of the leaching of fly ash, favours the metal precipitation inside the column (mainly iron), the coating of pyrite grains, and the attenuation of the oxidation process, resulting in a great improvement in the quality of the leachates.

  19. Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Taylor, John G.

    1990-01-01

    The internal performance of an axisymmetric convergent-divergent nozzle and a nonaxisymmetric convergent-divergent nozzle, both of which utilized a gimbal type mechanism for thrust vectoring was evaluated in the Static Test Facility of the Langley 16-Foot Transonic Tunnel. The nonaxisymmetric nozzle used the gimbal concept for yaw thrust vectoring only; pitch thrust vectoring was accomplished by simultaneous deflection of the upper and lower divergent flaps. The model geometric parameters investigated were pitch vector angle for the axisymmetric nozzle and pitch vector angle, yaw vector angle, nozzle throat aspect ratio, and nozzle expansion ratio for the nonaxisymmetric nozzle. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 12.0.

  20. Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall.

    PubMed

    Chronis, Nikolas; Lee, Luke P

    2004-04-01

    A total internal reflection (TIR)-based biochip utilizing a polymer-filled cavity with a micromirror sidewall has been designed and fabricated. The implementation of the micromirror sidewall cavity facilitates precise alignment of the excitation light beam into the system. The incident angle of illumination can be easily modified by selecting polymers of different indices of refraction while optical losses are minimized. The design enables the hybrid, vertical integration of a laser diode and a CCD camera, resulting in a compact optical system. Brownian motion of fluorescent microspheres and real-time photobleaching of rhodamine 6G molecules is demonstrated. The proposed TIR-based chip simplifies current TIR optical configurations and could potentially be used as an optical-microfluidic platform for an integrated lab-on-a-chip microsystem.

  1. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    SciTech Connect

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-10-03

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

  2. JV Task 6 - Coal Ash Resources Research Consortium Research

    SciTech Connect

    Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

    2008-04-01

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of coal combustion by-products (CCBs). CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program (JSRP), which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCB performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 1998 to 2007 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. CARRC topical reports were prepared on several completed tasks. Specific CARRC 1998B2007 accomplishments included: (1) Development of several ASTM International Standard Guides for CCB utilization applications. (2) Organization and presentation of training courses for CCB professionals and teachers. (3) Development of online resources including the Coal Ash Resource Center, Ash from Biomass in Coal (ABC) of cocombustion ash characteristics, and the Buyer's Guide to Coal-Ash Containing Products. In addition, development of

  3. High-resolution 3D analyses of the shape and internal constituents of small volcanic ash particles: The contribution of SEM micro-computed tomography (SEM micro-CT)

    NASA Astrophysics Data System (ADS)

    Vonlanthen, Pierre; Rausch, Juanita; Ketcham, Richard A.; Putlitz, Benita; Baumgartner, Lukas P.; Grobéty, Bernard

    2015-02-01

    The morphology of small volcanic ash particles is fundamental to our understanding of magma fragmentation, and in transport modeling of volcanic plumes and clouds. Until recently, the analysis of 3D features in small objects (< 250 μm) was either restricted to extrapolations from 2D approaches, partial stereo-imaging, or CT methods having limited spatial resolution and/or accessibility. In this study, an X-ray computed-tomography technique known as SEM micro-CT, also called 3D X-ray ultramicroscopy (3D XuM), was used to investigate the 3D morphology of small volcanic ash particles (125-250 μm sieve fraction), as well as their vesicle and microcrystal distribution. The samples were selected from four stratigraphically well-established tephra layers of the Meerfelder Maar (West Eifel Volcanic Field, Germany). Resolution tests performed on a Beametr v1 pattern sample along with Monte Carlo simulations of X-ray emission volumes indicated that a spatial resolution of 0.65 μm was obtained for X-ray shadow projections using a standard thermionic SEM and a bulk brass target as X-ray source. Analysis of a smaller volcanic ash particle (64-125 μm sieve fraction) showed that features with volumes > 20 μm3 (~ 3.5 μm in diameter) can be successfully reconstructed and quantified. In addition, new functionalities of the Blob3D software were developed to allow the particle shape factors frequently used as input parameters in ash transport and dispersion models to be calculated. This study indicates that SEM micro-CT is very well suited to quantify the various aspects of shape in fine volcanic ash, and potentially also to investigate the 3D morphology and internal structure of any object < 0.1 mm3.

  4. Cost-utility analysis of stenting versus endarterectomy in the International Carotid Stenting Study

    PubMed Central

    Morris, Stephen; Patel, Nishma V; Dobson, Joanna; Featherstone, Roland L; Richards, Toby; Luengo-Fernandez, Ramon; Rothwell, Peter M; Brown, Martin M

    2017-01-01

    Background The International Carotid Stenting Study (ICSS) was a multicentre randomised trial in which patients with symptomatic carotid artery stenosis were randomly allocated to treatment by carotid stenting or endarterectomy. Economic evidence comparing these treatments is limited and inconsistent. Aims We compared the cost-effectiveness of stenting versus endarterectomy using ICSS data. Methods We performed a cost-utility analysis estimating mean costs and quality-adjusted life years (QALYs) per patient for both treatments over a five-year time horizon based on resource use data and utility values collected in the trial. Costs of managing stroke events were estimated using individual patient data from a UK population-based study (Oxford Vascular Study). Results Mean costs per patient (95% CI) were US$10 477 ($9669 to $11 285) in the stenting group (N=853) and $9669 ($8835 to $10 504) in the endarterectomy group (N=857).There were no differences in mean QALYs per patient (3.247 (3.160 to 3.333) and 3.228 (3.150 to 3.306), respectively). There were no differences in adjusted costs between groups (mean incremental costs for stenting versus endarterectomy $736 (95% CI -$353 to $1826)) or adjusted outcomes (mean QALYs gained -0.010 (95% CI -0.117 to 0.097)). The incremental net monetary benefit for stenting versus endarterectomy was not significantly different from zero at the maximum willingness to pay for a QALY commonly used in the UK. Sensitivity analyses showed little uncertainty in these findings. Conclusions Economic considerations should not affect whether patients with symptomatic carotid stenosis undergo stenting or endarterectomy. PMID:26880056

  5. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2007-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  6. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.; Thumm, Tracy L.

    2006-01-01

    In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  7. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2006-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  8. An innovative vibration fluidized bed ash cooler

    SciTech Connect

    Duan, Y.; Zhang, M.; Liu, A.; Yao, Z.; Tang, H.; Liu, Q.

    1999-07-01

    With the ever-increasing versatility, scaling up and commercialization of coal-fired fluidized bed boiler technologies, it has become more and more important to improve the technique of draining bed ash from bubbling or circulating fluidized bed boilers. Choosing an ash cooler is a good way but highly stable and reliable system is hard to find for a massive ash flow rate having a broad particle size distributions. An innovative technique known as Vibration Fluidized Bed Ash Cooler (VFBAC) is proposed in this paper. It can drain bottom ash at a high temperature from FB or CFB boilers continuously and controllably. In this device, air used for cooling can be used as combustion-aided air or coal spreading air. The hot ash is cooled by the air to a temperature which it can be transported easily and safely by conventional technology. Meanwhile, an industrial apparatus utilizing the new technology was manufactured and used in a 35 t/h bubbling FB boiler. For the purpose of detecting residence time distribution of wide-sieved bed materials in this ash cooler systematically, advantage was taken of a new approach for physical quality discrimination. Investigations into the hydrodynamic characteristics of the gas-solid two-phase flows and theoretical analyses on hot operational performance were carried out. The results show that heat recovery efficiency of the ash cooler reaches 85% greater when operating at a ratio of air to ash of 1.5{approximately}2.5 Nm{sup 3}/kg.

  9. Ash recycling - the coming of age!

    SciTech Connect

    Barnes, J.M.; Roffman, H.K.; Roethel, F.J.

    1997-12-01

    A major concern of the Waste-To-Energy (WTE) industry is ash disposal and the uncertainty of controlled long term ash management. Ash management costs have risen steadily over the last ten years making it the fastest rising cost segment of the WTE industry. The challenge of how to curb the rising cost while maintaining the protection of human health and the environment has been accomplished by responsibly recycling the ash on a commercial basis. American Ash Recycling Corp. (AAR), utilizing the Duos Engineering (USA), Inc. patent pending ash recycling technology, has promoted ash recycling on a commercial basis in the United States. An important product of the processing and recycling of non-hazardous municipal waste combustor (MWC) ash is Treated Ash Aggregate (TAA). Additionally, ferrous and non-ferrous metals are recovered and unburned materials removed and returned to the WTE facility for re-combustion. The TAA is sized and then treated by the WES-PHix{reg_sign} immobilization process in order to reduce the potential solubility and environmental availability of the metal constituents of the MWC ash. The TAA is available for commercial use in such applications as an aggregate substitute in roadway materials, asphalt and concrete applications, as structural fill, and as landfill cover. Commercial and technical considerations that must be addressed before ash can be beneficially recycled are: permitting requirements, physical and chemical characteristics, potential end uses, environmental concerns (product safety), product market development, and economic viability. True recycling only occurs if all of these considerations can be addressed. This paper presents the details of AAR`s most recent experience in the development of an ash recycling facility in the State of Maine and the associated beneficial use of the TAA product. Each of the considerations listed above are discussed with a special focus on the permitting process.

  10. Market assessment and technical feasibility study of PFBC ash use

    SciTech Connect

    Smith, V.E.; Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Wheeldon, J.

    1994-10-01

    The overall objectives of this study are to determine the market potential and the technical feasibility of using PFBC ash in high volume ash use applications. The information will be of direct use to the utility industry in assessing the economics of PFBC power generation in light of ash disposal avoidance through ash marketing. In addition, the research is expected to result in the generation of generic data on the use of PFBC ash that could lead to novel processing options and procedures. The specific objectives of the proposed research and demonstration effort are: Define resent and future market potential of PFBC ash for a range of applications (Phase I); assess the technical feasibility of PFBC ash use in construction, civil engineering and agricultural applications (Phase II); and demonstrate the most promising of the market and ash use options in full-scale field demonstrations (Phase III).

  11. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting.

    PubMed

    Bhagiyalakshmi, Margandan; Yun, Lee Ji; Anuradha, Ramani; Jang, Hyun Tae

    2010-03-15

    Mesoporous MCM-41, MCM-48 and SBA-15 were synthesized using Rice husk ash (RHA) as the silica source and their defective Si-OH sites were functionalized by 3-chloropropyltrimethoxysilane (CPTMS) which was subsequently grafted with amine compounds, Tris(2-aminoethyl)amine (TREN) and Tetraethylenepentamine (TEPA). X-ray powder diffraction (XRD) and BET results of the parent mesoporous silica suggested their closeness of structural properties to those obtained from conventional silica sources. CO(2) adsorption of branched amine TREN and straight chain amine TEPA at 25, 50 and 75 degrees C was obtained by Thermogravimetric Analyser (TGA) at atmospheric pressure. TREN grafted mesoporous silica showed 7% of CO(2) adsorption while TEPA grafted mesoporous silicas showed less CO(2) adsorption, which is due to the presence of isolated amine groups in TREN. TREN grafted mesoporous silicas were also observed to be selective towards CO(2), thermally stable and recyclable. The order of CO(2) adsorption with respect to amount of amine grafting was observed to be MCM-48/TREN>MCM-41/TREN>SBA-15/TREN.

  12. Delay/Disruption Tolerance Networking (DTN) Implementation and Utilization Options on the International Space Station

    NASA Technical Reports Server (NTRS)

    Holbrook, Mark; Pitts, Robert Lee; Gifford, Kevin K.; Jenkins, Andrew; Kuzminsky, Sebastian

    2010-01-01

    The International Space Station (ISS) is in an operational configuration and nearing final assembly. With its maturity and diverse payloads onboard, the opportunity exists to extend the orbital lab into a facility to exercise and demonstrate Delay/Disruption Tolerant Networking (DTN). DTN is an end-to-end network service providing communications through environments characterized by intermittent connectivity, variable delays, high bit error rates, asymmetric links and simplex links. The DTN protocols, also known as bundle protocols, provide a store-and-forward capability to accommodate end-to-end network services. Key capabilities of the bundling protocols include: the Ability to cope with intermittent connectivity, the Ability to take advantage of scheduled and opportunistic connectivity (in addition to always up connectivity), Custody Transfer, and end-to-end security. Colorado University at Boulder and the Huntsville Operational Support Center (HOSC) have been developing a DTN capability utilizing the Commercial Generic Bioprocessing Apparatus (CGBA) payload resources onboard the ISS, at the Boulder Payload Operations Center (POC) and at the HOSC. The DTN capability is in parallel with and is designed to augment current capabilities. The architecture consists of DTN endpoint nodes on the ISS and at the Boulder POC, and a DTN node at the HOSC. The DTN network is composed of two implementations; the Interplanetary Overlay Network (ION) and the open source DTN2 implementation. This paper presents the architecture, implementation, and lessons learned. By being able to handle the types of environments described above, the DTN technology will be instrumental in extending networks into deep space to support future missions to other planets and other solar system points of interest. Thus, this paper also discusses how this technology will be applicable to these types of deep space exploration missions.

  13. Direct utilization - recovery of minerals from coal fly ash. Technical progress report, January 1-March 31, 1982. [CO/Cl/sub 2/; C/Cl/sub 2/ and COCl

    SciTech Connect

    Burnet, G.; Dunker, J.W.; Murtha, M.J.

    1982-05-01

    Research on the chlorination of a leached Texas lignite fly ash has examined CO/Cl/sub 2/, C/Cl/sub 2/, and COCl/sub 2/ as reaction systems. Arrhenius plots suggest that there is a change in reaction mechanisms with increasing temperature in both the CO/Cl/sub 2/ and the C/Cl/sub 2/ systems. Reaction in the COCl/sub 2/ system appears to be limited by mass transfer, but this system has the highest initial reaction rates at lower temperatures of the systems studied. The research of coal fly ash sinter processes include the collection of limestone-soda ash sinter alumina extraction data using two additional fly ashes. A fly ash sample containing over 30 weight percent alumina was obtained from South Africa. This fly ash, which is the highest alumina content ash that has been investigated in this work, yielded, for optimum sinter mixture composition, over 90% alumina extraction. The other fly ash processed was a subbituminous fly ash of western coal which was obtained from the Ottumwa, Iowa, power station. This fly ash is very similar to other western coal fly ashes which have been investigated previously, but this ash is available locally and it will be used in the larger-scale sinter tests using the rotary kiln. Several tests were run investigating the desilication of extracted filtrates. Research has also been conducted on the magnetic separation of coal fly ash in a water slurry, and data are presented on the use of magnetically separated fly ash as heavy medium material in coal beneficiation.

  14. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  15. Hazards Associated With Recent Popocatepetl Ash Emissions

    NASA Astrophysics Data System (ADS)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  16. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; Wollack, Edward J.; Wright, Kenneth H.

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  17. Physicochemical characterization of Spanish fly ashes

    SciTech Connect

    Querol, X.; Umana, J.C.; Alastuey, A.; Bertrana, C.; Lopez-Soler, A.; Plana, F.

    1999-12-01

    This article summarizes the results obtained from the physical, chemical, and mineralogical characterization of 14 fly ash samples. Major features that influence the utilization of each fly ash for zeolite synthesis are evidenced, and several fly ash types were selected as potential high-quality starting material for zeolite synthesis and ceramic applications. The main parameters influencing this selection were relatively small grain size; high Al and Si contents; high glass content; low CaO, S, and Fe contents; and relatively low heavy metal concentration. The Compostilla and Cou He fly ashes have high potential applications because of the low content of major impurities (such as Ca, Fe, and S) and the low content of soluble hazardous elements. The Espiel, Escucha, Los Barrios, As Pontes, Soto de Ribera, Meirama, Narcea, and Teruel fly ashes have important application potential, but this potential is slightly limited by the intermediate content of nonreactive impurities, such as Fe and Ca. The La Robla fly ash is of moderate interest, since the relatively high Ca and Fe oxide contents may reduce its potential applications. Finally, the Puertollano fly ash also has limited application because of the very high concentration of some heavy metals such as As, Cd, Ge, Hg, Pb, and Zn. From a mineralogical point of view, the Compostilla, Espiel, and Soto de Ribera fly ashes show the highest aluminum-silicate glass content and, consequently, the highest industrial application potential.

  18. Production of inorganic pellet binders from fly-ash. Technical report, March 1--May 31, 1995

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1995-12-31

    Fly-ash is produced by all coal-fired utilities, and it must be removed from the plant exhaust gases, collected, and disposed of. While much work has been done in the past to utilize fly-ash rather than disposing of it, we nevertheless do not find widespread examples of successful industrial utilization. This is because past work has tended to find uses only for high-quality, easily-utilized fly-ashes, which account for less than 25% of the fly-ash that is produced. The main factor which makes fly-ashes unusable is a high unburned carbon content. In this project, physical separation technologies are being used to remove this carbon, and to convert these unusable fly-ashes into usable products. The main application being studied for the processed fly-ash is as a binder for inorganic materials, such as iron-ore pellets. In the second quarter, additional fly-ash samples were collected from the E. D. Edwards station (Bartonville, IL). Experimentation was begun to study the removal of carbon from these fly-ashes by froth flotation, and make and test pellets that use fly-ash as binder. During the current quarter, flotation experiments were continued on the fly- ashes. Three types of ashes were studied: 1. Ash from the disposal pond (``wet`` ash); 2. Dry fly-ash collected directly from the standard burners (``low-carbon`` ash); 3. Dry fly-ash collected from the low-NOx burners (``high-carbon`` ash). Each of these was chemically analyzed, and conventional flotation experiments were carried out to determine the optimum reagent dosages for carbon removal. Decarbonized ashes were then made from each ash type, in sufficient quantity to be used in pelletization experiments.

  19. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  20. Utilizing Technology to Infuse International Content into Social Work Curriculum: A Siberian Correspondent Model

    ERIC Educational Resources Information Center

    Bye, Lynn; Prom, Kim Boland; Tsybikdorzhieva, Bairma; Boldonova, Irina

    2006-01-01

    This paper presents a model for using technology to help fulfill the Council on Social Work Education requirement for international content in the social work curriculum. The literature on including global content and using Web-based technology in social work education is reviewed. Special considerations for international Web-based discussions are…

  1. Asymmetric Ashes

    NASA Astrophysics Data System (ADS)

    2006-11-01

    , it is. "This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed." "Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang. Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

  2. Alpha ash transport and ash control

    SciTech Connect

    Miley, G.H.; Hu, S.C.; Varadarajan, V.

    1990-01-01

    This paper discusses: thermal {alpha}-particle transport is a crucial issue in ash buildup. The transport will determine if buildup prevents ignition and if external control is necessary. Due to uncertainties in the transport coefficients, 1-1/2-D sensitivity study of the influence on the fusion power density is done using the BALDUR code. The Baldur simulations with varying diffusion coefficients for ash plasma are performed. The results of ash transport in the presence of sawteeth and varying edge conditions are discussed. Also, the nature of the fishbone oscillation in the presence of two hot species consisting of hot alphas and beam injected ions is discussed. The sawteeth and fishbones can be potential mechanisms for enhanced ash transport; the latter will indirectly influence the ash transport.

  3. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  4. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  5. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  6. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  7. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation

    NASA Astrophysics Data System (ADS)

    Ganguli, Anurag; Saha, Bhaskar; Raghavan, Ajay; Kiesel, Peter; Arakaki, Kyle; Schuh, Andreas; Schwartz, Julian; Hegyi, Alex; Sommer, Lars Wilko; Lochbaum, Alexander; Sahu, Saroj; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic (FO) sensors. High-performance large-format pouch cells with embedded FO sensors were fabricated. This second part of the paper focuses on the internal signals obtained from these FO sensors. The details of the method to isolate intercalation strain and temperature signals are discussed. Data collected under various xEV operational conditions are presented. An algorithm employing dynamic time warping and Kalman filtering was used to estimate state-of-charge with high accuracy from these internal FO signals. Their utility for high-accuracy, predictive state-of-health estimation is also explored.

  8. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  9. Effective drinking water collaborations are not accidental: interagency relationships in the international water utility sector.

    PubMed

    Jalba, D I; Cromar, N J; Pollard, S J T; Charrois, J W; Bradshaw, R; Hrudey, S E

    2014-02-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water.

  10. Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor

    SciTech Connect

    Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W.

    2007-06-15

    The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

  11. Utilization of Electrical Impedance Tomography to Detect Internal Anomalies in Southern Pine Logs

    NASA Astrophysics Data System (ADS)

    Steele, Philip; Cooper, Jerome

    2006-03-01

    A large body of research has shown that knowledge of internal defect location in logs prior to sawing has the potential to significantly increase lumber value yield. This paper describes a relatively low-capital log scanning technique based on Electrical Impedance Tomography (EIT) to image anomalies interior to sawlogs. Static testing results showed that knots, juvenile and compression wood internal to logs can be detected. Although resolution is lower than that of CT and NMR technologies, the low cost of this EIT application should render it competitive.

  12. Utilizing Video Conferencing to Introduce an International Perspective to Foundation Practice

    ERIC Educational Resources Information Center

    Forgey, Mary Ann; Loughran, Hilda; Hansen, Johna

    2013-01-01

    Video conferencing has much potential to enrich international social work education. In this educational initiative, video conferencing was used to deliver a joint foundation social work practice class to students attending an MSW degree program both in the United States and in Ireland. Student feedback indicated that they gained an appreciation…

  13. Comparative study on the characteristics of fly ash and bottom ash geopolymers.

    PubMed

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-01

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na(2)SiO(3)) solutions were used as activators. A mass ratio of 1.5 Na(2)SiO(3)/NaOH and three concentrations of NaOH (5, 10, and 15M) were used; the geopolymers were cured at 65 degrees C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  14. Comparative study on the characteristics of fly ash and bottom ash geopolymers

    SciTech Connect

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-15

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na{sub 2}SiO{sub 3}) solutions were used as activators. A mass ratio of 1.5 Na{sub 2}SiO{sub 3}/NaOH and three concentrations of NaOH (5, 10, and 15 M) were used; the geopolymers were cured at 65 deg. C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  15. Improving dynamic phytoplankton reserve-utilization models with an indirect proxy for internal nitrogen.

    PubMed

    Malerba, Martino E; Heimann, Kirsten; Connolly, Sean R

    2016-09-07

    Ecologists have often used indirect proxies to represent variables that are difficult or impossible to measure directly. In phytoplankton, the internal concentration of the most limiting nutrient in a cell determines its growth rate. However, directly measuring the concentration of nutrients within cells is inaccurate, expensive, destructive, and time-consuming, substantially impairing our ability to model growth rates in nutrient-limited phytoplankton populations. The red chlorophyll autofluorescence (hereafter "red fluorescence") signal emitted by a cell is highly correlated with nitrogen quota in nitrogen-limited phytoplankton species. The aim of this study was to evaluate the reliability of including flow cytometric red fluorescence as a proxy for internal nitrogen status to model phytoplankton growth rates. To this end, we used the classic Quota model and designed three approaches to calibrate its model parameters to data: where empirical observations on cell internal nitrogen quota were used to fit the model ("Nitrogen-Quota approach"), where quota dynamics were inferred only from changes in medium nutrient depletion and population density ("Virtual-Quota approach"), or where red fluorescence emission of a cell was used as an indirect proxy for its internal nitrogen quota ("Fluorescence-Quota approach"). Two separate analyses were carried out. In the first analysis, stochastic model simulations were parameterized from published empirical relationships and used to generate dynamics of phytoplankton communities reared under nitrogen-limited conditions. Quota models were fitted to the dynamics of each simulated species with the three different approaches and the performance of each model was compared. In the second analysis, we fit Quota models to laboratory time-series and we calculate the ability of each calibration approach to describe the observed trajectories of internal nitrogen quota in the culture. Results from both analyses concluded that the

  16. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  17. Utilizing intentional internal resonance to achieve multi-harmonic atomic force microscopy.

    PubMed

    Jeong, Bongwon; Pettit, Chris; Dharmasena, Sajith; Keum, Hohyun; Lee, Joohyung; Kim, Jungkyu; Kim, Seok; McFarland, D Michael; Bergman, Lawrence A; Vakakis, Alexander F; Cho, Hanna

    2016-03-29

    During dynamic atomic force microscopy (AFM), the deflection of a scanning cantilever generates multiple frequency terms due to the nonlinear nature of AFM tip-sample interactions. Even though each frequency term is reasonably expected to encode information about the sample, only the fundamental frequency term is typically decoded to provide topographic mapping of the measured surface. One of main reasons for discarding higher harmonic signals is their low signal-to-noise ratio. Here, we introduce a new design concept for multi-harmonic AFM, exploiting intentional nonlinear internal resonance for the enhancement of higher harmonics. The nonlinear internal resonance, triggered by the non-smooth tip-sample dynamic interactions, results in nonlinear energy transfers from the directly excited fundamental bending mode to the higher-frequency mode and, hence, enhancement of the higher harmonic of the measured response. It is verified through detailed theoretical and experimental study that this AFM design can robustly incorporate the required internal resonance and enable high-frequency AFM measurements. Measurements on an inhomogeneous polymer specimen demonstrate the efficacy of the proposed design, namely that the higher harmonic of the measured response is capable of enhanced simultaneous topography imaging and compositional mapping, exhibiting less crosstalk with an abrupt height change.

  18. Utilizing intentional internal resonance to achieve multi-harmonic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Jeong, Bongwon; Pettit, Chris; Dharmasena, Sajith; Keum, Hohyun; Lee, Joohyung; Kim, Jungkyu; Kim, Seok; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.; Cho, Hanna

    2016-03-01

    During dynamic atomic force microscopy (AFM), the deflection of a scanning cantilever generates multiple frequency terms due to the nonlinear nature of AFM tip-sample interactions. Even though each frequency term is reasonably expected to encode information about the sample, only the fundamental frequency term is typically decoded to provide topographic mapping of the measured surface. One of main reasons for discarding higher harmonic signals is their low signal-to-noise ratio. Here, we introduce a new design concept for multi-harmonic AFM, exploiting intentional nonlinear internal resonance for the enhancement of higher harmonics. The nonlinear internal resonance, triggered by the non-smooth tip-sample dynamic interactions, results in nonlinear energy transfers from the directly excited fundamental bending mode to the higher-frequency mode and, hence, enhancement of the higher harmonic of the measured response. It is verified through detailed theoretical and experimental study that this AFM design can robustly incorporate the required internal resonance and enable high-frequency AFM measurements. Measurements on an inhomogeneous polymer specimen demonstrate the efficacy of the proposed design, namely that the higher harmonic of the measured response is capable of enhanced simultaneous topography imaging and compositional mapping, exhibiting less crosstalk with an abrupt height change.

  19. Validation of Volcanic Ash Forecasting Performed by the Washington Volcanic Ash Advisory Center

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Hanna, J.

    2009-12-01

    In support of NOAA’s mission to protect life and property, the Satellite Analysis Branch (SAB) uses satellite imagery to monitor volcanic eruptions and track volcanic ash. The Washington Volcanic Ash Advisory Center (VAAC) was established in late 1997 through an agreement with the International Civil Aviation Organization (ICAO). A volcanic ash advisory (VAA) is issued every 6 hours while an eruption is occurring. Information about the current location and height of the volcanic ash as well as any pertinent meteorological information is contained within the VAA. In addition, when ash is detected in satellite imagery, 6-, 12- and 18-hour forecasts of ash height and location are provided. This information is garnered from many sources including Meteorological Watch Offices (MWOs), pilot reports (PIREPs), model forecast winds, radiosondes and volcano observatories. The Washington VAAC has performed a validation of their 6, 12 and 18 hour airborne volcanic ash forecasts issued since October, 2007. The volcanic ash forecasts are viewed dichotomously (yes/no) with the frequency of yes and no events placed into a contingency table. A large variety of categorical statistics useful in describing forecast performance are then computed from the resulting contingency table.

  20. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  1. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium

    PubMed Central

    Freschi, Luca; Jeukens, Julie; Kukavica-Ibrulj, Irena; Boyle, Brian; Dupont, Marie-Josée; Laroche, Jérôme; Larose, Stéphane; Maaroufi, Halim; Fothergill, Joanne L.; Moore, Matthew; Winsor, Geoffrey L.; Aaron, Shawn D.; Barbeau, Jean; Bell, Scott C.; Burns, Jane L.; Camara, Miguel; Cantin, André; Charette, Steve J.; Dewar, Ken; Déziel, Éric; Grimwood, Keith; Hancock, Robert E. W.; Harrison, Joe J.; Heeb, Stephan; Jelsbak, Lars; Jia, Baofeng; Kenna, Dervla T.; Kidd, Timothy J.; Klockgether, Jens; Lam, Joseph S.; Lamont, Iain L.; Lewenza, Shawn; Loman, Nick; Malouin, François; Manos, Jim; McArthur, Andrew G.; McKeown, Josie; Milot, Julie; Naghra, Hardeep; Nguyen, Dao; Pereira, Sheldon K.; Perron, Gabriel G.; Pirnay, Jean-Paul; Rainey, Paul B.; Rousseau, Simon; Santos, Pedro M.; Stephenson, Anne; Taylor, Véronique; Turton, Jane F.; Waglechner, Nicholas; Williams, Paul; Thrane, Sandra W.; Wright, Gerard D.; Brinkman, Fiona S. L.; Tucker, Nicholas P.; Tümmler, Burkhard; Winstanley, Craig; Levesque, Roger C.

    2015-01-01

    The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care. PMID:26483767

  2. In vivo Raman spectroscopy of human uterine cervix: exploring the utility of vagina as an internal control

    NASA Astrophysics Data System (ADS)

    Shaikh, Rubina; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Kedar K., Deodhar; Bharat, Rekhi; Krishna, C. Murali

    2014-08-01

    In vivo Raman spectroscopy is being projected as a new, noninvasive method for cervical cancer diagnosis. In most of the reported studies, normal areas in the cancerous cervix were used as control. However, in the Indian subcontinent, the majority of cervical cancers are detected at advanced stages, leaving no normal sites for acquiring control spectra. Moreover, vagina and ectocervix are reported to have similar biochemical composition. Thus, in the present study, we have evaluated the feasibility of classifying normal and cancerous conditions in the Indian population and we have also explored the utility of the vagina as an internal control. A total of 228 normal and 181 tumor in vivo Raman spectra were acquired from 93 subjects under clinical supervision. The spectral features in normal conditions suggest the presence of collagen, while DNA and noncollagenous proteins were abundant in tumors. Principal-component linear discriminant analysis (PC-LDA) yielded 97% classification efficiency between normal and tumor groups. An analysis of a normal cervix and vaginal controls of cancerous and noncancerous subjects suggests similar spectral features between these groups. PC-LDA of tumor, normal cervix, and vaginal controls further support the utility of the vagina as an internal control. Overall, findings of the study corroborate with earlier studies and facilitate objective, noninvasive, and rapid Raman spectroscopic-based screening/diagnosis of cervical cancers.

  3. Internal efficiency of nutrient utilization: what is it and how to measure it during vegetative plant growth?

    PubMed

    Santa-María, Guillermo E; Moriconi, Jorge I; Oliferuk, Sonia

    2015-06-01

    Efficient use of the resources required by plants to sustain crop production is considered an important objective in agriculture. In this context, the idea of developing crops with an enhanced ability to utilize mineral nutrients already taken up by roots has been proposed. In recent years powerful tools that allow the association of phenotypic variation with high-resolution genetic maps of crop plants have also emerged. To take advantage of these tools, accurate methods are needed to estimate the internal efficiency of nutrient utilization (ENU) at the whole-plant level, which requires using suitable conceptual and experimental approaches. Here we highlight some inconsistencies in the definitions of ENU commonly used for ENU 'phenotyping' at the vegetative stage and suggest that it would be convenient to adopt a dynamic definition. The idea that ENU should provide information about the relationship between carbon and mineral nutrient economies mainly during the period under which growth is actually affected by low internal nutrient concentration is here advocated as a guide for the selection of adequate operational ENU formulae for the vegetative stage. The desirability of using experimental approaches that allow removal of the influence of nutrient acquisition efficiency on ENU estimations is highlighted. It is proposed that the use of simulation models could help refine the conclusions obtained through these experimental procedures. Some potential limitations in breeding for high ENU are also considered.

  4. Forecasting exposure to volcanic ash based on ash dispersion modeling

    NASA Astrophysics Data System (ADS)

    Peterson, Rorik A.; Dean, Ken G.

    2008-03-01

    A technique has been developed that uses Puff, a volcanic ash transport and dispersion (VATD) model, to forecast the relative exposure of aircraft and ground facilities to ash from a volcanic eruption. VATD models couple numerical weather prediction (NWP) data with physical descriptions of the initial eruptive plume, atmospheric dispersion, and settling of ash particles. Three distinct examples of variations on the technique are given using ERA-40 archived reanalysis NWP data. The Feb. 2000 NASA DC-8 event involving an eruption of Hekla volcano, Iceland is first used for analyzing a single flight. Results corroborate previous analyses that conclude the aircraft did encounter a diffuse cloud of volcanic origin, and indicate exposure within a factor of 10 compared to measurements made on the flight. The sensitivity of the technique to dispersion physics is demonstrated. The Feb. 2001 eruption of Mt. Cleveland, Alaska is used as a second example to demonstrate how this technique can be utilized to quickly assess the potential exposure of a multitude of aircraft during and soon after an event. Using flight tracking data from over 40,000 routes over three days, several flights that may have encountered low concentrations of ash were identified, and the exposure calculated. Relative changes in the quantity of exposure when the eruption duration is varied are discussed, and no clear trend is evident as the exposure increased for some flights and decreased for others. A third application of this technique is demonstrated by forecasting the near-surface airborne concentrations of ash that the cities of Yakima Washington, Boise Idaho, and Kelowna British Columbia might have experienced from an eruption of Mt. St. Helens anytime during the year 2000. Results indicate that proximity to the source does not accurately determine the potential hazard. Although an eruption did not occur during this time, the results serve as a demonstration of how existing cities or potential

  5. Utilizing the Southwest Ultraviolet Imaging System (SwUIS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric; Stern, S. Alan; Ennico-Smith, Kimberly

    2013-09-01

    We present the Southwest Ultraviolet Imaging System (SwUIS), a compact, low-cost instrument designed for remote sensing observations from a manned platform in space. It has two chief configurations; a high spatial resolution mode with a 7-inch Maksutov-Cassegrain telescope, and a large field-of-view camera mode using a lens assembly. It can operate with either an intensified CCD or an electron multiplying CCD camera. Interchangeable filters and lenses enable broadband and narrowband imaging at UV/visible/near-infrared wavelengths, over a range of spatial resolution. SwUIS has flown previously on Space Shuttle flights STS-85 and STS-93, where it recorded multiple UV images of planets, comets, and vulcanoids. We describe the instrument and its capabilities in detail. The SWUIS's broad wavelength coverage and versatile range of hardware configurations make it an attractive option for use as a facility instrument for Earth science and astronomical imaging investigations aboard the International Space Station.

  6. Volcanic Ash Transport and Dispersion Forecasting

    NASA Astrophysics Data System (ADS)

    Servranckx, R.; Stunder, B.

    2006-12-01

    Volcanic ash transport and dispersion models (VATDM) have been used operationally since the mid 1990's by the International Civil Aviation Organization (ICAO) designated Volcanic Ash Advisory Centers (VAAC) to provide ash forecast guidance. Over the years, significant improvements in the detection and prediction of airborne volcanic ash have been realized thanks to improved models, increases in computing power, 24-hr real time monitoring by VAACs / Meteorological Watch Offices and close coordination with Volcano Observatories around the world. Yet, predicting accurately the spatial and temporal structures of airborne volcanic ash and the deposition at the earth's surface remains a difficult and challenging problem. The forecasting problem is influenced by 3 main components. The first one (ERUPTION SOURCE PARAMETERS) comprises all non-meteorological parameters that characterize a specific eruption or volcanic ash cloud. For example, the volume / mass of ash released in the atmosphere, the duration of the eruption, the altitude and distribution of the ash cloud, the particle size distribution, etc. The second component (METEOROLOGY) includes all meteorological parameters (wind, moisture, stability, etc.) that are calculated by Numerical Weather Prediction models and that serve as input to the VATDM. The third component (TRANSPORT AND DISPERSION) combines input from the other 2 components through the use of VATDM to transport and disperse airborne volcanic ash in the atmosphere as well as depositing it at the surface though various removal mechanisms. Any weakness in one of the components may adversely affect the accuracy of the forecast. In a real-time, operational response context such as exists at the VAACs, the rapid delivery of the modeling results puts some constraints on model resolution and computing time. Efforts are ongoing to evaluate the reliability of VATDM forecasts though the use of various methods, including ensemble techniques. Remote sensing data

  7. Utilization of the International Space Station for Crew Autonomous Scheduling Test (CAST)

    NASA Technical Reports Server (NTRS)

    Healy, Matthew; Marquez, Jesica; Hillenius, Steven; Korth, David; Bakalyar, Laure Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke; Moore, William E., III; Deliz, Ivonne; Kanefsky, Bob; Zheng, Jimin; Henninger, Ashley; Edhlund, Isabelle; Smith, Kate; Kockler, William; Silva-Martinez, Jackelynne

    2017-01-01

    The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This paper presents the results from a single astronaut test subject who participated in five CAST sessions. The details on the operational philosophy of CAST are discussed, including the approach to crew training, selection criteria for test days, and data collection methods. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from

  8. Application of solid ash based catalysts in heterogeneous catalysis.

    PubMed

    Wang, Shaobin

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe2O3 could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H2 production, deSO(x), deNO(x), hydrocarbon oxidation,and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis.

  9. Application of solid ash based catalysts in heterogeneous catalysis

    SciTech Connect

    Shaobin Wang

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

  10. The performance and application of fly ash modified by PDMDAAC.

    PubMed

    Cao, X Y; Yue, Q Y; Song, L Y; Li, M; Zhao, Y C

    2007-08-17

    Fly ash modification by polydimethydiallylammonium chloride (PDMDAAC) in laboratory scale was explored in this work and the adsorption performance of modified fly ash and its application in dyeing wastewater treatment were also studied. The key factors (concentration and temperature) for PDMDAAC to affect the adsorption properties of fly ash (FA) were revealed using the orthogonal test with four factors. The results indicated that the adsorption magnitude of fly ash to PDMDAAC increased due to its favorable specific surface causing the change of the surface charge nature. Hence, adsorption performance of modified fly ash on organic molecules and its ion exchange capacity are strengthened. The maximum color removal efficiency was obtained as 88.2% by modified fly ash with 2.0 g/100 mL dosage in dyeing wastewater, which is much higher than 12.5% color removal efficiency by raw fly ash with the same dosage. And, the used modified fly ash could be used for cement production as additive agent. The intensity of cement produced with 15% the modified fly ash in weight reached the Chinese Cement Standard (GB/T17671-1999), blazing a promising novel way in fly ash utilization.

  11. Internalized HIV and Drug Stigmas: Interacting Forces Threatening Health Status and Health Service Utilization Among People with HIV Who Inject Drugs in St. Petersburg, Russia.

    PubMed

    Calabrese, Sarah K; Burke, Sara E; Dovidio, John F; Levina, Olga S; Uusküla, Anneli; Niccolai, Linda M; Heimer, Robert

    2016-01-01

    Marked overlap between the HIV and injection drug use epidemics in St. Petersburg, Russia, puts many people in need of health services at risk for stigmatization based on both characteristics simultaneously. The current study examined the independent and interactive effects of internalized HIV and drug stigmas on health status and health service utilization among 383 people with HIV who inject drugs in St. Petersburg. Participants self-reported internalized HIV stigma, internalized drug stigma, health status (subjective rating and symptom count), health service utilization (HIV care and drug treatment), sociodemographic characteristics, and health/behavioral history. For both forms of internalized stigma, greater stigma was correlated with poorer health and lower likelihood of service utilization. HIV and drug stigmas interacted to predict symptom count, HIV care, and drug treatment such that individuals internalizing high levels of both stigmas were at elevated risk for experiencing poor health and less likely to access health services.

  12. Internalized HIV and Drug Stigmas: Interacting Forces Threatening Health Status and Health Service Utilization Among People with HIV Who Inject Drugs in St. Petersburg, Russia

    PubMed Central

    Burke, Sara E.; Dovidio, John F.; Levina, Olga S.; Uusküla, Anneli; Niccolai, Linda M.; Heimer, Robert

    2016-01-01

    Marked overlap between the HIV and injection drug use epidemics in St. Petersburg, Russia, puts many people in need of health services at risk for stigmatization based on both characteristics simultaneously. The current study examined the independent and interactive effects of internalized HIV and drug stigmas on health status and health service utilization among 383 people with HIV who inject drugs in St. Petersburg. Participants self-reported internalized HIV stigma, internalized drug stigma, health status (subjective rating and symptom count), health service utilization (HIV care and drug treatment), sociodemographic characteristics, and health/behavioral history. For both forms of internalized stigma, greater stigma was correlated with poorer health and lower likelihood of service utilization. HIV and drug stigmas interacted to predict symptom count, HIV care, and drug treatment such that individuals internalizing high levels of both stigmas were at elevated risk for experiencing poor health and less likely to access health services. PMID:26050155

  13. Satellite Derived Volcanic Ash Product Inter-Comparison in Support to SCOPE-Nowcasting

    NASA Astrophysics Data System (ADS)

    Siddans, Richard; Thomas, Gareth; Pavolonis, Mike; Bojinski, Stephan

    2016-04-01

    In support of aeronautical meteorological services, WMO organized a satellite-based volcanic ash retrieval algorithm inter-comparison activity, to improve the consistency of quantitative volcanic ash products from satellites, under the Sustained, Coordinated Processing of Environmental Satellite Data for Nowcasting (SCOPEe Nowcasting) initiative (http:/ jwww.wmo.int/pagesjprogjsatjscopee nowcasting_en.php). The aims of the intercomparison were as follows: 1. Select cases (Sarychev Peak 2009, Eyjafyallajökull 2010, Grimsvötn 2011, Puyehue-Cordón Caulle 2011, Kirishimayama 2011, Kelut 2014), and quantify the differences between satellite-derived volcanic ash cloud properties derived from different techniques and sensors; 2. Establish a basic validation protocol for satellite-derived volcanic ash cloud properties; 3. Document the strengths and weaknesses of different remote sensing approaches as a function of satellite sensor; 4. Standardize the units and quality flags associated with volcanic cloud geophysical parameters; 5. Provide recommendations to Volcanic Ash Advisory Centers (VAACs) and other users on how to best to utilize quantitative satellite products in operations; 6. Create a "road map" for future volcanic ash related scientific developments and inter-comparison/validation activities that can also be applied to SO2 clouds and emergent volcanic clouds. Volcanic ash satellite remote sensing experts from operational and research organizations were encouraged to participate in the inter-comparison activity, to establish the plans for the inter-comparison and to submit data sets. RAL was contracted by EUMETSAT to perform a systematic inter-comparison of all submitted datasets and results were reported at the WMO International Volcanic Ash Inter-comparison Meeting to held on 29 June - 2 July 2015 in Madison, WI, USA (http:/ /cimss.ssec.wisc.edujmeetings/vol_ash14). 26 different data sets were submitted, from a range of passive imagers and spectrometers and

  14. Flue gas desulfurization gypsum and fly ash

    SciTech Connect

    Not Available

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

  15. A status report on international utility-scale wind energy markets

    SciTech Connect

    Rackstraw, K.; Vaupen, S.

    1997-12-31

    AWEA`s latest ten-year projections for new installations of utility-scale wind turbines show nearly 30,000 new megawatts (MW) should be installed between the years 1997 and 2006. The study also briefly explores the potential impact of a significant event, such as a fossil fuel price spike or a strong move to slow global climate change, that could double installed new wind capacity to nearly 60,000 MW over the same period. This outlook is substantially more optimistic than last year`s (about 20,000 MW), but the numbers are somewhat skewed by rolling the outlook forward one year. In other words, the new projections cover a ten-year period beginning one year later than last year`s study. The skewing is a result of substituting the lowest year in last year`s study with the highest year in the new ten-year period (2006), when far more capacity additions can be expected. In addition, AWEA has adjusted upward the numbers for some countries, most notably Germany, Denmark, Spain, Italy, China and the US. Last year`s projections were decidedly, and purposefully, conservative but trends are such that greater optimism about future markets is justified.

  16. Proceedings: 13. international symposium on use and management of coal combustion products (CCPs). Volume 2

    SciTech Connect

    1999-01-01

    The objective of the 1999 International Symposium on the Management and Use of Coal Combustion Products (CCPs), the thirteenth in a series since 1967, is to publicize innovations in coal ash use technology. These symposia support the mission of the American Coal Ash Association (established originally as the National Ash Association after the first symposium) to promote coal ash technology transfer and commercial utilization. The three-volume publication contains 91 papers, presented in 15 sessions during the January 1999 event. Volume 1 contains papers related to waste aggregates, agricultural uses, beneficiation/quality, and building products. Volume 2 covers the growing market in concrete, environmental performance, FGD material, filler applications, flowable fill, and international perspectives. Volume 3 contains papers on mining applications, regional and State perspectives, stabilized road bases, structural fills, and vitrification/solidification.

  17. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  18. Methods to reduce the CO(2) concentration of educational buildings utilizing internal ventilation by transferred air.

    PubMed

    Kalema, T; Viot, M

    2014-02-01

    The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration.

  19. Mechanism utilizing a single rocker arm for controlling an internal combustion engine valve

    SciTech Connect

    Burandt, C.O.

    1988-02-09

    This patent describes in combination with an internal combustion engine having a rotatable camshaft, a cam on the camshaft, a combustion chamber and a reciprocable valve member for opening and closing a valve port in communication with the combustion chamber, a mechanism for operating the valve member comprising a rocker arm having first and second angularly disposed and integrally connected legs. The first leg having a cam follower suface thereon having a first section thereof extending in the same general direction that the valve member reciprocates and having a second section thereof curving toward the valve member and toward the direction in which the valve member reciprocates, means mounting the rocker arm for rocking movement about a first axis, and means for shifting the first axis relative to the camshaft in also the same general direction the valve member reciprocates so that various portions of the first and second sections of the cam follower surface on the first leg are relatively engageable with the cam, sufficient shifting of the first axis in the same general direction producing a desmodromic action, and the second leg including a single portion thereof engaging the valve member so that only the single portion acts on the valve member.

  20. A frictional law for volcanic ash gouge

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Hirose, T.; Kendrick, J. E.; De Angelis, S.; Petrakova, L.; Hornby, A. J.; Dingwell, D. B.

    2014-08-01

    Volcanic provinces are structurally active regions - undergoing continual deformation along faults. Within such fault structures, volcanic ash gouge, containing both crystalline and glassy material, may act as a potential fault plane lubricant. Here, we investigate the frictional properties of volcanic ash gouges with varying glass fractions using a rotary shear apparatus at a range of slip rates (1.3-1300 mm/s) and axial stresses (0.5-2.5 MPa). We show that the frictional behaviour of volcanic ash is in agreement with Byerlee's friction law at low slip velocities, irrespective of glass content. The results reveal a common non-linear reduction of the friction coefficient with slip velocity and yield a frictional law for fault zones containing volcanic ash gouge. Textural analysis reveals that strain localisation and the development of shear bands are more prominent at higher slip velocities (>10 mm/s). The textures observed here are similar to those recorded in ash gouge at the surface of extrusive spines at Mount St. Helens (USA). We use the rate-weakening component of the frictional law to estimate shear-stress-resistance reductions associated with episodic seismogenic slip events that accompany magma ascent pulses. We conclude that the internal structure of volcanic ash gouge may act as a kinematic marker of exogenic dome growth.

  1. Hydrothermal reactions of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1995-12-31

    The emphasis of the work done has been to determine the reactivities of two ashes believed to be representative of those generated. A bituminous ash and a lignitic ash have been investigated. The reactions of these ashes undergo when subjected to mild hydrothermal conditions were explored. The nature of the reactions which the ashes undergo when alkaline activators, calcium hydroxide and calcium sulfate are present was also investigated. It was determined that calcium silicate hydrate, calcium aluminate hydrate, and the calcium sulfoaluminate hydrate ettringite form under these conditions. It appears 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}3CaSO{sub 4}{center_dot}32H{sub 2}O (ettringite) formation needs to be considered in ashes which contain significant amounts of sulfate. Therefore the stability region for ettringite was established. It was also determined that calcium silicate hydrate, exhibiting a high internal surface area, will readily form with hydrothermal treatment between 50{degrees} and 100{degrees}C. This phase is likely to have a significant capacity to take up heavy metals and oxyanions and this ability is being explored.

  2. Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

    NASA Technical Reports Server (NTRS)

    Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.

    2006-01-01

    Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.

  3. Examining Factors of Acculturative Stress on International Students as They Affect Utilization of Campus-Based Health and Counseling Services at Four-Year Public Universities in Ohio

    ERIC Educational Resources Information Center

    Hofmann, Paul N.

    2010-01-01

    This study examined factors of acculturative stress experienced by international students as they affect utilization of campus-based health and counseling services. Eight hundred thirty-eight international students studying at 11 four-year public institutions in the State of Ohio were surveyed to determine how frequently they had experienced 20…

  4. FLY ASH RECYCLE IN DRY SCRUBBING

    EPA Science Inventory

    The paper describes the effects of fly ash recycle in dry scrubbing. (Previous workers have shown that the recycle of product solids improves the utilization of slaked lime--Ca(OH)2--for sulfur dioxide (SO2) removal by spray dryers with bag filters.) In laboratory-scale experimen...

  5. Rapid field measurement of the assimilation rate versus internal CO(2) concentration relationship in green ash (Fraxinus pennsylvanica Marsh.): the influence of light intensity.

    PubMed

    Davis, J E; Arkebauer, T J; Norman, J M; Brandle, J R

    1987-12-01

    Assimilation rate (A) versus intercellular CO(2) concentration (C(i)) relationships for leaflets of five-year-old green ash (Fraxinus pennsylvanica Marsh.) trees were computed from gas exchange measurements obtained in the field with a closed-circuit, portable photosynthesis measurement system comprising an LI-6200 gas analyzer and an LI-6000 computer, (Li-Cor, Inc., Lincoln, Nebraska, USA). Observations were made over a range of light intensities achieved by attenuating direct sunlight with neutral density filters, and over a range of ambient CO(2) concentrations achieved by breathing into the assimilation chamber and then lowering the CO(2) concentration to the desired level with the LI-6200's soda-lime scrubber. Boundary layer conductance was determined by use of a leaf replica made of moist filter paper. Typically, A-C(i) curves at four light intensities were obtained in three to four hours. The initial slope (when A = 0) of the A-C(i) curve obtained at a light intensity of 1750 micromol m(-2) s(-1) (full sunlight) was similar to that obtained at a light intensity of 840 micromol m(-2) s(-1). However, when light intensity was reduced further (to 370 and 160 micromol m(-2) s(-1)), the initial slope of the A-C(i) curve also decreased, indicating that at these light intensities, assimilation was limited by photochemical energy supply, as well as CO(2) concentration.

  6. Utilizing the International GeoSample Number Concept during ICDP Expedition COSC

    NASA Astrophysics Data System (ADS)

    Conze, Ronald; Lorenz, Henning; Ulbricht, Damian; Gorgas, Thomas; Elger, Kirsten

    2016-04-01

    The concept of the International GeoSample Number (IGSN) was introduced to uniquely identify and register geo-related sample material, and make it retrievable via electronic media (e.g., SESAR - http://www.geosamples.org/igsnabout). The general aim of the IGSN concept is to improve accessing stored sample material worldwide, enable the exact identification, its origin and provenance, and also the exact and complete citation of acquired samples throughout the literature. The ICDP expedition COSC (Collisional Orogeny in the Scandinavian Caledonides, http://cosc.icdp-online.org) prompted for the first time in ICDP's history to assign and register IGSNs during an ongoing drilling campaign. ICDP drilling expeditions are using commonly the Drilling Information System DIS (http://doi.org/10.2204/iodp.sd.4.07.2007) for the inventory of recovered sample material. During COSC IGSNs were assigned to every drill hole, core run, core section, and sample taken from core material. The original IGSN specification has been extended to achieve the required uniqueness of IGSNs with our offline-procedure. The ICDP name space indicator and the Expedition ID (5054) are forming an extended prefix (ICDP5054). For every type of sample material, an encoded sequence of characters follows. This sequence is derived from the DIS naming convention which is unique from the beginning. Thereby every ICDP expedition has an unlimited name space for IGSN assignments. This direct derivation of IGSNs from the DIS database context ensures the distinct parent-child hierarchy of the IGSNs among each other. In the case of COSC this method of inventory-keeping of all drill cores was done routinely using the ExpeditionDIS during field work and subsequent sampling party. After completing the field campaign, all sample material was transferred to the "Nationales Bohrkernlager" in Berlin-Spandau, Germany. Corresponding data was subsequently imported into the CurationDIS used at the aforementioned core storage

  7. Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization.

    PubMed

    Deka, Bharati; Bhattacharyya, K G

    2015-03-01

    In this work, Mn(II), Co(II) and Ni(II) were incorporated into waste coal fly ash used as a catalyst support by refluxing with the appropriate aqueous salt solution. The materials were calcined at 773-873 K for 5 h and the amount of divalent cations entering into the fly ash was determined by AAS measurements. Further characterization included estimation of oxides by XRF, structural properties by XRD, topographical features by SEM, surface functional groups by FT-IR, surface area and pore dimensions by BET N2-adsorption isotherms. The efficiency of the materials as environmental oxidation catalysts were tested with respect to destruction of 4-chlorophenol (4-CP) in water in the presence of hydrogen peroxide. Considered as one of the most persistent, toxic and largely applied organic compound, 4-CP enters water from the effluents of petrochemical, plastic, pesticide, kraft mill and other organochemical industries and research centers. Wet oxidation of 4-CP was tested by varying the mole ratio of 4-CP and H2O2, catalyst load, temperature, reaction time, 4-CP concentration and pH. Oxidation of 4-CP (5 × 10(-3) M or 643 mg L(-1)) was 51.1% for Mn(II)-fly ash, 58.3% for Co(II)-fly ash and 61.0% for Ni(II)-fly ash after 180 min at 323 K with 4-CP: H2O2 mole ratio of 1:1. COD load of the reaction mixture (4-CP: 5 × 10(-3) M, H2O2: 5 × 10(-3) M, catalyst load: 1.0 g L(-1), temperature 323 K, reaction time 0-240 min) decreased from 1480 to 620, 380, and 140 mg L(-1) respectively after oxidation with Mn(II)-fly ash, Co(II)-fly ash and Ni(II)-fly ash (overall COD reduction was 58.0, 74.3 and 90.5% respectively). The oxidation followed second order kinetics with the average rate coefficient of 7.9, 1.3 and 1.2 L mol(-1) min(-1) for Mn(II)-, Co(II)- and Ni(II)-fly ash. Increase in H2O2: 4-CP mole ratio from 1:1 to 20:1 (reaction time 300 min, catalyst load 1.0 g L(-1)) enhanced destruction from 52.1 to 95.6% for Mn(II)-fly ash, 58.3-95.6% for Co(II)-fly ash and from 60.4 to

  8. An urgent need for an EPA standard for disposal of coal ash.

    PubMed

    Lemly, A Dennis

    2014-08-01

    EPA, the White House, and electric utilities are stalled in a struggle over a proposed new rule on coal ash disposal. Although this rule is long overdue, EPA now stands on the cusp of bringing forward a landmark decision that could benefit aquatic resources in the USA for decades to come and also set an important regulatory leadership example for the international community to follow. However, multi-million dollar wildlife losses are continuing to pile up as things stall in Washington. In this commentary I use a newly reported example, Wildlife Damage Case 23, to further illustrate serious flaws in the National Pollutant Discharge Elimination System that EPA's new rule can address. Case 23 provides additional impetus for EPA and the White House to move swiftly and decisively to end surface impoundment disposal of coal ash and the associated toxic impacts to wildlife.

  9. Interagency Operating Plan for Pacific Northwest Volcanic Ash Events

    NASA Astrophysics Data System (ADS)

    Osiensky, J. M.; Birch, S.

    2010-12-01

    The National Weather Service (NWS), United States Geological Survey (USGS)and Federal Aviation Administration (FAA) have partnered on the development of an operating plan for volcanic ash events in the Pacific Northwest. This plan provides an overview of integrated, multi-agency operations in response to the threat of volcanic ash in the Pacific Northwest, and describes communication links and operational actions necessary to support the NWS/USGS/FAA Volcano Hazards Program. This regional plan follows guidelines in support of the Office of the Federal Coordinator for Meteorology (OFCM) National Volcanic Ash Operations Plan for Aviation and the International Civil Aviation Organization (ICAO) International Airways Volcano Watch (IAVW).

  10. National volcanic ash operations plan for aviation

    USGS Publications Warehouse

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  11. The in-situ production of ash in pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Manga, M.; Dufek, J.; Standish, D.

    2007-12-01

    Abrasion and fragmentation of pumice clasts during the propagation of pyroclastic flows has long been recognized as a potential source for the enhanced production of volcanic ash, however its relative importance has eluded quantification (Walker, 1981). The amount of ash produced in-situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure. We conduct a series of laboratory experiments on the collisional production of ash that may occur during different regimes of pyroclastic flow transport. We further parameterize the experiments of Cagnoli and Manga (2004) to determine the rate of production of frictional ash. We find that the energy of these interactions is insufficient to create a fractal particle size distribution; rather a bimodal suite of large particles and 10-100 micron ash particles are typically produced Using these laboratory experiments we can develop a subgrid model for ash production that can be included in analytical and multiphase numerical procedures to estimate the total volume of ash produced during transport. We examine numerically a range of initial flow energies and bed slopes over which the flows propagate. To simplify the problem we consider flows starting with 1 cm pumice clasts that can be broken up into 100 micron ash. We find that for most flow conditions10-20% of the initial 1 cm clasts comminutes into ash with the percentage increasing as a function of initial flow energy. Most of the ash is produced in the high-energy regions near the flow inlet, although flow acceleration on steep slopes can produce ash far from the vent. Ash produced at the frictional base of the flow and in the collisional upper regions of the flow can be redistributed through the entirety of the flow, although frictionally produced ash accumulates preferentially near its source in the bed-load. As slope increases, the relative proportion of ash generated by friction increases

  12. In situ production of ash in pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Manga, M.

    2008-09-01

    Abrasion and comminution of pumice clasts during the propagation of pyroclastic flows have long been recognized as a potential source for the enhanced production of volcanic ash, however, their relative importance has eluded quantification. The amount of ash produced in situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure. We conduct a series of laboratory experiments on the collisional and frictional production of ash that may occur during different regimes of pyroclastic flow transport. Ash produced in these experiments is predominately 10-100 microns in size and has similar morphology to tephra fall ash from Plinian events. We find that collisional ash production rates are proportional to the square of impact velocity. Frictional ash production rates are a linear function of the velocity of the basal, particle-enriched bed load region of these flows. Using these laboratory experiments we develop a subgrid model for ash production that can be included in analytical and multiphase numerical procedures to estimate the total volume of ash produced during transport. We find that for most flow conditions, 10-20% of the initial clasts comminute into ash with the percentage increasing as a function of initial flow energy. Most of the ash is produced in the high-energy regions near the flow inlet, although flow acceleration on steep slopes can produce ash far from the vent. On level terrain, collisionally and frictionally produced ash generates gravity currents that detach from the main flow and can more than double the effective runout distance of these flows. Ash produced at the frictional base of the flow and in the collisional upper regions of the flow can be redistributed through the entirety of the flow, although frictionally produced ash accumulates preferentially near its source in the bed load. Flows that descend steep slopes produce the majority of their ash in the

  13. Experimental aggregation of volcanic ash: the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Kueppers, U.; Jacob, M.; Ayris, P. M.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions may release vast quantities of ash. Because of its size, it has the greatest dispersal potential and can be distributed globally. Ash may pose severe risks for 1) air traffic, 2) human and animal health, 3) agriculture and 4) infrastructure. Such ash particles can however cluster and form ash aggregates that range in size from millimeters to centimeters. During their growth, weight and aerodynamic properties change. This leads to significantly changed transport and settling behavior. The physico-chemical processes involved in aggregation are quantitatively poorly constrained. We have performed laboratory ash aggregation experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. Solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (e.g., air flow rate, gas temperature, humidity, liquid composition). In this manner we simulate the variable gas-particle flow conditions expected in eruption plumes and pyroclastic density currents. We have used 1) soda-lime glass beads as an analogue material and 2) natural volcanic ash from Laacher See Volcano (Germany). In order to influence form, size, stability and the production rate of aggregates, a range of experimental conditions (e.g., particle concentration, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase) have been employed. We have successfully reproduced several features of natural ash aggregates, including round, internally structured ash pellets up to 3 mm in diameter. These experimental results help to constrain the boundary conditions required for the generation of spherical, internally-structured ash aggregates that survive deposition and are preserved in the volcanological record. These results should also serve as input parameters for models of ash transport and ash mass distribution.

  14. Preparing for a Global Community. Achieving an International Perspective in Higher Education. ASHE-ERIC Higher Education Report No. 2, 1992.

    ERIC Educational Resources Information Center

    Pickert, Sarah M.

    This report discusses the response of colleges and universities in the United States to the need of graduate students to become equipped to make personal and public policy decisions as citizens of an international society. Curriculum changes are showing a tightening of foreign language standards in schools of higher education and, throughout the…

  15. Improved prediction and tracking of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Webley, Peter; Mastin, Larry

    2009-09-01

    During the past 30 years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality.

  16. Improved prediction and tracking of volcanic ash clouds

    USGS Publications Warehouse

    Webley, P.; Mastin, L.

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  17. Comparison of Ash from PF and CFB Boilers and Behaviour of Ash in Ash Fields

    NASA Astrophysics Data System (ADS)

    Arro, H.; Pihu, T.; Prikk, A.; Rootamm, R.; Konist, A.

    Over 90% of electricity produced in Estonia is made by power plants firing local oil shale and 25% of the boilers are of the circulating fluidised bed (CFB) variety. In 2007 approximately 6.5 million tons of ash was acquired as a byproduct of using oil shale for energy production. Approximately 1.5 million tons of that was ash from CFB boilers. Such ash is deposited in ash fields by means ofhydro ash removal.

  18. Third International Congress on Soldiers' Physical Performance: Translating State-of-the-Science Soldier Research for Operational Utility.

    PubMed

    Nindl, Bradley C; Sharp, Marilyn A

    2015-11-01

    The Third International Congress on Soldiers' Physical Performance (ICSPP) was held on August 18-21, 2014 in Boston, MA, where it had a record attendance of 374 registrants from 27 countries. The Congress included 8 invited keynote lectures, 12 symposia, 1 featured science session, more than 200 oral and poster free communication sessions, 8 thematic poster sessions, and a Warfighter Readiness Roundtable. Collectively, the presentations focused on a fundamental premise that soldiers are the center of warfighting capability, and the human service member is the prime resource and key enabler of all warfighting systems. The intent of the ICSPP series is to focus on the soldier-the individual service member. As we move forward with focus placed on the human dimension of soldiering, the key to our scientific success and what will prove to be transformative will be the extent to which we can operationalize and disseminate our scientific knowledge for the benefit of our soldiers on the ground. The Congress fostered important scientific exchange, and dialog centered on improving military physical performance and readiness. As countries around the globe respond to current and emerging threats to their national security, it is increasingly clear that we must ensure optimal human performance of our military personnel. By taking advantage of the science and applications of physical fitness and injury prevention research, we can leverage our increased understanding for the optimal application of physical readiness processes while minimizing the injury risk potential. We believe that the continued scientific and evidence-based dialog across international partners will prove to be transformative in identifying the most effective strategies for human performance optimization in the 21st century. Innovation, leveraging current state-of-the-science, and international partnerships were all key themes throughout the Congress. From the ICSPP scientific program, it was clear that there

  19. Comparison of acid-detergent lignin, alkaline-peroxide lignin, and acid-detergent insoluble ash as internal markers for predicting fecal output and digestibility by cattle offered bermudagrass hays of varying nutrient composition

    PubMed Central

    2014-01-01

    Background The potential for acid-detergent insoluble ash (ADIA), alkaline-peroxide lignin (APL), and acid-detergent lignin (ADL) to predict fecal output (FO) and dry matter digestibility (DMD) by cattle offered bermudagrass [Cynodon dactylon (L.) Pers.] hays of different qualities was evaluated. Eight ruminally cannulated cows (594 ± 35.5 kg) were allocated randomly to 4 hay diets: low (L), medium low (ML), medium high (MH), and high (H) crude protein (CP) concentration (79, 111, 131, and 164 g CP/kg on a DM basis, respectively). Diets were offered in 3 periods with 2 diet replicates per period and were rotated across cows between periods. Cows were individually fed 20 g DM/kg of body weight in equal feedings at 08:00 and 16:00 h for a 10-d adaptation followed by a 5-d total fecal collection. Actual DM intake (DMI), DMD, and FO were determined based on hay offered, ort, and feces excreted. These components were then analyzed for ADL, APL, and ADIA concentration to determine marker recovery and marker-based estimates of FO and DMD. Results Forage DMI was affected by diet (P = 0.02), and DMI from MH and H was greater (P < 0.05) than from L. Apparent DMD tended (P = 0.08) to differ among diets while FO (P = 0.20) was not affected by diet treatments. Average ADL recovery (1.16) was greater (P < 0.05) than that of ADIA (1.03) and APL (1.06), but ADIA and APL did not differ (P = 0.42). Estimates of FO and DMD derived using APL and ADIA were not different (P ≥ 0.05) from total fecal collection while those using ADL differed (P < 0.05). There was no diet by marker interaction (P ≥ 0.22) for either FO or DMD. Conclusion Acid-detergent insoluble ash and APL accurately predicted FO and DMD of cattle fed bermudagrass hay of varying nutrient composition. These internal markers may facilitate studies involving large numbers of animals and forages. Results from such studies may be used to develop improved equations to predict energy values of

  20. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.

    PubMed

    Siriruang, Chaichan; Toochinda, Pisanu; Julnipitawong, Parnthep; Tangtermsirikul, Somnuk

    2016-04-01

    The utilization of fly ash as a solid sorbent material for CO2 capture via surface adsorption and carbonation reaction was evaluated as an economically feasible CO2 reduction technique. The results show that fly ash from a coal fired power plant can capture CO2 up to 304.7 μmol/g fly ash, consisting of 2.9 and 301.8 μmol/g fly ash via adsorption and carbonation, respectively. The CO2 adsorption conditions (temperature, pressure, and moisture) can affect CO2 capture performance of fly ash. The carbonation of CO2 with free CaO in fly ashes was evaluated and the results indicated that the reaction consumed most of free CaO in fly ash. The fly ashes after CO2 capture were further used for application as a mineral admixture for concrete. Properties such as water requirement, compressive strength, autoclave expansion, and carbonation depth of mortar and paste specimens using fly ash before and after CO2 capture were tested and compared with material standards. The results show that the expansion of mortar specimens using fly ash after CO2 capture was greatly reduced due to the reduction of free CaO content in the fly ash compared to the expansion of specimens using fresh fly ash. There were no significant differences in the water requirement and compressive strength of specimens using fly ash, before and after CO2 capture process. The results from this study can lead to an alternative CO2 capture technique with doubtless utilization of fly ash after CO2 capture as a mineral admixture for concrete.

  1. Reactivity of fly ashes in a spray dryer FGD process

    SciTech Connect

    Davis, W.T.; Reed, G.D.

    1983-05-01

    During the period 1981-1982, a study was performed to determine the ability of various fly ashes to retain sulfur dioxide in a pilot plant spray dryer/fabric filter flue gas desulfurization system. This knowledge would provide design engineers with the necessary data to determine whether the fly ash from a particular utility could be used as an effective supplement or substitute for slaked lime in a spray dryer system. The study commenced with the collection of 22 fly ashes from lignite, subbituminous, and bituminous eastern and western coals. The ashes were contacted with the flue gas entering the pilot plant by two different techniques. In the first, the ashes were slurried in water and injected into the spray dryer through a spinning disk atomizer. In the second, the ashes were injected as a dry additive into the flue gas upstream of the spray dryer. Analyses were conducted to determine the ability of each ash to retain sulfur dioxide in the system followed by statistical correlations of the sulfur retention with the physical/chemical properties of each ash. 17 references, 32 figures, 19 tables.

  2. Marine Mesocosm Bacterial Colonisation of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.

    2014-12-01

    Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community

  3. Analysis of the Eyjafjallajökull Eruption using the WRF-Chem Model compared to Satellite-Based Ash Retrieval Algorithms

    NASA Astrophysics Data System (ADS)

    Steensen, T. S.; Stuefer, M.; Webley, P.; Grell, G. A.; de Freitas, S. R.

    2010-12-01

    On April 14th, 2010, the long-dormant ice-capped volcano Eyjafjallajökull in southern Iceland exhibited a black ash-rich plume that quickly developed into an upper-tropospheric ash-cloud covering large parts of Europe grounding the majority of European air traffic for days. The emission of the ash-cloud continued for three days before the eruption turned more magmatic on April 18th. Due to a strong jet stream the plume initially drifted towards the United Kingdom and Norway with ash-fall occurring in many cities in both countries. Over the course of a week, most countries in Europe were affected by the dispersing cloud resulting in numbers of closed airports never seen before, grounded planes and confused passengers. This eruption, although small on the international scale, drew volcanic hazards into the public eye and called for better understanding of evolving volcanic plumes and their ash content. The Weather Research and Forecast model (WRF) coupled with Chemistry (Chem) has been utilized to use wind fields and chemical compositions to forecast the drift and chemical alteration of dispersed substances such as forest fires and volcanic ash and, in this study, was used to simulate the developing plume in time, based on physical input parameters of the initial plume as well as the wind patterns over Europe during April 2010. The results of this model have been compared to satellite-based ash retrieval algorithms like the Reverse Absorption Method and the Principal Component Analysis using Advanced Very High Resolution Radiometer (AVHRR) the Moderate-Resolution Imaging Spectroradiometer (MODIS) data. This comparison allows both, the ratification of the model as a forecasting tool and of the satellites as an in-situ measurement. Both parts are essential components to be able to predict and analyze airborne volcanic ash and to constantly improve the hazard assessment of ash cloud forecasting to minimize the burden on the aviation community while maximizing the

  4. Use of coal ash in highway construction: Georgia demonstration project

    SciTech Connect

    Larrimore, C.L.; Pike, C.W.

    1987-06-01

    EPRI has initiated a program designed to promote ash utilization in roadways, embankments, and backfills - potentially large volume application areas. Included within the EPRI program is a Georgia study involving the development and construction of a demonstration project in which several types of ash were used as major components in highway pavement construction. The primary objective is to plan, design, build and monitor the structural and environmental aspects of a full-scale application of ash in a highway pavement. All planning, design, and construction activities are completed and have been fully described in this report. Both structural and environmental monitorings are in progress and will be reported at the conclusion of study.

  5. Utilizing Web 2.0 to Provide an International Experience for Pre-Service Elementary Education Teachers--The IPC Project

    ERIC Educational Resources Information Center

    Ausband, Leigh T.; Schultheis, Klaudia

    2010-01-01

    This paper describes an international project completed by groups of pre-service elementary education students in four countries. Students utilized Web 2.0 technologies to design and conduct a study on a topic of their choosing related to curriculum and instruction, in elementary schools. This paper also presents results of a survey given to two…

  6. Development and utility of an internal threshold control (ITC) real-time PCR assay for exogenous DNA detection.

    PubMed

    Ni, Weiyi; Le Guiner, Caroline; Moullier, Philippe; Snyder, Richard O

    2012-01-01

    Sensitive and specific tests for detecting exogenous DNA molecules are useful for infectious disease diagnosis, gene therapy clinical trial safety, and gene doping surveillance. Taqman real-time PCR using specific sequence probes provides an effective approach to accurately and quantitatively detect exogenous DNA. However, one of the major challenges in these analyses is to eliminate false positive signals caused by either non-targeted exogenous or endogenous DNA sequences, or false negative signals caused by impurities that inhibit PCR. Although multiplex Taqman PCR assays have been applied to address these problems by adding extra primer-probe sets targeted to endogenous DNA sequences, the differences between targets can lead to different detection efficiencies. To avoid these complications, a Taqman PCR-based approach that incorporates an internal threshold control (ITC) has been developed. In this single reaction format, the target sequence and ITC template are co-amplified by the same primers, but are detected by different probes each with a unique fluorescent dye. Sample DNA, a prescribed number of ITC template molecules set near the limit of sensitivity, a single pair of primers, target probe and ITC probe are added to one reaction. Fluorescence emission signals are obtained simultaneously to determine the cycle thresholds (Ct) for amplification of the target and ITC sequences. The comparison of the target Ct with the ITC Ct indicates if a sample is a true positive for the target (i.e. Ct less than or equal to the ITC Ct) or negative (i.e. Ct greater than the ITC Ct). The utility of this approach was demonstrated in a nonhuman primate model of rAAV vector mediated gene doping in vivo and in human genomic DNA spiked with plasmid DNA.

  7. Development and Utility of an Internal Threshold Control (ITC) Real-Time PCR Assay for Exogenous DNA Detection

    PubMed Central

    Ni, Weiyi; Le Guiner, Caroline; Moullier, Philippe; Snyder, Richard O.

    2012-01-01

    Sensitive and specific tests for detecting exogenous DNA molecules are useful for infectious disease diagnosis, gene therapy clinical trial safety, and gene doping surveillance. Taqman real-time PCR using specific sequence probes provides an effective approach to accurately and quantitatively detect exogenous DNA. However, one of the major challenges in these analyses is to eliminate false positive signals caused by either non-targeted exogenous or endogenous DNA sequences, or false negative signals caused by impurities that inhibit PCR. Although multiplex Taqman PCR assays have been applied to address these problems by adding extra primer-probe sets targeted to endogenous DNA sequences, the differences between targets can lead to different detection efficiencies. To avoid these complications, a Taqman PCR-based approach that incorporates an internal threshold control (ITC) has been developed. In this single reaction format, the target sequence and ITC template are co-amplified by the same primers, but are detected by different probes each with a unique fluorescent dye. Sample DNA, a prescribed number of ITC template molecules set near the limit of sensitivity, a single pair of primers, target probe and ITC probe are added to one reaction. Fluorescence emission signals are obtained simultaneously to determine the cycle thresholds (Ct) for amplification of the target and ITC sequences. The comparison of the target Ct with the ITC Ct indicates if a sample is a true positive for the target (i.e. Ct less than or equal to the ITC Ct) or negative (i.e. Ct greater than the ITC Ct). The utility of this approach was demonstrated in a nonhuman primate model of rAAV vector mediated gene doping in vivo and in human genomic DNA spiked with plasmid DNA. PMID:22570718

  8. Infrasonic source parameters for stratospheric volcanic ash injection

    NASA Astrophysics Data System (ADS)

    Steffke, A. M.; Fee, D.; Garces, M.; Arnoult, K.

    2009-12-01

    Dispersion models and remote sensing techniques are used to project and track hazards to the aviation community created by volcanic ash plumes. Currently, remote sensing data is analyzed to determine eruption onset, duration, and plume heights that are in turn used in ash dispersion models. However these methods have limitations caused by the temporal resolution of satellite sensors and large volcanic plumes obscuring the vent after the eruption onset. More accurate constraints of the eruption onset, intensity, and duration are necessary for improved forecasting of volcanic plume dispersion. We show how International Monitoring System (IMS) infrasound array data can be utilized to remotely detect the onset of large volcanic eruptions. Infrasound data were acquired for the recent (2008-2009) Kasatochi, Okmok, and Redoubt eruptions. At least six IMS stations clearly recorded the 7-8 August 2008 Kasatochi eruption with I53 (Fairbanks, AK), I18 (Greenland), I59 (Kona, Hawai’i) recording the clearest signals. Three distinct acoustic pulses, with durations of hours, correlate well with satellite imagery collected during the Kasatochi eruption. Acoustically derived onsets, intensities, and durations of the eruption pulses are broadly consistent with those derived from satellite and seismic observations, although some discrepancies exist. Of the three pulses recorded the second pulse was the most energetic with acoustic energy concentrated in the infrasonic very long period (IVLP) band (0.01 - 0.1 Hz). Sustained IVLP signals have previously indicated tropospheric to stratospheric ash emissions (Garces et al., 2008; Fee et al., submitted; Steffke et al., submitted). We also present comparable results for Okmok and Redoubt volcanoes. Preliminary results indicate the acoustic spectra of eruptions that produced stratospheric ash injections are similar to those of man-made jets, as observed at Tungurahua and Mount St. Helens Volcanoes by Matoza et al., 2009. Acoustically

  9. Effective use of fly ash slurry as fill material.

    PubMed

    Horiuchi, S; Kawaguchi, M; Yasuhara, K

    2000-09-15

    A lot of effort has been put into increasing coal ash utilization; however, 50% of total amount is disposed of on land and in the sea. Several attempts have been reported recently concerning slurried coal fly ash use for civil engineering materials, such as for structural fill and backfill. The authors have studied this issue for more than 15 years and reported its potential for (1) underwater fills, (2) light weight backfills, and (3) light weight structural fills, through both laboratory tests and construction works. This paper is an overview of the results obtained for slurry, focusing on the following. (1) Coal fly ash reclaimed by slurry placement shows lower compressibility, higher ground density, and higher strength than by the other methods. This higher strength increases stability against liquefaction during earthquake. (2) Higher stability of the fly ash ground formed by slurry placement is caused by higher density and its self-hardening property. (3) Stability of fly ash reclaimed ground can be increased by increasing density and also by strength enhancement by cement addition. (4) Technical data obtained through a man-made island construction project shows the advantages of fly ash slurry in terms of mechanical properties such as higher stability against sliding failure, sufficient ground strength, and also in terms of cost saving. (5) Concentration in leachates from the placed slurry is lower than the Japanese environmental law. (6) In order to enlarge the fly ash slurry application toward a lightweight fill, mixtures of air foam, cement and fly ash were examined. Test results shows sufficient durability of this material against creep failure. This material was then used as lightweight structural fill around a high-rise building, and showed sufficient quality. From the above data, it can be concluded that coal fly ash slurry can be effectively utilized in civil engineering projects.

  10. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on

  11. Automated system for removal and pneumatic transport of fly ash from electric precipitator hoppers

    SciTech Connect

    V.K. Konovalov; O.V. Yashkin; V.V. Ermakov

    2008-03-15

    A system for removal and pneumatic transport of fly ash is examined, in which air pulses act on batches (pistons) of ash formed in a duct. Studies are made of the effect of several physical parameters on the force required to displace a piston of ash and these serve as a basis for choosing a system for removal and pneumatic transport of ash simultaneously from several hoppers of an electric precipitator. This makes it possible to separate the ash particles according to size without introducing additional components. Formulas are given for calculating the structural and dynamic parameters of this system and measurements of indirect dynamic parameters are used to calculate the input-output characteristics of the system. In order to optimize the system, configurations for summing several ducts into a single transport duct for pneumatic ash transport are proposed. Some variants of dry ash utilization and the advantages of producing of size-separated particles are considered.

  12. Chemical constraints on fly ash glass compositions

    SciTech Connect

    John H. Brindle; Michael J. McCarthy

    2006-12-15

    The major oxide content and mineralogy of 75 European fly ashes were examined, and the major element composition of the glass phase was obtained for each. Correlation of compositional trends with the glass content of the ash was explored. Alkali content was deduced to have a major influence on glass formation, and this in turn could be related to the probable chemistry of clay minerals in the source coals. Maximal glass content corresponded to high aluminum content in the glass, and this is in accordance with the theoretical mechanism of formation of aluminosilicate glasses, in which network-modifying oxides are required to promote tetrahedral coordination of aluminum in glass chain structures. Iron oxide was found to substitute for alkali oxides where the latter were deficient, and some indications of preferred eutectic compositions were found. The work suggests that the proportion of the glass phase in the ash can be predicted from the coal mineralogy and that the utility of a given ash for processing into geopolymers or zeolites is determined by its source. 23 refs., 7 figs., 1 tab.

  13. Correlating Ground-Based Lightning Measurements with Ash Cloud Satellite Data from the 2010 Eruption of Eyjafjallajökull Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Thomas, R. J.; Pavolonis, M. J.; Sieglaff, J.; Aster, R. C.

    2012-12-01

    Airborne volcanic ash is a major aviation hazard. For example, the 2010 eruption of Eyjafjallajökull volcano in Iceland resulted in the largest air-traffic shutdown since World War II. More than 100,000 flights were grounded, stranding passengers in Europe and across the globe, and producing a multi-billion dollar economic impact. Because of the high impact on aviation, sophisticated tools are needed to provide real-time alerts, tracking, and forecasting of volcanic clouds. In an attempt address the 5-minute volcanic cloud warning criteria established by the international aviation community, an automated volcanic cloud alert system for the Geostationary Operational Environmental Satellite - R Series (GOES-R) built upon the automated ash cloud alert system for the Advanced Very High Resolution Radiometer (AVHRR) is in development. The new system will be capable of identifying ash and SO2 clouds with greater accuracy. One component of GOES-R will be a lightning mapper. To study the temporal, spatial, and physical relationships between ash clouds and lightning, and the utility of lightning detection in a real-time alert system, we analyze data collected by the Lightning Mapping Array, a ground-based lightning detection network, in conjunction with satellite data gathered by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument aboard Meteosat-9 during in the 2010 eruption of Eyjafjallajökull volcano. We correlate lightning characteristics, intensity, and distribution with plume location, height, mass loading, and effective particle radius. Lightning mapping in volcanic ash clouds potentially will allow for better characterization of the ash cloud and aid in forecasting the distribution of ash and its effects on aviation.

  14. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  15. Thermal behaviour of ESP ash from municipal solid waste incinerators.

    PubMed

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L

    2009-07-15

    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  16. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  17. Sonic enhanced ash agglomeration and sulfur capture. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-12-31

    This program will demonstrate the effectiveness of a unique approach which uses a bimodal distribution composed of large sorbent particles and fine fly ash particles to enhance ash agglomeration and sulfur capture at conditions found in direct coal-fired turbines. Under the impact of high-intensity sound waves, sorbent reactivity and utilization, it is theorized, will increase while agglomerates of fly ash and sorbents are formed which are readily collected in commercial cyclones.

  18. Fly ash based zeolitic pigments for application in anticorrosive paints

    NASA Astrophysics Data System (ADS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  19. The cumulative ash curve: a best tool to evaluate complete mill performance.

    PubMed

    Sakhare, Suresh D; Inamdar, Aashitosh A

    2014-04-01

    Slick test is carried out by a flour miller to qualitatively segregate the flour from different streams in a roller flour mill. This test is done manually by pressing flour samples on tray using thin bladed paddle (the slick) and inspecting color or dress of the sample. However, the test is subjective and totally depends on human judgment. Cumulative ash curve relates to cumulative flour ash content and cumulative flour yield, which could help a flour miller to be more precise while selecting flour streams for different needs. In this study, cleaning and conditioning of wheat was carried out in the pilot plant of International School of Milling Technology (ISMT). Further, roller flour milling of wheat was done. Flour from different streams (four breaks, five reductions) was collected. Each flour stream was analyzed for ash content using standard AACC methods. The analytical values of ash content were used to plot the cumulative ash curve. It was found that ash content increased in the break passages from first to last break, with exception of first break (ash content 0.71%). An increase in percentage of ash was observed in the reduction passages (C1 to C5), however, C3 ash (0.76%) was slightly higher than that of C4 (0.65%). Higher yield of flour with minimum ash content was obtained from the front reduction passages C1 and C2; whereas, the break passages and the tail end reduction passages produce less flour with higher ash content.

  20. ASH EMISSIVITY CHARACTERIZATION AND PREDICTION

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Charlene R. Crocker

    1999-12-01

    The increased use of western subbituminous coals has generated concerns regarding highly reflective ash disrupting heat transfer in the radiant zone of pulverized-fuel boilers. Ash emissivity and reflectivity is primarily a function of ash particle size, with reflective deposits expected to consist of very small refractory ash materials such as CaO, MgO, or sulfate materials such as Na{sub 2}SO{sub 4}. For biomass fuels and biomass-coal blends, similar reflectivity issues may arise as a result of the presence of abundant organically associated calcium and potassium, which can transform during combustion to fine calcium, and potassium oxides and sulfates, which may act as reflective ash. The relationship of reflectivity to ash chemistry is a second-order effect, with the ash particle size distribution and melting point being determined by the size and chemistry of the minerals present in the starting fuel. Measurement of the emission properties of ash and deposits have been performed by several research groups (1-6) using both laboratory methods and measurements in pilot- and full-scale combustion systems. A review of the properties and thermal properties of ash stresses the important effect of ash deposits on heat transfer in the radiant boiler zone (1).

  1. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  2. Volcanic ash melting under conditions relevant to ash turbine interactions

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-03-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  3. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  4. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  5. Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants.

    PubMed

    Lanzerstorfer, Christof

    2015-04-01

    For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of (K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO4(3-) was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3±0.8 μm, spread of particle size distribution 19±11, particle density 2620±80 kg/m3 and angle of repose 50°±1°. The density of the straw fly ashes is lower (2260±80 kg/m3) and the spread of the size distribution is higher (72±24). For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller, surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress.

  6. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  7. Ash in the Soil System

    NASA Astrophysics Data System (ADS)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  8. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  9. The structure of submicron ash from combustion of pulverized South African and Colombian coals

    SciTech Connect

    Kauppinen, E.I.; Lind, T.M.; Valmarui, T.; Ylaetalo, S.; Jokiniemi, J.K.; Powell, Q.; Gurav, A.S.; Kodas, T.T.; Mohr, M.

    1996-12-31

    The formation of submicron ash particles during the utility-scale pulverized combustion of South African Klein Kopie and Colombian El Dorado coals was studied by measuring the ash particle number and mass size distributions in the size range 0.01--1 {micro}m upstream of the electrostatic precipitator (ESP). Ash morphology, composition and microstructure were studied by high resolution scanning and transmission electron microscopes (SEM and TEM). The authors propose new mechanisms for the formation of submicron agglomerated ash particles in pulverized coal-fired boiler flames.

  10. An Investigation Utilizing an Electrical Analogue of Cyclic Deicing of Hollow Steel Propellers with Internal Electric Heaters

    NASA Technical Reports Server (NTRS)

    Neel, Carr B., Jr.

    1953-01-01

    A study has been made of the heating requirements for the cyclic de?icing of hollow steel propellers fitted with two types of internal electric heaters. Solutions to the transient?teat?flow equations depicting the cyclic de?icing of propellers were obtained by use of an electrical analogy. The study showed the impracticability of using an internal tubular heater and illustrated the advantages of employing an internal shoe?type heater, which distributes the heat more evenly to the blade surface. The importance of minimizing the thermal inertia of the system was demonstrated, and the magnitude of reductions in the total energy requirement made possible through reductions in the heating period was indicated.

  11. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2013-10-01

    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  12. INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS

    SciTech Connect

    G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

    2000-11-01

    This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

  13. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    NASA Astrophysics Data System (ADS)

    Palaniappan, Jayanthi

    2017-04-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  14. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    NASA Astrophysics Data System (ADS)

    Palaniappan, Jayanthi

    2016-05-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  15. Effect of the Additives on the Desulphurization Rate of Flash Hydrated and Agglomerated CFB Fly Ash

    NASA Astrophysics Data System (ADS)

    Li, D. X.; Li, H. L.; Xu, M.; Lu, J. F.; Liu, Q.; Zhang, J. S.; Yue, G. X.

    CFB fly ash from separators was mixed with water or the mixture of water and additives under the temperature of 363K by use of a blender. Then, this compound of fly ash and water or additives was pumped into a CFB combustion chamber by a sludge pump. Because the temperature of flue gas was high in CFB, the fly ash was hydrated fast and agglomerated in the same time. Through this process, the size of agglomerating fly ash is larger than the original particle and the relative residence time of agglomerated fly ash in CFB becomes longer. Therefore, the rate of utility of calcium in fly ash improves and the content of carbon in fly ash decreases. This results in a low Ca/S and low operational cost for CFB boiler. The additive is one key factor, which affects the rate of desulfurization of agglomerated fly ash. Effect of different additives on rate of desulfurization is not same. Cement and limestone are beneficiated to sulfur removal of agglomerated fly ash, but sodium silicate does not devote to the rate of sulfur removal of agglomerated fly ash.

  16. Ash level meter for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  17. Explaining high health care spending in the United States: an international comparison of supply, utilization, prices, and quality.

    PubMed

    Squires, David A

    2012-05-01

    This analysis uses data from the Organization for Economic Cooperation and Development and other sources to compare health care spending, supply, utilization, prices, and quality in 13 industrialized countries: Australia, Canada, Denmark, France, Germany, Japan, the Netherlands, New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the United States. The U.S. spends far more on health care than any other country. However this high spending cannot be attributed to higher income, an older population, or greater supply or utilization of hospitals and doctors. Instead, the findings suggest the higher spending is more likely due to higher prices and perhaps more readily accessible technology and greater obesity. Health care quality in the U.S. varies and is not notably superior to the far less expensive systems in the other study countries. Of the countries studied, Japan has the lowest health spending, which it achieves primarily through aggressive price regulation.

  18. The Ash Warriors

    DTIC Science & Technology

    2000-01-01

    eruption of Mount Vesuvius . † Hot/fiery fragments is the meaning of pyroclastic, from the Greek. “I had no doubt that if the volcano contin- ued to develop...final act in a drama that began with the initial rumblings in April of that year of the Mount Pinatubo volcano, located about nine miles to the east of... Mount Pinatubo’s eruptions, and the packing out of the base during the subsequent months. This is the story of the “Ash Warriors,” those Air Force

  19. Future Developments in Modeling and Monitoring of Volcanic Ash Clouds

    NASA Astrophysics Data System (ADS)

    Bonadonna, Costanza; Folch, Arnau; Loughlin, Sue

    2011-03-01

    IAVCEI-WMO Workshop on Ash Dispersal Forecast and Civil Aviation; Geneva, Switzerland, 18-20 October 2010; The April-May 2010 Eyjafjallajökull eruption brought to light the harmful effects of volcanic ash on civil aviation and the importance of robust ash forecasting based on the combination of numerical weather prediction (NWP), volcanic ash transport and dispersal models (VATDMs), and data acquisition. The Workshop on Ash Dispersal Forecast and Civil Aviation has produced a consensual document describing the characteristics and range of application of different VATDMs, identifying the needs of the modeling community, investigating new data acquisition strategies, and discussing how to improve communication between the volcanology community and operational agencies. The workshop was held at the World Meteorological Organization's (WMO) Geneva headquarters under the sponsorship of the Faculty of Sciences of the University of Geneva, the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI), and the canton of Geneva and was organized by scientists from the University of Geneva (Switzerland), the Barcelona Supercomputing Center (Spain), the Aeronautical Meteorology Division of the WMO, and the British Geological Survey (United Kingdom). Fifty-two volcanologists, meteorologists, atmospheric dispersion modelers, and space- and ground-based monitoring specialists from 12 different countries were gathered (attendance was by invitation only), including representatives from six Volcanic Ash Advisory Centers (VAACs) and related institutions.

  20. Sewage sludge ash to phosphorus fertiliser (II): Influences of ash and granulate type on heavy metal removal.

    PubMed

    Mattenberger, H; Fraissler, G; Jöller, M; Brunner, T; Obernberger, I; Herk, P; Hermann, L

    2010-01-01

    Ashes from monoincineration of sewage sludge suggest themselves as an ideal base for inorganic fertiliser production due to their relatively high phosphorus (P)-content. However, previously they need to be detoxified by reducing their heavy metal content. The core process considered in this paper consists of three steps: mixing of the ashes with suitable chlorine-containing additives, granulation of the mixture and thermochemical treatment in a rotary kiln. Here relevant heavy metal compounds are first transformed into volatile species with the help of the additives and then evaporated from the granules. In this study two chemically different ashes and their mixture were agglomerated to two different granulate types, briquettes and rolled pellets. The resulting six different materials were subjected to thermal treatment at different temperatures. The heavy metals examined were Cu and Zn due to their strong dependence on treatment conditions and their relevance concerning thermal treatment of sewage sludge ashes. Besides, the behaviour of Cl and K was monitored and evaluated. The experiments showed that ash type and temperature are more influential on Cl and heavy metal chemistry than granulate type. Temperature is a primary variable for controlling removal in both cases. Cu removal was less dependent on both ash and granulate type than Zn. The Cl utilization was more effective for Cu than for Zn. Depending on the treatment conditions some K could be retained, whereas always all P remained in the treated material. This satisfies the requirement for complete P recycling.

  1. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  2. A HIgh Current Density Low Cost Niobium 3 Tin Titanium Doped Conductor Utilizing A Novel Internal Tin Process

    SciTech Connect

    Bruce A Zeitlin

    2005-02-23

    An internal tin conductor has been developed using a Mono Element Internal Tin (MEIT) with an integral Nb barrier surrounding the Nb filaments. High current densities of 3000 A/mm2+ at 12 T and 1800 A/mm2 at 15 T have been achieved in conductors as small as 0.152 mm with the use of Nb7.5Ta filaments and Ti in the Sn core. In contrast, conductors with pure Nb and Ti in the Sn achieved 2700 A/mm2 at 12 T. Two internal fins, developed and patented on the project, were introduced into the filament array and reduced the effective filament diameter (Deff) by 38%. Additional fins will further reduce Deff The conductor was produced from 152.4 mm diameter billets to produce wire as small as 0.152 mm. The process promises be scaleable to 304 mm diameter billets yielding wire of 0.304 mm diameter. The MEIT process wire was easy to draw with relatively few breaks. The cost of this conductor in large production quantities based on the cost model presented could meet the 1.5 $/kilo amp meter(KAM) target of the HEP community

  3. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  4. Incineration and incinerator ash processing

    SciTech Connect

    Blum, T.W.

    1991-01-01

    Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

  5. Bottom ash boosts poor soil

    SciTech Connect

    Stanley, D.

    1993-04-01

    This article describes agricultural uses of fluidized bed bottom ash residue from burning limestone and coal in electric power generating plants: as a limestone substitute, to increase calcium levels in both soil and plants, and as a gypsom-containing soil amendment. Apples and tomatoes are the crops used. The industrial perspective and other uses of bottom ash are also briefly described.

  6. Ash-Based Ceramic Materials.

    DTIC Science & Technology

    This patent discloses a ceramic material made from raw coal fly ash or raw municipal solid waste fly ash and (1) sodium tetraborate or (2) a mixture of sodium tetraborate and a calcium containing material that is triple superphosphate, lime, dolomite lime, or mixtures thereof.

  7. PREFERENTIAL PARTITIONING OF PAHS AND PCBS TO COAL FLY ASH

    EPA Science Inventory

    It has long been known that fly ash has a significant capacity for the adsorption of several classes of anthropogenic pollutants, including toxic metals, nutrients and organic compounds. This adsorption capacity has been utilized by wastewater treatment plants for the removal of ...

  8. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  9. EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS

    SciTech Connect

    Unknown

    2000-10-01

    Tests were performed in simulated flue gas streams using two fly ash samples from the electrostatic precipitators of two full-scale utility boilers. One fly ash was derived from a Powder River Basin (PRB) coal, while the other was derived from Blacksville coal (Pittsburgh No. 8 seam). The tests were performed at temperatures of 120 and 180 C under different gas compositions using whole fly ash samples as well as magnetic and nonmagnetic concentrates from sized fly ash. Only the Blacksville ash contained magnetic phases. The whole and fractionated fly ash samples were analyzed for morphology, chemical composition, mineralogical composition, total organic carbon, porosity, and surface area. Mineralogically, the Blacksville ash was composed predominantly of magnetite, hematite, quartz, and mullite, while the PRB ash contained mostly quartz with lesser amounts of lime, periclase, and calcium aluminum oxide. The iron oxides in the Blacksville ash were concentrated almost entirely in the largest size fraction. As anticipated, there was not a clean separation of magnetic (Fe-rich) and nonmagnetic (aluminosilicate-rich) phases for the Blacksville ash. The Blacksville ash had a significantly higher surface area and a much higher unburned carbon content than the PRB ash. Elemental mercury (Hg) streams were injected into the simulated flue gas and passed over filters (housed in a convection oven) loaded with fly ash. Concentrations of total, oxidized, and elemental Hg downstream from the ash samples were determined by the Ontario Hydro Method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables. Based on the statistical analyses, the presence of HCl, NO, NO{sub 2}, and SO{sub 2} and all two-way gas interactions were significant. In addition, it appears that even four-factor interactions between those gases are significant. The HCl, NO{sub 2}, and SO{sub 2} were critical gases resulting in Hg oxidation, while

  10. What Controls the Sizes and Shapes of Volcanic Ash? Integrating Morphological, Textural and Geochemical Ash Properties to Decipher Eruptive Processes

    NASA Astrophysics Data System (ADS)

    Liu, E. J.; Cashman, K. V.; Rust, A.

    2015-12-01

    Volcanic ash particles encompass a diverse spectrum of shapes as a consequence of differences in the magma properties and the magma ascent and eruption conditions. We show how the quantitative analysis of ash particle shapes can be a valuable tool for deciphering magma fragmentation and transport processes. Importantly, integrating morphological data with ash texture (e.g. bubble and crystal sizes) and dissolved volatile data provides valuable insights into the physical and chemical controls on the resulting ash deposit. To explore the influence of magma-water interaction (MWI) on fine ash generation, we apply this multi-component characterisation to tephra from the 2500BC Hverfjall Fires, Iceland. Here, coeval fissure vents spanned sub-aerial to shallow lacustrine environments. Differences in the size and morphology of pyroclasts thus reflect fragmentation mechanisms under different near-surface conditions. Using shape parameters sensitive to both particle roughness and internal vesicularity, we quantify the relative proportions of dense fragments, bubble shards, and vesicular grains from 2-D SEM images. We show that componentry (and particle morphology) varies as a function of grain size, and that this variation can be related back to the bubble size distribution. Although both magmatic and hydromagmatic deposits exhibit similar component assemblages, they differ in how these assemblages change with grain size. These results highlight the benefits of characterising ash deposits over a wide range of grain sizes, and caution against inferring fragmentation mechanism from a narrow grain size range. Elevated matrix glass S concentrations in hydromagmatic ash (600-1500 ppm) compared to those in magmatic ash and scoria lapilli (200-500 ppm) indicate interrupted vesiculation. In contrast to the subaerial 'dry' deposits, fragmentation during MWI likely occurred over a greater range of depths with quench rates sufficient to prevent post-fragmentation degassing. High

  11. Immersion freezing of different kinds of combustion ashes

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, Stefanie; Grawe, Sarah; Hellner, Lisa; Wex, Heike; Pettersson, Jan B. C.; Stratmann, Frank

    2015-04-01

    Ice particles in the atmosphere influence both, weather and climate. Therefore it is important to know which kind of particles can act as ice nucleating particles (INP) under atmospheric conditions. In the last years, a lot of effort has been made to investigate the freezing abilities of natural INPs such as dusts and biological particles (Murray et al., 2012, Hoose and Möhler, 2012). However, there are only a few investigations concerning the ice nucleation ability of combustion ashes, which are the remains of fossil fuel and wood combustion and thus a possible source for anthropogenic INPs. Ash particles have similar compositions as mineral dust particles. However, the actual contribution of combustion ash particles to the atmospheric ice nucleation is rather unclear. A recent study by Umo et al. (2014) showed that combustion ashes could have a significant impact on the ice nucleation in clouds and thus should be the focus of further research. Ash particles can be lifted to the atmosphere by wind (bottom ashes) or directly during the combustion process (fly ashes). In the present study we investigated the freezing behavior of bottom ash particles which originated from wood as well as from coal. Additionally we investigated particles from fly ash from a coal-fired power plant. Particles were generated by dry dispersion and afterwards size selected with a differential mobility analyzer (DMA). The immersion freezing ability of the different ash particles was quantified utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS, Hartmann et al., 2011), where exactly one size segregated ash particle is immersed in a droplet. We found significant differences between the freezing abilities of the different ash types. Particles from wood bottom ashes initiate freezing at rather low temperatures near the homogenous freezing point (around -36°C). Particles from coal bottom ashes show significant higher ice nucleation abilities than the wood bottom ash, with

  12. EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS

    SciTech Connect

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec; Joseph M. Okoh

    2002-01-31

    Tests were performed in simulated flue gas streams using fly ash from the electrostatic precipitators of two full-scale utility boilers. One fly ash was from a Powder River Basin (PRB) coal, while the other was from Blacksville coal. Elemental Hg was injected upstream from samples of fly ash loaded onto filters housed in an oven at 120 or 180 C. Concentrations of oxidized and elemental Hg downstream from the filters were determined using the Ontario Hydro method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables affecting Hg oxidation. The presence of HCl, NO, NO{sub 2}, and SO{sub 2} were all important with respect to Hg oxidation, with NO{sub 2} and HCl being the most important. The presence of NO suppressed Hg oxidation in these tests. Although the two fly ashes were chemically and mineralogically diverse, there were generally no large differences in catalytic potential (for oxidizing Hg) between them. Similarly, no ash fraction appeared to be highly catalytic relative to other ash fractions. This includes fractions enriched in unburned carbon and fractions enriched in iron oxides. Although some differences of lesser magnitude were observed in the amount of oxidized Hg formed, levels of oxidized Hg generally tracked well with the surface areas of the different ashes and ash fractions. Therefore, although the Blacksville fly ash tended to show slightly more catalytic activity than the PRB fly ash, this could be due to the relatively high surface area of that ash. Similarly, for Blacksville fly ash, using nonmagnetic ash resulted in more Hg oxidation than using magnetic ash, but this again tracked well with the relative surface areas of the two ash fractions. Test results suggest that the gas matrix may be more important in Hg oxidation chemistry than the fly ash composition. Combustion tests were performed in which Blacksville and PRB fly ashes were injected into filtered (via a baghouse with

  13. New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles

    NASA Astrophysics Data System (ADS)

    Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.

    2015-10-01

    Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.

  14. Internal Structure and Clinical Utility of the Anxiety Control Questionnaire-Revised (ACQ-R) Spanish Version.

    PubMed

    Osma, Jorge; Barrada, Juan Ramón; García-Palacios, Azucena; Navarro-Haro, María; Aguilar, Alejandra

    2016-10-03

    Perceived control has shown predictive value for anxiety severity symptoms as well as cognitive-behavior therapy outcomes. The most commonly used measure of perceived control is the Anxiety Control Questionnaire (ACQ), and more recently the ACQ Revised (ACQ-R). However, both questionnaires have shown structural inconsistencies among several studies. Also, although the ACQ and ACQ-R seem to be multidimensional instruments, a single total score have been commonly used. This study examined the internal structure of the ACQ-R Spanish version using exploratory factor and exploratory bi-factor analysis in a sample of 382 college students and 52 people diagnosed of panic disorder (with or without agoraphobia). Also, in this study we assessed the preliminary diagnostic value of the ACQ-R scores. The results indicated that the ACQ-R Spanish version structure consisted of two factors: one related with perceived control of internal emotional reactions (Emotion Control) and another related with perceived control of external events (Threat and Stress Control). Both specific factors can be adequately summarized by a general factor (General Anxiety Perception of Control; CFI = .973, TLI = .954, RMSEA = .039; p = .002), which accounted for 70% of the common explained variance. The correlations between the ACQ-R scores and with variables like anxiety (r = -.66) or anxiety sensitivity (r = -.50) presented the expected pattern of results. Either the two dimensions structure or the total score have proved to be a good tool to distinguish between participants with panic disorder and non-clinical samples (area under the curve = 0.79).

  15. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.

    PubMed

    Başpinar, M Serhat; Kahraman, Erhan; Görhan, Gökhan; Demir, Ismail

    2010-01-01

    The increase of power plant capacity has led to the production of an increasing amount of fly ash that causes high environmental impact in Turkey. Some of the fly ash is utilized within the fired brick industry but high sulfate-containing fly ash creates severe problems during sintering of the fired brick. This study attempted to investigate the potential for converting high sulfate-containing fly ash into useful material for the construction industry by the addition of boric acid. The chemical and mineralogical composition of fly ash and clay were investigated. Boric acid (H(3)BO(3)) was added to fly ash-clay mixtures with up to 5 wt.%. Six different series of test samples were produced by uniaxial pressing. The samples were fired at the industrial clay-brick firing temperatures of 800, 900 and 1000 degrees C. The microstructures of the fired samples were investigated by scanning electron microscopy and some physical and mechanical properties were measured. It was concluded that the firing at conventional brick firing temperature of high sulfate fly ash without any addition of boric acid resulted in very weak strength bricks. The addition of boric acid and clay simultaneously to the high sulfate- containing fly ash brick dramatically increased the compressive strength of the samples at a firing temperature of 1000 degrees C by modifying the sintering behaviour of high sulfate fly ash.

  16. Metal distribution characteristic of MSWI bottom ash in view of metal recovery.

    PubMed

    Xia, Yi; He, Pinjing; Shao, Liming; Zhang, Hua

    2017-02-01

    Bottom ash is the major by-product of municipal solid waste incineration (MSWI), and is often reused as an engineering material, such as road-base aggregate. However, some metals (especially aluminum) in bottom ash can react with water and generate gas that could cause expansion and failure of products containing the ash; these metals must be removed before the ash is utilized. The size distribution and the chemical speciation of metals in the bottom ash from two Chinese MSWI plants were examined in this study, and the recovery potential of metals from the ash was evaluated. The metal concentrations in these bottom ashes were lower than that generated in other developed countries. Specifically, the contents of Al, Fe, Cu and Zn were 18.9-29.2, 25.5-32.3, 0.7-1.0 and 1.6-2.5g/kg, respectively. Moreover, 44.9-57.0wt.% of Al and 55.6-75.4wt.% of Fe were distributed in bottom ash particles smaller than 5mm. Similarly, 46.6-79.7wt.% of Cu and 42.9-74.2wt.% of Zn were concentrated in particles smaller than 3mm. The Fe in the bottom ash mainly existed as hematite, and its chemical speciation was considered to limit the recovery efficiency of magnetic separation.

  17. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  18. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  19. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  20. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  1. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  2. Phosphate-Bonded Fly Ash.

    DTIC Science & Technology

    1994-12-09

    FCODE OC ______________ ARLINGTON VA 22217-5660 - dis~bu~i.19~ 3 B Navy Case No. 75,787 PATENTS PHOSPHATE -BONDED FLY ASH IN’NA G. TALMY DEBORAH A. HAUGHT...2 3 , CaO. MgO, etc. with which the H.PO4 reacts to form the polymer-like phosphate bonds which hold the fly ash particles together. In the second...conventional means. The moisture (water) content of the aqueous HP0 4 /fly ash mixture is preferably from about 3 to about 5 weight percent for semidry

  3. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  4. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  5. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  6. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  7. Ash after forest fires. Effects on soil hydrology and erosion

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.

    2013-04-01

    from certain Eucaliptus and Pinus), or if clog soil pores (depending also on the soil type). If ash is wettable, it can store even 80% of its volume and then it will delay and reduce overland flow proportionally to the thickness of the ash layer. Once ash gets saturated, the flow tends to adjust to an infiltration rate similar to the soil itself, or sometimes higher due to the protection of ash that can reduce soil water repellency and soil sealing (Bodí et al. 2011, 2012). Still, many other aspects on ash remain unknown and ash present us more questions like, what it is its role on the carbon cycle? what is the extent of the ahs effects at basin scale? what is the fate of ash and how long it remains in the ecosystem? are there specific effects of ash depending on the ecosystem and so the type of ash? Acknowledgements This work was supported financially by a research fellowship (AP2007-04602) from the Spanish Ministry of Science and Innovation (M.B. Bodí) and the projects PT2009-0073 and CGL2010-21670-C02-01. References Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A., 2011, The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599-607. Bodí, M.B., Doerr, S.H., Cerdà, A., Mataix-Solera, J., 2012, Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191, 14-23 Cerdà, A., 1998, Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes 12, 1031-1042. Cerdà, A., Doerr, S.H., 2008, The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Woods, S.W., Balfour, V., 2008, The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire 17, 535-548.

  8. Volcanic ash - danger to aircraft in the north Pacific

    USGS Publications Warehouse

    Neal, Christina A.; Casadevall, Thomas J.; Miller, Thomas P.; Hendley, James W.; Stauffer, Peter H.

    1997-01-01

    The world's busy air traffic corridors pass over hundreds of volcanoes capable of sudden, explosive eruptions. In the United States alone, aircraft carry many thousands of passengers and millions of dollars of cargo over volcanoes each day. Volcanic ash can be a serious hazard to aviation even thousands of miles from an eruption. Airborne ash can diminish visibility, damage flight control systems, and cause jet engines to fail. USGS and other scientists with the Alaska Volcano Observatory are playing a leading role in the international effort to reduce the risk posed to aircraft by volcanic eruptions.

  9. Volcanic ash vs. sand and dust - "to stick or not to stick" in jet engines

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Song, W.; Lavallée, Y.; Hess, K. U.; Cimarelli, C.; Dingwell, D. B.

    2015-12-01

    Safe air travel activity requires clean flight corridors. But particles scattered in the atmosphere, whether volcanic ash, dust or sand, may present a critical threat to aviation safety. When these foreign particles are ingested into jet engines, whose interiors (e.g., the combustor and turbine blades) reach 1200-2000 °C, they can abrade, melt, and stick to the internal components of the engine, clogging ventilation traps of the cooling system as well as imparting substantial damage and potentially resulting in catastrophic system failure. To date, no criterion predicts ash behaviour at high temperature. Here, we experimentally develop the first quantitative model to predict melting and sticking conditions for the compositional range of volcanic ash encountered worldwide (Fig.1). The assumption that volcanic ash can be approximated by sand or dust is wholly inadequate, leading to an overestimation of sticking temperature and a correspondingly severe underestimation of the thermal hazard. Our findings confirm that the melting/softening behaviour of volcanic ash at high temperatures is essentially controlled by the composition of erupted ash - which may serve as an accurate proxy of the thermal hazard potential of volcanic ash interaction with jet engines. The criterion proposed here successfully parameterizes the potentially complex "melting" process of volcanic ash and can be used to assess the deposition probability of volcanic ash upon ingestion into hot jet engines.

  10. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    John Groppo; Thomas Robl

    2006-09-30

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station.

  11. Coal fly ash: a potential resource for aluminium and titanium

    SciTech Connect

    Frederick, J.R.; Murtha, M.J.; Burnet, G.

    1980-01-01

    Two processes are described which utilize fly ash as a source of metals and by-products. The lime-soda sinter process involves sintering of the fly ash and alkaline oxides at 1100-1300/sup 0/C to break the alumina-silica bonds and form soluble aluminate compounds and insoluble calcium silicates. The aluminates are extracted from the sinter by dissolution in sodium carbonate. The calcium silicate sinter extract shows promise as a raw material for the manufacture of portland cement. The HiChlor process uses high temperature chlorination of fly ash in the presence of a reductant to form volatile metal chlorides of aluminium, titanium, iron, and silicon. The HiChlor process extracts aluminium, titanium, and iron, while the sinter process extracts only aluminium.

  12. Development of Scientific Tools at the USGS to Prepare for Ash-Producing Eruptions

    NASA Astrophysics Data System (ADS)

    Guffanti, M.; Mastin, L. G.; Wallace, K.; Schneider, D. J.; Neal, C. A.

    2015-12-01

    The U.S. Geological Survey has undertaken a focused effort over the past several years to develop scientific tools to improve capabilities to forecast, assess, and mitigate the adverse impacts of ash-producing eruptions. To improve forecasting capabilities, USGS scientists developed a Eulerian ash dispersion and deposition model, Ash3D, with output designed for operational use by other agencies. For ashfall hazards, Ash3D output includes forecasts of time of arrival and duration of ashfall, as well as traditional isopach maps. We coordinated with colleagues at the National Weather Service in Alaska to ensure Ash3D output is useable by NWS in its official ashfall advisories, and we are developing methods to generate long-term probabilistic ashfall hazard maps for DOE. For ash-cloud hazards, Ash3D output includes animations of cloud height, mass load, concentration, and arrival times over airports. To improve assessment capabilities, diverse approaches were pursued: a portable Doppler radar was acquired and successfully used to characterize ash plumes during the 2009 eruption of Redoubt Volcano in Alaska; a database system was created to manage ashfall collection and observations, including by the public ('Is Ash Falling?' at www.avo.alaska.edu/ashfall/ashreport.php); a display-and-analysis tool was developed that accesses public satellite data from a variety of sensors and platforms ('Volcview' at volcview.wr.usgs.gov/). To improve mitigation capabilities, the USGS hosts a website (volcanoes.usgs.gov/ash), developed by the partners of IAVCEI's International Volcanic Ashfall Impacts Working Group and recently revamped, that provides practical guidance about how to prepare for and recover from ash eruptions, organized by affected sector (buildings, transportation, power supply, health, agriculture, water supply, communications). With these various tools now available, scientists and citizenry are better prepared for ash eruptions.

  13. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE PAGES

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; ...

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  14. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    SciTech Connect

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; Westover, Tyler L.

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stover was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.

  15. Toward an integrated Volcanic Ash Observing System in Europe

    NASA Astrophysics Data System (ADS)

    Lee, Deborah; Lisk, Ian

    2014-05-01

    and initiatives. We will also look to highlight the work underway by VAACs (Volcanic Ash Advisory Centres) and aviation regulatory authorities within the IAVWOPSG (International Airways Volcano Watch Operations Group) to develop the 'agreed in situ and/or remote sensing techniques' that underpin the newly approved definition of 'Discernible ash'.

  16. Apparatus utilizing a plural-profiled cam unit for actuating the valve of an internal combustion engine

    SciTech Connect

    Burandt, C.O.

    1987-08-04

    An apparatus is described for operating a reciprocable valve assembly associated with a combustion cylinder of an internal combustion engine comprising an axially-fixed camshaft having a central axis, first cam means mounted on the camshaft for rotation. The first cam means having a first base circle portion, and first and second ramp portions, the first ramp portion are connected at one end of the first base circle portion and extending in one direction away from the first base circle portion and gradually increasing in radius in the one direction. The second ramp portion is connected at one end to the first base circle portion and extends in an opposite direction away from the first base circle portion and gradually increasing in radius in the opposite direction. The second cam means has a second base circle portion of the same radius as the first base circle portion. A lobe portion radially extends from the central axis a first distance and connects third and fourth ramp portions. The third ramp portion extends in the one direction away from the second base circle portion and gradually increases in radius in the one direction. The fourth ramp portion extends in the opposite direction away from the second base circle portion and gradually increases in radius in the opposite direction. The first cam means has an outermost radial distance less than the first distance and follower means provides a single working surface engageable by both of the first and second cam means. The lobe portion and the third and fourth ramp portions of the second cam means engage a different portion of the single working surface of the follower means from that engaged by the first and second ramp portions of the first cam means.

  17. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    SciTech Connect

    Fallahpoor, M; Abbasi, M; Sen, A; Parach, A; Kalantari, F

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  18. Fly ash as a liming material for corn production

    SciTech Connect

    Tarkalson, D.D.; Hergert, G.W.; Stevens, W.B.; McCallister, D.L.; Kackman, S.D.

    2005-05-01

    Fly ash produced as a by-product of subbituminous coal combustion can potentially serve as an alternative liming material without negatively affecting corn (Zea mays L.) production in areas where use of conventional liming materials can be uneconomical due to transportation costs. A study was conducted to determine if fly ash produced from the Nebraska Public Power District Gerald Gentleman Power Station located in Sutherland, NE could be used as an alternative liming material. Combinations of dry fly ash (DFA), wet fly ash (WFA), beet lime (by-product of sugar beet (Beta vulgaris L.) processing) (BL), and agricultural lime (AGL) were applied at rates ranging from 0.43 to 1.62 times the recommended lime rate to plots on four acidic soils (Anselmo fine sandy loam, Hord fine sandy loam, Holdrege sandy loam, and Valentine fine sand). Soil samples were collected to a depth of 0.2 m from plots and analyzed for pH before lime applications and twice periodically after lime application. The Hord and Valentine soils were analyzed for exchangeable Ca, Mg, K, Na,and Al for determination of percent Al saturation on selected treatments and sampling dates. Corn grain yields were determined annually. It is concluded that the fly ash utilized in this study and applied at rates in this study, increases soil pH comparable to agricultural lime and is an appropriate alternative liming material.

  19. Sorbents for CO2 capture from high carbon fly ashes.

    PubMed

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  20. Volcanic ash hazards and aviation risk: Chapter 4

    USGS Publications Warehouse

    Guffanti, Marianne C.; Tupper, Andrew C.

    2015-01-01

    The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.

  1. Desulfurization Characteristics of Fly Ash Recirculation and Combustion in the Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Li, S. F.; Fang, M. X.; Yu, B.; Wang, Q. H.; Luo, Z. Y.

    The experiments of the fly ash recycle combustion using Guizhou anthracite were carried out in a bench scale circulating fluidized bed (CFB) combustor. Effects of some key operating parameters such as recycle ash to coal mass ratio (Ca to S molar ratio), temperature, reactivation modeof fly ash, circulation rateand fluidization velocity on the desulfurization efficiency were intensively investigated. It is shown that thelimestone utilization efficiency could be improved about 30% with the following operating conditions: the mass ratio of fly ash (reactivated by water and dried at 90°C) to coal was 0.45, the furnace temperature was 880°C, the water to ash mass ratio was 4.5% (the water-to-calcium molar ratio was 0.55) and circulation rate was 18.

  2. Use of rubber and bentonite added fly ash as a liner material.

    PubMed

    Cokca, Erdal; Yilmaz, Zeka

    2004-01-01

    In many countries regulations require all hazardous waste disposal facilities to be lined with suitable impermeable barriers to protect against contamination. In this study, a series of laboratory tests on rubber and bentonite added fly ash were conducted. The aim of the tests was to evaluate the feasibility of utilizing fly ash, rubber and bentonite as a low hydraulic conductivity liner material. Type C fly ash was obtained from Soma thermal power plant in Turkey; rubber in pulverized form was waste from the retreading industry. To investigate the properties of rubber and bentonite added fly ash, hydraulic conductivity, leachate analysis, unconfined compression, split tensile strength, one-dimensional consolidation, swell and freeze/thaw cycle tests were performed. The overall evaluation of results have revealed that rubber and bentonite added fly ash showed good promise and a candidate for construction of a liner.

  3. Artificial radioactivity in fuel peat and peat ash in Finland after the Chernobyl accident

    SciTech Connect

    Mustonen, R.A.; Reponen, A.R.; Jantunen, M.J.

    1989-04-01

    The accident at the Chernobyl nuclear power plant in April 1986 caused very uneven deposition of radionuclides in Finland. The deposited radionuclides were found in relatively high concentrations in fuel peat and especially in peat ash because a thin surface layer of peat-production bogs was extracted as fuel peat soon after the fallout occurred. Concentrations of artificial radionuclides in fuel peat and peat ash were measured at six peat-fired power plants in Finland throughout the heating season 1986-87. Concentrations of /sup 137/Cs in composite peat samples varied between 30 and 3600 Bq kg-1 dry weight and in ash samples between 600 and 68,000 Bq kg-1. High concentrations in peat ash caused some restrictions to the utilization of peat ash for various purposes.

  4. Use of rubber and bentonite added fly ash as a liner material

    SciTech Connect

    Cokca, Erdal; Yilmaz, Zeka

    2004-07-01

    In many countries regulations require all hazardous waste disposal facilities to be lined with suitable impermeable barriers to protect against contamination. In this study, a series of laboratory tests on rubber and bentonite added fly ash were conducted. The aim of the tests was to evaluate the feasibility of utilizing fly ash, rubber and bentonite as a low hydraulic conductivity liner material. Type C fly ash was obtained from Soma thermal power plant in Turkey; rubber in pulverized form was waste from the retreading industry. To investigate the properties of rubber and bentonite added fly ash, hydraulic conductivity, leachate analysis, unconfined compression, split tensile strength, one-dimensional consolidation, swell and freeze/thaw cycle tests were performed. The overall evaluation of results have revealed that rubber and bentonite added fly ash showed good promise and a candidate for construction of a liner.

  5. Coal Ash Resources Research Consortium. Annual report and selected publications, 1 July 1992--30 June 1993

    SciTech Connect

    Pflughoeft-Hassett, D.F.; Dockter, B.A.; Eylands, K.E.; Hassett, D.J.; O`Leary, E.M.

    1994-04-01

    The Coal Ash Resources Research Consortium (CARRC, pronounced cars), formerly the Western Fly Ash Research, Development, and Data Center (WFARDDC), has continued fundamental and applied scientific and engineering research focused on promoting environmentally safe, economical use of coal combustion fly ash. The research tasks selected for the year included: (1) Coal Ash Properties Database Maintenance and Expansion, (2) Investigation of the High-Volume Use of Fly Ash for Flowable Backfill Applications, (3) Investigation of Hydrated Mineralogical Phases in Coal Combustion By-Products, (4) Comparison of Department of Transportation Specifications for Coal Ash Utilization, (5) Comparative Leaching Study of Coal Combustion By-Products and Competing Construction Materials, (6) Application of CCSEM for Coal Ash Characterization, (7) Determination of Types and Causes of Efflorescence in Regional Concrete Products, and (8) Sulfate Resistance of Fly Ash Concrete: A Literature Review and Evaluation of Research Priorities. The assembly of a database of information on coal fly ash has been a focus area for CARRC since its beginning in 1985. This year, CARRC members received an updated run time version of the Coal Ash Properties Database (CAPD) on computer disk for their use. The new, user-friendly database management format was developed over the year to facilitate the use of CAPD by members as well as CARRC researchers. It is anticipated that this direct access to CAPD by members as well as CARRC researchers. It is anticipated that this direct access to CAPD by members will be beneficial to each company`s utilization efforts, to CARRC, and to the coal ash industry in general. Many additions and improvements were made to CAPD during the year, and a three-year plan for computer database and modeling related to coal ash utilization was developed to guide both the database effort and the research effort.

  6. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  7. Aerosols Monitoring Network to Create a Volcanic ASH Risk Management System in Argentina and Chile

    NASA Astrophysics Data System (ADS)

    Quel, Eduardo; Sugimoto, Nobuo; Otero, Lidia; Jin, Yoshitaka; Ristori, Pablo; Nishizawa, Tomoaki; González, Francisco; Papandrea, Sebastián; Shimizu, Atsushi; Mizuno, Akira

    2016-06-01

    Two main decisions were made in Argentina to mitigate the impact of the recent volcanic activity in de country basically affected by the presence of volcanic ash in the air and deposited over the Argentinean territory. The first one was to create a risk management commission were this risk between others were studied, and second to develop new ground based remote sensing technologies to be able to identify and inform the risk close to the airports. In addition the Japanese government program for Science and Technology joint Research Partnership between Argentina, Chile and Japan for Sustainable Development (SATREPS) accepted to fund this cooperation due to the potential future utilization of the research outcomes to the benefit of the society. This work present the actual achievements and expected advance of these projects that try to joint efforts between national and international agencies as well as countries on behalf of a better understanding of the risks and a joint collaboration on the mitigation of suspended ashes impact over the aerial navigation.

  8. MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE

    SciTech Connect

    A.E. Bland; T.H. Brown

    1997-04-01

    Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of value in

  9. Diagnostic utility of the HIV dementia scale and the international HIV dementia scale in screening for HIV-associated neurocognitive disorders among Spanish-speaking adults.

    PubMed

    López, Enrique; Steiner, Alexander J; Smith, Kimberly; Thaler, Nicholas S; Hardy, David J; Levine, Andrew J; Al-Kharafi, Hussah T; Yamakawa, Cristina; Goodkin, Karl

    2016-08-15

    Given that neurocognitive impairment is a frequent complication of HIV-1 infection in Spanish-speaking adults, the limited number of studies assessing HIV-associated neurocognitive disorders (HAND) in this population raises serious clinical concern. In addition to being appropriately translated, instruments need to be modified, normed, and validated accordingly. The purpose of the current study was to examine the diagnostic utility of the HIV Dementia Scale (HDS) and International HIV Dementia Scale (IHDS) to screen for HAND in Spanish-speaking adults living with HIV infection. Participants were classified as either HAND (N = 47) or No-HAND (N = 53) after completing a comprehensive neuropsychological evaluation. Receiver operating characteristic analyses found the HDS (AUC = .706) was more sensitive to detecting HAND than the IHDS (AUC = .600). Optimal cutoff scores were 9.5 for the HDS (PPV = 65.2%, NPV = 71.4%) and 9.0 for the IHDS (PPV = 59.4%, NPV = 59.1%). Canonical Correlation Analysis found the HDS converged with attention and executive functioning. Findings suggest that while the IHDS may not be an appropriate screening instrument with this population, the HDS retains sufficient statistical validity and clinical utility to screen for HAND in Spanish-speaking adults as a time-efficient and cost-effective measure in clinical settings with limited resources.

  10. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    John Groppo; Thomas Robl

    2006-06-30

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utility's 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The secondary classification testing was concluded using a continuous demonstration-scale lamella classifier that was operated at a feed rate of 0.3 to 1.5 tons/hr. Feed to the secondary classifier was generated by operating the primary classifier at the conditions shown to be effective previously. Samples were taken while the secondary classifier was operated under a variety of conditions in order to determine the range of conditions where the unit could be efficiently operated. A Topical Report was prepared and included all of the pertinent processing data generated during Budget Period 1 of the project as well as results of beneficiated ash product evaluations in mortar and concrete, schematic plant designs with mass and water balances for the four flowsheets tested with equipment lists, capital and installation costs, expected product outputs and equipment justifications. A proposal for continuation of the project to Budget Period 2 was also prepared and submitted, with the exception of a Letter of Commitment from Cemex. The proposal is currently under internal review with Cemex and a decision is expected by the end of September, 2006.

  11. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Hong, Seong-Joo; Lim, Sang-Min; Lee, Choul-Gyun

    2016-05-01

    Culturing microalgae in the ocean has potentials that may reduce the production cost and provide an option for an economic biofuel production from microalgae. The ocean holds great potentials for mass microalgal cultivation with its high specific heat, mixing energy from waves, and large cultivable area. Suitable photobioreactors (PBRs) that are capable of integrating marine energy into the culture systems need to be developed for the successful ocean cultivation. In this study, prototype floating PBRs were designed and constructed using transparent low-density polyethylene film for microalgal culture in the ocean. To improve the mixing efficiency, various types of internal partitions were introduced within PBRs. Three different types of internal partitions were evaluated for their effects on the mixing efficiency in terms of mass transfer (k(L)a) and mixing time in the PBRs. The partition type with the best mixing efficiency was selected, and the number of partitions was varied from one to three for investigation of its effect on mixing efficiency. When the number of partitions is increased, mass transfer increased in proportion to the number of partitions. However, mixing time was not directly related to the number of partitions. When a green microalga, Tetraselmis sp. was cultivated using PBRs with the selected partition under semi-continuous mode in the ocean, biomass and fatty acid productivities in the PBRs were increased by up to 50 % and 44% at high initial cell density, respectively, compared to non-partitioned ones. The results of internally partitioned PBRs demonstrated potentials for culturing microalgae by efficiently utilizing ocean wave energy into culture mixing in the ocean.

  12. Kinetics of fly ash beneficiation by carbon burnout. [Quarterly report], October 1, 1995--January 30, 1996

    SciTech Connect

    Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

    1996-09-01

    The objective is to investigate the kinetics of beneficiation of fly ash by carbon burnout. The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the beneficiation of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the fly ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7--2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash beneficiation have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550--750{degrees}C. The P{sub 02} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively.

  13. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs.

    PubMed

    Haynes, R J

    2009-01-01

    Coal-fired power generation is a principal energy source throughout the world. Approximately, 70-75% of coal combustion residues are fly ash and its utilization worldwide is only slightly above 30%. The remainder is disposed of in landfills and fly ash basins. It is desirable to revegetate these sites for aesthetic purposes, to stabilize the surface ash against wind and water erosion and to reduce the quantity of water leaching through the deposit. Limitations to plant establishment and growth in fly ash can include a high pH (and consequent deficiencies of Fe, Mn, Cu, Zn and P), high soluble salts, toxic levels of elements such as B, pozzalanic properties of ash resulting in cemented/compacted layers and lack of microbial activity. An integrated organic/biotechnological approach to revegetation seems appropriate and should be investigated further. This would include incorporation of organic matter into the surface layer of ash, mycorrhizal inoculation of establishing vegetation and use of inoculated legumes to add N. Leaching losses from ash disposal sites are likely to be site-specific but a sparse number of studies have revealed enriched concentrations of elements such as Ca, Fe, Cd, Pb, and Sb in surrounding groundwater. This aspect deserves further study particularly in the longer-term. In addition, during weathering of the ash and deposition of organic matter during plant growth, a soil will form with properties vastly different to that of the parent ash. In turn, this will influence the effect that the disposal site has on the surrounding environment. Nevertheless, the effects of ash weathering and organic matter accumulation over time on the chemical, physical and biological properties of the developing ash-derived soil are not well understood and require further study.

  14. Fly ash chemical classification based on lime

    SciTech Connect

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  15. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  16. Prospects for cleaning ash in the acidic effluent from bioleaching of sulfidic concentrates.

    PubMed

    Paul, M; Sandström, A; Paul, J

    2004-01-02

    Leaching of ashes in sulfuric acid (pH 1.0, liquid-to-solid (L/S) ratio 10:1, 25 degrees C) has been characterized with respect to the neutralizing capacity and the dissolution of dominant ions and trace elements. The conditions mimic the oxidation stage of a biohydrometallurgical process for base metal production from sulfidic mineral concentrates. Direct acid leaching of ash, integrated with this metallurgical process, offers a feasible route to the sustainable handling of metal-rich ashes. The treated ash will be deposited together with the inert mineral residue. Cd, Co, Cu, Ni and Zn are effectively leached and can be recovered utilizing existing hydrometallurgical technology, but the recovery of other readily dissolved metals, notably Mn, U and V, requires that additional steps are implemented. We make two recommendations for industrial processes. The first is to replace limestone with ash from biofuels, except peat, for pH control in biohydrometallurgical processing. This requires a modest increase of fresh alkali compared with limestone. The second is to implement sulfuric acid leaching of fly ash from the combustion of solid waste and other metal-rich fuels (used wood, tires), thereby avoiding costly ash-deposits. There is a significant economic incentive for these changes, since no costly ash-deposits and less limestone will be needed.

  17. Stabilization of Oklahoma expensive soils using lime and class C fly ash

    SciTech Connect

    Buhler, R.L.; Cerato, A.B.

    2007-01-15

    This study uses lime and class C fly ash, an industrial byproduct of electric power production produced from burning lignite and subbituminous coal, to study the plasticity reduction in highly expensive natural clays from Idabel, Oklahoma. This study is important, especially in Oklahoma, because most of the native soils are expansive and cause seasonal damage to roadways and structures. The addition of lime or fly ash helps to arrest the shrinkage and swelling behavior of soil. Four soil samples with the same AASHTO classification were used in this study to show shrinkage variability within a soil group with the addition of lime and class C fly ash. The plasticity reduction in this study was quantified using the linear shrinkage test. It was found that soils classified within the same AASHTO group had varying shrinkage characteristics. It was also found that both lime and fly ash reduced the lienar shrinkage, however, the addition of lime reduced the linear shrinkage to a greater degree than the same percentage of class C fly ash. Even though it takes much less lime than fly ash to reduce the plasticity of a highly expansive soil, it may be less expensive to utilize fly ash, which is a waste product of electric power production. Lime also has a lower unit weight than fly ash so weight percentage results may be misleading.

  18. Volcanic ash hazard climatology for an eruption of Hekla Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Leadbetter, Susan J.; Hort, Matthew C.

    2011-01-01

    Ash produced by a volcanic eruption on Iceland can be hazardous for both the transatlantic flight paths and European airports and airspace. In order to begin to quantify the risk to aircraft, this study explored the probability of ash from a short explosive eruption of Hekla Volcano (63.98°N, 19.7°W) reaching European airspace. Transport, dispersion and deposition of the ash cloud from a three hour 'explosive' eruption with an initial plume height of 12 km was simulated using the Met Office's Numerical Atmospheric-dispersion Modelling Environment, NAME, the model used operationally by the London Volcanic Ash Advisory Centre. Eruptions were simulated over a six year period, from 2003 until 2008, and ash clouds were tracked for four days following each eruption. Results showed that a rapid spread of volcanic ash is possible, with all countries in Europe facing the possibility of an airborne ash concentration exceeding International Civil Aviation Organization (ICAO) limits within 24 h of an eruption. An additional high impact, low probability event which could occur is the southward spread of the ash cloud which would block transatlantic flights approaching and leaving Europe. Probabilities of significant concentrations of ash are highest to the east of Iceland, with probabilities exceeding 20% in most countries north of 50°N. Deposition probabilities were highest at Scottish and Scandinavian airports. There is some seasonal variability in the probabilities; ash is more likely to reach southern Europe in winter when the mean winds across the continent are northerly. Ash concentrations usually remain higher for longer during summer when the mean wind speeds are lower.

  19. Predicting slag viscosity from coal ash composition

    SciTech Connect

    Laumb, J.; Benson, S.A.; Katrinak, K.A.; Schwalbe, R.; McCollor, D.P.

    1999-07-01

    Management of slag flow from cyclone-fired utility boilers requires accurate prediction of viscosity. Cyclones tend to build up slag when the cyclone combustion temperature is less than the temperature required to melt and tap the ash from the coal being fired. Cyclone-fired boilers designed for lignite are equipped with predry systems, which remove 6-9% of the moisture from the coal. Cyclones tend to slag when the as-received heating value of the fuel is less than 6350 Btu/lb and T250 (temperature where viscosity equals 250 poise) is greater than 2350 F. The T250 value, as well as the rest of the viscosity-temperature relationship, can be predicted using models based on coal ash composition. The focus of this work is to evaluate several models in terms of their agreement with measured viscosities. Viscosity measurements were made for ten samples, including nine lignite coals and one lignite-derived slag. Model performance is related to the SiO{sub 2}, CaO, and Fe{sub 2}O{sub 3} contents of the slag. The Sage and McIlroy and Kalmanovitch models worked best for high SiO{sub 2} and low Fe{sub 2}O{sub 3} fuels. The Senior model worked best when Fe{sub 2}O{sub 3} content was moderate to high.

  20. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  1. Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use

    SciTech Connect

    Bland, A.E.; Brown, T.H.

    1996-12-31

    Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

  2. Probing the physiology of ASH neuron in Caenorhabditis elegans using electric current stimulation

    PubMed Central

    Chokshi, Trushal Vijaykumar; Bazopoulou, Daphne; Chronis, Nikos

    2011-01-01

    Electrical stimulation has been widely used to modulate and study the in vitro and in vivo functionality of the nervous system. Here, we characterized the effect of electrical stimulation on ASH neuron in Caenorhabditis elegans and employed it to probe the neuron’s age dependent properties. We utilized an automated microfluidic-based platform and characterized the ASH neuronal activity in response to an electric current applied to the worm’s body. The electrically induced ASH neuronal response was observed to be dependent on the magnitude, polarity, and spatial location of the electrical stimulus as well as on the age of the worm. PMID:21886270

  3. Utilizing Interns in Facilities Management

    ERIC Educational Resources Information Center

    Judkins, Clarissa; Morris, John P.; Molocznik, Chuck

    2011-01-01

    Facilities management is rapidly changing and developing from a position an individual stumbles into--or work one's way up through--to a discipline and vocation all of its own. There is a need for a collaborative strategy among leaders in practice, education, and research to share knowledge and experience and to establish professional and ethical…

  4. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    NASA Astrophysics Data System (ADS)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  5. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    . The body of this report compares these for all of the samples in the test section. The 'Coal Ash Corrosion Resistant Materials Testing Program' is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100 F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 29 months of operation. The second section was removed in August of 2003. Its evaluation has been completed and is the subject of this report. The final section remains in service and is expected to be removed in the spring of 2005. This paper describes the program; its importance, the design, fabrication, installation and operation of the test system, materials utilized, and experience to date. This report briefly reviews the results of the evaluation of the first section and then presents the results of the evaluation of the second section.

  6. Mineral resource of the month: soda ash

    USGS Publications Warehouse

    Kostic, Dennis S.

    2006-01-01

    Soda ash, also known as sodium carbonate, is an alkali chemical that can be refined from the mineral trona and from sodium carbonate-bearing brines. Several chemical processes exist for manufacturing synthetic soda ash.

  7. Coal waste resource utilization within the Sasol group of companies

    SciTech Connect

    Steynberg, E.C.; Matjie, R.H.; Bunt, J.R.; Heap, M.A.

    1998-12-31

    Sasol converts low grade coal into high value synfuels and chemicals using fixed bed gasification and Fischer-Tropsch Technology. Sasol mines approximately 45 million tons of coal annually, which is utilized in: gasification, producing 9 million t/y of coarse ash; and steam generation, producing 3 million t/y of fly ash. The optimal use of the ash produced in these processes naturally has many advantages which among others addresses the long-term environmental problems associated with ash dumping, reduces the cost of ash dumping, prevents capital expenditure on further ash slimes dams or on land to create dumping facilities and indirectly creates new job opportunities. Furthermore higher value products can also be prepared from the ash which creates new opportunities for Sasol. This paper addresses the potential utilization of this waste product by examining it from two angles, namely from an engineering perspective and from a research point of view. Firstly the possible application of ash in the road construction and building industries will be discussed; thereafter work conducted by Research and Development concerning the production of lightweight aggregates and inorganic chemicals from ash will be highlighted.

  8. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    S., Morag H., 2013. The effect of wildfires on vegetation cover and dune activity in Australia's desert dunes: a multisensor analysis International Journal of Wildland Fire, vol. 21 (4), pp. 459-475. Lugassi R., Ben-Dor E., Eshel G., 2013. Reflectance spectroscopy of soils post-heating'Assessing thermal alterations in soil minerals. Geoderma, vol. 231, pp. 268-279. Pereira P., Úbeda X., Martin D., Mataix-Solera J., Guerrero C. 2011. Effects of a low prescribed fire in ash water soluble elements in a Cork Oak (Quercus suber) forest located in Northeast of Iberian Peninsula, Environmental Research, vol. 111(2), pp. 237-247. Shakesby R.A., 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions Earth Science Reviews, vol. 105, pp. 71-100. Woods, S.W., Balfour, V.N. 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils, Journal of Hydrology, vol. 393, pp. 274-286.

  9. Kinetics of fly ash beneficiation by carbon burnout. Quarterly report, January--March 1996

    SciTech Connect

    Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

    1996-09-01

    The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the benefication of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the fly ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7-2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash benefication have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550-750{degrees}C. The P{sub O{sub 2}} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively. 16 refs., 7 figs., 3 tabs.

  10. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts.

    PubMed

    Dunens, Oscar M; MacKenzie, Kieran J; Harris, Andrew T

    2009-10-15

    Carbon nanotubes (CNTs) are an allotrope of carbon with unique properties that make them potentially useful in a vast range of applications. However, CNTs are predominantly produced using expensive and/or nonrecyclable catalyst supports, e.g., mesoporous silica and alumina. In this work, coal combustion fly ash, a bulk waste product with limited uses, was impregnated with iron nitrate and successfully used as a substrate to produce industrial grade multiwalled carbon nanotubes (MWNTs) by fluidized bed chemical vapor deposition. CNTs were analyzed using thermogravimetric analysis, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The most successful catalyst trialed at 650 degrees C using ethylene as a carbon source was a 5 wt % Fe fly ash catalyst, which produced a CNT yield in respect to metal loading of approximately 82.5%. The MWNTs had outer diameters of between 12 and 20 nm with a reasonable degree of wall graphitization (I(G)/I(D) of 1.17). Advantages of utilizing fly ash as a catalyst support are its availability at low cost at the megaton scale, its high thermal stability, and suitability for use in industrial fluidized bed reactors. Potential applications for the fly ash produced CNTs include use in composite materials.

  11. Glass phase in municipal and industrial waste incineration bottom ashes

    NASA Astrophysics Data System (ADS)

    Rafał Kowalski, Piotr; Michalik, Marek

    2015-04-01

    Waste incineration bottom ash is a material with rising significance in waste streams in numerous countries. Even if some part of them is now used as raw materials the great amount is still landfilled. High temperature of thermal processes (>1000°C) together with fast cooling results in high content of glass in bottom ash. Its chemical composition is influenced by various factors like composition of raw wastes and used incineration technique. Most of bottom ash grains are composed of glass with large amount of mineral phases and also metallic constituents embedded into it. Glass susceptibility for alteration processes together with the characteristics of glass-based grains can bring environmental risk in time of improper or long term storage on landfill site. In this study bottom ashes from thermal treatment of municipal and industrial (including hazardous and medical) wastes were studied to determine glass content, its chemical composition with emphasis on metal content (especially potentially hazardous) and its relations to metallic components of grains. Samples were collected from two thermal treatment plants in Poland. Qualitative and quantitative X-ray diffraction (XRD) analyses were used for determination of mineral composition of studied samples. Rietveld method and addition of internal standard for determination of amorphous phase content were used. Scanning electron microscopy fitted with energy dispersive spectrometry (SEM-EDS) were used for detailed analysis of glass and glass associated phases. Waste incineration bottom ash is a multi-components material rich in amorphous phase. It dominant part is represented by Si-rich glass. It is a main component of bottom ash grains but it contains minerals present in large quantities and also various forms of metallic elements. Glass within grains is often porous and cracked. In bottom ashes from thermal treatment of municipal wastes ~ 45-55 wt % of amorphous phase were present, mostly in form of glass with high

  12. Hydrochemical Leaching of Wildfire Ash

    NASA Astrophysics Data System (ADS)

    Hamann, H.

    2008-12-01

    A century of fire suppression, combined with recent droughts has provoked some of the worst wildfire seasons in the western US. Although wild and prescribed fires are known to supply nutrients to grassland, shrubland and forest ecosystems, when ash and combustion byproducts are leached into surface waters the nutrients and other materials can affect aquatic ecosystems and pose a considerable risk to water quality. This ash may be persistent for periods as short as a storm or snowmelt event or up to several years, as suggested by periodic increases in dissolved nutrients and suspended solids. Here I present results from field sampling and bench scale experiments that examine the rate of change and chemical quality of leachate from ash samples collected from two wildfires that burned in Colorado in 2003 and 2006. Bench scale- experiments suggest that the conductivity of ash leachate increases in a continuous and modelable manner. Stream grab samples collected in burned and unburned areas within two weeks of the 2006 Mato Vega fire suggest an initial increase in pH, and conductivity, as well as an increase in solutes including dissolved organic carbon and manganese; however the results were spatially variable.

  13. Volcanic ash aggregation in the lab - can we mimic natural processes?

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Jacob, Michael; Ayris, Paul; Cimarelli, Corrado; Dingwell, Donald B.; Guttzeit, Melanie; Hess, Kai-Uwe; Walter, Ulrich

    2015-04-01

    Explosive volcanic eruptions release large amounts of particles into the atmosphere. Volcanic ash, by definition pyroclasts smaller than 2 mm, can be distributed around the globe by prevailing winds. Ash poses hazards to aviation industry by melting in jet turbines, to human health by entering respiration systems and to society by damaging infrastructure. Under certain circumstances, ash particles can cluster together and build ash aggregates. Aggregates range in size from few mm to few cm and may exhibit complex internal stratigraphy. During growth, weight, density and aerodynamic properties change, leading to a significantly different settling behavior compared to individual ash particles. Although ash aggregation has been frequently observed in the geologic record, the physical and chemical mechanisms generating the aggregates remain poorly understood. During several field campaigns, we collected numerous ash aggregates and analyzed their textural, chemical and mechanical properties. Based on this knowledge, we have designed experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH, Germany. In this device, a continuous fluidized bed can be applied on solid particles and simulate gas-particle flow conditions as they would be expected in volcanic plumes or pyroclastic density currents. The geological record and direct observations have shown that both processes are capable of producing ash aggregates. As starting material we used Na-glass beads as an analogue and volcanic ash from Laacher See Volcano, Eifel Volcanic Field, Germany. We define parameters such as grainsize, specific surface area and concentration of the starting material, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase to influence form, size, stability and production rate of aggregates. We were able to experimentally produce round, unstructured ash pellets up to 5mm in diameter. A detailed textural description highlights

  14. The United States national volcanic ash operations plan for aviation

    USGS Publications Warehouse

    Albersheim, Steven; Guffanti, Marianne

    2009-01-01

    Volcanic-ash clouds are a known hazard to aviation, requiring that aircraft be warned away from ash-contaminated airspace. The exposure of aviation to potential hazards from volcanoes in the United States is significant. In support of existing interagency operations to detect and track volcanic-ash clouds, the United States has prepared a National Volcanic Ash Operations Plan for Aviation to strengthen the warning process in its airspace. The US National Plan documents the responsibilities, communication protocols, and prescribed hazard messages of the Federal Aviation Administration, National Oceanic and Atmospheric Administration, US Geological Survey, and Air Force Weather Agency. The plan introduces a new message format, a Volcano Observatory Notice for Aviation, to provide clear, concise information about volcanic activity, including precursory unrest, to air-traffic controllers (for use in Notices to Airmen) and other aviation users. The plan is online at http://www.ofcm.gov/p35-nvaopa/pdf/FCM-P35-2007-NVAOPA.pdf. While the plan provides general operational practices, it remains the responsibility of the federal agencies involved to implement the described procedures through orders, directives, etc. Since the plan mirrors global guidelines of the International Civil Aviation Organization, it also provides an example that could be adapted by other countries.

  15. Petrographic characterization of economizer fly ash

    SciTech Connect

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  16. A novel method for immobilization of heavy metals from MSW incinerator fly ash via use of Sorel cement

    SciTech Connect

    Macakova, S.; Hepworth, M.H.

    1996-12-31

    Since fly ash contains a higher concentration of toxic elements than bottom ash, it is not usually possible to deposit it in ordinary landfills. The special landfill sites (ash monofills) for ash, which do not endanger ground water supplies are both temporary and an expensive solution and are not acceptable by people who live adjacent to them. According to the United States Supreme Court decision ruling on May 2, 1994, incinerator ash from municipal combustion facilities are subject to the Resource Conservation and Recovery Act as potentially hazardous waste. In the autumn of 1993, a research program was initiated by one of the authors to employ a novel method for stabilization of the fly ash from electrostatic precipitators. The novelty of this method is that it used by-products from magnesium processing plants to prepare magnesia cement, so called Sorel cement, to stabilize fly ash from MSWI. Sorel cement is a combination of magnesium oxide and magnesium chloride, currently by-products of a combination of magnesium oxide and magnesium chloride, currently by-products of magnesium processing operations. The main goal of this research program was to treat fly ash prior to its disposal and to investigate the possibility of utilizing a new ash-concrete product.

  17. Identifying glass compositions in fly ash

    NASA Astrophysics Data System (ADS)

    Aughenbaugh, Katherine; Stutzman, Paul; Juenger, Maria

    2016-01-01

    In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS), calcium aluminosilicate glasses (CAS), a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  18. The History of Attack and Success of Emerald Ash Borer (Coleoptera: Buprestidae) on White Fringetree in Southwestern Ohio.

    PubMed

    Thiemann, Danielle; Lopez, Vanessa; Ray, Ann M; Cipollini, Don

    2016-08-01

    Emerald ash borer, Agrilus planipennis Fairmaire, is an invasive insect that has caused widespread mortality of ash species in North America. The ability of emerald ash borer to utilize white fringetree as an alternate host was reported recently. We aimed to determine how long white fringetree has been under attack from emerald ash borer, the degree of attack, and the overall success of this beetle on this novel host. Stems from three of nine infested white fringetrees collected from the Dayton and Cincinnati, OH, areas in the winter of 2015 yielded four live adult emerald ash borers after being held in rearing containers, and numerous older exit holes were observed. Measurement and aging of feeding galleries on these stems indicated that emerald ash borer has been using this species since 2011, at least, with peak gallery densities reached in 2012 and 2013 on most of the harvested trees. On average, 32 galleries per square meter were found in these stems with about one-third of them being indicative of fourth-instar larvae. This supports the assertion that emerald ash borer has been using white fringetree as a host plant with moderate to good success for as long as ash species in these particular areas have been utilized.

  19. A pilot study of mercury liberation and capture from coal-fired power plant fly ash.

    PubMed

    Li, Jin; Gao, Xiaobing; Goeckner, Bryna; Kollakowsky, Dave; Ramme, Bruce

    2005-03-01

    The coal-fired electric utility generation industry has been identified as the largest anthropogenic source of mercury (Hg) emissions in the United States. One of the promising techniques for Hg removal from flue gas is activated carbon injection (ACI). The aim of this project was to liberate Hg bound to fly ash and activated carbon after ACI and provide high-quality coal combustion products for use in construction materials. Both bench- and pilot-scale tests were conducted to liberate Hg using a thermal desorption process. The results indicated that up to 90% of the Hg could be liberated from the fly ash or fly-ash-and-activated-carbon mixture using a pilot-scale apparatus (air slide) at 538 degrees C with a very short retention time (less than 1 min). Scanning electron microscope (SEM) evaluation indicated no significant change in fly ash carbon particle morphology following the thermal treatment. Fly ash particles collected in the baghouse of the pilot-scale apparatus were smaller in size than those collected at the exit of the air slide. A similar trend was observed in carbon particles separated from the fly ash using froth flotation. The results of this study suggest a means for power plants to reduce the level of Hg in coal-combustion products and potentially recycle activated carbon while maintaining the resale value of fly ash. This technology is in the process of being patented.

  20. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    EPA Science Inventory

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  1. pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash.

    PubMed

    Kosson, David S; Garrabrants, Andrew C; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Current concerns about the environmental safety of coal combustion fly ash have motivated this evaluation of the impact of fly ash use as a cement replacement in concrete materials on the leaching of constituents of potential concern. The chemical effects of fly ash on leaching were determined through characterization of liquid-solid partitioning using EPA Method 1313 for four fly ash materials as well as concrete and microconcrete materials containing 0% (control materials), 25% and 45% replacement of portland cement with the fly ash source. All source materials, concrete formulations and replacement levels are representative of US concrete industry practices. Eluate concentrations as a function of pH were compared to a broader range of available testing results for international concretes and mortars for which the leaching characteristics of the component fly ashes were unknown. The chemistry of the hydrated cement fraction was found to dominate the liquid-solid partitioning resulting in reduced leaching concentrations of most trace metals compared to concentrations from fly ash materials alone. Compared to controls, eluate concentrations of Sb, As, B, Cr, Mo, Se, Tl and V from concrete products containing fly ash were essentially the same as the eluate concentrations from control materials produced without fly ash replacement indicating little to no significant impact on aqueous partitioning.

  2. NASA Applied Science Program Applications for the Volcanic Ash Threat to Aviation

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Haynes, J. A.; Lindsay, F.

    2012-12-01

    Over the past decade, the public interest has been increasingly focused on the significant safety and economic impacts of the volcanic ash threat to aviation. During this period, the NASA Applied Science Program has developed a significant number of critical volcanic ash applications for a wide range of cutting-edge NASA satellite observations. This has entailed the development of many new and innovative technical advances and these advances have enabled and are increasingly improving the accuracy and the utility of volcanic ash advisories worldwide. The development of these applications is examined with respect to the specific sensor technologies, their pedigree and legacy, their unique and critical data for volcanic ash detection or characterization, volcanic ash algorithm development and validation and, finally, the use and impact of these applications. This substantial legacy rests on NASA Earth Observing Satellites and their advanced data. Imager applications for the The MODerate Resolution Imaging Spectro-radiometer (MODIS) instrument onboard NASA Terra and Aqua spacecraft and the Visible Infrared Imager Radiometer Suite (VIIRS) instrument onboard Suomi NPP allow better discrimination of ash from water vapor and ice clouds than traditional split-window imager techniques, as well as improved height assignment. Chemistry and aerosol applications for the Ozone Monitoring Instrument (OMI) onboard the NASA Aura spacecraft and the Ozone Mapper and Profiler Suite (OMPS) onboard Suomi NPP produce improved horizontal dispersion maps, and indices for volcanic ash and sulfate aerosol concentrations. Applications for the Caliop lidar onboard the NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite provide very accurate estimates of volcanic ash altitude, layering and concentration. These are critical assimilation elements for volcanic ash dispersion models and forecasts. The Multi-angle Imaging SpectroRadiometer (MISR) instrument

  3. Ash Production in Eruptive Flows: Comminution in Conduits and Pyroclastic Flows

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Manga, M.; Patel, A.

    2009-05-01

    Processes occurring at the grain scale, termed microphysical processes, can exert strong control of explosive eruption dynamics. In this talk we illustrate the importance of particle-particle interaction on the mass and momentum balance of eruptive flows. In particular we examine the break-up and transport of clasts during particle-particle interactions for two high-energy flow environments: pyroclastic and conduit flows. Abrasion and comminution of pumice clasts during the propagation of pyroclastic flows and post-fragmentation conduit flow have long been recognized as a potential source for the enhanced production of volcanic ash, however its relative importance has eluded quantification. The amount of fine-material produced in-situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure in pyroclastic flows. We conduct a series of laboratory experiments on the collisional production of ash that may occur during different regimes of pyroclastic flow transport and conduit flow. Using these laboratory experiments we develop a subgrid model for ash production that can be included in analytical and multiphase numerical procedures to estimate the total volume of ash produced during transport. We find that for most pyroclastic flow conditions, 10-20% of the initially 1 cm clasts comminutes into ash with the percentage increasing as a function of initial flow energy. Most of the ash is produced in the high-energy regions near the flow inlet, although flow acceleration on steep slopes can produce ash far from the vent. On level terrain, collisionally and frictionally produced ash generates gravity currents that detach from the main flow. Ash produced at the frictional base of the flow and in the collisional upper regions of the flow can be redistributed through the entirety of the flow, although frictionally produced ash accumulates preferentially near its source in the bed load. Flows that

  4. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB

  5. Solid by-products of coal combustion: Fly ash as a source of industrial minerals

    SciTech Connect

    Bhagwat, S.B.; Rapp, D.M.; Bukowski, J.M.

    1996-12-31

    Fly ash is one of the most important by-products of coal combustion. It is a complex mix of cenospheres, reactive glasses, magnetite and carbon, in addition to minor quantities of other minerals. Fly ash components are determined by the type of coal, the combustion technology, material collection system and the temperature of combustion. The changing mix of coal burned in power plants is increasingly making the fly ash characteristics independent of the locally mined coal. Fly ash is thus becoming a raw material independent of the existence of a local coal mining industry. Currently, about 65 million tons of fly ash are generated annually in the United States. This is equivalent to the crushed stone production of such highly industrialized states as Illinois. Only about twenty percent of the total fly ash are currently used, mostly in low value applications such as road building materials and concrete additions. The fly ash currently represents an environmental and financial liability to electric utilities. The increasingly competitive and boundaryless electricity market in the US increases the incentive to look at fly ash in terms of its individual components and recognize their potential as industrial minerals in the production of value added materials. For example, zeolites and other adsorbents could be produced from reactive glasses, magnetite could be used in pigments and ferrite manufacture, activated carbon could serve in pollution control and cenospheres could be used to make lightweight ceramics. If one begins to look at fly ash as a source of industrial minerals and not as a waste product, this change in perspective could turn a financial and environmental liability into an economic opportunity.

  6. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  7. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  8. Plasma vitrification of fly ash

    SciTech Connect

    Beudin, V.; Guihard, B.; Pineau, D.; Labrot, M.; Soler, G.; Favier, J.M.; Boudeau, A.

    1995-12-31

    This paper presents the plasma vitrification of fly-ash produced by a Municipal Waste Incinerator, as programmed by Europlasma Company in France. It describes the main assumptions, technical and economical data and regulations taken into account to build and operate the first industrial pilot plant from 1995, near Bordeaux (France), using a non transferred plasma torch of 500 kW operated with air.

  9. Ash Emissions and Risk Management in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Steensen, T. S.; Webley, P. W.; Stuefer, M.

    2012-12-01

    Located in the 'Ring of Fire', regions and communities around the Pacific Ocean often face volcanic eruptions and subsequent ash emissions. Volcanic ash clouds pose a significant risk to aviation, especially in the highly-frequented flight corridors around active volcano zones like Indonesia or Eastern Russia and the Alaskan Aleutian Islands. To mitigate and manage such events, a detailed quantitative analysis using a range of scientific measurements, including satellite data and Volcanic Ash Transport and Dispersion (VATD) model results, needs to be conducted in real-time. For the case study of the Sarychev Peak eruption in Russia's Kurile Islands during 2009, we compare ash loading and dispersion from Weather Research and Forecast model with online Chemistry (WRF-Chem) results with satellite data of the eruption. These parameters are needed for the real-time management of volcanic crises to outline no-fly zones and to predict the areas that the ash is most likely to reach in the near future. In the early stages after the eruption, an international group with representatives from the Kamchatkan and Sachalin Volcanic Eruption Response Teams (KVERT, SVERT), the National Aeronautics and Space Administration (NASA), and the Alaska Volcano Observatory (AVO) published early research on the geological and geophysical characteristics of the eruption and the behavior of the resulting ash clouds. The study presented here is a follow-up project aimed to implement VATD model results and satellite data retrospectively to demonstrate the possibilities to develop this approach in real-time for future eruptions. Our research finds that, although meteorological cloud coverage is high in those geographical regions and, consequently, these clouds can cover most of the ash clouds and as such prevent satellites from detecting it, both approaches compare well and supplement each other to reduce the risk of volcanic eruptions. We carry out spatial extent and absolute quantitative

  10. Ash and Steam, Soufriere Hills Volcano, Monserrat

    NASA Technical Reports Server (NTRS)

    2002-01-01

    International Space Station crew members are regularly alerted to dynamic events on the Earth's surface. On request from scientists on the ground, the ISS crew observed and recorded activity from the summit of Soufriere Hills on March 20, 2002. These two images provide a context view of the island (bottom) and a detailed view of the summit plume (top). When the images were taken, the eastern side of the summit region experienced continued lava growth, and reports posted on the Smithsonian Institution's Weekly Volcanic Activity Report indicate that 'large (50-70 m high), fast-growing, spines developed on the dome's summit. These spines periodically collapsed, producing pyroclastic flows down the volcano's east flank that sometimes reached the Tar River fan. Small ash clouds produced from these events reached roughly 1 km above the volcano and drifted westward over Plymouth and Richmond Hill. Ash predominately fell into the sea. Sulfur dioxide emission rates remained high. Theodolite measurements of the dome taken on March 20 yielded a dome height of 1,039 m.' Other photographs by astronauts of Montserrat have been posted on the Earth Observatory: digital photograph number ISS002-E-9309, taken on July 9, 2001; and a recolored and reprojected version of the same image. Digital photograph numbers ISS004-E-8972 and 8973 were taken 20 March, 2002 from Space Station Alpha and were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  11. Airborne volcanic ash; a global threat to aviation

    USGS Publications Warehouse

    Neal, Christina A.; Guffanti, Marianne C.

    2010-01-01

    The world's busy air traffic corridors pass over or downwind of hundreds of volcanoes capable of hazardous explosive eruptions. The risk to aviation from volcanic activity is significant - in the United States alone, aircraft carry about 300,000 passengers and hundreds of millions of dollars of cargo near active volcanoes each day. Costly disruption of flight operations in Europe and North America in 2010 in the wake of a moderate-size eruption in Iceland clearly demonstrates how eruptions can have global impacts on the aviation industry. Airborne volcanic ash can be a serious hazard to aviation even hundreds of miles from an eruption. Encounters with high-concentration ash clouds can diminish visibility, damage flight control systems, and cause jet engines to fail. Encounters with low-concentration clouds of volcanic ash and aerosols can accelerate wear on engine and aircraft components, resulting in premature replacement. The U.S. Geological Survey (USGS), in cooperation with national and international partners, is playing a leading role in the international effort to reduce the risk posed to aircraft by volcanic eruptions.

  12. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    PubMed

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant.

  13. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    PubMed

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was <5% for both shell ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  14. Can vegetative ash be water repellent?

    NASA Astrophysics Data System (ADS)

    Bodí, M. B.; Cerdà, A.; Mataix-Solera, J.; Doerr, S. H.

    2012-04-01

    In most of the literature, ash is referred to as a highly wettable material (e.g. Cerdà and Doerr, 2008; Etiegni and Campbell, 1991; Woods and Balfour 2010). However, the contrary was suggested in few articles, albeit with no further quantification (Gabet and Sternberg, 2008; Khanna et al., 1996; Stark, 1977). To clarify this question, water repellency measurements on ash using the Water Drop Penetration Times (WDPT) method were performed on ash from Mediterranean ecosystems and it was found to be water repellent (Bodí et al. 2011). Water repellency on ash from different wildfires ranged from 40 to 10 % occurrence with samples being extreme repellent (lasting more than 3600 s to penetrate). Part of the ash produced in the laboratory was also water repellent. After that, other ash samples had been found water repellent in wildfires in Colorado (unpublished results), Portugal (Gonzalez-Pelayo, 2009), or in prescribed fires in Australia (Bodí et al. 2011b; Petter Nyman, personnal communication). All the samples exhibiting water repellent properties had in common that were combusted at low temperatures, yielding in general ash with dark colour and contents of organic carbon of more than 18 % (Bodí et al. 2011a), although these properties were not exactly proportional to its water repellency occurrence or persistence. In addition, the species studied in Bodí et al. (2011) had been found to produce different levels of WR repellency, being ash from Pinus halepensis more repellent than that from Quercus coccifera and Rosmarins officinalis. Ash from Eucaliptus radiata had been found also very water repellent, as Pinus halepensis (unpublished data). The reasons of the existance of water repellent ash are that the charred residue produced by fire (an also contained in the ash) can contain aromatic compounds that have a lower free energy than water and therefore behave as hydrophobic materials with reduced solubility (Almendros et al., 1992 and Knicker, 2007

  15. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2014-04-01

    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry were calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres were found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates was found to underestimate mass loading compared to morphologically complex inhomogeneous ash particles. The underestimate increases with the mass loading. For an ash cloud recorded during the Eyjafjallajökull 2010 eruption, the mass-equivalent spheres underestimate the total mass of the ash cloud by approximately 30% compared to the morphologically complex inhomogeneous particles.

  16. Soil quality in a cropland soil treated with wood ash containing charcoal

    NASA Astrophysics Data System (ADS)

    Omil, Beatriz; Balboa, Miguel A.; Fonturbel, M. Teresa; Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Vega, Jose A.; Merino, Agustin

    2014-05-01

    The strategy of the European Union "Europe 2020" states that by 2020, 20% of final energy consumption must come from renewables. In this scenario, there is an increasing use of biomass utilization for energy production. Indeed, it is expected that the production of wood-ash will increase in coming years. Wood ash, a mixture of ash and charcoal, generated as a by-product of biomass combustion in power plants, can be applied to soil to improve the soil quality and crop production. Since the residue contains significant content of charcoal, the application of mixed wood ash may also improve the SOM content and soil quality in the long term, in soils degraded as a consequence of intensive management. The objective of this study was asses the changes in SOM quality and soil properties in a degraded soils treated with wood ash containing charcoal. The study was carried out in a field devoted to cereal crops during the last decades. The soil was acidic (pH 4.5) with a low SOC content (3 %) and fine texture. The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash ha-1, 16 Mg mixed wood ash ha-1 (16 Mg) and 32 Mg mixed wood ash ha-1 (32 Mg). The application was carried out once. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark and branches. The wood ash is highly alkaline (pH= 10), contains 10 % of highly condensed black carbon (atomic H/C ratio < 0.5 and T50 en DSC= 500 ºC). The evolution of SOM properties were monitored over three years by solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). These techniques were applied in bulk samples and aggregates of different sizes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Several physical properties, such soil

  17. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans.

  18. Processing and utilization of wet flue gas desulfurization material

    SciTech Connect

    Stewart, A.; Hassett, D.J. |

    1997-05-01

    Cooperative Power`s Coal Creek Station (CCS) became fully operational in 1981. The two 550-MW units at CCS burn North Dakota lignite. The resulting by-products are fly ash, bottom ash, and wet FGD material. Although disposal of the coal combustion by-products (CCBs) was included in the original site plant at CCS, even early on, consideration was given to utilization of the fly ash as a mineral admixture for concrete and as a partial sorbent replacement for the wet scrubbing system. CCS fly ash has been successfully marketed into North Dakota, Minnesota, and the surrounding region as a construction material that is environmentally benign, highly consistent, and an excellent performer in numerous construction applications. Attempts to use CCS fly ash as part of the scrubbing medium in the wet scrubbing system at the site were not as successful as first hoped, primarily due to the abrasive nature of the fly ash. Currently, CCS scrubbers use lime as the scrubbing medium for SO{sub 2} removal. CCS`s efforts to market its fly ash have been successful, so with increased awareness of the economic advantages of by-product utilization, the favorable US Environmental Protection Agency (EPA) regulatory determination that CCBs are not hazardous, and the improved understanding of potential local and regional markets, Cooperative Power has taken additional steps to investigate the processing and utilization of its wet FGD material. These steps are discussed.

  19. Amelioration of soil PAH and heavy metals by combined application of fly ash and biochar

    NASA Astrophysics Data System (ADS)

    Masto, Reginald; George, Joshy; Ansari, Md; Ram, Lal

    2016-04-01

    Generation of electricity through coal combustion produces huge quantities of fly ash. Sustainable disposal and utilization of these fly ash is a major challenge. Fly ash along with other amendments like biochar could be used for amelioration of soil. In this study, fly ash and biochar were used together for amelioration of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Field experiment was conducted to investigate the effects of fly ash and biochar on the amelioration of soil PAH, and the yield of Zea mays. The treatments were control, biochar (4 t/ha), fly ash (4 t/ha), ash + biochar ( 2 + 2 t/ha). Soil samples were collected after the harvest of maize crop and analysed for chemical and biological parameters. Thirteen PAHs were analysed in the postharvest soil samples. Soil PAHs were extracted in a microwave oven at 120 °C using hexane : acetone (1:1) mixture. The extracted solutions were concentrated, cleaned and the 13 PAHs [Acenaphthene (Ace), fluorene (Flr), phenanthrene (Phn), anthracene(Ant), pyrene(Pyr), benz(a)anthracene (BaA), chrysene (Chy), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene, benzo(g,h,i)perylene (BghiP), dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene)(Inp)] were analysed using GC-MS. The mean pH increased from 6.09 in control to 6.64 and 6.58 at biochar and fly ash treated soils, respectively. N content was not affected, whereas addition of biochar alone and in combination with fly ash, has significantly increased the soil organic carbon content. P content was almost double in combined (9.06 mg/kg) treatment as compared to control (4.32 mg/kg). The increase in K due to biochar was 118%, whereas char + ash increased soil K by 64%. Soil heavy metals were decreased: Zn (-48.4%), Ni (-41.4%), Co (-36.9%), Cu (-35.7%), Mn (-34.3%), Cd (-33.2%), and Pb (-30.4%). Soil dehydrogenase activity was significantly increased by ash and biochar treatments and the maximum activity was observed for the combined

  20. Volcanic ash at Santiaguito dome complex, Guatemala

    NASA Astrophysics Data System (ADS)

    Hornby, Adrian; Kendrick, Jackie; Lavallée, Yan; Cimarelli, Corrado; von Aulock, Felix; Rhodes, Emma; Kennedy, Ben; Wadsworth, Fabian

    2015-04-01

    Dome-building volcanoes often suffer episodic explosions. Examination of eruptive activity at Santiaguito dome complex (Guatemala) reveals that gas-and-ash explosions are concordant with rapid inflation/ deflation cycles of the active dome. During these explosions strain is accommodated along marginal faults, where tensional fracture mechanisms and friction dominate, complicating the model of ash generation by bubble rupture in magma. Here, we describe textural features, morphology and petrology of ash collected before, during and after a dome collapse event at Santiaguito dome complex on the 28th November 2012. We use QEM-scan (on more than 35000 grains), laser diffraction granulometry and optical and scanning microscopy to characterise the samples. The ash samples show a bimodal size distribution and a range of textures, crystal content and morphologies. The ash particles are angular to sub-angular and are relatively dense, so do not appear to comprise of pore walls. Instead the ash is generally blocky (>70%), similar to the products of shear magma failure. The ash samples show minor variation before, during and after dome collapse, specifically having a smaller grain size and a higher fraction of phenocrysts fragments before collapse. Textural analysis shows vestiges of chemically heterogeneous glass (melt) filaments originating from the crystals and crosscut by fragmentation during volcanic ash formation. High-velocity friction can induce melting of dome lavas, producing similar disequilibrium melting textures. This work shows the importance of deformation mechanisms in ash generation at lava domes and during Vulcanian activity.

  1. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, Jifeng

    2009-11-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and they are independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. And the prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  2. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, J.; Peterson, R.

    2009-12-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and are largely independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. The prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  3. Numerical simulation of ash vaporization during pulverized coal combustion in the laboratory-scale single-burner furnace

    SciTech Connect

    Jiancai Sui; Minghou Xu; Jihua Qiu; Yu Qiao; Yun Yu; Xiaowei Liu; Xiangpeng Gao

    2005-08-01

    CFD tools have been developed to effectively simulate complex, reacting, multiphase flows that exist in utility boilers. In this paper, a model of ash vaporization was established and integrated into a self-developed CFD code to predict ash vaporization in the coal combustion process. Experimental data from a single-particle combustion was used to validate the above model. The calibrated model was then applied to simulate the ash vaporization in a 92.9 kW laboratory-scale single-burner furnace. The effects of different combustion conditions, including air staging, on the ash vaporization were investigated. The results showed that the fraction of ash vaporization is mostly sensitive to coal particle temperature. Ash vaporization primarily occurred after a short interval along the coal particle trajectories when the particle temperatures increased to 1800 K. Air staging influenced the ash vaporization by changing the gas temperature distribution in the furnace. The simulation results showed that the more extreme the staging condition, the lower the overall peak temperature, and hence the lower the amount of ash vaporization. 26 refs., 9 figs.

  4. Characterization of ash cenospheres in fly ash from Australian power stations

    SciTech Connect

    Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang

    2007-12-15

    Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

  5. High-resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali-activated fly ash.

    PubMed

    Provis, John L; Rose, Volker; Bernal, Susan A; van Deventer, Jannie S J

    2009-10-06

    The nanoscale distribution of elements within fly ash and the aluminosilicate gel products of its alkaline activation ("fly ash geopolymers") are analyzed by means of synchrotron X-ray fluorescence using a hard X-ray Nanoprobe instrument. The distribution of calcium within a hydroxide-activated (fly ash/KOH solution) geopolymer gel is seen to be highly heterogeneous, with these data providing for the first time direct evidence of the formation of discrete high-calcium particles within the binder structure of a geopolymer synthesized from a low-calcium (<2 wt % as oxides) fly ash. The silicate-activated (fly ash/potassium silicate solution) sample, by contrast, shows a much more homogeneous geopolymer gel binder structure surrounding the unreacted fly ash particles. This has important implications for the understanding of calcium chemistry within aluminosilicate geopolymer gel phases. Additionally, chromium and iron are seen to be very closely correlated within the structures of both fly ash and the geopolymer product and remain within the regions of the geopolymer which can be identified as unreacted fly ash particles. Given that the potential for chromium release has been one of the queries surrounding the widespread utilization of construction materials derived from fly ash, the observation that this element appears to be localized within the fly ash rather than dispersed throughout the gel binder indicates that it is unlikely to be released problematically into the environment.

  6. The impact of thermal treatment and cooling methods on municipal solid waste incineration bottom ash with an emphasis on Cl.

    PubMed

    Yang, Shuo; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kawano, Takashi; Kakuta, Yoshitada

    2016-10-01

    Municipal solid waste incineration (MSWI) bottom-ash products possess qualifications to be utilized in cement production. However, the instant use of bottom ash is inhibited by a number of factors, among which the chlorine (Cl) content is always strictly restricted. In this paper, the unquenched MSWI bottom ash was used as the experimental substance, and the influences of thermal treatment and cooling methods on the content and existence of Cl in the ash residues were investigated. The characterization of the MSWI bottom-ash samples examined by utilizing X-ray diffraction, optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy. The experimental results show that as a function of thermal treatment, the reduction rate of Cl is slight below 15.0%, which is relatively low compared with water washing process. Different cooling methods had impacts on the existing forms of Cl. It was understood that most of Cl existed in the glass phase if the bottom ash was air cooled. Contrarily in case of water-quenched bottom ash, Cl could also be accumulated in the newly-formed quench products as chloride salts or hydrate substances such as Friedel's salt.

  7. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  8. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  9. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process.

    PubMed

    Hu, Yuyan; Zhang, Pengfei; Li, Jianping; Chen, Dezhen

    2015-12-15

    In the paper, hydrothermal treatment (HT) of MSWI fly ashes was performed to stabilize and separate heavy metals. Influences of pre-treatment, types of ferric and/or ferrous additives, and subsequent heavy metal stabilization procedure by adding phosphate were investigated. The chemical stability of hydrothermal products was examined by solid waste extraction procedure with acetic acid buffer solution. Mineralogical investigation of selected hydrothermal product was carried out by XRD. FEGE SEM- -EDX was used to study the morphology and surface compositions of the ash particles. Experimental results revealed that HT process facilitated heavy metal exposure to leaching solution. FEGE SEM-EDX images revealed that fly ash particles were re-organized during hydrothermal process and that the minerals with special shapes and containing high levels of heavy metals were formed. A mild acid washing treatment with final pH around 6.20 could remove soluble heavy metals. Therefore, it may be a proper pre- or post-treatment method for fly ash particles for the purpose of reducing heavy metal contents. For the purpose of stabilizing heavy metals, the addition of ferric/ferrous salts in the HT process or phosphate stabilization after HT is recommended. The HT process may be applied to realize the environmentally sound management of MSWI fly ash or to recover and utilize MSWI fly ash.

  10. Bonding material containing ashes after domestic waste incineration for cementation of radioactive waste

    SciTech Connect

    Dmitriev, S.A.; Varlakov, A.P.; Gorbunova, O.A.; Arustamov, A.E.; Barinov, A.S.

    2007-07-01

    It is known that cement minerals hydration is accompanied with heat emission. Heat of hardening influences formation of a cement compound structure and its properties. It is important to reduce the heat quantity at continuous cementation of waste and filling of compartments of a repository or containers by a cement grout. For reduction of heating, it is necessary to use cement of mineral additives (fuel ashes, slag and hydraulic silica). Properties of ashes after domestic waste incineration can be similar to ones of fly fuel ashes. However, ash after domestic waste incineration is toxic industrial waste as it contains toxic elements (As, Cd, Hg, Pb, Sb, Zn). Utilization of secondary waste (slag and ash) of combustion plants is an important environmental approach to solving cities' issues. Results of the research have shown that ashes of combustion plants can be used for radioactive waste conditioning. Co-processing of toxic and radioactive waste is ecologically and economically effective. At SIA 'Radon', experimental batches of cement compositions are used for cementation of oil containing waste. (authors)

  11. Solidification/stabilization of ash from medical waste incineration into geopolymers.

    PubMed

    Tzanakos, Konstantinos; Mimilidou, Aliki; Anastasiadou, Kalliopi; Stratakis, Antonis; Gidarakos, Evangelos

    2014-10-01

    In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50°C for 24h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2-8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash.

  12. Changes of the ash structure

    NASA Astrophysics Data System (ADS)

    Peer, Václav; Friedel, Pavel; Janša, Jan

    2016-06-01

    The aim of the article is to appraisal of the changes in the structure of the ash due to the addition of compounds capable of the eutectics composition change. For the transformation were used limestone and dolomite dosed in amounts of 2, 5 and 10 wt.% with pellets of spruce wood, willow wood and refused derived fuel. Combustion temperatures of the mixtures were adjusted according to the temperatures reached during the using of fuels in power plants, i.e. 900, 1000, 1100 and 1200 °C.

  13. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    NASA Astrophysics Data System (ADS)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  14. Municipal waste combustor ash as an aggregate in concrete masonry units

    SciTech Connect

    Berg, E.R.

    1993-12-31

    The use of municipal waste combustor ash (MWCA) as aggregate in concrete masonry units (CMU) was investigated using current commercial portland cement concrete technology in an effort to maximize MWCA utilization with a minimum of additional expense. The project used ASTM standards/protocols for portland cement materials to measure the physical and chemical properties including size and size gradation, chemical composition, organic and moisture contents, and density of the sample MWCA obtained from a refuse-derived-fuel operation. Powder X-ray diffraction, atomic absorption spectrophotometry, scanning electron microscope, and electron probe microanalysis were also used to assist in determining the morphology and mineral composition. MWCA fly ash and bottom ash components were evaluated separately. The fly ash component was found to contain high levels of sulfates and chlorides that created significant adverse reactions. The sulfate content of the bottom ash equalled the recommended limit for chlorides. MWCA bottom ash was used in the trial mixes with only a maximum size control to minimize processing costs. Trial mixes were made using a modified ASTM C-109 protocol to simulate CMU production methods. Techniques known to improve the durability, strength, and sulfate resistance of portland cement concrete were used to improve the performance of the MWCA mixes. Variables included cement type and amount, curing method, water content, sand content for size gradation, coal fly ash and microsilica content, a CMU plasticizer and a non-chloride accelerator. Compressive strengths in excess of 20.9 MPa (3000 psi), satisfactory for commercial CMU, were obtained with a 10 per cent cement content. A 28 day mist cure gave uniformly higher strengths than a 24 hour cycle atmospheric steam cure. The angularity and size gradation of the MWCA bottom ash adversely affected the machinability and strength results.

  15. Distribution of chloride ion in MSWI bottom ash and de-chlorination performance.

    PubMed

    Chen, Ching-Ho; Chiou, Ing-Jia

    2007-09-05

    When recycling bottom ash from municipal solid waste incinerators (MSWIs), salts and heavy metals contents must be considered; in particular, chloride ions must be addressed because they cause serious corrosion in metals. Therefore, only limited amounts of bottom ash can be utilized as a substitution for material or the bottom ash must be treated at high temperatures prior to use. These factors markedly decrease the applications of bottom ash. In addition to the distribution characteristics of chloride ions, this study also investigates the characteristics change before and after de-chlorination using a counter-flow pipe column and three different flow fluxes for different refuse incinerators as the experiment variables. Thus, this study attempts to determine the appropriate conditions for de-chlorination and an appropriate policy for use of bottom ash as concrete aggregate. The experimental results show that a negative correlation exists between the natural logarithm of the chloride ion concentration and particle size in bottom ash. Characteristics of de-chlorinated bottom ash, such as pH value, mud content, loss on ignition, chloride ion concentration, turbidity, and species intensity, all decrease, meaning that de-chlorination decreased chloride ion content and generates a cleaning effect. The per-unit-time efficiency of de-chlorination is highest in the high flux flow. When flow flux is 80 mL/min, the de-chlorination efficiency is >0.3%/h. However, the shortest time required for bottom ash de-chlorination does not reduce in proportion to the legally prescribed concentration of chloride ion.

  16. Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.

    1999-01-01

    Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.

  17. Scientists Outline Volcanic Ash Risks to Aviation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-01-01

    The ash clouds that belched out of Iceland's Eyjafjallajökull volcano last spring and dispersed over much of Europe, temporarily paralyzing aviation, were vast smoke signal warnings about the hazard that volcanic ash poses for air traffic around the world. At a 15 December news briefing at the AGU Fall Meeting in San Francisco, two experts with the U.S. Geological Survey (USGS) presented an overview of the damage airplanes can sustain from rock fragment- and mineral fragment-laden ash, an update on efforts to mitigate the hazard of ash, and an outline of further measures that are needed to address the problem. Between 1953 and 2009, there were 129 reported encounters of aircraft with volcanic ash clouds, according to a newly released USGS document cited at the briefing. The report, “Encounters of aircraft with volcanic ash clouds: A compilation of known incidents, 1953-2009,” by Marianne Guffanti, Thomas Casadevall, and Karin Budding, indicates that 26 encounters involved significant damage to the airplanes; nine of those incidents resulted in engine shutdown during flight. The report, which does not focus on the effects on airplanes of cumulative exposure to dilute ash and does not include data since 2009, indicates that “ash clouds continue to pose substantial risks to safe and efficient air travel globally.”

  18. Fly ash disposal in a limestone quarry

    SciTech Connect

    Peffer, J.R.

    1982-05-01

    Approximately 740 000 tons of eastern bituminous coal fly ash were deposited at the abandoned Zullinger limestone quarry from 1973-1980. The quarry extended below the water table and was not lined to isolate the ash from the aquifer. Long-term groundwater pollution has apparently not resulted.

  19. GNSS Radio Occultations for monitoring volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Rieckh, Therese; Steiner, Andrea; Kirchengast, Gottfried

    2014-05-01

    Volcanic explosive eruptions affect economic, political and cultural activities. Major explosive eruptions, such as Mount Pinatubo in 1991, can also impact the Earth's climate. They inject huge amounts of gas, aerosol and ash into the upper troposphere and lower stratosphere (UTLS) causing increased reflection of solar radiation back to space and cooling the Earth's troposphere. Measurements of atmospheric parameters, such as temperature and density, with high vertical resolution and accuracy are difficult during volcanic eruptions. Ongoing satellite missions do not provide suitable space-time coverage with adequate horizontal and vertical resolution and sensitivity. In-situ measurements are sparse and the acquisitions at UTLS altitudes are difficult and often not reliable. According to the statement of the International Union of Geodesy and Geophysics on "Volcanological and Meteorological Support for Volcanic Ash Monitoring", about 50% of the world's volcanoes that currently threaten air operations do not have any sort of ground based monitoring. Key parameters are the total erupted mass (total volume and maximum height of plume) and the cloud ash extent. The atmospheric height reached by a plume is fundamentally related to the flux of material ejected at the vent. The determination of the top height of the ash cloud and the monitoring of cloud movement and extent is important for characterizing the eruptive processes and for understanding the impact on climate due to the radiative interaction between the clouds, surface and atmosphere. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurements of the atmospheric density structure in any meteorological condition, during day and night, with global coverage, high vertical resolution and high accuracy. Several ongoing RO missions provide a high density of vertical profiles with a good time and space coverage. With more than 10 years of GNSS RO availability, these acquisitions became

  20. Exercises for the VAST demonstration volcanic ash forecast system

    NASA Astrophysics Data System (ADS)

    Arnold, Delia; Bialek, Jakub; O'Dowd, Collin; Iren Kristiansen, Nina; Martin, Damien; Maurer, Christian; Miklos, Erika; Prata, Fred; Radulescu, Razvan; Sollum, Espen; Sofiev, Mikhail; Stebel, Kerstin; Stohl, Andreas; Vira, Julius; Wotawa, Gerhard

    2014-05-01

    Within the ESA-funded international project VAST (Volcanic Ash Strategic Initiative Team) a demonstration service for volcanic ash forecasting and source term estimate is planned. This service takes advantage of the operationally available EO data for constraining the source term and multi-input and multi-model ensemble approaches to account, at a certain extent, for the uncertainties associated to the meteorological data used to drive the forecast models and the models themselves. In order to test the approach and current capabilities of the team, a set of exercises was carried out in 2013 including fictitious scenarios that would potentially affect the European airspace giving significant fine ash loads at usual cruise levels. The recent activity of Etna, with events in Autumn and Winter 2013 with clear transport over Europe, is providing a good test case for the evaluation of the system, from the early warning to the ensemble modeling tools, in a real case scenario. Although the releases were not a potential threat for aviation at an European scale, the local airport of Catania, at a close distance, was affected. For one recent Etna eruption and the former exercises we present here the performance of the system and the ensemble results. The combination atmospheric dispersion model-meteorology used are: FLEXPART-ECMWF/GFS/WRF, WRF-Chem and SILAM.

  1. Acoustic Surveillance of Hazardous Eruptions (ASHE) in Asia

    NASA Astrophysics Data System (ADS)

    Garces, M. A.; Taisne, B.; Blanc, E.; Tupper, A. C.; Ngemaes, M.; Mialle, P.; Murayama, T.

    2015-12-01

    The ASHE Ecuador (2004-2012) collaboration between Ecuador, Canada, and the US demonstrated the capability to use real-time infrasound to provide low-latency volcanic eruption notifications to the Volcano Ash Advisory Center (VAAC) in Washington DC. The Atmospheric dynamics Research Infrastructure in Europe (ARISE, 2012-2018) supported by the European Commission fosters integrating innovative methods for remote detection and characterization of distant eruptive sources through collaborations with the VAAC Toulouse and the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). The ASHE Asia project proposes an international collaboration between the Earth Observatory of Singapore, the VAAC Darwin, the Palau National Weather Service, and US and Asian partners, and will receive the support of ARISE, to provide improved early notification of potentially hazardous eruptions in Asia and the Western Pacific using a combination of established technologies and next-generation mobile sensing systems. The increased availability of open seismo-acoustic data in the ASEAN region as well as recent advances in mobile distributed sensors networks will facilitate unprecedented rapid progress in monitoring remote regions for early detection of hazardous volcanic eruptions and other natural disasters.

  2. Biological responses of agricultural soils to fly-ash amendment.

    PubMed

    Singh, Rajeev Pratap; Sharma, Bhavisha; Sarkar, Abhijit; Sengupta, Chandan; Singh, Pooja; Ibrahim, Mahamad Hakimi

    2014-01-01

    The volume of solid waste produced in the world is increasing annually, and disposing of such wastes is a growing problem. Fly ash (FA) is a form of solid waste that is derived from the combustion of coal. Research has shown that fly ash may be disposed of by using it to amend agricultural soils. This review addresses the feasibility of amending agricultural field soils with fly ash for the purpose of improvings oil health and enhancing the production of agricultural crops. The current annual production of major coal combustion residues (CCRs) is estimated to be -600 million worldwide, of which about 500 million t (70-80%) is FA (Ahmaruzzaman 2010). More than 112 million t of FA is generated annually in India alone, and projections show that the production (including both FA and bottom ash) may exceed 170 million t per annum by 2015 (Pandey et al. 2009; Pandey and Singh 20 I 0). Managing this industrial by-product is a big challenge, because more is produced each year, and disposal poses a growing environmental problem.Studies on FA clearly shows that its application as an amendment to agricultural soils can significantly improve soil quality, and produce higher soil fertility. What FA application method is best and what level of application is appropriate for any one soil depends on the following factors: type of soil treated, crop grown, the prevailing agro climatic condition and the character of the FA used. Although utilizing FA in agricultural soils may help address solid waste disposal problems and may enhance agricultural production, its use has potential adverse effects also. In particular, using it in agriculture may enhance amounts of radionuclides and heavy metals that reach soils, and may therefore increase organism exposures in some instances.

  3. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  4. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  5. Natural radioactivity and radiological hazard assessment of Egyptian oil ashes.

    PubMed

    Mohammed, Hesham; Sadeek, Sadeek; Mahmoud, Abu Rehab; Diab, Hanan; Zaky, Doaa

    2016-08-01

    Oil fly and boiler ash samples were collected from the four major Egyptian power plants in order to determine their natural radioactivity. Secular equilibrium between (238)U and (232)Th and their decay products is significantly disturbed in oil ash samples. The (226)Ra/(238)U ratios were between 440 and 1993 with an average value of 801, indicating that the concentrations of daughters (226)Ra were very high compared to the parent (238)U in the oil ash samples. While, the average ratios for (210)Pb/(226)Ra in most samples were 1.19 ± 0.05, indicating a secular equilibrium in the (226)Ra-(210)Pb sub series. The natural radioactivity due to (238)U and (232)Th was found to be negligible. While the activity concentrations of (226)Ra ranged from 3205 to 12,320 Bq kg(-1) with an average value of 9284 Bq kg(-1), (210)Pb ranged from 5960 to 13,930 Bq kg(-1) with an average value of 11,513 Bq kg(-1). The results are compared with the reported data from other countries. The average value of radium equivalent activity was 9308 ± 2729 Bq kg(-1), while the external and internal hazard indexes were found to be 25 ± 7 and 50 ± 15, respectively. All the studied radiological parameters were higher than the recommended limit by the IAEA in all ash samples.

  6. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT; Akash, Akash [Salt lake City, UT; Zhao, Qiang [Natick, MA

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  7. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  8. Laboratory Studies of Ice Nucleation on Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Tolbert, M. A.; Schill, G. P.; Genareau, K. D.

    2014-12-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect human respiratory health, atmospheric transport, and global climate. We have performed laboratory studies of the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (Basaltic Ash, Guatemala), Soufriere Hills (Andesetic Ash, Montserrat), and Taupo (Rhyolitic Ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. We find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice at ice saturation ratios of 1.05 ± 0.1. For immersion freezing, however, only the Taupo ash exhibited efficient heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  9. Improvement of ash plume monitoring, modeling and hazard assessment in the MED-SUV project

    NASA Astrophysics Data System (ADS)

    Coltelli, Mauro; Andronico, Daniele; Boselli, Antonella; Corradini, Stefano; Costa, Antonio; Donnadieu, Franck; Leto, Giuseppe; Macedonio, Giovanni; Merucci, Luca; Neri, Augusto; Pecora, Emilio; Prestifilippo, Michele; Scarlato, Piergiorgio; Scollo, Simona; Spinelli, Nicola; Spata, Gaetano; Taddeucci, Jacopo; Wang, Xuan; Zanmar Sanchez, Ricardo

    2014-05-01

    Volcanic ash clouds produced by explosive eruptions represent a strong problem for civil aviation, road transportation and other human activities. Since Etna volcano produced in the last 35 years more the 200 explosive eruptions of small and medium size. The INGV, liable for its volcano monitoring, developed since 2006 a specific system for forecasting and monitoring Etna's volcanic ash plumes in collaboration with several national and international institutions. Between 12 January 2011 and 31 December 2013 Etna produced forty-six basaltic lava fountains. Every paroxysm produced an eruption column ranging from a few up to eleven kilometers of height above sea level. The ash cloud contaminated the controlled airspace (CTR) of Catania and Reggio Calabria airports and caused tephra fallout on eastern Sicily sometime disrupting the operations of these airports. In order to give prompt and detailed warnings to the Aviation and Civil Protection authorities, ash plumes monitoring at Osservatorio Etneo, the INGV department in Catania, is carried out using multispectral (from visible to infrared) satellite and ground-based video-surveillance images; seismic and infrasound signals processed in real-time, a Doppler RADAR (Voldorad IIB) able to detect the eruption column in all weather conditions and a LIDAR (AMPLE) for retrieving backscattering and depolarization values of the ash clouds. Forecasting is performed running tephra dispersal models using weather forecast data, and then plotting results on maps published on a dedicated website. 24/7 Control Room operators were able to timely inform Aviation and Civil Protection operators for an effective aviation safety management. A variety of multidisciplinary activities are planned in the MED-SUV project with reference to volcanic ash observations and studies. These include: 1) physical and analogue laboratory experiments on ash dispersal and aggregation; 2) integration of satellite data (e.g. METEOSAT, MODIS) and ground

  10. Leaching characteristics of lead from melting furnace fly ash generated by melting of incineration fly ash.

    PubMed

    Okada, Takashi; Tomikawa, Hiroki

    2012-11-15

    This study investigated the effect of the chemical composition of incineration fly ash on the leaching characteristics of Pb from melting furnace fly ash generated by melting incineration fly ash. Melting furnace fly ash from both a real-scale melting process and lab-scale melting experiments was analyzed. In addition, the theoretical behavior of Cl that affects the leaching characteristics of Pb was simulated by a thermodynamic equilibrium calculation. Proportions of water-soluble Pb in the melting furnace fly ash were correlated with equivalent ratios of total Pb in the ash and Cl transferred to gas. The amount of Cl in the gas increased with an increase in the molar ratio of Cl to Na and K in the incineration fly ash. The thermodynamic calculation predicted that HCl generation is promoted by the increase in the molar ratio, and X-ray photoelectron spectroscopy indicated a possible presence of PbCl(2) in the melting furnace fly ash. These results implied that the formation of water-soluble PbCl(2) with HCl was affected by the relationships among the amounts of Na, K, and Cl in the incineration fly ash. This is highly significant in determining the leaching characteristics of Pb from the melting furnace fly ash.

  11. Erodibility of fly ash-treated minesoils

    SciTech Connect

    Gorman, J.M.; Sencindiver, J.C.; Singh, R.N.

    1997-12-31

    Fly ash, a by-product of coal-fired power plants, has been used successfully in reclaiming adverse mine sites such as abandoned mine lands by improving minesoil chemical and physical properties. But, the fine sand-silt particle size of fly ash may make it more susceptible to detachment and transport by erosive processes. Furthermore, the high content of silt-size particles in fly ash may make it more susceptable to surface crust formation resulting in reduced infiltration and increased surface runoff and erosion. In the summer of 1989, fly ash/wood waste mixtures were surface applied on two separate mine sites, one with 10% slope and the other 20% slope, in central Preston County, West Virginia. Erosion rates were measured directly using the Linear Erosion/Elevation Measuring Instrument (LEMI). Erosion measurements were taken during the first two growing seasons on both sites. Erosion values were up to five times greater on the fly ash-treated minesoil than on the minesoil without fly ash cover. Mulching with wood chips reduced fly ash erosion to about one-half the loss of the unmulched plots. Erosion was related to both the amount and type of ground cover. Increased vegetative ground cover resulted in reduced erosion. Mosses and fungi appeared to provide better erosion protection than grass-legume cover.

  12. (Coal utilization in India)

    SciTech Connect

    Krishnan, R.P.

    1991-01-15

    Under the Phase II, Alternative Energy Resources Development (AERD) project of the United States Agency for International Development (USAID) and the Government of India (GOI), five collaborative coal projects have been initiated in the areas of: (1) NO{sub x}/SO{sub x} control from coal-fired power plants, (2) slagging combustor development for high-ash Indian coals, (3) characterization of Indian coals for combustion and gasification, (4) diagnostic studies for prediction of power plant life expectancy, and (5) environmental and natural resource analysis of coal cycle. The Pittsburgh Energy Technology Center (PETC) has the implementation responsibility for these projects. The Indian collaborative institutions identified for these projects are the Bharat Heavy Electricals Ltd. (BHEL), Trichy, (Projects 1--4), and the Tata Energy Research Institute (TERI) for Project 5. The Oak Ridge National Laboratory (ORNL) is providing cross-cut technical coordination and support for these five projects.

  13. Volcanic-Ash Hazards to Aviation—Changes and Challenges since the 2010 Eruption of Eyjafjallajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Guffanti, M.; Tupper, A.; Mastin, L. G.; Lechner, P.

    2012-12-01

    In response to the severe disruptions to civil aviation that resulted from atmospheric transport of ash from the eruption of Eyjafjallajökull volcano in Iceland in April and May 2010, the International Civil Aviation Organization (ICAO) quickly formed the International Volcanic Ash Task Force (IVATF), charging it to support the accelerated development of a global risk-management framework for volcanic-ash hazards to aviation. Recognizing the need for scientifically based advice on best methods to detect ash in the atmosphere and depict zones of hazardous airspace, the IVATF sought input from the global scientific community, primarily by means of the Volcanic Ash Scientific Advisory Group which was established in May 2010 by the World Meteorological Organization (WMO) and International Union of Geodesy and Geophysics to serve as a scientific resource for ICAO. The IVATF finished its work in June 2012 (see http://www.icao.int/safety/meteorology/ivatf/Pages/default.aspx for a record of its results). A major science-based outcome is that production of charts depicting areas of airspace expected to have specific ash-concentration values (e.g. <0.2, 0.2-2, 2-4, >4 mg/cu. m) will not be required of the world's nine Volcanic Ash Advisory Centers (VAACs). The VAACs are responsible for issuing warning information to the aviation sector regarding ash-cloud position and expected movement. Forecast concentrations in these charts are based primarily on dispersion models that have at least an order of magnitude in uncertainty in their output and therefore do not delineate hazardous airspace with the level of confidence needed by the aviation sector. The recommended approach to improving model-forecast accuracy is to assimilate diverse observations (e.g., satellite thermal-infrared measurements, lidar, radar, direct airborne sampling, visual sightings, etc.) into model simulations; doing that during an eruption in the demanding environment of aviation operations is a substantial

  14. Effective Utilization and Management of Emerging Information Technologies. Information Resources Management Association International Conference (Boston, Massachusetts, May 17-20, 1998).

    ERIC Educational Resources Information Center

    Khosrowpour, Mehdi, Ed.

    This proceeding of the 1998 Information Resources Management Association International Conference contains 80 full papers, 87 research in progress papers, 33 abstracts, and 15 panel, workshop, and tutorial summaries. The papers focus on issues of managing information technology (IT) in organizations around the world. Issues covered include:…

  15. Ash iron mobilization in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2014-12-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~150 and ~50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (>95% of HCl, 3-20% of SO2 and 12-62% of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1 to 33% of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  16. Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test.

    PubMed

    Chakraborty, Rajarshi; Mukherjee, Ashit Kumar; Mukherjee, Anita

    2009-06-01

    Fly ash is a by-product of coal-fired electricity generation plants. Its utilization and disposal is of utmost importance. Using onion (Allium cepa) root tip system, the present study was carried out to evaluate the potential toxic and genotoxic effects of fly ash, collected from a thermal power plant in West Bengal, India. Prior to testing, the collected fly ash sample was mixed with sand in different proportions. Allium bulbs were allowed to germinate directly in fly ash and after five days the germinating roots were processed for the Allium test. Additionally, the Allium test was adapted for detecting DNA damage through comet assay. The results from the Allium test indicate that fly ash at 100% concentration inhibits root growth and mitotic indices; induces binucleated cells as a function of the proportion, but is not toxic at very low concentration. In the comet assay, a statistical increase for DNA strand breaks was found only at higher concentrations. The sample was analyzed by flame atomic absorption spectrometer for Zn, Pb, Cu, Ni, Cd and As, whose presence could partly be responsible for the toxicity of fly ash. The study concludes that the classical Allium test can give a more comprehensive data when done in combination with the comet assay, which is faster, simpler and independent of mitosis. Also when fly ash is used for other purposes in combination with soils, it should be judiciously used at very low concentrations in order to protect the ecosystem health from any potential adverse effects.

  17. Process for removing ash from coal

    SciTech Connect

    Harada, K.; Nakanishi, T.; Ogino, E.; Yoshida, N.

    1983-06-21

    A process for removing ash from coal comprising the steps of pulverizing the coal to fine particles, admixing water with the finely divided coal to prepare an ash-containing slurry of finely divided coal, mixing with the slurry an oil and seeds in the form of oleophilic solid grains and serving as granulating nuclei to granulate the finely divided coal, separating the resulting granules from the mixture and washing the granules with water to remove the ash, and disintegrating the washed granules to obtain a deashed coal and recover the seeds for reuse.

  18. Fusibility and sintering characteristics of ash

    SciTech Connect

    Ots, A. A.

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  19. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-09-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  20. Preparation and combustion of high ash coal tailing slurry

    SciTech Connect

    Zhang Ziping; Zhang Wenfu; Fu Xiaoheng; Wang Zuna; Li Hui

    1998-12-31

    Flotation tailings from a coal preparation plant are known for their high ash, low heating value, high moisture content even after thickening and filtration, and difficult handability. However, they can be easily converted into a slurry fuel for boilers. Two flotation tailings, containing ash of 31.89% and 41.87% respectively, have been converted into slurry fuel with the following properties: solid content being 70.4% and 74.4% respectively; low heating value, 13,694kj/kg and 10,970kj/kg; and viscosity, 379 mPa.s and 180 mPa.s at a shear rate of 100s{sup {minus}1}. An eccentric slant jet coal slurry burner was installed at the boiler. Slurry atomizing nozzle operated at low pressure. Both slurries gave stable combustion without supporting fuel under the condition of cool air supply. A new way of flotation tailing utilization was demonstrated. China has more than 200 coal preparation plants washing more than 300 million tons of coal annually. These preparation plants generate more than 10 million tons of tailing annually, most of which is not currently being used, causing great environmental pollution and waste management difficulties for the enterprises. Comprehensive utilization of coal washer tailings is one of the key issues of environmental protection and energy saving in China.

  1. Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics

    PubMed Central

    Harper, Andrea L.; McKinney, Lea Vig; Nielsen, Lene Rostgaard; Havlickova, Lenka; Li, Yi; Trick, Martin; Fraser, Fiona; Wang, Lihong; Fellgett, Alison; Sollars, Elizabeth S. A.; Janacek, Sophie H.; Downie, J. Allan; Buggs, Richard. J. A.; Kjær, Erik Dahl; Bancroft, Ian

    2016-01-01

    Tree disease epidemics are a global problem, impacting food security, biodiversity and national economies. The potential for conservation and breeding in trees is hampered by complex genomes and long lifecycles, with most species lacking genomic resources. The European Ash tree Fraxinus excelsior is being devastated by the fungal pathogen Hymenoscyphus fraxineus, which causes ash dieback disease. Taking this system as an example and utilizing Associative Transcriptomics for the first time in a plant pathology study, we discovered gene sequence and gene expression variants across a genetic diversity panel scored for disease symptoms and identified markers strongly associated with canopy damage in infected trees. Using these markers we predicted phenotypes in a test panel of unrelated trees, successfully identifying individuals with a low level of susceptibility to the disease. Co-expression analysis suggested that pre-priming of defence responses may underlie reduced susceptibility to ash dieback. PMID:26757823

  2. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    NASA Astrophysics Data System (ADS)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  3. On-line carbon-in-ash monitors: Survey and demonstration

    SciTech Connect

    Sorge, J.; Larrimore, L.

    1998-02-01

    Fly ash unburned carbon (UBC) level is an important consideration for combustion efficiency as well as ash marketing. The presence of unburned carbon in fly ash has been shown to be a function of furnace design, coal quality, the ability of the pulverizer to grind the coal, and heat release rate. Boilers are designed to take these factors into consideration. However, the Clean Air Act Amendments of 1990 drove many utilities to switch coal supplies and install low NO{sub x} burners. Higher carbon-in-ash levels have been the result of these changes in coal quality and the staged combustion characteristics associated with low NO{sub x} burners. Over the past few years, several instruments for the on-line determination and monitoring of the unburned carbon content of ash samples have been developed. However, to date they have not been deployed widely in the U.S. despite potential uses for combustion optimization and as an aid in fly ash marketing. Based on the lack of publicly available performance and operation data available for the current CIAM (carbon-in-ash monitor) commercial offerings, Southern Company initiated a demonstration of several commercial technologies on its coal-fired units. As part of a DOE Clean Coal Project demonstrating advanced wall-fired combustion techniques for the reduction on NO{sub x} emissions from coal-fired boilers, the CAM, SEKAM and FOCUS systems were installed at Georgia Power Company`s Plant Hammond Unit 4. CAM and M&W instruments were also placed at Alabama Power Company`s Plant Gaston Unit 4. The testing of the instruments was conducted from November 1995 through August 1996.

  4. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    PubMed

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery.

  5. Fluidized bed gasification ash reduction and removal system

    SciTech Connect

    Schenone, C.E.; Rosinski, J.

    1984-02-28

    In a fluidized bed gasification system, an ash removal system is disclosed to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  6. Fluidized bed gasification ash reduction and removal process

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  7. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  8. Fine Ash Aggregation Processes Observed In Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Rinkleff, P. G.

    2012-12-01

    Fine airborne volcanic ash was collected during the eruptions of Augustine in 2006, Pavlof in 2007, and Redoubt in 2009 using Davis Rotating Unit for Measurement (DRUM) inertial cascade impactors to observe atmospheric volcanic ash aggregation. Aerosol ash collection by DRUM sampler preserved particle morphologies and compositions that are altered or destroyed by deposition. DRUM samples were analyzed by Scanning Electron Microscopy with Energy Dispersive Spectroscopy to determine particle size, shape, and composition. Ash particles were observed as single grains, ash aggregates, and hybrid ash/marine aerosol aggregates. Single grain ash occurred as single angular silicate shards and likely formed under ash and marine aerosol limited conditions. Ash aggregates occurred as loosely consolidated silicate ash clumps in pyroclastic flow elutriation plumes and were found in a discrete aerodynamic size range between 2.5-1.15 μm. Ash aggregates likely formed in fine ash-rich conditions which resulted from clast milling in flows that also generated abundant electrostatic particle charge. Hybrid ash/marine aerosol aggregates were composed of silicate ash and sea salt with non-sea salt sulfates. The mass concentration of sulfate did not vary systematically with ash which indicated that the sulfate source was not necessarily volcanic. Hybrid ash was common in all samples and likely formed when downward mixing ash mingled with upward mixing sea salt and non-sea salt sulfate aerosol.EM image of ash aggregates with individual ash grains. EM image with EDS element maps of hybrid ash/marine aerosol aggregates. Si is present with marine Cl and S.

  9. Potential products from North Dakota lignite fly ash. Final report

    SciTech Connect

    Anderson, G R

    1980-06-01

    Four major areas where fly ash can be used are explored. Concrete building blocks with fly ash replacing 50% of the portland cement have proven to be successful using current ASTM standards. Results in the ceramics area show that a ceramic-like product using fly ash and crushed glass with a small amount of clay as a green binder. Some preliminary results using sulfur ash in building materials are reported and with results of making wallboard from ash. (MHR)

  10. Evaluation of bronchoalveolar lavage profiling as a screening method for pulmonary damage induced by nitrogen dioxide (NO/sub 2/), fly ash, and NO/sub 2/-fly ash combinations

    SciTech Connect

    DeNicola, D.B.

    1981-01-01

    Bronchoalveolar lavage fluid profiling (BALP) was used to detect pulmonary injury induced by acute inhalation of NO/sub 2/ gas and fly ash alone and in combination. Also, BALP was utilized in an investigation into potential NO/sub 2/-fly ash synergism. The components measured in the BALP included lactate dehydrogenase, glucose-6-phosphate dehydrogenase, acid phosphatase, ..beta..-glucuronidase, alkaline phosphatase, glutathione peroxidase, and glutathione reductase activity levels, sialic acid and total protein contents, and total and differential cell counts. BALP analysis was effective in detecting the multifocal necrotizing terminal bronchiolitis produced in three groups of hamsters exposed to increasing concentrations of NO/sub 2/ gas (12, 17 and 22 ppM) for 48 continuous hours. BALP and histopathologic changes correlated well and followed a dose-related pattern. Increased numbers of neutrophils and macrophages were the most sensitive BALP indicators of NO/sub 2/ damage. To evaluate the potential acute toxic effects of fly ash, three groups of hamsters were exposed to increasing concentrations of fly ash alone (0, 69, and 123 mg/m/sup 3/). No significant BALP or histopathologic alterations were observed. To evaluate potential NO/sub 2/-fly ash synergism, three groups of hamsters were exposed to 0, 12, and 17 ppM NO/sub 2/ for 48 continuous hours with the addition of 0, 115, and 105 mg/m/sup 3/ fly ash respectively during the initial 6 hours. No consistent significant BALP difference between hamsters exposed to NO/sub 2/ + fly ash exposed hamsters. To further evaluate synergistic effects between these two inhalants, the acute inhalation (48 continuous hours) LC/sub 50/ of NO/sub 2/ gas alone and in combination with fly ash were determined and estimated to be 36 and 31 ppM respectively, which represented a slight but insignificant decrease in the NO/sub 2/ + fly ash group.

  11. Wildland fire ash: future research directions

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  12. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  13. Fly ash system technology improves opacity

    SciTech Connect

    2007-06-15

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

  14. U.S. Interagency Response Plans for Volcanic Ash and Other Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Osiensky, J. M.; Birch, S.; Carpenter, D.

    2011-12-01

    The U.S. federal agencies, under the Office of the Federal Coordinator for Meteorology (OFCM), have partnered to provide guidance and support for regional response plans dealing with volcanic hazards. The OFCM working group for volcanic ash (WG/VA) has produced a national framework document entitled National Volcanic Ash Operations Plan for Aviation (NVOPA) in support of the International Airways Volcano Watch, August 2007. This document provides a high level look at the federal agency roles and responsibilities, products and services pertaining to volcanic ash. There are several regional plans that sit under the "national" plan framework specifically, Alaska Interagency Operating Plan for Volcanic Ash Episodes, July 2011; Interagency Operating Plan for Volcanic Ash Hazards to Aviation in the Pacific Region of the Northern Marianas Islands (draft framework), June 2009; Pacific Northwest (Washington/Oregon) Interagency Operating Plan for Volcanic Ash Events, May 2011. In addition to the plans listed above, there is a Hawaii volcano hazards and a California volcanic ash plan under development. Work on a Puerto Rico/Eastern Caribbean plan will commence in 2011. The purpose of these regional plans is to dovetail off of the NVOPA and provide more granularity with respect to agency roles and responsibilities. These regional plans often times will include agency call down lists and volcano specific information for the area of concern. The intent of these plans is not to act as an agency/office SOP but rather provide a more regional perspective. A side benefit to these plans is that they act as a focus around the development of table top exercises between the agencies. Areas in the continental U.S. that have relatively low frequency of volcanic events must practice through table top and communications exercises to remain proficient and ensure the messaging is communicated and appropriate action is taken in a timely fashion.

  15. Characterization and modes of occurrence of elements in feed coal and fly ash; an integrated approach

    USGS Publications Warehouse

    Brownfield, M.E.

    2002-01-01

    Despite certain environmental concerns, coal is likely to remain an important component of the United States energy supply, partly because it is the most abundant domestically available fossil fuel. One of the concerns about coal combustion for electricity production is the potential release of elements from coal and coal combustion products (CCPs) - fly ash - to the environment. This concern prompted the need for accurate, reliable, and comprehensive information on the contents and modes of occurrence of selected elements in power-plant feed coal and fly ash. The U.S. Geological Survey (USGS) is collaborating with several electric utilities to determine the chemical and mineralogical properties of feed coal and fly ash. Our first study analyzed coal and fly ash from a Kentucky power plant, which uses many different bituminous coals from the Appalachian and Illinois Basins. Sulfur content of these feed coals rangedfrom 2.5 to 3.5 percent. The second study analyzed coal and fly ash from an Indiana power plant, which uses subbituminous coal from the Powder River Basin (fig. 1). Sulfur content of this feed coal ranged from 0.23 to 0.47 percent. A summary of important aspects of our approach and results are presented in this report. 

  16. Characterization, decontamination and health effects of fly ash from waste incinerators

    SciTech Connect

    Lee, P.H.; Delay, I.; Nasserzadeh, V.; Swithenbank, J.; McLeod, C.; Argent, B.B.; Goodfellow, J.

    1998-12-31

    The aims of the present work are (a) to investigate the physical and chemical properties of incinerator ash which are of importance for its utilization and environmental impact; (b) to evaluate the occupational exposure of incinerator workers to trace metals; and (c) to develop a novel technology for the conversion of contaminated fly-ash from incinerators into a material which can be disposed of cheaply or used in the construction industry. The discussion is illustrated by results obtained through experiments. Morphologically, fly-ash consists of irregularly shaped material, of widely varying sizes. Some minerals are identified using powder X-ray diffraction, i.e., calcite, pyrite, halite and maghemite. The chemical composition of ash samples examined consist of Ca, Al, Si, K, Ti, Mg, Fe, K, Na and Mn as the major and minor elements. Trace elements such as Pb, Co, Cr, Ni, Cu, Se, Mo and Cd are also found. The samples tested are rich in Cl, Cr, Zn, Sn, and Pb, as compared to the earth`s crust values. About 50% of the fly-ash particles are smaller than 5.5 {micro}m. These particles can play an important role in transferring toxic metals into the human blood stream by inhalation, deposition and absorption.

  17. Recycling of boiler and incinerator ash into value added glass products

    SciTech Connect

    Hnat, J.G.; Bartone, L.M.

    1996-09-01

    This paper discusses the recycling of coal-fired boiler and incinerator ashes into value added glass products via the use of a newly developed, fossil-fuel fired, high temperature melting process. The Vortec patented Cyclone Melting System (CMS{trademark}) has a number of significant advantages for recycling solid wastes including: the oxidation of organic and metal contaminants, formation of non-leachable glasses which can be sold as value added products, high melting efficiencies, multi-fuel capability, low operating and maintenance costs and low NO{sub x} emissions. This paper summarizes some of the challenges facing process industries and utilities in the recycling and reuse of industrial solid wastes. The results of laboratory and pilot scale testing with several pulverized coal-fired boiler ashes, several municipal solid waste incinerator ashes, and a sewage sludge incinerator ash are summarized. Information on ash properties, melting characteristics, system performance, toxicity characteristics leaching procedure (TCLP) testing results, flue gas emissions, recycled products, and economics are presented. The application of the CMS to the production of several value added glass and ceramic products is also discussed.

  18. Construction Placement and Hardened Properties of Shotcrete with Highly Functional Fly Ash

    NASA Astrophysics Data System (ADS)

    Yuno, Kunihiro; Ishii, Mitsuhiro; Hashimoto, Chikanori; Mizuguchi, Hiroyuki

    Shikoku Electric Power Co., Inc. has developed the technology to manufacture a brand name "Finash" about 12 years ago, by sorting and classifying coal ash generated in coal fired power plants. "Finash" is highly functional fly ash (HFA) is produced by removing irregular coarse particles. It is important for the production of HFA to minimize the variation in quality of coal ash with sophisticated classification technique and extracting good-quality spherical fine particles. It is now widely utilized as concrete admixture for general civil engineering structures and buildings in Japan. When highly functional fly ash (HFA) is used as shotcrete admixture to substitute for fine aggregate of 100kg/m3, the shotcrete has the advantages of decreasing the amount of dust and rebound during spraying operation, improving the hardened properties of concrete, etc. Therefore, it has been applied in many tunnel construction projects. This paper discusses about the various characteristics such as construction placement, strength, neutralization and dry shrinkage of shotcrete using highly functional fly ash (HFA), using the results that is obtained from spray test in an actual road tunnel.

  19. Application of Anova on Fly Ash Leaching Kinetics for Value Addition

    NASA Astrophysics Data System (ADS)

    Swain, Ranjita; Mohapatro, Rudra Narayana; Bhima Rao, Raghupatruni

    2016-04-01

    Fly ash is a major problem in power plant sectors as it is dumped at the plant site. Fly ash generation increases day to day due to rapid growth of steel industries. Ceramic/refractory industries are growing rapidly because of more number of steel industries. The natural resources of the ceramic/refractory raw materials are depleting with time due to its consumption. In view of this, fly ash from thermal power plant has been identified for use in the ceramic/refractory industries after suitable beneficiation. In this paper, sample was collected from the ash pond of Vedanta. Particle size (d80 passing size) of the sample is around 150 micron. The chemical analysis of the sample shows that 3.9 % of Fe2O3 and CaO is more than 10 %. XRD patterns show that the fly ash samples consist predominantly of the crystalline phases of quartz, hematite and magnetite in a matrix of aluminosilicate glass. Leaching of iron oxide is 98.3 % at 3 M HCl concentration at 90 °C for 270 min of leaching time. Kinetic study on leaching experiment was carried out. ANOVA software is utilized for curve fitting and the process is optimized using MATLAB 7.1. The detailed study of properties for ceramic material is compared with the standard ceramic materials. The product contains 0.3 % of iron. The other properties of the product have established the fact that the product obtained can be a raw material for ceramic industries.

  20. Labview utilities

    SciTech Connect

    Persaud, Arun

    2011-09-30

    The software package provides several utilities written in LabView. These utilities don't form independent programs, but rather can be used as a library or controls in other labview programs. The utilities include several new controls (xcontrols), VIs for input and output routines, as well as other 'helper'-functions not provided in the standard LabView environment.

  1. Ground-based microwave radar and optical lidar signatures of volcanic ash plumes: models, observations and retrievals

    NASA Astrophysics Data System (ADS)

    Mereu, Luigi; Marzano, Frank; Mori, Saverio; Montopoli, Mario; Cimini, Domenico; Martucci, Giovanni

    2013-04-01

    The detection and quantitative retrieval of volcanic ash clouds is of significant interest due to its environmental, climatic and socio-economic effects. Real-time monitoring of such phenomena is crucial, also for the initialization of dispersion models. Satellite visible-infrared radiometric observations from geostationary platforms are usually exploited for long-range trajectory tracking and for measuring low level eruptions. Their imagery is available every 15-30 minutes and suffers from a relatively poor spatial resolution. Moreover, the field-of-view of geostationary radiometric measurements may be blocked by water and ice clouds at higher levels and their overall utility is reduced at night. Ground-based microwave radars may represent an important tool to detect and, to a certain extent, mitigate the hazard from the ash clouds. Ground-based weather radar systems can provide data for determining the ash volume, total mass and height of eruption clouds. Methodological studies have recently investigated the possibility of using ground-based single-polarization and dual-polarization radar system for the remote sensing of volcanic ash cloud. A microphysical characterization of volcanic ash was carried out in terms of dielectric properties, size distribution and terminal fall speed, assuming spherically-shaped particles. A prototype of volcanic ash radar retrieval (VARR) algorithm for single-polarization systems was proposed and applied to S-band and C-band weather radar data. The sensitivity of the ground-based radar measurements decreases as the ash cloud is farther so that for distances greater than about 50 kilometers fine ash might be not detected anymore by microwave radars. In this respect, radar observations can be complementary to satellite, lidar and aircraft observations. Active remote sensing retrieval from ground, in terms of detection, estimation and sensitivity, of volcanic ash plumes is not only dependent on the sensor specifications, but also on

  2. The chemical characterization of dispersed ash and ash layers at DSDP Site 52, Izu-Bonin

    NASA Astrophysics Data System (ADS)

    McKinley, C. C.; Scudder, R. P.; Murray, R. W.; Kutterolf, S.; Schindlbeck, J. C.

    2012-12-01

    As part of an on-going regional project, the focus of this study is the characterization of compositions and fluxes of dispersed ash and discrete ash layers in the northwest Pacific Ocean in the context of variability in time and space. Deep Sea Drilling Project Site 52 is located eastward of the Izu-Bonin-Marianas subduction zone (27.77N, 147.12E, water depth 5744 m). Site 52 was rotary drilled in 1969 during DSDP Leg 6, and its major sediments were initially described as "clay-rich volcanic ash and brown clay with abundant volcanic glass". We therefore selected this site as potential "ash-rich" end member in our regional assessment. We analyzed 60 bulk sediment and 8 discrete ash layer samples (the latter represents all layers that were recovered) by ICP-ES and ICP-MS, from the upper 60 mbsf. Ash layers are only present in the top 13 mbsf, perhaps due to drilling disturbance at deeper depths. No samples were collected between 60 and 69 mbsf because the sediment there was reported as flow-in. At 69 mbsf lithified ash and chert was encountered so drilling was discontinued. In addition to quantifying the abundance of dispersed ash in the bulk sediment, we compare the composition of the dispersed ash component to that of the discrete ash layers. In order to facilitate comparison between ash layers and the bulk sediment, all major element data are reported on an anhydrous basis. Indeed, the major element totals for the discrete ash population (approx. 92 wt. %) and bulk sediment (approx. 88 wt. %) are consistent with the bulk sediment incorporating more alteration products (i.e., authigenic clay). The discrete ash layers show at least two populations of compositions. "Ash 1" broadly is characterized by lower SiO2 (60-62 wt%) with higher TiO2 (0.8-0.9 wt. %), MgO (2.8-3.0 wt. %), Fe2O3 (7-10 wt. %), Sc (19-30 ppm), and V (125-160 ppm). This ash is generally similar to upper crustal materials such as loess and PAAS, but differs in several key diagnostic compositions

  3. Origin and characterization of fly ashes from cellulose industries containing high proportions of free lime and anhydrite

    SciTech Connect

    Hauser, A.; Eggenberger, U.; Peters, T.

    1999-10-01

    Fly ashes from cellulose industries originate from different internal waste combustion processes. Because they contain considerable amounts of free lime and anhydrite, they are potential secondary raw materials for the production of building products. The source of the CaO is a Ca-bisulfite-sludge originating from the cellulose extraction process. The CaO/anhydrite ratio in this lime-sulfate fly ash depends on the extent of sulphur reduction by organic carbon during the combustion process. A second type of Al-bearing ash contains additionally lowly reactive calcium silicates and highly reactive calcium aluminate phases originating from combusted paper sludge containing kaolinite. Both ashes show a reduced reactivity compared to commercial lime as it is used for the production of autoclaved aerated concrete. The reduced activity is related to the coated surfaces of the CaO and elevated sulfate and alkali contents.

  4. Acquisition and Utilization of Japanese Information in Science, Technology and Commerce in Europe and USA : Report on the International Conference on Japanese Information at the University of Warwick

    NASA Astrophysics Data System (ADS)

    Miyakawa, Takayasu; Miwa, Makiko; Kanda, Toshihiko

    Report on the International Conference on Japanese Information in Science, Technology and Commerce which was organized by the British Library, being supported by NTIS and JICST, at the University of Warwick on 1-4 September 1987. Topics discussed include, US policy on Japanese information, EEC/Japan-Info Project, various private initiatives, language barrier and translation, education of Japanese language and personnel exchange programme, quality and usage of Japanese secondary materials, original document delivery, Japanese produced databases and foreign access to them, requests upon JICST and other Japanese information services.

  5. Volcanic Ash and Aviation - the 2014 Eruptions of Kelut and Sangeang Api, Indonesia

    NASA Astrophysics Data System (ADS)

    Tupper, A. C.; Jansons, E.

    2014-12-01

    Two significant eruptions in Indonesia during the first part of 2014 have highlighted the continuing challenges of safe air traffic management around volcanic ash clouds. The stratospheric eruption of Kelut (also known as Kelud) in Java late on 13 February 2014 resulted in widespread aviation disruption over Indonesia and at least one serious volcanic ash encounter from an international airline. An upper-tropospheric eruption of Sangeang Api in the Lesser Sunda Islands on 30 May 2014 did not result in any known aircraft encounters, but did result in many delays and flight cancellations between Indonesia and Australia. In both cases, the eruption and resultant ash clouds were relatively well observed, if subject to the usual issues in characterising such clouds. For example, as tropical eruptions frequently reach 15 km amsl and above due to the height of the tropical tropopause, it is frequently very difficult to provide an accurate estimation of conditions at the cruising levels of aircraft, at 10-11 km (or lower for shorter domestic routes). More critically, the challenge of linking operational results from two scientific professions (volcanology and meteorology) with real-time aviation users remains strongly evident. Situational awareness of domestic and international airlines, ground-based monitoring and communications prior to and during the eruption, receiving and sharing pilot reports of volcanic ash, and appropriate flight responses all remain inadequate even in relatively fine conditions, with an unacceptable ongoing risk of serious aviation encounters should improvements not be made. Despite the extensive efforts of the International Civil Aviation Organization, World Meteorological Organization, and all partners in the International Airways Volcano Watch, and despite the acceleration of work on the issue since 2010, volcanic ash management remains sub-optimal.

  6. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement

    SciTech Connect

    Sales, Almir; Lima, Sofia Araujo

    2010-06-15

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.

  7. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.

    PubMed

    Sales, Almir; Lima, Sofia Araújo

    2010-06-01

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of São Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.

  8. Volcanic ash clouds; a continuing threat to international aviation

    USGS Publications Warehouse

    Scarone, H.

    1987-01-01

    Suddenly, an acrid odour began to pervade the aircraft, an eerie bluish glow lit up the edges of the wings, and in the cockpit the familiar hum of static started to break up the high-frequency communications. Then it happened.

  9. Slow maturation of arterio-venous fistula in seven uremic patients: use of Ash Split Cath(R) as temporary, prolonged vascular access.

    PubMed

    Conz, P A; La Greca, G

    2000-01-01

    The temporary vascular access is the essential condition required to perfrom hemodialysis in uremic patients in the absence of a permanent and utilizable vascular access. The cannulation of a central vein with a dual lumen catheter may be useful when a few weeks are required for the maturation of AVF. Longer times for AVF maturation (such as in diabetic patients and in aged patients) impose the use of a tunnelled catheter such as Tesio Catheter or Hickman Catheter which lead to minor complications and more efficient dialysis treatment. The Ash Split Cath(R), a recently introduced chronic hemodialysis catheter, provides dialysis via a transcutaneous portion containing a 14 French cylindrical shaped catheter with D-shaped lumens and a dacron cuff. Due to the slow maturing of AVF, in our Department the Ash Split Cath has been used in 7 uremic patients (3 males and 4 females) who required hemodialysis. The cannulation of the internal jugular vein was performed by an ultrasound assisted technique and the correct catheter position was verified by standard chest X-rays. The average blood flowrates were 250 ml/min, and the mean KT/V calculated in all patients one month after the beginning of the dialytic therapy was 1.09 +/- 0.02. In six patients the catheter was utilized for at least 4 months, in one patient for 8 months. The devices were easily removed when the patient's AVF was functional and usable. We found that the use of the Ash Split Cath as a temporary, prolonged vascular access in uremic patients was op-timal allowing for flexibility in organizing the dialysis treatment schedule and in yielding a good performance in the initial dialysis therapy. Moreover, this device allows, in these patients, a satisfactory dialysis efficiency.

  10. Task 6.4 - the use of coal ash in ceramics. Topical report, July--December 1995

    SciTech Connect

    1996-03-01

    Previous empirical tests at the Energy & Environmental Research Center (EERC) have indicated that coal combustion by-products are a viable starting material for the production of a variety of ceramic products, including brick, tile, and high-flexural-strength ceramics. The EERC has focused on high-temperature properties of coal ashes and has provided valuable insight into ash transformations, fouling, and stagging for the utility industry. It is proposed to utilize the information generated in these past projects to develop material selection criteria and product manufacturing techniques based on scientific and engineering characteristics of the ash. Commercialization of the use of coal combustion by-products in ceramics is more likely to become viable if a quality-assured product can be made, and predictive materials selection is a key component of a quality-assured product. The objective of this work was to demonstrate the development and production of a ceramic material utilizing coal ash as a key component. Chemical and high-temperature properties of ash were carefully determined with the objective of identifying criteria for materials selection and manufacturing options for ceramic production.

  11. Feasibility, acceptability and clinical utility of the Cultural Formulation Interview: mixed-methods results from the DSM-5 international field trial.

    PubMed

    Lewis-Fernández, Roberto; Aggarwal, Neil Krishan; Lam, Peter C; Galfalvy, Hanga; Weiss, Mitchell G; Kirmayer, Laurence J; Paralikar, Vasudeo; Deshpande, Smita N; Díaz, Esperanza; Nicasio, Andel V; Boiler, Marit; Alarcón, Renato D; Rohlof, Hans; Groen, Simon; van Dijk, Rob C J; Jadhav, Sushrut; Sarmukaddam, Sanjeev; Ndetei, David; Scalco, Monica Z; Bassiri, Kavoos; Aguilar-Gaxiola, Sergio; Ton, Hendry; Westermeyer, Joseph; Vega-Dienstmaier, Johann M

    2017-04-01

    BackgroundThere is a need for clinical tools to identify cultural issues in diagnostic assessment.AimsTo assess the feasibility, acceptability and clinical utility of the DSM-5 Cultural Formulation Interview (CFI) in routine clinical practice.MethodMixed-methods evaluation of field trial data from six countries. The CFI was administered to diagnostically diverse psychiatric out-patients during a diagnostic interview. In post-evaluation sessions, patients and clinicians completed debriefing qualitative interviews and Likert-scale questionnaires. The duration of CFI administration and the full diagnostic session were monitored.ResultsMixed-methods data from 318 patients and 75 clinicians found the CFI feasible, acceptable and useful. Clinician feasibility ratings were significantly lower than patient ratings and other clinician-assessed outcomes. After administering one CFI, however, clinician feasibility ratings improved significantly and subsequent interviews required less time.ConclusionsThe CFI was included in DSM-5 as a feasible, acceptable and useful cultural assessment tool.

  12. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan

    NASA Astrophysics Data System (ADS)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.

    2013-12-01

    Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size

  13. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  14. Effect of emerald ash borer on structure and material properties of ash trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer (EAB) currently occurs in fifteen states in the United States, as well as Ontario and Quebec in Canada. A decline in ash tree strength following EAB infestation is potentially hazardous to public safety, particularly when trees are left standing for several years after dying. Dead ...

  15. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.

    PubMed

    García Arenas, Celia; Marrero, Madelyn; Leiva, Carlos; Solís-Guzmán, Jaime; Vilches Arenas, Luis F

    2011-08-01

    Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28cm-high, 18cm-wide and 3cm-thick units, and is measured as the time needed to reach a temperature of 180°C on the non-exposed surface of the blocks for the different compositions. The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire.

  16. A comprehensive study on the contents and leaching of trace elements from fly-ash originating from Polish hard coal by NAA and AAS methods.

    PubMed

    Dybczynski, R; Kulisa, K; Małusecka, M; Mandecka, M; Polkowska-Motrenko, H; Sterlinski, S; Szopa, Z

    1990-01-01

    In order to assess the environmental risks associated with the emission of fly-ash into the atmosphere and its storage on waste heaps, the trace element contents of fly-ashes from burning Polish hard coal were determined by a newly developed INAA method. Leaching of trace elements from the fly-ash by water and H2SO4 solution (pH approximately 2.5) simulating acid rain, respectively, was studied using AAS and spectrophotometric methods. Analogous experiments were done with neutron-irradiated fly-ash, following the composition of the eluate gamma-spectrometrically. The new fine fly-ash (CTA-FFA-1) candidate reference material was prepared, and the certification was undertaken on the basis of an international intercomparison run. Preliminary evaluation of results shows that at least 38 elements will be certified and, in addition, the "information values" for at least 12 elements will be given.

  17. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  18. Salt-thermal zeolitization of fly ash.

    PubMed

    Choi, C L; Park, M; Lee, D H; Kim, I E; Park, B Y; Choi, J

    2001-07-01

    The molten-salt method has been recently proposed as a new approach to zeolitization of fly ash. Unlike the hydrothermal method, this method employs salt mixtures as the reaction medium without any addition of water. In this study, systematic investigation has been conducted on zeolitization of fly ash in a NaOH-NaNO3 system in order to elucidate the mechanism of zeolite formation and to achieve its optimization. Zeolitization of fly ash was conducted by thermally treating a powder mixture of fly ash, NaOH, and NaNO3. Zeolitization of fly ash took place above 200 degrees C, a temperature lower than the melting points of salt and base in the NaOH-NaNO3 system. However, it was uncertain whether the reactions took place in a local molten state or in a solid state. Therefore, the proposed method is renamed the "salt-thermal" method rather than the "molten-salt" method. Mainly because of difficulty in mobility of components in salt mixtures, zeolitization seems to occur within a local reaction system. In situ rearrangement of activated components seems to lead to zeolite formation. Particle growth, rather than crystal growth through agglomeration, resulted in no distinct morphologies of zeolite phases. Following are the optimal zeolitization conditions of the salt-thermal method: temperature, 250-350 degrees C; time, 3-12 h; weight ratio of NaOH/NaNO3, 0.3-0.5; weight ratio of NaNO3/fly ash, 0.7-1.4. Therefore, it is clear from this work that the salt-thermal method could be applied to massive zeolitization of fly ash as a new alternative method for recycling this waste.

  19. Isotopic paleoclimate from hydrated volcanic ash

    SciTech Connect

    Friedman, I.; Izett, G.A.; Gleason, J.D.

    1985-01-01

    The deuterium composition (deltaD) of secondary water in glass shards of volcanic ash can be used to calculate the deltaD--and hence the climatic association--of water that was in contact with the ash during the first 10,000 years after eruption of the ash; this being the approximate (+/-5000 years) time necessary for water to diffuse completely through the thin walls of the pumice and glass shards. The fractionation between environmental water and water diffusing into the glassy ash must be known in order to calculate the deltaD of the ancient ground water. With help from A.J. Gude and R.A. Sheppard, the authors have recently determined this fractionation, and have used it to derive a value for deltaD of water from 25 samples of glass from the Huckleberry Ridge (2.1 m.y.), Bishop Tuff (0.74 m.y.), and Lava Creek B (0.61 m.y.) ashes collected from sites throughout the Western US. All of these deltaD values correlate very well with latitude and with the present distribution of deltaD in surface water. For example, the deltaD of water in Huckleberry Ridge ash varies from -85 per thousand SMOW for samples collected in Texas, to -148 per thousand for samples from south-central Montana. Thus, water of hydration in rhyolitic ash represents samples of ancient environmental water and can be used to study changes in the deltaD of the precipitation through time.

  20. Advances in Volcanic Ash Cloud Photogrammetry from Space

    NASA Astrophysics Data System (ADS)

    Zaksek, K.; von der Lieth, J.; Merucci, L.; Hort, M. K.; Gerst, A.; Carboni, E.; Corradini, S.

    2015-12-01

    The quality of ash dispersion prediction is limited by the lack of high quality information on eruption source parameters. One of the most important one is the ash cloud top height (ACTH). Because of well-known uncertainties of currently operational methods, photogrammetric methods can be used to improve height estimates. Some satellites have on board multiangular instruments that can be used for photogrammetrical observations. Volcanic ash clouds, however, can move with velocities over several m/s making these instruments inappropriate for accurate ACTH estimation. Thus we propose here two novel methods tested on different case studies (Etna 2013/11/23, Zhupanovsky 2014/09/10). The first method is based on NASA program Crew Earth observations from International Space Station (ISS). ISS has a lower orbit than most operational satellites, resulting in a shorter minimal time between two images required to produce a suitable parallax. In addition, images made by the ISS crew are taken by a full frame sensor and not a line scanner that most operational satellites use. Such data make possible to observe also short time evolution of clouds. The second method is based on the parallax between data retrieved from two geostationary instruments. We implemented a combination of MSG SEVIRI (HRV band; 1000 m nadir spatial resolution, 5 min temporal resolution) and METEOSAT7 MVIRI (VIS band, 2500 m nadir spatial resolution, 30 min temporal resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously. However, MVIRI does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MVIRI retrieval) and interpolate the cloud position from SEVIRI data to the time of MVIRI retrieval.

  1. Particle sedimentation and diffusive convection in volcanic ash-clouds

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Jellinek, A. M.

    2013-04-01

    Understanding the longevity of volcanic ash-clouds generated by powerful explosive eruptions is a long standing problem for assessing volcanic hazards and the nature and time scale of volcanic forcings on climate change. It is well known that the lateral spreading and longevity of these clouds is influenced by stratospheric winds, particle settling and turbulent diffusion. Observations of the recent 2010 Eyjafjallajökull and 2011 Grimsvötn umbrella clouds, as well as the structure of atmospheric aerosol clouds from the 1991 Mt Pinatubo event, suggest that an additional key process governing the cloud dynamics is the production of internal layering. Here, we use analog experiments on turbulent particle-laden umbrella clouds to show that this layering occurs where natural convection driven by particle sedimentation and the differential diffusion of primarily heat and fine particles give rise to a large scale instability. Where umbrella clouds are particularly enriched in fine ash, this "particle diffusive convection" strongly influences the cloud longevity. More generally, cloud residence time will depend on fluxes due to both individual settling and diffusive convection. We develop a new sedimentation model that includes both sedimentation processes, and which is found to capture real-time measurements of the rate of change of particle concentration in the 1982 El Chichon, 1991 Mt Pinatubo and 1992 Mt Spurr ash-clouds. A key result is that these combined sedimentation processes enhance the fallout of fine particles relative to expectations from individual settling suggesting that particle aggregation is not the only mechanism required to explain volcanic umbrella longevity.

  2. A retrospective study on acute health effects due to volcanic ash exposure during the eruption of Mount Etna (Sicily) in 2002

    PubMed Central

    2013-01-01

    Background Mount Etna, located in the eastern part of Sicily (Italy), is the highest and most active volcano in Europe. During the sustained eruption that occurred in October-November 2002 huge amounts of volcanic ash fell on a densely populated area south-east of Mount Etna in Catania province. The volcanic ash fall caused extensive damage to infrastructure utilities and distress in the exposed population. This retrospective study evaluates whether or not there was an association between ash fall and acute health effects in exposed local communities. Methods We collected the number and type of visits to the emergency department (ED) for diseases that could be related to volcanic ash exposure in public hospitals of the Province of Catania between October 20 and November 7, 2002. We compared the magnitude of differences in ED visits between the ash exposure period in 2002 and the same period of the previous year 2001. Results We observed a significant increase of ED visits for acute respiratory and cardiovascular diseases, and ocular disturbances during the ash exposure time period. Conclusions There was a positive association between exposure to volcanic ash from the 2002 eruption of Mount Etna and acute health effects in the Catania residents. This study documents the need for public health preparedness and response initiatives to protect nearby populations from exposure to ash fall from future eruptions of Mount Etna. PMID:23924394

  3. Lipid peroxidation and oxidative status compared in workers at a bottom ash recovery plant and fly ash treatment plants.

    PubMed

    Liu, Hung-Hsin; Shih, Tung-Sheng; Chen, I-Ju; Chen, Hsiu-Ling

    2008-01-01

    Fly ash and ambient emissions of municipal solid waste incinerators contain polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), other organic compounds, metals, and gases. Hazardous substances such as PCDD/Fs, mercury vapors and other silicates, and the components of bottom ash and fly ash elevate the oxidative damage. We compared oxidative damage in workers exposed to hazardous substances at a bottom ash recovery plant and 3 fly ash treatment plants in Taiwan by measuring their levels of plasma malondialdehyde (MDA) and urine 8-hydroxydeoxyguanosine (8-OH-dG). Significantly higher MDA levels were found in fly ash treatment plant workers (3.20 microM) than in bottom ash plant workers (0.58 microM). There was a significant association between MDA levels in workers and their working environment, especially in the fly ash treatment plants. Levels of 8-OH-dG varied more widely in bottom ash workers than in fly ash workers. The association between occupational exposure and 8-OH-dG levels may be affected by the life style of the workers. Because more dioxins and metals may leach from fly ash than from bottom ash, fly ash treatment plant workers should, as much as possible, avoid exposing themselves to fly ash.

  4. Internal transcribed spacer (ITS) evolution in populations of the hyperparasitic European mistletoe pathogen fungus, Sphaeropsis visci (Botryosphaeriaceae): The utility of ITS2 secondary structures.

    PubMed

    Poczai, Péter; Varga, Ildikó; Hyvönen, Jaakko

    2015-03-01

    We investigated patterns of nucleotide polymorphism in the internal transcribed spacer (ITS) region for Sphaeropsis visci, a hyperparasitic fungus that causes the leaf spot disease of the hemiparasite European mistletoe (Viscum album). Samples of S. visci were obtained from Hungary covering all major infected forest areas. For obtaining PCR products we used a fast and efficient direct PCR approach based on a high fidelity DNA polymerase. A total of 140 ITS sequences were subjected to an array of complementary sequence analyses, which included analyses of secondary structure stability, nucleotide polymorphism patterns, GC content, and presence of conserved motifs. Analysed sequences exhibited features of functional rRNAs. Overall, polymorphism was observed within less conserved motifs, such as loops and bulges, or, alternatively, as non-canonical G-U pairs within conserved regions of double stranded helices. The secondary structure of ITS2 provides new opportunities for obtaining further valuable information, which could be used in phylogenetic analyses, or at population level as demonstrated in our study. This is due to additional information provided by secondary structures and their models. The combined score matrix was used with the methods implemented in the programme 4SALE. Besides the pseudoprotein coding method of 4SALE, the molecular morphometric character coding also has potential for gaining further information for phylogenetic analyses based on the geometric features of the sub-structural elements of the ITS2 RNA transcript.

  5. Utilization of a deuterated derivatization agent to synthesize internal standards for gas chromatography-tandem mass spectrometry quantification of silylated metabolites.

    PubMed

    Lien, Stina K; Kvitvang, Hans Fredrik Nyvold; Bruheim, Per

    2012-07-20

    GC-MS analysis of silylated metabolites is a sensitive method that covers important metabolite groups such as sugars, amino acids and non-amino organic acids, and it has become one of the most important analytical methods for exploring the metabolome. Absolute quantitative GC-MS analysis of silylated metabolites poses a challenge as different metabolites have different derivatization kinetics and as their silyl-derivates have varying stability. This report describes the development of a targeted GC-MS/MS method for quantification of metabolites. Internal standards for each individual metabolite were obtained by derivatization of a mixture of standards with deuterated N-methyl-N-trimethylsilyltrifluoroacetamide (d9-MSTFA), and spiking this solution into MSTFA derivatized samples prior to GC-MS/MS analysis. The derivatization and spiking protocol needed optimization to ensure that the behaviour of labelled compound responses in the spiked sample correctly reflected the behaviour of unlabelled compound responses. Using labelled and unlabelled MSTFA in this way enabled normalization of metabolite responses by the response of their deuterated counterpart (i.e. individual correction). Such individual correction of metabolite responses reproducibly resulted in significantly higher precision than traditional data correction strategies when tested on samples both with and without serum and urine matrices. The developed method is thus a valuable contribution to the field of absolute quantitative metabolomics.

  6. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards).

    PubMed

    Edger, Patrick P; Tang, Michelle; Bird, Kevin A; Mayfield, Dustin R; Conant, Gavin; Mummenhoff, Klaus; Koch, Marcus A; Pires, J Chris

    2014-01-01

    The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1.) Ease of amplification due to high copy number of the gene clusters, 2.) Available cost-effective methods and highly conserved primers, 3.) Rapidly evolving markers (i.e. variable between closely related species), and 4.) The assumption (and/or treatment) that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC) content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.

  7. The Utilization of Plant Facilities on the International Space Station-The Composition, Growth, and Development of Plant Cell Walls under Microgravity Conditions.

    PubMed

    Jost, Ann-Iren Kittang; Hoson, Takayuki; Iversen, Tor-Henning

    2015-01-20

    In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8-14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station.

  8. Comparison of the hydrodynamics and mass transfer characteristics in internal-loop airlift bioreactors utilizing either a novel membrane-tube sparger or perforated plate sparger.

    PubMed

    Wei, Ce; Wu, Bing; Li, Ganlu; Chen, Kequan; Jiang, Min; Ouyang, Pingkai

    2014-11-01

    Two gas spargers, a novel membrane-tube sparger and a perforated plate sparger, were compared in terms of hydrodynamics and mass transfer (or oxygen transfer) performance in an internal-loop airlift bioreactor. The overall gas holdup ε T, downcomer liquid velocity V d, and volumetric mass transfer coefficient K L a were examined depending on superficial gas velocity U G increased in Newtonian and non-Newtonian fluids for the both spargers. Compared with the perforated plate sparger, the bioreactor with the membrane-tube sparger increased the values of ε T by 4.9-48.8% in air-water system when the U G was from 0.004 to 0.04 m/s, and by 65.1-512.6% in air-CMC solution system. The V d value for the membrane-tube sparger was improved by 40.0-86.3%. The value of K L a was increased by 52.8-84.4% in air-water system, and by 63.3-836.3% in air-CMC solution system. Empirical correlations of ε T, V d, and K L a were proposed, and well corresponding with the experimental data with the deviation of 10%.

  9. The Utilization of Plant Facilities on the International Space Station—The Composition, Growth, and Development of Plant Cell Walls under Microgravity Conditions

    PubMed Central

    Jost, Ann-Iren Kittang; Hoson, Takayuki; Iversen, Tor-Henning

    2015-01-01

    In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8–14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station. PMID:27135317

  10. JV Task 120 - Coal Ash Resources Research Consortium Research

    SciTech Connect

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

    2009-03-28

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special

  11. Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    PubMed Central

    Whitehill, Justin G. A.; Popova-Butler, Alexandra; Green-Church, Kari B.; Koch, Jennifer L.; Herms, Daniel A.; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion. PMID:21949771

  12. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    PubMed

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  13. Investigation of the use of fly-ash based autoclaved cellular concrete blocks in coal mines for air duct work. Final report, January 25, 1993--December 31, 1994

    SciTech Connect

    Horvath, M.L.

    1995-06-19

    Coal mines are required to provide ventilation to occupied portions of underground mines. Concrete block is used in this process to construct air duct walls. However, normal concrete block is heavy and not easy to work with and eventually fails dramatically after being loaded due to mine ceiling convergence and/or floor heave. Autoclaved cellular concrete block made from (70{plus_minus}%) coal fly ash is lightweight and less rigid when loaded. It is lighter and easier to use than regular concrete block for underground mine applications. It has also been used in surface construction around the world for over 40 years. Ohio Edison along with eight other electric utility companies, the Electric Power Research Institute (EPRI), and North American Cellular Concrete constructed a mobile demonstration plant to produce autoclaved cellular concrete block from utility fly ash. To apply this research in Ohio, Ohio Edison also worked with the Ohio Coal Development Office and CONSOL Inc. to produce autoclaved cellular concrete block not only from coal ash but also from LIMB ash, SNRB ash, and PFBC ash from various clean coal technology projects sponsored by the Ohio Coal Development Office. The purpose of this project was to demonstrate the potential for beneficial use of fly ash and clean coal technology by-products in the production of lightweight block.

  14. Removal of chloride from fly ash produced in hazardous waste incineration by leaching and displacement washing in a vertical filter press.

    PubMed

    Kinnarinen, Teemu; Huhtanen, Mikko; Penttilä, Mika; Häkkinen, Antti

    2013-02-01

    Fly ash is generated in large quantities by waste incineration processes. Chloride is commonly present in the fly ash produced by the incineration of hazardous materials, such as polyvinylchloride plastic. Major difficulties related to the disposal and handling of fly ash include the high concentration of easily leachable chlorides, heavy metals and toxic compounds. In order to avoid adverse environmental effects from the disposal of fly ash, the content of soluble chlorides must be reduced. One of the most effective options for chloride removal is leaching and displacement washing in a filter press. The primary aim of this study was to obtain efficient removal of chloride from fly ash by utilizing a leaching and displacement washing process, carried out in a filter press. The secondary objective was to obtain high filtration capacities and low filter cake moisture contents. The slurry was prepared by mixing fly ash with water at an ash:water ratio of 1:2 and filtered to separate the solids from the liquid. After solid-liquid separation, most of the dissolved residual chloride was removed from the filter cake by washing the cake with fresh water in the second stage of separation. It was possible to remove up to 98% of the total chloride and to obtain sufficient filtration capacities. The residual moisture content of the filter cakes varied from 22 to 35 wt%, which meant that the cakes could be disposed of in landfill, or possibly utilized as a construction material.

  15. Flow injection analysis of MWC fly ash leaching characteristics

    SciTech Connect

    Willemin, J.A.; Nesbitt, C.C.; Dewey, G.R.; Sandall, J.F.; Sutter, L.L.

    1995-11-01

    A completely mixed batch reactor leaching method utilizing flow injection analysis (the CMBR-FIA method) was developed to study the lead leaching characteristics of municipal waste combustor fly ash. Flow injection analysis (FIA) coupled with atomic absorption spectrophotometry enabled the determination of lead concentrations at one minute intervals. The pH and oxidation-reduction potential of the solution were continuously monitored to characterize the leaching conditions. Automatic titration was used to alter the solution pH to defined endpoints. The CMBR-FIA method offers the ability to immediately observe alterations to the leaching solution, and grants the freedom to study a number of parameters concurrently. The CMBR-FIA method is a rapid and reliable means to investigate leaching characteristics. This paper describes the method and demonstrates its use to monitor the leaching of lead from municipal solid waste combustor fly ash as a function of pH. Soluble lead concentrations are shown to increase quickly with decreasing pH. A maximum of 50% of the total lead concentration was available in solution at pH 2. This value gradually decreased with time to over 35% of the total. 16 refs., 6 figs.

  16. 488-D Ash Basin Vegetative Cover Treatibility Study

    SciTech Connect

    Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

    2003-01-01

    The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

  17. Coal ash behavior in reducing environments

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Brekke, D.W.; Folkedahl, B.C.; Tibbetts, J.E.; Nowok, J.W.

    1994-10-01

    This project is a four-year program designed to investigate the transformations and properties of coal ash in reducing environment systems. This project is currently midway through its third year. The work to date has emphasized four areas of research: (1) the development of quantitative techniques to analyze reduced species, (2) the production of gasification-type samples under closely controlled conditions, (3) the systematic gasification of specific coals to produce information about their partitioning during gasification, and (4) the study of the physical properties of ashes and slags under reducing atmospheres. The project is organized into three tasks which provide a strong foundation for the project. Task 1, Analytical Methods Development, has concentrated on the special needs of analyzing samples produced under a reducing atmosphere as opposed to the more often studied combustion systems. Task 2, Inorganic Partitioning and Ash Deposition, has focused on the production of gasification-type samples under closely controlled conditions for the study of inorganic partitioning that may lead to deposition. Task 3, Ash and Slag Physical Properties, has made large gains in the areas of sintering and strength development of coal ashes under reducing atmospheres for the evaluation of deposition problems. Results are presented for all three tasks.

  18. Hydrothermal reaction of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1994-12-31

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  19. The climatic impact of supervolcanic ash blankets

    NASA Astrophysics Data System (ADS)

    Jones, M. T.; Sparks, S. J.; Valdes, P. J.

    2006-12-01

    Supervolcanoes are capable of ejecting 1000's of cubic kilometres of magmatic material in a single eruption, far surpassing anything recorded in human history. It has been postulated that these eruptions have acted as catalysts for long-term climate change and are responsible for bottlenecks in human and animal populations. Tephra deposits from a super-eruption are capable of covering an area the size of USA (~10,000,000 sq. km) with ash, destroying vegetation and considerably raising the surface albedo. Ecological responses to smaller eruptions show that recovery of flora takes over 15 years, while previous studies of ash blankets demonstrate sustained surface residence times. This suggests that a supervolcanic ash blanket would instigate a decadal climate response that would dominate in the aftermath of the effects of aerosols in the stratosphere. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, and show that it causes major disruptions to the climate, particularly to oscillatory systems such as the El Niño Southern Oscillation (ENSO). The regional disturbance instigates a global response, with significant variations in surface temperatures, pressures and precipitation patterns. The ocean remains largely unaffected, though a marked increase in sea ice is seen in the North Atlantic. While the response to a supervolcanic ash blanket is predicted to be severe, the isolated effects of the disturbance are not significant enough to instigate long-term climate change at present day boundary conditions.

  20. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  1. International partnerships in renewable energy: Promoting climate challenge partnerships by small U.S. utilities. Fourth project report, October 1997--March 1998

    SciTech Connect

    1999-02-01

    In 1997, the National Rural Electric Cooperative Association (NRECA) received a grant from the Department of Energy (DOE) to implement a program to promote the participation of NRECA members in the President`s Climate Challenge Action Plan. NRECA had been in discussions with Salt River Project (SRP) and the Arizona Electric Power Cooperative (AEPCO) to pursue the opportunity of supporting a small solar energy rural electrification project in Sonora prior to the signature of this agreement. When the Climate Challenge project was approved, an agreement between NRECA, SRP, and AEPCO was reached to implement the Sonora project with funding from DOE, SRP, and AEPCO. This periodic report will summarize the results of the Sonora solar electrification project. While other Climate Challenge activities were also underway during this reporting period, due to the impact of this project it was decided to provide an in-depth report of this single project. Information directly relevant to the actions taken on this project is provided in Annexes 1 and 2. The goals of the Sonora Solar Electrification project were the following: (1) demonstrate the willingness and ability of US electric utilities to undertake a climate challenge project using renewable energy technologies; (2) select one or more communities distant from the electric grid with sufficient interest and resources to accept and sustain rural electric service using solar photovoltaic energy; (3) organize a payment system that would provide for the long-term technical and institutional viability of the project; (4) train users to operate the solar home systems safely and within proper operating parameters; (5) train local technicians to maintain the solar home systems; (6) procure and install high quality equipment at affordable costs; and (7) ascertain market conditions for expansion of program in the future.

  2. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean.

    PubMed

    Li, Chengchen; Li, Caifeng; Zhang, Haiyan; Liao, Hong; Wang, Xiurong

    2017-02-01

    Induction of secreted and intracellular purple acid phosphatases (PAPs; EC 3.1.3.2) is widely recognized as an adaptation of plants to phosphorus (P) deficiency. The secretion of PAPs plays important roles in P acquisition. However, little is known about the functions of intracellular PAP in plants and nodules. In this study, we identified a novel PAP gene GmPAP21 in soybean. Expression of GmPAP21 was induced by P limitation in nodules, roots and old leaves, and increased in roots with increasing duration of P starvation. Furthermore, the induction of GmPAP21 in nodules and roots was more intensive than in leaves in both P-efficient genotype HN89 and P-inefficient genotype HN112 in response to P starvation, and the relative expression in the leaves and nodules of HN89 was significantly greater than that of HN112 after P deficiency treatment. Further functional analyses showed that over-expressing GmPAP21 significantly enhanced both acid phosphatase activity and growth performance of hairy roots under P starvation condition, indicating that GmPAP21 plays an important role in P utilization. Moreover, GUS expression driven by GmPAP21 promoter was shown in the nodules besides roots. Overexpression of GmPAP21 in transgenic soybean significantly inhibited nodule growth, and thereby affected plant growth after inoculation with rhizobia. This suggests that GmPAP21 is also possibly involved in regulating P metabolism in nodules. Taken together, our results suggest that GmPAP21 is a novel plant PAP that functions in the adaptation of soybean to P starvation, possibly through its involvement in P recycling in plants and P metabolism in nodules.

  3. Task 3.15 -- Impacts of low-NO{sub x} combustion on fly ash and slagging

    SciTech Connect

    Zygarlicke, C.J.; McCollor, D.P.

    1997-11-01

    This project by the Energy and Environmental Research Center (EERC) focuses on the issues of entrained-ash formation and slagging for low-NO{sub x} combustion systems in general. Time-resolved combustion tests under conventional and low-NO{sub x} conditions have been conducted to note particle-size formation and slagging deposition. Results will be used to support demonstration projects at the utility boiler scale. The results from this work are yielding an increased understanding of the mechanisms of ash formation during low-NO{sub x} combustion along with methods for enhancing heat transfer and fly ash collectibility. Specific objectives of this research project include (1) determining whether initial char and ash generated under low-NO{sub x} conditions have greater tendencies for slagging than conventionally generated ash and (2) determining the differences, if any, between particle size and composition for entrained ash generated under low-NO{sub x} and conventional combustion conditions. Progress on this sub-task is presented.

  4. A Method to Increase Current Density in a Mono Element Internal Tin Processed Superconductor Utilizing Zr Oxide to Refine Grain Size

    SciTech Connect

    Bruce A. Zeitlin, Eric Gregory

    2008-04-07

    The effect of Oxygen on (Nb1Zr)3Sn multifilament conductors manufactured by the Mono Element Internal Tin (MEIT) process was explored to improve the current density by refining the grain size. This followed work first done by General Electric on the Nb3Sn tape process. Techniques to fabricate the more difficult Nb1Zr composites are described and allowed fabrication of long lengths of .254 mm diameter wire from an 88.9 mm diameter billet. Oxygen was incorporated through the use of SnO2 mixed with tin powder and incorporated into the core. These were compared to samples with Ti+Sn and Cu+Sn cores. Heat treatments covered the range of 700 C to 1000 C. Current density vs. H, grain size, and reaction percentages are provided for the materials tested. The Oxygen gave superior results in the temperature range of 815-1000 C. It also stabilized the filament geometry of the array in comparison to the other additions at the higher temperatures. At 815 C a peak in layer Jc yielded values of 2537 A/mm2 at 12 T and 1353 A/mm2 at 15T, 8-22% and 30-73% greater respectively than 700 C values. Results with Oxygen at high temperature show the possibility of high speed continuous reaction of the composite versus the current batch or react in place methods. In general the Ti additions gave superior results at the lower reaction temperature. Future work is suggested to determine if the 815 C reaction temperature can lead to higher current density in high tin (Nb1Zr+Ox)3Sn conductors. A second technique incorporated oxygen directly into the Nb1Zr rods through heat treatment with Nb2O5 at 1100 C for 100 hours in vacuum prior to extrusion. The majority of the filaments reduced properly in the composite but some local variations in hardness led to breakage at smaller diameters.

  5. Opportunities for Utilizing the International Space Station for Studies of F2- Region Plasma Science and High Voltage Solar Array Interactions with the Plasma Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria; Wright, Kenneth; Craven, Paul; Koontz, Steven

    2010-01-01

    The near circular, 51.6deg inclination orbit of the International Space Station (ISS) is maintained within an altitude range of approximately 300 km to 400 km providing an ideal platform for conducting in-situ studies of space weather effects on the mid and low-latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) is a suite of instruments installed on the ISS in August 2006 which includes a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). The primary purpose for deploying the FPMU is to characterize ambient plasma temperatures and densities in which the ISS operates and to obtain measurements of the ISS potential relative to the space plasma environment for use in characterizing and mitigating spacecraft charging hazards to the vehicle and crew. In addition to the engineering goals, data from the FPMU instrument package is available for collaborative multi-satellite and ground based instrument studies of the F-region ionosphere during both quiet and disturbed periods. Finally, the FPMU measurements supported by ISS engineering telemetry data provides a unique opportunity to investigate interactions of the ISS high voltage (160 volt) solar array system with the plasma environment. This presentation will provide examples of FPMU measurements along the ISS orbit including night-time equatorial plasma density depletions sampled near the peak electron density in the F2-region ionosphere, charging phenomenon due to interaction of the ISS solar arrays with the plasma environment, and modification of ISS charging due to visiting vehicles demonstrating the capabilities of the FPMU probes for monitoring mid and low latitude plasma processes as well as vehicle interactions with the plasma environment.

  6. The future of volcanic ash-aircraft interactions from technical and policy perspectives

    NASA Astrophysics Data System (ADS)

    Casadevall, T. J.; Guffanti, M.

    2010-12-01

    Since the advent of jet-powered flight in the 1960s, the threat of volcanic ash to aviation operations has become widely recognized and the mitigation of this threat has received concerted international attention. At the same time the susceptibility to operational disruption has grown. Technical improvements to airframes, engines, and avionic systems have been made in response to the need for improved fuel efficiency and the demand for increased capacity for passenger and freight traffic. Operational demands have resulted in the growth of extended overseas flight operations (ETOPS), increased flight frequency on air traffic routes, and closer spacing of aircraft on heavily traveled routes. The net result has been great advances in flight efficiency, but also increased susceptibility to flight disruption, especially in heavily traveled regions such as North Atlantic-Europe, North America, and the North Pacific. Advances in ash avoidance procedures, pilot and air manager training, and in detection of ash-related damage and maintenance of aircraft and engines have been spurred by noteworthy eruptions such as Galunggung, Indonesia, 1982; Redoubt, Alaska, 1989-1990; and Pinatubo, Philippines, 1991. Comparable advances have been made in the detection and tracking of volcanic ash clouds using satellite-based remote sensing and numerical trajectory forecast models. Following the April 2010 eruption of Eyjafjallajökull volcano, Iceland, the global aviation community again focused attention on the issue of safe air operations in airspace affected by volcanic ash. The enormous global disruption to air traffic in the weeks after the Eyjafjallajökull eruption has placed added emphasis for the global air traffic management system as well as on the equipment manufacturers to reevaluate air operations in ash-affected airspace. Under the leadership of the International Civil Aviation Organization and the World Meteorological Organization, efforts are being