Science.gov

Sample records for international fungus spore

  1. Fifth international fungus spore conference

    SciTech Connect

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  2. Fifth international fungus spore conference. [Abstracts]: Final technical report

    SciTech Connect

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  3. Identification and Isolation of Two Ascomycete Fungi from Spores of the Arbuscular Mycorrhizal Fungus Scutellospora castanea

    PubMed Central

    Hijri, Mohamed; Redecker, Dirk; Petetot, Jean A. MacDonald-Comber; Voigt, Kerstin; Wöstemeyer, Johannes; Sanders, Ian R.

    2002-01-01

    Two filamentous fungi with different phenotypes were isolated from crushed healthy spores or perforated dead spores of the arbuscular mycorrhizal fungus (AMF) Scutellospora castanea. Based on comparative sequence analysis of 5.8S ribosomal DNA and internal transcribed spacer fragments, one isolate, obtained from perforated dead spores only, was assigned to the genus Nectria, and the second, obtained from both healthy and dead spores, was assigned to Leptosphaeria, a genus that also contains pathogens of plants in the Brassicaceae. PCR and randomly amplified polymorphic DNA-PCR analyses, however, did not indicate similarities between pathogens and the isolate. The presence of the two isolates in both healthy spores and perforated dead spores of S. castanea was finally confirmed by transmission electron microscopy by using distinctive characteristics of the isolates and S. castanea. The role of this fungus in S. castanea spores remains unclear, but the results serve as a strong warning that sequences obtained from apparently healthy AMF spores cannot be presumed to be of glomalean origin and that this could present problems for studies on AMF genes. PMID:12200315

  4. Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs.

    PubMed

    Lilleskov, Erik A; Bruns, Thomas D

    2005-01-01

    Patterns of fungal spore dispersal affect gene flow, population structure and fungal community structure. Many Basidiomycota produce resupinate (crust-like) basidiocarps buried in the soil. Although spores are actively discharged, they often do not appear to be well positioned for aerial dispersal. We investigated the potential spore dispersal mechanisms of one exemplar of this growth form, Tomentella sublilacina. It is a widespread ectomycorrhizal fungus that sporulates in the soil organic horizon, can establish from the spore bank shortly after disturbance, but also can be a dominant species in mature forest stands. We investigated whether its spores could be dispersed via spore-based food webs. We examined external surfaces, gut contents and feces from arthropod fungivores (mites, springtails, millipedes, beetles, fly larvae) and arthropod and vertebrate predators (centipedes, salamanders) from on and around T. sublilacina sporocarps. Spore densities were high in the guts of many individuals from all fungivore groups. Centipede gut contents, centipede feces and salamander feces contained undigested invertebrate exoskeletons and many apparently intact spores. DAPI staining of spores from feces of fungivores indicated that 7-73% of spores contained intact nuclei, whereas spores from predators had lower percentages of intact nuclei. The spiny spores often were lodged on invertebrate exoskeletons. To test the viability of spores that had passed through invertebrate guts we used fecal droppings of the millipede Harpaphe haydeniana to successfully inoculate seedlings of Pinus muricata (Bishop pine). These results indicate the potential for T. sublilacina spore dispersal via invertebrates and their predators in soil food webs and might help to explain the widespread distribution of this species. It is likely that this is a general mechanism of dispersal for fungi producing resupinate sporocarps, indicating a need to develop a fuller understanding of the linkages of

  5. Invasion of Spores of the Arbuscular Mycorrhizal Fungus Gigaspora decipiens by Burkholderia spp.

    PubMed Central

    Levy, Avram; Chang, Barbara J.; Abbott, Lynette K.; Kuo, John; Harnett, Gerry; Inglis, Timothy J. J.

    2003-01-01

    Burkholderia species are bacterial soil inhabitants that are capable of interacting with a variety of eukaryotes, in some cases occupying intracellular habitats. Pathogenic and nonpathogenic Burkholderia spp., including B. vietnamiensis, B. cepacia, and B. pseudomallei, were grown on germinating spores of the arbuscular mycorrhizal fungus Gigaspora decipiens. Spore lysis assays revealed that all Burkholderia spp. tested were able to colonize the interior of G. decipiens spores. Amplification of specific DNA sequences and transmission electron microscopy confirmed the intracellular presence of B. vietnamiensis. Twelve percent of all spores were invaded by B. vietnamiensis, with an average of 1.5 × 106 CFU recovered from individual infected spores. Of those spores inoculated with B. pseudomallei, 7% were invaded, with an average of 5.5 × 105 CFU recovered from individual infected spores. Scanning electron and fluorescence microscopy provided insights into the morphology of surfaces of spores and hyphae of G. decipiens and the attachment of bacteria. Burkholderia spp. colonized both hyphae and spores, attaching to surfaces in either an end-on or side-on fashion. Adherence of Burkholderia spp. to eukaryotic surfaces also involved the formation of numerous fibrillar structures. PMID:14532087

  6. Computer-assisted image processing to detect spores from the fungus Pandora neoaphidis.

    PubMed

    Korsnes, Reinert; Westrum, Karin; Fløistad, Erling; Klingen, Ingeborg

    2016-01-01

    This contribution demonstrates an example of experimental automatic image analysis to detect spores prepared on microscope slides derived from trapping. The application is to monitor aerial spore counts of the entomopathogenic fungus Pandora neoaphidis which may serve as a biological control agent for aphids. Automatic detection of such spores can therefore play a role in plant protection. The present approach for such detection is a modification of traditional manual microscopy of prepared slides, where autonomous image recording precedes computerised image analysis. The purpose of the present image analysis is to support human visual inspection of imagery data - not to replace it. The workflow has three components:•Preparation of slides for microscopy.•Image recording.•Computerised image processing where the initial part is, as usual, segmentation depending on the actual data product. Then comes identification of blobs, calculation of principal axes of blobs, symmetry operations and projection on a three parameter egg shape space.

  7. Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects.

    PubMed

    Weinstein, Philip; Delean, Steven; Wood, Tom; Austin, Andrew D

    2016-12-01

    Bioluminescence has been known from fungi since ancient times, but little work has been done to establish its potential role. There is evidence that some bioluminescent fungi differentially attract potential spore-dispersing insects, and we aimed to establish if this was the case for the ghost fungus, Omphalotus nidiformis (Agaricales,Marasmiaceae), a widespread Australian temperate zone species. We examined three corroborative lines of evidence: circadian rhythmicity of bioluminescence; field-recorded insect abundance at the time of basidiome production; and attractiveness of glowing fungi to flying insects. Basidiomes glowed continuously day and night, and were present in winter (June-July) when insect abundance was low. To assess attractiveness, we deployed sticky-traps in open woodland in the absence of light pollution, in Treatment (baited with fresh bioluminescent O. nidiformis) and Control pairs, for 480 trap-hours on moonless nights. There was no statistical difference in mean insect abundance between Treatment and Control traps (mean 0.33 and 0.54 individuals per trap night, respectively). To interpret these results, we provide a brief review of competing hypotheses for fungal bioluminescence, and conclude that for some fungi, bioluminescence may be an incidental by-product of metabolism rather than conferring any selective advantage. It is possible that the role of bioluminescence differs among evolutionary lineages of fungi and/or with attributes of their growth environments that could affect spore dispersal, such as wind and insect abundance.

  8. Fungal Spores Viability on the International Space Station

    NASA Astrophysics Data System (ADS)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-11-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the

  9. Fungal Spores Viability on the International Space Station.

    PubMed

    Gomoiu, I; Chatzitheodoridis, E; Vadrucci, S; Walther, I; Cojoc, R

    2016-11-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the

  10. The effects of triclosan on spore germination and hyphal growth of the arbuscular mycorrhizal fungus Glomus intraradices.

    PubMed

    Twanabasu, Bishnu R; Stevens, Kevin J; Venables, Barney J

    2013-06-01

    The effect of triclosan (5-chloro-2-[2,4-dichlorophenoxy]phenol; TCS), on spore germination, hyphal growth, and hyphal branching of the arbuscular mycorrhizal (AM) fungus, Glomus intraradices spores was evaluated at exposure concentrations of 0.4 and 4.0 μg/L in a static renewal exposure system. To determine if potential effects were mycotoxic or a consequence of impaired signaling between a host plant and the fungal symbiont, spores were incubated with and without the addition of a root exudate. Exposed spores were harvested at days 7, 14, and 21. AM spore germination, hyphal growth, and hyphal branching were significantly lower in both TCS concentrations compared to controls in non-root exudate treatments suggesting direct mycotoxic effects of TCS on AM development. Greater hyphal growth and hyphal branching in controls and 0.4μg/L TCS treatments with root exudate compared to non-root exudate treatments demonstrated growth stimulation by signaling chemicals present in the root exudate. This stimulatory effect was absent in the 4.0 μg/L TCS treatments indicating a direct effect on plant signaling compounds or plant signal response.

  11. Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs

    Treesearch

    Erik A. Lilleskov; Thomas D. Bruns

    2005-01-01

    Patterns of fungal spore dispersal affect gene flow, population structure and fungal community structure. Many Basidiomycota produce resupinate (crust-like) basidiocarps buried in the soil. Although spores are actively discharged, they often do not appear to be well positioned for aerial dispersal. We investigated the potential spore dispersal mechanisms of one...

  12. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    PubMed Central

    2011-01-01

    Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar

  13. THE EFFECTS OF ULTRAVIOLET RADIATION ON SPORES OF THE FUNGUS ASPERGILLUS NIGER

    PubMed Central

    Zahl, Paul A.; Koller, L. R.; Haskins, C. P.

    1939-01-01

    The survival ratio of Aspergillus spores exposed to ultraviolet radiation has been measured as a function of total incident energy for wave lengths of 2537 Å, 3022 Å, 3129 Å, and 3650 Å. The effect of humidity on killing of Aspergillus spores by ultraviolet radiation has been found to be negligible. A delay in germination as a result of irradiation has been found. The Bunsen-Roscoe reciprocity law has been found to hold within the limits of the radiation intensities studied. Certain morphological changes have been observed. PMID:19873127

  14. Spore Density Determines Infection Strategy by the Plant Pathogenic Fungus Plectosphaerella cucumerina1[OPEN

    PubMed Central

    2016-01-01

    Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host. PMID:26842622

  15. Total Dose Effects (TDE) of heavy ionizing radiation in fungus spores and plant seeds: Preliminary investigations

    NASA Technical Reports Server (NTRS)

    Kranz, A. R.; Zimmermann, M. W.; Stadler, R.; Gartenbach, K. E.; Pickert, M.

    1992-01-01

    The opportunity to compare cosmic radiation effects caused during long and short duration exposure flights in biological objects are limited until now, and data obtained so far are very rare and insufficient. Because of the very long exposure of the experiment during the Long Duration Exposure Facility (LDEF) mission (approximately 2000 days) structural changes of the hardware material can be expected which will influence its biocompatibility and, thus, will interact with the radiobiological effects. The aim of the experiment flown on LDEF was a detailed investigation of biological effects caused by cosmic radiation especially of particles of high atomic number Z and high energy. The flight hardware consisted of standard BIOSTACK containers; in these containers a special sandwich construction consisted of visual plastic detectors with seed rsp. spore layers interlocked.

  16. Total Dose Effects (TDE) of heavy ionizing radiation in fungus spores and plant seeds: Preliminary investigations

    NASA Technical Reports Server (NTRS)

    Kranz, A. R.; Zimmermann, M. W.; Stadler, R.; Gartenbach, K. E.; Pickert, M.

    1992-01-01

    The opportunity to compare cosmic radiation effects caused during long and short duration exposure flights in biological objects are limited until now, and data obtained so far are very rare and insufficient. Because of the very long exposure of the experiment during the Long Duration Exposure Facility (LDEF) mission (approximately 2000 days) structural changes of the hardware material can be expected which will influence its biocompatibility and, thus, will interact with the radiobiological effects. The aim of the experiment flown on LDEF was a detailed investigation of biological effects caused by cosmic radiation especially of particles of high atomic number Z and high energy. The flight hardware consisted of standard BIOSTACK containers; in these containers a special sandwich construction consisted of visual plastic detectors with seed rsp. spore layers interlocked.

  17. Self-inhibition of spore germination via reactive oxygen in the fungus Cladosporium cucumerinum, causal agent of cucurbit scab

    USDA-ARS?s Scientific Manuscript database

    Cladosporium cucumerinum spore germination in vitro depended on spore suspension density. Different fungal isolates displayed maximum germination at different spore concentrations. For one isolate, maximum spore density was observed at both 18 and 25 °C, although germination percentage increased sli...

  18. Carbon Metabolism in Spores of the Arbuscular Mycorrhizal Fungus Glomus intraradices as Revealed by Nuclear Magnetic Resonance Spectroscopy1

    PubMed Central

    Bago, Berta; Pfeffer, Philip E.; Douds, David D.; Brouillette, Janine; Bécard, Guillaume; Shachar-Hill, Yair

    1999-01-01

    Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of over 80% of plants in all terrestrial environments. Understanding why AM fungi do not complete their life cycle under free-living conditions has significant implications for the management of one of the world's most important symbioses. We used 13C-labeled substrates and nuclear magnetic resonance spectroscopy to study carbon fluxes during spore germination and the metabolic pathways by which these fluxes occur in the AM fungus Glomus intraradices. Our results indicate that during asymbiotic growth: (a) sugars are made from stored lipids; (b) trehalose (but not lipid) is synthesized as well as degraded; (c) glucose and fructose, but not mannitol, can be taken up and utilized; (d) dark fixation of CO2 is substantial; and (e) arginine and other amino acids are synthesized. The labeling patterns are consistent with significant carbon fluxes through gluconeogenesis, the glyoxylate cycle, the tricarboxylic acid cycle, glycolysis, non-photosynthetic one-carbon metabolism, the pentose phosphate pathway, and most or all of the urea cycle. We also report the presence of an unidentified betaine-like compound. Carbon metabolism during asymbiotic growth has features in between those presented by intraradical and extraradical hyphae in the symbiotic state. PMID:10482682

  19. Single spore isolation and morphological characterization of local Malaysian isolates of rice blast fungus Magnoporthe grisea

    NASA Astrophysics Data System (ADS)

    Mishra, Ankitta; Ratnam, Wickneswari; Bhuiyan, Md Atiqur Rahman; Ponaya, Ariane; Jena, Khisord K.

    2015-09-01

    Rice blast is a destructive disease, caused by the fungal pathogen Magnaporthe grisea. It causes considerable damage to rice and leads to crop loss in rice growing regions worldwide. Although fungicides can be used to control rice blast, they generate additional cost in rice production and contamination of environment and food. Therefore, the use of resistant varieties is thought to be one of the most economically and environmentally efficient ways of crop protection from the disease. Six new local Malaysian isolates of M. grisea were isolated using single spore isolation method. Five isolates were from infected leaf samples collected from Kompleks Latihan MADA, Kedah and one was from Kelantan. These isolates were identified using morphological characteristics and microscopic studies and later confirmed by ITSequences. These isolates were induced to sporulate and used for greenhouse screening on two differential rice varieties: Mahsuri (susceptible) and Pongsu Seribu 2 (resistant). Among the 6 isolates, isolate number 3 was found to be the most virulent showing high sporulation while isolate number 4 was very slow growing, and the least virulent.

  20. Allelic Differences within and among Sister Spores of the Arbuscular Mycorrhizal Fungus Glomus etunicatum Suggest Segregation at Sporulation

    PubMed Central

    St-Arnaud, Marc; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF are made up of coenocytic networks of hyphae through which nuclei and organelles can freely migrate. In this study, we investigated the possibility of a genetic bottleneck and segregation of allelic variation at sporulation for a low-copy Polymerase1-like gene, PLS. Specifically, our objectives were (1) to estimate what allelic diversity is passed on to a single spore (2) to determine whether this diversity is less than the total amount of variation found in all spores (3) to investigate whether there is any differential segregation of allelic variation. We inoculated three tomato plants with a single spore of Glomus etunicatum each and after six months sampled between two and three daughter spores per tomato plant. Pyrosequencing PLS amplicons in eight spores revealed high levels of allelic diversity; between 43 and 152 alleles per spore. We corroborated the spore pyrosequencing results with Sanger- and pyrosequenced allele distributions from the original parent isolate. Both sequencing methods retrieved the most abundant alleles from the offspring spore allele distributions. Our results indicate that individual spores contain only a subset of the total allelic variation from the pooled spores and parent isolate. Patterns of allele diversity between spores suggest the possibility for segregation of PLS alleles among spores. We conclude that a genetic bottleneck could potentially occur during sporulation in AMF, with resulting differences in genetic variation among sister spores. We suggest that the effects of this bottleneck may be countered by anastomosis (hyphal fusion) between related hyphae. PMID:24386173

  1. Tilletia vankyi, a new species of reticulate-spored bunt fungus with non-conjugating basidiospores infecting species of Festuca and Lolium.

    PubMed

    Carris, Lori M; Castlebury, Lisa A; Huang, Guoming; Alderman, Steve C; Luo, Jiafeng; Bao, Xiaodong

    2007-12-01

    A bunt fungus, exhibiting a spore germination pattern unique to known reticulate-spored species of Tilletia was found infecting plants in seed production fields of Festuca rubra ssp. rubra (red fescue) and F. rubra ssp. fallax (Chewing's fescue) in Oregon, and in seed lots of Lolium perenne (perennial ryegrass) from Australia and Germany. Teliospores germinated to form 20-40 uninucleate, non-conjugating basidiospores, and colonies derived from single basidiospores produced teliospores in culture. In inoculation studies using single basidiospore colonies, perennial ryegrass and L. perenne ssp. multiflorum (Italian or annual ryegrass) were infected. A phylogenetic analysis, based on ITS region rDNA, eukaryotic translation elongation factor 1 alpha, and the second largest subunit of RNA polymerase II demonstrated that the fescue and ryegrass bunts are conspecific, and distinct from known species of Tilletia.

  2. Resting spore formation of aphid-pathogenic fungus Pandora nouryi depends on the concentration of infective inoculum.

    PubMed

    Huang, Zhi-Hong; Feng, Ming-Guang

    2008-07-01

    Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.

  3. Infectivity of resting spores of Massospora cicadina (Entomophthorales: Entomophthoraceae), an entomopathogenic fungus of periodical cicadas (Magicicada spp.) (Homoptera: Cicadidae).

    PubMed

    Duke, L; Steinkraus, D C; English, J E; Smith, K G

    2002-05-01

    Massospora cicadina Peck is a fungal pathogen of 13- and 17-year periodical cicadas (Magicicada spp.). In northwest Arkansas, during the spring 1998 emergence of the 13-year periodical cicada, Magicicada tredecassini (Brood XIX), <1% of emerging cicadas were infected with the conidial stage of M. cicadina, similar to data collected from the same population in 1985. However, in northwest Arkansas plots treated with M. cicadina resting spores collected from infected 17-year Magicicada septendecim cicadas (Brood IV) in 1997 from southern Iowa, 10 months prior to the 1998 emergence in Arkansas, conidial stage infections of M. cicadina in 13-year Arkansas M. tredecassini cicadas increased significantly to 10.6% (7.9% in males and 2.6% in females). These data suggest that M. cicadina resting spores do not require a dormancy of 13 or 17 years between cicada emergences. Instead M. cicadina resting spores appear to be capable of germinating and infecting periodical cicadas after less than 1 year. In addition, M. cicadina resting spores derived from one species (17-year M. septendecim cicadas) were infective for a second species (13-year M. tredecassini cicadas). A mean of 1.4 x 10(6)(SE = 1.8 x 10(5)) mature resting spores were produced per infected male M. septendecim.

  4. A putative methyltransferase, mtrA, contributes to development, spore viability, protein secretion and virulence in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Qin, Yuqi; Ortiz-Urquiza, Almudena; Keyhani, Nemat O

    2014-11-01

    The filamentous fungus, Beauveria bassiana, is a ubiquitously distributed insect pathogen, currently used as an alternative to chemical pesticides for pest control. Conidiospores are the means by which the fungus disseminates in the environment, and these cells also represent the infectious agent most commonly used in field applications. Little, however, is known concerning the molecular basis for maintenance of spore viability, a critical feature for survival and persistence. Here, we report on the role of a putative methyltransferase, BbmtrA, in conidial viability, normal fungal growth and development, and virulence, via characterization of a targeted gene knockout strain. Loss of BbmtrA resulted in pleiotropic effects including reduced germination, growth and conidiation, with growing mycelia displaying greater branching than the WT parent. Conidial viability dramatically decreased over time, with <5 % of the cells remaining viable after 30 days as compared with >80 % of the WT. Reduced production of extracellular proteins was also observed for the ΔBbmtrA mutant, including protease/peptidases, glycoside hydrolases and the hyd1 hydrophobin. The latter was further confirmed by hyd1 gene expression analysis. Insect bioassays using the greater wax moth, Galleria mellonella, further revealed that the ΔBbmtrA strain was attenuated in virulence and failed to sporulate on host cadavers. These data support a global role for mtrA in fungal physiological processes. © 2014 The Authors.

  5. Spore behaviors reveal a category of mating-competent infertile heterokaryons in the offspring of the medicinal fungus Agaricus subrufescens.

    PubMed

    Rocha de Brito, Manuela; Foulongne-Oriol, Marie; Moinard, Magalie; Souza Dias, Eustáquio; Savoie, Jean-Michel; Callac, Philippe

    2016-01-01

    Strain breeding is much less advanced in the edible and medicinal species Agaricus subrufescens than in Agaricus bisporus, the button mushroom. Both species have a unifactorial system of sexual incompatibility, a mating type locus tightly linked to a centromere, and basidia producing both homokaryotic (n) and heterokaryotic (n + n) spores. In A. bisporus, breeding is mainly based on direct selection among the heterokaryotic offspring and on hybridization between homokaryotic offspring. The parental heterozygosity is highly maintained in the heterokaryotic offspring due to suppression of recombination and preferential pairing in the spores of nuclei, each one per second meiotic divisions; such "non-sister nuclei" heterokaryons are fertile. In A. subrufescens, recent studies revealed that recombination is not suppressed and that nuclei from the same second meiotic division can also be paired in a spore that give rise to a "sister nuclei" heterokaryon in which the nuclei bear the same mating type allele. The objective of the present work was to investigate the potential function of the different categories of spores in A. subrufescens and their possible use in a genetic breeding program. Using eight co-dominant molecular markers, we found that half of the offspring of the A. subrufescens strain WC837 were heterokaryotic, one quarter of them being sister nuclei heterokaryons. These heterokaryons were infertile and behaved like homokaryons, being even able to cross between each other. In contrast, non-sister nuclei heterokaryons could fruit but inconsistently due to inbreeding depression. Potential roles of these two categories of heterokaryons in nature and consequences for strain breeding are discussed.

  6. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  7. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  8. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination

    PubMed Central

    García-Martínez, Jorge; Brunk, Michael; Avalos, Javier; Terpitz, Ulrich

    2015-01-01

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO− mutant and carO+ control strains showed a faster development of light-exposed carO− germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin. PMID:25589426

  9. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination.

    PubMed

    García-Martínez, Jorge; Brunk, Michael; Avalos, Javier; Terpitz, Ulrich

    2015-01-15

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO(-) mutant and carO(+) control strains showed a faster development of light-exposed carO(-) germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.

  10. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus

    PubMed Central

    Fones, Helen Nicola; Mardon, Charlotte; Gurr, Sarah Jane

    2016-01-01

    The invasive pathogen, ash dieback fungus Hymenoscyphus fraxineus, is spreading rapidly across Europe. It shows high levels of outcrossing and limited population structure, even at the epidemic front. The anamorphic (asexual) form produces prolific conidia, thought to function solely as spermatia (male gametes), facilitating gene flow between sympatric strains. Here, we show that conidia are capable of germination on ash leaves and in vitro, and can infect seedlings via leaves or soil. In leaves, germlings form structures resembling fruiting bodies. Additionally, H. fraxineus colonises ash debris and grows in soil in the absence of ash tissues. We propose an amended life-cycle in which wind-dispersed, insect-vectored or water-spread conidia infect ash and may sporulate in planta, as well as in forest debris. This amplifies inoculum levels of different strains in ash stands. In combination with their function as spermatia, conidia thus act to maximise gene flow between sympatric strains, including those originally present at low inoculum. Such mixing increases evolutionary potential, as well as enhancing the likelihood of gene introgression from closely-related strains or assimilation of further genetic diversity from parental Asian populations. This scenario increases the adaptability of H. fraxineus to new climates and, indeed, onto new host species. PMID:27694963

  11. Internal control for nucleic acid testing based on the use of purified Bacillus atrophaeus subsp. globigii spores.

    PubMed

    Picard, François J; Gagnon, Martin; Bernier, Marthe R; Parham, Nicholas J; Bastien, Martine; Boissinot, Maurice; Peytavi, Régis; Bergeron, Michel G

    2009-03-01

    Commonly used internal controls (ICs) to monitor the efficiency of nucleic acid testing (NAT) assays do not allow verification of nucleic acid extraction efficiency. Since microbial cells are often difficult to lyse, it is important to ensure that nucleic acids are efficiently extracted from any target organism. For this purpose, we developed a cellular IC based on the use of nonpathogenic Bacillus spores. Purified Bacillus atrophaeus subsp. globigii (referred to hereafter as simply B. atrophaeus) spores were added to vaginal and anal samples, which were then subjected to rapid DNA extraction and subsequent PCR amplification. The proof of concept of this cellular IC was made through the use of both manual and automated DNA extraction methods, using vaginal or anal samples spiked with B. atrophaeus spores, combined with a multiplex real-time PCR assay for the specific detection of group B streptococci (GBS) and B. atrophaeus. The performance of the cellular IC was compared to that of a standard IC plasmid added to PCRs. Approximately 500 B. atrophaeus spores per PCR was found to be optimal since this did not interfere significantly with GBS detection for either DNA extraction method and yielded reproducible amplification and/or detection of B. atrophaeus genomic DNA serving as an IC template. Performance of the cellular IC was comparable to that of the standard IC. This novel IC system using nonpathogenic and hard-to-lyse B. atrophaeus spores allowed validation of both the DNA extraction procedure and the amplification and detection process. Use of a spore-based control also provides a universal control for microbial cell lysis.

  12. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    NASA Astrophysics Data System (ADS)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  13. Ultrastructure and properties of Paecilomyces lilacinus spores.

    PubMed

    Holland, R J; Gunasekera, T S; Williams, K L; Nevalainen, K M H

    2002-10-01

    Strains of the filamentous soil fungus Paecilomyces lilacinus are currently being developed for use as biological control agents against root-knot, cyst, and other plant-parasitic nematodes. The inoculum applied in the field consists mainly of spores. This study was undertaken to examine the size, ultrastructure, and rodlet layers of P. lilacinus spores and the effect of the culture method on structural and functional spore properties. A rodlet layer was identified on aerial spores only. Other differences noted between aerial spores and those produced in submerged culture included the size and appearance of spores and thickness of spore coat layers when examined with transmission electron microscopy. The two spore types differed in UV tolerance, with aerial spores being less sensitive to environmentally relevant UV radiation. Also, viability after drying and storage was better with the aerial spores. Both spore types exhibited similar nematophagous ability.

  14. Absence of Fungal Spore Internalization by Bronchial Epithelium in Mouse Models Evidenced by a New Bioimaging Approach and Transmission Electronic Microscopy.

    PubMed

    Rammaert, Blandine; Jouvion, Grégory; de Chaumont, Fabrice; Garcia-Hermoso, Dea; Szczepaniak, Claire; Renaudat, Charlotte; Olivo-Marin, Jean-Christophe; Chrétien, Fabrice; Dromer, Françoise; Bretagne, Stéphane

    2015-09-01

    Clinical data and experimental studies suggest that bronchial epithelium could serve as a portal of entry for invasive fungal infections. We therefore analyzed the interactions between molds and the bronchial/bronchiolar epithelium at the early steps after inhalation. We developed invasive aspergillosis (Aspergillus fumigatus) and mucormycosis (Lichtheimia corymbifera) murine models that mimic the main clinical risk factors for these infections. Histopathology studies were completed with a specific computer-assisted morphometric method to quantify bronchial and alveolar spores and with transmission electron microscopy. Morphometric analysis revealed a higher number of bronchial/bronchiolar spores for A. fumigatus than L. corymbifera. The bronchial/bronchiolar spores decreased between 1 and 18 hours after inoculation for both fungi, except in corticosteroid-treated mice infected with A. fumigatus, suggesting an effect of cortisone on bronchial spore clearance. No increase in the number of spores of any species was observed over time at the basal pole of the epithelium, suggesting the lack of transepithelial crossing. Transmission electron microscopy did not show spore internalization by bronchial epithelial cells. Instead, spores were phagocytized by mononuclear cells on the apical pole of epithelial cells. Early epithelial internalization of fungal spores in vivo cannot explain the bronchial/bronchiolar epithelium invasion observed in some invasive mold infections. The bioimaging approach provides a useful means to accurately enumerate and localize the fungal spores in the pulmonary tissues.

  15. The role of resting spores in the survival of the mite-pathogenic fungus Neozygites floridana from Mononychellus tanajoa during dry periods in Brazil.

    PubMed

    Elliot, Sam L; Mumford, John D; de Moraes, Gilberto J

    2002-11-01

    Survival of pathogens during long periods of unfavorable conditions can be critical to their ecology and to their use in biological control. In northeastern Brazil, the mite pathogen Neozygites floridana must survive hot and dry conditions between wet seasons when it infects the cassava green mite Mononychellus tanajoa. We report on large numbers of mite cadavers bearing resting spores towards the end of epizootics in mid-1995. High within-leaf variability indicated that local factors may be important in determining resting spore formation. These spores remain in the host cadaver on a leaf until the cadaver breaks up, whereupon the spores fall freely to the soil, there to remain dormant. Laboratory simulation of field conditions led to ca. 25% of mycosed individuals bearing resting spores. Mummies (without resting spores) kept in hot and dry conditions showed little or no viability within 2 months, implying no role for survival over extended dry periods. It is proposed that resting spores form the principal means by which this pathogen survives the dry season in the study area. This has implications for its introduction to new areas in classical biological control.

  16. First report of Pandora neoaphidis resting spore formation in vivo in aphid hosts.

    PubMed

    Scorsetti, Ana Clara; Jensen, Annette Bruun; López Lastra, Claudia; Humber, Richard A

    2012-02-01

    The entomopathogenic fungus Pandora neoaphidis is a recognized pathogen of aphids, causes natural epizootics in aphid populations, and interacts and competes with aphid predators and parasitoids. Survival of entomophthoralean fungi in periods of unsuitable weather conditions or lack of appropriate host insects is accomplished mainly by thick-walled resting spores (zygospores or azygospores). However, resting spores are not known for some entomophthoralean species such as P. neoaphidis. Several hypotheses of P. neoaphidis winter survival can be found in the literature but so far these hypotheses do not include the presence of resting spores. Resting spores were found in an aphid population where P. neoaphidis was the only entomophthoralean fungus observed during surveys conducted in organic horticultural crops in greenhouses and open fields in Buenos Aires province, Argentina. This study sought to use molecular methods to confirm that these resting spores were, in fact, those of P. neoaphidis while further documenting and characterizing these resting spores that were produced in vivo in aphid hosts. The double-walled resting spores were characterized using light and transmission electron microscopy. The Argentinean resting spores clustered together with P. neoaphidis isolates with bootstrap values above 98 % in the small subunit ribosomal RNA (SSU rRNA) sequence analysis and with bootstrap values above 99 % the Internal Transcribed Spacer (ITS) II region sequence analysis. This study is the first gene-based confirmation from either infected hosts or cultures that P. neoaphidis is able to produce resting spores. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Airborne mesophilic fungal spores in various residential environments

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.

    In the present work viable fungal spore counts and flora of indoor air were compared in various residences. Total viable spore counts were lowest in the urban/suburban residences and highest in the rural residences. Moisture problems in the urban environment did not increase total viable spore count, but affected composition of fungal flora. In the rural environment, spore counts were much higher in the old houses than in the new ones. Penicillium was the most prevalent fungus in the air of all the residences studied. Airborne Aspergillus, Cladosporium spores and yeast cells were more common in the damp residences and the old rural houses than in the other residences.

  18. Viability and infectivity of fresh and cryopreserved Nosema ceranae spores.

    PubMed

    McGowan, Janine; De la Mora, Alvaro; Goodwin, Paul H; Habash, Marc; Hamiduzzaman, Mollah Md; Kelly, Paul G; Guzman-Novoa, Ernesto

    2016-12-01

    The microsporidium fungus Nosema ceranae is an intracellular parasite that infects the midgut of the honey bee, Apis mellifera. A major limitation of research on N. ceranae is that the fungus is non-culturable and thus studying it depends on the seasonal availability of Nosema spores. Also, spore viability and infectivity can vary considerably, and thus there is a need for reliable methods for determining those traits. This study examined different conditions for N. ceranae spore cryopreservation at -70°C, assessing spore viability and infectivity. Viability was determined by a staining procedure counting total spores numbers with bright field microscopy and un-viable spore numbers with the fluorescent dye, propidium iodide. Spore infectivity was determined with a dilution inoculation assay. Infectivity was dependent on the inoculum dose for the proportion of bees with detectable Nosema infections based on the number of spores per bee at 18days after inoculation; 4000 spores per bee or higher were needed to get approx. 100% of the inoculated bees infected. The median infective dose (ID50) was 149 spores per bee, and the minimum dose capable of causing a detectable infection was 1.28 spores. The proportion of N. ceranae infected bees correlated significantly with the number of spores per bee (r=0.98, P<0.0001). N. ceranae spores cryopreserved in water or 10% glycerol did not differ in viability compared to fresh spores, but lost infectivity when inoculated into bees. This study shows that while cryopreservation of N. ceranae spores can preserve viability, the spores can have reduced infectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A shared internal threonine-glutamic acid-threonine-proline repeat defines a family of Dictyostelium discoideum spore germination specific proteins.

    PubMed

    Giorda, R; Ohmachi, T; Shaw, D R; Ennis, H L

    1990-08-07

    A cDNA denoted pRK270 hybridizes to two mRNA species in RNA blots. The mRNAs specific to this clone are not expressed during vegetative growth and multicellular development. They are, however, found predominantly during early stages of spore germination, suggesting that their synthesis is rapidly and coordinately turned on during germination. Two different cDNAs named 270-6 and 270-11 were isolated, representing the two mRNAs. DNA blot analysis shows that 270 is a multigene family. Four genes were isolated from Dictyostelium genomic libraries and sequenced. The putative proteins coded for by these genes are about 51,000, 55,000, 76,000, and 100,000 Da. Two of the genes are expressed during spore germination while transcripts for the other two are not present during spore germination, vegetative growth, or the stages of multicellular development studied. The cDNAs and genes code for deduced proteins that possess a very unusual internal amino acid repeat comprised of the tetrapeptide threonine-glutamic acid-threonine-proline. The other portions of the proteins have no homology among themselves. The 270-6 protein shows excellent identity with avocado (Persea americana) cellulase, indicating that it may function as an endo-(1,4)-beta-D-glucanase.

  20. Mushrooms use convectively created airflows to disperse their spores.

    PubMed

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-03-15

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal--that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs.

  1. Mushrooms use convectively created airflows to disperse their spores

    PubMed Central

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-01-01

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal—that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  2. Fun Microbiology: Using a Plant Pathogenic Fungus To Demonstrate Koch's Postulates.

    ERIC Educational Resources Information Center

    Mitchell, James K.; Orsted, Kathy M.; Warnes, Carl E.

    1997-01-01

    Describes an experiment using a plant pathogenic fungus in which students learn to follow aseptic techniques, grow and produce spores of a fungus, use a hemacytometer for enumerating spores, prepare serial dilutions, grow and inoculate plants, isolate a pure culture using agar streak plates, and demonstrate the four steps of Koch's postulates.…

  3. Fun Microbiology: Using a Plant Pathogenic Fungus To Demonstrate Koch's Postulates.

    ERIC Educational Resources Information Center

    Mitchell, James K.; Orsted, Kathy M.; Warnes, Carl E.

    1997-01-01

    Describes an experiment using a plant pathogenic fungus in which students learn to follow aseptic techniques, grow and produce spores of a fungus, use a hemacytometer for enumerating spores, prepare serial dilutions, grow and inoculate plants, isolate a pure culture using agar streak plates, and demonstrate the four steps of Koch's postulates.…

  4. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  5. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  6. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  7. Current asthma in schoolchildren is related to fungal spores in classrooms.

    PubMed

    Chen, Chi-Hsien; Chao, H Jasmine; Chan, Chang-Chuan; Chen, Bing-Yu; Guo, Yue Leon

    2014-07-01

    The presence of visible mold in households is associated with asthma. However, the role of "classroom fungus" in the development of childhood asthma, as well as the fungal species that may lead to asthma, remains controversial. This nationwide school survey was conducted to investigate the correlation between fungal spores in classrooms and asthma in schoolchildren. From April to May 2011, a cross-sectional survey was conducted to assess allergic/asthmatic conditions in schoolchildren aged 6 to 15 years old in 44 schools across Taiwan. Personal histories and current asthmatic conditions were collected using a modified International Study of Asthma and Allergies in Childhood questionnaire. Fungal spores in classroom were collected using a Burkard Personal Air Sampler and counted under light microscopy. Three-level hierarchical modeling was used to determine the complex correlation between fungal spores in classrooms and childhood asthma. The survey was completed by 6,346 out of 7,154 parents (88.7%). The prevalences of physician-diagnosed asthma, current asthma, and asthma with symptoms reduced on holidays or weekends (ASROH) were 11.7%, 7.5%, and 3.1%, respectively. The geometric mean spore concentrations of total fungi, Aspergillus/Penicillium, and basidiospores were 2,181, 49, and 318 spores/m3. Aspergillus/Penicillium and basidiospores were significantly correlated with current asthma and ASROH after adjusting for personal and school factors. Of those with current asthma, 41% reported relief of symptoms during weekends. Classroom Aspergillus/Penicillium and basidiospores are significantly associated with childhood asthma and ASROH. Government health policy should explore environmental interventions for the elimination of fungal spores in classrooms to reduce the prevalence of childhood asthma.

  8. Growth and metabolism of Beauveria bassiana spores and mycelia.

    PubMed

    Liu, Hongxia; Zhao, Xusheng; Guo, Mingxin; Liu, Hui; Zheng, Zhiming

    2015-11-19

    Fungi are ubiquitous in nature and have evolved over time to colonize a wide range of ecosystems including pest control. To date, most research has focused on the hypocrealean genera Beauveria bassiana, which is a typical filamentous fungus with a high potential for insect control. The morphology and components of fungi are important during the spores germination and outgrow to mycelia. However, to the best of our knowledge, there is no report on the morphology and components of B. bassiana spores and mycelia. In the work, the growth and metabolism of Beauveria bassiana spores and mycelia were studied. High performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to study the metabolism of B. bassiana spores and mycelia. Principal component analysis (PCA) based on HPLC-MS was conducted to study the different components of the spores and mycelia of the fungus. Metabolic network was established based on HPLC-MS and KEGG database. Through Gompertz model based on macroscopic and microscopic techniques, spore elongation length was found to increase exponentially until approximately 23.1 h after cultivation, and then growth became linear. In the metabolic network, the decrease of glyoxylate, pyruvate, fumarate, alanine, succinate, oxaloacetate, dihydrothymine, ribulose, acetylcarnitine, fructose-1, 6-bisphosphate, mycosporin glutamicol, and the increase of betaine, carnitine, ergothioneine, sphingosine, dimethyl guanosine, glycerophospholipids, and in spores indicated that the change of the metabolin can keep spores in inactive conditions, protect spores against harmful effects and survive longer. Analysis of the metabolic pathway in which these components participate can reveal the metabolic difference between spores and mycelia, which provide the tools for understand and control the process of of spores germination and outgrow to mycelia.

  9. Release of elicitors from rice blast spores under the action of reactive oxygen species

    USDA-ARS?s Scientific Manuscript database

    The effects of reactive oxygen species (ROS) on secretion of hypothesized elicitors from spores of rice blast causal fungus Magnaporthe grisea were studied. For spore exposure to exogenous ROS, they were germinated for 5 h in 50 µM H2O2 followed by addition of catalase E.C. 1.11.1.6 (to decompose pe...

  10. Bioherbicidal activity from washed spores of Myrothecium verrucaria.

    PubMed

    Weaver, Mark A; Boyette, C Douglas; Hoagland, Robert E

    2012-05-01

    The fungal plant pathogen, Myrothecium verrucaria, is highly virulent to several important weed species and has potential utility as a bioherbicide. However the production of macrocyclic trichothecene mycotoxins by this fungus presents significant safety concerns. It was discovered that trichothecenes are removed from M. verrucaria spores by repeated washes with water. These washed spores retained bioherbicidal efficacy against kudzu when tested in field trials and on sicklepod when tested under greenhouse conditions. Changes in the growth medium combined with washing spores with water resulted in greater than 95% reduction in roridin A and verrucarin A. Washing spores reduced trichothecene concentrations in spore preparations with no significant effect on plant biomass reduction, thus demonstrating the possibility of M. verrucaria formulations with improved safety to researchers, producers and applicators.

  11. Nanomechanical Characterization of Bacillus anthracis Spores by Atomic Force Microscopy

    PubMed Central

    Burggraf, Larry W.; Xing, Yun

    2016-01-01

    ABSTRACT The study of structures and properties of bacterial spores is important to understanding spore formation and biological responses to environmental stresses. While significant progress has been made over the years in elucidating the multilayer architecture of spores, the mechanical properties of the spore interior are not known. Here, we present a thermal atomic force microscopy (AFM) study of the nanomechanical properties of internal structures of Bacillus anthracis spores. We developed a nanosurgical sectioning method in which a stiff diamond AFM tip was used to cut an individual spore, exposing its internal structure, and a soft AFM tip was used to image and characterize the spore interior on the nanometer scale. We observed that the elastic modulus and adhesion force, including their thermal responses at elevated temperatures, varied significantly in different regions of the spore section. Our AFM images indicated that the peptidoglycan (PG) cortex of Bacillus anthracis spores consisted of rod-like nanometer-sized structures that are oriented in the direction perpendicular to the spore surface. Our findings may shed light on the spore architecture and properties. IMPORTANCE A nanosurgical AFM method was developed that can be used to probe the structure and properties of the spore interior. The previously unknown ultrastructure of the PG cortex of Bacillus anthracis spores was observed to consist of nanometer-sized rod-like structures that are oriented in the direction perpendicular to the spore surface. The variations in the nanomechanical properties of the spore section were largely correlated with its chemical composition. Different components of the spore materials showed different thermal responses at elevated temperatures. PMID:26969703

  12. Allergenic airborne pollen and spores in Anchorage, Alaska

    SciTech Connect

    Anderson, J.H.

    1985-05-01

    Major aeroallergens in Anchorage are birch, alder, poplar, spruce, grass pollen, Cladosporium, and unspecified fungus spores. Lesser pollens are sorrel, willow, pine, juniper, sedge, lamb's-quarters, wormwood, plantain, and others. The aero-flora is discussed in terms of the frequency of allergenically significant events and within-season and year-to-year dynamics.

  13. Spore dispersal of fetid Lysurus mokusin by feces of mycophagous insects.

    PubMed

    Chen, Gao; Zhang, Rui-Rui; Liu, Yang; Sun, Wei-Bang

    2014-08-01

    The ecological roles and biological mechanisms of zoochory in plants have long been foci in studies of co-evolutionary processes between plants and animals. However, the dispersal of fungal spores by animals has received comparatively little attention. In this study, the dispersal of spores of a selected fetid fungus, Lysurus mokusin, via feces of mycophagous insects was explored by: collecting volatiles emitted by the fungus using dynamic headspace extraction and analyzing them by GC-MS; testing the capacity of mycophagous insects to disperse its spores by counting spores in their feces; comparing the germinability of L. mokusin spores extracted from feces of nocturnal earwigs and natural gleba of the fungus; and assessing the ability of L. mokusin volatiles to attract insects in bioassays with synthetic scent mixtures. Numerous spores were detected in insects' feces, the bioassays indicated that L. mokusin odor (similar to that of decaying substances) attracts diverse generalist mycophagous insects, and passage through the gut of Anisolabis maritima earwigs significantly enhanced the germination rate of L. mokusin spores. Therefore, nocturnal earwigs and diurnal flies probably play important roles in dispersal of L. mokusin spores, and dispersal via feces may be an important common dispersal mechanism for fungal reproductive tissue.

  14. Hydrazine inactivates bacillus spores

    NASA Technical Reports Server (NTRS)

    Schubert, Wayne; Plett, G. A.; Yavrouian, A. H.; Barengoltz, J.

    2005-01-01

    Planetary Protection places requirements on the maximum number of viable bacterial spores that may be delivered by a spacecraft to another solar system body. Therefore, for such space missions, the spores that may be found in hydrazine are of concern. A proposed change in processing procedures that eliminated a 0.2 um filtration step propmpted this study to ensure microbial contamination issue existed, especially since no information was found in the literature to substantiate bacterial spore inactivation by hydrazine.

  15. Detection of 3-hydroxykynurenine in a plant pathogenic fungus.

    PubMed Central

    Wilson, T J Greer; Thomsen, Karl Kristian; Petersen, Bent O; Duus, Jens Ø; Oliver, Richard P

    2003-01-01

    A redox-active compound has been purified from the barley powdery mildew fungus Blumeria ( Erysiphe ) graminis f. sp. hordei. A combination of spectrophotometry, MS and NMR has identified it as 3-hydroxykynurenine (3OHKyn). This compound, never previously detected in any fungus or pathogen, is best known for its role in vertebrate cataracts. It is found abundantly in developing and germinating spores and also in runner hyphae. Two roles for 3OHKyn are discussed: first, the presence of active oxygen species would enable 3OHKyn to cross-link the spore chemically with the plant. Secondly, it may be acting as an UV protectant and an antioxidant. PMID:12556224

  16. Fungal microcolonies on indoor surfaces — an explanation for the base-level fungal spore counts in indoor air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Heinonen-Tanski, H.; Kalliokoski, P.; Jantunen, M. J.

    In the subarctic winter, fungal spores are found in indoor air even when outdoor spore levels are very low. The results of this study support an explanation that some indoor airborne fungal spores are derived from unnoticeable fungal microcolonies, which may develop on temporarily wet surfaces. Laboratory experiments on Penicillium verrucosum indicated that the fungus germinated on new wallpaper very quickly (about half an hour) under moist conditions. Hyphal growth and sporulation of the fungus on moist wallpaper occured within one day of incubation. In gravity-settling tape samples from occasionally wet surfaces in a suburban home, large spore aggregates, hyphal fragments with some spores and spores in the germination stage were found, indicating fungal growth. These experiments showed that fungal microcolonies can develop within a week on occasionally wet indoor surfaces.

  17. Cryopreservation of fern spores

    USDA-ARS?s Scientific Manuscript database

    Spore banks for ferns are analogous to seed banks for angiosperms and provide a promising ex situ conservation tool because large quantities of germplasm with high genetic variation can be conserved in a small space with low economic and technical costs. Ferns produce two types of spores with very ...

  18. Mushroom Emergence Detected by Combining Spore Trapping with Molecular Techniques.

    PubMed

    Castaño, Carles; Oliva, Jonàs; Martínez de Aragón, Juan; Alday, Josu G; Parladé, Javier; Pera, Joan; Bonet, José Antonio

    2017-07-01

    . Similarly, the study of fungal dispersal has been constrained by technological limitations, especially because the morphological identification of spores is a challenging and time-consuming task. Here, we demonstrate that spores from ectomycorrhizal and saprotrophic fungal species can be identified using simple spore traps together with either MiSeq fungus-specific amplicon sequencing or species-specific quantitative real-time PCR. In addition, the proposed methodology can be used to characterize the airborne fungal community and to detect mushroom emergence in forest ecosystems. Copyright © 2017 American Society for Microbiology.

  19. Fungus gnats and Pythium in the attack on greenhouse plants: conspirators or just cohabitants

    USDA-ARS?s Scientific Manuscript database

    Research conducted by collaborating Cornell University and USDA-ARS scientists investigated the potential for fungus gnats to vector Pythium root-rot pathogens. Fungus gnat larvae readily consumed Pythium oospores; the spores survived passage through the larval gut and, upon defecation, were able to...

  20. Investigating the Inactivation Mechanism of Bacillus subtilis Spores by High Pressure CO2

    PubMed Central

    Rao, Lei; Zhao, Feng; Wang, Yongtao; Chen, Fang; Hu, Xiaosong; Liao, Xiaojun

    2016-01-01

    The objective of this study was to investigate the inactivation mechanism of Bacillus subtilis spores by high pressure CO2 (HPCD) processing. The spores of B. subtilis were subjected to heat at 0.1 MPa or HPCD at 6.5-20 MPa, and 64-86°C for 0-120 min. The germination, the permeability of inner membrane (IM) and cortex, the release of pyridine-2, 6-dicarboxylic acid (DPA), and changes in the morphological and internal structures of spores were investigated. The HPCD-treated spores did not lose heat resistance and their DPA release was lower than the inactivation, suggesting that spores did not germinate during HPCD. The flow cytometry analysis suggested that the permeability of the IM and cortex of HPCD-treated spores was increased. Furthermore, the DPA of the HPCD-treated spores were released in parallel with their inactivation and the fluorescence photomicrographs showed that these treated spores were stained by propidium iodide, ensuring that the permeability of IM of spores was increased by HPCD. The scanning electron microscopy photomicrographs showed that spores were crushed into debris or exhibited a hollowness on the surface, and the transmission electron microscopy photomicrographs exhibited an enlarged core, ruptured and indistinguishable IM and a loss of core materials in the HPCD-treated spores, indicating that HPCD damaged the structures of the spores. These findings suggested that HPCD inactivated B. subtilis spores by directly damaging the structure of the spores, rather than inducing germination of the spores. PMID:27656175

  1. Malaria Mosquitoes Attracted by Fatal Fungus

    PubMed Central

    George, Justin; Jenkins, Nina E.; Blanford, Simon; Thomas, Matthew B.; Baker, Thomas C.

    2013-01-01

    Insect-killing fungi such as Beauveria bassiana are being evaluated as possible active ingredients for use in novel biopesticides against mosquito vectors that transmit malaria. Fungal pathogens infect through contact and so applications of spores to surfaces such as walls, nets, or other resting sites provide possible routes to infect mosquitoes in and around domestic dwellings. However, some insects can detect and actively avoid fungal spores to reduce infection risk. If true for mosquitoes, such behavior could render the biopesticide approach ineffective. Here we find that the spores of B. bassiana are highly attractive to females of Anopheles stephensi, a major anopheline mosquito vector of human malaria in Asia. We further find that An. stephensi females are preferentially attracted to dead and dying caterpillars infected with B. bassiana, landing on them and subsequently becoming infected with the fungus. Females are also preferentially attracted to cloth sprayed with oil-formulated B. bassiana spores, with 95% of the attracted females becoming infected after a one-minute visit on the cloth. This is the first report of an insect being attracted to a lethal fungal pathogen. The exact mechanisms involved in this behavior remain unclear. Nonetheless, our results indicate that biopesticidal formulations comprising B. bassiana spores will be conducive to attraction and on-source visitation by malaria vectors. PMID:23658757

  2. Ambispora granatensis, a new arbuscular mycorrhizal fungus, associated with Asparagus officinalis in Andalucia (Spain).

    PubMed

    Palenzuela, Javier; Barea, José-Miguel; Ferrol, Nuria; Oehl, Fritz

    2011-01-01

    A new dimorphic fungal species in the arbuscular mycorrhiza-forming Glomeromycota, Ambispora granatensis, was isolated from an agricultural site in the province of Granada (Andalucía, Spain) growing in the rhizosphere of Asparagus officinalis. It was propagated in pot cultures with Trifolium pratense and Sorghum vulgare. The fungus also colonized Ri T-DNA transformed Daucus carota roots but did not form spores in these root organ cultures. The spores of the acaulosporoid morph are 90-150 μm diam and hyaline to white to pale yellow. They have three walls and a papillae-like rough irregular surface on the outer surface of the outer wall. The irregular surface might become difficult to detect within a few hours in lactic acid-based mountings but are clearly visible in water. The structural central wall layer of the outer wall is only 0.8-1.5 μm thick. The glomoid spores are formed singly or in small, loose spore clusters of 2-10 spores. They are hyaline to pale yellow, (25)40-70 μm diam and have a bilayered spore wall without ornamentation. Nearly full length sequences of the 18S and the ITS regions of the ribosomal gene place the new fungus in a separate clade next to Ambispora fennica and Ambispora gerdemannii. The acaulosporoid spores of the new fungus can be distinguished easily from all other spores in genus Ambispora by the conspicuous thin outer wall.

  3. Internal transcribed spacer (ITS) evolution in populations of the hyperparasitic European mistletoe pathogen fungus, Sphaeropsis visci (Botryosphaeriaceae): The utility of ITS2 secondary structures.

    PubMed

    Poczai, Péter; Varga, Ildikó; Hyvönen, Jaakko

    2015-03-01

    We investigated patterns of nucleotide polymorphism in the internal transcribed spacer (ITS) region for Sphaeropsis visci, a hyperparasitic fungus that causes the leaf spot disease of the hemiparasite European mistletoe (Viscum album). Samples of S. visci were obtained from Hungary covering all major infected forest areas. For obtaining PCR products we used a fast and efficient direct PCR approach based on a high fidelity DNA polymerase. A total of 140 ITS sequences were subjected to an array of complementary sequence analyses, which included analyses of secondary structure stability, nucleotide polymorphism patterns, GC content, and presence of conserved motifs. Analysed sequences exhibited features of functional rRNAs. Overall, polymorphism was observed within less conserved motifs, such as loops and bulges, or, alternatively, as non-canonical G-U pairs within conserved regions of double stranded helices. The secondary structure of ITS2 provides new opportunities for obtaining further valuable information, which could be used in phylogenetic analyses, or at population level as demonstrated in our study. This is due to additional information provided by secondary structures and their models. The combined score matrix was used with the methods implemented in the programme 4SALE. Besides the pseudoprotein coding method of 4SALE, the molecular morphometric character coding also has potential for gaining further information for phylogenetic analyses based on the geometric features of the sub-structural elements of the ITS2 RNA transcript.

  4. The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra; Moeller, Ralf; Cadet, Jean; Douki, Thierry

    2015-01-01

    The experiment SPORES `Spores in artificial meteorites' was part of European Space Agency's EXPOSE-R mission, which exposed chemical and biological samples for nearly 2 years (March 10, 2009 to February 21, 2011) to outer space, when attached to the outside of the Russian Zvezda module of the International Space Station. The overall objective of the SPORES experiment was to address the question whether the meteorite material offers enough protection against the harsh environment of space for spores to survive a long-term journey in space by experimentally mimicking the hypothetical scenario of Lithopanspermia, which assumes interplanetary transfer of life via impact-ejected rocks. For this purpose, spores of Bacillus subtilis 168 were exposed to selected parameters of outer space (solar ultraviolet (UV) radiation at λ>110 or >200 nm, space vacuum, galactic cosmic radiation and temperature fluctuations) either as a pure spore monolayer or mixed with different concentrations of artificial meteorite powder. Total fluence of solar UV radiation (100-400 nm) during the mission was 859 MJ m-2. After retrieval the viability of the samples was analysed. A Mission Ground Reference program was performed in parallel to the flight experiment. The results of SPORES demonstrate the high inactivating potential of extraterrestrial UV radiation as one of the most harmful factors of space, especially UV at λ>110 nm. The UV-induced inactivation is mainly caused by photodamaging of the DNA, as documented by the identification of the spore photoproduct 5,6-dihydro-5(α-thyminyl)thymine. The data disclose the limits of Lithopanspermia for spores located in the upper layers of impact-ejected rocks due to access of harmful extraterrestrial solar UV radiation.

  5. Bacillus subtilis Spore Coat

    PubMed Central

    Driks, Adam

    1999-01-01

    In response to starvation, bacilli and clostridia undergo a specialized program of development that results in the production of a highly resistant dormant cell type known as the spore. A proteinacious shell, called the coat, encases the spore and plays a major role in spore survival. The coat is composed of over 25 polypeptide species, organized into several morphologically distinct layers. The mechanisms that guide coat assembly have been largely unknown until recently. We now know that proper formation of the coat relies on the genetic program that guides the synthesis of spore components during development as well as on morphogenetic proteins dedicated to coat assembly. Over 20 structural and morphogenetic genes have been cloned. In this review, we consider the contributions of the known coat and morphogenetic proteins to coat function and assembly. We present a model that describes how morphogenetic proteins direct coat assembly to the specific subcellular site of the nascent spore surface and how they establish the coat layers. We also discuss the importance of posttranslational processing of coat proteins in coat morphogenesis. Finally, we review some of the major outstanding questions in the field. PMID:10066829

  6. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins

    PubMed Central

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A.

    2014-01-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of world-wide concern. Due to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. While important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and B. subtilis at the level of sporulation, germination and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. PMID:24814671

  7. Spores do travel.

    PubMed

    Dam, Nico

    2013-01-01

    Model calculations are presented on the horizontal dispersal distance of basidiospores from their source (any typical agaric). The results are compared to old and recent experimental data obtained by sampling on sticky microscope slides placed on soil. I argue that such experimental data alone are insufficient to determine the dispersion kernel because of sampling paucity: Only a minor fraction of the released spores is sampled, and the fate of the rest is unknown. Spore dispersal is determined largely by wind, whereas deposition may be due predominantly to wash-out by rainfall.

  8. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus.

    PubMed

    Huang, Mingwei; Hebert, Alexander S; Coon, Joshua J; Hull, Christina M

    2015-08-01

    Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote.

  9. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus

    PubMed Central

    Huang, Mingwei; Hebert, Alexander S.; Coon, Joshua J.; Hull, Christina M.

    2015-01-01

    Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote. PMID:26313153

  10. Anthrax Spores under a microscope

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  11. Anthrax Spores under a microscope

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  12. Biomarkers of Aspergillus spores

    NASA Astrophysics Data System (ADS)

    Sulc, Miroslav; Peslova, Katerina; Zabka, Martin; Hajduch, Marian; Havlicek, Vladimir

    2009-02-01

    We applied both matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric and 1D sodium dodecylsulfate polyacrylamide gel electrophoretic (1D-PAGE) approaches for direct analysis of intact fungal spores of twenty four Aspergillus species. In parallel, we optimized various protocols for protein extraction from Aspergillus spores using acidic conditions, step organic gradient and variable sonication treatment. The MALDI-TOF mass spectra obtained from optimally prepared samples provided a reproducible fingerprint demonstrating the capability of the MALDI-TOF approach to type and characterize different fungal strains within the Aspergillus genus. Mass spectra of intact fungal spores provided signals mostly below 20 kDa. The minimum material amount represented 0.3 [mu]g (10,000 spores). Proteins with higher molecular weight were detected by 1D-PAGEE Eleven proteins were identified from three selected strains in the range 5-25 kDa by the proteomic approach. Hemolysin and hydrophobin have the highest relevance in host-pathogen interactions.

  13. The role of mites in insect-fungus associations.

    PubMed

    Hofstetter, R W; Moser, J C

    2014-01-01

    The interactions among insects, mites, and fungi are diverse and complex but poorly understood in most cases. Associations among insects, mites, and fungi span an almost incomprehensible array of ecological interactions and evolutionary histories. Insects and mites often share habitats and resources and thus interact within communities. Many mites and insects rely on fungi for nutrients, and fungi benefit from them with regard to spore dispersal, habitat provision, or nutrient resources. Mites have important impacts on community dynamics, ecosystem processes, and biodiversity within many insect-fungus systems. Given that mites are understudied but highly abundant, they likely have bigger, more important, and more widespread impacts on communities than previously recognized. We describe mutualistic and antagonistic effects of mites on insect-fungus associations, explore the processes that underpin ecological and evolutionary patterns of these multipartite communities, review well-researched examples of the effects of mites on insect-fungus associations, and discuss approaches for studying mites within insect-fungus communities.

  14. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    PubMed Central

    2010-01-01

    Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density), fungus (species and concentration) and environmental effects (exposure duration and food availability) influence larval mortality caused by fungus, was studied. Methods Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. Results Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR) <1) compared to Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR < 1). The effect of increase in fungus concentration on larval mortality was influenced by spore clumping. One day exposure to fungal spores was found to be equally effective as seven days exposure. In different exposure time treatments 0 - 4.9% of the total larvae, exposed to fungus, showed infection at either the pupal or adult stage. Mortality rate increased with increasing larval density and amount of available food. Conclusions This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional

  15. Analysis of the antimicrobial effects of nonthermal plasma on fungal spores in ionic solutions.

    PubMed

    Kang, Min Ho; Hong, Young June; Attri, Pankaj; Sim, Geon Bo; Lee, Geon Joon; Panngom, Kamonporn; Kwon, Gi Chung; Choi, Eun Ha; Uhm, Han S; Park, Gyungsoon

    2014-07-01

    The antimicrobial efficiency of reactive species-based control strategies is significantly affected by the dynamics of reactive species in the biological environment. Atmospheric-pressure nonthermal plasma is an ionized gas in which various reactive species are produced. The various levels of antimicrobial activity may result from the dynamic interaction of the plasma-generated reactive species with the environment. However, the nature of the interaction between plasma and environments is poorly understood. In this study, we analyzed the influence of the ionic strength of surrounding solutions (environment) on the antimicrobial activity of plasma in relation to the plasma-generated reactive species using a model filamentous fungus, Neurospora crassa. Our data revealed that the presence of sodium chloride (NaCl) in the background solution attenuated the deleterious effects of plasma on germination, internal structure, and genomic DNA of fungal spores. The protective effects of NaCl were not explained exclusively by pH, osmotic stability, or the level of reactive species in the solution. These were strongly associated with the ionic strength of the background solution. The presence of ions reduced plasma toxicity, which might be due to a reduced access of reactive species to fungal spores, and fungal spores were inactivated by plasma in a background fluid of nonionic osmolytes despite the low level of reactive species. Our results suggest that the surrounding environment may affect the behavior of reactive species, which leads to different biological consequences regardless of their quantity. Moreover, the microbicidal effect of plasma can be synergistically regulated through control of the microenvironment.

  16. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    SciTech Connect

    Lee, Geon Joon Sim, Geon Bo; Choi, Eun Ha; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  17. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  18. Morphological and molecular characterization of Magnaporthe oryzae (fungus) from infected rice leaf samples

    NASA Astrophysics Data System (ADS)

    Muni, Nurulhidayah Mat; Nadarajah, Kalaivani

    2014-09-01

    Magnaporthe oryzae is a plant-pathogenic fungus that causes a serious disease affecting rice called rice blast. Outbreaks of rice blast have been a threat to the global production of rice. This fungal disease is estimated to cause production losses of US55 million each year in South and Southeast Asia. It has been used as a primary model for elucidating various aspects of the host-pathogen interaction with its host. We have isolated five isolates of Magnaporthe oryzae from diseased leaf samples obtained from the field at Kompleks Latihan MADA, Kedah, Malaysia. We have identified the isolates using morphological and microscopic studies on the fungal spores and the lesions on the diseased leaves. Amplification of the internal transcribed spacer (ITS) was carried out with universal primers ITS1 and ITS4. The sequence of each isolates showed at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaporthe oryzae.

  19. Possible Contribution of Blast Spores to the Oxidative Burst in the Infection Droplet on Rice Leaf

    USDA-ARS?s Scientific Manuscript database

    The infection-induced overproduction of reactive oxygen species (ROS) in resistant plants is usually ascribed to the host. Here we tested the possible contribution of the parasite, the rice blast fungus to ROS production. Droplets of spore suspensions or water were kept on rice leaves or on plastic....

  20. Label-Free Detection of Soybean Rust Spores using Photonic Crystal Biosensors

    USDA-ARS?s Scientific Manuscript database

    Soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most devastating foliar diseases affecting soybeans grown worldwide. The disease was reported for the first time in the United States in 2004. Early spore detection, prior to the appearance of visible symptoms, is critical to ef...

  1. Spore: Spawning Evolutionary Misconceptions?

    NASA Astrophysics Data System (ADS)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  2. Thermal Spore Exposure Vessels

    NASA Technical Reports Server (NTRS)

    Beaudet, Robert A.; Kempf, Michael; Kirschner, Larry

    2006-01-01

    Thermal spore exposure vessels (TSEVs) are laboratory containers designed for use in measuring rates of death or survival of microbial spores at elevated temperatures. A major consideration in the design of a TSEV is minimizing thermal mass in order to minimize heating and cooling times. This is necessary in order to minimize the number of microbes killed before and after exposure at the test temperature, so that the results of the test accurately reflect the effect of the test temperature. A typical prototype TSEV (see figure) includes a flat-bottomed stainless-steel cylinder 4 in. (10.16 cm) long, 0.5 in. (1.27 cm) in diameter, having a wall thickness of 0.010 plus or minus 0.002 in. (0.254 plus or minus 0.051 mm). Microbial spores are deposited in the bottom of the cylinder, then the top of the cylinder is closed with a sterile rubber stopper. Hypodermic needles are used to puncture the rubber stopper to evacuate the inside of the cylinder or to purge the inside of the cylinder with a gas. In a typical application, the inside of the cylinder is purged with dry nitrogen prior to a test. During a test, the lower portion of the cylinder is immersed in a silicone-oil bath that has been preheated to and maintained at the test temperature. Test temperatures up to 220 C have been used. Because the spores are in direct contact with the thin cylinder wall, they quickly become heated to the test temperature.

  3. Pathogenicity of entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; LeBrun, R.A.

    1997-01-01

    The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 108/ml for engorged larvae and 107/ml for engorged females resulted in 100% tick mortality, 2 wk post-infection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 107 spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  4. Spore collection and elimination apparatus and method

    DOEpatents

    Czajkowski, Carl; Warren, Barbara Panessa

    2007-04-03

    The present invention is for a spore collection apparatus and its method of use. The portable spore collection apparatus includes a suction source, a nebulizer, an ionization chamber and a filter canister. The suction source collects the spores from a surface. The spores are activated by heating whereby spore dormancy is broken. Moisture is then applied to the spores to begin germination. The spores are then exposed to alpha particles causing extinction.

  5. Spore coat architecture of Clostridium novyi NT spores.

    PubMed

    Plomp, Marco; McCaffery, J Michael; Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Kinzler, Kenneth W; Zhou, Shibin; Vogelstein, Bert; Malkin, Alexander J

    2007-09-01

    Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled, and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers, as well as the underlying spore coat and undercoat layers, sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  6. Clostridium difficile spore-macrophage interactions: spore survival.

    PubMed

    Paredes-Sabja, Daniel; Cofre-Araneda, Glenda; Brito-Silva, Christian; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R

    2012-01-01

    Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. In this work, we provide evidence that C. difficile spores are well suited to survive the host's innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells' ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells.

  7. Clostridium difficile Spore-Macrophage Interactions: Spore Survival

    PubMed Central

    Paredes-Sabja, Daniel; Cofre-Araneda, Glenda; Brito-Silva, Christian; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R.

    2012-01-01

    Background Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. Methodology/Principal Findings In this work, we provide evidence that C. difficile spores are well suited to survive the host’s innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells’ ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. Conclusions/Significance These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells. PMID:22952726

  8. Development of a user-friendly delivery method for the fungus Metarhizium anisopliac to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies

    USDA-ARS?s Scientific Manuscript database

    A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducte...

  9. Inactivation of Bacillus anthracis Spores

    PubMed Central

    Whitney, Ellen A. Spotts; Beatty, Mark E.; Taylor, Thomas H.; Weyant, Robbin; Sobel, Jeremy; Arduino, Matthew J.

    2003-01-01

    After the intentional release of Bacillus anthracis through the U.S. Postal Service in the fall of 2001, many environments were contaminated with B. anthracis spores, and frequent inquiries were made regarding the science of destroying these spores. We conducted a survey of the literature that had potential application to the inactivation of B. anthracis spores. This article provides a tabular summary of the results. PMID:12780999

  10. Science hub spore data

    EPA Pesticide Factsheets

    Data set includes UV dose, and Bacillus pumilus spore plate counts in colony forming unitsThis dataset is associated with the following publication:Boczek , L., E. Rhodes , J. Cashdollar, J. Ryu, J. Popovici , J. Hoelle , M. Sivaganesan , S. Hayes , M. Rodgers , and H. Ryu. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems. JOURNAL OF MICROBIOLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 122: 43-49, (2016).

  11. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.

    PubMed

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A

    2014-07-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of worldwide concern. Owing to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. Although important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and Bacillus subtilis at the level of sporulation, germination, and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The development and endophytic nature of the fungus Heteroconium chaetospira.

    PubMed

    Hashiba, Teruyoshi; Narisawa, Kazuhiko

    2005-11-15

    The root endophytic fungus Heteroconium chaetospira was isolated from roots of Chinese cabbage grown in field soil in Japan. This fungus penetrates through the outer epidermal cells of its host, passes into the inner cortex, and grows throughout the cortical cells, including those of the root tip region, without causing apparent pathogenic symptoms. There are no ultrastructural signs of host resistance responses. H. chaetospira has been recovered from 19 plant species in which there was no disruption of host growth. H. chaetospira has a symbiotic association with Chinese cabbage. The fungus provides nitrogen in exchange for carbon. These associations are beneficial for the inoculated plants, as demonstrated by increased growth rate. When used as a preinoculum, H. chaetospira suppresses the incidence of clubroot and Verticillium yellows when the test plant is post-inoculated with the causal agents of these diseases. H. chaetospira is an effective biocontrol agent against clubroot in Chinese cabbage at a low to moderate soil moisture range and a pathogen resting spore density of 10(5) resting spores per gram of soil in situ. Disease caused by Pseudomonas syringae pv. macricola and Alternaria brassicae on leaves can be suppressed by treatment with H. chaetospira. The fungus persists in the roots and induces systemic resistance to the foliar disease.

  13. Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen

    PubMed Central

    Sander, Sarah E.; Altizer, Sonia; de Roode, Jacobus C.; Davis, Andrew K.

    2013-01-01

    Monarch butterflies (Danaus plexippus) throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha (OE). This protozoan is transmitted when larvae ingest infectious stages (spores) scattered onto host plant leaves by infected adults. Parasites replicate internally during larval and pupal stages, and adult monarchs emerge covered with millions of dormant spores on the outsides of their bodies. Across multiple monarch populations, OE varies in prevalence and virulence. Here, we examined geographic and genetic variation in OE spore morphology using clonal parasite lineages derived from each of four host populations (eastern and western North America, South Florida and Hawaii). Spores were harvested from experimentally inoculated, captive-reared adult monarchs. Using light microscopy and digital image analysis, we measured the size, shape and color of 30 replicate spores per host. Analyses examined predictors of spore morphology, including parasite source population and clone, parasite load, and the following host traits: family line, sex, wing area, and wing color (orange and black pigmentation). Results showed significant differences in spore size and shape among parasite clones, suggesting genetic determinants of morphological variation. Spore size also increased with monarch wing size, and monarchs with larger and darker orange wings tended to have darker colored spores, consistent with the idea that parasite development depends on variation in host quality and resources. We found no evidence for effects of source population on variation in spore morphology. Collectively, these results provide support for heritable variation in spore morphology and a role for host traits in affecting parasite development. PMID:26462429

  14. Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen.

    PubMed

    Sander, Sarah E; Altizer, Sonia; de Roode, Jacobus C; Davis, Andrew K

    2013-08-28

    Monarch butterflies (Danaus plexippus) throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha (OE). This protozoan is transmitted when larvae ingest infectious stages (spores) scattered onto host plant leaves by infected adults. Parasites replicate internally during larval and pupal stages, and adult monarchs emerge covered with millions of dormant spores on the outsides of their bodies. Across multiple monarch populations, OE varies in prevalence and virulence. Here, we examined geographic and genetic variation in OE spore morphology using clonal parasite lineages derived from each of four host populations (eastern and western North America, South Florida and Hawaii). Spores were harvested from experimentally inoculated, captive-reared adult monarchs. Using light microscopy and digital image analysis, we measured the size, shape and color of 30 replicate spores per host. Analyses examined predictors of spore morphology, including parasite source population and clone, parasite load, and the following host traits: family line, sex, wing area, and wing color (orange and black pigmentation). Results showed significant differences in spore size and shape among parasite clones, suggesting genetic determinants of morphological variation. Spore size also increased with monarch wing size, and monarchs with larger and darker orange wings tended to have darker colored spores, consistent with the idea that parasite development depends on variation in host quality and resources. We found no evidence for effects of source population on variation in spore morphology. Collectively, these results provide support for heritable variation in spore morphology and a role for host traits in affecting parasite development.

  15. Trichoderma asperelloides Spores Downregulate dectin1/2 and TLR2 Receptors of Mice Macrophages and Decrease Candida parapsilosis Phagocytosis Independent of the M1/M2 Polarization.

    PubMed

    Dos Santos, Andréa G; Mendes, Érica A; de Oliveira, Rafael P; Faria, Ana M C; de Sousa, Aurizangela O; Pirovani, Carlos P; de Araújo, Fernanda F; de Carvalho, Andréa T; Costa, Marliete Carvalho; Assis Santos, Daniel; Montoya, Quimi V; Rodrigues, Andre; Dos Santos, Jane L

    2017-01-01

    The intensive use of pesticides to control pests in agriculture has promoted several issues relating to environment. As chemical pesticides remain controversial, biocontrol agents originating from fungi could be an alternative. Among them, we highlight biocontrol agents derived from the fungi genus Trichoderma, which have been documented in limiting the growth of other phytopathogenic fungus in the roots and leaves of several plant species. An important member of this genus is Trichoderma asperelloides, whose biocontrol agents have been used to promote plant growth while also treating soil diseases caused by microorganisms in both greenhouses and outdoor crops. To evaluate the safety of fungal biological agents for human health, tests to detect potentially adverse effects, such as allergenicity, toxicity, infectivity and pathogenicity, are crucial. In addition, identifying possible immunomodulating properties of fungal biocontrol agents merits further investigation. Thus, the aim of this study was to evaluate the effects of T. asperelloides spores in the internalization of Candida parapsilosis yeast by mice phagocytes, in order to elucidate the cellular and molecular mechanism of this interaction, as a model to understand possible in vivo effects of this fungus. For this, mice were exposed to a fungal spore suspension through-intraperitoneal injection, euthanized and cells from the peripheral blood and peritoneal cavity were collected for functional, quantitative and phenotypic analysis, throughout analysis of membrane receptors gene expression, phagocytosis ability and cells immunophenotyping M1 (CCR7 and CD86) and M2 (CCR2 and CD206). Our analyses showed that phagocytes exposed to fungal spores had reduced phagocytic capacity, as well as a decrease in the quantity of neutrophils and monocytes in the peripheral blood and peritoneal cavity. Moreover, macrophages exposed to T. asperelloides spores did not display the phenotypic profile M1/M2, and had reduced

  16. "Spore" and the Sociocultural Moment

    ERIC Educational Resources Information Center

    Meyer, W. Max

    2012-01-01

    Analyses of the game "Spore" have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the "Spore" discussion relative to…

  17. "Spore" and the Sociocultural Moment

    ERIC Educational Resources Information Center

    Meyer, W. Max

    2012-01-01

    Analyses of the game "Spore" have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the "Spore" discussion relative to…

  18. PROPERTIES OF ELECTRODIALYZED BACTERIAL SPORES

    PubMed Central

    Harper, M. K.; Curran, H. R.; Pallansch, M. J.

    1964-01-01

    Harper, M. K. (U.S. Department of Agriculture, Washington, D.C.), H. R. Curran, and M. J. Pallansch. Properties of electrodialyzed bacterial spores. J. Bacteriol. 88:1338–1340. 1964.—Washed spores of Bacillus cereus, B. megaterium, and B. stearothermophilis suspended in distilled water were electrodialyzed at a potential of 250 v, 50 ma, for 6.5 hr, under conditions which precluded rise in temperature or shift in pH. Dipicolinic acid (DPA) was not released from the spores by electrodialysis, as indicated by essentially complete recovery of residual DPA from the treated spores. Uptake of stain, heat stability, and viability of the electrodialyzed spores were comparable to the nondialyzed controls. These findings are discussed in relation to those reported by Rode and Foster. PMID:14234790

  19. Reduction of Pulmonary Toxicity of Stachybotrys chartarum Spores by Methanol Extraction of Mycotoxins

    PubMed Central

    Rao, Carol Y.; Brain, Joseph D.; Burge, Harriet A.

    2000-01-01

    The fungus Stachybotrys chartarum has been implicated in cases of nonspecific indoor air quality complaints in adults and in cases of pulmonary hemorrhaging in infants. The effects that have been described have been attributed to mycotoxins. Previous dose-effect studies focused on exposure to a single mycotoxin in a solvent, a strategy which is unlikely to accurately characterize the effects of inhaled spores. In this study we examined the role of mycotoxins in the pulmonary effects caused by S. chartarum spores and the dose dependency of these effects. S. chartarum spores were extracted in methanol to reduce the mycotoxin content of the spores. Then either untreated (toxin-containing) or methanol-extracted S. chartarum spores were intratracheally instilled into male 10-week-old Charles River-Dawley rats. After 24 h, the lungs were lavaged, and the bronchoalveolar lavage fluid was analyzed to determine differences in lactic dehydrogenase, albumin, hemoglobin, myeloperoxidase, and leukocyte differential counts. Weight change was also monitored. Our data show that methanol extraction dramatically reduced the toxicity of S. chartarum spores. No statistically significant effects were observed in the bronchoalveolar lavage fluids of the animals that were treated with methanol-extracted spores at any dose. Conversely, dose-dependent effects of the toxin-containing spores were observed when we examined the lactic dehydrogenase, albumin, and hemoglobin concentrations, the polymorphonuclear leukocyte counts, and weight loss. Our findings show that a single, intense exposure to toxin-containing S. chartarum spores results in pulmonary inflammation and injury in a dose-dependent manner. Importantly, the effects are related to methanol-soluble toxins in the spores. PMID:10877773

  20. Slope aspect influences arbuscular mycorrhizal fungus communities in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China.

    PubMed

    Liu, Min; Zheng, Rong; Bai, Shulan; Bai, Yv E; Wang, Jugang

    2017-04-01

    Arbuscular mycorrhizal (AM) symbiosis plays an important role in ecosystem functioning, particularly in fragile environments. Little is known, however, about how AM fungus community composition responds to slope aspect. Our objective was to compare the AM fungus communities between sunny and shady slopes and to detect factors that influenced the distributions of AM fungi in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China. AM fungus communities were evaluated based on small subunit ribosomal RNA genes (SSUs) using Illumina MiSeq sequencing. AM fungus community composition differed significantly between slope aspects, and sunny slopes had significantly higher AM fungus diversity and richness as well as spore density, total root colonization, arbuscule abundance, vesicle abundance, and hyphal colonization than shady slopes. Structural equation modeling (SEM) illustrated that the effects of slope aspect on AM fungus richness likely were mediated by available phosphorus, soil organic carbon, plant cover, and plant diversity. Available phosphorus was the principal factor that influenced AM fungus species richness, and soil organic carbon was the principal factor influencing spore density and total root colonization, suggesting that these factors especially might be responsible for differences between the AM fungus communities of different slope aspects. These findings elucidate the influence of slope aspect on AM fungus communities and may inform use of AM fungi in protection and restoration of vegetation with different slope aspects in arid ecosystems.

  1. Trappeindia himalayensis gen. et sp. nov., a sequestrate fungus with potential affinity to Strobilomyces (Basidiomycotina, Boletales)

    Treesearch

    M.A. Castellano; S.L. Miller; L. Singh; T.N. Lakhanpal

    2012-01-01

    An unusual sequestrate fungus forming ectomycorrhizae with Cedrus deodora (Roxb.) Laud. forms sporocarps in the northwestern Himalayas of India during spring. It has a dark brown to black peridium with a solid, white to brown, loculate gleba containing spherical, reticulate spores. It resembles no described genus and is described here as ...

  2. Nanoscale structural and mechanical analysis of Bacillus anthracis spores inactivated with rapid dry heating.

    PubMed

    Xing, Yun; Li, Alex; Felker, Daniel L; Burggraf, Larry W

    2014-03-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.

  3. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    PubMed Central

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  4. Studies on the air-borne fungal spores in Amritsar: their role in keratomycosis.

    PubMed

    Sandhu, D K; Randhawa, I S

    1979-08-31

    An aerial survey for fungal spores in Amritsar has been carried out by petri plate exposure method for a period of one year. A total of 23 fungi appeared in the plates. Out of these Aspergillus was the commonest fungus representing 21.69% of the total colony count followed by Alternaria, Curvularia and Fusarium. There was seasonal variation in the prevalence of fungal spores. A comparison of the prevalence of fungi in diseased and healthy eyes and the atmosphere of Amritsar appears to support the view that these fungi are transient residents in the eyes depending on their availability in the atmosphere.

  5. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures.

  6. Spore and the sociocultural moment

    NASA Astrophysics Data System (ADS)

    Meyer, W. Max

    2012-12-01

    Analyses of the game Spore have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the Spore discussion relative to the general dissatisfaction with the science presented in the game. The paper proposes that analysis of Spore and other technological tools in science education may be embedded in an historical moment which directs the discussion towards satisfying sociocultural and organizational needs and away from pedagogical ones.

  7. Microbial profile modification with spores

    SciTech Connect

    Bae, J.H.; Chambers, K.T.; Lee, H.O.

    1996-08-01

    To overcome the shortcomings of conventional, near-wellbore profile modification methods, a microbial profile modification (MPM) method with spores was investigated. A halotolerant, spore-forming mesophile was isolated and characterized. These biopolymer-producing spores propagate easily in Berea cores with permeabilities more than about 500 md. With a specifically formulated nutrient package, they are readily germinated and produce biofilm, which reduces the permeability of the rock. The depth of penetration and the degree of permeability reduction can be controlled by varying injection schemes.

  8. Spore Coat Architecture of Clostridium novyi-NT spores

    SciTech Connect

    Plomp, M; McCafferey, J; Cheong, I; Huang, X; Bettegowda, C; Kinzler, K; Zhou, S; Vogelstein, B; Malkin, A

    2007-05-07

    Spores of the anaerobic bacterium Clostridium novyi-NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Towards this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of dormant as well as germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers as well as the underlying spore coat and undercoat layers sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi-NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  9. Life cycle and spore resistance of spore-forming Bacillus atrophaeus.

    PubMed

    Sella, Sandra R B R; Vandenberghe, Luciana P S; Soccol, Carlos Ricardo

    2014-12-01

    Bacillus endospores have a wide variety of important medical and industrial applications. This is an overview of the fundamental aspects of the life cycle, spore structure and factors that influence the spore resistance of spore-forming Bacillus. Bacillus atrophaeus was used as reference microorganism for this review because their spores are widely used to study spore resistance and morphology. Understanding the mechanisms involved in the cell cycle and spore survival is important for developing strategies for spore killing; producing highly resistant spores for biodefense, food and pharmaceutical applications; and developing new bioactive molecules and methods for spore surface display.

  10. Fungus Infections: Tinea

    MedlinePlus

    ... cat, or from exposure to fungus in the soil. Itchy red scaly patches come up anywhere the ... Truth 12/19/2013 Osteopathic Training Statement Online Surveys About AOCD The AOCD was recognized in 1958 ...

  11. Beyond animals and plants: dynamic maternal effects in the fungus Neurospora crassa.

    PubMed

    Zimmerman, K C K; Levitis, D A; Pringle, A

    2016-07-01

    Maternal effects are widely documented in animals and plants, but not in fungi or other eukaryotes. A principal cause of maternal effects is asymmetrical parental investment in a zygote, creating greater maternal vs. paternal influence on offspring phenotypes. Asymmetrical investments are not limited to animals and plants, but are also prevalent in fungi and groups including apicomplexans, dinoflagellates and red algae. Evidence suggesting maternal effects among fungi is sparse and anecdotal. In an experiment designed to test for maternal effects across sexual reproduction in the model fungus Neurospora crassa, we measured offspring phenotypes from crosses of all possible pairs of 22 individuals. Crosses encompassed reciprocals of 11 mating-type 'A' and 11 mating-type 'a' wild strains. After controlling for the genetic and geographic distances between strains in any individual cross, we found strong evidence for maternal control of perithecia (sporocarp) production, as well as maternal effects on spore numbers and spore germination. However, both parents exert equal influence on the percentage of spores that are pigmented and size of pigmented spores. We propose a model linking the stage-specific presence or absence of maternal effects to cellular developmental processes: effects appear to be mediated primarily through the maternal cytoplasm, and, after spore cell walls form, maternal influence on spore development is limited. Maternal effects in fungi, thus far largely ignored, are likely to shape species' evolution and ecologies. Moreover, the association of anisogamy and maternal effects in a fungus suggests maternal effects may also influence the biology of other anisogamous eukaryotes.

  12. Bacterial Spores as Vaccine Vehicles

    PubMed Central

    Duc, Le H.; Hong, Huynh A.; Fairweather, Neil; Ricca, Ezio; Cutting, Simon M.

    2003-01-01

    For the first time, bacterial spores have been evaluated as vaccine vehicles. Bacillus subtilis spores displaying the tetanus toxin fragment C (TTFC) antigen were used for oral and intranasal immunization and were shown to generate mucosal and systemic responses in a murine model. TTFC-specific immunoglobulin G titers in serum (determined by enzyme-linked immunosorbent assay) reached significant levels 33 days after oral dosing, while responses against the spore coat proteins were relatively low. Tetanus antitoxin levels were sufficient to protect against an otherwise lethal challenge of tetanus toxin (20 50% lethal doses). The robustness and long-term storage properties of bacterial spores, coupled with simplified genetic manipulation and cost-effective manufacturing, make them particularly attractive vehicles for oral and intranasal vaccination. PMID:12704155

  13. Spore Size Comparison Between Several Bacillus Species

    DTIC Science & Technology

    2005-10-01

    Spore Size Comparison Between Several Bacillus Species Ruben O. Zandomeni1, Joseph E. Fitzgibbon2, Monica Carrera1, Edward Stuebing2, James E...OCT 2005 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Spore Size Comparison Between Several Bacillus Species 5a. CONTRACT...Systematic comparison of the size of B.anthracis spores to size of other Bacillus spores (simulants/surrogates) - all spores produced under the same

  14. NASA Facts: SporeSat

    NASA Technical Reports Server (NTRS)

    Martinez, Andres; Cappuccio, Gelsomina; Tomko, David

    2013-01-01

    SporeSat is an autonomous, free-flying three-unit (3U) spacecraft that will be used to conduct scientific experiments to gain a deeper knowledge of the mechanisms of plant cell gravity sensing. SporeSat is being developed through a partnership between NASAs Ames Research Center and the Department of Agricultural and Biological Engineering at Purdue University. Amani Salim and Jenna L. Rickus are the Purdue University Principal Investigators. The SporeSat mission will be flown using a 3U nanosatellite weighing approximately 12 pounds and measuring 14 inches long by 4 inches wide by 4 inches tall. SporeSat will utilize flight-proven spacecraft technologies demonstrated on prior Ames nanosatellite missions such as PharmaSat and OrganismOrganic Exposure to Orbital Stresses (OOREOS) as well as upgrades that increase the hardware integration capabilities with SporeSat science instrumentation. In addition, the SporeSat science payload will serve as a technology platform to evaluate new microsensor technologies for enabling future fundamental biology missions.

  15. Identifying and Inactivating Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri

    2009-01-01

    Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.

  16. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium.

    PubMed

    Dufrêne, Y F; Boonaert, C J; Gerin, P A; Asther, M; Rouxhet, P G

    1999-09-01

    Atomic force microscopy (AFM) has been used to probe, under physiological conditions, the surface ultrastructure and molecular interactions of spores of the filamentous fungus Phanerochaete chrysosporium. High-resolution images revealed that the surface of dormant spores was uniformly covered with rodlets having a periodicity of 10 +/- 1 nm, which is in agreement with earlier freeze-etching measurements. In contrast, germinating spores had a very smooth surface partially covered with rough granular structures. Force-distance curve measurements demonstrated that the changes in spore surface ultrastructure during germination are correlated with profound modifications of molecular interactions: while dormant spores showed no adhesion with the AFM probe, germinating spores exhibited strong adhesion forces, of 9 +/- 2 nN magnitude. These forces are attributed to polysaccharide binding and suggested to be responsible for spore aggregation. This study represents the first direct characterization of the surface ultrastructure and molecular interactions of living fungal spores at the nanometer scale and offers new prospects for mapping microbial cell surface properties under native conditions.

  17. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models.

    PubMed

    Booth, J Leland; Duggan, Elizabeth S; Patel, Vineet I; Langer, Marybeth; Wu, Wenxin; Braun, Armin; Coggeshall, K Mark; Metcalf, Jordan P

    2016-10-01

    The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores escape from the alveolus to regional lymph nodes, germinate and enter the circulatory system to cause disease. The roles of carrier cells and the effects of B. anthracis toxins in this process are unclear. We used a human lung organ culture model to measure spore uptake by antigen presenting cells (APC) and alveolar epithelial cells (AEC), spore partitioning between these cells, and the effects of B. anthracis lethal toxin and protective antigen. We repeated the study in a human A549 alveolar epithelial cell model. Most spores remained unassociated with cells, but the majority of cell-associated spores were in AEC, not in APC. Spore movement was not dependent on internalization, although the location of internalized spores changed in both cell types. Spores also internalized in a non-uniform pattern. Toxins affected neither transit of the spores nor the partitioning of spores into AEC and APC. Our results support a model of spore escape from the alveolus that involves spore clustering with transient passage through intact AEC. However, subsequent transport of spores by APC from the lung to the lymph nodes may occur.

  18. [Nature and frequency of the existence of mold fungi in garbage cans for biological waste and the resultant airborne spore pollution].

    PubMed

    Weinrich, M; Vissiennon, T; Kliche, R; Schumann, M; Bergmann, A

    1999-12-01

    In organic waste, numerous mold fungi and other microorganisms develop sometimes within a few hours only which decompose the organic material already in the collecting containers generating heat and odor. With regard to the emission of mold fungus spores out of garbage cans for bio-waste and the potential environmental-hygienic danger connected with it, considerable worries have been expressed recently. A wide spectrum of mold fungi can be found in bio-waste in strongly varying concentrations. No noticeable difference could be ascertained between the settlement structure areas and the cities respectively as to the fungus concentration in the bio-waste substrate. A. fumigatus and A. niger can be recommended as leading spores for the behavior of the total concentration of fungi in the bio-waste due to their frequency of detection and their seasonal dynamism. The intensity of the air spore pollution through emission of mold fungus spores correlates closely with the climatic conditions, such as variations of temperature, relative humidity and solar radiation. The airborne release of mold fungus spores out of garbage cans for bio-waste and the formation of a respective exposure connected with it is judged as harmless for healthy persons. Risk patients and persons having a weakened immune system or assumed to have such a one due to an existent basic illness and/or other reasons should avoid any handling of bio-waste as well as any other waste if possible.

  19. Effects of meteorological conditions on spore plumes.

    PubMed

    Burch, M; Levetin, E

    2002-08-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m(3) or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m(3) to highs over 170,000 total spores/m(3) in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  20. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  1. UV-Photobiology of bacterial spores in space

    NASA Astrophysics Data System (ADS)

    Horneck, Gerda; Douki, Thierry; Cadet, Jean; Panitz, Corinna; Rabbow, Elke; Moeller, Ralf; Rettberg, Petra

    The vast, cold and radiation filled regimes of outer space present on one hand an environmental challenge for any form of terrestrial life; on the other hand they constitute a unique platform for astrobiology research. Major environmental parameters of space that are of interest to astrobiology are (i) space vacuum, (ii) solar electromagnetic radiation, above all the high energy UV radiation, (iii) galactic cosmic radiation, (iv) extreme temperature fluctuations, and (v) microgravity. Exposure facilities on board of Earth orbiting satellites and the International Space Station (ISS) have provided unique opportunities to study biological and chemical processes in response to those parameters directly in space. Endospores of Bacillus spp., especially B. subtilis, characterized by an extreme resistance to environmental insults and an incredible longevity have served as experimental models in studies on (i) the role of the ozone layer in protecting our biosphere; (ii) the likelihood of the interplanetary transfer of life via meteorites, i.e. the hypothesis of lithopanspermia; (iii) the habitability of Mars; (iv) the need for planetary protection measures; and (v) the molecular mechanisms underlying the extreme lethality of solar extraterrestrial UV-radiation. Role of the ozone layer in protecting our biosphere: Using solar extraterrestrial UV radiation and a set of optical filters, the terrestrial UV radiation climate at different ozone concentration was simulated and the biologically effective irradiance was measured with B. subtilis spores immobilized in a biofilm. With decreasing (simulated) ozone concentrations the biologically effective solar irradiance strongly increased by nearly 1000-fold for early Earth conditions before the ozone layer was built up. Likelihood of lithopanspermia: In an impact-driven scenario of lithopanspermia, rock-dwelling microorganisms - after being ejected from a planet - may wander through space for extended periods of time before being

  2. Recent advances in germination of Clostridium spores.

    PubMed

    Olguín-Araneda, Valeria; Banawas, Saeed; Sarker, Mahfuzur R; Paredes-Sabja, Daniel

    2015-05-01

    Members of Clostridium genus are a diverse group of anaerobic spore-formers that includes several pathogenic species. Their anaerobic requirement enhances the importance of the dormant spore morphotype during infection, persistence and transmission. Bacterial spores are metabolically inactive and may survive for long times in the environment and germinate in presence of nutrients termed germinants. Recent progress with spores of several Clostridium species has identified the germinant receptors (GRs) involved in nutrient germinant recognition and initiation of spore germination. Signal transduction from GRs to the downstream effectors remains poorly understood but involves the release of dipicolinic acid. Two mechanistically different cortex hydrolytic machineries are present in Clostridium spores. Recent studies have also shed light into novel biological events that occur during spore formation (accumulation of transcriptional units) and transcription during early spore outgrowth. In summary, this review will cover all of the recent advances in Clostridium spore germination. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Spore germination, colony development, and secondary metabolism in Penicillium brevicompactum: a radiogas chromatographic and morphological study.

    PubMed

    Doerfler, D L; Nulton, C P; Bartman, C D; Gottlieb, F J; Campbell, I M

    1978-12-01

    A study of the first 76 h of development of spores of Penicillium brevicompactum in batch-mode shake culture indicates that mycophenolic acid biosynthesis begins when the hyphae of germinating spores aggregate to form pellets. Supplies of mycophenolic acid so produced augment a pre-existing pool of the material that is associated with the dormant spore. Although acetate metabolism is active at all stages of development, incorporation of [1-(14)C]acetate into 2,4-dihydroxy-6-(1',2'-dioxopropyl)benzoic acid, another secondary metabolite of the fungus, could not be demonstrated. The significance of these data are considered in terms of the function of mycophenolic acid and the substituted benzoic acid in the producing organism.

  4. Ornithine and arginine decarboxylase activities and effect of some polyamine biosynthesis inhibitors on Gigaspora rosea germinating spores.

    PubMed

    Sannazzaro, Analía I; Alvarez, Cora L; Menéndez, Ana B; Pieckenstain, Fernando L; Albertó, Edgardo O; Ruiz, Oscar A

    2004-01-15

    The pathways for putrescine biosynthesis and the effects of polyamine biosynthesis inhibitors on the germination and hyphal development of Gigaspora rosea spores were investigated. Incubation of spores with different radioactive substrates demonstrated that both arginine and ornithine decarboxylase pathways participate in putrescine biosynthesis in G. rosea. Spermidine and spermine were the most abundant polyamines in this fungus. The putrescine biosynthesis inhibitors alpha-difluoromethylarginine and alpha-difluoromethylornithine, as well as the spermidine synthase inhibitor cyclohexylamine, slightly decreased polyamine levels. However, only the latter interfered with spore germination. The consequences of the use of putrescine biosynthesis inhibitors for the control of plant pathogenic fungi on the viability of G. rosea spores in soil are discussed.

  5. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  6. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  7. A study of spore identification from diffraction data

    NASA Astrophysics Data System (ADS)

    Le, Thanh; Cao, Yang; Fiddy, M. A.; Gardner, P.

    2007-04-01

    Much work has been reported on attempting to identify spores from their spectral signatures. Since spores are also complex scattering objects, with a layered internal refractive index structure, it makes sense to explore the possibility of making an identification simply from a scattering pattern or from anticipated scattering characteristics combined with a spectral signature. Models for scattering from simple geometrical coated shapes have been developed and recently Bragg spheres and onion-ring resonator-like scatterers in the Mie regime have received considerable attention driven by other applications. Also, our own group has recently advanced a method for inverting scattered field data from strongly scattering penetrable targets. We present here some very early considerations of the convergence of these possibilities and suggest some simple experiments that might advance our understanding of spore detection and identification.

  8. Developmental modulation of DNA methylation in the fungus Phycomyces blakesleeanus.

    PubMed Central

    Antequera, F; Tamame, M; Vilanueva, J R; Santos, T

    1985-01-01

    DNA methylation is a rather sparse event among fungi. Phycomyces blakesleeanus seems to be one of the few exceptions in this context. 5-Methylcytosine represents 2.9% of the total cytosine in spore DNA and is located in approximately the same amount at any of the four CA, CT, CC or CG dinucleotides. A progressive and gradual drop in total 5-methylcytosine parallels the development of the fungus. This demethylation is non random but sequence specific and is not accounted for equally by the four different methylated dinucleotides, CG being much less affected (20% demethylated) than CA, CT and CC (more than 90% demethylated at the same time). "De novo" methylation to restore the initial pattern probably takes place during spore maturation. By using specific hybridization probes we have been able to show that the rRNA genes are not significantly methylated at any stage of development, regardless of their transcription status. Images PMID:2997714

  9. Fungal spores: hazardous to health?

    PubMed Central

    Sorenson, W G

    1999-01-01

    Fungi have long been known to affect human well being in various ways, including disease of essential crop plants, decay of stored foods with possible concomitant production of mycotoxins, superficial and systemic infection of human tissues, and disease associated with immune stimulation such as hypersensitivity pneumonitis and toxic pneumonitis. The spores of a large number of important fungi are less than 5 microm aerodynamic diameter, and therefore are able to enter the lungs. They also may contain significant amounts of mycotoxins. Diseases associated with inhalation of fungal spores include toxic pneumonitis, hypersensitivity pneumonitis, tremors, chronic fatigue syndrome, kidney failure, and cancer. PMID:10423389

  10. Spores of Aspergillus versicolor isolated from indoor air of a moisture-damaged building provoke acute inflammation in mouse lungs.

    PubMed

    Jussila, Juha; Komulainen, Hannu; Kosma, Veli-Matti; Nevalainen, Aino; Pelkonen, Jukka; Hirvonen, Maija-Riitta

    2002-12-01

    Microbial growth in moisture-damaged buildings has been associated with respiratory health effects, and the spores of the mycotoxin producing fungus Aspergillus versicolor are frequently present in the indoor air. To characterize the potential of these spores to cause harmful respiratory effects, mice were exposed via intratracheal instillation to a single dose of the spores of A. versicolor (1 x 10(5), 1 x 10(6), 5 x 10(6), 1 x 10(7), or 1 x 10(8) spores), isolated from the indoor air of a moisture-damaged building. Inflammation and toxicity in lungs were evaluated 24 h later by assessment of biochemical markers and histopathology. The time course of the effects was investigated with the dose of 5 x 10(6) spores for up to 28 days. The exposure to the spores increased transiently proinflammatory cytokine levels (tumor necrosis factor [TNF] alpha and interleukin [IL]-6) in bronchoalveolar lavage fluid (BALF). The cytokine responses were dose and time dependent. The highest cytokine concentrations were measured at 6 h after the dose, and they returned to the control level by 3 days. Moreover, the spores of A. versicolor recruited inflammatory cells into airways: Neutrophils peaked transiently at 24 h, macrophages at 3 days, and lymphocytes at 7 days after the dosing. The inflammatory cell response did not completely disappear during the subsequent 28 days, though no histopathological changes were seen at that time point. The spores did not induce expression of inducible nitric oxide synthase in lavaged cells. Only the highest spore dose (1 x 10(8)) markedly increased serum IL-6, increased vascular leakage, and caused cytotoxicity (i.e., increased levels of albumin, total protein, lactate dehydrogenase [LDH], and hemoglobin in BALF) in the airways. In summary, the spores of A. versicolor caused acute inflammation in mouse lungs. This indicates that they have potential to provoke adverse health effects in the occupants of moisture-damaged buildings.

  11. Fighting Ebola with novel spore decontamination technologies for the military

    PubMed Central

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  12. Fighting Ebola with novel spore decontamination technologies for the military.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  13. [Aerosol disinfection of bacterial spores].

    PubMed

    Theilen, U; Wilsberg, F J; Böhm, R; Strauch, D

    1987-06-01

    The present investigations are divided into two parts. First it is tested which commercial disinfectants are efficient in aerosol disinfection of bacterial spores. This part is carried out in an aerosol chamber with airborne spores (laboratory experiments). The best results are obtained with peracetic acid, hydrogen peroxide and formaldehyde are effective with some restrictions. With these disinfectants it is tested in the second part if the aerosol disinfecting-method is capable for disinfecting rooms with electronic equipment. This part is carried out in a vessel under open air conditions (field experiments). Bacterial spores dried on germ carriers of limewood, aluminium and rusty iron are exposed to disinfectant aerosols under those temperature and relative humidity conditions which are representative for the four seasons in Germany. In these investigations there are also included germ carriers with spores, that have been lyophilized without any protective substances respectively with Bentonite, Mixtura desiccans and Silicagel + Serum as protective substances. To check the corrosive effect of disinfectant aerosols electronic pocket calculators and pocket transistor receivers have been exposed to the aerosols. The best results are obtained with formaldehyde at temperatures above 10 degrees C and relative humidities within 65% to 95%. At temperatures and relative humidity conditions outside of this optimal range the effectiveness of formaldehyde tends to zero. Hydrogen peroxide is capable for disinfecting spores on germ carriers of limewood and aluminium at all temperature and relative humidity conditions; on germ carriers of rusty iron the effectiveness is reduced strongly. Same results could be obtained with peracetic acid respectively a mixture of peracetic acid and hydrogen peroxide. With these disinfectants a decontamination of rusty iron surfaces is impossible too except the germ concentration on the surface is below 10(4) CFU/cm2. As to the protective

  14. Identification of Bacterial Spores using Statistical Analysis of Fourier Transform Infrared Photoacoustic Spectroscopy Data

    SciTech Connect

    Thompson, Sandra E.; Foster, Nancy S.; Johnson, Timothy J.; Valentine, Nancy B.; Amonette, James E.

    2003-08-28

    Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) has been applied for the first time to the identification and speciation of bacterial spores. With minimal preparation the spores were deposited into the photoacoustic sample cup and their spectra recorded. A total of 40 different samples of 5 different strains of Bacillus spores were analyzed: Bacillus subtilis ATCC 49760, Bacillus atrophaeus ATCC 49337, Bacillus subtilis 6051, Bacillus thuringiensis ssp. kurstaki, and Bacillus globigii Dugway. The statistical methods used included principal-component analysis (PCA), classification and regression trees (CART), and Mahalanobis-distance calculations. Internal cross-validation studies successfully classify the spores according to their bacterial strain in 38 of 40 cases (95%) and 36 of 40 (90%) in cross-validation. Analysis of fifteen blind samples, which included library and other spores, and nonbacterial materials, resulted in correct strain classification the blind samples that were members of the library and correct rejection of the nonbacterial samples.

  15. 1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti.

    PubMed

    Gillot, Guillaume; Decourcelle, Nicolas; Dauer, Gaëlle; Barbier, Georges; Coton, Emmanuel; Delmail, David; Mounier, Jérôme

    2016-08-01

    Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 μM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes.

  16. Protective effects of Ganoderma lucidum spore on cadmium hepatotoxicity in mice.

    PubMed

    Jin, Hai; Jin, Feng; Jin, Jia-Xing; Xu, Jie; Tao, Ting-Ting; Liu, Jie; Huang, Hou-Jin

    2013-02-01

    The medicinal fungus Ganoderma lucidum has been shown to have hepatoprotective effects. G. lucidum contains triterpenes and polysaccharides, and the Sporoderm-broken G. lucidum powder is particular beneficial. This study utilized G. lucidum spore to examine its effect on [Cd(II)]-induced hepatotoxicity in mice and the mechanism of the protection. Mice were pretreated with G. lucidum spore (0.1, 0.5, and 1.0 g/kg, po, for 7 days), and subsequently challenged with a hepatotoxic dose of Cd(II) (3.7 mg/kg, ip). Liver injury was evaluated 8h later. G. lucidum spore protected against Cd(II)-induced liver injury in a dose-dependent manner, as evidenced by serum alanine aminotransferase, aspartate aminotransferase and histopathology. To examine the mechanism of protection, subcellular distribution of Cd(II) was determined. G. lucidum spore decreased Cd(II) accumulation in hepatic nuclei, mitochondria, and microsomes, but increased Cd(II) distribution to the cytosol, where Cd(II) is sequestered by metallothionein, a protein against Cd(II) toxicity. Indeed, G. lucidum spore induced hepatic metallothionein-1 mRNA 8-fold, and also increased metallothionein protein as determined by the Cd(II)/hemoglobin assay. Cd(II)-induced oxidative stress was also decreased by G. lucidum spore, as evidenced by decreased formation of malondialdehyde. In summary, G. lucidum spore is effective in protection against Cd(II)-induced hepatotoxicity, and this effect is due, at least in part, to the induction of hepatic metallothionein to achieve beneficial effects.

  17. High gas pressure: an innovative method for the inactivation of dried bacterial spores.

    PubMed

    Colas de la Noue, A; Espinasse, V; Perrier-Cornet, J-M; Gervais, P

    2012-08-01

    In this article, an original non-thermal process to inactivate dehydrated bacterial spores is described. The use of gases such as nitrogen or argon as transmission media under high isostatic pressure led to an inactivation of over 2 logs CFU/g of Bacillus subtilis spores at 430 MPa, room temperature, for a 1 min treatment. A major requirement for the effectiveness of the process resided in the highly dehydrated state of the spores. Only a water activity below 0.3 led to substantial inactivation. The solubility of the gas in the lipid components of the spore and its diffusion properties was essential to inactivation. The main phenomenon involved seems to be the sorption of the gas under pressure by the spores' structures such as residual pores and plasma membranes, followed by a sudden drop in pressure. Observation by phase-contrast microscopy suggests that internal structures have been affected by the treatment. Some parallels with polymer permeability to gas and rigidity at various water activities offer a few clues about the behavior of the outer layers of spores in response to this parameter and provide a good explanation for the sensitivity of spores to high gas pressure discharge at low hydration levels. Specificity of microorganisms such as size, organization, and composition could help in understanding the differences between spores and yeast regarding the parameters required for inactivation, such as pressure or maintenance time.

  18. Optimizing Bacillus subtilis spore isolation and quantifying spore harvest purity.

    PubMed

    Harrold, Zoë R; Hertel, Mikaela R; Gorman-Lewis, Drew

    2011-12-01

    Investigating the biochemistry, resilience and environmental interactions of bacterial endospores often requires a pure endospore biomass free of vegetative cells. Numerous endospore isolation methods, however, neglect to quantify the purity of the final endospore biomass. To ensure low vegetative cell contamination we developed a quality control technique that enables rapid quantification of endospore harvest purity. This method quantifies spore purity using bright-field and fluorescence microscopy imaging in conjunction with automated cell counting software. We applied this method to Bacillus subtilis endospore harvests isolated using a two-phase separation method that utilizes mild chemicals. The average spore purity of twenty-two harvests was 88±11% (error is 1σ) with a median value of 93%. A spearman coefficient of 0.97 correlating automated and manual bacterial counts confirms the accuracy of software generated data.

  19. Photometric immersion refractometry of bacterial spores.

    PubMed Central

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  20. Efficient transformation of Rhizopus delemar by electroporation of germinated spores.

    PubMed

    Xu, Sha; Zhou, Zhengxiong; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-08-01

    High efficient transformation of mycelial fungi is essential to both metabolic engineering and physiological analysis of these industrially important microorganisms. However, transformation efficiencies for mycelial fungi are highly restricted by difficulties in colony formation and competent cell preparation. In this work, an innovative transformation procedure that could significantly improve the efficiency of colony formation and transformation process has been established for a typical mycelial fungus, Rhizopus delemar. Single colonies of R. delemar were obtained with the addition of sodium deoxycholate. Fresh germinated spores of R. delemar were successfully transformed by electroporation. In addition, by pretreatment of the germinated spores with 0.05M lithium acetate (LiAc) and 20mM dithiothreitol (DTT) before electroporation, the transformation efficiency was further improved by 9.5-fold. The final transformation efficiency at optimal conditions reached 1239 transformants/μg DNA. The method described here would facilitate more efficient metabolic engineering and investigation of physiological functions in R. delemar or other similar mycelial fungi.

  1. Ultraviolet-Resistant Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Newcombe, David; LaDuc, Myron T.; Osman, Shariff R.

    2007-01-01

    A document summarizes a study in which it was found that spores of the SAFR-032 strain of Bacillus pumilus can survive doses of ultraviolet (UV) radiation, radiation, and hydrogen peroxide in proportions much greater than those of other bacteria. The study was part of a continuing effort to understand the survivability of bacteria under harsh conditions and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could interfere with the search for life there.

  2. Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission.

    PubMed

    Małagocka, Joanna; Grell, Morten N; Lange, Lene; Eilenberg, Jørgen; Jensen, Annette B

    2015-06-01

    Pandora formicae is an obligate entomopathogenic fungus from the phylum Entomophthoromycota, known to infect only ants from the genus Formica. In the final stages of infection, the fungus induces the so-called summit disease syndrome, manipulating the host to climb up vegetation prior to death and fixing the dead cadaver to the surface, all to increase efficient spore dispersal. To investigate this fascinating pathogen-host interaction, we constructed interaction transcriptome libraries from two final infection stages from the material sampled in the field: (1) when the cadavers were fixed, but the fungus had not grown out through the cuticle and (2) when the fungus was growing out from host cadaver and producing spores. These phases mark the switch from within-host growth to reproduction on the host surface, after fungus outgrowth through host integument. In this first de novo transcriptome of an entomophthoralean fungus, we detected expression of many pathogenicity-related genes, including secreted hydrolytic enzymes and genes related to morphological reorganization and nutrition uptake. Differences in expression of genes in these two infection phases were compared and showed a switch in enzyme expression related to either cuticle breakdown or cell proliferation and cell wall remodeling, particularly in subtilisin-like serine protease and trypsin-like protease transcripts. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma.

    PubMed

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection.

  4. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma

    PubMed Central

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  5. Reaerosolization of Fluidized Spores in Ventilation Systems▿

    PubMed Central

    Krauter, Paula; Biermann, Arthur

    2007-01-01

    This project examined dry, fluidized spore reaerosolization in a heating, ventilating, and air conditioning duct system. Experiments using spores of Bacillus atrophaeus, a nonpathogenic surrogate for Bacillus anthracis, were conducted to delineate the extent of spore reaerosolization behavior under normal indoor airflow conditions. Short-term (five air-volume exchanges), long-term (up to 21,000 air-volume exchanges), and cycled (on-off) reaerosolization tests were conducted using two common duct materials. Spores were released into the test apparatus in turbulent airflow (Reynolds number, 26,000). After the initial pulse of spores (approximately 1010 to 1011 viable spores) was released, high-efficiency particulate air filters were added to the air intake. Airflow was again used to perturb the spores that had previously deposited onto the duct. Resuspension rates on both steel and plastic duct materials were between 10−3 and 10−5 per second, which decreased to 10 times less than initial rates within 30 min. Pulsed flow caused an initial spike in spore resuspension concentration that rapidly decreased. The resuspension rates were greater than those predicted by resuspension models for contamination in the environment, a result attributed to surface roughness differences. There was no difference between spore reaerosolization from metal and that from plastic duct surfaces over 5 hours of constant airflow. The spores that deposited onto the duct remained a persistent source of contamination over a period of several hours. PMID:17293522

  6. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    PubMed

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  7. Compatibility of the entomopathogenic fungus Lecanicillium muscarium and insecticides for eradication of sweetpotato whitefly, Bemisia tabaci.

    PubMed

    Cuthbertson, Andrew G S; Walters, Keith F A; Deppe, Carola

    2005-08-01

    The compatibility of the entomopathogenic fungus Lecanicillium muscarium and chemical insecticides used to control the second instar stages of the sweetpotato whitefly, Bemisia tabaci, was investigated. The effect on spore germination of direct exposure for 24 h to the insecticides imidacloprid, buprofezin, teflubenzuron and nicotine was determined. Only exposure to buprofezin was followed by acceptable spore germination. However, all chemicals significantly reduced spore germination when compared to a water control. Infectivity of L. muscarium in the presence of dry residues of buprofezin, teflubenzuron and nicotine (imidacloprid is a systemic pesticide) on foliage were also investigated. No significant detrimental effects on the level of control of B. tabaci was recorded when compared with fungi applied to residue free foliage on either tomato or verbena plants. Fungi in combination with imidacloprid gave higher B. tabaci mortality on verbena foliage compared to either teflubenzuron or nicotine and fungi combinations. Use of these chemical insecticides with L. muscarium in integrated control programmes for B. tabaci is discussed.

  8. Fungal spore source strength tester: laboratory evaluation of a new concept.

    PubMed

    Sivasubramani, Satheesh K; Niemeier, Richard T; Reponen, Tiina; Grinshpun, Sergey A

    2004-08-15

    The airborne fungal spore concentration measured with air samplers during specific time intervals does not always adequately represent the maximum spore concentration levels, because of the sporadic nature of spore release. Hence, a reliable method is needed to directly assess the indoor fungal sources with respect to their spore aerosolization potential. In this study, the newly developed fungal spore source strength tester (FSSST), which aerosolizes spores from growth surfaces and samples the airborne fungi into a bioaerosol sampler, was evaluated in the laboratory. The FSSST's operational flow rates of 30 and 12.5 l/min were tested. The fungal spores released from moldy surfaces were measured with an optical particle counter. Simultaneously, the spores were collected by a bioaerosol sampler: either with a 37-mm filter cassette or with the BioSampler. Three material types, ceiling tile, gypsum board and plastic sheet coated with agar, were tested after they were inoculated with the fungus Aspergillus versicolor. In addition, gypsum board naturally contaminated with various fungi (obtained from a mold-problem home) was tested in the laboratory using the FSSST. In all three laboratory-inoculated materials, the release rate of A. versicolor was found to be higher when the FSSST operated at 30 l/min than at 12.5 l/min. Nevertheless, even at 12.5 l/min the number of spores aerosolized from the source during 10 min was found sufficient to reflect the highest level of release that may occur in indoor environments. At 12.5 l/min, the release rate of A. versicolor during the first 10-min period was (23.9 +/- 17.7)x10(4) cm(-2) for ceiling tile, (1.3 +/- 0.3)x10(4) cm(-2) for gypsum board and (0.13 +/- 0.08)x10(4) cm(-2) for agar surface (based on the samples collected with the BioSampler). The spore release rate was higher during the first 10 min than during the second 10 min of the FSSST application. It was observed that the particles aerosolized from the A. versicolor

  9. The Glyoxylate Cycle in an Arbuscular Mycorrhizal Fungus. Carbon Flux and Gene Expression

    PubMed Central

    Lammers, Peter J.; Jun, Jeongwon; Abubaker, Jehad; Arreola, Raul; Gopalan, Anjali; Bago, Berta; Hernandez-Sebastia, Cinta; Allen, James W.; Douds, David D.; Pfeffer, Philip E.; Shachar-Hill, Yair

    2001-01-01

    The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Lipid, which is the dominant form of stored carbon in the fungal partner and which fuels spore germination, is made by the fungus within the root and is exported to the extraradical mycelium. We tested the hypothesis that the glyoxylate cycle is central to the flow of carbon in the AM symbiosis. The results of 13C labeling of germinating spores and extraradical mycelium with 13C2-acetate and 13C2-glycerol and analysis by nuclear magnetic resonance spectroscopy indicate that there are very substantial fluxes through the glyoxylate cycle in the fungal partner. Full-length sequences obtained by polymerase chain reaction from a cDNA library from germinating spores of the AM fungus Glomus intraradices showed strong homology to gene sequences for isocitrate lyase and malate synthase from plants and other fungal species. Quantitative real-time polymerase chain reaction measurements show that these genes are expressed at significant levels during the symbiosis. Glyoxysome-like bodies were observed by electron microscopy in fungal structures where the glyoxylate cycle is expected to be active, which is consistent with the presence in both enzyme sequences of motifs associated with glyoxysomal targeting. We also identified among several hundred expressed sequence tags several enzymes of primary metabolism whose expression during spore germination is consistent with previous labeling studies and with fluxes into and out of the glyoxylate cycle. PMID:11706207

  10. Triterpenoids from the spores of Ganoderma lucidum

    PubMed Central

    Ma, Bingji; Ren, Wei; Zhou, Yan; Ma, Jinchuan; Ruan, Yuan; Wen, Chun-Nan

    2011-01-01

    Recently a series of triterpenoids were isolated from ganoderma spores and have drawn the attention of chemists and pharmacists. The aim of this review is to summarize the triterpenoids and their bioactivities of ganoderma spores. The chemical and biological literatures of ganoderma spores dealing with the structural analysis and bioactivity assay were selected. Triterpenoids isolated from ganoderma spores showed significantly anti-HIV-1 protease, anti-tumor, and anti-complement activities. Triterpenoids are the main active constituents of ganoderma spores and show various bioactivities for its medicinal use. In addition, biological activities of ganoderma spores still need further assessment before they can be accepted not only by the traditional Asian medicine community, but also by western science and medicine. PMID:22361494

  11. On the fate of ingested Bacillus spores.

    PubMed

    Spinosa, M R; Braccini, T; Ricca, E; De Felice, M; Morelli, L; Pozzi, G; Oggioni, M R

    2000-06-01

    Spores of various Bacillus species, including B. subtilis, B. cereus and B. clausii, are used as probiotics, although they are generally absent from the normal microflora of man. We used two nonpathogenic Bacillus species, B. subtilis and B. clausii, to follow the fate of spores inoculated intragastrically in mice. We did not find detectable amounts of vegetative cells in intestinal samples, probably because of high toxicity of the conjugated bile salt taurodeoxycholic acid against Bacillus species. Both spores and cells were detected in the lymph nodes and spleen of one mouse. Our results indicate that Bacillus is present in the intestinal tract solely as spores and that nonpathogenic Bacillus spores may germinate in lymphoid organs, a finding reminiscent of B. anthracis germination in macrophages. These results indicate that any claimed probiotic effect of B. subtilis should be due to spores or, alternatively, to vegetative growth outside the intestine.

  12. Biological control of nematode parasites of small ruminants in Malaysia using the nematophagous fungus Duddingtonia flagrans.

    PubMed

    Chandrawathani, P; Jamnah, O; Waller, P J; Larsen, M; Gillespie, A T; Zahari, W M

    2003-11-14

    Control of nematode parasites of small ruminants in a wet, tropical environment using the nematophagous fungus, Duddingtonia flagrans, was assessed in this study. Two methods of fungal delivery were tested, namely as a daily feed supplement, or incorporated into feed blocks. Initially, pen trials were conducted with individually penned groups of sheep and goats at dose rates of 125,000 spores and 250,000 spores/kg live weight per day. At the lower dose rate this reduction was between 80 and 90% compared with the pre-treatment levels. At the higher dose rate, there was virtually complete suppression (>99% reduction) of larval recovery. Trials using the fungal feed blocks, showed that when animals were individually penned, they consumed only small amounts of the block (particularly goats), hence little effect on larval recovery in faecal cultures was observed. Grouping animals according to species and dose rate induced satisfactory block consumption and subsequent high levels of larval reduction in faecal cultures. These larval reductions were mirrored by the presence of fungus in faecal cultures. This work was followed by a small paddock trial, whereby three groups of sheep were fed either a feed supplement without fungal spores, supplement with spores, or offered fungal blocks. The dose rate of spores in the latter two groups was 500,000 spores/kg live weight per day. Egg counts were significantly reduced in the two fungal groups, compared with the control group and the latter required two salvage anthelmintic treatments to prevent mortality due to haemonchosis. Pasture larval numbers on the two fungal group plots were also much lower than on the control plot.

  13. Morphogenesis of the Bacillus anthracis Spore

    DTIC Science & Technology

    2007-02-01

    major layers: a darkly staining outer layer and a lighter- staining inner layer (1, 86). In contrast, the Bacillus anthracis coat appears thin and...pyruvate. Spore survival was measured by in vitro assays, and spores were observed within macrophages by staining as described previously by Welkos et al...proteins. Spore extracts were fractionated on 15% polyacrylamide gels and stained with Coomassie brilliant blue. Lanes: 1, Sterne strain of B. anthracis

  14. Fungus Resistant XM205 Nonmetallic Cartridge Case,

    DTIC Science & Technology

    CARTRIDGE CASES, *FUNGICIDES, FUNGUS PROOFING, FUNGUS DETERIORATION, RESISTANCE, NITROCELLULOSE, POLYMERS, FIBERS, SYNTHETIC FIBERS, MATERIALS, ZINC COMPOUNDS, ORGANIC COMPOUNDS, ORGANIC SULFUR COMPOUNDS.

  15. Density-dependent insect-mold interactions: effects on fungal growth and spore production.

    PubMed

    Rohlfs, Marko

    2005-01-01

    Larvae of saprophagous insects often have been suspected of being competitors of filamentous fungi on decaying organic matter, which negatively influence mold development. Of interest, the role of insects in determining fungal growth and the onset of sporulation largely has been ignored. I used Aspergillus niger and the vinegar fly Drosophila melanogaster as an ecological model system to analyze the influence of insect larvae on daily fungal growth and the start of conidiospore production. I used an artificial substrate to test whether the effect of larval density (one, five and 10 larvae) and inoculation date of the mold (2 and 3 d ahead of the addition of larvae) significantly altered fungal growth. Fungal growth (area covered by hyphal tissue of the artificial patch) was affected negatively by the number of larvae and by the time that elapsed between inoculation with fungal spores and transfer of larvae to the patches. Whereas one larva had only a minor effect on fungal growth, five or 10 larvae strongly hampered mold development. As time between inoculation with spores and introduction of fly larvae increased, mold increased, indicating a priority effect for the fungus. When 10 larvae were transferred at the same time as the patches were inoculated with spores, almost no mold was visible within the period of observation (after 12 d). In comparison with control treatment (no insect larvae), an increase in larval density caused an increasing delay of several days in the start of spore production. Thus only minor changes in the density of insect larvae and the time that larvae entered the patches after inoculation with spores had an enormous effect on fungal growth and spore production. Therefore insects co-occurring with mold on ephemeral resources might constitute an important biotic factor driving local fungal population dynamics. The mechanisms leading to the suppression of fungal growth and the evolutionary implications of insect-mold interactions are

  16. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  17. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination.

    PubMed

    Cote, Christopher K; Welkos, Susan L

    2015-08-17

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.

  18. Spore-to-spore agar culture of the myxomycete Physarum globuliferum.

    PubMed

    Liu, Pu; Wang, Qi; Li, Yu

    2010-02-01

    The ontogeny of the myxomycete Physarum globuliferum was observed on corn meal agar and hanging drop cultures without adding sterile oat flakes, bacteria or other microorganisms. Its complete life cycle including spore germination, myxamoebae, swarm cells, plasmodial development, and maturity of fructifications was demonstrated. Details of spore-to-spore development are described and illustrated.

  19. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination

    PubMed Central

    Cote, Christopher K.; Welkos, Susan L.

    2015-01-01

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions. PMID:26287244

  20. Shape characteristics of biological spores

    NASA Astrophysics Data System (ADS)

    Hahn, Daniel V.; Limsui, Diane; Joseph, Richard I.; Baldwin, Kevin C.; Boggs, Nathan T.; Carr, Alison K.; Carter, Christopher C.; Han, Timothy S.; Thomas, Michael E.

    2008-04-01

    Calculation of scattering properties of biological materials has classically been addressed using numerical calculations based on T-matrix theory. These calculations use bulk optical properties, particle size distribution, and a limited selection of shape descriptors to calculate the resulting aerosol properties. However, the most applicable shape available in T-matrix codes, the spheroid, is not the best descriptor of most biological materials. Based on imagery of the spores of Bacillus atrophaeus and Bacillus anthracis, capsule and egg shapes are mathematically described and programmed into the Amsterdam Discrete Dipole Approximation (ADDA). Spectrally dependent cross sections and depolarization ratios are calculated and a comparison made to spheroidal shapes of equivalent sizes.

  1. Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light.

    PubMed

    Stahmann, K P; Arst, H N; Althöfer, H; Revuelta, J L; Monschau, N; Schlüpen, C; Gätgens, C; Wiesenburg, A; Schlösser, T

    2001-09-01

    Riboflavin (vitamin B2), essential in tiny amounts as a precursor for oxidoreductase coenzymes, is a yellow pigment. Although it causes cytotoxicity via photoinduced damage of macromolecules, several microorganisms are striking overproducers. A question, unanswered for decades, is whether riboflavin overproducers can benefit from this property. Here, we report an ultraviolet (UV) protective effect of riboflavin. The spores of Ashbya gossypii, a riboflavin-overproducing fungus, are more sensitive to UV than those of Aspergillus nidulans. The addition of riboflavin to suspensions improves the UV resistance of both spore types. Interestingly, we show that regulation of sporulation and riboflavin overproduction in A. gossypii are linked. In batch culture, both were elevated when growth ceased. At constant growth rates, obtained in a chemostat culture, neither was elevated. Supplementation of cultures by cAMP, a known stress signal, negatively affected sporulation as well as riboflavin overproduction, establishing a second, independent argument for the linkage.

  2. Comparison of immunomodulator mRNA and protein expression in the lungs of Stachybotrys chartarum spore-exposed mice.

    PubMed

    Hudson, B; Flemming, J; Sun, G; Rand, T G

    2005-08-13

    Stachybotrys chartarum is an important toxigenic fungus that has been associated with respiratory disease onset in animals and humans. It can be separated into macrocyclic trichothecene-producing and nonproducing chemotypes based on secondary metabolite production. However, effects of spores of the two chemotypes on lung inflammatory responses are poorly understood. In this study, real-time reverse-transcription polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA) were used to investigate time-course (1, 3, 6, 24, and 48 h post-instillation [PI]) relationships in mice intratracheally exposed to 300 spores/g body weight of a macrocyclic trichothecene-producing (JS 58-17) and a nonproducing (JS 58-06) S. chartarum isolate and of Cladosporium cladosporioides. There were marked differences in the magnitude and temporal patterns of mouse lung immune responses to intratracheal exposure to spores of these species at this spore dose. Both macrophage inflammatory protein 2 (MIP-2) and surfactant protein-D (SP-D) mRNA expression were significantly upregulated in lungs of JS 58-17-treated animals compared to that of all other treatment animals at 6 and 24 h PI. Heightened mRNA expression of these immunomodulators combined with comparatively depressed MIP-2 and tumor necrosis factor (TNF)-a protein expression suggests that the action of macrocyclic trichothecenes sequestered in 58-17 spores is involved. Interestingly, TNF-a protein expression in all spore treatment animal groups was also significantly increased over that in saline controls. Similarities in expression among all spore treatment animals suggest that chemicals other than toxic secondary metabolites, and possibly spore-sequestered 1,3-beta-D-glucan, may contribute to lung pathogenesis.

  3. Spores

    MedlinePlus

    ... Schmucker R, Bryant K. Antibiotic-associated colitis. In: Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, eds. Feigin and Cherry's Textbook of Pediatric Infectious Diseases . 7th ed. Philadelphia, ...

  4. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    PubMed

    Wang, Yanyu; Jenkins, Sarah A; Gu, Chunfang; Shree, Ankita; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A; Xu, Yi

    2016-06-01

    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.

  5. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense

    PubMed Central

    Ren, Lixuan; Huo, Hongwei; Zhang, Fang; Hao, Wenya; Xiao, Liang; Dong, Caixia; Xu, Guohua

    2016-01-01

    ABSTRACT Watermelon (Citrullus lanatus) is susceptible to wilt disease caused by the fungus Fusarium oxysporum f. sp niveum (FON). Intercropping management of watermelon/aerobic rice (Oryza sativa) alleviates watermelon wilt disease, because some unidentified component(s) in rice root exudates suppress FON sporulation and spore germination. Here, we show that the phenolic acid p-coumaric acid is present in rice root exudates only, and it inhibits FON spore germination and sporulation. We found that exogenously applied p-coumaric acid up-regulated the expression of ClPR3 in roots, as well as increased chitinase activity in leaves. Furthermore, exogenously applied p-coumaric acid increased β-1,3-glucanase activity in watermelon roots. By contrast, we found that ferulic acid was secreted by watermelon roots, but not by rice roots, and that it stimulated spore germination and sporulation of FON. Exogenous application of ferulic acid down-regulated ClPR3 expression and inhibited chitinase activity in watermelon leaves. Salicylic acid was detected in both watermelon and rice root exudates, which stimulated FON spore germination at low concentrations and suppressed spore germination at high concentrations. Exogenously applied salicylic acid did not alter ClPR3 expression, but did increase chitinase and β-1,3-glucanase activities in watermelon leaves. Together, our results show that the root exudates of phenolic acids were different between rice and watermelon, which lead to their special ecological roles on pathogenic fungus and watermelon defense. PMID:27217091

  6. Hemp Sesbania (Sesbania exaltata) control in rice (Oryza sativa) with the bioherbicidal fungus Colletotrichum gloeosporioides f. sp. aeschynomene formulated in an invert emulsion

    USDA-ARS?s Scientific Manuscript database

    In greenhouse and field experiments, an invert emulsion (MSG 8.25) was tested with dried, formulated spores of the bioherbicidal fungus Colletotrichum gloeosporioides f. sp. aeschynomene, a highly virulent pathogen of the leguminous weed Aeschynomene virginica (northern jointvetch), but considered “...

  7. Optical Chromatography of Bacterial Spores

    NASA Astrophysics Data System (ADS)

    Sundbeck, Steven; Terray, Alex; Arnold, Jonathan; Leski, Tomasz; Hart, Sean

    2007-03-01

    The technique of optical chromatography uses a laser mildly focused against fluid flow in a microfluidic channel to trap microscopic particles. Particles in the channel near the focal point of the laser are drawn toward the beam axis and then accelerated via optical pressure against the fluid flow, reaching an equilibrium point when the optical and fluidic forces on the particle are balanced. This equilibrium point may occur at differing distances from the focal point for microscopic particles with differing properties, such as size, shape, morphology, and refractive index. Thus, identification and separation of particles may be achieved in the system. Optical chromatography may be used as a detection technique for biological particles of interest, either directly or as a means of concentrating and filtering a sample. Of particular interest would be reliable methods for detection of Bacillus anthracis, a common weaponized biological agent. In this work we present optical chromatography experiments on bacterial spores which may be environmentally present with B. anthracis spores and interfere with detection.

  8. Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli.

    PubMed

    Crawford, Matthew A; Zhu, Yinghua; Green, Candace S; Burdick, Marie D; Sanz, Patrick; Alem, Farhang; O'Brien, Alison D; Mehrad, Borna; Strieter, Robert M; Hughes, Molly A

    2009-04-01

    Based on previous studies showing that host chemokines exert antimicrobial activities against bacteria, we sought to determine whether the interferon-inducible Glu-Leu-Arg-negative CXC chemokines CXCL9, CXCL10, and CXCL11 exhibit antimicrobial activities against Bacillus anthracis. In vitro analysis demonstrated that all three CXC chemokines exerted direct antimicrobial effects against B. anthracis spores and bacilli including marked reductions in spore and bacillus viability as determined using a fluorometric assay of bacterial viability and CFU determinations. Electron microscopy studies revealed that CXCL10-treated spores failed to undergo germination as judged by an absence of cytological changes in spore structure that occur during the process of germination. Immunogold labeling of CXCL10-treated spores demonstrated that the chemokine was located internal to the exosporium in association primarily with the spore coat and its interface with the cortex. To begin examining the potential biological relevance of chemokine-mediated antimicrobial activity, we used a murine model of inhalational anthrax. Upon spore challenge, the lungs of C57BL/6 mice (resistant to inhalational B. anthracis infection) had significantly higher levels of CXCL9, CXCL10, and CXCL11 than did the lungs of A/J mice (highly susceptible to infection). Increased CXC chemokine levels were associated with significantly reduced levels of spore germination within the lungs as determined by in vivo imaging. Taken together, our data demonstrate a novel antimicrobial role for host chemokines against B. anthracis that provides unique insight into host defense against inhalational anthrax; these data also support the notion for an innovative approach in treating B. anthracis infection as well as infections caused by other spore-forming organisms.

  9. Modeling Thermal Inactivation of Bacillus Spores

    DTIC Science & Technology

    2009-03-01

    up of peptidoglycan . The cortex reduces the water content of the spore core by allowing small molecules, like water, to pass through. Similarly, the...cortex keeps DNA, which lies in the core, dry. The germ cell wall which is also made up of peptidoglycan becomes the cell wall of the outgrowing spore

  10. FAR1 and FAR2 regulate the expression of genes associated with lipid metabolism in the rice blast fungus Magnaporthe oryzae.

    PubMed

    bin Yusof, Mohammad Termizi; Kershaw, Michael J; Soanes, Darren M; Talbot, Nicholas J

    2014-01-01

    The rice blast fungus Magnaporthe oryzae causes plant disease via specialised infection structures called appressoria. These dome-shaped cells are able to generate enormous internal pressure, which enables penetration of rice tissue by invasive hyphae. Previous studies have shown that mobilisation of lipid bodies and subsequent lipid metabolism are essential pre-requisites for successful appressorium-mediated plant infection, which requires autophagic recycling of the contents of germinated spores and germ tubes to the developing appressorium. Here, we set out to identify putative regulators of lipid metabolism in the rice blast fungus. We report the identification of FAR1 and FAR2, which encode highly conserved members of the Zn2-Cys6 family of transcriptional regulators. We generated Δfar1, Δfar2 and Δfar1Δfar2 double mutants in M. oryzae and show that these deletion mutants are deficient in growth on long chain fatty acids. In addition, Δfar2 mutants are also unable to grow on acetate and short chain fatty acids. FAR1 and FAR2 are necessary for differential expression of genes involved in fatty acid β-oxidation, acetyl-CoA translocation, peroxisomal biogenesis, and the glyoxylate cycle in response to the presence of lipids. Furthermore, FAR2 is necessary for expression of genes associated with acetyl-CoA synthesis. Interestingly, Δfar1, Δfar2 and Δfar1Δfar2 mutants show no observable delay or reduction in lipid body mobilisation during plant infection, suggesting that these transcriptional regulators control lipid substrate utilization by the fungus but not the mobilisation of intracellular lipid reserves during infection-related morphogenesis.

  11. FAR1 and FAR2 Regulate the Expression of Genes Associated with Lipid Metabolism in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    bin Yusof, Mohammad Termizi; Kershaw, Michael J.; Soanes, Darren M.; Talbot, Nicholas J.

    2014-01-01

    The rice blast fungus Magnaporthe oryzae causes plant disease via specialised infection structures called appressoria. These dome-shaped cells are able to generate enormous internal pressure, which enables penetration of rice tissue by invasive hyphae. Previous studies have shown that mobilisation of lipid bodies and subsequent lipid metabolism are essential pre-requisites for successful appressorium-mediated plant infection, which requires autophagic recycling of the contents of germinated spores and germ tubes to the developing appressorium. Here, we set out to identify putative regulators of lipid metabolism in the rice blast fungus. We report the identification of FAR1 and FAR2, which encode highly conserved members of the Zn2-Cys6 family of transcriptional regulators. We generated Δfar1, Δfar2 and Δfar1Δfar2 double mutants in M. oryzae and show that these deletion mutants are deficient in growth on long chain fatty acids. In addition, Δfar2 mutants are also unable to grow on acetate and short chain fatty acids. FAR1 and FAR2 are necessary for differential expression of genes involved in fatty acid β-oxidation, acetyl-CoA translocation, peroxisomal biogenesis, and the glyoxylate cycle in response to the presence of lipids. Furthermore, FAR2 is necessary for expression of genes associated with acetyl-CoA synthesis. Interestingly, Δfar1, Δfar2 and Δfar1Δfar2 mutants show no observable delay or reduction in lipid body mobilisation during plant infection, suggesting that these transcriptional regulators control lipid substrate utilization by the fungus but not the mobilisation of intracellular lipid reserves during infection-related morphogenesis. PMID:24949933

  12. Sphagnum moss disperses spores with vortex rings.

    PubMed

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  13. Emerging Applications of Bacterial Spores in Nanobiotechnology

    PubMed Central

    Ricca, Ezio; Cutting, Simon M

    2003-01-01

    Bacterial spores are robust and dormant life forms with formidable resistance properties, in part, attributable to the multiple layers of protein that encase the spore in a protective and flexible shield. The coat has a number of features pertinent to the emerging field of nanobiotechnology including self-assembling protomers and the capacity for engineering and delivery of foreign molecules. This review gives an account of recent progress describing the use of the spore, and specifically, the spore coat as a vehicle for heterologous antigen presentation and protective immunization (vaccination). As interest in the spore coat increases it seems likely that they will be exploited further for drug and enzyme delivery as well as a source of novel self-assembling proteins. PMID:14675488

  14. Epicoccum allergy: skin reaction patterns and spore/mycelium disparities recognized by IgG and IgE ELISA inhibition.

    PubMed

    Portnoy, J; Chapman, J; Burge, H; Muilenberg, M; Solomon, W

    1987-07-01

    Comparable degrees of skin reactivity were observed towards spore and mycelium extracts from two isolates of Epicoccum and to one preparation of Alternaria in 35 rural and 120 university patients. The best experimental extracts detected Epicoccum sensitivity in 70% of the group tested while the commercial extract detected sensitivity in only 6%. Skin reaction correlations were greatest within isolates (eg, spore-A/mycelium-A), then for specific fungus parts (eg, spore-A/spore-B), then between isolates and parts (spore-A/mycelium-B). High correlations were found between individual IgG and IgE ELISA values for all antigens using serum from Epicoccum skin-reactive patients. ELISA inhibition results suggested that significant cross-reactivity exists between Epicoccum and Alternaria antigens recognized by IgG but not by IgE. ELISA inhibition cross-reaction patterns among Epicoccum antigens were comparable to skin reactions while IgG patterns showed little variability. Further characterization of spore/mycelium and interstrain recognition patterns among different immunoglobulin isotypes will be necessary before complete standardization of extracts from different parts of fungi will be possible. The use of spore material for skin testing and treatment of Epicoccum sensitivity appears to be both premature and unnecessary at this time.

  15. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores

    NASA Astrophysics Data System (ADS)

    Reponen, Tiina; Willeke, Klaus; Ulevicius, Vidmantas; Reponen, Auvo; Grinshpun, Sergey A.

    Exposure to airborne fungal spores may cause respiratory symptoms. The hygroscopicity of airborne spores may significantly affect their aerodynamic diameter, and thus change their deposition pattern in the human respiratory tract. We have investigated the change in aerodynamic diameter of five different fungal species as a function of relative humidity. Liquid and dry dispersion methods were explored for the aerosolization of the fungal spores. A new system that produces non-aggregated spore aerosol directly from a moldy surface was designed and found suitable for this study. The spores were aerosolized from a mold growth on agar by ducting dry air over the surface, and spore chains in the flow were broken up by passing the entire flow through a critical orifice. Size-spectrometric measurements with an Aerodynamic Particle Sizer showed that the aerodynamic diameter of the tested fungal spores does not change significantly when the relative humidity increases from 30% to 90%. A more distinct spore size increase was found at a relative humidity of ˜ 100%. The highest change of the aerodynamic diameter was found with Cladosporium cladosporioides: it increased from 1.8 μm to 2.3 μm when the relative humidity increased from 30% to ˜ 100%. The size increase corresponds to an approximate doubling of the particle volume. In order to estimate the effect of hygroscopic growth on the respiratory deposition of spores, the mean depositions in the human respiratory tract were calculated for fungal spores with various size changes due to hygroscopic growth. A recently developed model of the International Commission of Radiological Protection was used for the respiratory deposition calculations. We found that the 27% increase in Cladosporium size results in a 20-30% increase in the respiratory deposition of these spores. We conclude that most fungal spores are only slightly hygroscopic and the hygroscopic increase does not significantly affect their respiratory deposition. Our

  16. When Is It Nail Fungus?

    MedlinePlus

    ... medlineplus.gov/news/fullstory_167455.html When Is It Nail Fungus? Dermatologist says only an expert can ... but you shouldn't be embarrassed to discuss it with a board-certified dermatologist, who can help ...

  17. Protection of Bacillus pumilus spores by catalases.

    PubMed

    Checinska, Aleksandra; Burbank, Malcolm; Paszczynski, Andrzej J

    2012-09-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present.

  18. Protection of Bacillus pumilus Spores by Catalases

    PubMed Central

    Checinska, Aleksandra; Burbank, Malcolm

    2012-01-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present. PMID:22752169

  19. Fern spore extracts can damage DNA

    PubMed Central

    Simán, S E; Povey, A C; Ward, T H; Margison, G P; Sheffield, E

    2000-01-01

    The carcinogenicity of the vegetative tissues of bracken fern (Pteridium) has long been established. More recently, the carcinogenic effects of the spores of bracken have also been recognized. Both vegetative tissues and spores of bracken can induce adducts in DNA in animal tissues, but the possible genotoxic or carcinogenic effects of spores from fern species other than bracken are unknown. The single-cell gel electrophoresis (‘comet’) assay was used to investigate whether fern spores can cause DNA damage in vitro. Extracts of spores from six fern species were administered to cultured human premyeloid leukaemia (K562) cells. Spore extracts of five fern species: Anemia phyllitidis, Dicksonia antarctica, Pteridium aquilinum, Pteris vittata and Sadleria pallida, induced significantly more DNA strand breaks than those in the control groups. Only in one species, Osmunda regalis, was the effect no different from that in the control groups. Using extracts from A. phyllitidis and P. vittata, the extent of DNA damage was increased by increasing the original dose 10 times, whereas an experiment in which exposure times were varied suggested that the highest levels of strand breaks appear after 2 h exposure. Simultaneous incubation with human S9 liver enzyme mix ablated the damaging effect of the extracts. Our data show that fern spore extracts can cause DNA damage in human cells in vitro. Considering the strong correlation between DNA damage and carcinogenic events, the observations made in this report may well have some implications for human health. © 2000 Cancer Research Campaign PMID:10883670

  20. Water absorption in a refractive index model for bacterial spores

    NASA Astrophysics Data System (ADS)

    Siegrist, K. M.; Thrush, E.; Airola, M.; Carr, A. K.; Limsui, D. M.; Boggs, N. T.; Thomas, M. E.; Carter, C. C.

    2009-05-01

    The complexity of biological agents can make it difficult to identify the important factors impacting scattering characteristics among variables such as size, shape, internal structure and biochemical composition, particle aggregation, and sample additives. This difficulty is exacerbated by the environmentally interactive nature of biological organisms. In particular, bacterial spores equilibrate with environmental humidity by absorption/desorption of water which can affect both the complex refractive index and the size/shape distributions of particles - two factors upon which scattering characteristics depend critically. Therefore accurate analysis of experimental data for determination of refractive index must take account of particle water content. First, spectral transmission measurements to determine visible refractive index done on suspensions of bacterial spores must account for water (or other solvent) uptake. Second, realistic calculations of aerosol scattering cross sections should consider effects of atmospheric humidity on particle water content, size and shape. In this work we demonstrate a method for determining refractive index of bacterial spores bacillus atropheus (BG), bacillus thuringiensis (BT) and bacillus anthracis Sterne (BAs) which accounts for these effects. Visible index is found from transmission measurements on aqueous and DMSO suspensions of particles, using an anomalous diffraction approximation. A simplified version of the anomalous diffraction theory is used to eliminate the need for knowledge of particle size. Results using this approach indicate the technique can be useful in determining the visible refractive index of particles when size and shape distributions are not well known but fall within the region of validity of anomalous dispersion theory.

  1. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  2. Fungal keratitis due to Schizophyllum commune: an emerging pathogenic fungus.

    PubMed

    Reddy, Ashok Kumar; Ashok, Rangaiahgari; Majety, Madhavi; Chitta, Megharaj; Narayen, Nitesh

    2016-07-12

    Fungal keratitis due to Schizophyllum commune is very rare. In this study, we report the clinical and microbiological profile of five patients with fungal keratitis due to S. commune. Direct microscopic examination of corneal scrapings from all five patients showed septate branching hyaline fungal filaments. Similarly, in all five patients Sabouraud dextrose agar (SDA) plates inoculated with corneal scrapings showed white, cottony colonies on the second day of incubation. Lactophenol cotton blue stained wet preparation of 7-day-old colonies on SDA revealed clamp connections and no spores. The fungus was identified by its characteristic clamp connections, fan-shaped bracket fruiting body with pinkish-grey longitudinally split-radiating gills. The phenotypic identification of one of the five isolates further conformed by ITS sequencing. Treatment outcome was available for two of the five patients; in these two patients, the keratitis resolved with topical natamycin. © 2016 Blackwell Verlag GmbH.

  3. Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi

    SciTech Connect

    Woloshuk, C.P.; Kolattukudy, P.E.

    1986-03-01

    Spores of the phytopathogenic fungus Fusarium solani f. sp. pisi were shown to produce the extracellular enzyme, cutinase, only when cutin or cutin hydrolysate was added to the spore suspension. Dihydroxy-C/sub 16/ acid and trihydroxy-C/sub 18/ acid, which are unique cutin monomers, showed the greatest cutinase-inducing activity. Experiments with several compounds structurally related to these fatty acids suggested that both a omega-hydroxyl and a midchain hydroxyl are required for cutinase-inducing activity. Cutinase appeared in the medium 30-45 min after the addition of the inducers to the spore suspension, and the activity level increased for 6 hr. Addition of cycloheximide (5 ..mu..g/ml) completely inhibited cutinase production, suggesting that protein synthesis was involved in the increase of cutinase activity. Immunoblot analysis with rabbit antibodies prepared against cutinase showed that cutinase protein increased in parallel with the increase in enzyme activity. Measurement of cutinase-specific RNA levels by dot-blot hybridization with /sup 32/P-labeled cutinase cDNA showed that the cutinase gene transcripts could be detected within 15 min after addition of the inducers. Addition of exogenous cutinase greatly enhanced the level of cutinase gene transcripts induced by cutin. These results strongly suggest that the fungal spore senses that it is in contact with the plant by the production of small amounts of cutin monomers catalyzed by the low level of cutinase carried by the spore and that these monomers induce the synthesis of cutinase needed for penetration of the fungus into the plant.

  4. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior.

    PubMed

    Eijlander, Robyn T; Abee, Tjakko; Kuipers, Oscar P

    2011-04-01

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant receptor levels, can cause the observed differences in spore germination and outgrowth behavior. Moreover, heterogeneous behavior is influenced by commonly accepted food preservation techniques, such as heating or the usage of weak organic acids. Understanding the underlying molecular mechanisms and key players involved in phenotypic heterogeneity of spores, while taking the spore's history into account, will improve predictability of the spore's behavior to various treatments and triggers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions.

    PubMed

    Vaishampayan, Parag A; Rabbow, Elke; Horneck, Gerda; Venkateswaran, Kasthuri J

    2012-05-01

    To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110 nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ∼7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (∼3-log reduction in viability for "UV-Mars," and ∼4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants

  6. Identification and Characterization of Glycoproteins on the Spore Surface of Clostridium difficile

    PubMed Central

    Strong, Philippa C. R.; Fulton, Kelly M.; Aubry, Annie; Foote, Simon; Twine, Susan M.

    2014-01-01

    In this study, we identify a major spore surface protein, BclA, and provide evidence that this protein is glycosylated. Following extraction of the spore surface, solubilized proteins were separated by one-dimensional PAGE and stained with glycostain to reveal a reactive high-molecular-mass region of approximately 600 kDa. Tandem mass spectrometry analysis of in-gel digests showed this band to contain peptides corresponding to a putative exosporangial glycoprotein (BclA3) and identified a number of glycopeptides modified with multiple N-acetyl hexosamine moieties and, in some cases, capped with novel glycans. In addition, we demonstrate that the glycosyltransferase gene sgtA (gene CD3350 in strain 630 and CDR3194 in strain R20291), which is located immediately upstream of the bclA3 homolog, is involved in the glycosylation of the spore surface, and is cotranscribed with bclA3. The presence of anti-β-O-GlcNAc-reactive material was demonstrated on the surface of spores by immunofluorescence and in surface extracts by Western blotting, although each strain produced a distinct pattern of reactivity. Reactivity of the spore surface with the anti-β-O-GlcNAc antibody was abolished in the 630 and R20291 glycosyltransferase mutant strains, while complementation with a wild-type copy of the gene restored the β-O-GlcNAc reactivity. Phenotypic testing of R20291 glycosyltransferase mutant spores revealed no significant change in sensitivity to ethanol or lysozyme. However, a change in the resistance to heat of R20291 glycosyltransferase mutant spores compared to R20291 spores was observed, as was the ability to adhere to and be internalized by macrophages. PMID:24816601

  7. Pandora formicae, a specialist ant pathogenic fungus: New insights into biology and taxonomy.

    PubMed

    Małagocka, Joanna; Jensen, Annette Bruun; Eilenberg, Jørgen

    2017-02-01

    Among fungi from the order Entomophthorales (Entomophthoromycota), there are many specialized, obligatory insect-killing pathogens. Pandora formicae (Humber & Bałazy) Humber is a rare example of an entomophthoralean fungus adapted to exclusively infect social insects: wood ants from the genus Formica. There is limited information available on P. formicae; many important aspects of this host-pathogen system remain hitherto unknown, and the taxonomical status of the fungus is unclear. Our study fills out some main gaps in the life history of P. formicae, such as seasonal prevalence and overwintering strategy. Field studies of infection prevalence show a disease peak in late summer and early autumn. Typical thick-walled entomophthoralean resting spores of P. formicae are documented and described for the first time. The proportion of cadavers with resting spores increased from late summer throughout autumn, suggesting that these spores are the main overwintering fungal structures. In addition, the phylogenetic status of Pandora formicae is outlined. Finally, we review the available taxonomical literature and conclude that the name P. formicae should be used rather than the name P. myrmecophaga for ant-infecting fungi displaying described morphological features. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Quantification and Single-Spore Detection of Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    The microscopic identification and quantification of Phakopsora pachyrhizi spores from environmental samples, spore traps, and laboratory specimens can represent a challenge. Such reports, especially from passive spore traps, commonly describe the number of “rust-like” spores; for other forensic sa...

  9. Bacillus spore inactivation methods affect detection assays.

    PubMed

    Dang, J L; Heroux, K; Kearney, J; Arasteh, A; Gostomski, M; Emanuel, P A

    2001-08-01

    Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Assays for detection in the laboratory often employ inactivated preparations of spores or nonpathogenic simulants. This study uses several common biodetection platforms to detect B. anthracis spores that have been inactivated by two methods and compares those data to detection of spores that have not been inactivated. The data demonstrate that inactivation methods can affect the sensitivity of nucleic acid- and antibody-based assays for the detection of B. anthracis spores. These effects should be taken into consideration when comparing laboratory results to data collected and assayed during field deployment.

  10. Bacillus Spore Inactivation Methods Affect Detection Assays

    PubMed Central

    Dang, Jessica L.; Heroux, Karen; Kearney, John; Arasteh, Ameneh; Gostomski, Mark; Emanuel, Peter A.

    2001-01-01

    Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Assays for detection in the laboratory often employ inactivated preparations of spores or nonpathogenic simulants. This study uses several common biodetection platforms to detect B. anthracis spores that have been inactivated by two methods and compares those data to detection of spores that have not been inactivated. The data demonstrate that inactivation methods can affect the sensitivity of nucleic acid- and antibody-based assays for the detection of B. anthracis spores. These effects should be taken into consideration when comparing laboratory results to data collected and assayed during field deployment. PMID:11472945

  11. Bacterial Spores Survive Electrospray Charging and Desolvation

    NASA Astrophysics Data System (ADS)

    Pratt, Sara N.; Austin, Daniel E.

    2014-05-01

    The survivability of Bacillus subtilis spores and vegetative Escherichia coli cells after electrospray from aqueous suspension was tested using mobility experiments at atmospheric pressure. E. coli did not survive electrospray charging and desolvation, but B. subtilis did. Experimental conditions ensured that any surviving bacteria were de-agglomerated, desolvated, and electrically charged. Based on mobility measurements, B. subtilis spores survived even with 2,000-20,000 positive charges. B. subtilis was also found to survive introduction into vacuum after either positive or negative electrospray. Attempts to measure the charge distribution of viable B. subtilis spores using electrostatic deflection in vacuum were inconclusive; however, viable spores with low charge states (less than 42 positive or less than 26 negative charges) were observed.

  12. Mitochondrial biogenesis during fungal spore germination: respiratory cytochromes of dormant and germinating spores of Botryodiplodia.

    PubMed Central

    Brambl, R; Josephson, M

    1977-01-01

    The mitochondrial respiratory cytochrome contents of dormant and germinating conidia of Botryodiplodia theobromae were examined. Oxidized versus reduced difference spectra at 77 degrees K of whole mitochondria from physiologically mature germinated spores showed a typical a-band pattern for cytochromes c, b, and a, with absorption maxima at 549, 554 + 559, and 604 nm, respectively, whereas the difference spectrum of the counterpart mitochondrial fraction from dormant spores showed no cytochrome a bands. However, a fraction prepared from dormant spore mitochondria by detergent extraction and (NH4)2SO4 fractionation contained readily detectable quantities of cytochromes c and b (as shown by the a and Soret absorption bands), but it did not contain the a or Soret bands of cytochrome a observed in a counterpart preparation from germinated spores. The pyridine hemochromogen preparation from the dormant spore mitochondria contained no material that is spectroscopically characteristic of a-type heme and protoheme. These results suggest that cytochrome a is not present as a functional molecule in dormant spores. The first spectroscopically detectable cytochromes were observed in whole mitochondria at 210 min of spore germination, and the amount of each of the cytochromes increased with cell growth. A precursor of the heme porphyrin, delta-[4-14C]aminolevulinic acid, was first incorporated (at accelerating rates) into acid-insoluble spore material at 180 min of germination, which appears to be the approximate time of organization of new mitochondria in these spores. PMID:187569

  13. [Overview of study on Bacillus subtilis spores].

    PubMed

    Watabe, Kazuhito

    2013-01-01

    This review documents my research for the past 29 years in the work of bacterial sporulation. The Gram-positive bacterium Bacillus subtilis forms spores when conditions are unsuitable for growth. The mature spores remain for long periods of starvation and are resistant to harsh environment. This property is attributed mainly to the unique figures of spore's outer layers, spore coat. The protein composition of the spores was comprehensively analyzed by a combination of SDS-PAGE and LC-MS/MS. The total of 154 proteins were identified and 69 of them were novel. The expression of the genes encoding them was dependent on sporulation-specific sigma factors, σF, σE, σG and σK. The expression of a coat protein gene, cotS, was dependent on σK and GerE. CotE is essential for the assembly of CotS in the coat layer. Many coat genes were identified by reverse genetics and the regulation of the gene expression was studied in detail. Some cot genes are functioned in the resistance to heat and lysozyme, and some of the coat proteins are involved in the specificity of germinants. The yrbA is essential in spore development, yrbA deficient cells revealed abnormal figures of spore coat structure and changed the response to germinants. The location of 16 coat proteins was determined by the observation of fluorescence microscopy using fluorescence-labelled proteins. One protein was assigned to the cortex, nine to the inner coat, and four to the outer coat. In addition, CotZ and CgeA appeared in the outermost layer of the spore coat.

  14. Rapid onsite assessment of spore viability.

    SciTech Connect

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  15. Bacillus anthracis spore decontamination in food grease.

    PubMed

    Amoako, Kingsley K; Santiago-Mateo, Kristina; Shields, Michael J; Rohonczy, Elizabeth

    2013-04-01

    Bacillus anthracis Sterne strain spores were analyzed for their resistance against five disinfectants: commercial sodium hypochlorite, Spor-Klenz Ready-to-Use Cold Sterilant, accelerated hydrogen peroxide (AHP), Virkon, and surface decontamination foam (SDF). The aim of this study was to find an effective disinfectant that would reduce the viability of B. anthracis Sterne spores at ≥6 log in the presence of variables such as animal grease and fat, stainless steel, and temperature (room temperature and 4 °C). SDF and 10% sodium hypochlorite consistently reduced the growth of viable B. anthracis Sterne spores after 5 min in the presence of stainless steel at room temperature. It took at least 10 min of contact time for AHP to consistently reduce spore growth by ≥6 log, while it took at least 20 min for 5% bleach and Spor-Klenz to consistently inactivate ≥6 log spores in the presence of stainless steel at room temperature. AHP was the only disinfectant that reduced the viability of B. anthracis Sterne spores at ≥6 log in the presence of stainless steel and animal grease, both at room temperature and 4 °C after 24 h of contact time.

  16. Bacterial spores in silage and raw milk.

    PubMed

    te Giffel, M C; Wagendorp, A; Herrewegh, A; Driehuis, F

    2002-08-01

    Spore-forming bacteria can survive food-processing treatments. In the dairy industry, Bacillus and Clostridium species determine the shelf-life of a variety of heat-treated milk products, mainly if the level of post-process contamination is low. In order to minimize problems caused by bacterial spores in foods and food production processes a chain management approach, from raw materials, ingredients and environmental sources to final product storage conditions, is most effective. Silage is considered to be a significant source of contamination of raw milk with spores. PCR-RAPD fingerprinting and heat resistance studies of populations of aerobic spore-formers isolated from grass and maize silage and from raw milk confirmed this assumption. Prevention of outgrowth of aerobic spores in silage will contribute to reduction of the total spore load of raw milk. Therefore, it is important that the silage fermentation process is controlled. Application of cultures of lactic acid bacteria or chemical additives can aid silage fermentation and improve aerobic stability.

  17. Killing the spores of Bacillus species by molecular iodine.

    PubMed

    Li, Q; Korza, G; Setlow, P

    2017-01-01

    To determine the responses of spores of Bacillus subtilis and Bacillus anthracis surrogate Bacillus thuringiensis Al Hakam to I2 treatment. Spores of B. subtilis and B. thuringiensis killed by aqueous 30°C-I2 could germinate, and their inner membrane (IM) was intact. Spore coats were important in I2 resistance, DNA-protective proteins were not important, and survivors of I2 treatment were not mutagenized. Viabilities of I2 -treated, 90-98% killed spores were much lower on high-salinity media, and the treated spores were more heat sensitive than the untreated spores. Germinated I2 -killed spores were dead as determined by staining with nucleic acid dyes, and many appeared to have been lysed. Aqueous I2 appeared to kill B. subtilis and B. thuringiensis spores such that spores lyse soon after they germinate, and not by causing DNA damage or rupture of spores' IM. I2 treatment also generated many damaged spores that could only be recovered under nonstressful conditions. This work shows that spores of the model organism B. subtilis, and B. thuringiensis, a surrogate for B. anthracis spores, exhibit similar mechanisms of resistance to and killing by I2 . Generation by I2 treatment of conditionally dead spores indicates that appropriate media are essential to efficiently enumerate viable I2 -treated spores. © 2016 The Society for Applied Microbiology.

  18. Spore inoculum optimization to maximize cyclosporin A production in Tolypocladium niveum.

    PubMed

    Lee, Mi-Jin; Lee, Han-Na; Han, Kyubeom; Kim, Eung-Soo

    2008-05-01

    The cyclic undecapeptide, cyclosporin A (CyA), is one of the most commonly prescribed immunosuppressive drugs. It is generated nonribosomally from a multifunctional cyclosporin synthetase enzyme complex by the filamentous fungus Tolypocladium niveum. In order to maximize the production of CyA by wild-type T. niveum (ATCC 34921), each of three culture stages (sporulation culture, growth culture, and production culture) were sequentially optimized. Among the three potential sporulation media, the SSMA medium generated the highest numbers of T. niveum spores. The SSM and SM media were then selected as the optimal growth and production culture media, respectively. The addition of valine and fructose to the SM production medium was also determined to be crucial for CyA biosynthesis. In this optimized three-stage culture system, 3% of the spore inoculum generated the highest level of CyA productivity in a 15-day T. niveum production culture, thereby implying that the determination of an appropriate size of T. niveum spore inoculum plays a critical role in the maximization of CyA production.

  19. Fungal spore germination into yeast or mycelium: possible implications of dimorphism in evolution and human pathogenesis

    NASA Astrophysics Data System (ADS)

    Ghormade, Vandana; Deshpande, M. V.

    The ability of dimorphism in fungi is conventionally regarded as a reversible change between the two vegetative forms, yeast and mycelium, in response to environmental change. A zygomycetous isolate, Benjaminiella poitrasii, exhibited yeast-mycelium transition in response to the change in temperature (37-28 °C) and decrease in glucose concentration. For the first time the presence of dimorphic response during asexual and sexual spore germination is reported under the dimorphism-triggering conditions in B. poitrasii. The zygospores germinated into budding yeast when subjected to yeast-form supporting conditions. The mycelium-form favoring conditions gave rise to true mycelium. Similarly, the asexual spores displayed a dimorphic response during germination. Our observations suggest that dimorphism is an intrinsic ability present in the vegetative, asexual, and sexual forms of the fungus. As dimorphic fungi are intermediate to the unicellular yeast and the filamentous forms, understanding of the dimorphic character could be useful to trace the evolutionary relationships among taxonomically different fungi. Moreover, the implications of spore germination during the onset of pathogenesis and in drug development for human health care are discussed.

  20. High calcium content in Streptomyces spores and its release as an early event during spore germination.

    PubMed Central

    Salas, J A; Guijarro, J A; Hardisson, C

    1983-01-01

    The metal ion content of spores of five Streptomyces species was studied. A general feature of this study was the finding of a very high calcium content (1.1 to 2.1% of the dry weight). Accumulation of calcium occurred preferentially during the sporulation process. Spore calcium was located in the integument fraction, and more than 95% of the calcium was removed from intact spores by ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid. Several divalent cations (Mg2+, Mn2+, Zn2+, and Fe2+) which induced darkening of spores and loss of heat resistance also caused the release of calcium from spores. In addition, darkening of spores was blocked by metabolic inhibitors, whereas calcium excretion was not affected. Two different categories of events in the initiation of germination may be differentiated; first, calcium release from spores which is not energy dependent and is a consequence of triggering of germination by some divalent cations, and second, some other events including loss of heat resistance, loss of spore refractility, and a decrease in absorbance, with at least one energy-dependent step. PMID:6411686

  1. Manganese Oxidation by Spores and Spore Coats of a Marine Bacillus Species

    PubMed Central

    de Vrind, Johannes P. M.; de Vrind-de Jong, Elisabeth W.; de Voogt, Jan-Willem H.; Westbroek, Peter; Boogerd, Fred C.; Rosson, Reinhardt A.

    1986-01-01

    Bacillus sp. strain SG-1 is a marine bacterial species isolated from a near-shore manganese sediment sample. Its mature dormant spores promote the oxidation of Mn2+ to MnO2. By quantifying the amounts of immobilized and oxidized manganese, it was established that bound manganese was almost instantaneously oxidized. When the final oxidation of manganese by the spores was partly inhibited by NaN3 or anaerobiosis, an equivalent decrease in manganese immobilization was observed. After formation of a certain amount of MnO2 by the spores, the oxidation rate decreased. A maximal encrustment was observed after which no further oxidation occurred. The oxidizing activity could be recovered by reduction of the MnO2 with hydroxylamine. Once the spores were encrusted, they could bind significant amounts of manganese, even when no oxidation occurred. Purified spore coat preparations oxidized manganese at the same rate as intact spores. During the oxidation of manganese in spore coat preparations, molecular oxygen was consumed and protons were liberated. The data indicate that a spore coat component promoted the oxidation of Mn2+ in a biologically catalyzed process, after adsorption of the ion to incipiently formed MnO2. Eventually, when large amounts of MnO2 were allowed to accumulate, the active sites were masked and further oxidation was prevented. PMID:16347208

  2. Sensitive, Rapid Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  3. Ultrastructure of spore development in Scutellospora heterogama.

    PubMed

    Jeffries, Peter; Robinson-Boyer, Louisa; Rice, Paul; Newsam, Ray J; Dodd, John C

    2007-07-01

    The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term 'germinal walls' for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.

  4. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores

    PubMed Central

    Abhyankar, Wishwas R.; Kamphorst, Kiki; Swarge, Bhagyashree N.; van Veen, Henk; van der Wel, Nicole N.; Brul, Stanley; de Koster, Chris G.; de Koning, Leo J.

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid Schaeffer’s-glucose (SG) agar plates and 15N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N:15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  5. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores.

    PubMed

    Abhyankar, Wishwas R; Kamphorst, Kiki; Swarge, Bhagyashree N; van Veen, Henk; van der Wel, Nicole N; Brul, Stanley; de Koster, Chris G; de Koning, Leo J

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. (14)N spores prepared on solid Schaeffer's-glucose (SG) agar plates and (15)N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The (14)N:(15)N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  6. FORMATION AND STRUCTURE OF THE SPORE OF BACILLUS COAGULANS

    PubMed Central

    Ohye, D. F.; Murrell, W. G.

    1962-01-01

    Spore formation in Bacillus coagulans has been studied by electron microscopy using an epoxy resin (Araldite) embedding technique. The developmental stages from the origin of the initial spore septum to the mature spore were investigated. The two forespore membranes developed from the double layer of cytoplasmic membrane. The cortex was progressively deposited between these two membranes. The inner membrane finally became the spore protoplasmic membrane, and the outer membrane part of the inner spore coat or the outer spore coat itself. In the mature spore the completed integuments around the spore protoplasm consisted of the cortex, a laminated inner coat, and a dense outer coat. No exosporium was observed. The method of formation of the cortex and the spore coats is discussed. PMID:14481435

  7. Tilletia puccinelliae, a new species of reticulate-spored bunt fungus infecting Puccinellia distans

    USDA-ARS?s Scientific Manuscript database

    A shipment of seeds of Fults alkali grass (Puccinellia distans) grown in Washington state containing bunted seeds was intercepted by quarantine officials at China’s Tianjin Entry-Exit Quarantine and Inspection Bureau. The bunted seeds were filled with irregularly shaped, reticulately ornamented teli...

  8. Draft Genome Sequence of Two Monosporidial Lines of the Karnal Bunt Fungus Tilletia indica Mitra (PSWKBGH-1 and PSWKBGH-2)

    PubMed Central

    Sharma, Pradeep; Saharan, M. S.; Sharma, Indu; Kumar, Jitender; Mishra, Shefali; Muthusamy, Senthilkumar K.; Gupta, R. K.; Jaiswal, Sarika; Iquebal, M. A.; Angadi, U. B.; Kumar, Neeraj; Fatma, Samar; Rai, Anil; Kumar, Dinesh

    2016-01-01

    Karnal bunt disease caused by the fungus Tilletia indica Mitra is a serious concern due to strict quarantines affecting international trade of wheat. We announce here the first draft assembly of two monosporidial lines, PSWKBGH-1 and -2, of this fungus, having approximate sizes of 37.46 and 37.21 Mbp, respectively. PMID:27634992

  9. Survival of Bacillus thuringiensis Spores in Soil †

    PubMed Central

    Petras, Stephen F.; Casida, L. E.

    1985-01-01

    Bacillus thuringiensis spores and parasporal crystals were incubated in natural soil, both in the laboratory and in nature. During the first 2 weeks, the spore count decreased by approximately 1 log. Thereafter, the number of spore CFU remained constant for at least 8 months. B. thuringiensis did not lose its ability to make the parasporal crystals during its residence in soil. Spore survival was similar for a commercial spore-crystal preparation (the insecticide) and for laboratory-grown spores. In contrast to these results, spores that were produced in situ in soil through multiplication of added vegetative cells survived for only a short time. For spore additions to soil, variations in soil pH had little effect on survival for those spores that survived the first 2 weeks of incubation. Also without effect were various pretreatments of the spores before incubation in soil or nutritional amendment or desiccation of the soil. Remoistening of a desiccated soil, however, caused a decrease in spore numbers. Spores incubated in soil in the field did not show this, but the degree of soil desiccation in nature probably never reached that for the laboratory samples. The good survival of B. thuringiensis spores after the first 2 weeks in soil seemed to be a result of their inability to germinate in soil. We found no evidence for the hypothesis that rapid germination ability for spores in soil conferred a survival advantage. PMID:16346949

  10. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment.

    PubMed

    Otani, Saria; Hansen, Lars H; Sørensen, Søren J; Poulsen, Michael

    2016-01-01

    Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules with asexual spores, which the termites feed on. Since all comb material passes through termite guts, it is inevitable that gut bacteria are also deposited in the comb, but it has remained unknown which bacteria are deposited and whether distinct comb bacterial communities are sustained. Using high-throughput sequencing of the 16S rRNA gene, we explored the bacterial community compositions of 33 fungus comb samples from four termite species (three genera) collected at four South African geographic locations in 2011 and 2013. We identified 33 bacterial phyla, with Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from gut deposits and also that environment affects which gut bacteria dominate comb communities at a given point in time.

  11. Morphological, molecular and ecological aspects of the South American hypogeous fungus Alpova austroalnicola sp. nov.

    PubMed

    Nouhra, Eduardo R; Dominguez, Laura S; Becerra, Alejandra G; Trappe, James M

    2005-01-01

    Field studies in Argentina's Yunga District revealed Alpova austroalnicola sp. nov., a hypogeous fungus associated with Alnus acuminata ssp. acuminata. Morphological and molecular studies based on amplification and sequencing of the nuclear LSU rDNA gene showed its unique identity within Alpova. Related genera included in the analyses were Boletus edulis, Rhizopogon spp., Suillus luteus and Truncocolumella citrina. Additional observations of animal diggings around the sites and microscopic examination of fecal pellets of the nine-banded armadillo (Dasypus novemcinctus novemcinctus) indicate A. austroalnicola is consumed and its spores dispersed by animals.

  12. Method for collecting spores from a mold

    DOEpatents

    Au, Frederick H. F.; Beckert, Werner F.

    1977-01-01

    A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.

  13. Aerodynamics of puffball mushroom spore dispersal

    NASA Astrophysics Data System (ADS)

    Amador, Guillermo; Barberie, Alex; Hu, David

    2012-11-01

    Puffball mushrooms Lycoperdon are spherical fungi that release a cloud of spores in response to raindrop impacts. In this combined experimental and theoretical study, we elucidate the aerodynamics of this unique impact-based spore-dispersal. We characterize live puffball ejections by high speed video, the geometry and elasticity of their shells by cantilever experiments, and the packing fraction and size of their spores by scanning electron microscope. We build a dynamically similar puffball mimic composed of a tied-off latex balloon filled with baby powder and topped with a 1-cm slit. A jet of powder is elicited by steady lateral compression of the mimic between two plates. The jet height is a bell-shaped function of force applied, with a peak of 18 cm at loads of 45 N. We rationalize the increase in jet height with force using Darcy's Law: the applied force generates an overpressure maintained by the air-tight elastic membrane. Pressure is relieved as the air travels through the spore interstitial spaces, entrains spores, and exits through the puffball orifice. This mechanism demonstrates how powder-filled elastic shells can generate high-speed jets using energy harvested from rain.

  14. Oxidative Activation of Bacillus cereus Spores

    PubMed Central

    Cochran, Stuart A.; Ordal, Z. John

    1973-01-01

    A study was made of the activation of Bacillus cereus strain T spores by using the oxidizing agent sodium perborate. The degree of activation was measured with constant germination conditions by using L-alanine, inosine, adenosine, and L-alanine plus adenosine as germination stimulants. The germinal response following the various treatments was compared with the responses obtained with heat activation. It was concluded that the optimal time for activation with 30 mM sodium perborate at room temperature was about 4 hr. If the exposure time was greatly extended, the spores would germinate spontaneously. When the perborate treatment followed heat activation, the germinal response to L-alanine was stimulated, to inosine retarded and without apparent effect for adenosine or L-alanine plus adenosine. Results of experiments designed to demonstrate deactivation by slow oxidation showed that spores activated with sodium perborate were not deactivated by slow oxidation, whereas those activated by heat were. A deactivation study using mercaptoethanol as the deactivation agent showed that both methods of activation could be deactivated after a 24-hr exposure, but this deactivation was reversible by extending the exposure to mercaptoethanol. The results of heat-sensitivity studies revealed that about 70% of the sodium perborate-activated spores were heat sensitive after 60 min in a germination menstruum of L-alanine plus adenosine, whereas similarly treated heat-activated and nonactivated spores were about 99.99% heat sensitive, respectively. PMID:4632848

  15. Quantifying spore viability of the honey bee pathogen Nosema apis using flow cytometry.

    PubMed

    Peng, Yan; Lee-Pullen, Tracey F; Heel, Kathy; Millar, A Harvey; Baer, Boris

    2014-05-01

    Honey bees are hosts to more than 80 different parasites, some of them being highly virulent and responsible for substantial losses in managed honey bee populations. The study of honey bee pathogens and their interactions with the bees' immune system has therefore become a research area of major interest. Here we developed a fast, accurate and reliable method to quantify the viability of spores of the honey bee gut parasite Nosema apis. To verify this method, a dilution series with 0, 25, 50, 75, and 100% live N. apis was made and SYTO 16 and Propidium Iodide (n = 35) were used to distinguish dead from live spores. The viability of spores in each sample was determined by flow cytometry and compared with the current method based on fluorescence microscopy. Results show that N. apis viability counts using flow cytometry produced very similar results when compared with fluorescence microscopy. However, we found that fluorescence microscopy underestimates N. apis viability in samples with higher percentages of viable spores, the latter typically being what is found in biological samples. A series of experiments were conducted to confirm that flow cytometry allows the use of additional fluorescent dyes such as SYBR 14 and SYTOX Red (used in combination with SYTO 16 or Propidium Iodide) to distinguish dead from live spores. We also show that spore viability quantification with flow cytometry can be undertaken using substantially lower dye concentrations than fluorescence microscopy. In conclusion, our data show flow cytometry to be a fast, reliable method to quantify N. apis spore viabilities, which has a number of advantages compared with existing methods. © 2013 International Society for Advancement of Cytometry.

  16. Immunolocalization of an alternative respiratory chain in Antonospora (Paranosema) locustae spores: mitosomes retain their role in microsporidial energy metabolism.

    PubMed

    Dolgikh, Viacheslav V; Senderskiy, Igor V; Pavlova, Olga A; Naumov, Anton M; Beznoussenko, Galina V

    2011-04-01

    Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis.

  17. Immunolocalization of an Alternative Respiratory Chain in Antonospora (Paranosema) locustae Spores: Mitosomes Retain Their Role in Microsporidial Energy Metabolism ▿

    PubMed Central

    Dolgikh, Viacheslav V.; Senderskiy, Igor V.; Pavlova, Olga A.; Naumov, Anton M.; Beznoussenko, Galina V.

    2011-01-01

    Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis. PMID:21296913

  18. ROS Involves the Fungicidal Actions of Thymol against Spores of Aspergillus flavus via the Induction of Nitric Oxide

    PubMed Central

    Shen, Qingshan; Zhou, Wei; Li, Hongbo; Hu, Liangbin; Mo, Haizhen

    2016-01-01

    Aspergillus flavus is a well-known pathogenic fungus for both crops and human beings. The acquisition of resistance to azoles by A. flavus is leading to more failures occurring in the prevention of infection by A. flavus. In this study, we found that thymol, one of the major chemical constituents of the essential oil of Monarda punctate, had efficient fungicidal activity against A. flavus and led to sporular lysis. Further studies indicated that thymol treatment induced the generation of both ROS and NO in spores, whereas NO accumulation was far later than ROS accumulation in response to thymol. By blocking ROS production with the inhibitors of NADPH oxidase, NO generation was also significantly inhibited in the presence of thymol, which indicated that ROS induced NO generation in A. flavus in response to thymol treatment. Moreover, the removal of either ROS or NO attenuated lysis and death of spores exposed to thymol. The addition of SNP (exogenous NO donor) eliminated the protective effects of the inhibitors of NADPH oxidase on thymol-induced lysis and death of spores. Taken together, it could be concluded that ROS is involved in spore death induced by thymol via the induction of NO. PMID:27196096

  19. Pulmonary Injury after Combined Exposures to Low-Dose Low-LET Radiation and Fungal Spores

    PubMed Central

    Marples, B.; Downing, L.; Sawarynski, K. E.; Finkelstein, J. N.; Williams, J. P.; Martinez, A. A.; Wilson, G. D.; Sims, M. D.

    2013-01-01

    Exposure to infectious microbes is a likely confounder after a nuclear terrorism event. In combination with radiation, morbidity and mortality from an infection may increase significantly. Pulmonary damage after low-dose low-LET irradiation is characterized by an initial diffuse alveolar inflammation. By contrast, inhaled fungal spores produce localized damage around pulmonary bronchioles. In the present study, we assessed lung injury in C57BL/6 mice after combined exposures to whole-body X radiation and inhaled fungal spores. Either animals were exposed to Aspergillus spores and immediately irradiated with 2 Gy, or the inoculation and irradiation were separated by 8 weeks. Pulmonary injury was assessed at 24 and 48 h and 1, 2, 4, 8, and 24 weeks later using standard H&E-stained sections and compared with sham-treated age-matched controls. Immunohistochemistry for invasive inflammatory cells (macrophages, neutrophils and B and T lymphocytes) was performed. A semi-quantitative assessment of pulmonary injury was made using three distinct parameters: local infiltration of inflammatory cells, diffuse inflammation, and thickening and distortion of alveolar architecture. Radiation-induced changes in lung architecture were most evident during the first 2 weeks postexposure. Fungal changes were seen over the first 4 weeks. Simultaneous combined exposures significantly increased the duration of acute pulmonary damage up to 24 weeks (P < 0.01). In contrast, administration of the fungus 8 weeks after irradiation did not produce enhanced levels of acute pulmonary damage. These data imply that the inhalation of fungal spores at the time of a radiation exposure alters the susceptibility of the lungs to radiation-induced injury. PMID:21275606

  20. Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis

    PubMed Central

    Liu, Han; Li, Mingqian; He, Xinyi; Cai, Shunfeng; He, Xiangkang; Lu, Xingmeng

    2016-01-01

    Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori. Germination, an indispensible process through which microsporidia infect the host cells, is regarded as a key developmental turning point for microsporidia from dormant state to reproduction state. Thus, elucidating the transcriptome changes before and after germination is crucial for parasite control. However, the molecular basis of germination of microsporidia remains unknown. To investigate this germination process, the transcriptome of N. bombycis ungerminated spores and germinated spores were sequenced and analyzed. More than 60 million high-quality transcript reads were generated from these two groups using RNA-Seq technology. After assembly, 2756 and 2690 unigenes were identified, respectively, and subsequently annotated based on known proteins. After analysis of differentially expressed genes, 66 genes were identified to be differentially expressed (P ≤ 0.05) between these two groups. A protein phosphatase-associated gene was first identified to be significantly up-regulated as determined by RNA-Seq and immunoblot analysis, indicating that dephosphorylation might potentially contribute to microsporidia germination. The DEGs that encode proteins involved in glycometabolism, spore wall proteins and ricin B lectin of N. bombycis were also analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed genes responsible for some specific biological functions and processes. The datasets generated in this study provide a basic characterization of the transcriptome changes in N. bombycis during germination. The analysis of transcriptome data and identification of certain functional genes which are robust candidate genes related to germination will help to provide a deep understanding of spore germination and invasion. PMID:26837419

  1. Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis.

    PubMed

    Liu, Han; Li, Mingqian; He, Xinyi; Cai, Shunfeng; He, Xiangkang; Lu, Xingmeng

    2016-03-01

    Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori. Germination, an indispensible process through which microsporidia infect the host cells, is regarded as a key developmental turning point for microsporidia from dormant state to reproduction state. Thus, elucidating the transcriptome changes before and after germination is crucial for parasite control. However, the molecular basis of germination of microsporidia remains unknown. To investigate this germination process, the transcriptome of N. bombycis ungerminated spores and germinated spores were sequenced and analyzed. More than 60 million high-quality transcript reads were generated from these two groups using RNA-Seq technology. After assembly, 2756 and 2690 unigenes were identified, respectively, and subsequently annotated based on known proteins. After analysis of differentially expressed genes, 66 genes were identified to be differentially expressed (P ≤ 0.05) between these two groups. A protein phosphatase-associated gene was first identified to be significantly up-regulated as determined by RNA-Seq and immunoblot analysis, indicating that dephosphorylation might potentially contribute to microsporidia germination. The DEGs that encode proteins involved in glycometabolism, spore wall proteins and ricin B lectin of N. bombycis were also analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed genes responsible for some specific biological functions and processes. The datasets generated in this study provide a basic characterization of the transcriptome changes in N. bombycis during germination. The analysis of transcriptome data and identification of certain functional genes which are robust candidate genes related to germination will help to provide a deep understanding of spore germination and invasion. © The Author 2016. Published by ABBS Editorial Office in association with Oxford University Press on

  2. An appraisal of Impregon as a deterrent of domestic fungus growth.

    PubMed

    Burge, H A; Solomon, W R; Boise, J R

    1976-10-01

    Impregon brand of tetrachlorsalicylanilide (TCSA) has been profferred widely as a household fungistatic agent, although its value remains unproved. To assess its effects, this agent was used as a laundry and paint additive and as a treatment for burlap rug backing; after recommended applications of Impregon, coded replicate materials were inoculated with mixed suspensions of fungus particles. No difference was evident in fungus growth points on fabric swatches washed in tap water with and without Impregon. However, growth on both of these was significantly greater than on samples laundered in tap water using only a commercial soap or liquid detergent. Fungus soiling of burlap was not clearly diminished by prescribed applications of Impregon solution 3 mo previously. Similarly, the addition of this agent to paint did not suppress fungus growth on Masonite plaques to which it had been applied. However, comparable levels of Impregon incorporated into agar media substantially inhibited spore germination. These findings suggest that the bioavailability of TCSA is insufficient to provide desired household antifungal effects when Impregon is used in accord with current recommendations.

  3. Seasonal fungus prevalence inside and outside of domestic environments in the subtropical climate

    NASA Astrophysics Data System (ADS)

    Kuo, Yu-Mei; Li, Chin-Shan

    Airborne fungi were collected using the N6 Andersen sampler at 1-month intervals for I yr inside and outside of six apartments in Taipei. It was shown that seasonal variations of indoor and outdoor fungus number concentrations were remarkable and indoor and outdoor air spore counts varied considerably from residence to residence. The geometric mean concentrations of indoor and outdoor fungi were found to be higher than 1000 CFU m -3 during the summer months and abruptly decreased to below 100 CFU m -3 in the winter. A high correlation coefficient was found between fungus concentrations in living rooms and outdoors. Moreover, the ratios of indoor to outdoor fungus concentrations (0.21-3.81) were too low to indicate the presence of any indoor fungus sources. A large variety of mold genera was isolated, and Aspergillus, Penicillium, Cladosporium, and yeast were observed to be predominant. Indoors, Penicillium showed the highest concentrations in the summer and autumn months, while Asperyillus and Cladosporium were also observed frequently. The outside air was dominated by Asperyillus, Penicillium, and Cladosporium in spring, summer, and autumn, but by Penicillium and yeast during winter months. In addition, Cladosporium was found to be absent indoors and outdoors in the winter.

  4. Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores.

    PubMed

    Rabi, Rebecca; Turnbull, Lynne; Whitchurch, Cynthia B; Awad, Milena; Lyras, Dena

    2017-01-01

    Clostridium sordellii is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of C. sordellii is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the C. sordellii spore are lacking. Here, we used a range of electron microscopy techniques together with superresolution optical microscopy to characterize the C. sordellii spore morphology with an emphasis on the exosporium. The C. sordellii spore is made up of multiple layers with the exosporium presenting as a smooth balloon-like structure that is open at the spore poles. Focusing on the outer spore layers, we compared the morphologies of C. sordellii spores derived from different strains and determined that there is some variation between the spores, most notably with spores of some strains having tubular appendages. Since Clostridium difficile is a close relative of C. sordellii, their spores were compared by electron microscopy and their exosporia were found to be distinctly different from each other. This study therefore provides new structural details of the C. sordellii spore and offers insights into the physical structure of the exosporium across clostridial species. IMPORTANCEClostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for

  5. Observations on non-random distribution of spores of Henneguya spp. (Cnidaria: Myxosporea: Myxobolidae) within plasmodia.

    PubMed

    Eiras, Jorge C; Cruz, Manuel; Cruz, Cristina; Saraiva, Aurelia; Adriano, Edson A; Szekely, Csaba; Molnar, Kalman

    2017-06-20

    Species of the cnidarian genus Henneguya Thélohan, 1892 (Myxosporea: Myxobolidae) are histozoic parasites commonly found in freshwater and, more rarely, in marine fish. The development of these parasites in fish tissues includes the formation of plasmodia within which occurs the sporogony originating spores with two caudal processes, which are usually randomly distributed within the plasmodia. In this report the authors present some cases of non-random distribution of the spores of six species of Henneguya within their plasmodia. Two different patterns of non-random distribution were found based on a literature survey. These patterns and their origin are discussed. Apparently this non-random distribution of the spores is due to both internal and external factors.

  6. Multigeneration cross contamination of mail with Bacillus species spores by tumbling.

    PubMed

    Edmonds, Jason; Clark, Paul; Williams, Leslie; Lindquist, H D Alan; Martinez, Kenneth; Gardner, Warren; Shadomy, Sean; Hornsby-Myers, Jennifer

    2010-07-01

    In 2001, envelopes loaded with Bacillus anthracis spores were mailed to Senators Daschle and Leahy as well as to the New York Post and NBC News buildings. Additional letters may have been mailed to other news agencies because there was confirmed anthrax infection of employees at these locations. These events heightened the awareness of the lack of understanding of the mechanism(s) by which objects contaminated with a biological agent might spread disease. This understanding is crucial for the estimation of the potential for exposure to ensure the appropriate response in the event of future attacks. In this study, equipment to simulate interactions between envelopes and procedures to analyze the spread of spores from a "payload" envelope (i.e., loaded internally with a powdered spore preparation) onto neighboring envelopes were developed. Another process to determine whether an aerosol could be generated by opening contaminated envelopes was developed. Subsequent generations of contaminated envelopes originating from a single payload envelope showed a consistent two-log decrease in the number of spores transferred from one generation to the next. Opening a tertiary contaminated envelope resulted in an aerosol containing 10(3) B. anthracis spores. We developed a procedure for sampling contaminated letters by a nondestructive method aimed at providing information useful for consequence management while preserving the integrity of objects contaminated during the incident and preserving evidence for law enforcement agencies.

  7. Multigeneration Cross Contamination of Mail with Bacillus Species Spores by Tumbling ▿

    PubMed Central

    Edmonds, Jason; Clark, Paul; Williams, Leslie; Lindquist, H. D. Alan; Martinez, Kenneth; Gardner, Warren; Shadomy, Sean; Hornsby-Myers, Jennifer

    2010-01-01

    In 2001, envelopes loaded with Bacillus anthracis spores were mailed to Senators Daschle and Leahy as well as to the New York Post and NBC News buildings. Additional letters may have been mailed to other news agencies because there was confirmed anthrax infection of employees at these locations. These events heightened the awareness of the lack of understanding of the mechanism(s) by which objects contaminated with a biological agent might spread disease. This understanding is crucial for the estimation of the potential for exposure to ensure the appropriate response in the event of future attacks. In this study, equipment to simulate interactions between envelopes and procedures to analyze the spread of spores from a “payload” envelope (i.e., loaded internally with a powdered spore preparation) onto neighboring envelopes were developed. Another process to determine whether an aerosol could be generated by opening contaminated envelopes was developed. Subsequent generations of contaminated envelopes originating from a single payload envelope showed a consistent two-log decrease in the number of spores transferred from one generation to the next. Opening a tertiary contaminated envelope resulted in an aerosol containing 103 B. anthracis spores. We developed a procedure for sampling contaminated letters by a nondestructive method aimed at providing information useful for consequence management while preserving the integrity of objects contaminated during the incident and preserving evidence for law enforcement agencies. PMID:20511424

  8. International.

    ERIC Educational Resources Information Center

    Hoover, Linn

    1979-01-01

    The International Geological Correlation Project has attained scientific maturity and broad support and participation by geologists world wide. Its purpose is to provide a mechanism for international cooperation and information exchange about geological problems that transcend national boundaries. (Author/BB)

  9. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    SciTech Connect

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  10. Bacterial spores and chemical sporicidal agents.

    PubMed Central

    Russell, A D

    1990-01-01

    Bacterial spores are among the most resistant of all living cells to biocides, although the response depends on the stage of sporulation. The development of resistance to some agents such as chlorhexidine occurs much earlier in sporulation than does resistance to glutaraldehyde, which is a very late event. During germination or outgrowth or both, resistance is lost and the cells become as susceptible to biocides as nonsporulating bacteria. Mechanisms of spore resistance to, and the action of, biocides are discussed, and possible means of enhancing antispore activity are considered. The clinical and other uses of sporicidal and sporostatic chemical agents are described. Images PMID:2187595

  11. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated.

  12. Analysis of the Spore Membrane Proteome in Clostridium perfringens Implicates Cyanophycin in Spore Assembly.

    PubMed

    Liu, Hualan; Ray, W Keith; Helm, Richard F; Popham, David L; Melville, Stephen B

    2016-06-15

    Heat-resistant endospore formation plays an important role in Clostridium perfringens-associated foodborne illnesses. The spores allow the bacterium to survive heating during normal cooking processes, followed by germination and outgrowth of the bacterium in contaminated foods. To identify proteins associated with germination and other spore functions, a comparative spore membrane proteome analysis of dormant and germinated spores of C. perfringens strain SM101 was performed by using gel-based protein separation and liquid chromatography coupled with matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometry. A total of 494 proteins were identified, and 117 of them were predicted to be integral membrane or membrane-associated proteins. Among these membrane proteins, 16 and 26 were detected only in dormant and germinated spores, respectively. One protein that was detected only in germinated spore membranes was the enzyme cyanophycinase, a protease that cleaves the polymer cyanophycin, which is composed of l-arginine-poly(l-aspartic acid), to β-Asp-Arg. Genes encoding cyanophycinase and cyanophycin synthetase have been observed in many species of Clostridium, but their role has not been defined. To determine the function of cyanophycin in C. perfringens, a mutation was introduced into the cphA gene, encoding cyanophycin synthetase. In comparison to parent strain SM101, the spores of the mutant strain retained wild-type levels of heat resistance, but fewer spores were made, and they were smaller, suggesting that cyanophycin synthesis plays a role in spore assembly. Although cyanophycin could not be extracted from sporulating C. perfringens cells, an Escherichia coli strain expressing the cphA gene made copious amounts of cyanophycin, confirming that cphA encodes a cyanophycin synthetase. Clostridium perfringens is a common cause of food poisoning, and germination of spores after cooking is thought to play a significant role in

  13. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

    PubMed Central

    Francis, Michael B.; Allen, Charlotte A.

    2015-01-01

    ABSTRACT Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant

  14. Production and counting of spores of Clostridium chauvoei.

    PubMed

    Bagadi, H O

    1977-06-01

    The concentration and viability of spores produced by four different strains of Clostridium chauvoei (C. feseri) grown in a modified medium for 18 days are described. The medium yielded enough viable spores for experimental work.

  15. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective.

  16. Reevaluation of Bacitracin as a Spore Coat Component

    PubMed Central

    Marschke, C. K.; Bernlohr, R. W.

    1970-01-01

    Analysis of hydrolysates of highly purified spore coats revealed only small quantities of ornithine, a component of bacitracin. We conclude that the peptide, bacitracin, is not a significant component of spore coats. PMID:5437729

  17. Surface tension propulsion of fungal spores by use of microdroplets

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2010-11-01

    Most basidiomycete fungi (such as edible mushrooms) actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed high-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeast, along with a detailed mechanical analysis of the spore ejection. We developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system.

  18. Bacillus anthracis spore interactions with mammalian cells: Relationship between germination state and the outcome of in vitro

    PubMed Central

    2011-01-01

    Background During inhalational anthrax, internalization of Bacillus anthracis spores by host cells within the lung is believed to be a key step for initiating the transition from the localized to disseminated stages of infection. Despite compelling in vivo evidence that spores remain dormant within the bronchioalveolar spaces of the lungs, and germinate only after uptake into host cells, most in vitro studies of infection have been conducted under conditions that promote rapid germination of spores within the culture medium. Results Using an in vitro model of infection, we evaluated the influence of the germination state of B. anthracis spores, as controlled by defined culture conditions, on the outcome of infection. Spores prepared from B. anthracis Sterne 7702 germinated in a variety of common cell culture media supplemented with fetal bovine serum (FBS) while, in the absence of FBS, germination was strictly dependent on medium composition. RAW264.7 macrophage-like cells internalized spores to the same extent in either germinating or non-germinating media. However, significantly more viable, intracellular B. anthracis were recovered from cells infected under non-germinating conditions compared to germinating conditions. At the same time, RAW264.7 cells demonstrated a significant loss in viability when infected under non-germinating conditions. Conclusions These results suggest that the outcome of host cell infection is sensitive to the germination state of spores at the time of uptake. Moreover, this study demonstrates the efficacy of studying B. anthracis spore infection of host cells within a defined, non-germinating, in vitro environment. PMID:21356113

  19. Growth of ferns from spores in axenic culture.

    PubMed

    Ford, M V; Fay, M F

    1990-01-01

    In this chapter, a method by which many fern species can be successfully grown from spores in axenic culture will be described. Unlike the conventional method of sowing the spores on compost, this method allows spore populations free from contamination by spores of other species to be sown. The method can be used for the production of mature sporophytes or to provide a controllable system for biosystematic studies of, or experimentation with, fern gametophytes (1,2).

  20. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  1. Mechanisms of Bacterial Spore Germination and Its Heterogeneity

    DTIC Science & Technology

    2015-01-10

    Bacillus species germinate normally with high pressure, peptidoglycan fragments and bryostatin. , Journal of Bacteriology, (01 2010): . doi: L...proteins in degrading cortex peptidoglycan of spores of Bacillus species in vitro and during spore germination, Journal of Bacteriology, (06 2013... Peptidoglycan Structure and Cortex Hydrolysis on the Kinetics of Ca2+-Dipicolinic Acid Release During Bacillus subtilis Spore Germination, Journal of

  2. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  3. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  4. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  5. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  6. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  7. Classification of Streptomyces Spore Surfaces into Five Groups

    PubMed Central

    Dietz, Alma; Mathews, John

    1971-01-01

    Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607

  8. Use of molecular methods for the detection of fungal spores.

    PubMed

    Ward, Elaine

    2009-01-01

    Traditional methods for the isolation and identification of fungal spores can be time-consuming and laborious. DNA-based methods for fungal detection can be used to detect the spores of plant-pathogenic fungi. Air borne spores can be collected and identified by PCR allowing identification of the species.

  9. Airborne myxomycete spores: detection using molecular techniques.

    PubMed

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  10. Pollen and spores of terrestrial plants

    USGS Publications Warehouse

    Bernhardt, Christopher E.; Willard, Debra A.; Shennan, Ian; Long, Antony J.; Horton, Benjamin P.

    2015-01-01

    Pollen and spores are valuable tools in reconstructing past sea level and climate because of their ubiquity, abundance, and durability as well as their reciprocity with source vegetation to environmental change (Cronin, 1999; Traverse, 2007; Willard and Bernhardt, 2011). Pollan is found in many sedimentary environments, from freshwater to saltwater, terrestrial to marine. It can be abundant in a minimal amount of sample material, for example half a gram, as concentrations can be as high as four million grains per gram (Traverse, 2007). The abundance of pollen in a sample lends it to robust statistical analysis for the quantitative reconstruction of environments. The outer cell wall is resistant to decay in sediments and allows palynomorphs (pollen and spores) to record changes in plant communities and sea level over millions of years. These characteristics make pollen and spores a powerful tool to use in sea-level research.This chapter describes the biology of pollen and spores and how they are transported and preserved in sediments. We present a methodology for isolating pollen from sediments and a general language and framework to identify pollen as well as light micrographs of a selection of common pollen grains, We then discuss their utility in sea-level research.

  11. Mechanisms of Resistance in Microbial Spores

    DTIC Science & Technology

    1990-12-20

    solids (and water) content by immersion refractometry . Heat-activated spores of Bacillus stearotherrnophilus were found to be separable into two...incrC· ment of bacterial cells, enabling determination of their solids content by immersion refractometry . The results agreed well with values for

  12. Radiation Inactivation of Bacterial Spores on Mars

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Kminek, G.

    2004-01-01

    The conditions on Mars are thought to have been more conducive for life during its early history, about 3 billion years ago. If life ever evolved on Mars, would it be possible to see the remnants of a long-extinct biosphere today? Or even more interesting, would it be possible to find Martian bacterial spores that survived for billions of years on Mars?

  13. Myxomycete (slime mold) spores: unrecognized aeroallergens?

    PubMed

    Lierl, Michelle B

    2013-12-01

    Myxomycete spores are present in the outdoor air but have not been studied for allergenicity. To determine whether patients with seasonal allergic rhinitis (SAR) symptoms are sensitized to myxomycete spores. Myxomycete specimens were collected in the field. Nine species of myxomycetes were collected and identified: Arcyria cinerea, Ceratiomyxa fruticulosa, Fuligo septica, Hemitrichia clavata, Lycogala epidendrum, Metatrichia vesparium, Stemonitis nigrescens, Tubifera ferruginosa, and Trichea favoginea. Allergen extracts were made for each species. Protein content of each extract was measured by bicinchoninic acid assay. Protein electrophoresis was performed. Subjects with a history of SAR symptoms were enrolled, and allergy skin prick testing was performed with each extract. Protein content of the extracts ranged from 1.05 to 5.8 mg/mL. Protein bands were seen at 10 to 250 kD. Allergy prick testing was performed in 69 subjects; 42% of subjects had positive prick test results for at least 1 myxomycete extract, with 9% to 22% reacting to each extract. Five of the 12 subjects who tested negative for all allergens on the standard aeroallergen panel had positive prick test results for myxomycetes. Forty-two percent of subjects with SAR were sensitized to myxomycete spores. A significant subset of subjects who had SAR symptoms and otherwise negative skin test results showed sensitization to myxomycetes. These spores are present in the outdoor air during the summer and autumn and might be significant aeroallergens. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  15. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  16. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation

    PubMed Central

    Ribis, John W.; Ravichandran, Priyanka; Putnam, Emily E.; Pishdadian, Keyan

    2017-01-01

    ABSTRACT The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and

  17. Molecular characterization of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae).

    PubMed

    Steiner, Ulrike; Ahimsa-Müller, Mahalia A; Markert, Anne; Kucht, Sabine; Gross, Julia; Kauf, Nicole; Kuzma, Monika; Zych, Monika; Lamshöft, Marc; Furmanowa, Miroslawa; Knoop, Volker; Drewke, Christel; Leistner, Eckhard

    2006-08-01

    Ergoline alkaloids (syn. ergot alkaloids) are constituents of clavicipitaceous fungi (Ascomycota) and of one particular dicotyledonous plant family, the Convolvulaceae. While the biology of fungal ergoline alkaloids is rather well understood, the evolutionary and biosynthetic origin of ergoline alkaloids within the family Convolvulaceae is unknown. To investigate the possible origin of ergoline alkaloids from a plant-associated fungus, 12 endophytic fungi and one epibiotic fungus were isolated from an ergoline alkaloid-containing Convolvulaceae plant, Ipomoea asarifolia Roem. & Schult. Phylogenetic trees constructed from 18S rDNA genes as well as internal transcribed spacer (ITS) revealed that the epibiotic fungus belongs to the family Clavicipitaceae (Ascomycota) whereas none of the endophytic fungi does. In vitro and in vivo cultivation on intact plants gave no evidence that the endophytic fungi are responsible for the accumulation of ergoline alkaloids in I. asarifolia whereas the epibiotic clavicipitaceous fungus very likely is equipped with the genetic material to synthesize these compounds. This fungus resisted in vitro and in vivo cultivation and is seed transmitted. Several observations strongly indicate that this plant-associated fungus and its hitherto unidentified relatives occurring on different Convolvulaceae plants are responsible for the isolated occurrence of ergoline alkaloids in Convolvulaceae. This is the first report of an ergot alkaloid producing clavicipitaceous fungus associated with a dicotyledonous plant.

  18. Studies on Bacterial Spore Ultraviolet Light Resistance and Regulation of the Activity of a Spore Protease

    DTIC Science & Technology

    1993-12-08

    fluorescence microscopy using a DNA stain ~that the forespore nucleoid becomes quite (> 2-3 fold) condensed early in sporulation. Analysis of this event...Setlow, P., Spore structural proteins, In Bacillus subtilis and other Gram -positive bacteria: biochemistry, physiology, and molecular genetics (J.A...SASP) of bacteria, FEBS Lett. 3M5, 115-120 (1992). Popham, D. and P. Setlow, The cortical peptidoglycan from spores of Bacillus megaterium and Bacillus

  19. Inactivation of Spores of Bacillus Species by Wet Heat: Studies on Single Spores Using Laser Tweezers Taman Spectroscopy

    DTIC Science & Technology

    2013-02-01

    determined kinetic change in spore state and Ca-DPA levels in single spores of Bacillus and Clostridium species during heat activation; (2...Bacillus and Clostridium species during heat activation; (2) measured the rates of Ca-DPA release and protein denaturation of individual spores when...Y.Q. Li. Effects of wet heat-treatment on the germination of individual spores of Clostridium perfringens, J Appl Microiol, (08 2012): 0. doi: 08/19

  20. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment.

    PubMed

    Rieux, Adrien; Soubeyrand, Samuel; Bonnot, François; Klein, Etienne K; Ngando, Josue E; Mehl, Andreas; Ravigne, Virginie; Carlier, Jean; de Lapeyre de Bellaire, Luc

    2014-01-01

    Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances) of spore-producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis. Gradients were measured during a single generation and over 272 traps installed up to 1000 m along eight directions radiating from a traceable source of inoculum composed of fungicide-resistant strains. We adjusted several kernels differing in the shape of their tail and tested for two types of anisotropy. Contrasting dispersal kernels were observed between the two types of spores. For sexual spores (ascospores), we characterized both a steep gradient in the first few metres in all directions and rare long-distance dispersal (LDD) events up to 1000 m from the source in two directions. A heavy-tailed kernel best fitted the disease gradient. Although ascospores distributed evenly in all directions, average dispersal distance was greater in two different directions without obvious correlation with wind patterns. For asexual spores (conidia), few dispersal events occurred outside of the source plot. A gradient up to 12.5 m from the source was observed in one direction only. Accordingly, a thin-tailed kernel best fitted the disease gradient, and anisotropy in both density and distance was correlated with averaged daily wind gust. We discuss the validity of our results as well as their implications in terms of disease diffusion and management strategy.

  1. Genome Diversity of Spore-Forming Firmicutes

    PubMed Central

    Galperin, Michael Y.

    2015-01-01

    Summary Formation of heat-resistant endospores is a specific property of the members of the phylum Firmicutes (low-G+C Gram-positive bacteria). It is found in representatives of four different classes of Firmicutes: Bacilli, Clostridia, Erysipelotrichia, and Negativicutes, which all encode similar sets of core sporulation proteins. Each of these classes also includes non-spore-forming organisms that sometimes belong to the same genus or even species as their spore-forming relatives. This chapter reviews the diversity of the members of phylum Firmicutes, its current taxonomy, and the status of genome sequencing projects for various subgroups within the phylum. It also discusses the evolution of the Firmicutes from their apparently spore-forming common ancestor and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, ruminococci) in the course of their adaptation to the saprophytic lifestyle in nutrient-rich environment. It argues that systematics of Firmicutes is a rapidly developing area of research that benefits from the evolutionary approaches to the ever-increasing amount of genomic and phenotypic data and allows arranging these data into a common framework. Later the Bacillus filaments begin to prepare for spore formation. In their homogenous contents strongly refracting bodies appear. From each of these bodies develops an oblong or shortly cylindrical, strongly refracting, dark-rimmed spore. Ferdinand Cohn. 1876. Untersuchungen über Bacterien. IV. Beiträge zur Biologie der Bacillen. Beiträge zur Biologie der Pflanzen, vol. 2, pp. 249–276. (Studies on the biology of the bacilli. In: Milestones in Microbiology: 1546 to 1940. Translated and edited by Thomas D. Brock. Prentice-Hall, Englewood Cliffs, NJ, 1961, pp. 49–56). PMID:26184964

  2. Effects of Major Spore-Specific DNA Binding Proteins on Bacillus subtilis Sporulation and Spore Properties

    PubMed Central

    Setlow, Barbara; McGinnis, Kelly A.; Ragkousi, Katerina; Setlow, Peter

    2000-01-01

    Sporulation of a Bacillus subtilis strain (termed α− β−) lacking the majority of the α/β-type small, acid-soluble spore proteins (SASP) that are synthesized in the developing forespore and saturate spore DNA exhibited a number of differences from that of the wild-type strain, including delayed forespore accumulation of dipicolinic acid, overexpression of forespore-specific genes, and delayed expression of at least one mother cell-specific gene turned on late in sporulation, although genes turned on earlier in the mother cell were expressed normally in α− β− strains. The sporulation defects in α− β− strains were corrected by synthesis of chromosome-saturating levels of either of two wild-type, α/β-type SASP but not by a mutant SASP that binds DNA poorly. Spores from α− β− strains also exhibited less glutaraldehyde resistance and slower outgrowth than did wild-type spores, but at least some of these defects in α− β− spores were abolished by the synthesis of normal levels of α/β-type SASP. These results indicate that α/β-type SASP may well have global effects on gene expression during sporulation and spore outgrowth. PMID:11092849

  3. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival.

    PubMed

    Al-Laaeiby, Ayat; Kershaw, Michael J; Penn, Tina J; Thornton, Christopher R

    2016-03-24

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H₂O₂), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H₂O₂ treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  4. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival

    PubMed Central

    Al-Laaeiby, Ayat; Kershaw, Michael J.; Penn, Tina J.; Thornton, Christopher R.

    2016-01-01

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not contribute to

  5. Maturation of Released Spores Is Necessary for Acquisition of Full Spore Heat Resistance during Bacillus subtilis Sporulation ▿

    PubMed Central

    Sanchez-Salas, Jose-Luis; Setlow, Barbara; Zhang, Pengfei; Li, Yong-qing; Setlow, Peter

    2011-01-01

    The first ∼10% of spores released from sporangia (early spores) during Bacillus subtilis sporulation were isolated, and their properties were compared to those of the total spores produced from the same culture. The early spores had significantly lower resistance to wet heat and hypochlorite than the total spores but identical resistance to dry heat and UV radiation. Early and total spores also had the same levels of core water, dipicolinic acid, and Ca and germinated similarly with several nutrient germinants. The wet heat resistance of the early spores could be increased to that of total spores if early spores were incubated in conditioned sporulation medium for ∼24 h at 37°C (maturation), and some hypochlorite resistance was also restored. The maturation of early spores took place in pH 8 buffer with Ca2+ but was blocked by EDTA; maturation was also seen with early spores of strains lacking the CotE protein or the coat-associated transglutaminase, both of which are needed for normal coat structure. Nonetheless, it appears to be most likely that it is changes in coat structure that are responsible for the increased resistance to wet heat and hypochlorite upon early spore maturation. PMID:21821751

  6. Protective Role of Spore Structural Components in Determining Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions

    PubMed Central

    Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.

    2012-01-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants. PMID:23064347

  7. Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth*

    PubMed Central

    Suo, Jinwei; Zhao, Qi; Zhang, Zhengxiu; Chen, Sixue; Cao, Jian'guo; Liu, Guanjun; Wei, Xing; Wang, Tai; Yang, Chuanping; Dai, Shaojun

    2015-01-01

    Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination. PMID:26091698

  8. Development of an approach to analyze the interaction between Nosema bombycis (microsporidia) deproteinated chitin spore coats and spore wall proteins.

    PubMed

    Yang, Donglin; Dang, Xiaoqun; Tian, Rui; Long, Mengxian; Li, Chunfeng; Li, Tian; Chen, Jie; Li, Zhi; Pan, Guoqing; Zhou, Zeyang

    2014-01-01

    Nosema bombycis is an obligate intracellular parasite of the Bombyx mori insect. The spore wall of N. bombycis is composed of an electron-dense proteinaceous outer layer and an electron-transparent chitinous inner layer, and the spore wall is connected to the plasma membrane. In this study, the deproteinated chitin spore coats (DCSCs) were acquired by boiling N. bombycis in 1M NaOH. Under a transmission electron microscope, the chitin spore coat resembles a loosely curled ring with strong refractivity; organelles and nuclei were not observed inside the spore. The anti-SWP25, 26, 30 and 32 antibodies were used to detect whether spore wall proteins within the total soluble and mature spore proteins could bind to the DCSCs. Furthermore, a chitin binding assay showed that within the total soluble and mature spore proteins, the SWP26, SWP30 and SWP32 spore wall proteins, bound to the deproteinated chitin spore coats, although SWP25 was incapable of this interaction. Moreover, after the DCSCs were incubated with the alkali-soluble proteins, the latter were obtained by treating N. bombycis with 0.1M NaOH. Following this treatment, SWP32 was still capable of binding the DCSCs, while SWP26 and SWP30 were unable to bind. Collectively, the DCSCs are useful for investigating the arrangement of spore wall proteins, and they shed light on how the microsporidia spore wall is self-assembled. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated mars surface conditions.

    PubMed

    Moeller, Ralf; Schuerger, Andrew C; Reitz, Günther; Nicholson, Wayne L

    2012-12-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.

  10. Lovastatin triggers an apoptosis-like cell death process in the fungus Mucor racemosus.

    PubMed

    Roze, L V; Linz, J E

    1998-11-01

    The filamentous dimorphic fungus Mucor racemosus possesses three ras genes, Mras1, 2, and 3, whose expression is correlated to morphogenesis of the fungus. Lovastatin, an indirect inhibitor of protein prenylation, altered the processing of MRas1 protein, blocked the accumulation of MRas3 protein, and caused the MRas1/p20 protein complex to disappear in M. racemosus. Concurrently it arrested sporangiospore germination, decreased growth rate, caused a loss of cell viability accompanied by cell shrinkage, increased cell density and cytoplasm condensation, and triggered DNA fragmentation, resulting in nucleosomes and nucleosome multimers. The specific morphological and biochemical events seen in Mucor cell death, particularly DNA fragmentation, resemble the best known characteristics of classical apoptosis in mammalian cells and prompted us to classify lovastatin-induced cell death as an apoptosis-like process. Lovastatin did not cause cell death in a leucine auxotroph of Mucor grown in YNB minimal medium, conditions which support only spherical growth during spore germination. Exogenous dibutyryl-cAMP initiated morphogenesis from hyphal (polar) growth to yeast-like (spherical) growth during spore germination and strongly prevented cell death which resulted from lovastatin treatment. Wortmannin added together with dibutyryl-cAMP showed a synergistic effect in the prevention of fungal cell death. These data suggest that the regulation of lovastatin-induced cell death in Mucor requires a signal transduction pathway(s) involving cAMP whose function is specific to a particular developmental stage.

  11. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  12. Biotic and abiotic regulation of resting spore formation in vivo of obligate aphid pathogen Pandora nouryi: modeling analysis and biological implication.

    PubMed

    Zhou, Xiang; Feng, Ming-Guang

    2010-02-01

    Entomophthoralean fungus Pandora nouryi is an obligate aphid pathogen that enables to produce resting spores (azygospores) for surviving host absence. To explore possible mechanisms involved in the regulation of resting spore formation in vivo, host cohorts consisting of 40-60 nymphs of green peach aphid Myzus persicae produced within 24h on cabbage leaf discs in petri dishes were exposed to spore showers of P. nouryi at the concentrations (C) from a very few to nearly 2000 conidia/mm(2) and then reared for 7-11 days at the regimes of 10-25 degrees C (T) and 8-16 h daylight (H(L)) or ambient (17.5+/-3.1 degrees C, 13:11 L:D). Aphid mortalities observed from 35-83 cohorts (showered separately) at each regime showed typical sigmoid trend and fit well a general logistic equation (0.79spores in the cohorts also fit the same equation (0.73spore formation on the spore concentration. The effects of T and H(L) on P over C were well elucidated by the fitted modified logistic equations P=0.578/{1+exp[1.710-(0.136-0.0053T)C]} and P=0.534/{1+exp[1.639+(0.034-0.0053H(L))C]} (both r(2)=0.79). Our results highlight that the resting spore formation in vivo of P. nouryi is regulated primarily by the concentration of host-infecting conidia discharged from cadavers and facilitated by lower temperature and longer daylight. (c) 2009 Elsevier Inc. All rights reserved.

  13. Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality.

    PubMed

    Puechmaille, Sébastien J; Wibbelt, Gudrun; Korn, Vanessa; Fuller, Hubert; Forget, Frédéric; Mühldorfer, Kristin; Kurth, Andreas; Bogdanowicz, Wieslaw; Borel, Christophe; Bosch, Thijs; Cherezy, Thomas; Drebet, Mikhail; Görföl, Tamás; Haarsma, Anne-Jifke; Herhaus, Frank; Hallart, Guénael; Hammer, Matthias; Jungmann, Christian; Le Bris, Yann; Lutsar, Lauri; Masing, Matti; Mulkens, Bart; Passior, Karsten; Starrach, Martin; Wojtaszewski, Andrzej; Zöphel, Ulrich; Teeling, Emma C

    2011-04-27

    The dramatic mass mortalities amongst hibernating bats in Northeastern America caused by "white nose-syndrome" (WNS) continue to threaten populations of different bat species. The cold-loving fungus, Geomyces destructans, is the most likely causative agent leading to extensive destruction of the skin, particularly the wing membranes. Recent investigations in Europe confirmed the presence of the fungus G. destructans without associated mass mortality in hibernating bats in six countries but its distribution remains poorly known. We collected data on the presence of bats with white fungal growth in 12 countries in Europe between 2003 and 2010 and conducted morphological and genetic analysis to confirm the identity of the fungus as Geomyces destructans. Our results demonstrate the presence of the fungus in eight countries spanning over 2000 km from West to East and provide compelling photographic evidence for its presence in another four countries including Romania, and Turkey. Furthermore, matching prevalence data of a hibernaculum monitored over two consecutive years with data from across Europe show that the temporal occurrence of the fungus, which first becomes visible around February, peaks in March but can still be seen in some torpid bats in May or June, is strikingly similar throughout Europe. Finally, we isolated and cultured G. destructans from a cave wall adjacent to a bat with fungal growth. G. destructans is widely found over large areas of the European continent without associated mass mortalities in bats, suggesting that the fungus is native to Europe. The characterisation of the temporal variation in G. destructans growth on bats provides reference data for studying the spatio-temporal dynamic of the fungus. Finally, the presence of G. destructans spores on cave walls suggests that hibernacula could act as passive vectors and/or reservoirs for G. destructans and therefore, might play an important role in the transmission process.

  14. Pan-European Distribution of White-Nose Syndrome Fungus (Geomyces destructans) Not Associated with Mass Mortality

    PubMed Central

    Korn, Vanessa; Fuller, Hubert; Forget, Frédéric; Mühldorfer, Kristin; Kurth, Andreas; Bogdanowicz, Wieslaw; Borel, Christophe; Bosch, Thijs; Cherezy, Thomas; Drebet, Mikhail; Görföl, Tamás; Haarsma, Anne-Jifke; Herhaus, Frank; Hallart, Guénael; Hammer, Matthias; Jungmann, Christian; Le Bris, Yann; Lutsar, Lauri; Masing, Matti; Mulkens, Bart; Passior, Karsten; Starrach, Martin; Wojtaszewski, Andrzej; Zöphel, Ulrich; Teeling, Emma C.

    2011-01-01

    Background The dramatic mass mortalities amongst hibernating bats in Northeastern America caused by “white nose-syndrome” (WNS) continue to threaten populations of different bat species. The cold-loving fungus, Geomyces destructans, is the most likely causative agent leading to extensive destruction of the skin, particularly the wing membranes. Recent investigations in Europe confirmed the presence of the fungus G. destructans without associated mass mortality in hibernating bats in six countries but its distribution remains poorly known. Methodology/Principal Findings We collected data on the presence of bats with white fungal growth in 12 countries in Europe between 2003 and 2010 and conducted morphological and genetic analysis to confirm the identity of the fungus as Geomyces destructans. Our results demonstrate the presence of the fungus in eight countries spanning over 2000 km from West to East and provide compelling photographic evidence for its presence in another four countries including Romania, and Turkey. Furthermore, matching prevalence data of a hibernaculum monitored over two consecutive years with data from across Europe show that the temporal occurrence of the fungus, which first becomes visible around February, peaks in March but can still be seen in some torpid bats in May or June, is strikingly similar throughout Europe. Finally, we isolated and cultured G. destructans from a cave wall adjacent to a bat with fungal growth. Conclusions/Significance G. destructans is widely found over large areas of the European continent without associated mass mortalities in bats, suggesting that the fungus is native to Europe. The characterisation of the temporal variation in G. destructans growth on bats provides reference data for studying the spatio-temporal dynamic of the fungus. Finally, the presence of G. destructans spores on cave walls suggests that hibernacula could act as passive vectors and/or reservoirs for G. destructans and therefore, might

  15. Sources of Variability in the Measurement of Fungal Spore Yields

    PubMed Central

    Smith, C. S.; Slade, S. J.; Nordheim, E. V.; Cascino, J. J.; Harris, R. F.; Andrews, J. H.

    1988-01-01

    Variability in the production of fungal spores and in the measurement of spore yields was investigated in four species of fungi: Colletotrichum gloeosporioides, Colletotrichum coccodes, Colletotrichum phomoides, and Acremonium strictum. When the fungi were grown on solid medium in microplates and spore yields were measured by counting the subsamples with a hemacytometer, the variability among hemacytometer squares was always the largest source of variation, accounting for 51 to 91% of the total variation. Variability among replicate cultures and results of repeat experiments were generally also significant. The effect of square-to-square variability on the precision of spore yield measurement was minimized by counting a moderate number (ca. 30) of squares per culture. Culture-to-culture variability limited the practical precision of spore production measurements to a 95% confidence interval of approximately the mean ± 25%. We provide guidelines for determining the number of replicate cultures required to attain this or other degrees of precision. Particle counter-derived spore counts and counts based on spore weights were much less variable than were hemacytometer counts, but they did not improve spore production estimates very much because of culture-to-culture variability. Results obtained by both of these methods differed from those obtained with a hemacytometer; particle counter measurements required a correction for spore pairs, while the relationship between spore weights and spore counts changed as the cultures aged. PMID:16347653

  16. Detection of chlorophylls in spores of seven ferns.

    PubMed

    Tseng, Mei-Hwei; Lin, Kuei-Huei; Huang, Yi-Jia; Chang, Ya-Lan; Huang, Sheng-Cih; Kuo, Li-Yaung; Huang, Yao-Moan

    2017-03-01

    Fern spores were traditionally classified into chlorophyllous (green) and nonchlorophyllous (nongreen) types based on the color visible to the naked eye. Recently, a third type, "cryptochlorophyllous spores", is recognized, and these spores are nongreen under white light but contain chlorophylls. Epifluorescence microscopy was previously used to detect chlorophylls in cryptochlorophyllous spores. In addition to epifluorescence microscopy, current study performed some other approaches, including spore-squash epifluorescence, absorption spectra, laser-induced fluorescence emission spectra, thin layer chromatography (TLC), and ultra-high performance liquid chromatography with ultraviolet and mass spectrometric detection (UHPLC-UV-MS) in order to detect chlorophylls of spores of seven ferns (Sphaeropteris lepifera, Ceratopteris thalictroides, Leptochilus wrightii, Leptochilus pothifolius, Lepidomicrosorum buergerianum, Osmunda banksiifolia, and Platycerium grande). Destructive methods, such as TLC and UHPLC-UV-MS, successfully detected chlorophylls inside the spores when their signals of red fluorescence under epifluorescence microscope were masked by spore wall. Although UHPLC-UV-MS analysis was the most sensitive and reliable for determining the chlorophylls of spores, spore-squash epifluorescence is not only reliable but also cost- and time-effective one among our study methods. In addition, we first confirmed that Lepidomicrosorium buergerianum, Leptochilus pothifolius, Leptochilus wrightii, and Platycerium grande, produce cryptochlorophyllous spores.

  17. Decrease in optical density as a results of germination of Alicyclobacillus acidoterrestris spores under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Porębska, I.; Rutkowska, M.; Sokołowska, B.

    2015-01-01

    Alicyclobacillus acidoterrestris is a spore-forming bacterium, causing spoilage of juices. The spores of these bacteria have the ability to survive in the typical conditions used for thermal pasteurization. Therefore, the use of other techniques such as high hydrostatic pressure is considered for their inactivation. The effect of hydrostatic pressure of 200-500 MPa, at temperatures 4-50 °C for 15 min, on the dynamics of germination of A. acidoterrestris spores in apple juice and pH 4 buffer was studied. To estimate the share of germinated spores, the method of determining the optical density at a wavelength of 660 nm (OD660) was used. Parameters of hydrostatic pressure treatment used in this work affected the dynamics of germination of A. acidoterrestris spores in apple juice, and the temperature had the greatest effect. The results indicate that nutrients present in apple juice can promote the germination of A. acidoterrestris spores. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014) in Nantes (France) 15-18 July 2014.

  18. Inactivation of Clostridium difficile spores by microwave irradiation.

    PubMed

    Ojha, Suvash Chandra; Chankhamhaengdecha, Surang; Singhakaew, Sombat; Ounjai, Puey; Janvilisri, Tavan

    2016-04-01

    Spores are a potent agent for Clostridium difficile transmission. Therefore, factors inhibiting spores have been of continued interest. In the present study, we investigated the influence of microwave irradiation in addition to conductive heating for C. difficile spore inactivation in aqueous suspension. The spores of 15 C. difficile isolates from different host origins were exposed to conductive heating and microwave irradiation. The complete inhibition of spore viability at 10(7) CFU/ml was encountered following microwave treatment at 800 W for 60 s, but was not observed in the conductive-heated spores at the same time-temperature exposure. The distinct patterns of ultrastructural alterations following microwave and conductive heat treatment were observed and the degree of damages by microwave was in the exposure time-dependent manner. Microwave would therefore be a simple and time-efficient tool to inactivate C. difficile spores, thus reducing the risk of C. difficile transmission.

  19. Identification by Quantitative Carrier Test of Surrogate Spore-Forming Bacteria To Assess Sporicidal Chemicals for Use against Bacillus anthracis▿

    PubMed Central

    Majcher, Miles R.; Bernard, Kathryn A.; Sattar, Syed A.

    2008-01-01

    The spores of six strains of Bacillus anthracis (four virulent and two avirulent) were compared with those of four other types of spore-forming bacteria for their resistance to four liquid chemical sporicides (sodium hypochlorite at 5,000 ppm available chlorine, 70,000 ppm accelerated H2O2, 1,000 ppm chlorine dioxide, and 3,000 ppm peracetic acid). All test bacteria were grown in a 1:10 dilution of Columbia broth (with manganese) incubated at 37°C for 72 h. The spore suspensions, heat treated at 80°C for 10 min to rid them of any viable vegetative cells, contained 1 × 108 to 3 × 108 CFU/ml. The second tier of the quantitative carrier test (QCT-2), a standard of ASTM International, was used to assess for sporicidal activity, with disks (1 cm in diameter) of brushed and magnetized stainless steel as spore carriers. Each carrier, with 10 μl (≥106 CFU) of the test spore suspension in a soil load, was dried and then overlaid with 50 μl of the sporicide being evaluated. The contact time at room temperature ranged from 5 to 20 min, and the arbitrarily set criterion for acceptable sporicidal activity was a reduction of ≥106 in viable spore count. Each test was repeated at least three times. In the final analysis, the spores of Bacillus licheniformis (ATCC 14580T) and Bacillus subtilis (ATCC 6051T) proved to be generally more resistant than the spores of the strains of B. anthracis tested. The use of one or both of the safe and easy-to-handle surrogates identified here should help in developing safer and more-effective sporicides and also in evaluating the field effectiveness of existing and newer formulations in the decontamination of objects and surfaces suspected of B. anthracis contamination. PMID:18083869

  20. Fern Spore Longevity in Saline Water: Can Sea Bottom Sediments Maintain a Viable Spore Bank?

    PubMed Central

    de Groot, G. Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation’s diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and - in sea bottoms - salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal. PMID:24223951

  1. Fern spore longevity in saline water: can sea bottom sediments maintain a viable spore bank?

    PubMed

    de Groot, G Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation's diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and--in sea bottoms--salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal.

  2. Adaptation of the Spore Discharge Mechanism in the Basidiomycota

    PubMed Central

    Stolze-Rybczynski, Jessica L.; Cui, Yunluan; Stevens, M. Henry H.; Davis, Diana J.; Fischer, Mark W. F.; Money, Nicholas P.

    2009-01-01

    Background Spore discharge in the majority of the 30,000 described species of Basidiomycota is powered by the rapid motion of a fluid droplet, called Buller's drop, over the spore surface. In basidiomycete yeasts, and phytopathogenic rusts and smuts, spores are discharged directly into the airflow around the fungal colony. Maximum discharge distances of 1–2 mm have been reported for these fungi. In mushroom-forming species, however, spores are propelled over much shorter ranges. In gilled mushrooms, for example, discharge distances of <0.1 mm ensure that spores do not collide with opposing gill surfaces. The way in which the range of the mechanism is controlled has not been studied previously. Methodology/Principal Findings In this study, we report high-speed video analysis of spore discharge in selected basidiomycetes ranging from yeasts to wood-decay fungi with poroid fruiting bodies. Analysis of these video data and mathematical modeling show that discharge distance is determined by both spore size and the size of the Buller's drop. Furthermore, because the size of Buller's drop is controlled by spore shape, these experiments suggest that seemingly minor changes in spore morphology exert major effects upon discharge distance. Conclusions/Significance This biomechanical analysis of spore discharge mechanisms in mushroom-forming fungi and their relatives is the first of its kind and provides a novel view of the incredible variety of spore morphology that has been catalogued by traditional taxonomists for more than 200 years. Rather than representing non-selected variations in micromorphology, the new experiments show that changes in spore architecture have adaptive significance because they control the distance that the spores are shot through air. For this reason, evolutionary modifications to fruiting body architecture, including changes in gill separation and tube diameter in mushrooms, must be tightly linked to alterations in spore morphology. PMID:19129912

  3. Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus.

    PubMed

    Kikuchi, Kensuke; Matsushita, Norihisa; Suzuki, Kazuo; Hogetsu, Taizo

    2007-10-01

    Under laboratory conditions, spores of ectomycorrhizal fungi usually germinate very poorly or not at all. In a previous study, we showed that spores of the ectomycorrhizal fungus Suillus bovinus germinated through the combination of activated charcoal treatment of media and co-culture with seedlings of Pinus densiflora, which suggested that some substances contained in root exudates induced the germination. Among the compounds reported from root exudates, flavonoids have been elucidated to play various and substantial roles in plant-microbe interactions; we therefore investigated the effects of flavonoids on basidiospore germination of S. bovinus by the diffusion gradient assay on water agar plates pretreated with charcoal powder. Seven out of the 11 flavonoids tested, hesperidin, morin, rutin, quercitrin, naringenin, genistein, and chrysin, had greater effects than controls, whereas flavone, biochanin A, luteolin, and quercetin showed no positive effects. The effective concentration presumably corresponded to several micromolar levels, which was equivalent to those effective for pollen development, nod gene induction, and spore germination of F. solani f. sp. pisi and AM fungi. The results suggest that flavonoids play a role as signaling molecules in symbiotic relationships between woody plants and ectomycorrhizal fungi.

  4. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    PubMed

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-02

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  5. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  6. Viability of bacterial spores exposed to hydrazine

    NASA Astrophysics Data System (ADS)

    Schubert, W.; Plett, G.; Yavrouian, A.; Barengoltz, J.

    For the purposes of planetary protection a series of experiments were performed to answer a long-standing question about the potential of bacterial contamination of interplanetary spacecraft from liquid hydrazine Spores of Bacillus atrophaeus ATCC No 9372 also known as Bacillus subtilis var niger and BSN were exposed to hydrazine for various durations Then the survivors were enumerated using the NASA standard planetary protection pour plate assay It is important to note that in these experiments the hydrazine was removed prior to the assay This eliminated the possibility that the presence of hydrazine rather than a prior exposure was inhibiting germination and or reproduction Populations of 10 6 spores were eliminated within 30 minutes These results indicate that bulk hydrazine rocket propellant may be considered free of living bacterial cells for planetary protection compliance

  7. Viability of bacterial spores exposed to hydrazine

    NASA Astrophysics Data System (ADS)

    Schubert, W.; Plett, G.; Yavrouian, A.; Barengoltz, J.

    2008-09-01

    For the purposes of planetary protection, a series of experiments were performed to answer a long-standing question about the potential of bacterial contamination of interplanetary spacecraft from liquid hydrazine. Spores of Bacillus atrophaeus (ATCC No. 9372, also known as Bacillus subtilis var. niger, and BSN) were exposed to hydrazine and survivors were enumerated using the NASA standard planetary protection pour plate assay. Results indicate that bulk hydrazine rocket propellant may be considered free of living bacterial cells for planetary protection compliance.

  8. Mechanisms of Resistance in Microbial Spores.

    DTIC Science & Technology

    1986-11-14

    characterization of forespores isolated from Bacillus meqaterium ATCC 19213. J. Bacteriol. 153:436-442. Isolated stage III forespores of Bacillus megaterium ...other factors is complex. At Michigan State University, four morphotypes of B. megaterium spores, obtained by progressive divestment of the integument...permeating medium. Thereby, the PWC was determined with 28 types among 7 Bacillus species spanning a 3,OCO-fold range in heat resistance, which was

  9. Effect of high hydrostatic pressure on mycelial development, spore viability and enzyme activity of Penicillium Roqueforti.

    PubMed

    Martínez-Rodríguez, Yamile; Acosta-Muñiz, Carlos; Olivas, Guadalupe I; Guerrero-Beltrán, José; Rodrigo-Aliaga, Dolores; Mujica-Paz, Hugo; Welti-Chanes, Jorge; Sepulveda, David R

    2014-01-03

    This study investigated the effect of high hydrostatic pressure treatments on mycelial development, spore viability, and total proteolytic and lipolytic activity of Penicillium roqueforti PV-LYO 10 D. Fungus growing in liquid medium was pressure-treated at 300, 400, and 500 MPa for 10 min at 20°C following seven days of incubation at 25°C and analyzed periodically up to day 9 after treatments to evaluate the effect on fungal growth. Mycelial mass of P. roqueforti was significantly affected at all pressure treatments evaluated, being 15.48%, 22.28%, 30.03%, and 12.53% lower than controls on day 1, 3, 6, and 9 after 300 MPa treatment, respectively. In a similar way, at 400 and 500 MPa, mycelial mass was 31.08% and 60.34% lower than controls one day after treatments and 49.74% and 80.85% lower on day 9, respectively. The viability of P. roqueforti spores decreased by 36.53% at 300 MPa, and complete inactivation took place at ≥400 MPa from an initial count of 7 log cfu/mL. Total proteolytic activity was not significantly affected at 300 MPa but was reduced by 18.22% at 400 MPa and by 43.18% at 500 MPa. Total lipolytic activity also decreased as the intensity of the pressure treatments increased. 21.69%, 39.12%, and 56.26% activity reductions were observed when treatments of 300, 400 and 500 MPa were applied, respectively. The results from this study show that pressure treatments are able to control growth, inactivate spores, and alter enzyme activity of P. roqueforti, which could be of interest in extending the shelf-life of blue-veined cheeses and other food products. © 2013.

  10. Changes in Atmospheric CO2 Influence the Allergenicity of Aspergillus fumigatus fungal spore

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Levin, Y.; Dannemoller, K. C.; Yarden, O.; Peccia, J.; Rudich, Y.

    2013-12-01

    Increased allergic susceptibility has been documented without a comprehensive understanding for its causes. Therefore understanding trends and mechanisms of allergy inducing agents is essential. In this study we investigated whether elevated atmospheric CO2 levels can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species. Both direct exposure to changing CO2 levels during fungal growth, and indirect exposure through changes in the C:N ratios in the growth media were inspected. We determined the allergenicity of the spores through two types of immunoassays, accompanied with genes expression analysis, and proteins relative quantification. We show that fungi grown under present day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity, for which we propose two different biological mechanisms. We suggest that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as Aspergillus fumigatus to induce allergies. The effect of changing CO2 concentrations on the total allergenicity per 10^7 spores of A. fumigatus (A), the major allergen Asp f1 concentration in ng per 10^7 spores (B), and the gene expression by RT-PCR (C). The error bars represent the standard error of the mean.

  11. Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene

    PubMed Central

    Nogales, Amaia; Svensson, Jan; Lopez-Ráez, Juan Antonio; Pozo, María José; Nobre, Tânia; Schneider, Carolin; Arnholdt-Schmitt, Birgit

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF symbiosis improves nutrient uptake and buffers the plant against a diversity of stresses. Rhizophagus irregularis is one of the most widespread AMF species in the world, and its application in agricultural systems for yield improvement has increased over the last years. Still, from the inoculum production perspective, a lack of consistency of inoculum quality is referred to, which partially may be due to a high genetic variability of the fungus. The alternative oxidase (AOX) is an enzyme of the alternative respiratory chain already described in different taxa, including various fungi, which decreases the damage caused by oxidative stress. Nevertheless, virtually nothing is known on the involvement of AMF AOX on symbiosis establishment, as well on the existence of AOX variability that could affect AMF effectiveness and consequently plant performance. Here, we report the isolation and characterisation of the AOX gene of R. irregularis (RiAOX), and show that it is highly expressed during early phases of the symbiosis with plant roots. Phylogenetic analysis clustered RiAOX sequence with ancient fungi, and multiple sequence alignment revealed the lack of several regulatory motifs which are present in plant AOX. The analysis of RiAOX polymorphisms in single spores of three different isolates showed a reduced variability in one spore relatively to a group of spores. A high number of polymorphisms occurred in introns; nevertheless, some putative amino acid changes resulting from non-synonymous variants were found, offering a basis for selective pressure to occur within the populations. Given the AOX relatedness with stress responses, differences in gene variants amongst R. irregularis isolates are likely to be related with its origin and environmental constraints and might have a potential impact on inoculum production. PMID:26540237

  12. Association of Fidaxomicin with C. difficile Spores: Effects of Persistence on Subsequent Spore Recovery, Outgrowth and Toxin Production

    PubMed Central

    Crowther, Grace S.; Ashwin, Helen; Longshaw, Chris M.; Wilcox, Mark H.

    2016-01-01

    Background We have previously shown that fidaxomicin instillation prevents spore recovery in an in-vitro gut model, whereas vancomycin does not. The reasons for this are unclear. Here, we have investigated persistence of fidaxomicin and vancomycin on C. difficile spores, and examined post-antibiotic exposure spore recovery, outgrowth and toxin production. Methods Prevalent UK C. difficile ribotypes (n = 10) were incubated with 200mg/L fidaxomicin, vancomycin or a non-antimicrobial containing control for 1 h in faecal filtrate or Phosphate Buffered Saline. Spores were washed three times with faecal filtrate or phosphate buffered saline, and residual spore-associated antimicrobial activity was determined by bioassay. For three ribotypes (027, 078, 015), antimicrobial-exposed, faecal filtrate-washed spores and controls were inoculated into broth. Viable vegetative and spore counts were enumerated on CCEYL agar. Percentage phase bright spores, phase dark spores and vegetative cells were enumerated by phase contrast microscopy at 0, 3, 6, 24 and 48 h post-inoculation. Toxin levels (24 and 48h) were determined by cell cytotoxicity assay. Results Fidaxomicin, but not vancomycin persisted on spores of all ribotypes following washing in saline (mean = 10.1mg/L; range = 4.0-14mg/L) and faecal filtrate (mean = 17.4mg/L; 8.4–22.1mg/L). Outgrowth and proliferation rates of vancomycin-exposed spores were similar to controls, whereas fidaxomicin-exposed spores showed no vegetative cell growth after 24 and 48 h. At 48h, toxin levels averaged 3.7 and 3.3 relative units (RU) in control and vancomycin-exposed samples, respectively, but were undetectable in fidaxomicin-exposed samples. Conclusion Fidaxomicin persists on C. difficile spores, whereas vancomycin does not. This persistence prevents subsequent growth and toxin production in vitro. This may have implications on spore viability, thereby impacting CDI recurrence and transmission rates. PMID:27556739

  13. Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis?

    PubMed

    Buysens, Catherine; Dupré de Boulois, Hervé; Declerck, Stéphane

    2015-05-01

    There is growing evidence that the application of biocontrol organisms (e.g., Pseudomonas and Bacillus spp., arbuscular mycorrhizal fungi-AMF) is a feasible option to reduce incidence of plant pathogens in an integrated control strategy. However, the utilization of these microorganisms, in particular AMF, may be threatened by the application of fungicides, a widely-used measure to control Rhizoctonia solani in various crops among which potato. Prior to their application, it is thus important to determine the impact of fungicides on AMF. The present study investigated, under in vitro controlled conditions, the impact of azoxystrobin (a systemic broad-spectrum fungicide), flutolanil (a systemic Basidiomycota-specific fungicide), and pencycuron (a contact Rhizoctonia-specific fungicide) and their respective formulations (Amistar, Monarch, and Monceren) on the growth and development of the AMF Rhizophagus irregularis MUCL 41833 (spore germination, root colonization, extraradical mycelium development, and spore production) at doses used to control R. solani. Results demonstrated that azoxystrobin and its formulation Amistar, at threshold values for R. solani control (estimated by the half maximal inhibitory concentration, IC50, on a dry weight basis), did not affect spore germination and potato root colonization by R. irregularis, while the development of extra-radical mycelium and spore production was reduced at 10 times the threshold value. Flutolanil and its formulation Monarch at threshold value did not affect spore germination or extra-radical development but decreased root colonization and arbuscule formation. At threshold value, pencycuron and its formulation Monceren, did not affect spore germination and intra- or extraradical development of R. irregularis. These results suggest that azoxystrobin and pencycuron do not affect the AMF at threshold concentrations to control R. solani in vitro, while flutolanil (as formulation) impacts the intraradical phase of the

  14. Bryophyte spore germinability is inhibited by peatland substrates

    NASA Astrophysics Data System (ADS)

    Bu, Zhao-Jun; Li, Zhi; Liu, Li-Jie; Sundberg, Sebastian; Feng, Ya-Min; Yang, Yun-He; Liu, Shuang; Song, Xue; Zhang, Xing-Lin

    2017-01-01

    Bryophyte substrates and species may affect spore germination through allelopathy. Polytrichum strictum is currently expanding in peatlands in north-eastern China - is this an effect of its superior spore germinability or do its gametophytes have a stronger allelopathic effect than do Sphagnum? We conducted a spore burial experiment to test the effect of species identity, substrate and water table depth (WTD) on spore germinability and bryophyte allelopathic effect with P. strictum and two Sphagnum species (S. palustre and S. magellanicum). After 5 months of burial during a growing season, the spores were tested for germinability. Allelopathic effect of bryophyte substrates was assessed by the difference between spore germinability after being stored inside or outside the substrates. After burial, more than 90% of the spores lost their germinability across all three species due to ageing and allelopathy. Spore germinability differed among species, where the spores in S. palustre had a higher germination frequency than those in P. strictum. The three bryophytes maintained a higher germinability in Sphagnum than in Polytrichum hummocks, probably due to a stronger allelopathic effect of P. strictum. Water table drawdown by 10 cm increased germinability by more than 60% across the three species. The study indicates that P. strictum does not possess an advantage regarding spore germination but rather its gametophytes have a stronger allelopathic effect. Due to the weaker inhibitive effect of Sphagnum gametophytes, P. strictum may have a potential establishment superiority over Sphagnum in peatlands, in addition to a better drought tolerance, which may explain its current expansion.

  15. Airborne spores of Basidiomycetes in Mérida (SW Spain).

    PubMed

    Hernández Trejo, Fernando; Muñoz Rodríguez, Adolfo F; Tormo Molina, Rafael; Silva Palacios, Inmaculada

    2013-01-01

    The aim of this work was to detect the presence of Basidiomycetes spores (basidiospores, teliospores, uredospores and aeciospores) in Mérida (SW Spain) and assess the influence of weather parameters. Air was sampled continuously with a volumetric seven-day Burkard spore trap for two years. Fungi spores were identified and counted at x1,000 microscope resolution. Daily and weekly meteorological data and airborne spore concentration were analysed. Twenty-three spores types were identified, including basidiospores (Amanita, Agrocybe, Cortinarius, Coprinus -2 types-, Boletus, Bovista, Calvatia, Entoloma, Ganoderma, Inocybe, Russula, Scleroderma, Telephora), teliospores (Phragmidium, Tilletia, Ustillago -4 types-), uredospores, and aeciospores (2 types), all of these types of spores included different taxa. Average concentration was of 616 spores/m(3), with maximum concentration in autumn (October), and a second concentration in spring (May-June); however, some spore types were more frequent in summer (Bovista, Ganoderma) or even in winter (Entoloma, Calvatia). The Amanita type was the most frequent (white-hyaline basidiospores); the second were teliospores of Ustilago, the third spore type was basidiospores of Coprinus (blackish basidiospores) and Agrocybe type (smoothed light to dark coloured basidiospores). Basidiospore concentration was positively correlated with temperature and negatively with relative humidity in most cases, and Ustilago teliospores concentration was positively correlated with wind speed. Differences in monthly rain were probably the origin between years. Airborne spores of Basidiomycetes may be separated into more than 20 types, and their seasonal concentration depended on meteorology as well as whether they were saprotrophic or parasitic.

  16. Thirty-four identifiable airborne fungal spores in Havana, Cuba.

    PubMed

    Almaguer, Michel; Aira, María-Jesús; Rodríguez-Rajo, F Javier; Fernandez-Gonzalez, Maria; Rojas-Flores, Teresa I

    2015-01-01

    The airborne fungal spore content in Havana, Cuba, collected by means a non-viable volumetric methodology, was studied from November 2010 - October 2011. The study, from a qualitative point of view, allowed the characterization of 29 genera and 5 fungal types, described following the Saccardo´s morphotypes, as well as their morphobiometrical characteristics. In the amerospores morphotype, the conidia of 7 genera (with ascospores, basidiospores and uredospores) and 5 fungal types were included. Among phragmospores morphotype, the ascospores and conidia of 12 different genera were identified. The dictyospores morphotype only included conidial forms from 6 genera. Finally, the less frequent morphotypes were staurospores, didymospores and distosepted spores. In general, the main worldwide spread mitosporic fungi also predominated in the Havana atmosphere, accompanied by some ascospores and basidiospores. Cladosporium cladosporioides type was the most abundant with a total of 148,717 spores, followed by Leptosphaeria, Coprinus and the Aspergillus-Penicillium type spores, all of them with total values ranging from 20,591 - 16,392 spores. The higher monthly concentrations were registered in January (31,663 spores) and the lowest in December (7,314 spores). Generally, the average quantity of spores recorded during the months of the dry season (20,599 spores) was higher compared with that observed during the rainy season (17,460 spores).

  17. Inbreeding depression in urban environments of the bird's nest fungus Cyathus stercoreus (Nidulariaceae: Basidiomycota)

    PubMed Central

    Malloure, B D; James, T Y

    2013-01-01

    Many organisms display codispersal of offspring, but fewer display codispersal of compatible gametes. This mechanism enhances the ability of a species to colonize after long distance dispersal as a mechanism of reproductive assurance, but it also fosters inbreeding and potential reduction in fitness. Here we investigated both long distance dispersal and inbreeding in the bird's nest fungus Cyathus stercoreus, a dung and mulch-associated fungus with a splash cup fruiting body appearing like a miniature bird's nest of ‘eggs‘ or peridioles that contain thousands of mating compatible meiotic spores. To investigate the genetic structure in the species, six North American urban populations were hierarchically sampled and genotyped using 10 microsatellite markers. We detected significant levels of inbreeding through heterozygote deficiencies at four loci, with global FIS=0.061. Dispersal limitation was suggested by both spatial autocorrelation and the detection of population structure between Louisiana and Michigan using clustering and F-statistics. Although inbreeding may facilitate colonization by the fungus, it has a negative effect on the fitness of populations as estimated from a 15% reduction in growth rates of inbred strains relative to outcrossed. Mating tests revealed that C. stercoreus has a higher estimated number of mating-type alleles (MAT-A= 39, MAT-B= 24) than other species of bird's nest fungi, which would increase its outcrossing efficiency. We speculate that the increased number of mating-type alleles is the result of a recent range and population size expansion into urban environments. PMID:23169564

  18. Characterization of Five Novel Mitoviruses in the White Pine Blister Rust Fungus Cronartium ribicola.

    PubMed

    Liu, Jun-Jun; Chan, Danelle; Xiang, Yu; Williams, Holly; Li, Xiao-Rui; Sniezko, Richard A; Sturrock, Rona N

    2016-01-01

    The white pine blister rust (WPBR) fungus Cronartium ribicola (J.C. Fisch.) is an exotic invasive forest pathogen causing severe stem canker disease of native white pine trees (subgenus Strobus) in North America. The present study reports discovery of five novel mitoviruses in C. ribicola by deep RNA sequencing. The complete genome of each mitovirus was determined by rapid amplification of cDNA ends (RACE) and reverse transcriptase-polymerase chain reaction (RT-PCR). A single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) was detected in each of the viral genomes using mitochondrial genetic codes. Phylogenetic analysis indicated that the C. ribicola mitoviruses (CrMV1 to CrMV5) are new putative species of the genus Mitovirus. qRT-PCR and RNA-Seq analyses revealed that viral RNAs were significantly increased in fungal mycelia in cankered pine stems compared to expression during two different stages of spore development, suggesting that viral genome replication and transcription benefit from active growth of the host fungus. CrMVs were widespread with relatively high levels of minor allele frequency (MAF) in western North America. As the first report of mitoviruses in the Class Pucciniomycetes, this work allows further investigation of the dynamics of a viral community in the WPBR pathosystem, including potential impacts that may affect pathogenicity and virulence of the host fungus.

  19. EFFECT OF THE FILAMENTOUS FUNGUS MUCOR CIRCINELLOIDES ON THE DEVELOPMENT OF EGGS OF THE RUMEN FLUKE CALICOPHORON DAUBNEYI (PARAMPHISTOMIDAE).

    PubMed

    Arroyo, Fabià  N; Hernà  Ndez, Josà  à  Ngel; Cazapal-Monteiro, Cristiana Filipa; Pedreira, Josà Â; Sanchà  S, Jaime; Romasanta, à  Ngel; Sã  Nchez-Andrade, Rita; Paz-Silva, Adolfo; Arias, Marà  A Sol

    2017-02-06

    Ruminants infected by Paramphistomidae flukes shed eggs in the feces, which pass through different stages in the environment until the infective stages (metacercariae) are reached. The activity of the soil fungus Mucor circinelloides on the development of eggs of the rumen fluke Calicophoron daubneyi was presently tested with 3 probes, i.e., in Petri plates, feces and an aqueous environment (tubes). The effect of the fungus was assessed by recording the numbers of undeveloped, non-viable and embryonated eggs. Non-viable eggs were considered when vacuolization occurred, the inner structures were not clearly observed, the egg-shell was broken, and/or the embryo inside was destroyed. By considering the ability of hyphae of M. circinelloides to develop in the presence of C. daubneyi eggs, attach to their surface, penetrate and destroy the inner embryo, this ovicidal effect was classified as type 3. After a period of 50 days, the percentage of undeveloped eggs in the feces of infected cattle was 40%; furthermore, 27% eggs were non-viable, and 33% were embryonated (1 miracidium inside). The addition of 4 doses of M. circinelloides spores directly onto the feces resulted in 9-31% undeveloped eggs, 38-60% non-viable eggs, and 9-21% embryonated eggs, and no statistical significances were obtained among the different doses. Placing the eggs of C. daubneyi into an aqueous solution containing 107 spores M. circinelloides/ml for 29 days resulted in 43% undeveloped eggs, 40% non-viable eggs, and 17% embryonated eggs, whereas in the controls, the percentages were 48%, 12%, and 40%, respectively. These data demonstrate the usefulness of the spores of the fungus M. circinelloides in limiting the development of the eggs of the trematode Calicophoron daubneyi.

  20. Sequence of events during germination of putrefactive anaerobe 3679 spores.

    PubMed

    Uehara, M; Frank, H A

    1967-09-01

    The sequence of changes during germination of putrefactive anaerobe 3679h spores was studied under aerobic conditions in a solution containing l-alanine and sodium pyrophosphate. Evidence that specific changes occurred in two distinct regions of the spore is given by data on several criteria that were used to measure germination. During the initial stage of germination, the absorbancy decreased, dipicolinic acid was released, the spores lost their resistance to heat and toxic chemicals, and the spore periphery (cortex) darkened gradually under phase-contrast microscopy. The final stage of germination was characterized by changes in the central spore region (core), notably phase darkening of the spore center and stainability with mercurochrome, and by a slight additional absorbancy decrease.

  1. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  2. The scope for nuclear selection within Termitomyces fungi associated with fungus-growing termites is limited

    PubMed Central

    2014-01-01

    Background We investigate the scope for selection at the level of nuclei within fungal individuals (mycelia) of the mutualistic Termitomyces cultivated by fungus-growing termites. Whereas in most basidiomycete fungi the number and kind of nuclei is strictly regulated to be two per cell, in Termitomyces mycelia the number of nuclei per cell is highly variable. We hypothesised that natural selection on these fungi not only occurs between mycelia, but also at the level of nuclei within the mycelium. We test this hypothesis using in vitro tests with five nuclear haplotypes of a Termitomyces species. Results First, we studied the transition from a mixture of five homokaryons (mycelia with identical nuclei) each with a different nuclear haplotype to heterokaryons (mycelia with genetically different nuclei). In vitro cultivation of this mixture for multiple asexual transfers led to the formation of multiple heterokaryotic mycelia, and a reduction of mycelial diversity over time. All heterokaryotic mycelia contained exactly two types of nucleus. The success of a heterokaryon during in vitro cultivation was mainly determined by spore production and to a lesser extent by mycelial growth rate. Second, heterokaryons invariably produced more spores than homokaryons implying that homokaryons will be outcompeted. Third, no homokaryotic ‘escapes’ from a heterokaryon via the formation of homokaryotic spores were found, despite extensive spore genotyping. Fourth, in contrast to most studied basidiomycete fungi, in Termitomyces sp. no nuclear migration occurs during mating, limiting the scope for nuclear competition within the mycelium. Conclusions Our experiments demonstrate that in this species of Termitomyces the scope for selection at the level of the nucleus within an established mycelium is limited. Although ‘mate choice’ of a particular nuclear haplotype is possible during mating, we infer that selection primarily occurs between mycelia with two types of nucleus

  3. Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins

    SciTech Connect

    Setlow, B.; Setlow, P.

    1987-01-01

    Dormant spores of a Bacillus subtilis mutant that lacks two major small, acid-soluble spore proteins are very sensitive to UV irradiation, which in spores generates about half the amount of thymine-containing dimers formed by comparable irradiation of vegetative cells. Irradiation of mutant spores also produces spore photoproducts, but again only about one-half the amount formed in comparably irradiated wild-type spores. These findings suggest that the high UV sensitivity of the mutant spores is due to the production of pyrimidine dimers, which are not found in UV-irradiated wild-type spores, and that the high level of small, acid-soluble proteins found in wild-type spores is directly involved in spore UV resistance by facilitating a conformational change in spore DNA, preventing pyrimidine dimer formation.

  4. Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria

    DTIC Science & Technology

    2015-07-01

    L R E P O R T DTRA-TR-13-52 Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria Distribution Statement A...Z39.18 00-07-2015 Technical N/A Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria HDTRA1-10-1-0108 Emily M. Hunt, Ph.D. West...understand the interaction between spore forming bacteria and thermite reactions and products and to exploit energetic material reactions with

  5. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    DTIC Science & Technology

    2015-01-14

    nucleotides, and no ATP accumulation. Similar results were obtained with spores that had gone through Stage I of germination and were incubated 8 d at 37°C...including 3-phosphoglyceric acid (3PGA) or mono nucleotides, and no ATP accumulation. Similar results were obtained with spores that had gone...accumulated mono nucleotides (but not ATP !), and these processes were accelerated when core pH was raised to 7.8. These data indicate that spores

  6. Temporaly germinating rhythms of moss Funaria hygrometrica Hedw. spores

    NASA Astrophysics Data System (ADS)

    Pundiak, O.; Demkiv, O.

    The process of an organism development is regular and gradual. These characteristics of the development are especially evident in archegonial plants. It was shown that spores of moss Funar ia hygrometrica Hedw. in Knop's nutrient medium with 0,2% glucose in the dark in vertical orientation of Petry dishes, germinated polarly depending on gravity direction. At the begining, the primary rhyziod developed being usually directed downwards and then after 24 hours primary chloronema developed growing usually upwards. The amyloplasts sedimentation was shown before the rhyzoid and chloronema formation. It determines not only the time, but spatial orientation of the primary rhyzoid and chloronema (Pundjak at al., 2001). EGTA in concentration of 510- 5 M inhibited the initiation of the primary rhyzoid. The primary chloronema developed as usual in 48 h after the spores sowing. Temporary cooling caused analogical effect. Basing on these results we drew the conclusion that the primary rhyzoid and chloronema differently react on the action of EGTA and the cooling. The primary chloronema was more tolerant then the rhyzoid and maintained its usual gravisensitivy. Thus, we can think that EGTA and the cooling stop the development of primary rhyzoid, but it does not disturb physiological rhythm which underlais in the base of the function of the biological clock. The stability of biological rhythms and their indeterminism in respect of described above external and internal factors is real thanks to dissipation, which makes considerable interval of uncertainties of distributions of distances between segments of biopolymers and thus, of their fermentative activities (Pundjak,2001). Therefore the rise of biological clocks of each organism is in certain sense transcendental.

  7. Effects of Chlorine Dioxide on Spore Structural and Fuctional Properties

    DTIC Science & Technology

    2006-05-31

    a screw-top flask. A control sample was also prepared consisting of spores exposed to sterile distilled water for 1 hour. Finally, ClO2 ...gas-phase ClO2 concentrations for the duration of the 2 hour exposure time. Spores were then recovered from each sample. Recovery from spore...fluorescence, indicating DNA staining with Syto but not with propidium. Spores treated with NaOCl (Fig. 4), ClO2 (Fig.5), and autoclaving (Fig. 6) all

  8. Taxonomic Implications of Spore Fine Structure in Clostridium bifermentans

    PubMed Central

    Rode, L. J.; Smith, Louis Ds

    1971-01-01

    Thirty-five strains of Clostridium bifermentans were, in most part, culturally homogeneous by conventional taxonomic criteria but were heterogeneous with respect to spore fine structure. Fourteen of the strains produced spores with appendages, distributed among four distinct ultrastructural types. No consistent correlation existed between spore type and other variable properties of these strains. It is proposed, therefore, that these spore appendage-type strains be considered as “varieties” of C. bifermentans and that they should not be designated as new species. Images PMID:5541019

  9. Effect of Lipid Materials on Heat Resistance of Bacterial Spores

    PubMed Central

    Molin, N.; Snygg, B. G.

    1967-01-01

    The apparent heat resistance of spores of Bacillus megaterium, B. subtilis, B. cereus, B. stearothermophilus, and Clostridium botulinum type E in lipids was investigated and compared with the resistance of the spores in phosphate buffer solution. The most pronounced increase in heat resistance was noted for B. subtilis and C. botulinum type E, the increase varying with the type of lipid used. A high water content of the lipids used as heating menstruum lowered the heat resistance of the spores. Possible explanations for the high heat resistance of spores in lipids are discussed. PMID:16349757

  10. Spore germination promoter of Dictyostelium discoideum excreted by Aerobacter aerogenes.

    PubMed

    Hashimoto, Y; Tanaka, Y; Yamada, T

    1976-07-01

    The nutrient medium in which Aerobacter aerogenes was grown, contains a spore germination promoter (SGP) for the cellular slime mould Dictyostelium discoideum. SGP can cuase synchronous spore germination in a short time, and triggers the germination process in just a few minutes. Germination-promoting capacity of SGP decreases as it comes in contact with increasing number of spores. When spores activated by SGP are stored at 4 degrees C, they gradually return to the dormant state. SGP is comparatively heat-stable, but is unstable at pH above 10 or under 3.

  11. Defining the natural habitat of Bacillus spore-formers.

    PubMed

    Hong, Huynh A; To, Ellen; Fakhry, Saad; Baccigalupi, Loredana; Ricca, Ezio; Cutting, Simon M

    2009-01-01

    Our understanding of the genetics and physiology of the spore-forming genus Bacillus is remarkable. On the other hand, though, where these Gram-positive bacteria live and grow is far from clear. The soil, once considered their habitat, may simply serve as a reservoir. A growing number of studies show that Bacillus spores can be found in the intestinal tracts of animals, raising the question of whether this could be where they live and grow. In this study, we have conducted the first evaluation of Bacillus spore formers in soil and in human faeces. Our aim is simply to determine the abundance of aerobic spore-formers. Our results show that soil carries approximately approximately 10(6)spores/g while human faeces an average of up to 10(4)spores/g. The numbers of spores found in faeces, we reason, is too high to be accounted for principally by ingestion of food contaminated with spores from soil. This provides further evidence that Bacillus spore formers may have adapted to survival within the intestinal tract of insects and other animals that ingest them; if so they may well be hitherto undiscovered gut commensals.

  12. Scanning Electron and Phase-Contrast Microscopy of Bacterial Spores

    PubMed Central

    Bulla, L. A.; Julian, G. St.; Rhodes, R. A.; Hesseltine, C. W.

    1969-01-01

    The three-dimensional immages of free and intrasporangial spores produced by scanning electron microscopy show surface structures not visible by phase-contrast microscopy. Although fine surface detail is not elucidated by scanning electron microscopy, this technique does afford a definitive picture of the general shape of spores. Spores of Bacillus popilliae, B. lentimorbus, B. thuringiensis, B. alvei, B. cereus, and Sarcina ureae have varying patterns of surface ridge formation, whereas spores of B. larvae, B. subtilis, and B. licheniformis have relatively smooth surfaces. Images PMID:4907010

  13. Bacterial Spores in Food: Survival, Emergence, and Outgrowth.

    PubMed

    Wells-Bennik, Marjon H J; Eijlander, Robyn T; den Besten, Heidy M W; Berendsen, Erwin M; Warda, Alicja K; Krawczyk, Antonina O; Nierop Groot, Masja N; Xiao, Yinghua; Zwietering, Marcel H; Kuipers, Oscar P; Abee, Tjakko

    2016-01-01

    Spore-forming bacteria are ubiquitous in nature. The resistance properties of bacterial spores lie at the heart of their widespread occurrence in food ingredients and foods. The efficacy of inactivation by food-processing conditions is largely determined by the characteristics of the different types of spores, whereas food composition and storage conditions determine the eventual germination and outgrowth of surviving spores. Here, we review the current knowledge on variation in spore resistance, in germination, and in the outgrowth capacity of spores relevant to foods. This includes novel findings on key parameters in spore survival and outgrowth obtained by gene-trait matching approaches using genome-sequenced Bacillus spp. food isolates, which represent notorious food spoilage and pathogenic species. Additionally, the impact of strain diversity on heat inactivation of spores and the variability therein is discussed. Knowledge and quantification of factors that influence variability can be applied to improve predictive models, ultimately supporting effective control of spore-forming bacteria in foods.

  14. The physical state of water in bacterial spores

    PubMed Central

    Sunde, Erik P.; Setlow, Peter; Hederstedt, Lars; Halle, Bertil

    2009-01-01

    The bacterial spore, the hardiest known life form, can survive in a metabolically dormant state for many years and can withstand high temperatures, radiation, and toxic chemicals. The molecular basis of spore dormancy and resistance is not understood, but the physical state of water in the different spore compartments is thought to play a key role. To characterize this water in situ, we recorded the water 2H and 17O spin relaxation rates in D2O-exchanged Bacillus subtilis spores over a wide frequency range. The data indicate high water mobility throughout the spore, comparable with binary protein–water systems at similar hydration levels. Even in the dense core, the average water rotational correlation time is only 50 ps. Spore dormancy therefore cannot be explained by glass-like quenching of molecular diffusion but may be linked to dehydration-induced conformational changes in key enzymes. The data demonstrate that most spore proteins are rotationally immobilized, which may contribute to heat resistance by preventing heat-denatured proteins from aggregating irreversibly. We also find that the water permeability of the inner membrane is at least 2 orders of magnitude lower than for model membranes, consistent with the reported high degree of lipid immobilization in this membrane and with its proposed role in spore resistance to chemicals that damage DNA. The quantitative results reported here on water mobility and transport provide important clues about the mechanism of spore dormancy and resistance, with relevance to food preservation, disease prevention, and astrobiology. PMID:19892742

  15. Heat killing of bacterial spores analyzed by differential scanning calorimetry.

    PubMed

    Belliveau, B H; Beaman, T C; Pankratz, H S; Gerhardt, P

    1992-07-01

    Thermograms of the exosporium-lacking dormant spores of Bacillus megaterium ATCC 33729, obtained by differential scanning calorimetry, showed three major irreversible endothermic transitions with peaks at 56, 100, and 114 degrees C and a major irreversible exothermic transition with a peak at 119 degrees C. The 114 degrees C transition was identified with coat proteins, and the 56 degrees C transition was identified with heat inactivation. Thermograms of the germinated spores and vegetative cells were much alike, including an endothermic transition attributable to DNA. The ascending part of the main endothermic 100 degrees C transition in the dormant-spore thermograms corresponded to a first-order reaction and was correlated with spore death; i.e., greater than 99.9% of the spores were killed when the transition peak was reached. The maximum death rate of the dormant spores during calorimetry, calculated from separately measured D and z values, occurred at temperatures above the 73 degrees C onset of thermal denaturation and was equivalent to the maximum inactivation rate calculated for the critical target. Most of the spore killing occurred before the release of most of the dipicolinic acid and other intraprotoplast materials. The exothermic 119 degrees C transition was a consequence of the endothermic 100 degrees C transition and probably represented the aggregation of intraprotoplast spore components. Taken together with prior evidence, the results suggest that a crucial protein is the rate-limiting primary target in the heat killing of dormant bacterial spores.

  16. Quantitative and sensitive RNA based detection of Bacillus spores

    PubMed Central

    Osmekhina, Ekaterina; Shvetsova, Antonina; Ruottinen, Maria; Neubauer, Peter

    2014-01-01

    The fast and reliable detection of bacterial spores is of great importance and still remains a challenge. Here we describe a direct RNA-based diagnostic method for the specific detection of viable bacterial spores which does not depends on an enzymatic amplification step and therefore is directly appropriate for quantification. The procedure includes the following steps: (i) heat activation of spores, (ii) germination and enrichment cultivation, (iii) cell lysis, and (iv) analysis of 16S rRNA in crude cell lysates using a sandwich hybridization assay. The sensitivity of the method is dependent on the cultivation time and the detection limit; it is possible to detect 10 spores per ml when the RNA analysis is performed after 6 h of enrichment cultivation. At spore concentrations above 106 spores per ml the cultivation time can be shortened to 30 min. Total analysis times are in the range of 2–8 h depending on the spore concentration in samples. The developed procedure is optimized at the example of Bacillus subtilis spores but should be applicable to other organisms. The new method can easily be modified for other target RNAs and is suitable for specific detection of spores from known groups of organisms. PMID:24653718

  17. Dispersal of fungal spores on a cooperatively generated wind

    PubMed Central

    Roper, Marcus; Seminara, Agnese; Bandi, M. M.; Cobb, Ann; Dillard, Helene R.; Pringle, Anne

    2010-01-01

    Because of their microscopic size, the forcibly ejected spores of ascomycete fungi are quickly brought to rest by drag. Nonetheless some apothecial species, including the pathogen Sclerotinia sclerotiorum, disperse with astonishing rapidity between ephemeral habitats. Here we show that by synchronizing the ejection of thousands of spores, these fungi create a flow of air that carries spores through the nearly still air surrounding the apothecium, around intervening obstacles, and to atmospheric currents and new infection sites. High-speed imaging shows that synchronization is self-organized and likely triggered by mechanical stresses. Although many spores are sacrificed to produce the favorable airflow, creating the potential for conflict among spores, the geometry of the spore jet physically targets benefits of the airflow to spores that cooperate maximally in its production. The ability to manipulate a local fluid environment to enhance spore dispersal is a previously overlooked feature of the biology of fungal pathogens, and almost certainly shapes the virulence of species including S. sclerotiorum. Synchronous spore ejection may also provide a model for the evolution of stable, self-organized behaviors. PMID:20880834

  18. A bacterial spore model of pulsed electric fields on spore morphology change revealed by simulation and SEM.

    PubMed

    Qiu, Xing; Lee, Yin Tung; Yung, Pun To

    2014-01-01

    A two-layered spore model was proposed to analyze morphological change of bacterial spores subjected under pulsed electric fields. The outer layer, i.e. spore coat, was defined by Mooney-Rivlin hyper-elastic material model. The inner layer, i.e. peptidoglycan and spore core, was modeled by applying additional adhesion forces. The effect of pulsed electric fields on surface displacement was simulated in COMSOL Multiphysics and verified by SEM. The electro-mechanical theory, considering spore coat as a capacitor, was used to explain concavity; and the thin viscoelastic film theory, considering membrane bilayer as fluctuating surfaces, was used to explain leakage forming. Mutual interaction of external electric fields, charged spores, adhesion forces and ions movement were all predicted to contribute to concavity and leakage.

  19. Hypersensitivity pneumonitis induced by Shiitake mushroom spores.

    PubMed

    Ampere, Alexandre; Delhaes, Laurence; Soots, Jacques; Bart, Frederic; Wallaert, Benoit

    2012-08-01

    Hypersensitivity pneumonitis (HP) is a pulmonary granulomatosis involving an immunoallergic mechanism caused by chronic inhalation of antigens, most frequently organic substances, as well as chemicals. We report the first European case of hypersensitivity pneumonitis due to the inhalation of Shiitake mushroom spores. A 37-year-old French Caucasian man with a one-month history of persistent dry cough, shortness of breath and loss of weight was admitted to our hospital on December 2010. Anamnesis showed he was involved in mushroom production beginning in the summer of 2010. His temperature on admission was 36.6°C and he had a normal blood pressure (135/90 mmHg). Bilateral fine crackles were audible in the base of both lungs. Pulmonary function tests showed a mild restrictive pattern with decreased DLco and a PaO(2) of 65 mmHg, Chest CT scan revealed reticulo-nodular shadows, slight ground glass opacities, liner atelectasis, and subpleural opacities in both lung fields. Bronchoscopy was normal but cytological examination of BAL revealed a predominant lymphocytosis (55%). Serum precipitins to the Shiitake mushroom spores were positive (3 precipitins arcs with high intensity) and as a result we advised the patient to cease his mushroom production activities. The diagnosis of hypersensitivity pneumonitis due to inhalation of Shiitake mushroom spores was established as a result of the improvement of all of his clinical symptoms, i.e., cough, weight loss, bilateral fine crackles, mild restrictive pattern of pulmonary function, and reticulo-nodular shadows on chest CT, once exposure was eliminated. Recent interest in exotic mushrooms varieties, e.g., Shiitake, in developed countries because of their possible medicinal properties might increase the potential risk of HP among mushrooms workers. Therefore, healthcare professionals have to take this new potential respiratory disease into account.

  20. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT.

    PubMed

    Nicholson, Wayne L; Moeller, Ralf; Horneck, Gerda

    2012-05-01

    Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Thus, it is important to understand their global responses to long-term exposure to space or martian environments. As part of the PROTECT experiment, spores of B. subtilis 168 were exposed to real space conditions and to simulated martian conditions for 559 days in low-Earth orbit mounted on the EXPOSE-E exposure platform outside the European Columbus module on the International Space Station. Upon return, spores were germinated, total RNA extracted, fluorescently labeled, and used to probe a custom Bacillus subtilis microarray to identify genes preferentially activated or repressed relative to ground control spores. Increased transcript levels were detected for a number of stress-related regulons responding to DNA damage (SOS response, SPβ prophage induction), protein damage (CtsR/Clp system), oxidative stress (PerR regulon), and cell envelope stress (SigV regulon). Spores exposed to space demonstrated a much broader and more severe stress response than spores exposed to simulated martian conditions. The results are discussed in the context of planetary protection for a hypothetical journey of potential forward contaminant spores from Earth to Mars and their subsequent residence on Mars.

  1. Spore-Forming Bacteria that Resist Sterilization

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron; Venkateswaran, Kasthuri

    2003-01-01

    A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

  2. Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth.

    PubMed

    Suo, Jinwei; Zhao, Qi; Zhang, Zhengxiu; Chen, Sixue; Cao, Jian'guo; Liu, Guanjun; Wei, Xing; Wang, Tai; Yang, Chuanping; Dai, Shaojun

    2015-09-01

    Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Chromosome mechanics of fungi under spaceflight conditions--tetrad analysis of two-factor crosses between spore color mutants of Sordaria macrospora.

    PubMed

    Hahn, A; Hock, B

    1999-01-01

    Spore color mutants of the fungus Sordaria macrospora Auersw. were crossed under spaceflight conditions on the space shuttle to MIR mission S/MM 05 (STS-81). The arrangement of spores of different colors in the asci allowed conclusions on the influence of spaceflight conditions on sexual recombination in fungi. Experiments on a 1-g centrifuge in space and in parallel on the ground were used for controls. The samples were analyzed microscopically on their return to earth. Each fruiting body was assessed separately. Statistical analysis of the data showed a significant increase in gene recombination frequencies caused by the heavy ion particle stream in space radiation. The lack of gravity did not influence crossing-over frequencies. Hyphae of the flown samples were assessed for DNA strand breaks. No increase in damage was found compared with the ground samples. It was shown that S. macrospora is able to repair radiation-induced DNA strand breaks within hours.

  4. Role of the Alternaria alternata Blue-Light Receptor LreA (White-Collar 1) in Spore Formation and Secondary Metabolism

    PubMed Central

    Pruß, Sonja; Fetzner, Ramona; Seither, Kristin; Herr, Andreas; Pfeiffer, Erika; Metzler, Manfred; Lawrence, Christopher B.

    2014-01-01

    Alternaria alternata is a filamentous fungus that causes considerable loss of crops of economically important feed and food worldwide. It produces more than 60 different secondary metabolites, among which alternariol (AOH) and altertoxin (ATX) are the most important mycotoxins. We found that mycotoxin production and spore formation are regulated by light in opposite ways. Whereas spore formation was largely decreased under light conditions, the production of AOH was stimulated 2- to 3-fold. ATX production was even strictly dependent on light. All light effects observed could be triggered by blue light, whereas red light had only a minor effect. Inhibition of spore formation by light was reversible after 1 day of incubation in the dark. We identified orthologues of genes encoding the Neurospora crassa blue-light-perceiving white-collar proteins, a cryptochrome, a phytochrome, and an opsin-related protein in the genome of A. alternata. Deletion of the white-collar 1 (WC-1) gene (lreA) resulted in derepression of spore formation in dark and in light. ATX formation was strongly induced in the dark in the lreA mutant, suggesting a repressing function of LreA, which appears to be released in the wild type after blue-light exposure. In addition, light induction of AOH formation was partially dependent on LreA, suggesting also an activating function. A. alternata ΔlreA was still able to partially respond to blue light, indicating the action of another blue-light receptor system. PMID:24532063

  5. Immunohistochemical and immunocytochemical detection of SchS34 antigen in Stachybotrys chartarum spores and spore impacted mouse lungs.

    PubMed

    Rand, Thomas G; Miller, J David

    2008-02-01

    The purpose of this study was to evaluate the distribution of a 34 kD antigen isolated from S. chartarum sensu lato in spores and in the mouse lung 48 h after intra-tracheal instillation of spores by immuno-histochemistry. This antigen was localized in spore walls, primarily in the outer and inner wall layers and on the external wall surfaces with modest labelling observed in cytoplasm. Immuno-histochemistry revealed that in spore impacted mouse lung, antigen was again observed in spore walls, along the outside surface of the outer wall and in the intercellular space surrounding spores. In lung granulomas the labelled antigen formed a diffusate, some 2-3x the size of the long axis of spores, with highest concentrations nearest to spores. Collectively, these observations indicated that this protein not only displayed a high degree of specificity with respect to its location in spores and wall fragments, but also that it slowly diffuses into surrounding lungs.

  6. Model simulations of fungal spore distribution over the Indian region

    NASA Astrophysics Data System (ADS)

    Ansari, Tabish U.; Valsan, Aswathy E.; Ojha, N.; Ravikrishna, R.; Narasimhan, Balaji; Gunthe, Sachin S.

    2015-12-01

    Fungal spores play important role in the health of humans, animals, and plants by constituting a class of the primary biological aerosol particles (PBAPs). Additionally, these could mediate the hydrological cycle by acting as nuclei for ice and cloud formation (IN and CCN respectively). Various processes in the biosphere and the variations in the meteorological conditions control the releasing mechanism of spores through active wet and dry discharge. In the present paper, we simulate the concentration of fungal spores over the Indian region during three distinct meteorological seasons by combining a numerical model (WRF-Chem) with the fungal spore emissions based on land-use type. Maiden high-resolution regional simulations revealed large spatial gradient and strong seasonal dependence in the concentration of fungal spores over the Indian region. The fungal spore concentrations are found to be the highest during winter (0-70 μg m-3 in December), moderately higher during summer (0-35 μg m-3 in May) and lowest during the monsoon (0-25 μg m-3 in July). The elevated concentrations during winter are attributed to the shallower boundary layer trapping the emitted fungal spores in smaller volume. In contrast, the deeper boundary layer mixing in May and stronger monsoonal-convection in July distribute the fungal spores throughout the lower troposphere (∼5 km). We suggest that the higher fungal spore concentrations during winter could have potential health impacts. While, stronger vertical mixing could enable fungal spores to influence the cloud formation during summer and monsoon. Our study provides the first information about the distribution and seasonal variation of fungal spores over the densely populated and observationally sparse Indian region.

  7. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables

    NASA Astrophysics Data System (ADS)

    Filali Ben Sidel, Farah; Bouziane, Hassan; del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed

    2015-03-01

    Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years ( C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R 2 satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R 2 varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.

  8. Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies.

    PubMed

    Kanga, Lambert H B; Adamczyk, John; Patt, Joseph; Gracia, Carlos; Cascino, John

    2010-12-01

    A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 10(10) viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.

  9. Entomology: A Bee Farming a Fungus.

    PubMed

    Oldroyd, Benjamin P; Aanen, Duur K

    2015-11-16

    Farming is done not only by humans, but also by some ant, beetle and termite species. With the discovery of a stingless bee farming a fungus that provides benefits to its larvae, bees can be added to this list.

  10. Hay-scented fern spore production following clearcutting

    Treesearch

    Kathy A. Penrod; Larry H. McCormick

    1997-01-01

    Hay-scented fern is a common forest understory weed native to the Appalachian region. It interferes with oak and other hardwood seedling growth and often leads to regeneration failures. Harvesting is know to increase rates of vegetative expansion, spore germination, and possibly spore production of hay-scented fern. To examine the latter effect, a progressive series of...

  11. Decontamination Of Bacterial Spores by a Peptide-Mimic

    DTIC Science & Technology

    2006-11-01

    of spores to chemical biocides, J. Appl. Bacterial. Symp. Suppl. 76, 91S- 104S. Collado , J., A. Fernandez , M. Rodrigo, and A. Martinez, 2006...McCormick, 1965; Lefebvre and Antippa, 1982; Collado et al, 2006). A fundamental mechanistic and quantitative study of spore germination that will

  12. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    DTIC Science & Technology

    2015-09-17

    spore to swell due to water intake. Inside the outer membrane is the cortex which is a peptidoglycan layer. Peptidoglycan is a matrix of sugars and...the spore as water makes up 48-57 percent of the cortex [2]. Immediately interior to the cortex is the germ cell wall which is also a peptidoglycan

  13. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  14. Inhibition of Bacillus anthracis Spore Outgrowth by Nisin▿

    PubMed Central

    Gut, Ian M.; Prouty, Angela M.; Ballard, Jimmy D.; van der Donk, Wilfred A.; Blanke, Steven R.

    2008-01-01

    The lantibiotic nisin has previously been reported to inhibit the outgrowth of spores from several Bacillus species. However, the mode of action of nisin responsible for outgrowth inhibition is poorly understood. By using B. anthracis Sterne 7702 as a model, nisin acted against spores with a 50% inhibitory concentration (IC50) and an IC90 of 0.57 μM and 0.90 μM, respectively. Viable B. anthracis organisms were not recoverable from cultures containing concentrations of nisin greater than the IC90. These studies demonstrated that spores lose heat resistance and become hydrated in the presence of nisin, thereby ruling out a possible mechanism of inhibition in which nisin acts to block germination initiation. Rather, germination initiation is requisite for the action of nisin. This study also revealed that nisin rapidly and irreversibly inhibits growth by preventing the establishment of oxidative metabolism and the membrane potential in germinating spores. On the other hand, nisin had no detectable effects on the typical changes associated with the dissolution of the outer spore structures (e.g., the spore coats, cortex, and exosporium). Thus, the action of nisin results in the uncoupling of two critical sequences of events necessary for the outgrowth of spores: the establishment of metabolism and the shedding of the external spore structures. PMID:18809941

  15. Resistant Bacterial Spore Coats and Their Breakdown During Germination

    DTIC Science & Technology

    2010-01-01

    spore coat proteins during germination. A strain with an unusually alkali-resistant spore coat was identified as Brevibacillus borstelensis. Coat... proteins were successfully extracted by boiling at neutral pH with high concentrations of reducing agent and detergent. This strain germinated very...3 Results & Discussion 4 Conclusion & References 8 List of Figures: Fig. 1: Proteins released into the supernatant

  16. Lipoxygenase activity accelerates programmed spore germination in Aspergillus fumigatus

    Treesearch

    Gregory J. Fischer; William Bacon; Jun Yang; Jonathan M. Palmer; Taylor Dagenais; Bruce D. Hammock; Nancy P. Keller

    2017-01-01

    The opportunistic human pathogen Aspergillus fumigatus initiates invasive growth through a programmed germination process that progresses from dormant spore to swollen spore (SS) to germling (GL) and ultimately invasive hyphal growth. We find a lipoxygenase with considerable homology to human Alox5 and Alox15, LoxB, that impacts the transitions of...

  17. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops

    PubMed Central

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436

  18. The Role of the Electrostatic Force in Spore Adhesion

    SciTech Connect

    Chung, Eunhyea; Yiacoumi, Sotira; Lee, Ida; Tsouris, Costas

    2010-01-01

    Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

  19. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  20. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops.

    PubMed

    Hassett, Maribeth O; Fischer, Mark W F; Money, Nicholas P

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation.

  1. Gene discovery in EST sequences from the wheat leaf rust fungus puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    USDA-ARS?s Scientific Manuscript database

    Background: Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resour...

  2. Quantification of Spore-forming Bacteria Carried by Dust Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Cholakian, Tanya; Gao, Wenming; Osman, Shariff; Barengoltz, Jack

    2006-01-01

    In order to establish a biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to understand the relationship between spore-forming bacteria and their carrier particles. We conducted air and surface sampling in indoor, outdoor, and cleanroom environments to determine the ratio of spore forming bacteria to their dust particle carriers of different sizes. The number of spore forming bacteria was determined from various size groups of particles in a given environment. Our data also confirms the existence of multiple spores on a single particle and spore clumps. This study will help in developing a better bio-contamination transport model, which in turn will help in determining forward contamination risks for future missions.

  3. Bacillus atrophaeus outer spore coat assembly and ultrastructure.

    PubMed

    Plomp, Marco; Leighton, Terrance J; Wheeler, Katherine E; Pitesky, Maurice E; Malkin, Alexander J

    2005-11-08

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of approximately 11 nm thick rodlets, having a periodicity of approximately 8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer planar and point defects as well as domain boundaries similar to those described for inorganic and macromolecular crystals were identified. For several Bacillus species rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  4. Removal of dissolved heavy metals and radionuclides by microbial spores

    SciTech Connect

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-11-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides {sup 85}strontium and {sup 197}cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs.

  5. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    SciTech Connect

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  6. Heat Resistance of Bacillus Spores at Various Relative Humidities

    PubMed Central

    Reyes, Antolin L.; Crawford, Ronald G.; Wehby, Albert J.; Peeler, James T.; Wimsatt, John C.; Campbell, Jeptha E.; Twedt, Robert M.

    1981-01-01

    The thermal resistance characteristics of spores from strains of five different Bacillus species were determined in phosphate buffer and at relative humidities ranging from <0.001 to 100% in a closed-can system. Spores tested in the closed-can system showed a marked increase in heat resistance over those in phosphate buffer, with the greatest increases occurring at relative humidities between 1 and 50%. When estimates of the time to reduce the initial spore concentration 99.99% (F value) at eight different relative humidities were plotted against temperature, three different types of heat resistance profiles were obtained, with maximum resistances at relative humidities of 1, 7, and 30%. When the various strains of spores were heated at the relative humidity of their maximum heat resistance, their relative order of heat resistance was different from that seen in buffer. Spores from the soil isolate were most resistant under these conditions (F121.1 = 99.5 h). PMID:16345868

  7. Adenylyl cyclase G, an osmosensor controlling germination of Dictyostelium spores.

    PubMed

    van Es, S; Virdy, K J; Pitt, G S; Meima, M; Sands, T W; Devreotes, P N; Cotter, D A; Schaap, P

    1996-09-27

    Dictyostelium cells express a G-protein-coupled adenylyl cyclase, ACA, during aggregation and an atypical adenylyl cyclase, ACG, in mature spores. The ACG gene was disrupted by homologous recombination. acg- cells developed into normal fruiting bodies with viable spores, but spore germination was no longer inhibited by high osmolarity, a fairly universal constraint for spore and seed germination. ACG activity, measured in aca-/ACG cells, was strongly stimulated by high osmolarity with optimal stimulation occurring at 200 milliosmolar. RdeC mutants, which display unrestrained protein kinase A (PKA) activity and a cell line, which overexpresses PKA under a prespore specific promoter, germinate very poorly, both at high and low osmolarity. These data indicate that ACG is an osmosensor controlling spore germination through activation of protein kinase A.

  8. Surface Sampling Methods for Bacillus anthracis Spore Contamination

    PubMed Central

    Hein, Misty J.; Taylor, Lauralynn; Curwin, Brian D.; Kinnes, Gregory M.; Seitz, Teresa A.; Popovic, Tanja; Holmes, Harvey T.; Kellum, Molly E.; McAllister, Sigrid K.; Whaley, David N.; Tupin, Edward A.; Walker, Timothy; Freed, Jennifer A.; Small, Dorothy S.; Klusaritz, Brian; Bridges, John H.

    2002-01-01

    During an investigation conducted December 17–20, 2001, we collected environmental samples from a U.S. postal facility in Washington, D.C., known to be extensively contaminated with Bacillus anthracis spores. Because methods for collecting and analyzing B. anthracis spores have not yet been validated, our objective was to compare the relative effectiveness of sampling methods used for collecting spores from contaminated surfaces. Comparison of wipe, wet and dry swab, and HEPA vacuum sock samples on nonporous surfaces indicated good agreement between results with HEPA vacuum and wipe samples. However, results from HEPA vacuum sock and wipe samples agreed poorly with the swab samples. Dry swabs failed to detect spores >75% of the time they were detected by wipe and HEPA vacuum samples. Wipe samples collected after HEPA vacuum samples and HEPA vacuum samples after wipe samples indicated that neither method completely removed spores from the sampled surfaces. PMID:12396930

  9. Quantification of Spore-forming Bacteria Carried by Dust Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Cholakian, Tanya; Gao, Wenming; Osman, Shariff; Barengoltz, Jack

    2006-01-01

    In order to establish a biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to understand the relationship between spore-forming bacteria and their carrier particles. We conducted air and surface sampling in indoor, outdoor, and cleanroom environments to determine the ratio of spore forming bacteria to their dust particle carriers of different sizes. The number of spore forming bacteria was determined from various size groups of particles in a given environment. Our data also confirms the existence of multiple spores on a single particle and spore clumps. This study will help in developing a better bio-contamination transport model, which in turn will help in determining forward contamination risks for future missions.

  10. Seasonal Trends in Airborne Fungal Spores in Coastal California Ecosystems

    NASA Astrophysics Data System (ADS)

    Morfin, J.; Crandall, S. G.; Gilbert, G. S.

    2014-12-01

    Airborne fungal spores cause disease in plants and animals and may trigger respiratory illnesses in humans. In terrestrial systems, fungal sporulation, germination, and persistence are strongly regulated by local meteorological conditions. However, few studies investigate how microclimate affects the spatio-temporal dynamics of airborne spores. We measured fungal aerospora abundance and microclimate at varying spatial and time scales in coastal California in three habitat-types: coast redwood forest, mixed-evergreen forest, and maritime chaparral. We asked: 1) is there a difference in total airborne spore concentration between habitats, 2) when do we see peak spore counts, and 3) do spore densities correlate with microclimate conditions? Fungal spores were caught from the air with a volumetric vacuum air spore trap during the wet season (January - March) in 2013 and 2014, as well as monthly in 2014. Initial results suggest that mixed-evergreen forests exhibit the highest amounts of spore abundance in both years compared to the other habitats. This may be due to either a higher diversity of host plants in mixed-evergreen forests or a rich leaf litter layer that may harbor a greater abundance of saprotrophic fungi. Based on pilot data, we predict that temperature and to a lesser degree, relative humidity, will be important microclimate predictors for high spore densities. These data are important for understanding when and under what weather conditions we can expect to see high levels of fungal spores in the air; this can be useful information for managers who are interested in treating diseased plants with fungicides.

  11. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    SciTech Connect

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  12. Functional characterization of Clostridium difficile spore coat proteins.

    PubMed

    Permpoonpattana, Patima; Phetcharaburanin, Jutarop; Mikelsone, Anna; Dembek, Marcin; Tan, Sisareuth; Brisson, Marie-Clémence; La Ragione, Roberto; Brisson, Alain R; Fairweather, Neil; Hong, Huynh A; Cutting, Simon M

    2013-04-01

    Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface.

  13. Functional Characterization of Clostridium difficile Spore Coat Proteins

    PubMed Central

    Permpoonpattana, Patima; Phetcharaburanin, Jutarop; Mikelsone, Anna; Dembek, Marcin; Tan, Sisareuth; Brisson, Marie-Clémence; La Ragione, Roberto; Brisson, Alain R.; Fairweather, Neil; Hong, Huynh A.

    2013-01-01

    Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. PMID:23335421

  14. Characterizing Aeroallergens by Infrared Spectroscopy of Fungal Spores and Pollen

    PubMed Central

    Zimmermann, Boris; Tkalčec, Zdenko; Mešić, Armin; Kohler, Achim

    2015-01-01

    Background Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. Methodology The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. Results The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps. PMID:25867755

  15. Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen.

    PubMed

    Zimmermann, Boris; Tkalčec, Zdenko; Mešić, Armin; Kohler, Achim

    2015-01-01

    Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps.

  16. Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores

    DTIC Science & Technology

    2014-01-01

    2005. Heterogeneity of times required for germination and outgrowth from single spores of non- proteolytic Clostridium botulinum. Appl. Environ...spores of Clostridium botulinum. Food Microbiol. 28:228 –235. http: //dx.doi.org/10.1016/j.fm.2010.03.003. 11. Setlow P, Liu J, Faeder JR. 2012

  17. Utilizing DART Mass Spectrometry to Pinpoint Halogenated Metabolites from a Marine Invertebrate-Derived Fungus

    PubMed Central

    Watts, Katharine R.; Loveridge, Steven T.; Tenney, Karen; Media, Joseph; Valeriote, Frederick A.; Crews, Phillip

    2011-01-01

    Prenylated indole alkaloids are a diverse group of fungal secondary metabolites and represent an important biosynthetic class. In this study we have identified new halogenated prenyl-indole alkaloids from an invertebrate-derived Malbranchea graminicola strain. Using Direct Analysis in Real Time (DART) Mass Spectrometry, these compounds were initially detected from spores of the fungus grown on agar plates, without the need for any organic extraction. Subsequently, the metabolites were isolated from liquid culture in artificial seawater. The structures of two novel chlorinated metabolites, named (−)-spiromalbramide and (+)-isomalbrancheamide B, provide additional insights into the assembly of the malbrancheamide compound family. Remarkably, two new brominated analogs, (+)-malbrancheamide C and (+)-isomalbrancheamide C, were produced by enriching the growth medium with bromine salts. PMID:21682275

  18. Clinostatic rotation decreases crossover frequencies in the fungus Sordaria macrospora Auersw.

    PubMed

    Henkel, J; Hock, B

    1991-12-01

    Two-factor crosses between the non-allelic spore colour mutants r2 and lu of the fungus Sordaria macrospora were used to investigate the effect of clinostatic rotation (= simulated weightlessness) on crossover frequencies. The experiment was carried out with different rotary directions at a rotary rate of 4 rpm. Second-division segregations of the gene lu, which result from crossover between the gene locus and centromere, are significantly smaller in the clinostat experiments than in the static controls. No differences were found between the two rotary directions. A similar influence of clinostatic rotation was not observed for the gene r2 which in contrast to the lu locus is located very close to the centromere. The suitability of this approach for the investigation of the effect of space flight conditions on cytogenetic processes is pointed out.

  19. Importance of ambient saturation deficits in an epizootic of the fungus Neozygites floridana in cassava green mites (Mononychellus tanajoa).

    PubMed

    Elliot, Sam L; De Moraes, Gilberto J; Mumford, John D

    2002-01-01

    The mite-pathogenic fungus Neozygites floridana Fisher (Entomophthorales: Neozygitaceae) is considered to have potential for the biological control of the cassava green mite, Mononychellus tanajoa (Bondar). However, its activity is sporadic and laboratory data suggest a strong dependence on night-time saturation deficits for transmission. We report on an epizootic of this fungus in a mite population in northeastern Brazil. During the epizootic, host populations appeared to he limited by a combination of the pathogen and a predatory mite Neoseiulus idaeus (Acari: Phytoseiidae). When temperatures increased, the epizootic finished and the host population began to grow. Abiotic conditions could not explain the variation in host mortality following pickup of infective propagules in this epizootic. However, night-time saturation did help to explain the variation in transmission from infective cadavers to newly killed hosts. This supports laboratory observations that horizontal transmission between hosts is determined mainly by saturation deficits, while the process of infection is little affected by abiotic conditions. A further field observation was the near-absence of resting spores in dead mites (ca. 0.1% of cadavers), suggesting that the pathogen population was unsuccessful in producing inoculum to infect future M. tanajoa populations. The implications are that this pathogen will only be effective as a biological control agent in periods of high relative humidity, and establishment in new areas may be limited by resting spore formation.

  20. Antagonistic pleiotropy may help population-level selection in maintaining genetic polymorphism for transmission rate in a model phytopathogenic fungus.

    PubMed

    Tellier, A; Villaréal, L M M A; Giraud, T

    2007-01-01

    It has been shown theoretically that the conditions for the maintenance of polymorphism at pleiotropic loci with antagonistic effects on fitness components are rather restrictive. Here, we use a metapopulation model to investigate whether antagonistic pleiotropy could help maintain polymorphism involving common deleterious alleles in the phytopathogenic fungus Microbotryum violaceum. This fungus causes anther smut disease of the Caryophyllaceae. A previous model has shown that the sex-linked deleterious alleles can be maintained under a metapopulation structure, when intra-tetrad selfing (mating between products of the same meiosis) is high, due to founder effects and selection at the population level. Here, we add two types of pleiotropic advantages to the metapopulation model. A competitive advantage for strains carrying the sex-linked deleterious alleles did not facilitate their maintenance because competitive situations were too rare. In contrast, higher spore production did facilitate the maintenance of the deleterious alleles at low intra-tetrad mating rates and with a large advantage for spore production. These results show that antagonistic pleiotropy may promote the persistence of genetic variation, in combination with other selective forces.

  1. Methods for neutralizing anthrax or anthrax spores

    SciTech Connect

    Sloan, Mark A; Vivekandanda, Jeevalatha; Holwitt, Eric A; Kiel, Johnathan L

    2013-02-26

    The present invention concerns methods, compositions and apparatus for neutralizing bioagents, wherein bioagents comprise biowarfare agents, biohazardous agents, biological agents and/or infectious agents. The methods comprise exposing the bioagent to an organic semiconductor and exposing the bioagent and organic semiconductor to a source of energy. Although any source of energy is contemplated, in some embodiments the energy comprises visible light, ultraviolet, infrared, radiofrequency, microwave, laser radiation, pulsed corona discharge or electron beam radiation. Exemplary organic semiconductors include DAT and DALM. In certain embodiments, the organic semiconductor may be attached to one or more binding moieties, such as an antibody, antibody fragment, or nucleic acid ligand. Preferably, the binding moiety has a binding affinity for one or more bioagents to be neutralized. Other embodiments concern an apparatus comprising an organic semiconductor and an energy source. In preferred embodiments, the methods, compositions and apparatus are used for neutralizing anthrax spores.

  2. Germination Requirements of Bacillus macerans Spores

    PubMed Central

    Sacks, L. E.; Thompson, P. A.

    1971-01-01

    2-Phenylacetamide is an effective germinant for spores of five strains of Bacillus macerans, particularly in the presence of fructose. Benzyl penicillin, the phenyl acetamide derivative of penicillin, and phenylacetic acid are also good germinants. l-Asparagine is an excellent germinant for four strains. α-Amino-butyric acid is moderately effective. Pyridoxine, pyridoxal, adenine, and 2,6-diaminopurine are potent germinants for NCA strain 7X1 only. d-Glucose is a powerful germinant for strain B-70 only. d-Fructose and d-ribose strongly potentiate germination induced by other germinants (except l-asparagine) but have only weak activity by themselves. Niacinamide and nicotinamide-adenine dinucleotide, inactive by themselves, are active in the presence of fructose or ribose. Effects of pH, ion concentration, and temperature are described. PMID:4251279

  3. A case of fungus ball type pansinusitis caused by Schizophillum commune.

    PubMed

    Nazeri, Mehdi; Mohammadi Ardehali, Mojtaba; Moazeni, Maryam; Jamal Hashemi, Seyed; Fallahi, Ali Akbar; Ehteram, Hassan; Rezaie, Sassan

    2012-01-01

    Schizophillum commune has been increasingly reported from allergic bronchopulmonary mycosis (ABPM) as well as fungus ball, brain abscess and several cases of maxillary or allergic fungal sinusitis. In the present study, we reported a case of fungus ball type pansinusitis from a 32-year-old woman in Iran. According to computed tomography (CT) scan, fungus ball type pan-sinusitis was likely to be the first diagnosis. Mycological examination revealed hyaline hyphae with small projection and also clamp connection structures on PDA medium. To identify the obtained isolate properly, molecular analysis of the internal transcribed spacer region was performed and indicated that the causing agent of the infection is surely Schizophillum commune. The patient completely recovered after surgical endoscopic operation and consequent post-operation MRI revealed clearance of sinuses.

  4. A case of fungus ball type pansinusitis caused by Schizophillum commune

    PubMed Central

    Nazeri, Mehdi; Mohammadi Ardehali, Mojtaba; Moazeni, Maryam; Jamal Hashemi, Seyed; Fallahi, Ali akbar; Ehteram, Hassan; Rezaie, Sassan

    2012-01-01

    Schizophillum commune has been increasingly reported from allergic bronchopulmonary mycosis (ABPM) as well as fungus ball, brain abscess and several cases of maxillary or allergic fungal sinusitis. In the present study, we reported a case of fungus ball type pansinusitis from a 32-year-old woman in Iran. According to computed tomography (CT) scan, fungus ball type pan-sinusitis was likely to be the first diagnosis. Mycological examination revealed hyaline hyphae with small projection and also clamp connection structures on PDA medium. To identify the obtained isolate properly, molecular analysis of the internal transcribed spacer region was performed and indicated that the causing agent of the infection is surely Schizophillum commune. The patient completely recovered after surgical endoscopic operation and consequent post-operation MRI revealed clearance of sinuses. PMID:24371755

  5. Microalgae harvesting via co-culture with filamentous fungus

    NASA Astrophysics Data System (ADS)

    Gultom, Sarman Oktovianus

    Microalgae harvesting is a labor- and energy-intensive process. For instance, classical harvesting technologies such as chemical addition and mechanical separation are economically prohibiting for biofuel production. Newer approaches to harvest microalgae have been developed in order to decrease costs. Among these new methods, fungal co-pelletization seems to be a promising technology. By co-culturing filamentous fungi with microalgae, it is possible to form pellets, which can easily be separated. In this study, different parameters for the cultivation of filamentous fungus (Aspergillus niger) and microalgae (Chlorella vulgaris) to efficiently form cell pellets were evaluated under heterotrophic and phototrophic conditions, including organic carbon source (glucose, glycerol and sodium acetate) concentration, pH, initial concentration of fungal spores, initial concentration of microalgal cells, concentration of ionic strength (Calcium and Magnesium) and concentration of salinity (NaCl). In addition, zeta-potential measurements were carried out in order to get a better understanding of the mechanism of attraction. It was found that 2 g/L of glucose, a fungus to microalgae ratio of 1:300, and uncontrolled pH (around 7) are the best culturing conditions for co-pelletization. Under these conditions, it was possible to achieve a high harvesting performance (>90%). In addition, it was observed that most pellets formed in the co-culture were spherical with an average diameter of 3.5 mm and in concentrations of about 5 pellets per mL of culture media. Under phototrophic conditions, co-pelletization required the addition of glucose as organic carbon source to sustain the growth of fungi and to allow the harvesting of microalgae. Zeta-potential measurements indicated that (i) both microalgae and fungi have low zeta-potential values regardless of the pH on the bulk (i.e. <-10 mV) (ii) fungi can have a positive electric charge at low pH (ie. pH=3). These values suggest that it

  6. Isolation and in vitro cultivation of Auriculoscypha anacardiicola D.A. Reid et Manim., an insect-associated and potentially medicinal fungus from India.

    PubMed

    Kumar, T K Arun; Chandran, Jisha K; Sreekandan, Jisha E; Manimohan, Patinjareveettil

    2011-01-01

    Auriculoscypha anacardiicola, an obligate insect-associate and a potential medicinal fungus, is isolated and studied in vitro. Suitable methods for isolation and cultivation of the fungus have been developed. Incubating spore deposits made to fall from basidiomata on tap water agar seems to be the best method for developing cultures. Successful isolations were also accomplished from infected coccids. Cultures could not be developed from single basidiospores and from tissues of the basidiomata. Although production of ballistospores and blastospores as well as germ tube formation were observed at the time of germination of basidiospores, budding blastospores alone produced mycelial cultures. Observations such as the inability of single basidiospores to germinate, emergence of mycelium from a spore deposit, and the apparent conjugation of yeast cells indicate that dikaryotization resulting from fusion of compatible yeast cells is essential for development of mycelium in A. anacardiicola. The fungus grew well on all complex media tested. It seems that a purely synthetic medium devoid of any growth factors cannot support the growth ofA. anacardiicola and yeast extract seems to provide the required growth factors.

  7. Dynamic phase microscopy, a new method to detect viable and killed spores and to estimate the heterogeneity of spore populations

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Mulyukin, Andrey L.; Lisovskii, Vitalii V.; Nikolaev, Yury A.; Kretushev, Aleksander V.; Vyshenskaya, Tatyana V.; Suzina, Nataliya E.; Duda, Vitalii I.; El-Registan, Galina I.

    One of the challenging tasks in monitoring studies is to estimate heterogeneity of microbial populations by the physiological state and potential viability of individual cells, especially with regard of their ability to withstand various environmental assaults. Previously, we described some approaches based on electron microscopy methods to discriminate vegetative, dormant, and dead cells in both aged microbial cultures and environmental samples, including permafrost. We propose to extend the arsenal of microscopy methods for monitoring studies by a new non-invasive and informative method - dynamic phase microscopy (DPM). The substantial advantage of DPM is that it gives quantitative (digitized) data of undestroyed (living) microscopic objects, exemplified in our work by Bacillus licheniformis spores. Using DPM made it possible to record interference images of objects (spores) and to produce picture of their "phase thickness" (PT) that is the optical path difference in nm. Thus, it was demonstrated the remarkable difference in the PT of spores at different physiological states: dormant, germinating, and heat-killed spores had PT values of 80, 40-50, and 20 nm, respectively. The other found criterion to distinguish between spores was the PT fluctuations. In contrast to dormant and killed spores, the PT of germinating spores oscillated with amplitude of up to 7 nm, with typical frequencies of 1.3 and 3.4 Hz. A combination of the recorded PT values and PT fluctuations gave a key to detect viable and dead cells. Under the conditions that did not support germination (the lack of nutrients), we were able to follow the response of a single dormant spore and a spore population to heating from 25 °C to 70 °C. Thus, a very small temperature change (from 40 °C to 42 °C) under conditions non-favorable for germination, caused a drastic decrease in the spores' PT; the second drop in the PT values was observed during heating from 60 °C to 70 °C. These changes were

  8. Exploring fungus-plant N transfer in a tripartite ant-plant-fungus mutualism.

    PubMed

    Leroy, Céline; Jauneau, Alain; Martinez, Yves; Cabin-Flaman, Armelle; Gibouin, David; Orivel, Jérôme; Séjalon-Delmas, Nathalie

    2017-09-01

    The plant Hirtella physophora, the ant Allomerus decemarticulatus and a fungus, Trimmatostroma sp., form a tripartite association. The ants manipulate both the plant trichomes and the fungus to build galleries under the stems of their host plant used to capture prey. In addition to its structural role, the fungus also improves nutrient uptake by the host plant. But it still remains unclear whether the fungus plays an indirect or a direct role in transferring nutrients to the plant. This study aimed to trace the transfer of N from the fungus to the plant's stem tissue. Optical microscopy and transmission electron microscopy (TEM) were used to investigate the presence of fungal hyphae in the stem tissues. Then, a 15N-labelling experiment was combined with a nanoscale secondary-ion mass spectrometry (NanoSIMS 50) isotopic imaging approach to trace the movement of added 15N from the fungus to plant tissues. The TEM images clearly showed hyphae inside the stem tissue in the cellular compartment. Also, fungal hyphae were seen perforating the wall of the parenchyma cell. The 15N provisioning of the fungus in the galleries resulted in significant enrichment of the 15N signature of the plant's leaves 1 d after the 15N-labelling solution was deposited on the fungus-bearing trap. Finally, NanoSIMS imaging proved that nitrogen was transferred biotrophically from the fungus to the stem tissue. This study provides evidence that the fungi are connected endophytically to an ant-plant system and actively transfer nitrogen from 15N-labelling solution to the plant's stem tissues. Overall, this study underlines how complex the trophic structure of ant-plant interactions is due to the presence of the fungus and provides insight into the possibly important nutritional aspects and tradeoffs involved in myrmecophyte-ant mutualisms.

  9. Infrared signatures to discriminate viability of autoclaved Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schneider, Matthew D. W.; Valentine, Nancy B.; Johnson, Timothy J.

    2011-11-01

    Optical methods can offer good sensitivity for detecting small amounts of chemicals and biologicals, and as these methods mature, are some of the few techniques that can offer true standoff detection. For detection of biological species, determining the viability is clearly important: Certain species of gram-positive bacteria are capable of forming endospores, specialized structures that arise when living conditions become unfavorable or little growth medium is available. Spores are also resistant to many chemicals as well as changes in heat or pH; such spores can remain dormant from months to years until more favorable conditions arise, resulting in germination back to the vegetative state. This persistence characteristic of bacterial spores allows for contamination of a surface (e.g. food or medical equipment) even after the surface has been nominally cleaned. Bacterial spores have also been used as biological weapons, as in the case of B. anthracis. Thus, having rapid analytical methods to determine a spore's viability after attempts to clean a given environment is crucial. The increasing availability of portable spectrometers may provide a key to such rapid onsite analysis. The present study was designed to determine whether infrared spectroscopy may be used to differentiate between viable vs. dead B. subtilis and B. atrophaeus spores. Preliminary results show that the reproducible differences in the IR signatures can be used to identify the viable vs. the autoclaved (dead) spores.

  10. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy

    PubMed Central

    2015-01-01

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium–hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  11. Immunogenicity and protective efficacy of Clostridium difficile spore proteins.

    PubMed

    Ghose, Chandrabali; Eugenis, Ioannis; Edwards, Adrianne N; Sun, Xingmin; McBride, Shonna M; Ho, David D

    2016-02-01

    Clostridium difficile is a spore-forming, anaerobic, Gram-positive organism that is the leading cause of antibiotic-associated infectious diarrhea, commonly known as C. difficile infection (CDI). C. difficile spores play an important role in the pathogenesis of CDI. Spore proteins, especially those that are surface-bound may play an essential role in the germination, colonization and persistence of C. difficile in the human gut. In our current study, we report the identification of two surface-bound spore proteins, CdeC and CdeM that may be utilized as immunization candidates against C. difficile. These spore proteins are immunogenic in mice and are able to protect mice against challenge with C. difficile UK1, a clinically-relevant 027/B1/NAP1 strain. These spore proteins are also able to afford high levels of protection against challenge with C. difficile 630Δerm in golden Syrian hamsters. This unprecedented study shows the vaccination potential of C. difficile spore exosporium proteins.

  12. Nutritionally defined conditions for germination of Streptomyces viridochromogenes spores.

    PubMed Central

    Hirsch, C F; Ensign, J C

    1976-01-01

    Spores of Streptomyces viridochromogenes were removed from the surface of solid media with glass beads and suspended in a buffer-detergent solution. Addition of yeast extract and glucose resulted in rapid loss of refractility of the spores. Appearance of germ tubes followed. Germination was accompanied by a decrease in the optical density (OD) of the suspension. The OD decrease was used as an assay for germination. A defined germination medium (DGM) comprised of L-alanine, L-glutamic acid, adenosine, para-aminobenzoic acid, and calcium and magnesium ions provided a germination rate nearly equal to that of complex media. The germination rate was essentially the same if D-alanine and D-glutamate replaced the L-isomers. The optimum pH and temperature for germination were 7.0 and 35 C. Germination was absolutely dependent on the presence of CO2. Spores harvested after growth for longer periods than the usual time (10 days) became less germinable in DGM. The same was observed for spores grown at 37 C as compared with 30 C. Spores incubated in DGM for various time periods before being transferred to a buffer solution did not continue to germinate. Spores harvested after growth of eight species of Streptomyces did not show a decrease in OD when incubated in yeast extract medium. Another strain of S. viridochromogenes did exhibit an OD decrease in the medium. Comparative properties of spores of streptomycetes, fungi, and bacilli are discussed. Images PMID:4421

  13. Coat and enterotoxin-related proteins in Clostridium perfringens spores.

    PubMed

    Ryu, S; Labbe, R G

    1989-11-01

    Coat proteins from mature spores of two enterotoxin-positive (Ent+) and two enterotoxin-negative (Ent-) strains of Clostridium perfringens were solubilized using 50 mM-dithiothreitol and 1% sodium dodecyl sulphate at pH 9.7, and alkylated using 110 mM-iodoacetamide to prevent aggregation. The coat proteins and C. perfringens type A enterotoxin (CPE) were separated by SDS-PAGE and analysed by Western blotting using anti-CPE antibody. As previously reported, CPE aggregated in the presence of SDS, but no aggregation occurred at concentrations below 15 micrograms CPE ml-1. Two CPE-related proteins (34 and 48 kDa) were found in the solubilized spore coat protein of Ent+ strains while only the 48 kDa CPE-related protein was found in the spore coat fraction of Ent- strains. CPE-related proteins comprised 2.7% and 0.8% of the total solubilized coat protein of Ent+ and Ent- strains respectively. CPE-related proteins could be extracted from the spores with 1% SDS alone. They could also be released by disruption of whole spores, indicating that the CPE-related proteins may be in the spore core or trapped between the core and coat layers. The results suggest that CPE is not a major structural component of the coat fraction of C. perfringens spores.

  14. Activity of essential oils against Bacillus subtilis spores.

    PubMed

    Lawrence, Hayley A; Palombo, Enzo A

    2009-12-01

    Alternative methods for controlling bacterial endospore contamination are desired in a range of industries and applications. Attention has recently turned to natural products, such as essential oils, which have sporicidal activity. In this study, a selection of essential oils was investigated to identify those with activity against Bacillus subtilis spores. Spores were exposed to thirteen essential oils, and surviving spores were enumerated. Cardamom, tea tree, and juniper leaf oils were the most effective, reducing the number of viable spores by 3 logs at concentrations above 1%. Sporicidal activity was enhanced at high temperatures (60 degrees C) or longer exposure times (up to one week). Gas chromatography-mass spectrometry analysis identified the components of the active essential oils. However, none of the major oil components exhibited equivalent activity to the whole oils. The fact that oil components, either alone or in combination, did not show the same level of sporicidal activity as the complete oils suggested that minor components may be involved, or that these act synergistically with major components. Scanning electron microscopy was used to examine spores after exposure to essential oils and suggested that leakage of spore contents was the likely mode of sporicidal action. Our data have shown that essential oils exert sporicidal activity and may be useful in applications where bacterial spore reduction is desired.

  15. Bacillus subtilis spores as adjuvants for DNA vaccines.

    PubMed

    Aps, Luana R M M; Diniz, Mariana O; Porchia, Bruna F M M; Sales, Natiely S; Moreno, Ana Carolina R; Ferreira, Luís C S

    2015-05-11

    Recently, Bacillus subtilis spores were shown to be endowed with strong adjuvant capacity when co-administered with purified antigenic proteins. In the present study we assessed whether spores possess adjuvant properties when combined with DNA vaccines. We showed that B. subtilis spores promoted the activation of dendritic cells in vitro and induced migration of pro-inflammatory cells after parenteral administration to mice. Likewise, co-administration of spores with a DNA vaccine encoding the human papillomavirus type 16 (HPV-16) E7 protein enhanced the activation of antigen-specific CD8(+) T cell responses in vivo. Mice immunized with the DNA vaccine admixed with spores presented a protective immunity increase to previously implanted tumor cells, capable of expressing HPV-16 oncoproteins. Finally, we observed that the adjuvant effect can vary accordingly to the number of co-administered spores which may be ascribed with the ability to induce. Collectively, the present results demonstrate for the first time that B. subtilis spores can also confer adjuvant effects to DNA vaccines.

  16. Thousand cankers disease: Geosmithia morbida spores isolated from a weevil

    Treesearch

    Michele Warmund; Jerry. Van Sambeek

    2014-01-01

    Recently, Geosmithia morbida, the canker-causing fungus associated with thousand cankers disease, was isolated from Stenomimus pallidus weevils found on two stressed black walnut trees in Yellowwood State Forest near Nashville, Indiana. This is the first report of Geosmithia fungus occurring on an insect other than the walnut twig beetle (Pityophthorus juglandis)....

  17. Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1

    PubMed Central

    Foerster, Harold F.; Foster, J. W.

    1966-01-01

    Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334

  18. Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid.

    PubMed

    Setlow, B; Korza, G; Blatt, K M S; Fey, J P; Setlow, P

    2016-01-01

    Determine how supercritical CO2 (scCO2 ) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2 -PAA, and if spores inactivated by scCO2 -PAA are truly dead. Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2 -PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2 -PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2 -PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2 -PAA sensitive. These findings suggest that scCO2 -PAA inactivates spores by damaging spores' inner membrane. The spore coat provided scCO2 -PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2 -PAA resistance only for dry spores. These results provide information on mechanisms of spore inactivation of and resistance to scCO2 -PAA, an agent with increasing use in sterilization applications. © 2015 The Society for Applied Microbiology.

  19. Long-Distance Wind-Dispersal of Spores in a Fungal Plant Pathogen: Estimation of Anisotropic Dispersal Kernels from an Extensive Field Experiment

    PubMed Central

    Rieux, Adrien; Soubeyrand, Samuel; Bonnot, François; Klein, Etienne K.; Ngando, Josue E.; Mehl, Andreas; Ravigne, Virginie; Carlier, Jean; de Lapeyre de Bellaire, Luc

    2014-01-01

    Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances) of spore-producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis. Gradients were measured during a single generation and over 272 traps installed up to 1000 m along eight directions radiating from a traceable source of inoculum composed of fungicide-resistant strains. We adjusted several kernels differing in the shape of their tail and tested for two types of anisotropy. Contrasting dispersal kernels were observed between the two types of spores. For sexual spores (ascospores), we characterized both a steep gradient in the first few metres in all directions and rare long-distance dispersal (LDD) events up to 1000 m from the source in two directions. A heavy-tailed kernel best fitted the disease gradient. Although ascospores distributed evenly in all directions, average dispersal distance was greater in two different directions without obvious correlation with wind patterns. For asexual spores (conidia), few dispersal events occurred outside of the source plot. A gradient up to 12.5 m from the source was observed in one direction only. Accordingly, a thin-tailed kernel best fitted the disease gradient, and anisotropy in both density and distance was correlated with averaged daily wind gust. We discuss the validity of our results as well as their implications in terms of disease diffusion and management strategy. PMID:25116080

  20. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  1. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    PubMed

    Egan, Kevin; Field, Des; Rea, Mary C; Ross, R Paul; Hill, Colin; Cotter, Paul D

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  2. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    PubMed Central

    Egan, Kevin; Field, Des; Rea, Mary C.; Ross, R. Paul; Hill, Colin; Cotter, Paul D.

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  3. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    PubMed

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-05

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

  4. Spore Formation and Toxin Production in Clostridium difficile Biofilms

    PubMed Central

    Semenyuk, Ekaterina G.; Laning, Michelle L.; Foley, Jennifer; Johnston, Pehga F.; Knight, Katherine L.; Gerding, Dale N.; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186

  5. Immunomagnetic capture of Bacillus anthracis spores from food.

    PubMed

    Shields, Michael J; Hahn, Kristen R; Janzen, Timothy W; Goji, Noriko; Thomas, Matthew C; Kingombe, Cesar Bin I; Paquet, Chantal; Kell, Arnold J; Amoako, Kingsley K

    2012-07-01

    Food is a vulnerable target for potential bioterrorist attacks; therefore, a critical mitigation strategy is needed for the rapid concentration and detection of biothreat agents from food matrices. Magnetic beads offer a unique advantage in that they have a large surface area for efficient capture of bacteria. We have demonstrated the efficient capture and concentration of Bacillus anthracis (Sterne) spores using immunomagnetic beads for a potential food application. Magnetic beads from three different sources, with varying sizes and surface chemistries, were functionalized with monoclonal antibodies and polyclonal antibodies from commercial sources and used to capture and concentrate anthrax spores from spiked food matrices, including milk, apple juice, bagged salad, processed meat, and bottled water. The results indicated that the Pathatrix beads were more effective in the binding and capture of anthrax spores than the other two bead types investigated. Furthermore, it was observed that the use of polyclonal antibodies resulted in a more efficient recovery of anthrax spores than the use of monoclonal antibodies. Three different magnetic capture methods, inversion, the Pathatrix Auto system, and the new i CropTheBug system, were investigated. The i CropTheBug system yielded a much higher recovery of spores than the Pathatrix Auto system. Spore recoveries ranged from 80 to 100% for the i CropTheBug system when using pure spore preparations, whereas the Pathatrix Auto system had recoveries from 20 to 30%. Spore capture from food samples inoculated at a level of 1 CFU/ml resulted in 80 to 100% capture for milk, bottled water, and juice samples and 60 to 80% for processed meat and bagged salad when using the i CropTheBug system. This efficient capture of anthrax spores at very low concentrations without enrichment has the potential to enhance the sensitivity of downstream detection technologies and will be a useful method in a foodborne bioterrorism response.

  6. Antitumor effects and mechanisms of Ganoderma extracts and spores oil

    PubMed Central

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-01-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC50) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle. PMID:27900038

  7. Optimization of nutritional requirements for mycelial growth and sporulation of entomogenous fungus Aschersonia aleyrodis Webber

    PubMed Central

    Zhu, Yanping; Pan, Jieru; Qiu, Junzhi; Guan, Xiong

    2008-01-01

    The objective of the present study was to investigate the optimal nutritional requirements for mycelial growth and sporulation of entomopathogenic fungus Aschersonia aleyrodis Webber by orthogonal layout methods. Herein the order of effects of nutrient components on mycelial growth was tryptone > Ca2+ > soluble starch > folacin, corresponding to the following optimal concentrations: 1.58% Soluble Starch, 3.16% Tryptone, 0.2 mmol l-1 Ca2+ and 0.005% Folacin. The optimal concentration of each factors for sporulation was 1.16% lactose, 0.394% tryptone, 0.4 mmol l-1 Fe2+ and 0.00125% VB1, and the effects of medium components on sporulation were found to be in the order lactose > VB1 > Fe2+ > tryptone. Under the optimal culture conditions, the maximum production of mycelial growth achieved 20.05 g l-1 after 7 days of fermentation, while the maximum spore yield reached 5.23 ×1010 spores l-1 after 22 days of cultivation. This is the first report on optimization of nutritional requirements and design of simplified semi-synthetic media for mycelial growth and sporulation of A. aleyrodis. PMID:24031305

  8. Optimization of nutritional requirements for mycelial growth and sporulation of entomogenous fungus Aschersonia aleyrodis Webber.

    PubMed

    Zhu, Yanping; Pan, Jieru; Qiu, Junzhi; Guan, Xiong

    2008-10-01

    The objective of the present study was to investigate the optimal nutritional requirements for mycelial growth and sporulation of entomopathogenic fungus Aschersonia aleyrodis Webber by orthogonal layout methods. Herein the order of effects of nutrient components on mycelial growth was tryptone > Ca(2+) > soluble starch > folacin, corresponding to the following optimal concentrations: 1.58% Soluble Starch, 3.16% Tryptone, 0.2 mmol l(-1) Ca(2+) and 0.005% Folacin. The optimal concentration of each factors for sporulation was 1.16% lactose, 0.394% tryptone, 0.4 mmol l(-1) Fe(2+) and 0.00125% VB1, and the effects of medium components on sporulation were found to be in the order lactose > VB1 > Fe(2+) > tryptone. Under the optimal culture conditions, the maximum production of mycelial growth achieved 20.05 g l(-1) after 7 days of fermentation, while the maximum spore yield reached 5.23 ×10(10) spores l(-1) after 22 days of cultivation. This is the first report on optimization of nutritional requirements and design of simplified semi-synthetic media for mycelial growth and sporulation of A. aleyrodis.

  9. Fungus culture of the nasal secretion of chronic rhinosinusitis patients: seasonal variations in Daegu, Korea.

    PubMed

    Shin, Seung-Heon; Ye, Mi-Kyung; Lee, Young-Ho

    2007-01-01

    The role of fungi in the pathogenesis of chronic rhinosinusitis (CRS) is being increasingly recognized. The presences of fungal spores are a necessary condition for fungal sinusitis, and fungal spore counts vary widely, both geographically and seasonally. The aim of this study was to characterize fungal seasonal variation in the nasal cavity of CRS patients and to compare it with histologic types of nasal polyps. One hundred eight patients with a clinical diagnosis of CRS with polyps were enrolled in this study for 1 year. Nasal secretions were obtained by aspiration and cultured to identify fungi. Nasal polyps were divided into four histologic types: eosinophilic, fibroinflammatory, seromucinous, and atypical. Positive cultures for fungi were obtained in 60 of 108 (63.0%) CRS patients, and 28 of 45 (62.2%) normal volunteers. Fungus culture rates were higher during summer and fall. Cladosporium, Aspergillus, Alternaria, and Penicilium were frequently isolated from CRS patients and normal volunteers. The most common histologic type was the fibroinflammatory type (60.2%), although in the summer and fall the proportion of the eosinophilic type increased. Fungi were commonly cultured during a hot and humid environment, during summer and fall, and cultured organism types were found to be seasonal dependent. Histologic types of nasal polyps appear to be associated with fungal culture rate, organism type, and seasonal variations.

  10. Fungus-insect gall of Phlebopus portentosus.

    PubMed

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods.

  11. New pressure and temperature effects on bacterial spores

    NASA Astrophysics Data System (ADS)

    Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122°C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80°C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa with 37

  12. Activity of Pera Safe(Trademark) Against Bacillus Anthracis Spores

    DTIC Science & Technology

    2002-01-01

    peroxide and peracetic acid . J.Appl. Bacteriol. 1983,54,417-23. 2. Dietz P., Böhm R.: Results of an experimental study on testing disinfectants with spores...Bacteriol. 1980, 48, 161-90. 5. Hussaini S.N., Ruby K.R.: Sporicidal activity of peracetic acid against Bacillus anthracis spores. Vet. Rec. 1976, 98, 257-9. ...challenging task. There exist a variety of disinfectants that can inactivate Bacillus anthracis spores; however, most of them have negative side effects

  13. Peroxisome dynamics during development of the fungus Podospora anserina.

    PubMed

    Takano-Rojas, Harumi; Zickler, Denise; Peraza-Reyes, Leonardo

    2016-01-01

    Peroxisomes are versatile and dynamic organelles that are required for the development of diverse eukaryotic organisms. We demonstrated previously that in the fungus Podospora anserina different peroxisomal functions are required at distinct stages of sexual development, including the initiation and progression of meiocyte (ascus) development and the differentiation and germination of sexual spores (ascospores). Peroxisome assembly during these processes relies on the differential activity of the protein machinery that drives the import of proteins into the organelle, indicating a complex developmental regulation of peroxisome formation and activity. Here we demonstrate that peroxisome dynamics is also highly regulated during development. We show that peroxisomes in P. anserina are highly dynamic and respond to metabolic and environmental cues by undergoing changes in size, morphology and number. In addition, peroxisomes of vegetative and sexual cell types are structurally different. During sexual development peroxisome number increases at two stages: at early ascus differentiation and during ascospore formation. These processes are accompanied by changes in peroxisome structure and distribution, which include a cell-polarized concentration of peroxisomes at the beginning of ascus development, as well as a morphological transition from predominantly spherical to elongated shapes at the end of the first meiotic division. Further, the mostly tubular peroxisomes present from second meiotic division to early ascospore formation again become rounded during ascospore differentiation. Ultimately the number of peroxisomes dramatically decreases upon ascospore maturation. Our results reveal a precise regulation of peroxisome dynamics during sexual development and suggest that peroxisome constitution and function during development is defined by the coordinated regulation of the proteins that control peroxisome assembly and dynamics.

  14. Effects of High-Pressure Treatment on Spores of Clostridium Species

    PubMed Central

    Doona, Christopher J.; Feeherry, Florence E.; Setlow, Barbara; Wang, Shiwei; Li, William; Nichols, Frank C.; Talukdar, Prabhat K.; Sarker, Mahfuzur R.; Li, Yong-Qing; Shen, Aimee

    2016-01-01

    ABSTRACT This work analyzes the high-pressure (HP) germination of spores of the food-borne pathogen Clostridium perfringens (with inner membrane [IM] germinant receptors [GRs]) and the opportunistic pathogen Clostridium difficile (with no IM GRs), which has growing implications as an emerging food safety threat. In contrast to those of spores of Bacillus species, mechanisms of HP germination of clostridial spores have not been well studied. HP treatments trigger Bacillus spore germination through spores' IM GRs at ∼150 MPa or through SpoVA channels for release of spores' dipicolinic acid (DPA) at ≥400 MPa, and DPA-less spores have lower wet heat resistance than dormant spores. We found that C. difficile spores exhibited no germination events upon 150-MPa treatment and were not heat sensitized. In contrast, 150-MPa-treated unactivated C. perfringens spores released DPA and became heat sensitive, although most spores did not complete germination by fully rehydrating the spore core, but this treatment of heat-activated spores led to almost complete germination and greater heat sensitization. Spores of both clostridial organisms released DPA during 550-MPa treatment, but C. difficile spores did not complete germination and remained heat resistant. Heat-activated 550-MPa-HP-treated C. perfringens spores germinated almost completely and became heat sensitive. However, unactivated 550-MPa-treated C. perfringens spores did not germinate completely and were less heat sensitive than spores that completed germination. Since C. difficile and C. perfringens spores use different mechanisms for sensing germinants, our results may allow refinement of HP methods for their inactivation in foods and other applications and may guide the development of commercially sterile low-acid foods. IMPORTANCE Spores of various clostridial organisms cause human disease, sometimes due to food contamination by spores. Because of these spores' resistance to normal decontamination regimens, there

  15. Dynamic phase microscopy, a new method to detect viable and killed spores and to estimate the heterogeneity of spore populations

    NASA Astrophysics Data System (ADS)

    Tychinsky, V. P.; Mulyukin, A. L.; Lisovskii, V. V.; Nikolaev, Yu. A.; Kretushev, A. V.; Vyshenskaya, T. V.; Suzina, N. E.; Duda, V. I.; El-Registan, G. I.

    One of the challenging tasks in monitoring studies is to estimate heterogeneity of microbial populations by the physiological state and potential viability of individual cells especially with regard of their ability to withstand various environmental assaults Previously we described some approaches based on electron microscopy methods to discriminate vegetative dormant and dead cells in both aged microbial cultures and environmental samples including permafrost In this communication we propose to extend the arsenal of microscopy methods for monitoring studies by a new non-invasive and informative method - dynamic phase microscopy DPM The substantial advantage of DPM is that it gives quantitative digitized data of un-destroyed living microscopic objects exemplified in our work by Bacillus licheniformis spores Using DPM made it possible to record interference images of objects spores and to produce picture of their phase thickness PT that is the optical path difference in nm Thus it was demonstrated the remarkable difference in the PT of spores at different physiological states dormant germinating and heat-killed spores had PT values of 80 nm 40-50 nm and 20 nm respectively The other found criterion to distinguish between spores was the PT fluctuations In contrast to dormant and killed spores the PT of germinating spores oscillated with amplitude of up to 7 nm with typical frequencies of 1 3 and 3 4 Hz A combination of the recorded PT values and PT fluctuations gave a key to detect viable and dead cells Under the conditions that did not

  16. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment.

    PubMed

    Moeller, Ralf; Setlow, Peter; Horneck, Gerda; Berger, Thomas; Reitz, Günther; Rettberg, Petra; Doherty, Aidan J; Okayasu, Ryuichi; Nicholson, Wayne L

    2008-02-01

    The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via alpha/beta-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and alpha/beta-type SASP were significantly more sensitive to HZE particle bombardment and X-ray irradiation than were the recA, polA, and splB mutant and wild-type spores, indicating that NHEJ provides an efficient DNA double-strand break repair pathway during spore germination and that the loss of the alpha/beta-type SASP leads to a significant radiosensitivity to ionizing radiation, suggesting the essential function of these spore proteins as protectants of spore DNA against ionizing radiation.

  17. Mechanism of Bacillus subtilis Spore Inactivation by and Resistance to Supercritical CO2 plus Peracetic Acid

    PubMed Central

    Setlow, Barbara; Korza, George; Blatt, Kelly M.S.; Fey, Julien P.; Setlow, Peter

    2015-01-01

    Aims Determine how supercritical CO2 (scCO2) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2-PAA, and if spores inactivated by scCO2-PAA are truly dead. Methods and Results Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2-PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2-PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2-PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2-PAA sensitive. Conclusions These findings suggest that scCO2-PAA inactivates spores by damaging spores’ inner membrane. The spore coat provided scCO2-PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2-PAA resistance only for dry spores. Significance and Impact of Study These results provide information on mechanisms of spore inactivation of and resistance to scCO2-PAA, an agent with increasing use in sterilization applications. PMID:26535794

  18. Knock down of chitosanase expression in phytopathogenic fungus Fusarium solani and its effect on pathogenicity.

    PubMed

    Liu, Huaiwei; Zhang, Bo; Li, Changsong; Bao, Xiaoming

    2010-06-01

    Chitosanases are lytic enzymes involved in the degradation of chitosan, a component of fungal cell walls. The phytopathogenic fungus Fusarium solani produces an extracellular chitosanase, CSN1, the role of which in the physiology and virulence of the fungus remains to be expounded. Here, we studied the expression of the CSN1 gene through gene silencing and examined its effect on fungal pathogenicity. A vector construct encoding a hairpin RNA (hpRNA) of CSN1 was constructed and introduced into the F. solani 0114 strain. The results revealed that majority of the transformants exhibited a significant reduction in chitosanase activity compared with the wild-type strain. Further, transformants with silenced CSN1 exhibited no change in mycelial growth and spore formation. However, pea pod and seedling bioassays indicated that transformants with silenced CSN1 were more virulent compared with the wild-type strain, and in sharp contrast to strains in which overexpression of the CSN1 gene resulted in virulence reduction. Although the mechanism remains unclear, our findings did suggest that F. solani chitosanase has a negative effect on fungal pathogenicity.

  19. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities

    PubMed Central

    Lou, Jingfeng; Yu, Ruiting; Wang, Xiaohan; Mao, Ziling; Fu, Linyun; Liu, Yang; Zhou, Ligang

    2016-01-01

    One bioactive compound, identified as alternariol 9-methyl ether, was isolated from the crude extract of the endophytic fungus Alternaria sp. Samif01 residing in the roots of Salvia miltiorrhiza Bunge. Alternariol 9-methyl ether was active against bacteria with minimum inhibitory concentration values ranging from 25 to 75 μg/mL and median inhibitory concentration (IC50) values ranging from 16.00 to 38.27 μg/mL. The IC50 value of alternariol 9-methyl ether against spore germination of Magnaporthe oryzae was 87.18 μg/mL. Alternariol 9-methyl ether also showed antinematodal activity against Bursaphelenchus xylophilus and Caenorhabditis elegans with IC50 values of 98.17 μg/mL and 74.62 μg/mL, respectively. This work is the first report on alternariol 9-methyl ether and its biological activities from the endophytic fungus Alternaria sp. Samif01 derived from S. miltiorrhiza Bunge. The results indicate the potential of Alternaria sp. Samif01 as a source of alternariol 9-methyl ether and also support that alternariol 9-methyl ether is a natural compound with high potential bioactivity against microorganisms. PMID:26887231

  20. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities.

    PubMed

    Lou, Jingfeng; Yu, Ruiting; Wang, Xiaohan; Mao, Ziling; Fu, Linyun; Liu, Yang; Zhou, Ligang

    2016-01-01

    One bioactive compound, identified as alternariol 9-methyl ether, was isolated from the crude extract of the endophytic fungus Alternaria sp. Samif01 residing in the roots of Salvia miltiorrhiza Bunge. Alternariol 9-methyl ether was active against bacteria with minimum inhibitory concentration values ranging from 25 to 75μg/mL and median inhibitory concentration (IC50) values ranging from 16.00 to 38.27μg/mL. The IC50 value of alternariol 9-methyl ether against spore germination of Magnaporthe oryzae was 87.18μg/mL. Alternariol 9-methyl ether also showed antinematodal activity against Bursaphelenchus xylophilus and Caenorhabditis elegans with IC50 values of 98.17μg/mL and 74.62μg/mL, respectively. This work is the first report on alternariol 9-methyl ether and its biological activities from the endophytic fungus Alternaria sp. Samif01 derived from S. miltiorrhiza Bunge. The results indicate the potential of Alternaria sp. Samif01 as a source of alternariol 9-methyl ether and also support that alternariol 9-methyl ether is a natural compound with high potential bioactivity against microorganisms.

  1. Effects of L-Alanine and Inosine Germinants on the Elasticity of Bacillus anthracis Spores

    DTIC Science & Technology

    2010-01-22

    surface of dormant Bacillus anthracis spores consists of a multilayer of protein coats and a thick peptidoglycan layer that allow the cells to resist...spore coat and the peptidoglycan cortex that protects the spore core, which would change the mechanical properties of the cell. Spores treated with lower

  2. Effects of temperature and desiccation on ex situ conservation of nongreen fern spores

    USDA-ARS?s Scientific Manuscript database

    Conservation of the genetic diversity of ferns is limited by the paucity of ex situ spore banks. Conflicting reports of fern spore response to low temperature and moisture impedes establishment of fern spore banks. There is little information available to evaluate longevity of fern spores under dif...

  3. Buoyant Density Heterogeneity in Spores of Bacillus subtilis: Biochemical and Physiological Basis

    PubMed Central

    Dean, D. H.; Douthit, H. A.

    1974-01-01

    The biochemical and physiological basis of density heterogeneity in Renografin of Bacillus subtilis W23 spores was determined by analysis of metals, macromolecules, and dipicolinic acid in the two density classes of the population. Germination rate and heat resistance were measured in both density classes. Atomic absorption spectrophotometry revealed that heavy spores (density = 1.335 g/ml) have 30% more calcium than light spores (density = 1.290 g/ml). Other metals found in greater amounts in heavy spores were manganese and potassium. However, light spores had more sodium than heavy spores. The amounts of carbohydrates, nucleic acids, and proteins were the same in both types of spores, but light spores contained more lipids, whereas heavy spores had 30% more dipicolinic acid than light spores. Calcium and lipid were excluded as causes of the heterogeneity in density in that alteration of their contents in spores did not detectably affect the density of these spores. Spores of two densities were genetically similar. Furthermore, light density spores arose earlier during sporulation than heavy spores as determined by releasing refractile forespores at various times during sporulation. We concluded that light spores represent an incomplete stage in development because they became heavy when reinoculated into spent sporulation medium. This must involve the additional accretion or synthesis of dipicolinic acid. PMID:4204436

  4. Role of the Spore Coat Layers in Bacillus subtilis Spore Resistance to Hydrogen Peroxide, Artificial UV-C, UV-B, and Solar UV Radiation

    PubMed Central

    Riesenman, Paul J.; Nicholson, Wayne L.

    2000-01-01

    Spores of Bacillus subtilis possess a thick protein coat that consists of an electron-dense outer coat layer and a lamellalike inner coat layer. The spore coat has been shown to confer resistance to lysozyme and other sporicidal substances. In this study, spore coat-defective mutants of B. subtilis (containing the gerE36 and/or cotE::cat mutation) were used to study the relative contributions of spore coat layers to spore resistance to hydrogen peroxide (H2O2) and various artificial and solar UV treatments. Spores of strains carrying mutations in gerE and/or cotE were very sensitive to lysozyme and to 5% H2O2, as were chemically decoated spores of the wild-type parental strain. Spores of all coat-defective strains were as resistant to 254-nm UV-C radiation as wild-type spores were. Spores possessing the gerE36 mutation were significantly more sensitive to artificial UV-B and solar UV radiation than wild-type spores were. In contrast, spores of strains possessing the cotE::cat mutation were significantly more resistant to all of the UV treatments used than wild-type spores were. Spores of strains carrying both the gerE36 and cotE::cat mutations behaved like gerE36 mutant spores. Our results indicate that the spore coat, particularly the inner coat layer, plays a role in spore resistance to environmentally relevant UV wavelengths. PMID:10653726

  5. Identifying bacterial spores and anthrax hoax materials by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Brouillette, Carl R.; Smith, Wayne

    2004-12-01

    The distribution of Bacillus anthracis spores through the US postal system in the autumn of 2001, initiated a secondary form of terror, the mailing of hoax materials. In the past three years nearly 20,000 letters containing harmless powders have been mailed, creating additional anxiety. Thus, there is a need for analyzers that can not only identify anthrax-causing spores to save lives, but also identify hoax materials to eliminate time-consuming and costly shutdowns. Recently, we established that Raman spectroscopy has the ability to identify both Bacilli endospores and hoax materials. Here we present Raman spectra of several Bacilli spores along with the dipicolinate salts, to further define the abilities of this technology to not only identify hoax materials, but also identify spores at the genus and species level.

  6. Simulation modeling of anthrax spore dispersion in a bioterrorism incident.

    PubMed

    Reshetin, Vladimir P; Regens, James L

    2003-12-01

    Recent events have increased awareness of the risk posed by terrorist attacks. Bacillus anthracis has resurfaced in the 21st century as a deadly agent of bioterrorism because of its potential for causing massive civilian casualties. This analysis presents the results of a computer simulation of the dispersion of anthrax spores in a typical 50-story, high-rise building after an intentional release during a bioterrorist incident. The model simulates aerosol dispersion in the case of intensive, small-scale convection, which equalizes the concentration of anthrax spores over the building volume. The model can be used to predict the time interval required for spore dispersion throughout a building after a terrorist attack in a high-rise building. The analysis reveals that an aerosol release of even a relatively small volume of anthrax spores during a terrorist incident has the potential to quickly distribute concentrations that are infectious throughout the building.

  7. Late Silurian trilete spores from northern Jiangsu, China.

    PubMed

    Wang; Li

    2000-08-01

    The Late Silurian is generally considered to a particular significant key period in the study of early land vascular plants. A trilete spore assemblage of the Upper Silurian is described from northern Jiangsu, China. This assemblage comprises 11 genera and 20 species of trilete spores (including laevigate, apiculate, perinotrilite, patinate, rarely distally murornate and equatorially crassitate, and three indeterminate trilete miospores forms). It has similarities to those described from coeval assemblages from around the world (e.g., England and South Wales; Tripolitania, Libya; Cornwallis Island, Canadian Arctic; Northwest Spain). The rare cryptospore, only one specimen (Tetrahedraletes sp.) had been found to be associated with the Chinese trilete spore assemblage. The discovery of the trilete spores from Late Silurian rocks indicates the existence of early land plants, some possibly vascular, at that time in northern Jiangsu, China.

  8. A versatile nano display platform from bacterial spore coat proteins

    PubMed Central

    Wu, I-Lin; Narayan, Kedar; Castaing, Jean-Philippe; Tian, Fang; Subramaniam, Sriram; Ramamurthi, Kumaran S.

    2015-01-01

    Dormant bacterial spores are encased in a thick protein shell, the ‘coat', which contains ∼70 different proteins. The coat protects the spore from environmental insults, and is among the most durable static structures in biology. Owing to extensive cross-linking among coat proteins, this structure has been recalcitrant to detailed biochemical analysis, so molecular details of how it assembles are largely unknown. Here, we reconstitute the basement layer of the coat atop spherical membranes supported by silica beads to create artificial spore-like particles. We report that these synthetic spore husk-encased lipid bilayers (SSHELs) assemble and polymerize into a static structure, mimicking in vivo basement layer assembly during sporulation in Bacillus subtilis. In addition, we demonstrate that SSHELs may be easily covalently modified with small molecules and proteins. We propose that SSHELs may be versatile display platforms for drugs and vaccines in clinical settings, or for enzymes that neutralize pollutants for environmental remediation. PMID:25854653

  9. Environmental Stresses on Spore Populations of Bacillus stearothermophilus1

    PubMed Central

    Fields, M. L.

    1964-01-01

    Heat-shocking spores at 110 C in 20% sucrose solutions decreased the percentage of the rough variant in a mixed population (rough and smooth variants) of strain M. Heat-shocking spores of the rough variant of strain NCA 1518 in 20% sucrose produced a decline in the number which germinated, whereas the smooth variant of strain NCA 1518 increased in the number which germinated. By the use of phase microscopy and plate counts, from the same incubated spore suspension in distilled water, heat-induced dormancy was demonstrated at 52 C. Dormancy also occurred in 20% sucrose solutions when held at room temperatures. Heat-shocking spores of strain M in 20% sucrose solutions and plating immediately after 24- and 48-hr holding periods at 25 C produced a decline in the total population with the percentage of rough variant increasing with time. A second heat shock produced only an increase in the rough variant. PMID:14215969

  10. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells

    PubMed Central

    Talukdar, Prabhat K.; Udompijitkul, Pathima; Hossain, Ashfaque

    2016-01-01

    ABSTRACT Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed. PMID:27795314

  11. Clostridium difficile spores: a major threat to the hospital environment.

    PubMed

    Barra-Carrasco, Jonathan; Paredes-Sabja, Daniel

    2014-01-01

    Clostridium difficile is a Gram-positive, anaerobic spore former and is an important nosocomial and community-acquired pathogenic bacterium. C. difficile infections (CDI) are a leading cause of infections worldwide with elevated rates of morbidity. Despite the fact that two major virulence factors, the enterotoxin TcdA and the cytotoxin TcdB, are essential in the development of CDI, C. difficile spores are the main vehicle of infection, and persistence and transmission of CDI and are thought to play an essential role in episodes of CDI recurrence and horizontal transmission. Recent research has unmasked several properties of C. difficile's unique strategy to form highly transmissible spores and to persist in the colonic environment. Therefore, the aim of this article is to summarize recent advances in the biological properties of C. difficile spores, which might be clinically relevant to improve the management of CDI in hospital environments.

  12. Oxidation mechanism of Penicillium digitatum spores through neutral oxygen radicals

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi

    2014-01-01

    To investigate the inactivation process of Penicillium digitatum spores through neutral oxygen species, the spores were treated with an atmospheric-pressure oxygen radical source and observed in-situ using a fluorescent confocal-laser microscope. The treated spores were stained with two fluorescent dyes, 1,1‧-dioctadecyl-3,3,Y,3‧-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as the cell membranes in the spores treated with the oxygen radical source were stained with DiI without a major morphological change of the membranes. DPPP staining revealed that the organelles were oxidized by the oxygen radical treatment. These results suggest that neutral oxygen species, especially atomic oxygen, induce a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles through the penetration of reactive oxygen species into the cell.

  13. Surface Bacterial-Spore Assay Using Tb3+/DPA Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2007-01-01

    Equipment and a method for rapidly assaying solid surfaces for contamination by bacterial spores are undergoing development. The method would yield a total (nonviable plus viable) spore count of a surface within minutes and a viable-spore count in about one hour. In this method, spores would be collected from a surface by use of a transparent polymeric tape coated on one side with a polymeric adhesive that would be permeated with one or more reagent(s) for detection of spores by use of visible luminescence. The sticky side of the tape would be pressed against a surface to be assayed, then the tape with captured spores would be placed in a reader that illuminates the sample with ultraviolet light and counts the green luminescence spots under a microscope to quantify the number of bacterial spores per unit area. The visible luminescence spots seen through the microscope would be counted to determine the concentration of spores on the surface. This method is based on the chemical and physical principles of methods described in several prior NASA Tech Briefs articles, including Live/Dead Spore Assay Using DPA-Triggered Tb Luminescence (NPO-30444), Vol. 27, No. 3 (March 2003), page 7a. To recapitulate: The basic idea is to exploit the observations that (1) dipicolinic acid (DPA) is present naturally only in bacterial spores; and (2) when bound to Tb3+ ions, DPA triggers intense green luminescence of the ions under ultraviolet excitation; (3) DPA can be released from the viable spores by using L-alanine to make them germinate; and (4) by autoclaving, microwaving, or sonicating the sample, one can cause all the spores (non-viable as well as viable) to release their DPA. One candidate material for use as the adhesive in the present method is polydimethysiloxane (PDMS). In one variant of the method for obtaining counts of all (viable and nonviable) spores the PDMS would be doped with TbCl3. After collection of a sample, the spores immobilized on the sticky tape surface

  14. Enhanced photocatalytic inactivation of bacterial spores on surfaces in air.

    PubMed

    Vohra, Amit; Goswami, D Y; Deshpande, D A; Block, S S

    2005-08-01

    TiO(2) photocatalysis with ultraviolet (UV-A) light has proven to be a highly effective process for complete inactivation of airborne microbes. However, the overall efficiency of the technology needs to be improved to make it more attractive as a defense against bio-terrorism. The present research investigates the enhancement in the rate of destruction of bacterial spores on metal (aluminum) and fabric (polyester) substrates with metal (silver)-doped titanium dioxide and compares it to conventional photocatalysis (TiO(2) P25/+UV-A) and UV-A photolysis. Bacillus cereus bacterial spores were used as an index to demonstrate the enhanced disinfection efficiency. The results indicate complete inactivation of B. cereus spores with the enhanced photocatalyst. The enhanced spore destruction rate may be attributed to the highly oxidizing radicals generated by the doped TiO(2).

  15. VUV absorption spectroscopy of bacterial spores and DNA components

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  16. Pharmacologic and toxicologic evaluation of C. novyi-NT spores.

    PubMed

    Diaz, Luis A; Cheong, Ian; Foss, Catherine A; Zhang, Xiaosong; Peters, Brock A; Agrawal, Nishant; Bettegowda, Chetan; Karim, Baktiar; Liu, Guosheng; Khan, Khalid; Huang, Xin; Kohli, Manu; Dang, Long H; Hwang, Paul; Vogelstein, Ahava; Garrett-Mayer, Elizabeth; Kobrin, Barry; Pomper, Martin; Zhou, Shibin; Kinzler, Kenneth W; Vogelstein, Bert; Huso, David L

    2005-12-01

    Clostridium novyi-NT (C. novyi-NT) spores have been shown to be potent therapeutic agents in experimental tumors of mice and rabbits. In the present study, pharmacologic and toxicologic studies were performed to better understand the factors influencing the efficacy and toxicity of this form of therapy. We found that spores were rapidly cleared from the circulation by the reticuloendothelial system. Even after large doses were administered, no clinical toxicity was observed in healthy mice or rabbits. The spores were also not toxic in mice harboring poorly vascularized non-neoplastic lesions, including myocardial infarcts. In tumor-bearing mice, toxicity appeared related to tumor size and spore dose, as expected with any bacterial infection. However, there was no laboratory or histopathologic evidence of sepsis, and the toxicity could be effectively controlled by simple hydration.

  17. Alicyclobacillus acidoterrestris: new methods for inhibiting spore germination.

    PubMed

    Bevilacqua, A; Sinigaglia, M; Corbo, M R

    2008-07-15

    For a long period the thermal processing has been considered as the only way to reduce the initial spore number of Alicyclobacillus acidoterrestris and prevent the spoilage of acidic beverage. New methods, however, were proposed by the literature to control spore germination both in laboratory media and in real systems. After a brief introduction on the impact of A. acidoterrestris in food microbiology and a description of enumeration methods and heat processing applied by the juices manufactures, a review of innovative approaches to inhibit and/or control spore germination is proposed. In particular, this paper focuses on two different topics; the 1st is the use of some natural compounds (monolaurin, lysozyme, nisin and essential oils) or some chemicals, conventional (like sodium-benzoate, organic acids, surfactants and chlorine dioxide) or not conventional (chlorine dioxide as gas). The 2nd topic is a description of some innovative methods to reduce the initial spore number (high hydrostatic and homogenisation pressures, radiation and microwaves).

  18. Inactivation of Bacillus anthracis Spores in Soil Matrices with ...

    EPA Pesticide Factsheets

    Report This report documents the results of a laboratory study designed to better understand the effectiveness of chlorine dioxide (ClO2) gas to decontaminate soil materials contaminated with Bacillus anthracis spores.

  19. Evaluation of Surface Sampling for Bacillus Spores Using ...

    EPA Pesticide Factsheets

    Report The primary objectives of this project were to evaluate the Aggressive Air Sampling (AAS) method compared to currently used surface sampling methods and to determine if AAS is a viable option for sampling Bacillus anthracis spores.

  20. The fission yeast spore is coated by a proteinaceous surface layer comprising mainly Isp3

    PubMed Central

    Fukunishi, Kana; Miyakubi, Kana; Hatanaka, Mitsuko; Otsuru, Natsumi; Hirata, Aiko; Shimoda, Chikashi; Nakamura, Taro

    2014-01-01

    The spore is a dormant cell that is resistant to various environmental stresses. As compared with the vegetative cell wall, the spore wall has a more extensive structure that confers resistance on spores. In the fission yeast Schizosaccharomyces pombe, the polysaccharides glucan and chitosan are major components of the spore wall; however, the structure of the spore surface remains unknown. We identify the spore coat protein Isp3/Meu4. The isp3 disruptant is viable and executes meiotic nuclear divisions as efficiently as the wild type, but isp3∆ spores show decreased tolerance to heat, digestive enzymes, and ethanol. Electron microscopy shows that an electron-dense layer is formed at the outermost region of the wild-type spore wall. This layer is not observed in isp3∆ spores. Furthermore, Isp3 is abundantly detected in this layer by immunoelectron microscopy. Thus Isp3 constitutes the spore coat, thereby conferring resistance to various environmental stresses. PMID:24623719

  1. Heterologous expression of VHb can improve the yield and quality of biocontrol fungus Paecilomyces lilacinus, during submerged fermentation.

    PubMed

    Zhang, Shumeng; Wang, Jieping; Wei, Yale; Tang, Qing; Ali, Maria Kanwal; He, Jin

    2014-10-10

    Paecilomyces lilacinus is an egg-parasitic fungus which is effective against plant-parasitic nematodes and it has been successfully commercialized for the control of many plant-parasitic nematodes. However, during the large-scale industrial fermentation process of the filamentous fungus, the dissolved oxygen supply is a limiting factor, which influences yield, product quality and production cost. To solve this problem, we intended to heterologously express VHb in P. lilacinus ACSS. After optimizing the vgb gene, we fused it with a selection marker gene nptII, a promoter PgpdA and a terminator TtrpC. The complete expression cassette PgpdA-nptII-vgb-TtrpC was transferred into P. lilacinus ACSS by Agrobacterium tumefaciens-mediated transformation. Consequently, we successfully screened an applicable fungus strain PNVT8 which efficiently expressed VHb. The submerged fermentation experiments demonstrated that the expression of VHb not only increased the production traits of P. lilacinus such as biomass and spore production, but also improved the beneficial product quality and application value, due to the secretion of more protease and chitinase. It can be speculated that the recombinant strain harboring vgb gene will have a growth advantage over the original strain under anaerobic conditions in soil and therefore will possess higher biocontrol efficiency against plant-parasitic nematodes.

  2. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis.

    PubMed

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R; Clardy, Jon

    2009-06-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. We have analyzed one such system at the molecular level and found that the bacterium associated with the ant Apterostigma dentigerum produces dentigerumycin, a cyclic depsipeptide with highly modified amino acids, to selectively inhibit the associated parasitic fungus (Escovopsis sp.).

  3. Architecture and Assembly of the Bacillus subtilis Spore Coat

    DTIC Science & Technology

    2014-09-26

    stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose...arrows). EM of ruthenium red stained B. subtilis spores demonstrated the presence of an outermost glycoprotein layer, and it was suggested that this layer...for the adherence and assembly of the coat, and while the peptidoglycan cortex forms relatively normally in spoVID spores, the coat largely assembles

  4. Biochemical Changes and their Regulation during Spore Formation and Germination.

    DTIC Science & Technology

    1980-04-09

    or completed. Achievements in the three year period are given below. Most of the work utilized Bacillus megaterium , but other species have given...and the major low moTecular-weighfttol1/disulfide identified was Coenzyme A (CoA). Dormant spores of Bacillus megaterium were found to contain...x 10- M, respectively. Phosphoglycerate phosphomutase was purified to homogeneity from vegetative cells and germinated spores of Bacillus megaterium

  5. Purification and Properties of Clostridium perfringens Spore Lytic Enzymes.

    DTIC Science & Technology

    1983-01-01

    occurred with, for example, urea/mercaptoethanol (UME) treatment of Bacillus megaterium (Vary, 1973). alkaline dithioerythritol/sodium dodecyl sulphate...cetylmuremides of Bacillus subtilis YT 25. Agr. Biol. Chem. 38 2357-65. Accepted 15 June 1979 91 Germination of C perfringns spores Journal qf General Microbiology...spore-lytic enzymes of Bacillus cereus have been isolated and extensively studied by Strange & Dark (1957). Gould et al. (1966), Warth (1972) and Brown et

  6. Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.

    PubMed

    Peng, Jing; Mah, Jae-Hyung; Somavat, Romel; Mohamed, Hussein; Sastry, Sudhir; Tang, Juming

    2012-07-01

    The thermal characteristics of the spores and vegetative cells of three strains of Bacillus coagulans (ATCC 8038, ATCC 7050, and 185A) in tomato juice were evaluated. B. coagulans ATCC 8038 was chosen as the target microorganism for thermal processing of tomato products due to its spores having the highest thermal resistance among the three strains. The thermal inactivation kinetics of B. coagulans ATCC 8038 spores in tomato juice between 95 and 115°C were determined independently in two different laboratories using two different heating setups. The results obtained from both laboratories were in general agreement, with z-values (z-value is defined as the change in temperature required for a 10-fold reduction of the D-value, which is defined as the time required at a certain temperature for a 1-log reduction of the target microorganisms) of 8.3 and 8.7°C, respectively. The z-value of B. coagulans 185A spores in tomato juice (pH 4.3) was found to be 10.2°C. The influence of environmental factors, including cold storage time, pH, and preconditioning, upon the thermal resistance of these bacterial spores is discussed. The results obtained showed that a storage temperature of 4°C was appropriate for maintaining the viability and thermal resistance of B. coagulans ATCC 8038 spores. Acidifying the pH of tomato juice decreased the thermal resistance of these spores. A 1-h exposure at room temperature was considered optimal for preconditioning B. coagulans ATCC 8038 spores in tomato juice.

  7. A guide to the recent literature on aspergillosis as caused by Aspergillus fumigatus, a fungus frequently found in self-heating organic matter.

    PubMed

    Marsh, P B; Millner, P D; Kla, J M

    1979-11-30

    Spores of Aspergillus fumigatus have been found to be abundantly present in the outdoor air at a site where large scale experimental composting of sewage sludge is in progress at Beltsville, Maryland. The health significance of this finding, for that site and for others in the future, is still only incompletely understood. Further studies are in progress to characterize absolute concentrations of the spores of the fungus in air at the site, spore dispersal by air from composting operations, and background environmental spore levels in air. The present paper contains a list of references to papers on health effects of A. fumigatus, many published in the past ten years, along with a review of the same designed to assist the reader in finding information on particular aspects of the subject in the literature. It is intended primarily as an aid to individuals interested in sludge composting and wishing to attain an insight into the A. fumigatus-composting situation, but it may also interest others concerned with other substrates which become moldy at 40--50 C. A. fumigatus has been found in great numbers in naturally and artificially heated environments such as decaying leaves, compost heaps, solar heated sloughs, cooling canals for nuclear power generators, silos, grain storage bins, boiler rooms, detritus around steam turbines and sauna baths. The evident practical merits of sludge composting have been described elsewhere; the information presented here has its main significance in respect to requirements for choice of locations for composting sites and to process and design criteria.

  8. Flagellar proteins of motile spores of Actinomycetes.

    PubMed

    Vesselinova, N I; Ensign, J C

    1996-06-01

    Flagella of some of the actinoplanete genera were purified and the molecular sizes of their flagellin subunits compared by SDS-PAGE analysis to flagellins of cells of other bacteria. Several species of Actinoplanes have a major flagellar protein of subunit sizes of 42-43 kDa and a lesser amount of a second protein, possibly a minor flagellin subunit, of 60 kDa. The flagellar protein sizes of other actinoplanetes ranged from 32-43 kDa (major) and 48-58 kDa (minor). Antibodies formed against the 42-kDa protein of A. rectilineatus showed cross-reactivity in Western blots against flagellar proteins of spores of other Actinoplanes species, two species of Dactylosporangium and an Ampullariella species. Cross-reactivity was also observed with motile cells of two other actinomycetes, Arthrobacter atrocyaneus and a Geodermatophilus species, and with Bacillus subtilis. No cross-reactivity was observed with Escherichia coli or Planomonospora parontospora flagellar proteins. The amino acid composition and partial N-terminal sequence of the 42-kDa flagellar protein of A. rectilineatus was compared to literature data for other bacterial flagellins and found to be most similar to B. subtilis 168.

  9. Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li.

    PubMed

    Hu, Xiaoping; Li, Wu; Yuan, Mu; Li, Congfa; Liu, Sixin; Jiang, Chunjie; Wu, Yanchun; Cai, Kun; Liu, Yan

    2016-07-01

    Homoharringtonine (HHT), a natural plant alkaloid derived from Cephalotaxus, has demonstrated to have a broad antitumor activity and efficacy in treating human chronic myeloid leukemia. An alternative source is required to substitute for the slow-growing and scarce Cephalotaxus to meet the increasing demand of the drug market. The objective of this study was to screen HHT-producing endophytic fungi from Cephalotaxus hainanensis Li. By screening 213 fungal isolates obtained from the bark parts of Cephalotaxus hainanensis Li, one isolate was found to be capable of biosynthesizing HHT. The fungus was identified as Alternaria tenuissima by morphological characteristics and internal transcribed spacer (ITS) sequence analysis and was named as CH1307. HHT obtained from CH1307 was analyzed through the HPLC and LC-MS/MS and NMR spectroscopy. The extract of the fermentation broth of CH1307 showed antiproliferative activities against K562 (chronic myelocytic leukemia), NB4 (acute promyelocytic leukemia), and HL-60 (promyelocytic leukemia) human cancer cell lines with IC50 values of 67.25 ± 4.26, 65.02 ± 4.75, and 99.23 ± 4.26 μg/mL, respectively. The findings suggest that HHT-producing endophytic fungus, Alternaria tenuissima CH1307 might provide a promising source for the research and application of HHT.

  10. ULTRASTRUCTURAL LOCALIZATION OF MINERAL MATTER IN BACTERIAL SPORES BY MICROINCINERATION

    PubMed Central

    Thomas, Richard S.

    1964-01-01

    The fine localization of mineral matter in spores of Bacillus megaterium and Bacillus cereus was studied by the technique of microincineration adapted for use with the electron microscope. The specimens, which included intact and thin-sectioned spores as well as shed spore coats, were burned either in the conventional way at high temperature or by a new technique using electrically excited oxygen at nearly room temperature. The ash residues were examined by bright field, dark field, and diffraction in the electron microscope and also with the phase contrast microscope. In some cases, the specimen was previewed in both microscopes before incineration. The results do not support a previous report that the mineral elements of the spore are confined to a peripheral layer, but rather indicate that the spore core as well as the coat are mineral-rich. The cortex may be deficient in minerals, but the possibility of artifact prevents a clear decision on this point. Incinerated B. megaterium spores show a highly ordered fine structure displaying 100 A periodicity in the ash of the middle layer of the coat. The nature of this structure is discussed, as is the technique which demonstrated it. The fine definition of the ash patterns, particularly those obtained with the low-temperature, excited-oxygen technique, suggests that microincineration may be generally useful in the study of fine structure. PMID:14228506

  11. [Electron microscopy of the surfaces of bacillary spores].

    PubMed

    Smirnova, T A; Zubasheva, M V; Shevliagina, N V; Nikolaenko, M A; Azizbekian, R R

    2013-01-01

    The surface structures of the spores of Bacillus. cereus, B. thuringiensis, and Brevibacillus laterosporus were studied by transmission and scanning electron microscopy. Platinum deposition and negative staining with uranyl acetate revealed appendages and exosporium in B. thuringiensis and B. cereus. The exosporium structure was visualized by negative staining and ultrathin sectioning. For staining the exosporium polysaccharide, Alcian blue was used during fixation. The results obtained show the differences in structural organization of appendages and exosporium in different strains. Canoe-shaped inclusions were revealed in all Br. laterosporus strains, while strain IGM16-92 had a fibrillar capsule as well. Electron microscopy using a dual beam scanning electron microscope Quanta 200 3D provided the information of the spore surface relief without sample treatment (fixation and dehydration). The spores of Br. laterosporus strains had folded surface, unlike the smooth surface of B. cereus and B. thuringiensis spores. Diversity of external spore structures was shown within a species, which may be used for detection of bacteria at the strain level. Optimized procedures for visualization of spore surface by different electron microscopic techniques were discussed.

  12. Wet and dry bacterial spore densities determined by buoyant sedimentation.

    PubMed Central

    Tisa, L S; Koshikawa, T; Gerhardt, P

    1982-01-01

    The wet densities of various types of dormant bacterial spores and reference particles were determined by centrifugal buoyant sedimentation in density gradient solutions of three commercial media of high chemical density. With Metrizamide or Renografin, the wet density values for the spores and permeable Sephadex beads were higher than those obtained by a reference direct mass method, and some spore populations were separated into several density bands. With Percoll, all of the wet density values were about the same as those obtained by the direct mass method, and only single density bands resulted. The differences were due to the partial permeation of Metrizamide and Renografin, but not Percoll, into the spores and the permeable Sephadex beads. Consequently, the wet density of the entire spore was accurately represented only by the values obtained with the Percoll gradient and the direct mass method. The dry densities of the spores and particles were determined by gravity buoyant sedimentation in a gradient of two organic solvents, one of high and the other of low chemical density. All of the dry density values obtained by this method were about the same as those obtained by the direct mass method. PMID:6285824

  13. Display of native proteins on Bacillus subtilis spores.

    PubMed

    Pan, Jae-Gu; Choi, Soo-Keun; Jung, Heung-Chae; Kim, Eui-Joong

    2014-09-01

    In principle, protein display is enabled by fusing target proteins to naturally secreted, surface-anchored protein motifs. In this work, we developed a method of native protein display on the Bacillus spore surface that obviates the need to construct fusion proteins to display a motif. Spore coat proteins are expressed in the mother cell compartment and are subsequently assembled and deposited on the surface of spores. Therefore, target proteins overexpressed in the mother cell compartment during the late sporulation phase were expected to be targeted and displayed on the spore surface. As a proof of principle, we demonstrated the display of carboxymethylcellulase (CMCase) in its native form on the spore surface. The target protein, CMCase, was expressed under the control of the cry1Aa promoter, which is controlled by σ(E) and σ(K) and is expressed in the mother cell compartment. The correct display was confirmed using enzyme activity assays, flow cytometry, and immunogold electron microscopy. In addition, we demonstrated the display of a β-galactosidase tetramer and confirmed its correct display using enzyme activity assays and protein characterization. This native protein display system, combined with the robust nature of Bacillus spores, will broaden the range of displayable target proteins. Consequently, the applications of display technology will be expanded, including high-throughput screening, vaccines, biosensors, biocatalysis, bioremediation, and other innovative bioprocesses.

  14. Tip-enhanced Raman scattering of bacillus subtilis spores

    NASA Astrophysics Data System (ADS)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  15. Availability of websites offering to sell psilocybin spores and psilocybin.

    PubMed

    Lott, Jason P; Marlowe, Douglas B; Forman, Robert F

    2009-09-01

    This study assesses the availability of websites offering to sell psilocybin spores and psilocybin, a powerful hallucinogen contained in Psilocybe mushrooms. Over a 25-month period beginning in March 2003, eight searches were conducted in Google using the term "psilocybin spores." In each search the first 100 nonsponsored links obtained were scored by two independent raters according to standardized criteria to determine whether they offered to sell psilocybin or psilocybin spores. No attempts were made to procure the products offered for sale in order to ascertain whether the marketed psilocybin was in fact "genuine" or "counterfeit." Of the 800 links examined, 58% led to websites offering to sell psilocybin spores. Additionally, evidence that whole Psilocybe mushrooms are offered for sale online was obtained. Psilocybin and psilocybin spores were found to be widely available for sale over the Internet. Online purchase of psilocybin may facilitate illicit use of this potent psychoactive substance. Additional studies are needed to assess whether websites offering to sell psilocybin and psilocybin spores actually deliver their products as advertised.

  16. Spore Coat Architecture of Clostridium novyi NT Spores▿

    PubMed Central

    Plomp, Marco; McCaffery, J. Michael; Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Kinzler, Kenneth W.; Zhou, Shibin; Vogelstein, Bert; Malkin, Alexander J.

    2007-01-01

    Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled, and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers, as well as the underlying spore coat and undercoat layers, sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi NT, these studies document the presence of proteinaceous growth spirals in a biological organism. PMID:17586633

  17. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials.

    PubMed

    Barker, Gary C; Malakar, Pradeep K; Plowman, June; Peck, Michael W

    2016-01-04

    We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg(-1). Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments.

  18. Atmospheric mold spore counts in relation to meteorological parameters.

    PubMed

    Katial, R K; Zhang, Y; Jones, R H; Dyer, P D

    1997-07-01

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P < 0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  19. Spore number control and breeding in Saccharomyces cerevisiae

    PubMed Central

    Taxis, Christof; Keller, Philipp; Kavagiou, Zaharoula; Jensen, Lars Juhl; Colombelli, Julien; Bork, Peer; Stelzer, Ernst H.K.; Knop, Michael

    2005-01-01

    Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1–4) that are formed by a single cell. This is regulated by the concentration of three structural meiotic SPB components, which is dependent on available amounts of carbon source. Using experiments and computer simulation, we show that the molecular mechanism relies on a self-organizing system, which is able to generate particular patterns (different numbers of spores) in dependency on one single stimulus (gradually increasing amounts of SPB constituents). We also show that SNC enhances intratetrad mating, whereby maximal amounts of germinated spores are able to return to a diploid lifestyle without intermediary mitotic division. This is beneficial for the immediate fitness of the population of postmeiotic cells. PMID:16286509

  20. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials

    PubMed Central

    Barker, Gary C.; Malakar, Pradeep K.; Plowman, June

    2016-01-01

    We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg−1. Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments. PMID:26729721

  1. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  2. Infrared Signatures to Discriminate Viability of Autoclaved Bacillus Spores

    SciTech Connect

    Schneider, Matthew D.; Valentine, Nancy B.; Johnson, Timothy J.

    2011-10-06

    Optical methods can offer good sensitivity for detecting small amounts of chemicals and biologicals, and as these methods mature, are some of the few techniques that can offer true standoff detection. For detection of biological species, determining the viability is clearly important: Certain species of gram-positive bacteria are capable of forming endospores, specialized structures that arise when living conditions become unfavorable or little growth medium is available, being resistant to many chemicals as well as changes in heat or pH. Such spores can remain dormant from months to years until more favorable conditions arise, resulting in germination back to the vegetative state. This persistence characteristic of bacterial spores allows for contamination of a surface (e.g. food or medical equipment) even after the surface has been nominally cleaned. Bacterial spores have also been used as biological weapons, as in the case with B. anthracis. Thus, rapid analysis to determine a spore's viability in a given environment or after attempts to sterilize a given environment is crucial. The increasing availability of portable spectrometers may provide a key to such rapid onsite analysis. The present study was designed to determine whether infrared spectroscopy may be used to differentiate between viable vs. dead B. subtilis and B. atrophaeus spores. Preliminary results show that the reproducible differences in the IR signatures can be used to identify viable vs. autoclaved (dead) B. subtilis and B. atrophaeus bacterial spores.

  3. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  4. Survival of bacterial and mold spores in air filter media

    NASA Astrophysics Data System (ADS)

    Maus, R.; Goppelsröder, A.; Umhauer, H.

    The present study deals with the survival of bacterial and mold spores ( B. subtilis, A. niger) in new and used air filter media. In an filtration test unit samples of different filter media were challenged with specific microbial aerosols and the viability or survival of the microorganisms collected in the filter media was studied. No notable decline or increase in the viability of B. subtilis in new or used filter samples was observed within 5 days. No differences were observed when filter media were either continuously exposed to air flow or stored under static conditions. No influence of relative humidity (RH=30-85%) on the viability of B. subtilis spores was detected as well. Under ideal humidity conditions (RH>98%) no bacterial growth occurred within all the investigated filter media which is due to the lack of nutrients. Similar results were obtained when employing A. niger spores at low relative humidities (RH<35%). However, in two new filter media the viability declined notably at high relative humidity (RH>85%). This trend is attributed to the combined effect of spore rehydration and diffusion of fiber substances into the spores which rendered the spores prone to air flow and air toxics. Under static conditions in a climatic chamber (RH>98%) abundant mold growth occurred in two filter media. The results indicate that atmospheric dust deposited in air filters may serve as nutrient for molds if humidity is sufficient and filters are not exposed to an air flow.

  5. Air sampling of mold spores by slit impactors: yield comparison.

    PubMed

    Pityn, Peter J; Anderson, James

    2013-01-01

    The performance of simple slit impactors for air sampling of mold contamination was compared under field conditions. Samples were collected side-by-side, outdoors in quadruplicates with Burkhard (ambient sampler) and Allergenco MK3 spore traps and with two identical Allergenco slit cassettes operated at diverse flow rates of 5 and 15 L/min, respectively. The number and types of mold spores in each sample were quantified by microscopy. Results showed all four single-stage slit impactors produced similar spore yields. Moreover, paired slit cassettes produced similar outcomes despite a three-fold difference in their sampling rate. No measurable difference in the amount or mix of mold spores per m(3)of air was detected. The implications for assessment of human exposures and interpretation of indoor/outdoor fungal burden are discussed. These findings demonstrate that slit cassettes capture most small spores, effectively and without bias, when operated at a range of flow rates including the lower flow rates used for personal sampling. Our findings indicate sampling data for mold spores correlate for different single stage impactor collection methodologies and that data quality is not deteriorated by operating conditions deviating from manufacturers' norms allowing such sampling results to be used for scientific, legal, investigative, or property insurance purposes. The same conclusion may not be applied to other particle sampling instruments and mulit-stage impactors used for ambient particulate sampling, which represent an entirely different scenario. This knowledge may help facilitate comparison between scientific studies where methodological differences exist.

  6. White-Nose Syndrome Fungus (Geomyces destructans) in Bat, France

    PubMed Central

    Puechmaille, Sébastien J.; Verdeyroux, Pascal; Fuller, Hubert; Gouilh, Meriadeg Ar; Bekaert, Michaël

    2010-01-01

    White-nose syndrome is caused by the fungus Geomyces destructans and is responsible for the deaths of >1,000,000 bats since 2006. This disease and fungus had been restricted to the northeastern United States. We detected this fungus in a bat in France and assessed the implications of this finding. PMID:20113562

  7. White-nose syndrome fungus (Geomyces destructans) in bat, France.

    PubMed

    Puechmaille, Sebastien J; Verdeyroux, Pascal; Fuller, Hubert; Gouilh, Meriadeg Ar; Bekaert, Michael; Teeling, Emma C

    2010-02-01

    White-nose syndrome is caused by the fungus Geomyces destructans and is responsible for the deaths of >1,000,000 bats since 2006. This disease and fungus had been restricted to the northeastern United States. We detected this fungus in a bat in France and assessed the implications of this finding.

  8. Contamination of Pine Seeds by the Pitch Canker Fungus

    Treesearch

    L. David Dwinell; S.W. Fraedrich

    1999-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, has been identified as a significant problem in man pine seed orchards and nursuries in the South. THe fungus causes strobilus mortality, seed deterioation, and cankers on the main stem, branches, and shoots of pines Dwinell and others 1985). The pitche canker fungus...

  9. IMMUNOCYTOCHEMICAL LOCALIZATION OF STACHYLYSIN IN STACHYBOTRYS CHARTARUM SPORES AND SPORE-IMPACTED MOUSE AND RAT LUNG TISSUES

    EPA Science Inventory

    Stachylysin is a proteinaceous hemolytic agent that is producted by S. chartarum. Stachylysin was found, using immunohistochemistical and immunocytochemical methods, to be localized in S. chartarum spores/mycelia primarily in the inner wall suggesting that it is constitutively ...

  10. IMMUNOCYTOCHEMICAL LOCALIZATION OF STACHYLYSIN IN STACHYBOTRYS CHARTARUM SPORES AND SPORE-IMPACTED MOUSE AND RAT LUNG TISSUES

    EPA Science Inventory

    Stachylysin is a proteinaceous hemolytic agent that is producted by S. chartarum. Stachylysin was found, using immunohistochemistical and immunocytochemical methods, to be localized in S. chartarum spores/mycelia primarily in the inner wall suggesting that it is constitutively ...

  11. Characterizing and handling different kinds of AM fungal spores in the rhizosphere.

    PubMed

    Sun, Xueguang; Hu, Wentao; Tang, Ming; Chen, Hui

    2016-06-01

    Spores are important propagules as well as the most reliable species-distinguishing traits of arbuscular mycorrhizal (AM) fungi. During surveys of AM fungal communities, spore enumeration and spore identification are frequently conducted, but generally little attention is given to the age and viability of the spores. In this study, AM fungal spores in the rhizosphere were characterized as live or dead by vital staining and by performing a germination assay. A considerable proportion of the spores in the rhizosphere were dead despite their intact appearance. Furthermore, morphological and molecular analyses of spores to determine species identity revealed that both viable spores and dead spores with contents were identified. The accurate identification of spores at different developmental stages on the basis of morphology requires considerable experience. Our findings suggest that surveys of AM fungal communities based on spore enumeration and morphological and molecular identification are likely to be inaccurate, primarily because of the large proportion of dead spores in the rhizosphere. A viability check is recommended prior to spore molecular identification, and the use of trap cultures would give more reliable morphological identification results. We show that the abundance and activity of AM fungi in the rhizosphere can be determined by calculating the density of viable spores and the density of spores that could germinate. The adoption of these methods should provide a more reliable basis for further AM fungal community analysis.

  12. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.

    PubMed

    Liu, Jiajie; Hagberg, Ingrid; Novitsky, Laura; Hadj-Moussa, Hanane; Avis, Tyler J

    2014-11-01

    Bacillus subtilis cyclic lipopeptides are known to have various antimicrobial effects including different types of interactions with the cell membranes of plant pathogenic fungi. The various spectra of activities of the three main lipopeptide families (fengycins, iturins, and surfactins) seem to be linked to their respective mechanisms of action on the fungal biomembrane. Few studies have shown the combined effect of more than one family of lipopeptides on fungal plant pathogens. In an effort to understand the effect of producing multiple lipopeptide families, sensitivity and membrane permeability of spores from four fungal plant pathogens (Alternaria solani, Fusarium sambucinum, Rhizopus stolonifer, and Verticillium dahliae) were assayed in response to lipopeptides, both individually and as combined treatments. Results showed that inhibition of spores was highly variable depending on the tested fungus-lipopeptide treatment. Results also showed that inhibition of the spores was closely associated with SYTOX stain absorption suggesting effects of efficient treatments on membrane permeability. Combined lipopeptide treatments revealed additive, synergistic or sometimes mutual inhibition of beneficial effects.

  13. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    DTIC Science & Technology

    2015-06-19

    Approved for public release; distribution is unlimited. UNCLASSIFIED PR-15-306 Anthrax Background ~’ . . . ’ ’ . . . ’ . . . . ’ . ’ • Caused by a gram ... positive spore forming rod. • Important veterinary disease as herbivores may be prone to the disease if they feed in ’anthrax zones...By inhibiting Air and lunH separately - By inhibiting the both concommitantly (iunH mutant spores positively affected by the block of Air) • Better

  14. Global distribution of the pitch canker fungus

    Treesearch

    L. David Dwinell

    1998-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, causes diseases of pines in the United States, Haiti, Japan, Mexico, Spain, and South Africa. Pitch canker was first reported in Virginia pine in North Carolina in 1946. Although the disease was reported in Haitian pine in 1953, pitch canker was generally considered a...

  15. Solanapyrone analogues from a Hawaiian fungicolous fungus

    USDA-ARS?s Scientific Manuscript database

    Four new solanayrone analogues (solanapyrones J-M; 1-4) have been isolated from an unidentified fungicolous fungus collected in Hawaii. The structures and relative configurations of these compounds were determined by analysis of ID NMR, 2D NMR, and MS data. Solanapyrone J(1) showed antifungal acti...

  16. Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies

    PubMed Central

    Raguse, Marina; Fiebrandt, Marcel; Stapelmann, Katharina; Madela, Kazimierz; Laue, Michael; Lackmann, Jan-Wilm; Thwaite, Joanne E.; Setlow, Peter; Awakowicz, Peter

    2016-01-01

    Novel decontamination technologies, including cold low-pressure plasma and blue light (400 nm), are promising alternatives to conventional surface decontamination methods. However, the standardization of the assessment of such sterilization processes remains to be accomplished. Bacterial endospores of the genera Bacillus and Geobacillus are frequently used as biological indicators (BIs) of sterility. Ensuring standardized and reproducible BIs for reliable testing procedures is a significant problem in industrial settings. In this study, an electrically driven spray deposition device was developed, allowing fast, reproducible, and homogeneous preparation of Bacillus subtilis 168 spore monolayers on glass surfaces. A detailed description of the structural design as well as the operating principle of the spraying device is given. The reproducible formation of spore monolayers of up to 5 × 107 spores per sample was verified by scanning electron microscopy. Surface inactivation studies revealed that monolayered spores were inactivated by UV-C (254 nm), low-pressure argon plasma (500 W, 10 Pa, 100 standard cubic cm per min), and blue light (400 nm) significantly faster than multilayered spores were. We have thus succeeded in the uniform preparation of reproducible, highly concentrated spore monolayers with the potential to generate BIs for a variety of nonpenetrating surface decontamination techniques. PMID:26801572

  17. First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores.

    PubMed

    Zimmermann, M W; Gartenbach, K E; Kranz, A R

    1994-10-01

    This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Heynh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.

  18. First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores

    NASA Astrophysics Data System (ADS)

    Zimmermann, M. W.; Gartenbach, K. E.; Kranz, A. R.

    1994-10-01

    This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Hennh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.

  19. Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins

    SciTech Connect

    Setlow, B.; Setlow, P.

    1988-05-01

    Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance.

  20. Relation of indoor and outdoor airborne fungal spore levels in the Kansas City metropolitan area.

    PubMed

    Jara, David; Portnoy, Jay; Dhar, Minati; Barnes, Charles

    2017-03-01

    Environmental control is an important component of asthma management for persons with asthma. A damp indoor environment and elevated airborne spore levels are factors in housing environmental control. We investigated if indoor airborne fungal spore levels correlated with outdoor ground-level airborne fungal spores or outdoor centrally collected spore levels as to types and abundance. Air collections were taken from home interiors, outdoor areas adjacent to the homes, and at a central location in the metropolitan area at the approximate same time. All air collections were examined and enumerated microscopically, and airborne spore estimates per cubic meter of air were reported for total fungal spores and for 11 identifiable spore groups. The 244 homes in the study were typical of the North American Midwest. The overall mean total spore counts in spores per cubic meter of air was indoors (4076 spores/m3), outdoors at ground level (8899 spores/m3), and outdoor metropolitan area (8342 spores/m3). All of the major indoor taxa were strongly correlated with the mean total spores present in the home. Total outdoor ground spore levels were highly correlated with levels of major outdoor taxa, such as ascospores and Cladosporium. Correlations of indoor spore levels with outdoor spore levels are strong for most major outdoor taxa. Indoor Aspergillus-Penicillium and Chaetomium are significantly correlated between indoor and local ground-level outdoor air. Although conditions may exist where indoor or outdoor spore levels were not well aligned, in most circumstances, the outdoor airborne spore community was reflected in the indoor airborne spore community.

  1. Virulence Plasmids of Spore-Forming Bacteria.

    PubMed

    Adams, Vicki; Li, Jihong; Wisniewski, Jessica A; Uzal, Francisco A; Moore, Robert J; McClane, Bruce A; Rood, Julian I

    2014-12-01

    Plasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C. perfringens enterotoxin, epsilon-toxin, beta-toxin, and NetB. Genetic studies have led to the determination of the role of these toxins in disease pathogenesis. The genes for these toxins are generally carried on large conjugative plasmids that have common core replication, maintenance, and conjugation regions. There is considerable functional information available about the unique tcp conjugation locus carried by these plasmids, but less is known about plasmid maintenance. The latter is intriguing because many C. perfringens isolates stably maintain up to four different, but closely related, toxin plasmids. Toxin genes may also be plasmid-encoded in the neurotoxic clostridia. The tetanus toxin gene is located on a plasmid in Clostridium tetani, but the botulinum toxin genes may be chromosomal, plasmid-determined, or located on bacteriophages in Clostridium botulinum. In Bacillus anthracis it is well established that virulence is plasmid determined, with anthrax toxin genes located on pXO1 and capsule genes on a separate plasmid, pXO2. Orthologs of these plasmids are also found in other members of the Bacillus cereus group such as B. cereus and Bacillus thuringiensis. In B. thuringiensis these plasmids may carry genes encoding one or more insecticidal toxins.

  2. Viable spore counts in biological controls pre-sterilization.

    PubMed

    Brusca, María I; Bernat, María I; Turcot, Liliana; Nastri, Natalia; Nastri, Maria; Rosa, Alcira

    2005-01-01

    The aim of the present study was to evaluate the total count of viable spores in standardized inoculated carriers pre-sterilization. Samples of "Bacterial Spore Sterilization Strip" (R Biological Laboratories) (well before their expiry date) were divided into Group A (B. subtilis) and Group B (B. stearothermophylus). Twenty-four strips were tested per group. The strips were minced in groups of three, placed in chilled sterile water and vortexed for 5 minutes to obtain a homogenous suspension. Ten ml of the homogenous suspension were transferred to two sterile jars, i.e. one jar per group. The samples were then heated in a water bath at 95 degrees C (Group A) or 80 degrees C (Group B) for 15 minutes and cooled rapidly in an ice bath at 0- 4 degrees C during 15 minutes. Successive dilutions were performed until a final aliquot of 30 to 300 colony-forming units (CFU) was obtained. The inoculums were placed in Petri dishes with culture medium (soy extract, casein agar adapted for spores, melted and cooled to 45-50 degrees C) and incubated at 55 degrees C or 37 degrees C. Statistical analysis of the data was performed. A larger number of spores were found at 48 hours than at 24 hours. However, this finding did not hold true for all the groups. The present results show that monitoring viable spores pre-sterilization would guarantee the accuracy of the data. Total spore counts must be within 50 and 300% of the number of spores indicated in the biological control. The procedure is essential to guarantee the efficacy of the biological control.

  3. Completed Chromosomes in Thymine-Requiring Bacillus subtilis Spores

    PubMed Central

    Callister, Heather; Wake, R. G.

    1974-01-01

    Origin:terminus genetic marker ratios (both purA: metB and purA:ilvA) were measured in extracts of spores of Bacillus subtilis strains W23 thy his and 168 thy. For strain W23 thy his, normalized to W23 spore deoxyribonucleic acid, both ratios were equal to unity and were consistent with the presence of only completed chromosomes in the spores. The same ratios in extracts of spores of 168 thy, normalized to strain 168 or the prototroph SB19, were abnormal, i.e., 2.26 ± 0.10 and 0.71 ± 0.06 for purA:metB and purA:ilvA, respectively. These values were unaffected by the extent of extraction of the spore deoxyribonucleic acid, the richness of the medium on which they are formed, and the thymine phenotype. The high ratio for purA:metB is in agreement with the results of earlier workers but, because of the low purA:ilvA ratio, cannot be explained simply by the presence of partially replicated chromosomes in spores of strain 168 thy. Furthermore, purA:leuA in such extracts is 1.01 ± 0.06, consistent with the presence of only completed chromosomes. It is concluded that the abnormal origin:terminus marker ratios are only apparent and result from non-isogenicity between strains 168 thy and 168 in the metB thyB ilvA chromosome region introduced during construction of 168 thy by transformation of strain 168 with W23 thy deoxyribonucleic acid. It is concluded further that the chromosomes of strain 168 thy spores are in a completed form. PMID:4218227

  4. Mechanisms of induction of germination of Bacillus subtilis spores by high pressure.

    PubMed

    Paidhungat, Madan; Setlow, Barbara; Daniels, William B; Hoover, Dallas; Papafragkou, Efstathia; Setlow, Peter

    2002-06-01

    Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not attacked by these enzymes was not induced by a pressure of 550 MPa, but treatment of these mutant spores with this pressure caused the release of dipicolinic acid. These data suggest the following conclusions: (i) a pressure of 100 MPa induces spore germination by activating the germinant receptors; and (ii) a pressure of 550 MPa opens channels for release of dipicolinic acid from the spore core, which leads to the later steps in spore germination.

  5. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.

    PubMed

    Setlow, P

    2006-09-01

    A number of mechanisms are responsible for the resistance of spores of Bacillus species to heat, radiation and chemicals and for spore killing by these agents. Spore resistance to wet heat is determined largely by the water content of spore core, which is much lower than that in the growing cell protoplast. A lower core water content generally gives more wet heat-resistant spores. The level and type of spore core mineral ions and the intrinsic stability of total spore proteins also play a role in spore wet heat resistance, and the saturation of spore DNA with alpha/beta-type small, acid-soluble spore proteins (SASP) protects DNA against wet heat damage. However, how wet heat kills spores is not clear, although it is not through DNA damage. The alpha/beta-type SASP are also important in spore resistance to dry heat, as is DNA repair in spore outgrowth, as Bacillus subtilis spores are killed by dry heat via DNA damage. Both UV and gamma-radiation also kill spores via DNA damage. The mechanism of spore resistance to gamma-radiation is not well understood, although the alpha/beta-type SASP are not involved. In contrast, spore UV resistance is due largely to an alteration in spore DNA photochemistry caused by the binding of alpha/beta-type SASP to the DNA, and to a lesser extent to the photosensitizing action of the spore core's large pool of dipicolinic acid. UV irradiation of spores at 254 nm does not generate the cyclobutane dimers (CPDs) and (6-4)-photoproducts (64PPs) formed between adjacent pyrimidines in growing cells, but rather a thymidyl-thymidine adduct termed spore photoproduct (SP). While SP is formed in spores with approximately the same quantum efficiency as that for generation of CPDs and 64PPs in growing cells, SP is repaired rapidly and efficiently in spore outgrowth by a number of repair systems, at least one of which is specific for SP. Some chemicals (e.g. nitrous acid, formaldehyde) again kill spores by DNA damage, while others, in particular

  6. Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum.

    PubMed

    Roesti, David; Ineichen, Kurt; Braissant, Olivier; Redecker, Dirk; Wiemken, Andres; Aragno, Michel

    2005-11-01

    Spores of the arbuscular mycorrhizal fungi (AMF) Glomus geosporum and Glomus constrictum were harvested from single-spore-derived pot cultures with either Plantago lanceolata or Hieracium pilosella as host plants. PCR-denaturing gradient gel electrophoresis analysis revealed that the bacterial communities associated with the spores depended more on AMF than host plant identity. The composition of the bacterial populations linked to the spores could be predominantly influenced by a specific spore wall composition or AMF exudate rather than by specific root exudates. The majority of the bacterial sequences that were common to both G. geosporum and G. constrictum spores were affiliated with taxonomic groups known to degrade biopolymers (Cellvibrio, Chondromyces, Flexibacter, Lysobacter, and Pseudomonas). Scanning electron microscopy of G. geosporum spores revealed that these bacteria are possibly feeding on the outer hyaline spore layer. The process of maturation and eventual germination of AMF spores might then benefit from the activity of the surface microorganisms degrading the outer hyaline wall layer.

  7. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores.

    PubMed

    van Bokhorst-van de Veen, Hermien; Xie, Houyu; Esveld, Erik; Abee, Tjakko; Mastwijk, Hennie; Nierop Groot, Masja

    2015-02-01

    Bacterial spores are resistant to severe conditions and form a challenge to eradicate from food or food packaging material. Cold atmospheric plasma (CAP) treatment is receiving more attention as potential sterilization method at relatively mild conditions but the exact mechanism of inactivation is still not fully understood. In this study, the biocidal effect by nitrogen CAP was determined for chemical (hypochlorite and hydrogen peroxide), physical (UV) and heat-resistant spores. The three different sporeformers used are Bacillus cereus a food-borne pathogen, and Bacillus atrophaeus and Geobacillus stearothermophilus that are used as biological indicators for validation of chemical sterilization and thermal processes, respectively. The different spores showed variation in their degree of inactivation by applied heat, hypochlorite, hydrogen peroxide, and UV treatments, whereas similar inactivation results were obtained with the different spores treated with nitrogen CAP. G. stearothermophilus spores displayed high resistance to heat, hypochlorite, hydrogen peroxide, while for UV treatment B. atrophaeus spores are most tolerant. Scanning electron microscopy analysis revealed distinct morphological changes for nitrogen CAP-treated B. cereus spores including etching effects and the appearance of rough spore surfaces, whereas morphology of spores treated with heat or disinfectants showed no such changes. Moreover, microscopy analysis revealed CAP-exposed B. cereus spores to turn phase grey conceivably because of water influx indicating damage of the spores, a phenomenon that was not observed for non-treated spores. In addition, data are supplied that exclude UV radiation as determinant of antimicrobial activity of nitrogen CAP. Overall, this study shows that nitrogen CAP treatment has a biocidal effect on selected Bacillus and Geobacillus spores associated with alterations in spore surface morphology and loss of spore integrity. Copyright © 2014 Elsevier Ltd. All

  8. Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation.

    PubMed

    Moeller, Ralf; Setlow, Peter; Reitz, Günther; Nicholson, Wayne L

    2009-08-01

    Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple alpha/beta-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-alpha and/or SASP-beta) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-gamma) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that alpha/beta-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-gamma does not.

  9. The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host.

    PubMed

    Stewart, George C

    2015-12-01

    Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts.

  10. The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host

    PubMed Central

    2015-01-01

    SUMMARY Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555–588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts. PMID:26512126

  11. Germination and infectivity of ectomycorrhizal fungal spores in relation to their ecological traits during primary succession.

    PubMed

    Ishida, Takahide A; Nara, Kazuhide; Tanaka, Megumi; Kinoshita, Akihiko; Hogetsu, Taizo

    2008-01-01

    The spores of ectomycorrhizal fungi (EMF) play critical roles in the population and community development of EMF. Here, the germination and infectivity of EMF spores are examined with reference to the ecological traits of the EMF species. Spores were collected from 12 EMF species, whose successional patterns have been studied in the volcanic desert on Mount Fuji, Japan. Spore germination experiments were conducted with host plants (Salix reinii), with nonhost plants (Polygonum cuspidatum), and without plants. The mycorrhizal formation ability of spores was also examined in seven EMF using spore inoculation experiments. To determine the effects of the spore preservation period, both experiments were repeated up to 1 yr after spore collection. Spore germination was very low in the absence of host plants. In the presence of hosts, even 30 d after spore collection, spore germination was significantly enhanced in all pioneer EMF (c. 20%) but less so in late-stage EMF (< 5%), except in Hebeloma species. Mycorrhizal formation from spores was also greater in pioneer EMF but was significantly reduced by 1 yr of spore preservation. High spore germination and infectivity of pioneer EMF should enable these species to colonize disturbed and isolated areas in accordance with their ecological traits.

  12. At-line determining spore germination of Penicillium chrysogenum bioprocesses in complex media.

    PubMed

    Ehgartner, Daniela; Fricke, Jens; Schröder, Andreas; Herwig, Christoph

    2016-10-01

    Spore inoculum quality in filamentous bioprocesses is a critical parameter associated with viable spore concentration (1) and spore germination (2). It influences pellet morphology and, consequently, process performance. The state-of-the-art method to measure viable spore concentration is tedious, associated with significant inherent bias, and not applicable in real-time. Therefore, it is not usable as process analytical technology (PAT). Spore germination has so far been monitored using image analysis, which is hampered by complex medium background often observed in filamentous bioprocesses. The method presented here is based on the combination of viability staining and large-particle flow cytometry which enables measurements in real-time and hence aims to be applicable as a PAT tool. It is compatible with the complex media background and allows the quantification of metabolically active spores and the monitoring of spore germination. A distinction of germinated spores and not germinated spores was based on logistic regression, using multiparameteric data from flow cytometry. In a first step, a significant correlation between colony-forming unit (CFU) counts and viable spore concentration (1) in an industrially relevant model bioprocess was found. Spore germination (2) was followed over the initial process phase with close temporal resolution. The validation of the method showed an error below 5 %. Differences in spore germination for various spore inocula ages and spore inoculum concentrations were monitored. The real-time applicability of the method suggests the implementation as a PAT tool in filamentous bioprocesses.

  13. Omics data reveal the unusual asexual-fruiting nature and secondary metabolic potentials of the medicinal fungus Cordyceps cicadae.

    PubMed

    Lu, Yuzhen; Luo, Feifei; Cen, Kai; Xiao, Guohua; Yin, Ying; Li, Chunru; Li, Zengzhi; Zhan, Shuai; Zhang, Huizhan; Wang, Chengshu

    2017-08-30

    Ascomycete Cordyceps species have been using as valued traditional Chinese medicines. Particularly, the fruiting bodies of Cordyceps cicadae (syn. Isaria cicadae) have long been utilized for the treatment of chronic kidney disease. However, the genetics and bioactive chemicals in this fungus have been largely unexplored. In this study, we performed comprehensive omics analyses of C. cicadae, and found that, in contrast to other Cordyceps fungi, C. cicadae produces asexual fruiting bodies with the production of conidial spores instead of the meiotic ascospores. Genome sequencing and comparative genomic analysis indicate that the protein families encoded by C. cicadae are typical of entomopathogenic fungi, including the expansion of proteases and chitinases for targeting insect hosts. Interestingly, we found that the MAT1-2 mating-type locus of the sequenced strain contains an abnormally truncated MAT1-1-1 gene. Gene deletions revealed that asexual fruiting of C. cicadae is independent of the MAT locus control. RNA-seq transcriptome data also indicate that, compared to growth in a liquid culture, the putative genes involved in mating and meiosis processes were not up-regulated during fungal fruiting, further supporting asexual reproduction in this fungus. The genome of C. cicadae encodes an array of conservative and divergent gene clusters for secondary metabolisms. Based on our analysis, the production of known carcinogenic metabolites by this fungus could be potentially precluded. However, the confirmed production of oosporein raises health concerns about the frequent consumption of fungal fruiting bodies. The results of this study expand our knowledge of fungal genetics that asexual fruiting can occur independent of the MAT locus control. The obtained genomic and metabolomic data will benefit future investigations of this fungus for medicinal uses.

  14. Relationship of the syntheses of spore coat protein and parasporal crystal protein in Bacillus thuringiensis.

    PubMed Central

    Aronson, A I; Tyrell, D J; Fitz-James, P C; Bulla, L A

    1982-01-01

    Two major classes of polypeptides were extracted from the spore surface of Bacillus thuringiensis subsp. kurstaki: the 134,000-dalton protoxin that is the major component of the crystalline inclusion and spore coat polypeptides very similar to those found on Bacillus cereus spores. The quantity of spore coat polypeptides produced was reduced when compared with that produced by certain acrystalliferous mutants or by B. thuringiensis subsp. israelensis. The latter organism produced an inclusion toxic to mosquito larvae, but deposited very little of the inclusion protein on the spore surface. The reduction in spore coat protein in B. thuringiensis subsp. kurstaki was also seen in freeze-etched electron micrographs of spores. B. thuringiensis subsp. kurstaki spores germinated rather slowly when compared with related species, a property previously correlated with a deficiency or defect of the spore coat. Many mutants of B. thuringiensis subsp. kurstaki unable to form a crystalline inclusion were nontoxic and lacked a well-defined spore coat. Other mutants isolated either directly from the wild type or from coat-deficient mutants produced spores that were identical to those produced by the closely related species. Bacillus cereus, on the basis of morphology, germination rate, and the size and antigenicity of the spore coat polypeptides. Most of the protein extractable from the inclusion produced by B. thuringiensis subsp. israelensis was about 26,000 daltons, considerably smaller than the major polypeptide extractable from other inclusions. Some of the B. thuringiensis subsp. israelensis inclusion protein was found on the spore surface, but the majority of the extractable spore coat protein was the same size and antigenicity as that found on B. cereus spores. The B. thuringiensis subsp. israelensis spores germinated at a rate close to that of B. cereus, especially when the spores were formed at 37 degrees C, and the morphology of the spore surface was very similar to

  15. Natural Dissemination of Bacillus anthracis Spores in Northern Canada

    PubMed Central

    Dragon, D. C.; Bader, D. E.; Mitchell, J.; Woollen, N.

    2005-01-01

    Soil samples were collected from around fresh and year-old bison carcasses and areas not associated with known carcasses in Wood Buffalo National Park during an active anthrax outbreak in the summer of 2001. Sample selection with a grid provided the most complete coverage of a site. Soil samples were screened for viable Bacillus anthracis spores via selective culture, phenotypic analysis, and PCR. Bacillus anthracis spores were isolated from 28.4% of the samples. The highest concentrations of B. anthracis spores were found directly adjacent to fresh carcasses and invariably corresponded to locations where the soil had been saturated with body fluids escaping the carcass through either natural body orifices or holes torn by scavengers. The majority of positive samples were found within 2 m of both year-old and fresh carcasses and probably originated from scavengers churning up and spreading the body fluid-saturated soil as they fed. Trails of lesser contamination radiating from the carcasses probably resulted from spore dissemination through adhesion to scavengers and through larger scavengers dragging away disarticulated limbs. Comparison of samples from minimally scavenged and fully necropsied carcass sites revealed no statistically significant difference in the level of B. anthracis spore contamination. Therefore, the immediate area around a suspected anthrax carcass should be considered substantially contaminated regardless of the condition of the carcass. PMID:15746366

  16. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    SciTech Connect

    Lee, Ida; Chung, Eunhyea; Kweon, Hyojin; Yiacoumi, Sotira; Tsouris, Costas

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  17. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  18. Sporicidal Activities of Various Surfactant Components against Bacillus subtilis Spores.

    PubMed

    Cho, Won-Il; Cheigh, Chan-Ick; Hwang, Hee-Jeong; Chung, Myong-Soo

    2015-06-01

    The sporicidal activities against Bacillus subtilis spores of surfactant components with hydrophilic and hydrophobic properties that can lead to the denaturation of various proteins comprising the spore structure were investigated. The reduction in spore numbers by each of the surfactant components bornyl acetate, geranyl acetate, pinene, p-cymene, camphene, citral, 2,3-dihydrobenzofuran, polylysine, and thiamine dilaurylsulfate at 1% was estimated at 1 to 2 log CFU/ml. The average hydrophilelipophile balance value of surfactants with sporicidal activity causing a reduction of 1 to 2 log CFU/ml was 9.3, with a range from 6.7 to 15.8, which is similar to the values of various chemical surfactants of 9.6 to 16.7. The results also showed that the surfactants that were hydrophobic were more effective than those that were hydrophilic in killing B. subtilis spores. Furthermore, the sporicidal effect of surfactants like geranyl acetate and γ-terpinene was significantly enhanced in the presence of a germinant, because L-alanine and synergistic cofactors (e.g., K(+) ions) trigger cortex hydrolysis in spores.

  19. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores.

    PubMed

    Wood, Joseph P; Meyer, Kathryn M; Kelly, Thomas J; Choi, Young W; Rogers, James V; Riggs, Karen B; Willenberg, Zachary J

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially.

  20. STREPTOMYCES SPECIES COMPRISING THE BLUE-SPORE SERIES

    PubMed Central

    Trejo, W. H.; Bennett, R. E.

    1963-01-01

    Trejo, W. H. (Squibb Institute for Medical Research, New Brunswick, N.J.) and R. E. Bennett. Streptomyces species comprising the blue-spore series. J. Bacteriol. 85:676–690. 1963.—The objective of this study was to define and delimit the streptomycetes of the blue-spored (Viridochromogenes) series. The series, as defined in this study, includes 11 blue and blue-green species. The green-spored species were excluded on the basis of morphology as well as color. It was proposed that NRRL B-1511 be designated as the neotype strain of Streptomyces viridochromogenes (Krainsky) Waksman and Henrici, and that IMRU 3761 be designated as the neotype for Streptomyces cyaneus (Krassilnikov) Waksman. Evidence was presented to show that physiological criteria cannot be used to differentiate these organisms below the series level. The major characteristics of the Viridochromogenes series are blue to blue-green spores borne in spirals, and chromogenicity (melanin-positive). Reverse color and spore morphology provide a basis for separation below the series level. Images PMID:14042949

  1. STREPTOMYCES SPECIES COMPRISING THE BLUE-SPORE SERIES.

    PubMed

    TREJO, W H; BENNETT, R E

    1963-03-01

    Trejo, W. H. (Squibb Institute for Medical Research, New Brunswick, N.J.) and R. E. Bennett. Streptomyces species comprising the blue-spore series. J. Bacteriol. 85:676-690. 1963.-The objective of this study was to define and delimit the streptomycetes of the blue-spored (Viridochromogenes) series. The series, as defined in this study, includes 11 blue and blue-green species. The green-spored species were excluded on the basis of morphology as well as color. It was proposed that NRRL B-1511 be designated as the neotype strain of Streptomyces viridochromogenes (Krainsky) Waksman and Henrici, and that IMRU 3761 be designated as the neotype for Streptomyces cyaneus (Krassilnikov) Waksman. Evidence was presented to show that physiological criteria cannot be used to differentiate these organisms below the series level. The major characteristics of the Viridochromogenes series are blue to blue-green spores borne in spirals, and chromogenicity (melanin-positive). Reverse color and spore morphology provide a basis for separation below the series level.

  2. Detection of bacterial spores with lanthanide-macrocycle binary complexes.

    PubMed

    Cable, Morgan L; Kirby, James P; Levine, Dana J; Manary, Micah J; Gray, Harry B; Ponce, Adrian

    2009-07-15

    The detection of bacterial spores via dipicolinate-triggered lanthanide luminescence has been improved in terms of detection limit, stability, and susceptibility to interferents by use of lanthanide-macrocycle binary complexes. Specifically, we compared the effectiveness of Sm, Eu, Tb, and Dy complexes with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) to the corresponding lanthanide aquo ions. The Ln(DO2A)(+) binary complexes bind dipicolinic acid (DPA), a major constituent of bacterial spores, with greater affinity and demonstrate significant improvement in bacterial spore detection. Of the four luminescent lanthanides studied, the terbium complex exhibits the greatest dipicolinate binding affinity (100-fold greater than Tb(3+) alone, and 10-fold greater than other Ln(DO2A)(+) complexes) and highest quantum yield. Moreover, the inclusion of DO2A extends the pH range over which Tb-DPA coordination is stable, reduces the interference of calcium ions nearly 5-fold, and mitigates phosphate interference 1000-fold compared to free terbium alone. In addition, detection of Bacillus atrophaeus bacterial spores was improved by the use of Tb(DO2A)(+), yielding a 3-fold increase in the signal-to-noise ratio over Tb(3+). Out of the eight cases investigated, the Tb(DO2A)(+) binary complex is best for the detection of bacterial spores.

  3. Detection of Bacterial Spores with Lanthanide-Macrocycle Binary Complexes

    PubMed Central

    Cable, Morgan L.; Kirby, James P.; Levine, Dana J.; Manary, Micah J.; Gray, Harry B.; Ponce, Adrian

    2009-01-01

    The detection of bacterial spores via dipicolinate-triggered lanthanide luminescence has been improved in terms of detection limit, stability, and susceptibility to interferents by use of lanthanide-macrocycle binary complexes. Specifically, we compared the effectiveness of Sm, Eu, Tb and Dy complexes with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) to the corresponding lanthanide aquo ions. The Ln(DO2A)+ binary complexes bind dipicolinic acid (DPA), a major constituent of bacterial spores, with greater affinity and demonstrate significant improvement in bacterial spore detection. Of the four luminescent lanthanides studied, the terbium complex exhibits the greatest dipicolinate binding affinity (100-fold greater than Tb3+ alone, and 10-fold greater than other Ln(DO2A)+ complexes) and highest quantum yield. Moreover, the inclusion of DO2A extends the pH range over which Tb-DPA coordination is stable, reduces the interference of calcium ions nearly 5-fold, and mitigates phosphate interference 1000-fold compared to free terbium alone. In addition, detection of Bacillus atrophaeus bacterial spores was improved by the use of Tb(DO2A)+, yielding a 3-fold increase in the signal-to-noise ratio over Tb3+. Out of the eight cases investigated, the Tb(DO2A)+ binary complex is best for the detection of bacterial spores. PMID:19537757

  4. Comparisons of the humoral and cellular immunity induced by live A16R attenuated spore and AVA-like anthrax vaccine in mice.

    PubMed

    Lv, Jin; Zhang, Ying-Ying; Lu, Xun; Zhang, Hao; Wei, Lin; Gao, Jun; Hu, Bin; Hu, Wen-Wei; Hu, Dun-Zhong; Jia, Na; Feng, Xin

    2017-03-01

    The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  5. Ant-fungus species combinations engineer physiological activity of fungus gardens.

    PubMed

    Seal, J N; Schiøtt, M; Mueller, U G

    2014-07-15

    Fungus-gardening insects are among the most complex organisms because of their extensive co-evolutionary histories with obligate fungal symbionts and other microbes. Some fungus-gardening insect lineages share fungal symbionts with other members of their lineage and thus exhibit diffuse co-evolutionary relationships, while others exhibit little or no symbiont sharing, resulting in host-fungus fidelity. The mechanisms that maintain this symbiont fidelity are currently unknown. Prior work suggested that derived leaf-cutting ants in the genus Atta interact synergistically with leaf-cutter fungi (Attamyces) by exhibiting higher fungal growth rates and enzymatic activities than when growing a fungus from the sister-clade to Attamyces (so-called 'Trachymyces'), grown primarily by the non-leaf cutting Trachymyrmex ants that form, correspondingly, the sister-clade to leaf-cutting ants. To elucidate the enzymatic bases of host-fungus specialization in leaf-cutting ants, we conducted a reciprocal fungus-switch experiment between the ant Atta texana and the ant Trachymyrmex arizonensis and report measured enzymatic activities of switched and sham-switched fungus gardens to digest starch, pectin, xylan, cellulose and casein. Gardens exhibited higher amylase and pectinase activities when A. texana ants cultivated Attamyces compared with Trachymyces fungi, consistent with enzymatic specialization. In contrast, gardens showed comparable amylase and pectinase activities when T. arizonensis cultivated either fungal species. Although gardens of leaf-cutting ants are not known to be significant metabolizers of cellulose, T. arizonensis were able to maintain gardens with significant cellulase activity when growing either fungal species. In contrast to carbohydrate metabolism, protease activity was significantly higher in Attamyces than in Trachymyces, regardless of the ant host. Activity of some enzymes employed by this symbiosis therefore arises from complex interactions between the

  6. Daily variations of Alternaria spores in the city of Murcia (semi-arid southeastern Spain)

    NASA Astrophysics Data System (ADS)

    Munuera Giner, M.; Carrión García, J. S.

    1995-12-01

    Annual variations in the abundance of Alternaria spores were related to the length of the spore period for data from Murcia (southeastern Spain). To understand the relationship between the number of spores and climatic factors, Alternaria spore counts for March 1993 to February 1994 were examined by means of correlation and regression analyses with fourteen different weather parameters. The results indicated that there was a tendency for Alternaria spore concentrations to increase with increases in temperature, wind speed and hours of sunshine. Negative correlations were observed with air pressure, wind direction and humidity. Theoretical curves for Alternaria spore counts are given in relation to temperatures during the period studied.

  7. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  8. Differentiating bacterial spores from hoax materials by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Smith, Wayne W.

    2004-03-01

    The bioterrorism of October 2001 caused by the distribution of anthrax through the U.S. postal system was compounded by the significant delay associated with positive identification of the Bacillus anthracis spores and the unknown extent of their distribution along the eastern seaboard. In the ensuing two years, literally thousands of hoaxes, letters containing harmless powders, have been mailed creating additional anxiety. Thus, there is a need for instruments and/or methods that can not only identify anthrax-causing spores to save lives, but also identify hoax materials to eliminate costly shutdowns. Here we present Raman spectra of Bacillus cereus spores, an anthrax surrogate, as well as of 30 common substances that might be used as hoax materials. We also examine the choice of laser excitation, 785 nm or 1064 nm, and its impact on the ability to measure visible particles in 5 minutes or less, and to provide a complete answer to the question of suspicious material identity.

  9. Adenosine Monophosphate-Based Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  10. Enhanced Spore Biomarker Detection Following Laser Induced Lysis

    SciTech Connect

    Wunschel, David S.; Beck, Kenneth M.; Wahl, Karen L.

    2002-12-01

    Matrix assisted laser desorption/ionization (MALDI) has grown in popularity as a means to rapidly analyze proteins directly from bacterial cells. This method provides identifying information by generating protein ?fingerprints? for each organism. However, generating rich protein fingerprints from spores, such as from the genus Bacillus, has proven difficult. We have examined the use of laser energy to induce spore lysis and increase the protein signature complexity. As a measure of lysis, the ions from calcium and dipicolinic acid (DPA) were monitored along with the higher m/z protein ions. DPA is a known marker of eubacterial spores usually as a complex with calcium. This is in contrast to the abundant geogenic calcium complexes with carbonate among other forms. A combination of general bacterial markers, DPA and calcium, and protein fingerprints can be used to provide complementary biomarkers from a single sample preparation.

  11. Spore Yield and Microcycle Conidiation of Colletotrichum gloeosporioides in Liquid Culture

    PubMed Central

    Cascino, J. J.; Harris, R. F.; Smith, C. S.; Andrews, J. H.

    1990-01-01

    The effect of V8 juice concentration (5 to 40%, vol/vol), spore inoculum density (105 and 107 spores per ml), and liquid batch or fed-batch culture condition on mycelium and spore production by Colletotrichum gloeosporioides was evaluated. The amount of mycelium produced, the time required for initiation of sporulation following attainment of maximum mycelium, and the time for attainment of maximum spore concentration increased with increasing V8 juice concentration in batch culture. Cultures containing V8 juice at >10% achieved a similar spore density (apparent spore-carrying capacity) of about 0.8 mg of spores per ml (1 × 107 to 2 × 107 spores per ml) independent of inoculum density and V8 juice concentration. The relative spore yield decreased from a high of 64% of the total biomass for the low-inoculum 5% V8 culture, through 13% for the analogous 40% V8 culture, to a low of 2% for the high-inoculum 27% V8 culture. Fed-batch cultures were used to establish conditions of high spore density and low substrate availability but high substrate flux. The rate of addition of V8 juice was adjusted to approximate the rate of substrate utilization by the (increasing) biomass. The final spore concentration was about four times higher (3.0 mg of spores per ml) than the apparent spore-carrying capacity in batch culture. This high spore yield was obtained at the expense of greatly reduced mycelium, resulting in a high relative spore yield (62% of the total biomass). Microcycle conidiation occurred in the fed-batch but not batch systems. These data indicate that substrate-limited, fed-batch culture can be used to increase the amount and efficiency of spore production by C. gloeosporioides by maintaining microcycle conidiation conditions favoring allocation of nutrients to spore rather than mycelium production. PMID:16348245

  12. Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis.

    PubMed

    Magge, Anil; Granger, Amanda C; Wahome, Paul G; Setlow, Barbara; Vepachedu, Venkata R; Loshon, Charles A; Peng, Lixin; Chen, De; Li, Yong-Qing; Setlow, Peter

    2008-07-01

    Spores of Bacillus subtilis spoVF strains that ca