Sample records for international simulation study

  1. The internal validity of arthroscopic simulators and their effectiveness in arthroscopic education.

    PubMed

    Slade Shantz, Jesse Alan; Leiter, Jeff R S; Gottschalk, Tania; MacDonald, Peter Benjamin

    2014-01-01

    The purpose of this systematic review was to identify standard procedures for the validation of arthroscopic simulators and determine whether simulators improve the surgical skills of users. Arthroscopic simulator validation studies and randomized trials assessing the effectiveness of arthroscopic simulators in education were identified from online databases, as well as, grey literature and reference lists. Only validation studies and randomized trials were included for review. Study heterogeneity was calculated and where appropriate, study results were combined employing a random effects model. Four hundred and thirteen studies were reviewed. Thirteen studies met the inclusion criteria assessing the construct validity of simulators. A pooled analysis of internal validation studies determined that simulators could discriminate between novice and experts, but not between novice and intermediate trainees on time of completion of a simulated task. Only one study assessed the utility of a knee simulator in training arthroscopic skills directly and demonstrated that the skill level of simulator-trained residents was greater than non-simulator-trained residents. Excessive heterogeneity exists in the literature to determine the internal and transfer validity of arthroscopic simulators currently available. Evidence suggests that simulators can discriminate between novice and expert users, but discrimination between novice and intermediate trainees in surgical education should be paramount. International standards for the assessment of arthroscopic simulator validity should be developed to increase the use and effectiveness of simulators in orthopedic surgery.

  2. Partnering to Establish and Study Simulation in International Nursing Education.

    PubMed

    Garner, Shelby L; Killingsworth, Erin; Raj, Leena

    The purpose of this article was to describe an international partnership to establish and study simulation in India. A pilot study was performed to determine interrater reliability among faculty new to simulation when evaluating nursing student competency performance. Interrater reliability was below the ideal agreement level. Findings in this study underscore the need to obtain baseline interrater reliability data before integrating competency evaluation into a simulation program.

  3. Bayesian Action-Perception loop modeling: Application to trajectory generation and recognition using internal motor simulation

    NASA Astrophysics Data System (ADS)

    Gilet, Estelle; Diard, Julien; Palluel-Germain, Richard; Bessière, Pierre

    2011-03-01

    This paper is about modeling perception-action loops and, more precisely, the study of the influence of motor knowledge during perception tasks. We use the Bayesian Action-Perception (BAP) model, which deals with the sensorimotor loop involved in reading and writing cursive isolated letters and includes an internal simulation of movement loop. By using this probabilistic model we simulate letter recognition, both with and without internal motor simulation. Comparison of their performance yields an experimental prediction, which we set forth.

  4. Simulating History to Understand International Politics

    ERIC Educational Resources Information Center

    Weir, Kimberly; Baranowski, Michael

    2011-01-01

    To understand world politics, one must appreciate the context in which international systems develop and operate. Pedagogy studies demonstrate that the more active students are in their learning, the more they learn. As such, using computer simulations can complement and enhance classroom instruction. CIVILIZATION is a computer simulation game…

  5. The use of virtual reality simulation of head trauma in a surgical boot camp.

    PubMed

    Vergara, Victor M; Panaiotis; Kingsley, Darra; Alverson, Dale C; Godsmith, Timothy; Xia, Shan; Caudell, Thomas P

    2009-01-01

    Surgical "boot camps" provide excellent opportunities to enhance orientation, learning, and preparation of new surgery interns as they enter the clinical arena. This paper describes the utilization of an interactive virtual reality (VR) simulation and associated virtual patient (VP) as an additional tool for surgical boot camps. Complementing other forms of simulation, virtual patients (VPs) require less specialized equipment and can also provide a wide variety of medical scenarios. In this paper we discuss a study that measured the learning effectiveness of a real-world VP simulation used by a class of new surgery interns who operated it with a standard computer interface. The usability of the simulator as a learning tool has been demonstrated and measured. This study brings the use of VR simulation with VPs closer to wider application and integration into a training curriculum, such as a surgery intern boot camp.

  6. Conformational dynamics and internal friction in homopolymer globules: equilibrium vs. non-equilibrium simulations.

    PubMed

    Einert, T R; Sing, C E; Alexander-Katz, A; Netz, R R

    2011-12-01

    We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength ε and the globule size N (G) is observed. We find two distinct dynamical regimes: a liquid-like regime (for ε < ε(s) with fast internal dynamics and a solid-like regime (for ε > ε(s) with slow internal dynamics. The cohesion strength ε(s) of this freezing transition depends on N (G) . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with ε and scales extensive in N (G) . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.

  7. International Collaboration for Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam; Durante, Marco; Reitz, Guenther

    2015-01-01

    An international collaboration on Galactic Cosmic Ray (GCR) simulation is being formed to make recommendations on how to best simulate the GCR spectrum at ground based accelerators. The external GCR spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The anticipated outcome of these and other studies may be a report or journal article, written by an international collaboration, making accelerator beam recommendations for GCR simulation. This poster describes the status of GCR simulation at the NASA Space Radiation Laboratory and encourages others to join the collaboration.

  8. Simulation studies of STOL airplane operations in metropolitan downtown and airport air traffic control environments

    NASA Technical Reports Server (NTRS)

    Sawyer, R. H.; Mclaughlin, M. D.

    1974-01-01

    The operating problems and equipment requirements for STOL airplanes in terminal area operations in simulated air traffic control (ATC) environments were studied. These studies consisted of Instrument Flight Rules (IFR) arrivals and departures in the New York area to and from a downtown STOL port, STOL runways at John F. Kennedy International Airport, or STOL runways at a hypothetical international airport. The studies were accomplished in real time by using a STOL airplane flight simulator. An experimental powered lift STOL airplane and two in-service airplanes having high aerodynamic lift (i.e., STOL) capability were used in the simulations.

  9. Building a Community of Practice for Researchers: The International Network for Simulation-Based Pediatric Innovation, Research and Education.

    PubMed

    Cheng, Adam; Auerbach, Marc; Calhoun, Aaron; Mackinnon, Ralph; Chang, Todd P; Nadkarni, Vinay; Hunt, Elizabeth A; Duval-Arnould, Jordan; Peiris, Nicola; Kessler, David

    2018-06-01

    The scope and breadth of simulation-based research is growing rapidly; however, few mechanisms exist for conducting multicenter, collaborative research. Failure to foster collaborative research efforts is a critical gap that lies in the path of advancing healthcare simulation. The 2017 Research Summit hosted by the Society for Simulation in Healthcare highlighted how simulation-based research networks can produce studies that positively impact the delivery of healthcare. In 2011, the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE) was formed to facilitate multicenter, collaborative simulation-based research with the aim of developing a community of practice for simulation researchers. Since its formation, the network has successfully completed and published numerous collaborative research projects. In this article, we describe INSPIRE's history, structure, and internal processes with the goal of highlighting the community of practice model for other groups seeking to form a simulation-based research network.

  10. Simulation in International Relations Education.

    ERIC Educational Resources Information Center

    Starkey, Brigid A.; Blake, Elizabeth L.

    2001-01-01

    Discusses the educational implications of simulations in international relations. Highlights include the development of international relations simulations; the role of technology; the International Communication and Negotiation Simulations (ICONS) project at the University of Maryland; evolving information technology; and simulating real-world…

  11. Numerical simulations of internal wave generation by convection in water.

    PubMed

    Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S

    2015-06-01

    Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.

  12. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    NASA Astrophysics Data System (ADS)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  13. Simulation improves procedural protocol adherence during central venous catheter placement: a randomized-controlled trial

    PubMed Central

    Peltan, Ithan D.; Shiga, Takashi; Gordon, James A.; Currier, Paul F.

    2015-01-01

    Background Simulation training may improve proficiency at and reduces complications from central venous catheter (CVC) placement, but the scope of simulation’s effect remains unclear. This randomized controlled trial evaluated the effects of a pragmatic CVC simulation program on procedural protocol adherence, technical skill, and patient outcomes. Methods Internal medicine interns were randomized to standard training for CVC insertion or standard training plus simulation-based mastery training. Standard training involved a lecture, a video-based online module, and instruction by the supervising physician during actual CVC insertions. Intervention-group subjects additionally underwent supervised training on a venous access simulator until they demonstrated procedural competence. Raters evaluated interns’ performance during internal jugular CVC placement on actual patients in the medical intensive care unit. Generalized estimating equations were used to account for outcome clustering within trainees. Results We observed 52 interns place 87 CVCs. Simulation-trained interns exhibited better adherence to prescribed procedural technique than interns who received only standard training (p=0.024). There were no significant differences detected in first-attempt or overall cannulation success rates, mean needle passes, global assessment scores or complication rates. Conclusions Simulation training added to standard training improved protocol adherence during CVC insertion by novice practitioners. This study may have been too small to detect meaningful differences in venous cannulation proficiency and other clinical outcomes, highlighting the difficulty of patient-centered simulation research in settings where poor outcomes are rare. For high-performing systems, where protocol deviations may provide an important proxy for rare procedural complications, simulation may improve CVC insertion quality and safety. PMID:26154250

  14. Using Marriage and Family as an Aid in Acculturation

    ERIC Educational Resources Information Center

    Knyshevytska, Liliya; Hill, Jonnie

    2007-01-01

    This study describes the usefulness of a simulation, MARRIAGE AND FAMILY, in helping newly arrived international students adjust to the academic demands of university life. It outlines various phases of the simulation. The narrative regarding its implementation in the classroom demonstrates how well many international students adapt to the value…

  15. Study on temperature distribution effect on internal charging by computer simulation

    NASA Astrophysics Data System (ADS)

    Yi, Zhong

    2016-07-01

    Internal charging (or deep dielectric charging) is a great threaten to spacecraft. Dielectric conductivity is an important parameter for internal charging and it is sensitive to temperature. Considering the exposed dielectric outside a spacecraft may experience a relatively large temperature range, temperature effect can't be ignored in internal charging assessment. We can see some reporters on techniques of computer simulation of internal charging, but the temperature effect has not been taken into accounts. In this paper, we realize the internal charging simulation with consideration of temperature distribution inside the dielectric. Geant4 is used for charge transportation, and a numerical method is proposed for solving the current reservation equation. The conductivity dependences on temperature, radiation dose rate and intense electric field are considered. Compared to the case of uniform temperature, the internal charging with temperature distribution is more complicated. Results show that temperature distribution can cause electric field distortion within the dielectric. This distortion refers to locally considerable enlargement of electric field. It usually corresponds to the peak electric field which is critical for dielectric breakdown judgment. The peak electric field can emerge inside the dielectric, or appear on the boundary. This improvement of internal charging simulation is beneficial for the assessment of internal charging under multiple factors.

  16. Effects of Internal Waves on Sound Propagation in the Shallow Waters of the Continental Shelves

    DTIC Science & Technology

    2016-09-01

    experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for the effects of...internal waves in the experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for...IN THE SHALLOW WATERS OF THE CONTINENTAL SHELVES ..................................4  1.  Internal Tides—Internal Waves Generated by Tidal Forcing

  17. Intern as Patient: A Patient Experience Simulation to Cultivate Empathy in Emergency Medicine Residents.

    PubMed

    Nelson, Sara W; Germann, Carl A; MacVane, Casey Z; Bloch, Rebecca B; Fallon, Timothy S; Strout, Tania D

    2018-01-01

    Prior work links empathy and positive physician-patient relationships to improved healthcare outcomes. The objective of this study was to analyze a patient experience simulation for emergency medicine (EM) interns as a way to teach empathy and conscientious patient care. We conducted a qualitative descriptive study on an in situ, patient experience simulation held during EM residency orientation. Half the interns were patients brought into the emergency department (ED) by ambulance and half were family members. Interns then took part in focus groups that discussed the experience. Data collected during these focus groups were coded by two investigators using a grounded theory approach and constant comparative methodology. We identified 10 major themes and 28 subthemes in the resulting qualitative data. Themes were in three broad categories: the experience as a patient or family member in the ED; application to current clinical practice; and evaluation of the exercise itself. Interns experienced firsthand the physical discomfort, emotional stress and confusion patients and families endure during the ED care process. They reflected on lessons learned, including the importance of good communication skills, frequent updates on care and timing, and being responsive to the needs and concerns of patients and families. All interns felt this was a valuable orientation experience. Conducting a patient experience simulation may be a practical and effective way to develop empathy in EM resident physicians. Additional research evaluating the effect of participation in the simulation over a longer time period and assessing the effects on residents' actual clinical care is warranted.

  18. 2017 Year in Review | Transportation Research | NREL

    Science.gov Websites

    Internal Short Circuit Device Sweeps Awards Around the Globe NREL's patented Battery Internal Short Circuit (ISC) Device allows researchers to simulate true internal short circuits, study the causes of thermal

  19. A Simulation Game for an Introductory Course in International Business

    ERIC Educational Resources Information Center

    McGuinness, Michael J.

    2004-01-01

    An international business simulation game designed for an introductory International Business course. The simulation game allows for student decision making and allows for the ready introduction of many topics which are covered in an International Business course. The simulation game has continued to be improved with student suggestions and has…

  20. Internal services simulation control in 220/110kV power transformer station Mintia

    NASA Astrophysics Data System (ADS)

    Ciulica, D.; Rob, R.

    2018-01-01

    The main objectives in developing the electric transport and distribution networks infrastructure are satisfying the electric energy demand, ensuring the continuity of supply to customers, minimizing electricity losses in the transmission and distribution networks of public interest. This paper presents simulations in functioning of the internal services system 400/230 V ac in the 220/110 kV power transformer station Mintia. Using simulations in Visual Basic, the following premises are taken into consideration. All the ac consumers of the 220/110 kV power transformer station Mintia will be supplied by three 400/230 V transformers for internal services which can mutual reserve. In case of damaging at one transformer, the others are able to assume the entire consumption using automatic release of reserves. The simulation program studies three variants in which the continuity of supply to customers are ensured. As well, by simulations, all the functioning situations are analyzed in detail.

  1. Changes of catecholamine excretion during long-duration confinement.

    PubMed

    Kraft, N; Inoue, N; Ohshima, H; Sekiguchi, C

    2002-06-01

    Simulation studies have become the main source of data about small group interactions during prolonged isolation, from which it should be possible to anticipate crew problems during actual space missions. International Space Station (ISS) astronauts and cosmonauts will form one international crew, although living in different national modules. They will have joint flight protocols, and at the same time, fulfill a number of different tasks in accord with their national flight programs. Consistent with these concepts, we studied two simultaneously functioning groups in a simulation of ISS flight. The objective of this study was to investigate physiological parameters (such as catecholamine excretions) related to long-duration confinement in the hermetic chamber, simulating International Space Station flight conditions. We also planned to evaluate the relationship between epinephrine/norepinephrine with group dynamics and social events to predict unfavorable changes in health and work capability of the subjects related to psychological interaction in the isolation chamber.

  2. Effect of Advanced Trauma Life Support program on medical interns' performance in simulated trauma patient management.

    PubMed

    Ahmadi, Koorosh; Sedaghat, Mohammad; Safdarian, Mahdi; Hashemian, Amir-Masoud; Nezamdoust, Zahra; Vaseie, Mohammad; Rahimi-Movaghar, Vafa

    2013-01-01

    Since appropriate and time-table methods in trauma care have an important impact on patients'outcome, we evaluated the effect of Advanced Trauma Life Support (ATLS) program on medical interns' performance in simulated trauma patient management. A descriptive and analytical study before and after the training was conducted on 24 randomly selected undergraduate medical interns from Imam Reza Hospital in Mashhad, Iran. On the first day, we assessed interns' clinical knowledge and their practical skill performance in confronting simulated trauma patients. After 2 days of ATLS training, we performed the same study and evaluated their score again on the fourth day. The two findings, pre- and post- ATLS periods, were compared through SPSS version 15.0 software. P values less than 0.05 were considered statistically significant. Our findings showed that interns'ability in all the three tasks improved after the training course. On the fourth day after training, there was a statistically significant increase in interns' clinical knowledge of ATLS procedures, the sequence of procedures and skill performance in trauma situations (P less than 0.001, P equal to 0.016 and P equal to 0.01 respectively). ATLS course has an important role in increasing clinical knowledge and practical skill performance of trauma care in medical interns.

  3. The impact of simulation education on self-efficacy towards teaching for nurse educators.

    PubMed

    Garner, S L; Killingsworth, E; Bradshaw, M; Raj, L; Johnson, S R; Abijah, S P; Parimala, S; Victor, S

    2018-03-23

    The objective of this study was to assess the impact of a simulation workshop on self-efficacy towards teaching for nurse educators in India. Additionally, we sought to revise and validate a tool to measure self-efficacy in teaching for use with a global audience. Simulation is an evidence-based teaching and learning method and is increasingly used in nursing education globally. As new technology and teaching methods such as simulation continue to evolve, it is important for new as well as experienced nurse educators globally to have confidence in their teaching skills and abilities. The study included (1) instrument revision, and measures of reliability and validation, (2) an 8-h faculty development workshop intervention on simulation, (3) pre- and post-survey of self-efficacy among nurse educators, and (4) investigation of relationship between faculty socio-demographics and degree of self-efficacy. The modified tool showed internal consistency (r = 0.98) and was validated by international faculty experts. There were significant improvements in total self-efficacy (P < 0.001) and subscale scores among nurse educators after the simulation workshop intervention when compared to pre-survey results. No significant relationships were found between socio-demographic variables and degree of self-efficacy. Strong self-efficacy in teaching among nurse educators is crucial for effective learning to occur. Results indicated the simulation workshop was effective in significantly improving self-efficacy towards teaching for nurse educators using an internationally validated tool. The Minister of Health in India recently called for improvements in nursing education. Introducing nursing education on simulation as a teaching method in India and globally to improve self-efficacy among teachers is an example of a strategy towards meeting this call. © 2018 The Authors International Nursing Review published by John Wiley & Sons Ltd on behalf of International Council of Nurses.

  4. Linking Errors between Two Populations and Tests: A Case Study in International Surveys in Education

    ERIC Educational Resources Information Center

    Hastedt, Dirk; Desa, Deana

    2015-01-01

    This simulation study was prompted by the current increased interest in linking national studies to international large-scale assessments (ILSAs) such as IEA's TIMSS, IEA's PIRLS, and OECD's PISA. Linkage in this scenario is achieved by including items from the international assessments in the national assessments on the premise that the average…

  5. EXPRESS--Examining Pediatric Resuscitation Education Using Simulation and Scripting. The birth of an international pediatric simulation research collaborative--from concept to reality.

    PubMed

    Cheng, Adam; Hunt, Elizabeth A; Donoghue, Aaron; Nelson, Kristen; Leflore, Judy; Anderson, JoDee; Eppich, Walter; Simon, Robert; Rudolph, Jenny; Nadkarni, Vinay

    2011-02-01

    Over the past decade, medical simulation has evolved into an essential component of pediatric resuscitation education and team training. Evidence to support its value as an adjunct to traditional methods of education is expanding; however, large multicenter studies are very rare. Simulation-based researchers currently face many challenges related to small sample sizes, poor generalizability, and paucity of clinically proven and relevant outcome measures. The Examining Pediatric Resuscitation Education Using Simulation and Scripting (EXPRESS) pediatric simulation research collaborative was formed in an attempt to directly address and overcome these challenges. The primary mission of the EXPRESS collaborative is to improve the delivery of medical care to critically ill children by answering important research questions pertaining to pediatric resuscitation and education and is focused on using simulation either as a key intervention of interest or as the outcome measurement tool. Going forward, the collaborative aims to expand its membership internationally and collectively identify pediatric resuscitation and simulation-based research priorities and use these to guide future projects. Ultimately, we hope that with innovative and high-quality research, the EXPRESS pediatric simulation research collaborative will help to build momentum for simulation-based research on an international level. Copyright © 2011 Society for Simulation in Healthcare

  6. Simulation-Based Educational Module Improves Intern and Medical Student Performance of Closed Reduction and Percutaneous Pinning of Pediatric Supracondylar Humeral Fractures.

    PubMed

    Butler, Bennet A; Lawton, Cort D; Burgess, Jamie; Balderama, Earvin S; Barsness, Katherine A; Sarwark, John F

    2017-12-06

    Simulation-based education has been integrated into many orthopaedic residency programs to augment traditional teaching models. Here we describe the development and implementation of a combined didactic and simulation-based course for teaching medical students and interns how to properly perform a closed reduction and percutaneous pinning of a pediatric supracondylar humeral fracture. Subjects included in the study were either orthopaedic surgery interns or subinterns at our institution. Subjects all completed a combined didactic and simulation-based course on pediatric supracondylar humeral fractures. The first part of this course was an electronic (e)-learning module that the subjects could complete at home in approximately 40 minutes. The second part of the course was a 20-minute simulation-based skills learning session completed in the simulation center. Subject knowledge of closed reduction and percutaneous pinning of supracondylar humeral fractures was tested using a 30-question, multiple-choice, written test. Surgical skills were tested in the operating room or in a simulated operating room. Subject pre-intervention and post-intervention scores were compared to determine if and how much they had improved. A total of 21 subjects were tested. These subjects significantly improved their scores on both the written, multiple-choice test and skills test after completing the combined didactic and simulation module. Prior to the module, intern and subintern multiple-choice test scores were significantly worse than postgraduate year (PGY)-2 to PGY-5 resident scores (p < 0.01); after completion of the module, there was no significant difference in the multiple-choice test scores. After completing the module, there was no significant difference in skills test scores between interns and PGY-2 to PGY-5 residents. Both tests were validated using the scores obtained from PGY-2 to PGY-5 residents. Our combined didactic and simulation course significantly improved intern and subintern understanding of supracondylar humeral fractures and their ability to perform a closed reduction and percutaneous pinning of these fractures.

  7. Study of Hygrothermal Processes in External Walls with Internal Insulation

    NASA Astrophysics Data System (ADS)

    Biseniece, Edite; Freimanis, Ritvars; Purvins, Reinis; Gravelsins, Armands; Pumpurs, Aivars; Blumberga, Andra

    2018-03-01

    Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel) in a cold climate (average 4000 heating degree days). We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  8. Simulation in Nursing Education-International Perspectives and Contemporary Scope of Practice.

    PubMed

    Kelly, Michelle A; Berragan, Elizabeth; Husebø, Sissel Eikeland; Orr, Fiona

    2016-05-01

    This article provides insights and perspectives from four experienced educators about their approaches to developing, delivering, and evaluating impactful simulation learning experiences for undergraduate nurses. A case study format has been used to illustrate the commonalities and differences of where simulation has been positioned within curricula, with examples of specialized clinical domains and others with a more generic focus. The importance of pedagogy in developing and delivering simulations is highlighted in each case study. A range of learning theories appropriate for healthcare simulations are a reminder of the commonalities across theories and that no one theory can account for the engaging and impactful learning that simulation elicits. Creating meaningful and robust learning experiences through simulation can benefit students' performance in subsequent clinical practice. The ability to rehearse particular clinical scenarios, which may be difficult to otherwise achieve, assists students in anticipating likely patient trajectories and understanding how to respond to patients, relatives, and others in the healthcare team. © 2016 Sigma Theta Tau International.

  9. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  10. ON THE IMPORTANCE OF VERY LIGHT INTERNALLY SUBSONIC AGN JETS IN RADIO-MODE AGN FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Fulai, E-mail: fulai@shao.ac.cn

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light ( η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonicmore » jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.« less

  11. Use of Electronic Health Record Simulation to Understand the Accuracy of Intern Progress Notes

    PubMed Central

    March, Christopher A.; Scholl, Gretchen; Dversdal, Renee K.; Richards, Matthew; Wilson, Leah M.; Mohan, Vishnu; Gold, Jeffrey A.

    2016-01-01

    Background With the widespread adoption of electronic health records (EHRs), there is a growing awareness of problems in EHR training for new users and subsequent problems with the quality of information present in EHR-generated progress notes. By standardizing the case, simulation allows for the discovery of EHR patterns of use as well as a modality to aid in EHR training. Objective To develop a high-fidelity EHR training exercise for internal medicine interns to understand patterns of EHR utilization in the generation of daily progress notes. Methods Three months after beginning their internship, 32 interns participated in an EHR simulation designed to assess patterns in note writing and generation. Each intern was given a simulated chart and instructed to create a daily progress note. Notes were graded for use of copy-paste, macros, and accuracy of presented data. Results A total of 31 out of 32 interns (97%) completed the exercise. There was wide variance in use of macros to populate data, with multiple macro types used for the same data category. Three-quarters of notes contained either copy-paste elements or the elimination of active medical problems from the prior days' notes. This was associated with a significant number of quality issues, including failure to recognize a lack of deep vein thrombosis prophylaxis, medications stopped on admission, and issues in prior discharge summary. Conclusions Interns displayed wide variation in the process of creating progress notes. Additional studies are being conducted to determine the impact EHR-based simulation has on standardization of note content. PMID:27168894

  12. Use of Electronic Health Record Simulation to Understand the Accuracy of Intern Progress Notes.

    PubMed

    March, Christopher A; Scholl, Gretchen; Dversdal, Renee K; Richards, Matthew; Wilson, Leah M; Mohan, Vishnu; Gold, Jeffrey A

    2016-05-01

    Background With the widespread adoption of electronic health records (EHRs), there is a growing awareness of problems in EHR training for new users and subsequent problems with the quality of information present in EHR-generated progress notes. By standardizing the case, simulation allows for the discovery of EHR patterns of use as well as a modality to aid in EHR training. Objective To develop a high-fidelity EHR training exercise for internal medicine interns to understand patterns of EHR utilization in the generation of daily progress notes. Methods Three months after beginning their internship, 32 interns participated in an EHR simulation designed to assess patterns in note writing and generation. Each intern was given a simulated chart and instructed to create a daily progress note. Notes were graded for use of copy-paste, macros, and accuracy of presented data. Results A total of 31 out of 32 interns (97%) completed the exercise. There was wide variance in use of macros to populate data, with multiple macro types used for the same data category. Three-quarters of notes contained either copy-paste elements or the elimination of active medical problems from the prior days' notes. This was associated with a significant number of quality issues, including failure to recognize a lack of deep vein thrombosis prophylaxis, medications stopped on admission, and issues in prior discharge summary. Conclusions Interns displayed wide variation in the process of creating progress notes. Additional studies are being conducted to determine the impact EHR-based simulation has on standardization of note content.

  13. Student Perceptions of a Role-Playing Simulation in an Introductory International Relations Course

    ERIC Educational Resources Information Center

    Giovanello, Sean P.; Kirk, Jason A.; Kromer, Mileah K.

    2013-01-01

    An emerging assumption in undergraduate political science education is that role-playing simulations are an effective teaching tool. While previous studies have addressed the pedagogical advantages of simulations as compared to more traditional teaching techniques, less attention has been paid to student perceptions of these simulations. This…

  14. Integrating Sonography Training Into Undergraduate Medical Education: A Study of the Previous Exposure of One Institution's Incoming Residents.

    PubMed

    Day, James; Davis, Joshua; Riesenberg, Lee Ann; Heil, Daniel; Berg, Katherine; Davis, Robyn; Berg, Dale

    2015-07-01

    Sonography is a crucial and versatile tool within the field of medicine. Recent advancements in technology have led to increased use of point-of-care sonography. We designed a survey to assess prior point-of-care sonography training among incoming interns at an academic teaching hospital. In 2012 and 2013, we surveyed incoming interns (n = 154 and 145, respectively) regarding point-of-care sonography training received during medical school. The survey questions included formal didactic sessions, bedside instruction, and the use of simulation technology. One-fourth (26.3% in 2012 and 23.4% in 2013) of responding interns reported having never done an ultrasound scan at the bedside. In 2012 and 2013, 55.0% and 55.6% of respondents reported never having done an ultrasound scan in a simulation center, respectively. Interns agreed that sonography education should be provided during medical school. On average, interns disagreed with the statement that sonography should be taught in residency only. There was no significant difference in the sex or general previous experience with sonography across both intern classes. Point-of-care sonography is inconsistently taught in medical school. The interns in our study also thought that sonography education should begin in medical school, and sonography should be taught by using simulation and at the bedside. © 2015 by the American Institute of Ultrasound in Medicine.

  15. Thermal and Mechanical Non-Equilibrium Effects on Turbulent Flows: Fundamental Studies of Energy Exchanges Through Direct Numerical Simulations, Molecular Simulations and Experiments

    DTIC Science & Technology

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0104 Thermal and mechanical non-equilibrium effects on turbulent flows:fundamental studies of energy exchanges through direct...flows: fundamental studies of energy exchanges through direct numerical simulations, molecular simulations and experiments 5a.  CONTRACT NUMBER 5b...AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Utilizing internal energy exchange for intelligent

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Elizabeth J.; Yu, Sungduk; Kooperman, Gabriel J.

    The sensitivities of simulated mesoscale convective systems (MCSs) in the central U.S. to microphysics and grid configuration are evaluated here in a global climate model (GCM) that also permits global-scale feedbacks and variability. Since conventional GCMs do not simulate MCSs, studying their sensitivities in a global framework useful for climate change simulations has not previously been possible. To date, MCS sensitivity experiments have relied on controlled cloud resolving model (CRM) studies with limited domains, which avoid internal variability and neglect feedbacks between local convection and larger-scale dynamics. However, recent work with superparameterized (SP) GCMs has shown that eastward propagating MCS-likemore » events are captured when embedded CRMs replace convective parameterizations. This study uses a SP version of the Community Atmosphere Model version 5 (SP-CAM5) to evaluate MCS sensitivities, applying an objective empirical orthogonal function algorithm to identify MCS-like events, and harmonizing composite storms to account for seasonal and spatial heterogeneity. A five-summer control simulation is used to assess the magnitude of internal and interannual variability relative to 10 sensitivity experiments with varied CRM parameters, including ice fall speed, one-moment and two-moment microphysics, and grid spacing. MCS sensitivities were found to be subtle with respect to internal variability, and indicate that ensembles of over 100 storms may be necessary to detect robust differences in SP-GCMs. Furthermore, these results emphasize that the properties of MCSs can vary widely across individual events, and improving their representation in global simulations with significant internal variability may require comparison to long (multidecadal) time series of observed events rather than single season field campaigns.« less

  17. Episodic simulation of future events is impaired in mild Alzheimer's disease

    PubMed Central

    Addis, Donna Rose; Sacchetti, Daniel C.; Ally, Brandon A.; Budson, Andrew E.; Schacter, Daniel L.

    2009-01-01

    Recent neuroimaging studies have demonstrated that both remembering the past and simulating the future activate a core neural network including the medial temporal lobes. Regions of this network, in particular the medial temporal lobes, are prime sites for amyloid deposition and are structurally and functionally compromised in Alzheimer's disease (AD). While we know some functions of this core network, specifically episodic autobiographical memory, are impaired in AD, no study has examined whether future episodic simulation is similarly impaired. We tested the ability of sixteen AD patients and sixteen age-matched controls to generate past and future autobiographical events using an adapted version of the Autobiographical Interview. Participants also generated five remote autobiographical memories from across the lifespan. Event transcriptions were segmented into distinct details, classified as either internal (episodic) or external (non-episodic). AD patients exhibited deficits in both remembering past events and simulating future events, generating fewer internal and external episodic details than healthy older controls. The internal and external detail scores were strongly correlated across past and future events, providing further evidence of the close linkages between the mental representations of past and future. PMID:19497331

  18. Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties

    PubMed Central

    Valencia, Alvaro; Burdiles, Patricio; Ignat, Miguel; Mura, Jorge; Rivera, Rodrigo; Sordo, Juan

    2013-01-01

    Computational Structural Dynamics (CSD) simulations, Computational Fluid Dynamics (CFD) simulation, and Fluid Structure Interaction (FSI) simulations were carried out in an anatomically realistic model of a saccular cerebral aneurysm with the objective of quantifying the effects of type of simulation on principal fluid and solid mechanics results. Eight CSD simulations, one CFD simulation, and four FSI simulations were made. The results allowed the study of the influence of the type of material elements in the solid, the aneurism's wall thickness, and the type of simulation on the modeling of a human cerebral aneurysm. The simulations use their own wall mechanical properties of the aneurysm. The more complex simulation was the FSI simulation completely coupled with hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness. The FSI simulation coupled in one direction using hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness is the one that presents the most similar results with respect to the more complex FSI simulation, requiring one-fourth of the calculation time. PMID:24151523

  19. Martian Feeling: An Analogue Study to Simulate a Round-Trip to Mars using the International Space Station

    NASA Astrophysics Data System (ADS)

    Felix, C. V.; Gini, A.

    When talking about human space exploration, Mars missions are always present. It is clear that sooner or later, humanity will take this adventure. Arguably the most important aspect to consider for the success of such an endeavour is the human element. The safety of the crew throughout a Martian mission is a top priority for all space agencies. Therefore, such a mission should not take place until all the risks have been fully understood and mitigated. A mission to Mars presents unique human and technological challenges in terms of isolation, confinement, autonomy, reliance on mission control, communication delays and adaptation to different gravity levels. Analogue environments provide the safest way to simulate these conditions, mitigate the risks and evaluate the effects of long-term space travel on the crew. Martian Feeling is one of nine analogue studies, from the Mars Analogue Path (MAP) report [1], proposed by the TP Analogue group of ISU Masters class 2010. It is an integrated analogue study which simulates the psychological, physiological and operational conditions that an international, six-person, mixed gender crew would experience on a mission to Mars. Set both onboard the International Space Station (ISS) and on Earth, the Martian Feeling study will perform a ``dress rehearsal'' of a mission to Mars. The study proposes to test both human performance and operational procedures in a cost-effective manner. Since Low Earth Orbit (LEO) is more accessible than other space-based locations, an analogue studies in LEO would provide the required level of realism to a simulated transit mission to Mars. The sustained presence of microgravity and other elements of true spaceflight are features of LEO that are neither currently feasible nor possible to study in terrestrial analogue sites. International collaboration, economics, legal and ethical issues were considered when the study was proposed. As an example of international collaboration, the ISS would demonstrate an effective model for an international effort to send humans to Mars. The proposed starting date is the year 2017, before the planned retirement of the ISS, which is currently scheduled for 2020.

  20. The International Negotiation Seminars Project. Project ICONS.

    ERIC Educational Resources Information Center

    Wilkenfeld, Jonathan; Kaufman, Joyce; Starkey, Brigid

    This report of a study at the University of Maryland describes an international, interactive, and interdisciplinary project for first- and second-year students, which combines a large lecture format with small-group, seminar-type sessions organized around a computer-assisted simulation model, the International Communication and Negotiation…

  1. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  2. Technologies for Propelled Hypersonic Flight Volume 2 - Subgroup 2: Scram Propulsion

    DTIC Science & Technology

    2006-01-01

    effort is focused on the MSD code, initially developed by ONERA to simulate internal aerodynamic flows, which has been upgraded in cooperation...inlets were studied: a mixed, external/ internal , compression inlet studied at DLR with testing in the H2K and TMK wind-tunnels, and an internal ...movable panels during operation along the trajectory, modification of the internal geometry by a control-command computer connected with sensors on the

  3. The Role of Games and Simulations to Teach Abstract Concepts of Anarchy, Cooperation, and Conflict in World Politics

    ERIC Educational Resources Information Center

    McCarthy, Mary M.

    2014-01-01

    Games and simulations are increasingly used in courses on international politics. This study explores the hypothesis that games are better than simulations (as well as only reading and lectures) in introducing students to abstract concepts integral to an understanding of world politics. The study compares a two-level Prisoner's Dilemma game…

  4. Simulation in International Studies

    ERIC Educational Resources Information Center

    Boyer, Mark A.

    2011-01-01

    Social scientists have long worked to replicate real-world phenomena in their research and teaching environments. Unlike our biophysical science colleagues, we are faced with an area of study that is not governed by the laws of physics and other more predictable relationships. As a result, social scientists, and international studies scholars more…

  5. GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package

    PubMed Central

    Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-01-01

    The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538

  6. GneimoSim: a modular internal coordinates molecular dynamics simulation package.

    PubMed

    Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan

    2014-12-05

    The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.

  7. Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis.

    PubMed

    Halder, Sukanya; Bhattacharyya, Dhananjay

    2012-10-04

    Internal loops within RNA duplex regions are formed by single or tandem basepairing mismatches with flanking canonical Watson-Crick basepairs on both sides. They are the most common motif observed in RNA secondary structures and play integral functional and structural roles. In this report, we have studied the structural features of 1 × 1, 2 × 2, and 3 × 3 internal loops using all-atom molecular dynamics (MD) simulation technique with explicit solvent model. As MD simulation is intricately dependent on the choice of force-field and these are often rather approximate, we have used both the most popular force-fields for nucleic acids-CHARMM27 and AMBER94-for a comparative analysis. We find that tandem noncanonical basepairs forming 2 × 2 and 3 × 3 internal loops are considerably more stable than the single mismatches forming 1 × 1 internal loops, irrespective of the force field. We have also analyzed crystal structure database to study the conservation of these helical fragments in the corresponding sets of RNA structures. We observe that the nature of stability in MD simulations mimic their fluctuating natures in crystal data sets also, probably indicating reliable natures of both the force fields to reproduce experimental results. We also notice significant structural changes in the wobble G:U basepairs present in these double helical stretches, leading to a biphasic stability for these wobble pairs to release the deformational strains introduced by internal loops within duplex regions.

  8. Core Concepts: Orthopedic Intern Curriculum Boot Camp.

    PubMed

    Seeley, Mark A; Kazarian, Erick; King, Brandon; Biermann, Janet S; Carpenter, James E; Caird, Michelle S; Irwin, Todd A

    2016-01-01

    Orthopedic surgical interns must gain a broad array of clinical skills in a short time. However, recent changes in health care have limited resident-patient exposures. With the reported success of simulation training in the surgical literature, the American Board of Orthopaedic Surgery (ABOS) and Residency Review Committee for Orthopaedic Surgery have required that surgical simulation training be a component of the intern curricula in orthopedic surgical residencies. This study examined the short-term effectiveness of an orthopedic "intern boot camp" covering 7 of 17 simulation training concept modules published by the ABOS. Eight orthopedic post-graduate year 1 (PGY-1) residents (study group) completed a structured 3-month curriculum and were compared with 7 post-graduate year 2 (PGY-2) residents (comparison group) who had just completed their orthopedic surgical internship. Seven core skills were assessed using both task-specific and global rating scales. The PGY-1 residents demonstrated a statistically significant improvement in all 7 modules with respect to their task-specific pre-test scores: sterile technique (P=.001), wound closure (P<.001), knot tying (P=.017), casting and splinting (P<.001), arthrocentesis (P=.01), basics of internal fixation (P<.001), and compartment syndrome evaluation (P=.004). After the camp, PGY-1 and -2 scores in task-specific measures were not significantly different. A 3-month simulation-based boot camp instituted early in orthopedic internship elevated a variety of clinical skills to levels exhibited by PGY-2 residents. Copyright 2016, SLACK Incorporated.

  9. How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study.

    PubMed

    Holter, Marianne T S; Johansen, Ayna; Brendryen, Håvar

    2016-06-28

    eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist's support of a working alliance, internalization of motivation, and managing lapses. We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several "counseling sessions" about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. The program supports the user's working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective.

  10. How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study

    PubMed Central

    Johansen, Ayna; Brendryen, Håvar

    2016-01-01

    Background eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. Objective We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist’s support of a working alliance, internalization of motivation, and managing lapses. Methods We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several “counseling sessions” about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. Results The program supports the user’s working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. Conclusions A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective. PMID:27354373

  11. A Randomized Parallel Study for Simulated Internal Jugular Vein Cannulation Using Simple Needle Guide Device

    ClinicalTrials.gov

    2017-08-14

    Doctors Attending a Central Line Insertion Training Courses for New Residents of a University Hospital From March 2017 to June 2017; Physicians Who Had Less Than 10 Ultrasound Guided Internal Jugular Vein Cannulation Participate in This Study

  12. Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Wei; Cao, Bing-Yang

    2013-12-01

    The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.

  13. [Simulation-based learning and internal medicine: Opportunities and current perspectives for a national harmonized program].

    PubMed

    Galland, J; Abbara, S; Terrier, B; Samson, M; Tesnières, A; Fournier, J P; Braun, M

    2018-06-01

    Simulation-based learning (SBL) is developing rapidly in France and the question of its use in the teaching of internal medicine (IM) is essential. While HAS encourages its integration into medical education, French Young Internists (AJI) set up a working group to reflect on the added-value of this tool in our specialty. Different sorts of SBL exist: human, synthetic and electronic. It enables student to acquire and evaluate technical skills (strengths, invasive procedures, etc.) and non-technical skills (relational, reasoning…). The debriefing that follows the simulation session is an essential time in pedagogical terms. It enables the acquisition of knowledge by encouraging the students' reflection to reshape their reasoning patterns by self-correcting. IM interns are supportive of its use. The simulation would allow young internists to acquire skills specific to our specialty such as certain gestures, complex consulting management, the synthesis of difficult clinical cases. SBL remains confronted with human and financial cost issues. The budgets allocated to the development and maintenance of simulation centres are uneven, making the supply of training unequal on the territory. Simulation sessions are time-consuming and require teacher training. Are faculties ready to train and invest their time in simulation, even though the studies do not allow us to conclude on its pedagogical validity? Copyright © 2018 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  14. War and Peace in International Relations Theory: A Classroom Simulation

    ERIC Educational Resources Information Center

    Sears, Nathan Alexander

    2018-01-01

    Simulations are increasingly common pedagogical tools in political science and international relations courses. This article develops a classroom simulation that aims to facilitate students' theoretical understanding of the topic of war and peace in international relations, and accomplishes this by incorporating important theoretical concepts…

  15. Simulation and curriculum design: a global survey in dental education.

    PubMed

    Perry, S; Burrow, M F; Leung, W K; Bridges, S M

    2017-12-01

    Curriculum reforms are being driven by globalization and international standardization. Although new information technologies such as dental haptic virtual reality (VR) simulation systems have provided potential new possibilities for clinical learning in dental curricula, infusion into curricula requires careful planning. This study aimed to identify current patterns in the role and integration of simulation in dental degree curricula internationally. An original internet survey was distributed by invitation to clinical curriculum leaders in dental schools in Asia, Europe, North America, and Oceania (Australia and New Zealand). The results (N = 62) showed Asia, Europe and Oceania tended towards integrated curriculum designs with North America having a higher proportion of traditional curricula. North America had limited implementation of haptic VR simulation technology but reported the highest number of scheduled simulation hours. Australia and New Zealand were the most likely regions to incorporate haptic VR simulation technology. This survey indicated considerable variation in curriculum structure with regionally-specific preferences being evident in terms of curriculum structure, teaching philosophies and motivation for incorporation of VR haptic simulation into curricula. This study illustrates the need for an improved evidence base on dental simulations to inform curriculum designs and psychomotor skill learning in dentistry. © 2017 Australian Dental Association.

  16. Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chen, Z.; Valiya Parambathu, A.; Hirasaki, G. J.; Chapman, W. G.

    2018-04-01

    The role of internal motions and molecular geometry on 1H NMR relaxation rates in liquid-state hydrocarbons is investigated using MD (molecular dynamics) simulations of the autocorrelation functions for intramolecular and intermolecular 1H-1H dipole-dipole interactions. The effects of molecular geometry and internal motions on the functional form of the autocorrelation functions are studied by comparing symmetric molecules such as neopentane and benzene to corresponding straight-chain alkanes n-pentane and n-hexane, respectively. Comparison of rigid versus flexible molecules shows that internal motions cause the intramolecular and intermolecular correlation-times to get significantly shorter, and the corresponding relaxation rates to get significantly smaller, especially for longer-chain n-alkanes. Site-by-site simulations of 1H's across the chains indicate significant variations in correlation times and relaxation rates across the molecule, and comparison with measurements reveals insights into cross-relaxation effects. Furthermore, the simulations reveal new insights into the relative strength of intramolecular versus intermolecular relaxation as a function of internal motions, as a function of molecular geometry, and on a site-by-site basis across the chain.

  17. Sensitivity of summer ensembles of fledgling superparameterized U.S. mesoscale convective systems to cloud resolving model microphysics and grid configuration

    DOE PAGES

    Elliott, Elizabeth J.; Yu, Sungduk; Kooperman, Gabriel J.; ...

    2016-05-01

    The sensitivities of simulated mesoscale convective systems (MCSs) in the central U.S. to microphysics and grid configuration are evaluated here in a global climate model (GCM) that also permits global-scale feedbacks and variability. Since conventional GCMs do not simulate MCSs, studying their sensitivities in a global framework useful for climate change simulations has not previously been possible. To date, MCS sensitivity experiments have relied on controlled cloud resolving model (CRM) studies with limited domains, which avoid internal variability and neglect feedbacks between local convection and larger-scale dynamics. However, recent work with superparameterized (SP) GCMs has shown that eastward propagating MCS-likemore » events are captured when embedded CRMs replace convective parameterizations. This study uses a SP version of the Community Atmosphere Model version 5 (SP-CAM5) to evaluate MCS sensitivities, applying an objective empirical orthogonal function algorithm to identify MCS-like events, and harmonizing composite storms to account for seasonal and spatial heterogeneity. A five-summer control simulation is used to assess the magnitude of internal and interannual variability relative to 10 sensitivity experiments with varied CRM parameters, including ice fall speed, one-moment and two-moment microphysics, and grid spacing. MCS sensitivities were found to be subtle with respect to internal variability, and indicate that ensembles of over 100 storms may be necessary to detect robust differences in SP-GCMs. Furthermore, these results emphasize that the properties of MCSs can vary widely across individual events, and improving their representation in global simulations with significant internal variability may require comparison to long (multidecadal) time series of observed events rather than single season field campaigns.« less

  18. Simulation and evaluation of rupturable coated capsules by finite element method.

    PubMed

    Yang, Yan; Fang, Jie; Shen, Lian; Shan, Weiguang

    2017-03-15

    The objective of this study was to simulate and evaluate the burst behavior of rupturable coated capsules by finite element method (FEM). Film and coated capsules were prepared by dip-coating method and their dimensions were determined by stereomicroscope. Mechanical properties of the film were measured by tensile test and used as material properties of FEM models. Swelling pressure was determined by restrained expansion method and applied to the internal surface of FEM models. Water uptake of coated capsules was determined to study the formation of internal pressure. Burst test and in vitro dissolution was used to verify the FEM models, which were used to study and predict the coating burst behavior. Simulated results of coating burst behavior were well agreed with the experiment results. Swelling pressure, material properties and dimensions of coating had influence on the maximum stress. Burst pressure and critical L-HPC content were calculated for burst prediction and formulation optimization. FEM simulation was a feasible way to simulate and evaluate the burst behavior of coated capsules. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Modeling a flexible representation machinery of human concept learning.

    PubMed

    Matsuka, Toshihiko; Sakamoto, Yasuaki; Chouchourelou, Arieta

    2008-01-01

    It is widely acknowledged that categorically organized abstract knowledge plays a significant role in high-order human cognition. Yet, there are many unknown issues about the nature of how categories are internally represented in our mind. Traditionally, it has been considered that there is a single innate internal representation system for categorical knowledge, such as Exemplars, Prototypes, or Rules. However, results of recent empirical and computational studies collectively suggest that the human internal representation system is apparently capable of exhibiting behaviors consistent with various types of internal representation schemes. We, then, hypothesized that humans' representational system as a dynamic mechanism, capable of selecting a representation scheme that meets situational characteristics, including complexities of category structure. The present paper introduces a framework for a cognitive model that integrates robust and flexible internal representation machinery. Three simulation studies were conducted. The results showed that SUPERSET, our new model, successfully exhibited cognitive behaviors that are consistent with three main theories of the human internal representation system. Furthermore, a simulation study on social cognitive behaviors showed that the model was capable of acquiring knowledge with high commonality, even for a category structure with numerous valid conceptualizations.

  20. Studies on muon tomography for archaeological internal structures scanning

    NASA Astrophysics Data System (ADS)

    Gómez, H.; Carloganu, C.; Gibert, D.; Jacquemier, J.; Karyotakis, Y.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.

    2016-05-01

    Muon tomography is a potential non-invasive technique for internal structure scanning. It has already interesting applications in geophysics and can be used for archaeological purposes. Muon tomography is based on the measurement of the muon flux after crossing the structure studied. Differences on the mean density of these structures imply differences on the detected muon rate for a given direction. Based on this principle, Monte Carlo simulations represent a useful tool to provide a model of the expected muon rate and angular distribution depending on the composition of the studied object, being useful to estimate the expected detected muons and to better understand the experimental results. These simulations are mainly dependent on the geometry and composition of the studied object and on the modelling of the initial muon flux at surface. In this work, the potential of muon tomography in archaeology is presented and evaluated with Monte Carlo simulations by estimating the differences on the muon rate due to the presence of internal structures and its composition. The influence of the chosen muon model at surface in terms of energy and angular distributions in the final result has been also studied.

  1. International Trade and Protectionism.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Stanford Program on International and Cross Cultural Education.

    This unit is designed to investigate the reasons for international trade and the issue of trade protectionism by focusing on the case study of the U.S. trade relationship with Taiwan. The unit begins with a simulation that highlights the concepts of global interdependence, the need for international trade, and the distribution of the world's…

  2. Interplanetary Transit Simulations Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Arya, Maneesh

    2010-01-01

    It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.

  3. Impacts of climate change and internal climate variability on french rivers streamflows

    NASA Astrophysics Data System (ADS)

    Dayon, Gildas; Boé, Julien; Martin, Eric

    2016-04-01

    The assessment of the impacts of climate change often requires to set up long chains of modeling, from the model to estimate the future concentration of greenhouse gases to the impact model. Throughout the modeling chain, sources of uncertainty accumulate making the exploitation of results for the development of adaptation strategies difficult. It is proposed here to assess the impacts of climate change on the hydrological cycle over France and the associated uncertainties. The contribution of the uncertainties from greenhouse gases emission scenario, climate models and internal variability are addressed in this work. To have a large ensemble of climate simulations, the study is based on Global Climate Models (GCM) simulations from the Coupled Model Intercomparison Phase 5 (CMIP5), including several simulations from the same GCM to properly assess uncertainties from internal climate variability. Simulations from the four Radiative Concentration Pathway (RCP) are downscaled with a statistical method developed in a previous study (Dayon et al. 2015). The hydrological system Isba-Modcou is then driven by the downscaling results on a 8 km grid over France. Isba is a land surface model that calculates the energy and water balance and Modcou a hydrogeological model that routes the surface runoff given by Isba. Based on that framework, uncertainties uncertainties from greenhouse gases emission scenario, climate models and climate internal variability are evaluated. Their relative importance is described for the next decades and the end of this century. In a last part, uncertainties due to internal climate variability on streamflows simulated with downscaled GCM and Isba-Modcou are evaluated against observations and hydrological reconstructions on the whole 20th century. Hydrological reconstructions are based on the downscaling of recent atmospheric reanalyses of the 20th century and observations of temperature and precipitation. We show that the multi-decadal variability of streamflows observed in the 20th century is generally weaker in the hydrological simulations done with the historical simulations from climate models. References: Dayon et al. (2015), Transferability in the future climate of a statistical downscaling mehtod for precipitation in France, J. Geophys. Res. Atmos., 120, 1023-1043, doi:10.1002/2014JD022236

  4. Modeling of Passive Acoustic Liners from High Fidelity Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Ferrari, Marcello do Areal Souto

    Noise reduction in aviation has been an important focus of study in the last few decades. One common solution is setting up acoustic liners in the internal walls of the engines. However, measurements in the laboratory with liners are expensive and time consuming. The present work proposes a nonlinear physics-based time domain model to predict the acoustic behavior of a given liner in a defined flow condition. The parameters of the model are defined by analysis of accurate numerical solutions of the flow obtained from a high-fidelity numerical code. The length of the cavity is taken into account by using an analytical procedure to account for internal reflections in the interior of the cavity. Vortices and jets originated from internal flow separations are confirmed to be important mechanisms of sound absorption, which defines the overall efficiency of the liner. Numerical simulations at different frequency, geometry and sound pressure level are studied in detail to define the model parameters. Comparisons with high-fidelity numerical simulations show that the proposed model is accurate, robust, and can be used to define a boundary condition simulating a liner in a high-fidelity code.

  5. Working Performance Analysis of Rolling Bearings Used in Mining Electric Excavator Crowd Reducer

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Hou, G.; Chen, G.; Liang, J. F.; Zheng, Y. M.

    2017-12-01

    Refer to the statistical load data of digging process, on the basis of simulation analysis of crowd reducer system dynamics, the working performance simulation analysis of rolling bearings used in crowd reducer of large mining electric excavator is completed. The contents of simulation analysis include analysis of internal load distribution, rolling elements contact stresses and rolling bearing fatigue life. The internal load characteristics of rolling elements in cylindrical roller bearings are obtained. The results of this study identified that all rolling bearings satisfy the requirements of contact strength and fatigue life. The rationality of bearings selection and arrangement is also verified.

  6. Impact of internal variability on projections of Sahel precipitation change

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Sanchez-Gomez, Emilia; Pohl, Benjamin; Robson, Jon; Dong, Buwen

    2017-11-01

    The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920-2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variability of Sahel precipitation, and is representative of a CMIP5 ensemble of simulations (i.e. it simulates the same pattern of precipitation change along with equivalent magnitude and seasonal cycle changes as the CMIP5 ensemble mean). However, CESM1-CAM5 underestimates the long-term decadal variability in Sahel precipitation. For short-term (2010-2049) and mid-term (2030-2069) projections the simulated internal variability component is able to obscure the projected impact of the external forcing. For long-term (2060-2099) projections external forcing induced change becomes stronger than simulated internal variability. Precipitation changes are found to be more robust over the central Sahel than over the western Sahel, where climate change effects struggle to emerge. Ten (thirty) members are needed to separate the 10 year averaged forced response from climate internal variability response in the western Sahel for a long-term (short-term) horizon. Over the central Sahel two members (ten members) are needed for a long-term (short-term) horizon.

  7. Comparison of internal wave properties calculated by Boussinesq equations with/without rigid-lid assumption

    NASA Astrophysics Data System (ADS)

    Liu, C. M.

    2017-12-01

    Wave properties predicted by the rigid-lid and the free-surface Boussinesq equations for a two-fluid system are theoretically calculated and compared in this study. Boussinesq model is generally applied to numerically simulate surface waves in coastal regions to provide credible information for disaster prevention and breaker design. As for internal waves, Liu et al. (2008) and Liu (2016) respectively derived a free-surface model and a rigid-lid Boussinesq models for a two-fluid system. The former and the latter models respectively contain four and three key variables which may result in different results and efficiency while simulating. Therefore, present study shows the results theoretically measured by these two models to provide more detailed observation and useful information for motions of internal waves.

  8. The Guide to Simulation Games for Education and Training. Appendix: A Basic Reference Shelf on Simulation and Gaming by Paul A. Twelker.

    ERIC Educational Resources Information Center

    Zuckerman, David W.; Horn, Robert E.

    Simulation games are classed in this guide by subject area: business, domestic politics, economics, ecology, education, geography, history, international relations, psychology, skill development, sociology, social studies, and urban affairs. A summary description (of roles, objectives, decisions, and purposes), cost producer, playing data (age…

  9. Data Quality -- A Key to Successfully Implementing ECSS

    DTIC Science & Technology

    2009-03-01

    Inventory inaccuracy and supply chain performance: A simulation study of a retail supply chain. International Journal of Production Economics , 95...Planning (ERP) System Implementations Based on Critical Success Factors (CSFs). International Journal of Production Economics , 98(2), 189- 203. Tersine

  10. Vacuum Levels Needed to Simulate Internal Fatigue Crack Growth in Titanium Alloys and Nickel-Base Superalloys Thermaodynamic Conditioners (Preprint)

    DTIC Science & Technology

    2012-08-01

    AFRL-RX-WP-TP-2012-0412 VACUUM LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS...LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS: THERMAODYNAMIC CONSIDERATIONS (PREPRINT) 5a...have examined fatigue growth of surface cracks in vacuum to simulate sub-surface growth in Ti- alloys and Ni - base superalloys. Even with the highest

  11. Constructing International Relations Simulations: Examining the Pedagogy of IR Simulations through a Constructivist Learning Theory Lens

    ERIC Educational Resources Information Center

    Asal, Victor; Kratoville, Jayson

    2013-01-01

    Simulations are being used more and more in political science generally and in international relations specifically. While there is a growing body of literature describing different simulations and a small amount of literature that empirically tests the impact of simulations, scholars have written very little linking the pedagogic theory behind…

  12. A comparative study of internally and externally capped balloons using small scale test balloons

    NASA Technical Reports Server (NTRS)

    Bell, Douglas P.

    1994-01-01

    Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.

  13. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    PubMed

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  14. Integrating LMINET with TAAM and SIMMOD: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Long, Dou; Stouffer-Coston, Virginia; Kostiuk, Peter; Kula, Richard; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    LMINET is a queuing network air traffic simulation model implemented at 64 large airports and the entire National Airspace System in the United States. TAAM and SIMMOD are two widely used air traffic event-driven simulation models mostly for airports. Based on our proposed Progressive Augmented window approach, TAAM and SIMMOD are integrated with LMINET though flight schedules. In the integration, the flight schedules are modified through the flight delays reported by the other models. The benefit to the local simulation study is to let TAAM or SIMMOD take the modified schedule from LMINET, which takes into account of the air traffic congestion and flight delays at the national network level. We demonstrate the value of the integrated models by the case studies at Chicago O'Hare International Airport and Washington Dulles International Airport. Details of the integration are reported and future work for a full-blown integration is identified.

  15. A consensus-based framework for design, validation, and implementation of simulation-based training curricula in surgery.

    PubMed

    Zevin, Boris; Levy, Jeffrey S; Satava, Richard M; Grantcharov, Teodor P

    2012-10-01

    Simulation-based training can improve technical and nontechnical skills in surgery. To date, there is no consensus on the principles for design, validation, and implementation of a simulation-based surgical training curriculum. The aim of this study was to define such principles and formulate them into an interoperable framework using international expert consensus based on the Delphi method. Literature was reviewed, 4 international experts were queried, and consensus conference of national and international members of surgical societies was held to identify the items for the Delphi survey. Forty-five international experts in surgical education were invited to complete the online survey by ranking each item on a Likert scale from 1 to 5. Consensus was predefined as Cronbach's α ≥0.80. Items that 80% of experts ranked as ≥4 were included in the final framework. Twenty-four international experts with training in general surgery (n = 11), orthopaedic surgery (n = 2), obstetrics and gynecology (n = 3), urology (n = 1), plastic surgery (n = 1), pediatric surgery (n = 1), otolaryngology (n = 1), vascular surgery (n = 1), military (n = 1), and doctorate-level educators (n = 2) completed the iterative online Delphi survey. Consensus among participants was achieved after one round of the survey (Cronbach's α = 0.91). The final framework included predevelopment analysis; cognitive, psychomotor, and team-based training; curriculum validation evaluation and improvement; and maintenance of training. The Delphi methodology allowed for determination of international expert consensus on the principles for design, validation, and implementation of a simulation-based surgical training curriculum. These principles were formulated into a framework that can be used internationally across surgical specialties as a step-by-step guide for the development and validation of future simulation-based training curricula. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Transient in-plane thermal transport in nanofilms with internal heating

    PubMed Central

    Cao, Bing-Yang

    2016-01-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist. PMID:27118903

  17. Transient in-plane thermal transport in nanofilms with internal heating.

    PubMed

    Hua, Yu-Chao; Cao, Bing-Yang

    2016-02-01

    Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist.

  18. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeesh, G.; Steiner, O.; Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in themore » Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.« less

  19. The effects of alcohol at three simulated aircraft cabin conditions.

    DOT National Transportation Integrated Search

    1968-09-01

    In a study of 54 human subjects using three alcohol consumption levels and three simulated cabin conditions it was found that alcohol caused an increase in heart rate and an increase in skin temperature. Internal body temperature was lower with alcoh...

  20. The Internal Energy for Molecular Hydrogen in Gravitationally Unstable Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Hartquist, Thomas W.; Durisen, Richard H.; Michael, Scott

    2007-02-01

    The gas equation of state may be one of the critical factors for the disk instability theory of gas giant planet formation. This Letter addresses the treatment of H2 in hydrodynamic simulations of gravitationally unstable disks. In our discussion, we point out possible consequences of erroneous specific internal energy relations, approximate specific internal energy relations with discontinuities, and assumptions of constant Γ1. In addition, we consider whether the ortho/para ratio for H 2 in protoplanetary disks should be treated dynamically as if the species are in equilibrium. Preliminary simulations indicate that the correct treatment is particularly critical for the study of gravitational instability when T=30-50 K.

  1. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  2. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology.

    PubMed

    Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter

    2015-07-01

    To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  3. Internal friction and nonequilibrium unfolding of polymeric globules.

    PubMed

    Alexander-Katz, Alfredo; Wada, Hirofumi; Netz, Roland R

    2009-07-10

    The stretching response of a single collapsed homopolymer is studied using Brownian dynamic simulations. The irreversibly dissipated work is found to be dominated by internal friction effects below the collapse temperature, and the internal viscosity grows exponentially with the effective cohesive strength between monomers. These results explain friction effects of globular DNA and are relevant for dissipation at intermediate stages of protein folding.

  4. Nonlinear Internal Tide Generation at the Luzon Strait: Integrating Laboratory Data with Numerics and Observations

    DTIC Science & Technology

    2008-09-30

    Nonlinear Internal Tide Generation at the Luzon Strait: Integrating Laboratory Data with Numerics and...laboratory experimental techniques have greatly enhanced the ability to obtained detailed spatiotemporal data for internal waves in challenging regimes...a custom configured wave tank; and to integrate these results with data obtained from numerical simulations, theory and field studies. The principal

  5. Computational Modeling and Simulations of Bioparticle Internalization Through Clathrin-mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Deng, Hua; Dutta, Prashanta; Liu, Jin

    2016-11-01

    Clathrin-mediated endocytosis (CME) is one of the most important endocytic pathways for the internalization of bioparticles at lipid membrane of cells, which plays crucial roles in fundamental understanding of viral infections and interacellular/transcelluar targeted drug delivery. During CME, highly dynamic clathrin-coated pit (CCP), formed by the growth of ordered clathrin lattices, is the key scaffolding component that drives the deformation of plasma membrane. Experimental studies have shown that CCP alone can provide sufficient membrane curvature for facilitating membrane invagination. However, currently there is no computational model that could couple cargo receptor binding with membrane invagination process, nor simulations of the dynamic growing process of CCP. We develop a stochastic computational model for the clathrin-mediated endocytosis based on Metropolis Monte Carlo simulations. In our model, the energetic costs of bending membrane and CCP are linked with antigen-antibody interactions. The assembly of clathrin lattices is a dynamic process that correlates with antigen-antibody bond formation. This model helps study the membrane deformation and the effects of CCP during functionalized bioparticles internalization through CME. This work is supported by NSF Grants: CBET-1250107 and CBET-1604211.

  6. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves

  7. Numerical Simulation of Internal Waves in the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Mohanty, Sachiko; Devendra Rao, Ambarukhana

    2017-04-01

    The interactions of barotropic tides with irregular bottom topography generate internal waves with high amplitude known as large-amplitude internal waves (LAIW) in the Andaman Sea. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. These waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing, biogeochemical processes, etc. over the shelf-slope region. In the present study, energetics analysis of M2 internal tides over the Andaman Sea is carried out in detail by using a three-dimensional MIT general circulation ocean model (MITgcm). In-situ observations of temperature, conductivity and currents with high temporal resolution are used to validate the model simulations. From the spectral energy estimate of density, it is found that the peak estimate is associated with the semi-diurnal frequency at all the depths in both observations and model simulations. The baroclinic velocity characteristics, suggests that a multi-mode features of baroclinic tides are present at the buoy location. To understand the generation and propagation of internal tides over this region, energy flux and barotropic-to-baroclinic M2 tidal energy conversion rates are examined. The model simulation suggests that the internal tide is generated at multiple sites and propagate off of their respective generation sources. Most of the energy propagation in the Andaman Sea follows the 1000m isobath. The maximum horizontal kinetic energy follows the energy flux pattern over the domain and the available potential energy is found to be maximum in the north of the Andaman Sea.

  8. Advanced Computer Simulations of Military Incinerators

    DTIC Science & Technology

    2004-12-01

    Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in

  9. ESTIMATION OF EARLY INTERNAL DOSES TO FUKUSHIMA RESIDENTS AFTER THE NUCLEAR DISASTER BASED ON THE ATMOSPHERIC DISPERSION SIMULATION.

    PubMed

    Kim, Eunjoo; Tani, Kotaro; Kunishima, Naoaki; Kurihara, Osamu; Sakai, Kazuo; Akashi, Makoto

    2016-11-01

    Estimating the early internal doses to residents in the Fukushima Daiichi Nuclear Power Station accident is a difficult task because limited human/environmental measurement data are available. Hence, the feasibility of using atmospheric dispersion simulations created by the Worldwide version of System for Prediction of Environmental Emergency Dose Information 2nd Version (WSPEEDI-II) in the estimation was examined in the present study. This examination was done by comparing the internal doses evaluated based on the human measurements with those calculated using time series air concentration maps ( 131 I and 137 Cs) generated by WSPEEDI-II. The results showed that the latter doses were several times higher than the former doses. However, this discrepancy could be minimised by taking into account personal behaviour data that will be available soon. This article also presents the development of a prototype system for estimating the internal dose based on the simulations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Simulation in the Teaching of International Politics.

    ERIC Educational Resources Information Center

    Sorenson, David S.

    Following a brief history of the development of simulation as a research and teaching tool in the field of international politics, three specific simulations are examined in more depth. (1) Conflict in the Middle East: A Public Policy Simulation is intended to acquaint students with the political situation in that area and to help them understand…

  11. The time-frequency method of signal analysis in internal combustion engine diagnostics

    NASA Astrophysics Data System (ADS)

    Avramchuk, V. S.; Kazmin, V. P.; Faerman, V. A.; Le, V. T.

    2017-01-01

    The paper presents the results of the study of applicability of time-frequency correlation functions to solving the problems of internal combustion engine fault diagnostics. The proposed methods are theoretically justified and experimentally tested. In particular, the method’s applicability is illustrated by the example of specially generated signals that simulate the vibration of an engine both during the normal operation and in the case of a malfunction in the system supplying fuel to the cylinders. This method was confirmed during an experiment with an automobile internal combustion engine. The study offers the main findings of the simulation and the experiment and highlights certain characteristic features of time-frequency autocorrelation functions that allow one to identify malfunctions in an engine’s cylinder. The possibility in principle of using time-frequency correlation functions in function testing of the internal combustion engine is demonstrated. The paper’s conclusion proposes further research directions including the application of the method to diagnosing automobile gearboxes.

  12. Estimation of state and material properties during heat-curing molding of composite materials using data assimilation: A numerical study.

    PubMed

    Matsuzaki, Ryosuke; Tachikawa, Takeshi; Ishizuka, Junya

    2018-03-01

    Accurate simulations of carbon fiber-reinforced plastic (CFRP) molding are vital for the development of high-quality products. However, such simulations are challenging and previous attempts to improve the accuracy of simulations by incorporating the data acquired from mold monitoring have not been completely successful. Therefore, in the present study, we developed a method to accurately predict various CFRP thermoset molding characteristics based on data assimilation, a process that combines theoretical and experimental values. The degree of cure as well as temperature and thermal conductivity distributions during the molding process were estimated using both temperature data and numerical simulations. An initial numerical experiment demonstrated that the internal mold state could be determined solely from the surface temperature values. A subsequent numerical experiment to validate this method showed that estimations based on surface temperatures were highly accurate in the case of degree of cure and internal temperature, although predictions of thermal conductivity were more difficult.

  13. Influence of internal viscoelastic modes on the Brownian motion of a λ-DNA coated colloid.

    PubMed

    Yanagishima, Taiki; Laohakunakorn, Nadanai; Keyser, Ulrich F; Eiser, Erika; Tanaka, Hajime

    2014-03-21

    We study the influence of grafted polymers on the diffusive behaviour of a colloidal particle. Our work demonstrates how such additional degrees of freedom influence the Brownian motion of the particle, focusing on internal viscoelastic coupling between the polymer and colloid. Specifically, we study the mean-squared displacements (MSDs) of λ-DNA grafted colloids using Brownian dynamics simulation. Our simulations reveal the non-trivial effect of internal modes, which gives rise to a crossover from the short-time viscoelastic to long-time diffusional behaviour. We also show that basic features can be captured by a simple theoretical model considering the relative motion of a colloid to a part of the polymer corona. This model describes well a MSD calculated from an extremely long trajectory of a single λ-DNA coated colloid from experiment and allows characterisation of the λ-DNA hairs. Our study suggests that the access to the internal relaxation modes via the colloid trajectory offers a novel method for the characterisation of soft attachments to a colloid.

  14. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments.

    PubMed

    Fang, Juan; Gong, He; Kong, Lingyan; Zhu, Dong

    2013-12-20

    Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis.

  15. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments

    PubMed Central

    2013-01-01

    Background Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. Methods The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. Results The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. Conclusions It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis. PMID:24359345

  16. "Unexpected" behaviour of the internal resistance of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Rudolph, S.; Schröder, U.; Bayanov, I. M.; Hage-Packhäuser, S.

    2016-02-01

    This article presents the results of experimental and theoretical studies of energy losses owing to the internal resistance of vanadium redox flow batteries (VRFBs). A dependence of the internal cell resistance (ICR) on the electric current was measured and calculated. During the cyclic operation of a test battery, the internal resistance was halved by increasing the electric current from 3 A to 9 A. This is due to a strongly non-linear dependence of an over-potential of the electrochemical reactions on the current density. However, the energy efficiency does not increase due to a squared dependence of the energy losses on the increasing electric current. The energy efficiency of the test battery versus the electric current was measured and simulated. The deviation between the simulation results and experimental data is less than ±3.5%.

  17. Decadal predictions of Southern Ocean sea ice : testing different initialization methods with an Earth-system Model of Intermediate Complexity

    NASA Astrophysics Data System (ADS)

    Zunz, Violette; Goosse, Hugues; Dubinkina, Svetlana

    2013-04-01

    The sea ice extent in the Southern Ocean has increased since 1979 but the causes of this expansion have not been firmly identified. In particular, the contribution of internal variability and external forcing to this positive trend has not been fully established. In this region, the lack of observations and the overestimation of internal variability of the sea ice by contemporary General Circulation Models (GCMs) make it difficult to understand the behaviour of the sea ice. Nevertheless, if its evolution is governed by the internal variability of the system and if this internal variability is in some way predictable, a suitable initialization method should lead to simulations results that better fit the reality. Current GCMs decadal predictions are generally initialized through a nudging towards some observed fields. This relatively simple method does not seem to be appropriated to the initialization of sea ice in the Southern Ocean. The present study aims at identifying an initialization method that could improve the quality of the predictions of Southern Ocean sea ice at decadal timescales. We use LOVECLIM, an Earth-system Model of Intermediate Complexity that allows us to perform, within a reasonable computational time, the large amount of simulations required to test systematically different initialization procedures. These involve three data assimilation methods: a nudging, a particle filter and an efficient particle filter. In a first step, simulations are performed in an idealized framework, i.e. data from a reference simulation of LOVECLIM are used instead of observations, herein after called pseudo-observations. In this configuration, the internal variability of the model obviously agrees with the one of the pseudo-observations. This allows us to get rid of the issues related to the overestimation of the internal variability by models compared to the observed one. This way, we can work out a suitable methodology to assess the efficiency of the initialization procedures tested. It also allows us determine the upper limit of improvement that can be expected if more sophisticated initialization methods are used in decadal prediction simulations and if models have an internal variability agreeing with the observed one. Furthermore, since pseudo-observations are available everywhere at any time step, we also analyse the differences between simulations initialized with a complete dataset of pseudo-observations and the ones for which pseudo-observations data are not assimilated everywhere. In a second step, simulations are realized in a realistic framework, i.e. through the use of actual available observations. The same data assimilation methods are tested in order to check if more sophisticated methods can improve the reliability and the accuracy of decadal prediction simulations, even if they are performed with models that overestimate the internal variability of the sea ice extent in the Southern Ocean.

  18. Capacity Loss Studies on High Capacity Li-ion Cells for the Orbiter Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Irlbeck, Bradley W.

    2004-01-01

    Contents include the following: Introduction. Physical and electrochemical characteristics. Performance evaluation. Rate performance. Internal resistance. Performance at different temperatures. Safety evaluation. Overcharge. Overdischarge. External short. Simulated internal short. Heat-to-vent. Vibration. Drop rest. Vent and burst pressure.

  19. Single lump breast surface stress assessment study

    NASA Astrophysics Data System (ADS)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Paitong, P.; Alcain, J. B.; Lai, S. L.; Retnasamy, V.

    2017-09-01

    Breast cancer is one of the commonest cancers diagnosed among women around the world. Simulation approach has been utilized to study, characterize and improvise detection methods for breast cancer. However, minimal simulation work has been done to evaluate the surface stress of the breast with lumps. Thus, in this work, simulation analysis was utilized to evaluate and assess the breast surface stress due to the presence of a lump within the internal structure of the breast. The simulation was conducted using the Elmer software. Simulation results have confirmed that the presence of a lump within the breast causes stress on the skin surface of the breast.

  20. Modeling initial contact dynamics during ambulation with dynamic simulation.

    PubMed

    Meyer, Andrew R; Wang, Mei; Smith, Peter A; Harris, Gerald F

    2007-04-01

    Ankle-foot orthoses are frequently used interventions to correct pathological gait. Their effects on the kinematics and kinetics of the proximal joints are of great interest when prescribing ankle-foot orthoses to specific patient groups. Mathematical Dynamic Model (MADYMO) is developed to simulate motor vehicle crash situations and analyze tissue injuries of the occupants based multibody dynamic theories. Joint kinetics output from an inverse model were perturbed and input to the forward model to examine the effects of changes in the internal sagittal ankle moment on knee and hip kinematics following heel strike. Increasing the internal ankle moment (augmentation, equivalent to gastroc-soleus contraction) produced less pronounced changes in kinematic results at the hip, knee and ankle than decreasing the moment (attenuation, equivalent to gastroc-soleus relaxation). Altering the internal ankle moment produced two distinctly different kinematic curve morphologies at the hip. Decreased internal ankle moments increased hip flexion, peaking at roughly 8% of the gait cycle. Increasing internal ankle moments decreased hip flexion to a lesser degree, and approached normal at the same point in the gait cycle. Increasing the internal ankle moment produced relatively small, well-behaved extension-biased kinematic results at the knee. Decreasing the internal ankle moment produced more substantial changes in knee kinematics towards flexion that increased with perturbation magnitude. Curve morphologies were similar to those at the hip. Immediately following heel strike, kinematic results at the ankle showed movement in the direction of the internal moment perturbation. Increased internal moments resulted in kinematic patterns that rapidly approach normal after initial differences. When the internal ankle moment was decreased, differences from normal were much greater and did not rapidly decrease. This study shows that MADYMO can be successfully applied to accomplish forward dynamic simulations, given kinetic inputs. Future applications include predicting muscle forces and decomposing external kinetics.

  1. Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics

    PubMed Central

    2015-01-01

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406

  2. Does internal variability change in response to global warming? A large ensemble modelling study of tropical rainfall

    NASA Astrophysics Data System (ADS)

    Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.

    2017-12-01

    There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.

  3. Interplanetary Transit Simulations Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Arya, M.; Kundrot, C. E.

    2010-01-01

    We evaluated the space life sciences utility of the International Space Station (ISS) to simulate the outbound transit portion of missions to Mars and Near Earth Asteroids (NEA) to investigate biomedical and psychological aspects of such transits, to develop and test space operation procedures compatible with communication delays and outages, and to demonstrate and validate technologies and countermeasures. Two major categories of space life sciences activities can capitalize on ISS capabilities. The first includes studies that require ISS (or a comparable facility), typically for access to prolonged weightlessness. The second includes studies that do not strictly require ISS but can exploit it to maximize their scientific return more efficiently and productively than in ground-based simulations. For these studies, ISS offers a high fidelity analog for fundamental factors on future missions, such as crew composition, mission control personnel, operational tasks and workload, real-world risk, and isolation, and can mimic the effects of distance and limited accessibility. In addition to conducting Mars- and NEA-transit simulations on 6-month ISS increments, extending the current ISS increment duration from 6 months to 9 or even 12 months will provide opportunities for enhanced and focused research relevant to long duration Mars and NEA missions. Increasing the crew duration may pose little additional risk to crewmembers beyond that currently accepted on 6-month increments, but additional medical monitoring capabilities will be required beyond those currently used for ISS operations. Finally, while presenting major logistical challenges, such a simulation followed by a post-landing simulation of Mars exploration could provide quantitative evidence of capabilities in an actual mission. Thus, the use of ISS to simulate aspects of Mars and NEA missions seems practical. If it were to be implemented without major disruption of on-going ISS activities, then planning should begin soon, in close consultation with all international partners.

  4. NAO and its relationship with the Northern Hemisphere mean surface temperature in CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofan; Li, Jianping; Sun, Cheng; Liu, Ting

    2017-04-01

    The North Atlantic Oscillation (NAO) is one of the most prominent teleconnection patterns in the Northern Hemisphere and has recently been found to be both an internal source and useful predictor of the multidecadal variability of the Northern Hemisphere mean surface temperature (NHT). In this study, we examine how well the variability of the NAO and NHT are reproduced in historical simulations generated by the 40 models that constitute Phase 5 of the Coupled Model Intercomparison Project (CMIP5). All of the models are able to capture the basic characteristics of the interannual NAO pattern reasonably well, whereas the simulated decadal NAO patterns show less consistency with the observations. The NAO fluctuations over multidecadal time scales are underestimated by almost all models. Regarding the NHT multidecadal variability, the models generally represent the externally forced variations well but tend to underestimate the internal NHT. With respect to the performance of the models in reproducing the NAO-NHT relationship, 14 models capture the observed decadal lead of the NAO, and model discrepancies in the representation of this linkage are derived mainly from their different interpretation of the underlying physical processes associated with the Atlantic Multidecadal Oscillation (AMO) and the Atlantic meridional overturning circulation (AMOC). This study suggests that one way to improve the simulation of the multidecadal variability of the internal NHT lies in better simulation of the multidecadal variability of the NAO and its delayed effect on the NHT variability via slow ocean processes.

  5. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations

    PubMed Central

    Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E.; Schuler, Benjamin

    2017-01-01

    Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques. PMID:28223518

  6. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations.

    PubMed

    Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E; Schuler, Benjamin

    2017-03-07

    Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques.

  7. Using simulators to teach pediatric airway procedures in an international setting.

    PubMed

    Schwartz, Marissa A; Kavanagh, Katherine R; Frampton, Steven J; Bruce, Iain A; Valdez, Tulio A

    2018-01-01

    There has been a growing shift towards endoscopic management of laryngeal procedures in pediatric otolaryngology. There still appears to be a shortage of pediatric otolaryngology programs and children's hospitals worldwide where physicians can learn and practice these skills. Laryngeal simulation models have the potential to be part of the educational training of physicians who lack exposure to relatively uncommon pediatric otolaryngologic pathology. The objective of this study was to assess the utility of pediatric laryngeal models to teach laryngeal pathology to physicians at an international meeting. Pediatric laryngeal models were assessed by participants at an international pediatric otolaryngology meeting. Participants provided demographic information and previous experience with pediatric airways. Participants then performed simulated surgery on these models and evaluated them using both a previously validated Tissue Likeness Scale and a pre-simulation to post-simulation confidence scale. Participants reported significant subjective improvement in confidence level after use of the simulation models (p < 0.05). Participants reported realistic representations of human anatomy and pathology. The models' tissue mechanics were adequate to practice operative technique including the ability to incise, suture, and suspend models. The pediatric laryngeal models demonstrate high quality anatomy, which is easy manipulated with surgical instruments. These models allow both trainees and surgeons to practice time-sensitive airway surgeries in a safe and controlled environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Perceived change in orientation from optic flow in the central visual field

    NASA Technical Reports Server (NTRS)

    Dyre, Brian P.; Andersen, George J.

    1988-01-01

    The effects of internal depth within a simulation display on perceived changes in orientation have been studied. Subjects monocularly viewed displays simulating observer motion within a volume of randomly positioned points through a window which limited the field of view to 15 deg. Changes in perceived spatial orientation were measured by changes in posture. The extent of internal depth within the display, the presence or absence of visual information specifying change in orientation, and the frequency of motion supplied by the display were examined. It was found that increased sway occurred at frequencies equal to or below 0.375 Hz when motion at these frequencies was displayed. The extent of internal depth had no effect on the perception of changing orientation.

  9. Speaking with a Commonality Language: A Lexicon for System and Component Development

    DTIC Science & Technology

    2007-01-01

    Abdullahil Azeem, “Impact of Commonality and Flexibility on Manufacturing Performance: A Simulation Study,” International Journal of Production Economics , Vols...Cycle Costs of Products,” International Journal of Production Economics , Vols. 60–61, April 1999, pp. 109–116. Robertson, David, and Karl Ulrich

  10. Space-Time Analysis of the Air Quality Model Evaluation International Initiative (AQMEII) Phase 1 Air Quality Simulations

    EPA Science Inventory

    This study presents an evaluation of summertime daily maximum ozone concentrations over North America (NA) and Europe (EU) using the database generated during Phase 1 of the Air Quality Model Evaluation International Initiative (AQMEII). The analysis focuses on identifying tempor...

  11. WRF/CMAQ AQMEII3 Simulations of U.S. Regional-Scale Ozone: Sensitivity to Processes and Inputs

    EPA Science Inventory

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, performed during the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), we perform annual simulations over North America with chemical boundary con...

  12. Validation of a model to investigate the effects of modifying cardiovascular disease (CVD) risk factors on the burden of CVD: the rotterdam ischemic heart disease and stroke computer simulation (RISC) model.

    PubMed

    van Kempen, Bob J H; Ferket, Bart S; Hofman, Albert; Steyerberg, Ewout W; Colkesen, Ersen B; Boekholdt, S Matthijs; Wareham, Nicholas J; Khaw, Kay-Tee; Hunink, M G Myriam

    2012-12-06

    We developed a Monte Carlo Markov model designed to investigate the effects of modifying cardiovascular disease (CVD) risk factors on the burden of CVD. Internal, predictive, and external validity of the model have not yet been established. The Rotterdam Ischemic Heart Disease and Stroke Computer Simulation (RISC) model was developed using data covering 5 years of follow-up from the Rotterdam Study. To prove 1) internal and 2) predictive validity, the incidences of coronary heart disease (CHD), stroke, CVD death, and non-CVD death simulated by the model over a 13-year period were compared with those recorded for 3,478 participants in the Rotterdam Study with at least 13 years of follow-up. 3) External validity was verified using 10 years of follow-up data from the European Prospective Investigation of Cancer (EPIC)-Norfolk study of 25,492 participants, for whom CVD and non-CVD mortality was compared. At year 5, the observed incidences (with simulated incidences in brackets) of CHD, stroke, and CVD and non-CVD mortality for the 3,478 Rotterdam Study participants were 5.30% (4.68%), 3.60% (3.23%), 4.70% (4.80%), and 7.50% (7.96%), respectively. At year 13, these percentages were 10.60% (10.91%), 9.90% (9.13%), 14.20% (15.12%), and 24.30% (23.42%). After recalibrating the model for the EPIC-Norfolk population, the 10-year observed (simulated) incidences of CVD and non-CVD mortality were 3.70% (4.95%) and 6.50% (6.29%). All observed incidences fell well within the 95% credibility intervals of the simulated incidences. We have confirmed the internal, predictive, and external validity of the RISC model. These findings provide a basis for analyzing the effects of modifying cardiovascular disease risk factors on the burden of CVD with the RISC model.

  13. Internal Wave Generation by Convection

    NASA Astrophysics Data System (ADS)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the internal gravity wave spectrum, using the Lighthill theory of wave excitation by turbulence. We use a Green's function approach, in which we convolve a convective source term with the Green's function of different internal gravity waves. The remainder of the thesis is a circuitous attempt to verify these analytical predictions. I test the predictions of Chapter 2 via numerical simulation. The first step is to identify a code suitable for this study. I helped develop the Dedalus code framework to study internal wave generation by convection. Dedalus can solve many different partial differential equations using the pseudo-spectral numerical method. In Chapter 3, I demonstrate Dedalus' ability to solve different equations used to model convection in astrophysics. I consider both the propagation and damping of internal waves, and the properties of low Rayleigh number convective steady states, in six different equation sets used in the astrophysics literature. This shows that Dedalus can be used to solve the equations of interest. Next, in Chapter 4, I verify the high accuracy of Dedalus by comparing it to the popular astrophysics code Athena in a standard Kelvin-Helmholtz instability test problem. Dedalus performs admirably in comparison to Athena, and provides a high standard for other codes solving the fully compressible Navier-Stokes equations. Chapter 5 demonstrates that Dedalus can simulate convective adjacent to a stably stratified region, by studying convective mixing near carbon flames. The convective overshoot and mixing is well-resolved, and is able to generate internal waves. Confident in Dedalus' ability to study the problem at hand, Chapter 6 describes simulations inspired by water experiments of internal wave generation by convection. The experiments exploit water's unusual property that its density maximum is at 4°C, rather than at 0°C. We use a similar equation of state in Dedalus, and study internal gravity waves generation by convection in a water-like fluid. We test two models of wave generation: bulk excitation (equivalent to the Lighthill theory described in Chapter 2), and surface excitation. We find the bulk excitation model accurately reproduces the waves generated in the simulations, validating the calculations of Chapter 2.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Norman A.; /SLAC

    Maximizing the physics performance of detectors being designed for the International Linear Collider, while remaining sensitive to cost constraints, requires a powerful, efficient, and flexible simulation, reconstruction and analysis environment to study the capabilities of a large number of different detector designs. The preparation of Letters Of Intent for the International Linear Collider involved the detailed study of dozens of detector options, layouts and readout technologies; the final physics benchmarking studies required the reconstruction and analysis of hundreds of millions of events. We describe the Java-based software toolkit (org.lcsim) which was used for full event reconstruction and analysis. The componentsmore » are fully modular and are available for tasks from digitization of tracking detector signals through to cluster finding, pattern recognition, track-fitting, calorimeter clustering, individual particle reconstruction, jet-finding, and analysis. The detector is defined by the same xml input files used for the detector response simulation, ensuring the simulation and reconstruction geometries are always commensurate by construction. We discuss the architecture as well as the performance.« less

  15. A Demonstration of Delay and Constructive Modeling Effects in Distributed Interactive Simulation.

    DTIC Science & Technology

    1998-02-01

    with the Armstrong Laboratory Design Technology Branch, Veda Incorporated, and Science Applications International Corporation (SAIC). SAIC was working...The authors express special thanks to Mr. Dave O’Quinn of Veda Incorporated who provided quality simulation engineering support, and to Mr. David...platform employed in the study was the Engineering Design Simulator (EDSM) shown in Figure 3. Developed by Veda Inc., the EDSM is a single-seat

  16. Predicting absorption and dispersion in acoustics by direct simulation Monte Carlo: Quantum and classical models for molecular relaxation.

    PubMed

    Hanford, Amanda D; O'Connor, Patrick D; Anderson, James B; Long, Lyle N

    2008-06-01

    In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.

  17. Study of Natural Fiber Breakage during Composite Processing

    NASA Astrophysics Data System (ADS)

    Quijano-Solis, Carlos Jafet

    Biofiber-thermoplastic composites have gained considerable importance in the last century. To provide mechanical reinforcement to the polymer, fibers must be larger than a critical aspect ratio (length-to-width ratio). However, biofibers undergo breakage in length or width during processing, affecting their final aspect ratio in the composites. In this study, influence on biofiber breakage by factors related to processing conditions, fiber morphology and the flow type was investigated through: a) experiments using an internal mixer, a twin-screw extruder (TSE) or a capillary rheometer; and b) a Monte Carlo computer simulation. Composites of thermomechanical fibers of aspen or wheat straw mixed with polypropylene were studied. Internal mixer experiments analyzed wheat straw and two batches of aspen fibers, named AL and AS. AL fibers had longer average length. Processing variables included the temperature, rotors speed and fiber concentration. TSE experiments studied AL and AS fiber composites under various screws speeds, temperatures and feeding rates of the polymer and fibers. Capillary rheometers experiments determined AL fiber breakage in shear and elongational flows for composites processed at different concentrations, temperatures, and strain rates. Finally, the internal mixer experimental results where compared to Monte Carlo simulation predictions. The simulation focused on fiber length breakage due to fiber-polymer interactions. Internal mixer results showed that final fiber average length depended almost solely on processing conditions while final fiber average width depended on both processing conditions and initial fiber morphology. In the TSE, processing conditions as well as initial fiber length influenced final average length. TSE results showed that the fiber concentration regime seems to influence the effect of processing variables on fiber breakage. Capillary rheometer experiments demonstrated that biofiber breakage happens in both elongational and shear flows. In some cases, percentage of biofiber breakage in elongational flow is higher. In general, simulation predictions of final average lengths were in good agreement with experiments, indicating the importance of fiber-polymer interactions on fiber breakage. The largest discrepancies were obtained at higher fiber concentration composites; these differences might be resolved, in future simulations, by including the effect of fiber-fiber interactions.

  18. Design and Implementation of a Simulation-Based Learning System for International Trade

    ERIC Educational Resources Information Center

    Luo, Guo-Heng; Liu, Eric Zhi-Feng; Kuo, Hung-Wei; Yuan, Shyan-Ming

    2014-01-01

    In the traditional instructional method used in international trade, teachers provide knowledge to learners by lecturing using slides and setting assignments; however, these methods merely deliver international trade knowledge rather than facilitating student development of relevant skills. To solve these problems, we proposed a simulation-based…

  19. Laparoscopic Skills Are Improved With LapMentor™ Training

    PubMed Central

    Andreatta, Pamela B.; Woodrum, Derek T.; Birkmeyer, John D.; Yellamanchilli, Rajani K.; Doherty, Gerard M.; Gauger, Paul G.; Minter, Rebecca M.

    2006-01-01

    Objective: To determine if prior training on the LapMentor™ laparoscopic simulator leads to improved performance of basic laparoscopic skills in the animate operating room environment. Summary Background Data: Numerous influences have led to the development of computer-aided laparoscopic simulators: a need for greater efficiency in training, the unique and complex nature of laparoscopic surgery, and the increasing demand that surgeons demonstrate competence before proceeding to the operating room. The LapMentor™ simulator is expensive, however, and its use must be validated and justified prior to implementation into surgical training programs. Methods: Nineteen surgical interns were randomized to training on the LapMentor™ laparoscopic simulator (n = 10) or to a control group (no simulator training, n = 9). Subjects randomized to the LapMentor™ trained to expert criterion levels 2 consecutive times on 6 designated basic skills modules. All subjects then completed a series of laparoscopic exercises in a live porcine model, and performance was assessed independently by 2 blinded reviewers. Time, accuracy rates, and global assessments of performance were recorded with an interrater reliability between reviewers of 0.99. Results: LapMentor™ trained interns completed the 30° camera navigation exercise in significantly less time than control interns (166 ± 52 vs. 220 ± 39 seconds, P < 0.05); they also achieved higher accuracy rates in identifying the required objects with the laparoscope (96% ± 8% vs. 82% ± 15%, P < 0.05). Similarly, on the two-handed object transfer exercise, task completion time for LapMentor™ trained versus control interns was 130 ± 23 versus 184 ± 43 seconds (P < 0.01) with an accuracy rate of 98% ± 5% versus 80% ± 13% (P < 0.001). Additionally, LapMentor™ trained interns outperformed control subjects with regard to camera navigation skills, efficiency of motion, optimal instrument handling, perceptual ability, and performance of safe electrocautery. Conclusions: This study demonstrates that prior training on the LapMentor™ laparoscopic simulator leads to improved resident performance of basic skills in the animate operating room environment. This work marks the first prospective, randomized evaluation of the LapMentor™ simulator, and provides evidence that LapMentor™ training may lead to improved operating room performance. PMID:16772789

  20. Estimation of ligament strains and joint moments in the ankle during a supination sprain injury.

    PubMed

    Wei, Feng; Fong, Daniel Tik-Pui; Chan, Kai-Ming; Haut, Roger C

    2015-01-01

    This study presents the ankle ligament strains and ankle joint moments during an accidental injury event diagnosed as a grade I anterior talofibular ligament (ATaFL) sprain. A male athlete accidentally sprained his ankle while performing a cutting motion in a laboratory setting. The kinematic data were input to a three-dimensional rigid-body foot model for simulation analyses. Maximum strains in 20 ligaments were evaluated in simulations that investigated various combinations of the reported ankle joint motions. Temporal strains in the ATaFL and the calcaneofibular ligament (CaFL) were then compared and the three-dimensional ankle joint moments were evaluated from the model. The ATaFL and CaFL were highly strained when the inversion motion was simulated (10% for ATaFL and 12% for CaFL). These ligament strains were increased significantly when either or both plantarflexion and internal rotation motions were added in a temporal fashion (up to 20% for ATaFL and 16% for CaFL). Interestingly, at the time strain peaked in the ATaFL, the plantarflexion angle was not large but apparently important. This computational simulation study suggested that an inversion moment of approximately 23 N m plus an internal rotation moment of approximately 11 N m and a small plantarflexion moment may have generated a strain of 15-20% in the ATaFL to produce a grade I ligament injury in the athlete's ankle. This injury simulation study exhibited the potentially important roles of plantarflexion and internal rotation, when combined with a large inversion motion, to produce a grade I ATaFL injury in the ankle of this athlete.

  1. Simulated Seasonal Spatio-Temporal Patterns of Soil Moisture, Temperature, and Net Radiation in a Deciduous Forest

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.

    2011-01-01

    The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.

  2. Simulation of the Interaction Between Flywheel Energy Storage and Battery Energy Storage on the International Space Station

    NASA Technical Reports Server (NTRS)

    Trouong, Long V.; Wolff, Frederic J.; Dravid, Narayan V.; Li, Ponlee

    2000-01-01

    Replacement of one module of the battery charge discharge unit (BCDU) of the International Space Station (ISS) by a flywheel energy storage unit (FESU) is under consideration. Integration of these two dissimilar systems is likely to surface difficulties in areas of system stability and fault protection. Other issues that need to be addressed include flywheel charge and discharge profiles and their effect on the ISS power system as well as filter sizing for power Ability purposes. This paper describes a SABER based simulation to study these issues.

  3. Risk of Anterior Cruciate Ligament Fatigue Failure Is Increased by Limited Internal Femoral Rotation During In Vitro Repeated Pivot Landings

    PubMed Central

    Beaulieu, Mélanie L.; Wojtys, Edward M.; Ashton-Miller, James A.

    2015-01-01

    Background A reduced range of hip internal rotation is associated with increased peak anterior cruciate ligament (ACL) strain and risk for injury. It is unknown, however, whether limiting the available range of internal femoral rotation increases the susceptibility of the ACL to fatigue failure. Hypothesis Risk of ACL failure is significantly greater in female knee specimens with a limited range of internal femoral rotation, smaller femoral-ACL attachment angle, and smaller tibial eminence volume during repeated in vitro simulated single-leg pivot landings. Study Design Controlled laboratory study. Methods A custom-built testing apparatus was used to simulate repeated single-leg pivot landings with a 4×-body weight impulsive load that induces knee compression, knee flexion, and internal tibial torque in 32 paired human knee specimens from 8 male and 8 female donors. These test loads were applied to each pair of specimens, in one knee with limited internal femoral rotation and in the contralateral knee with femoral rotation resisted by 2 springs to simulate the active hip rotator muscles’ resistance to stretch. The landings were repeated until ACL failure occurred or until a minimum of 100 trials were executed. The angle at which the ACL originates from the femur and the tibial eminence volume were measured on magnetic resonance images. Results The final Cox regression model (P = .024) revealed that range of internal femoral rotation and sex of donor were significant factors in determining risk of ACL fatigue failure. The specimens with limited range of internal femoral rotation had a failure risk 17.1 times higher than did the specimens with free rotation (P = .016). The female knee specimens had a risk of ACL failure 26.9 times higher than the male specimens (P = .055). Conclusion Limiting the range of internal femoral rotation during repetitive pivot landings increases the risk of an ACL fatigue failure in comparison with free rotation in a cadaveric model. Clinical Relevance Screening for restricted internal rotation at the hip in ACL injury prevention programs as well as in individuals with ACL injuries and/or reconstructions is warranted. PMID:26122384

  4. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.

    PubMed

    Zamaninezhad, Ladan; Hohmann, Volker; Büchner, Andreas; Schädler, Marc René; Jürgens, Tim

    2017-02-01

    This study introduces a speech intelligibility model for cochlear implant users with ipsilateral preserved acoustic hearing that aims at simulating the observed speech-in-noise intelligibility benefit when receiving simultaneous electric and acoustic stimulation (EA-benefit). The model simulates the auditory nerve spiking in response to electric and/or acoustic stimulation. The temporally and spatially integrated spiking patterns were used as the final internal representation of noisy speech. Speech reception thresholds (SRTs) in stationary noise were predicted for a sentence test using an automatic speech recognition framework. The model was employed to systematically investigate the effect of three physiologically relevant model factors on simulated SRTs: (1) the spatial spread of the electric field which co-varies with the number of electrically stimulated auditory nerves, (2) the "internal" noise simulating the deprivation of auditory system, and (3) the upper bound frequency limit of acoustic hearing. The model results show that the simulated SRTs increase monotonically with increasing spatial spread for fixed internal noise, and also increase with increasing the internal noise strength for a fixed spatial spread. The predicted EA-benefit does not follow such a systematic trend and depends on the specific combination of the model parameters. Beyond 300 Hz, the upper bound limit for preserved acoustic hearing is less influential on speech intelligibility of EA-listeners in stationary noise. The proposed model-predicted EA-benefits are within the range of EA-benefits shown by 18 out of 21 actual cochlear implant listeners with preserved acoustic hearing. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dynamic Simulation and Static Matching for Action Prediction: Evidence from Body Part Priming

    ERIC Educational Resources Information Center

    Springer, Anne; Brandstadter, Simone; Prinz, Wolfgang

    2013-01-01

    Accurately predicting other people's actions may involve two processes: internal real-time simulation (dynamic updating) and matching recently perceived action images (static matching). Using a priming of body parts, this study aimed to differentiate the two processes. Specifically, participants played a motion-controlled video game with…

  6. Seasonal ozone vertical profiles over North America using the AQMEII group of air quality models: model inter-comparison and stratospheric intrusion

    EPA Science Inventory

    This study utilizes simulations for the North American domain from four modeling groups that participated in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) to evaluate seasonal ozone vertical profiles simulated for the year 2010 against ozo...

  7. Capturing remote mixing due to internal tides using multi-scale modeling tool: SOMAR-LES

    NASA Astrophysics Data System (ADS)

    Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu

    2016-11-01

    Internal tides that are generated during the interaction of an oscillating barotropic tide with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal tides. These internal tides dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal tides is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal tide generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal tide in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.

  8. A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids

    NASA Astrophysics Data System (ADS)

    Goharshadi, Elaheh K.; Morsali, Ali; Mansoori, G. Ali

    2007-01-01

    Isotherms of experimental data of internal pressure of dense fluids versus molar volume, Vm are shown to have each a maximum point at a Vmax below the critical molar volume. In this study, we investigated the role of attractive and repulsive intermolecular energies on this behavior using a molecular dynamics simulation technique. In the simulation, we choose the Lennard-Jones (LJ) intermolecular potential energy function. The LJ potential is known to be an effective potential representing a statistical average of the true pair and many-body interactions in simple molecular systems. The LJ potential function is divided into attractive and repulsive parts. MD calculations have produced internal energy, potential energy, transitional kinetic energy, and radial distribution function (RDF) for argon at 180 K and 450 K using LJ potential, LJ repulsive, and LJ attractive parts. It is shown that the LJ potential function is well capable of predicting the inflection point in the internal energy-molar volume curve as well as maximum point in the internal pressure-molar volume curve. It is also shown that at molar volumes higher than Vmax, the attractive forces have strong influence on determination of internal energy and internal pressure. At volumes lower than Vmax, neither repulsive nor attractive forces are dominating. Also, the coincidence between RDFs resulting from LJ potential and repulsive parts of LJ potential improves as molar volume approaches Vmax from high molar volumes. The coincidence becomes complete at Vmax ⩾ V.

  9. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2017-12-13

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  10. Center for Advanced Modeling and Simulation Intern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertman, Vanessa

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  11. Third International Workshop on Grid Simulator Testing of Wind Turbine

    Science.gov Websites

    Drivetrains | Grid Modernization | NRELA> Third International Workshop on Grid Simulator Testing agenda. For technical questions about the workshop, contact Vahan Gevorgian. A photo of a large group of people standing facing the camera for a group photo Attendees and speakers for the Third International

  12. Living Together in Space: The International Space Station Internal Active Thermal Control System Issues and Solutions-Sustaining Engineering Activities at the Marshall Space Flight Center From 1998 to 2005

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.; Roman, M. C.; Miller, L.

    2007-01-01

    On board the International Space Station, heat generated by the crew and equipment is removed by the internal active thermal control system to maintain a comfortable working environment and prevent equipment overheating. Test facilities simulating the internal active thermal control system (IATCS) were constructed at the Marshall Space Flight Center as part of the sustaining engineering activities to address concerns related to operational issues, equipment capability, and reliability. A full-scale functional simulator of the Destiny lab module IATCS was constructed and activated prior to launch of Destiny in 2001. This facility simulates the flow and thermal characteristics of the flight system and has a similar control interface. A subscale simulator was built, and activated in 2000, with special attention to materials and proportions of wetted surfaces to address issues related to changes in fluid chemistry, material corrosion, and microbial activity. The flight issues that have arisen and the tests performed using the simulator facilities are discussed in detail. In addition, other test facilities at the MSFC have been used to perform specific tests related to IATCS issues. Future testing is discussed as well as potential modifications to the simulators to enhance their utility.

  13. Round Robin Study: Molecular Simulation of Thermodynamic Properties from Models with Internal Degrees of Freedom.

    PubMed

    Schappals, Michael; Mecklenfeld, Andreas; Kröger, Leif; Botan, Vitalie; Köster, Andreas; Stephan, Simon; García, Edder J; Rutkai, Gabor; Raabe, Gabriele; Klein, Peter; Leonhard, Kai; Glass, Colin W; Lenhard, Johannes; Vrabec, Jadran; Hasse, Hans

    2017-09-12

    Thermodynamic properties are often modeled by classical force fields which describe the interactions on the atomistic scale. Molecular simulations are used for retrieving thermodynamic data from such models, and many simulation techniques and computer codes are available for that purpose. In the present round robin study, the following fundamental question is addressed: Will different user groups working with different simulation codes obtain coinciding results within the statistical uncertainty of their data? A set of 24 simple simulation tasks is defined and solved by five user groups working with eight molecular simulation codes: DL_POLY, GROMACS, IMC, LAMMPS, ms2, NAMD, Tinker, and TOWHEE. Each task consists of the definition of (1) a pure fluid that is described by a force field and (2) the conditions under which that property is to be determined. The fluids are four simple alkanes: ethane, propane, n-butane, and iso-butane. All force fields consider internal degrees of freedom: OPLS, TraPPE, and a modified OPLS version with bond stretching vibrations. Density and potential energy are determined as a function of temperature and pressure on a grid which is specified such that all states are liquid. The user groups worked independently and reported their results to a central instance. The full set of results was disclosed to all user groups only at the end of the study. During the study, the central instance gave only qualitative feedback. The results reveal the challenges of carrying out molecular simulations. Several iterations were needed to eliminate gross errors. For most simulation tasks, the remaining deviations between the results of the different groups are acceptable from a practical standpoint, but they are often outside of the statistical errors of the individual simulation data. However, there are also cases where the deviations are unacceptable. This study highlights similarities between computer experiments and laboratory experiments, which are both subject not only to statistical error but also to systematic error.

  14. Effects of simulated domestic and international air travel on sleep, performance, and recovery for team sports.

    PubMed

    Fowler, P; Duffield, R; Vaile, J

    2015-06-01

    The present study examined effects of simulated air travel on physical performance. In a randomized crossover design, 10 physically active males completed a simulated 5-h domestic flight (DOM), 24-h simulated international travel (INT), and a control trial (CON). The mild hypoxia, seating arrangements, and activity levels typically encountered during air travel were simulated in a normobaric, hypoxic altitude room. Physical performance was assessed in the afternoon of the day before (D - 1 PM) and in the morning (D + 1 AM) and afternoon (D + 1 PM) of the day following each trial. Mood states and physiological and perceptual responses to exercise were also examined at these time points, while sleep quantity and quality were monitored throughout each condition. Sleep quantity and quality were significantly reduced during INT compared with CON and DOM (P < 0.01). Yo-Yo Intermittent Recovery level 1 test performance was significantly reduced at D + 1 PM following INT compared with CON and DOM (P < 0.01), where performance remained unchanged (P > 0.05). Compared with baseline, physiological and perceptual responses to exercise, and mood states were exacerbated following the INT trial (P < 0.05). Attenuated intermittent-sprint performance following simulated international air travel may be due to sleep disruption during travel and the subsequent exacerbated physiological and perceptual markers of fatigue. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Simulation-based education with mastery learning improves residents' lumbar puncture skills

    PubMed Central

    Cohen, Elaine R.; Caprio, Timothy; McGaghie, William C.; Simuni, Tanya; Wayne, Diane B.

    2012-01-01

    Objective: To evaluate the effect of simulation-based mastery learning (SBML) on internal medicine residents' lumbar puncture (LP) skills, assess neurology residents' acquired LP skills from traditional clinical education, and compare the results of SBML to traditional clinical education. Methods: This study was a pretest-posttest design with a comparison group. Fifty-eight postgraduate year (PGY) 1 internal medicine residents received an SBML intervention in LP. Residents completed a baseline skill assessment (pretest) using a 21-item LP checklist. After a 3-hour session featuring deliberate practice and feedback, residents completed a posttest and were expected to meet or exceed a minimum passing score (MPS) set by an expert panel. Simulator-trained residents' pretest and posttest scores were compared to assess the impact of the intervention. Thirty-six PGY2, 3, and 4 neurology residents from 3 medical centers completed the same simulated LP assessment without SBML. SBML posttest scores were compared to neurology residents' baseline scores. Results: PGY1 internal medicine residents improved from a mean of 46.3% to 95.7% after SBML (p < 0.001) and all met the MPS at final posttest. The performance of traditionally trained neurology residents was significantly lower than simulator-trained residents (mean 65.4%, p < 0.001) and only 6% met the MPS. Conclusions: Residents who completed SBML showed significant improvement in LP procedural skills. Few neurology residents were competent to perform a simulated LP despite clinical experience with the procedure. PMID:22675080

  16. The uniform chest compression depth of 50 mm or greater recommended by current guidelines is not appropriate for all adults.

    PubMed

    Lee, Soo Hoon; Kim, Dong Hoon; Kang, Tae-Sin; Kang, Changwoo; Jeong, Jin Hee; Kim, Seong Chun; Kim, Dong Seob

    2015-08-01

    This study was conducted to evaluate the appropriateness of the chest compression (CC) depth recommended in the current guidelines and simulated external CCs, and to characterize the optimal CC depth for an adult by body mass index (BMI). Adult patients who underwent chest computed tomography as a screening test for latent pulmonary diseases in the health care center were enrolled in this study. We calculated the internal anteroposterior (AP) diameter (IAPD) and external AP diameter (EAPD) of the chest across BMIs (<18.50, 18.50-24.99, 25.00-29.99, and ≥30.00 kg/m(2)) for simulated CC depth. We also calculated the residual chest depths less than 20 mm for simulated CC depth. There was a statistically significant difference in the chest EAPD and IAPD measured at the lower half of the sternum for each BMI groups (EAPD: R(2) = 0.638, P < .001; IAPD: R(2) = 0.297, P < .001). For one-half external AP CC, 100% of the patients, regardless of BMI, had a calculated residual internal chest depth less than 20 mm. For one-fourth external AP CC, no patients had a calculated residual internal chest depth less than 20 mm. For one-third external AP CC, only 6.48% of the patients had a calculated residual internal chest depth less than 20 mm. It is not appropriate that the current CC depth (≥50 mm), expressed only as absolute measurement without a fraction of the depth of the chest, is applied uniformly in all adults. In addition, in terms of safety and efficacy, simulated CC targeting approximately between one-third and one-fourth EAPD CC depth might be appropriate. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Mental states inside out: switching costs for emotional and nonemotional sentences that differ in internal and external focus.

    PubMed

    Oosterwijk, Suzanne; Winkielman, Piotr; Pecher, Diane; Zeelenberg, René; Rotteveel, Mark; Fischer, Agneta H

    2012-01-01

    Mental states-such as thinking, remembering, or feeling angry, happy, or dizzy-have a clear internal component. We feel a certain way when we are in these states. These internal experiences may be simulated when people understand conceptual references to mental states. However, mental states can also be described from an "external" perspective, for example when referring to "smiling." In those cases, simulation of visible outside features may be more relevant for understanding. In a switching costs paradigm, we presented semantically unrelated sentences describing emotional and nonemotional mental states while manipulating their internal or external focus. The results show that switching costs occur when participants shift between sentences with an internal and an external focus. This suggests that different forms of simulation underlie understanding these sentences. In addition, these effects occurred for emotional and nonemotional mental states, suggesting that they are grounded in a similar way-through the process of simulation.

  18. Surgical simulators in urological training--views of UK Training Programme Directors.

    PubMed

    Forster, James A; Browning, Anthony J; Paul, Alan B; Biyani, C Shekhar

    2012-09-01

    What's known on the subject? and What does the study add? The role of surgical simulators is currently being debated in urological and other surgical specialties. Simulators are not presently implemented in the UK urology training curriculum. The availability of simulators and the opinions of Training Programme Directors' (TPD) on their role have not been described. In the present questionnaire-based survey, the trainees of most, but not all, UK TPDs had access to laparoscopic simulators, and that all responding TPDs thought that simulators improved laparoscopic training. We hope that the present study will be a positive step towards making an agreement to formally introduce simulators into the UK urology training curriculum. To discuss the current situation on the use of simulators in surgical training. To determine the views of UK Urology Training Programme Directors (TPDs) on the availability and use of simulators in Urology at present, and to discuss the role that simulators may have in future training. An online-questionnaire survey was distributed to all UK Urology TPDs. In all, 16 of 21 TPDs responded. All 16 thought that laparoscopic simulators improved the quality of laparoscopic training. The trainees of 13 TPDs had access to a laparoscopic simulator (either in their own hospital or another hospital in the deanery). Most TPDs thought that trainees should use simulators in their free time, in quiet time during work hours, or in teaching sessions (rather than incorporated into the weekly timetable). We feel that the current apprentice-style method of training in urological surgery is out-dated. We think that all TPDs and trainees should have access to a simulator, and that a formal competency based simulation training programme should be incorporated into the urology training curriculum, with trainees reaching a minimum proficiency on a simulator before undertaking surgical procedures. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.

  19. Simulation-based training for prostate surgery.

    PubMed

    Khan, Raheej; Aydin, Abdullatif; Khan, Muhammad Shamim; Dasgupta, Prokar; Ahmed, Kamran

    2015-10-01

    To identify and review the currently available simulators for prostate surgery and to explore the evidence supporting their validity for training purposes. A review of the literature between 1999 and 2014 was performed. The search terms included a combination of urology, prostate surgery, robotic prostatectomy, laparoscopic prostatectomy, transurethral resection of the prostate (TURP), simulation, virtual reality, animal model, human cadavers, training, assessment, technical skills, validation and learning curves. Furthermore, relevant abstracts from the American Urological Association, European Association of Urology, British Association of Urological Surgeons and World Congress of Endourology meetings, between 1999 and 2013, were included. Only studies related to prostate surgery simulators were included; studies regarding other urological simulators were excluded. A total of 22 studies that carried out a validation study were identified. Five validated models and/or simulators were identified for TURP, one for photoselective vaporisation of the prostate, two for holmium enucleation of the prostate, three for laparoscopic radical prostatectomy (LRP) and four for robot-assisted surgery. Of the TURP simulators, all five have demonstrated content validity, three face validity and four construct validity. The GreenLight laser simulator has demonstrated face, content and construct validities. The Kansai HoLEP Simulator has demonstrated face and content validity whilst the UroSim HoLEP Simulator has demonstrated face, content and construct validity. All three animal models for LRP have been shown to have construct validity whilst the chicken skin model was also content valid. Only two robotic simulators were identified with relevance to robot-assisted laparoscopic prostatectomy, both of which demonstrated construct validity. A wide range of different simulators are available for prostate surgery, including synthetic bench models, virtual-reality platforms, animal models, human cadavers, distributed simulation and advanced training programmes and modules. The currently validated simulators can be used by healthcare organisations to provide supplementary training sessions for trainee surgeons. Further research should be conducted to validate simulated environments, to determine which simulators have greater efficacy than others and to assess the cost-effectiveness of the simulators and the transferability of skills learnt. With surgeons investigating new possibilities for easily reproducible and valid methods of training, simulation offers great scope for implementation alongside traditional methods of training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  20. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance

    NASA Astrophysics Data System (ADS)

    Del Seppia, C.; Mezzasalma, L.; Messerotti, M.; Cordelli, A.; Ghione, S.

    2009-01-01

    We have previously reported that the exposure to an abnormal magnetic field simulating the one encountered by the International Space Station (ISS) orbiting around the Earth may enhance autonomic response to emotional stimuli. Here we report the results of the second part of that study which tested whether this field also affects cognitive functions. Twenty-four volunteers participated in the study, 12 exposed to the natural geomagnetic field and 12 to the magnetic field encountered by ISS. The test protocol consisted of a set of eight tests chosen from a computerized test battery for the assessment of attentional performance. The duration of exposure was 90 min. No effect of exposure to ISS magnetic field was observed on attentional performance.

  1. Structure of overheated metal clusters: MD simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  2. Internal Catchment Process Simulation in a Snow-Dominated Basin: Performance Evaluation with Spatiotemporally Variable Runoff Generation and Groundwater Dynamics

    NASA Astrophysics Data System (ADS)

    Kuras, P. K.; Weiler, M.; Alila, Y.; Spittlehouse, D.; Winkler, R.

    2006-12-01

    Hydrologic models have been increasingly used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models, however, are also plagued by uncertainty stemming from a limited understanding of hydrological processes in forested catchments and parameter equifinality is a common concern. This has created the necessity to improve our understanding of how hydrological systems work, through the development of hydrological measures, analyses and models that address the question: are we getting the right answers for the right reasons? Hence, physically-based, spatially-distributed hydrologic models should be validated with high-quality experimental data describing multiple concurrent internal catchment processes under a range of hydrologic regimes. The distributed hydrology soil vegetation model (DHSVM) frequently used in forest management applications is an example of a process-based model used to address the aforementioned circumstances, and this study takes a novel approach at collectively examining the ability of a pre-calibrated model application to realistically simulate outlet flows along with the spatial-temporal variation of internal catchment processes including: continuous groundwater dynamics at 9 locations, stream and road network flow at 67 locations for six individual days throughout the freshet, and pre-melt season snow distribution. Model efficiency was improved over prior evaluations due to continuous efforts in improving the quality of meteorological data in the watershed. Road and stream network flows were very well simulated for a range of hydrological conditions, and the spatial distribution of the pre-melt season snowpack was in general agreement with observed values. The model was effective in simulating the spatial variability of subsurface flow generation, except at locations where strong stream-groundwater interactions existed, as the model is not capable of simulating such processes and subsurface flows always drain to the stream network. The model has proven overall to be quite capable in realistically simulating internal catchment processes in the watershed, which creates more confidence in future model applications exploring the effects of various forest management scenarios on the watershed's hydrological processes.

  3. Interprofessional simulation training improves knowledge and teamwork in nursing and medical students during internal medicine clerkship.

    PubMed

    Tofil, Nancy M; Morris, Jason L; Peterson, Dawn Taylor; Watts, Penni; Epps, Chad; Harrington, Kathy F; Leon, Kevin; Pierce, Caleb; White, Marjorie Lee

    2014-03-01

    Simulation is effective at improving healthcare students' knowledge and communication. Despite increasingly interprofessional approaches to medicine, most studies demonstrate these effects in isolation. We enhanced an existing internal medicine curriculum with immersive interprofessional simulations. For ten months, third-year medical students and senior nursing students were recruited for four, 1-hour simulations. Scenarios included myocardial infarction, pancreatitis/hyperkalemia, upper gastrointestinal bleed, and chronic obstructive pulmonary disease exacerbation. After each scenario, experts in medicine, nursing, simulation, and adult learning facilitated a debriefing. Study measures included pre- and post-tests assessing self-efficacy, communication skills, and understanding of each profession's role. Seventy-two medical students and 30 nursing students participated. Self-efficacy communication scores improved for both (medicine, 18.9 ± 3.3 pretest vs 23.7 ± 3.7 post-test; nursing, 19.6 ± 2.7 pretest vs 24.5 ± 2.5 post-test). Both groups showed improvement in "confidence to correct another healthcare provider in a collaborative manner" (Δ = .97 medicine, Δ = 1.2 nursing). Medical students showed the most improvement in "confidence to close the loop in patient care" (Δ = .93). Nursing students showed the most improvement in "confidence to figure out roles" (Δ = 1.1). This study supports the hypothesis that interdisciplinary simulation improves each discipline's self-efficacy communication skills and understanding of each profession's role. Despite many barriers to interprofessional simulation, this model is being sustained. © 2014 Society of Hospital Medicine.

  4. Learning the Norm of Internality: NetNorm, a Connectionist Model

    ERIC Educational Resources Information Center

    Thierry, Bollon; Adeline, Paignon; Pascal, Pansu

    2011-01-01

    The objective of the present article is to show that connectionist simulations can be used to model some of the socio-cognitive processes underlying the learning of the norm of internality. For our simulations, we developed a connectionist model which we called NetNorm (based on Dual-Network formalism). This model is capable of simulating the…

  5. Learning Opportunities in a Department-Wide Crisis Simulation: Bridging the International/National Divide

    ERIC Educational Resources Information Center

    Zaino, Jeanne S.; Mulligan, Tricia

    2009-01-01

    When designed and executed properly, role-playing simulations go a long way to enhance student learning. Typically, however, simulations are divided along subfields. Most exercises, whether based on real or fictitious events, either place students in various roles within a country or have them represent the international interests of one country…

  6. Using Simulations to Investigate Decision Making in Airline Operations

    NASA Technical Reports Server (NTRS)

    Bruce, Peter J.; Gray, Judy H.

    2003-01-01

    This paper examines a range of methods to collect data for the investigation of decision-making in airline Operations Control Centres (OCCs). A study was conducted of 52 controllers in five OCCs of both domestic and international airlines in the Asia-Pacific region. A range of methods was used including: surveys, interviews, observations, simulations, and think-aloud protocol. The paper compares and evaluates the suitability of these techniques for gathering data and provides recommendations on the application of simulations. Keywords Data Collection, Decision-Making, Research Methods, Simulation, Think-Aloud Protocol.

  7. First Person Point of View Augmented Reality for Central Line Insertion Training: A Usability and Feasibility Study

    PubMed Central

    Rochlen, Lauryn R.; Levine, Robert; Tait, Alan R.

    2016-01-01

    Introduction The value of simulation in medical education and procedural skills training is well recognized. Despite this, many mannequin-based trainers are limited by the inability of the trainee to view the internal anatomical structures. This study evaluates the usability and feasibility of a 1st person point of view (POV) augmented reality (AR) trainer on needle insertion as a component of central venous catheter (CVC) placement. Methods Forty subjects, including medical students and anesthesiology residents and faculty participated. AR glasses were provided through which the relevant internal anatomical landmarks were projected. Following a practice period, participants were asked to place the needle in the mannequin without the benefit of the AR projected internal anatomy. The ability of the trainees to correctly place the needle was documented. Participants also completed a short survey describing their perceptions of the AR technology. Results Participants reported that the AR technology was realistic (77.5%) and that the ability to view the internal anatomy was helpful (92.5%). Furthermore, 85% and 82.1%, respectively, believed that the AR technology promoted learning and should be incorporated into medical training. The ability to successfully place the needle was similar between experienced and non-experienced participants, however, less experienced participants were more likely to inadvertently puncture the carotid artery. Conclusions Results of this pilot study demonstrated the usability and feasibility of AR technology as a potentially important adjunct to simulated medical skills training. Further development and evaluation of this innovative technology under a variety of simulated medical training settings would be an important next step. PMID:27930431

  8. First-Person Point-of-View-Augmented Reality for Central Line Insertion Training: A Usability and Feasibility Study.

    PubMed

    Rochlen, Lauryn R; Levine, Robert; Tait, Alan R

    2017-02-01

    The value of simulation in medical education and procedural skills training is well recognized. Despite this, many mannequin-based trainers are limited by the inability of the trainee to view the internal anatomical structures. This study evaluates the usability and feasibility of a first-person point-of-view-augmented reality (AR) trainer on needle insertion as a component of central venous catheter placement. Forty subjects, including medical students and anesthesiology residents and faculty, participated. Augmented reality glasses were provided through which the relevant internal anatomical landmarks were projected. After a practice period, participants were asked to place the needle in the mannequin without the benefit of the AR-projected internal anatomy. The ability of the trainees to correctly place the needle was documented. Participants also completed a short survey describing their perceptions of the AR technology. Participants reported that the AR technology was realistic (77.5%) and that the ability to view the internal anatomy was helpful (92.5%). Furthermore, 85% and 82.1%, respectively, believed that the AR technology promoted learning and should be incorporated into medical training. The ability to successfully place the needle was similar between experienced and nonexperienced participants; however, less experienced participants were more likely to inadvertently puncture the carotid artery. Results of this pilot study demonstrated the usability and feasibility of AR technology as a potentially important adjunct to simulated medical skills training. Further development and evaluation of this innovative technology under a variety of simulated medical training settings would be an important next step.

  9. A randomized trial comparing didactics, demonstration, and simulation for teaching teamwork to medical residents.

    PubMed

    Semler, Matthew W; Keriwala, Raj D; Clune, Jennifer K; Rice, Todd W; Pugh, Meredith E; Wheeler, Arthur P; Miller, Alison N; Banerjee, Arna; Terhune, Kyla; Bastarache, Julie A

    2015-04-01

    Effective teamwork is fundamental to the management of medical emergencies, and yet the best method to teach teamwork skills to trainees remains unknown. In a cohort of incoming internal medicine interns, we tested the hypothesis that expert demonstration of teamwork principles and participation in high-fidelity simulation would each result in objectively assessed teamwork behavior superior to traditional didactics. This was a randomized, controlled, parallel-group trial comparing three teamwork teaching modalities for incoming internal medicine interns. Participants in a single-day orientation at the Vanderbilt University Center for Experiential Learning and Assessment were randomized 1:1:1 to didactic, demonstration-based, or simulation-based instruction and then evaluated in their management of a simulated crisis by five independent, blinded observers using the Teamwork Behavioral Rater score. Clinical performance was assessed using the American Heart Association Advanced Cardiac Life Support algorithm and a novel "Recognize, Respond, Reassess" score. Participants randomized to didactics (n = 18), demonstration (n = 17), and simulation (n = 17) were similar at baseline. The primary outcome of average overall Teamwork Behavioral Rater score for those who received demonstration-based training was similar to simulation participation (4.40 ± 1.15 vs. 4.10 ± 0.95, P = 0.917) and significantly higher than didactic instruction (4.40 ± 1.15 vs. 3.10 ± 0.51, P = 0.045). Clinical performance scores were similar between the three groups and correlated only weakly with teamwork behavior (coefficient of determination [Rs(2)] = 0.267, P < 0.001). Among incoming internal medicine interns, teamwork training by expert demonstration resulted in similar teamwork behavior to participation in high-fidelity simulation and was more effective than traditional didactics. Clinical performance was largely independent of teamwork behavior and did not differ between training modalities.

  10. Validation of virtual-reality-based simulations for endoscopic sinus surgery.

    PubMed

    Dharmawardana, N; Ruthenbeck, G; Woods, C; Elmiyeh, B; Diment, L; Ooi, E H; Reynolds, K; Carney, A S

    2015-12-01

    Virtual reality (VR) simulators provide an alternative to real patients for practicing surgical skills but require validation to ensure accuracy. Here, we validate the use of a virtual reality sinus surgery simulator with haptic feedback for training in Otorhinolaryngology - Head & Neck Surgery (OHNS). Participants were recruited from final-year medical students, interns, resident medical officers (RMOs), OHNS registrars and consultants. All participants completed an online questionnaire after performing four separate simulation tasks. These were then used to assess face, content and construct validity. anova with post hoc correlation was used for statistical analysis. The following groups were compared: (i) medical students/interns, (ii) RMOs, (iii) registrars and (iv) consultants. Face validity results had a statistically significant (P < 0.05) difference between the consultant group and others, while there was no significant difference between medical student/intern and RMOs. Variability within groups was not significant. Content validity results based on consultant scoring and comments indicated that the simulations need further development in several areas to be effective for registrar-level teaching. However, students, interns and RMOs indicated that the simulations provide a useful tool for learning OHNS-related anatomy and as an introduction to ENT-specific procedures. The VR simulations have been validated for teaching sinus anatomy and nasendoscopy to medical students, interns and RMOs. However, they require further development before they can be regarded as a valid tool for more advanced surgical training. © 2015 John Wiley & Sons Ltd.

  11. Adaptive Agent Modeling of Distributed Language: Investigations on the Effects of Cultural Variation and Internal Action Representations

    ERIC Educational Resources Information Center

    Cangelosi, Angelo

    2007-01-01

    In this paper we present the "grounded adaptive agent" computational framework for studying the emergence of communication and language. This modeling framework is based on simulations of population of cognitive agents that evolve linguistic capabilities by interacting with their social and physical environment (internal and external symbol…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bemporad, G.A.; Rubin, H.

    The development of internal waves and instabilities of the Kelvin Helmholtz-type may prevent the density gradient maintenance which allows the proper functioning of the Advanced Solar Pond (ASP). The properties and characteristics of internal waves, of constant and growing amplitude, are quantitatively described in this paper. The numerical simulations made in this study are in good agreement with previous theoretical and experimental results.

  13. Wood-adhesive bonding failure : modeling and simulation

    Treesearch

    Zhiyong Cai

    2010-01-01

    The mechanism of wood bonding failure when exposed to wet conditions or wet/dry cycles is not fully understood and the role of the resulting internal stresses exerted upon the wood-adhesive bondline has yet to be quantitatively determined. Unlike previous modeling this study has developed a new two-dimensional internal-stress model on the basis of the mechanics of...

  14. Predicting internal lumber grade from log surface knots: actual and simulated results.

    Treesearch

    Christine Todoroki; Robert A. Monserud; Dean L. Parry

    2005-01-01

    The purpose of this study was threefold: 1) compare actual with simulated lumber yields; 2) examine the effect of measurement errors associated with knot angles and morphology. on lumber grade; and 3) investigate methods for predicting lumber quality within unsawn logs from surface knots. Twenty-eight Douglas-fir (Pseudotsuga menziesii(Mii irb.)...

  15. Podcasting to Support Students Using a Business Simulation

    ERIC Educational Resources Information Center

    Gorra, Andrea; Finlay, Janet

    2009-01-01

    Audio or video podcasts can be a useful tool to supplement practical exercises such as business simulations. In this paper, we discuss a case study in which different types of podcast were utilised to support the delivery of a course in international business. The students work in groups and run a fictional company using business simulation…

  16. Validity of a Simulation Game as a Method for History Teaching

    ERIC Educational Resources Information Center

    Corbeil, Pierre; Laveault, Dany

    2011-01-01

    The aim of this research is, first, to determine the validity of a simulation game as a method of teaching and an instrument for the development of reasoning and, second, to study the relationship between learning and students' behavior toward games. The participants were college students in a History of International Relations course, with two…

  17. Mathematical modeling and Monte Carlo simulation of thermal inactivation of non-proteolytic Clostridium botulinum spores during continuous microwave-assisted pasteurization

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to develop a mathematical method to simulate the internal temperature history of products processed in a prototype microwave-assisted pasteurization system (MAPS) developed by Washington State University. Two products (10 oz. beef meatball trays and 16 oz. salmon fill...

  18. RCWA and FDTD modeling of light emission from internally structured OLEDs.

    PubMed

    Callens, Michiel Koen; Marsman, Herman; Penninck, Lieven; Peeters, Patrick; de Groot, Harry; ter Meulen, Jan Matthijs; Neyts, Kristiaan

    2014-05-05

    We report on the fabrication and simulation of a green OLED with an Internal Light Extraction (ILE) layer. The optical behavior of these devices is simulated using both Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time-Domain (FDTD) methods. Results obtained using these two different techniques show excellent agreement and predict the experimental results with good precision. By verifying the validity of both simulation methods on the internal light extraction structure we pave the way to optimization of ILE layers using either of these methods.

  19. Internal Interdecadal Variability in CMIP5 Control Simulations

    NASA Astrophysics Data System (ADS)

    Cheung, A. H.; Mann, M. E.; Frankcombe, L. M.; England, M. H.; Steinman, B. A.; Miller, S. K.

    2015-12-01

    Here we make use of control simulations from the CMIP5 models to quantify the amplitude of the interdecadal internal variability component in Atlantic, Pacific, and Northern Hemisphere mean surface temperature. We compare against estimates derived from observations using a semi-empirical approach wherein the forced component as estimated using CMIP5 historical simulations is removed to yield an estimate of the residual, internal variability. While the observational estimates are largely consistent with those derived from the control simulations for both basins and the Northern Hemisphere, they lie in the upper range of the model distributions, suggesting the possibility of differences between the amplitudes of observed and modeled variability. We comment on some possible reasons for the disparity.

  20. Numerical Simulations for Distribution Characteristics of Internal Forces on Segments of Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Li, Shouju; Shangguan, Zichang; Cao, Lijuan

    A procedure based on FEM is proposed to simulate interaction between concrete segments of tunnel linings and soils. The beam element named as Beam 3 in ANSYS software was used to simulate segments. The ground loss induced from shield tunneling and segment installing processes is simulated in finite element analysis. The distributions of bending moment, axial force and shear force on segments were computed by FEM. The commutated internal forces on segments will be used to design reinforced bars on shield linings. Numerically simulated ground settlements agree with observed values.

  1. Numerical Study of Outlet Boundary Conditions for Unsteady Turbulent Internal Flows Using the NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Shih, Tsan-Hsing

    2009-01-01

    This paper presents the results of studies on the outlet boundary conditions for turbulent internal flow simulations. Several outlet boundary conditions have been investigated by applying the National Combustion Code (NCC) to the configuration of a LM6000 single injector flame tube. First of all, very large eddy simulations (VLES) have been performed using the partially resolved numerical simulation (PRNS) approach, in which both the nonlinear and linear dynamic subscale models were employed. Secondly, unsteady Reynolds averaged Navier- Stokes (URANS) simulations have also been performed for the same configuration to investigate the effects of different outlet boundary conditions in the context of URANS. Thirdly, the possible role of the initial condition is inspected by using three different initial flow fields for both the PRNS/VLES simulation and the URANS simulation. The same grid is used for all the simulations and the number of mesh element is about 0.5 million. The main purpose of this study is to examine the long-time behavior of the solution as determined by the imposed outlet boundary conditions. For a particular simulation to be considered as successful under the given initial and boundary conditions, the solution must be sustainable in a physically meaningful manner over a sufficiently long period of time. The commonly used outlet boundary condition for steady Reynolds averaged Navier-Stokes (RANS) simulation is a fixed pressure at the outlet with all the other dependent variables being extrapolated from the interior. The results of the present study suggest that this is also workable for the URANS simulation of the LM6000 injector flame tube. However, it does not work for the PRNS/VLES simulation due to the unphysical reflections of the pressure disturbances at the outlet boundary. This undesirable situation can be practically alleviated by applying a simple unsteady convection equation for the pressure disturbances at the outlet boundary. The numerical results presented in this paper suggest that this unsteady convection of pressure disturbances at the outlet works very well for all the unsteady simulations (both PRNS/VLES and URANS) of the LM6000 single injector flame tube.

  2. Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads During Simulated Landings: Implications for Injury Mechanism.

    PubMed

    Kiapour, Ata M; Demetropoulos, Constantine K; Kiapour, Ali; Quatman, Carmen E; Wordeman, Samuel C; Goel, Vijay K; Hewett, Timothy E

    2016-08-01

    Despite basic characterization of the loading factors that strain the anterior cruciate ligament (ACL), the interrelationship(s) and additive nature of these loads that occur during noncontact ACL injuries remain incompletely characterized. In the presence of an impulsive axial compression, simulating vertical ground-reaction force during landing (1) both knee abduction and internal tibial rotation moments would result in increased peak ACL strain, and (2) a combined multiplanar loading condition, including both knee abduction and internal tibial rotation moments, would increase the peak ACL strain to levels greater than those under uniplanar loading modes alone. Controlled laboratory study. A cadaveric model of landing was used to simulate dynamic landings during a jump in 17 cadaveric lower extremities (age, 45 ± 7 years; 9 female and 8 male). Peak ACL strain was measured in situ and characterized under impulsive axial compression and simulated muscle forces (baseline) followed by addition of anterior tibial shear, knee abduction, and internal tibial rotation loads in both uni- and multiplanar modes, simulating a broad range of landing conditions. The associations between knee rotational kinematics and peak ACL strain levels were further investigated to determine the potential noncontact injury mechanism. Externally applied loads, under both uni- and multiplanar conditions, resulted in consistent increases in peak ACL strain compared with the baseline during simulated landings (by up to 3.5-fold; P ≤ .032). Combined multiplanar loading resulted in the greatest increases in peak ACL strain (P < .001). Degrees of knee abduction rotation (R(2) = 0.45; β = 0.42) and internal tibial rotation (R(2) = 0.32; β = 0.23) were both significantly correlated with peak ACL strain (P < .001). However, changes in knee abduction rotation had a significantly greater effect size on peak ACL strain levels than did internal tibial rotation (by ~2-fold; P < .001). In the presence of impulsive axial compression, the combination of anterior tibial shear force, knee abduction, and internal tibial rotation moments significantly increases ACL strain, which could result in ACL failure. These findings support multiplanar knee valgus collapse as one the primary mechanisms of noncontact ACL injuries during landing. Intervention programs that address multiple planes of loading may decrease the risk of ACL injury and the devastating consequences of posttraumatic knee osteoarthritis. © 2016 The Author(s).

  3. Internal Fluid Dynamics and Frequency Scaling of Sweeping Jet Fluidic Oscillators

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Salazar, Erik; Mittal, Rajat

    2017-11-01

    Sweeping jet fluidic oscillators (SJFOs) are devices that produce a spatially oscillating jet solely based on intrinsic flow instability mechanisms without any moving parts. Recently, SJFOs have emerged as effective actuators for flow control, but the internal fluid dynamics of the device that drives the oscillatory flow mechanism is not yet fully understood. In the current study, the internal fluid dynamics of the fluidic oscillator with feedback channels has been investigated by employing incompressible flow simulations. The study is focused on the oscillation mechanisms and scaling laws that underpin the jet oscillation. Based on the simulation results, simple phenomenological models that connect the jet deflection to the feedback flow are developed. Several geometric modifications are considered in order to explore the characteristic length scales and phase relationships associated with the jet oscillation and to assess the proposed phenomenological model. A scaling law for the jet oscillation frequency is proposed based on the detailed analysis. This research is supported by AFOSR Grant FA9550-14-1-0289 monitored by Dr. Douglas Smith.

  4. Analytical evaluation of current starch methods used in the international sugar industry: Part I.

    PubMed

    Cole, Marsha; Eggleston, Gillian; Triplett, Alexa

    2017-08-01

    Several analytical starch methods exist in the international sugar industry to mitigate starch-related processing challenges and assess the quality of traded end-products. These methods use iodometric chemistry, mostly potato starch standards, and utilize similar solubilization strategies, but had not been comprehensively compared. In this study, industrial starch methods were compared to the USDA Starch Research method using simulated raw sugars. Type of starch standard, solubilization approach, iodometric reagents, and wavelength detection affected total starch determination in simulated raw sugars. Simulated sugars containing potato starch were more accurately detected by the industrial methods, whereas those containing corn starch, a better model for sugarcane starch, were only accurately measured by the USDA Starch Research method. Use of a potato starch standard curve over-estimated starch concentrations. Among the variables studied, starch standard, solubilization approach, and wavelength detection affected the sensitivity, accuracy/precision, and limited the detection/quantification of the current industry starch methods the most. Published by Elsevier Ltd.

  5. Bayesian Action–Perception Computational Model: Interaction of Production and Recognition of Cursive Letters

    PubMed Central

    Gilet, Estelle; Diard, Julien; Bessière, Pierre

    2011-01-01

    In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments. PMID:21674043

  6. Progressive mechanical indentation of large-format Li-ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan

    We used large format Li-ion cells to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. We carried out various sequences of increasing depth indentations using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025 and 0.250 with main indentation increments tests of 0.025 steps. Increment steps of 0.100 and 0.005 were used to pinpoint the onset of internal-short that occurred between 0.245 and 0.250 . The indented cells were disassembled and inspected for internal damage. Loadmore » vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. This study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.« less

  7. Progressive mechanical indentation of large-format Li-ion cells

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan; Allu, Srikanth; Kalnaus, Sergiy; Turner, John A.; Helmers, Jacob C.; Rules, Evan T.; Winchester, Clinton S.; Gorney, Philip

    2017-02-01

    Large format Li-ion cells were used to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. Various sequences of increasing depth indentations were carried out using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025″ and 0.250″ with main indentation increments tests of 0.025″ steps. Increment steps of 0.100″ and 0.005″ were used to pinpoint the onset of internal-short that occurred between 0.245″ and 0.250″. The indented cells were disassembled and inspected for internal damage. Load vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. Our study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.

  8. Progressive mechanical indentation of large-format Li-ion cells

    DOE PAGES

    Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan; ...

    2016-12-07

    We used large format Li-ion cells to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. We carried out various sequences of increasing depth indentations using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025 and 0.250 with main indentation increments tests of 0.025 steps. Increment steps of 0.100 and 0.005 were used to pinpoint the onset of internal-short that occurred between 0.245 and 0.250 . The indented cells were disassembled and inspected for internal damage. Loadmore » vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. This study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.« less

  9. Variability of North Atlantic Hurricane Frequency in a Large Ensemble of High-Resolution Climate Simulations

    NASA Astrophysics Data System (ADS)

    Mei, W.; Kamae, Y.; Xie, S. P.

    2017-12-01

    Forced and internal variability of North Atlantic hurricane frequency during 1951-2010 is studied using a large ensemble of climate simulations by a 60-km atmospheric general circulation model that is forced by observed sea surface temperatures (SSTs). The simulations well capture the interannual-to-decadal variability of hurricane frequency in best track data, and further suggest a possible underestimate of hurricane counts in the current best track data prior to 1966 when satellite measurements were unavailable. A genesis potential index (GPI) averaged over the Main Development Region (MDR) accounts for more than 80% of the forced variations in hurricane frequency, with potential intensity and vertical wind shear being the dominant factors. In line with previous studies, the difference between MDR SST and tropical mean SST is a simple but useful predictor; a one-degree increase in this SST difference produces 7.1±1.4 more hurricanes. The hurricane frequency also exhibits internal variability that is comparable in magnitude to the interannual variability. The 100-member ensemble allows us to address the following important questions: (1) Are the observations equivalent to one realization of such a large ensemble? (2) How many ensemble members are needed to reproduce the variability in observations and in the forced component of the simulations? The sources of the internal variability in hurricane frequency will be identified and discussed. The results provide an explanation for the relatively week correlation ( 0.6) between MDR GPI and hurricane frequency on interannual timescales in observations.

  10. European consensus on a competency-based virtual reality training program for basic endoscopic surgical psychomotor skills.

    PubMed

    van Dongen, Koen W; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J; Grantcharov, Teodor P; Hyltander, Anders; Schijven, Marlies P; Stefani, Alessandro; van der Zee, David C; Broeders, Ivo A M J

    2011-01-01

    Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was to establish consensus on exercise configurations and on a validated training program for a virtual reality simulator, based on the experience of international experts to set criterion levels to construct a proficiency-based training program. A consensus meeting was held with eight European teams, all extensively experienced in using the VR simulator. Construct validity of the training program was tested by 20 experts and 60 novices. The data were analyzed by using the t test for equality of means. Consensus was achieved on training designs, exercise configuration, and examination. Almost all exercises (7/8) showed construct validity. In total, 50 of 94 parameters (53%) showed significant difference. A European, multicenter, validated, training program was constructed according to the general consensus of a large international team with extended experience in virtual reality simulation. Therefore, a proficiency-based training program can be offered to training centers that use this simulator for training in basic psychomotor skills in endoscopic surgery.

  11. Finite Element Simulation and Experimental Verification of Internal Stress of Quenched AISI 4140 Cylinders

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2017-03-01

    The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.

  12. LIFE experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the international space station.

    PubMed

    Scalzi, Giuliano; Selbmann, Laura; Zucconi, Laura; Rabbow, Elke; Horneck, Gerda; Albertano, Patrizia; Onofri, Silvano

    2012-06-01

    Desiccated Antarctic rocks colonized by cryptoendolithic communities were exposed on the International Space Station (ISS) to space and simulated Mars conditions (LiFE-Lichens and Fungi Experiment). After 1.5 years in space samples were retrieved, rehydrated and spread on different culture media. Colonies of a green alga and a pink-coloured fungus developed on Malt-Agar medium; they were isolated from a sample exposed to simulated Mars conditions beneath a 0.1 % T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. None of the other flight samples showed any growth after incubation. The two organisms able to grow were identified at genus level by Small SubUnit (SSU) and Internal Transcribed Spacer (ITS) rDNA sequencing as Stichococcus sp. (green alga) and Acarospora sp. (lichenized fungal genus) respectively. The data in the present study provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.

  13. LIFE Experiment: Isolation of Cryptoendolithic Organisms from Antarctic Colonized Sandstone Exposed to Space and Simulated Mars Conditions on the International Space Station

    NASA Astrophysics Data System (ADS)

    Scalzi, Giuliano; Selbmann, Laura; Zucconi, Laura; Rabbow, Elke; Horneck, Gerda; Albertano, Patrizia; Onofri, Silvano

    2012-06-01

    Desiccated Antarctic rocks colonized by cryptoendolithic communities were exposed on the International Space Station (ISS) to space and simulated Mars conditions (LiFE— Lichens and Fungi Experiment). After 1.5 years in space samples were retrieved, rehydrated and spread on different culture media. Colonies of a green alga and a pink-coloured fungus developed on Malt-Agar medium; they were isolated from a sample exposed to simulated Mars conditions beneath a 0.1 % T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. None of the other flight samples showed any growth after incubation. The two organisms able to grow were identified at genus level by Small SubUnit (SSU) and Internal Transcribed Spacer (ITS) rDNA sequencing as Stichococcus sp. (green alga) and Acarospora sp. (lichenized fungal genus) respectively. The data in the present study provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.

  14. External and internal geometry of European adults.

    PubMed

    Bertrand, Samuel; Skalli, Wafa; Delacherie, Laurent; Bonneau, Dominique; Kalifa, Gabriel; Mitton, David

    2006-12-15

    The primary objective of the study was to bring a deeper knowledge of the human anthropometry, investigating the external and internal body geometry of small women, mid-sized men and tall men. Sixty-four healthy European adults were recruited. External measurements were performed using classical anthropometric instruments. Internal measurements of the trunk bones were performed using a stereo-radiographic 3D reconstruction technique. Besides the original procedure presented in this paper for performing in vivo geometrical data acquisition on numerous volunteers, this study provides an extensive description of both external and internal (trunk skeleton) human body geometry for three morphotypes. Moreover, this study proposes a global external and internal geometrical description of 5th female 50th male and 95th male percentile subjects. This study resulted in a unique geometrical database enabling improvement for numerical models of the human body for crash test simulation and offering numerous possibilities in the anthropometry field.

  15. A combined EPR and MD simulation study of a nitroxyl spin label with restricted internal mobility sensitive to protein dynamics.

    PubMed

    Oganesyan, Vasily S; Chami, Fatima; White, Gaye F; Thomson, Andrew J

    2017-01-01

    EPR studies combined with fully atomistic Molecular Dynamics (MD) simulations and an MD-EPR simulation method provide evidence for intrinsic low rotameric mobility of a nitroxyl spin label, Rn, compared to the more widely employed label MTSL (R1). Both experimental and modelling results using two structurally different sites of attachment to Myoglobin show that the EPR spectra of Rn are more sensitive to the local protein environment than that of MTSL. This study reveals the potential of using the Rn spin label as a reporter of protein motions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Anterolateral Knee Extra-articular Stabilizers: A Robotic Sectioning Study of the Anterolateral Ligament and Distal Iliotibial Band Kaplan Fibers.

    PubMed

    Geeslin, Andrew G; Chahla, Jorge; Moatshe, Gilbert; Muckenhirn, Kyle J; Kruckeberg, Bradley M; Brady, Alex W; Coggins, Ashley; Dornan, Grant J; Getgood, Alan M; Godin, Jonathan A; LaPrade, Robert F

    2018-05-01

    The individual kinematic roles of the anterolateral ligament (ALL) and the distal iliotibial band Kaplan fibers in the setting of anterior cruciate ligament (ACL) deficiency require further clarification. This will improve understanding of their potential contribution to residual anterolateral rotational laxity after ACL reconstruction and may influence selection of an anterolateral extra-articular reconstruction technique, which is currently a matter of debate. Hypothesis/Purpose: To compare the role of the ALL and the Kaplan fibers in stabilizing the knee against tibial internal rotation, anterior tibial translation, and the pivot shift in ACL-deficient knees. We hypothesized that the Kaplan fibers would provide greater tibial internal rotation restraint than the ALL in ACL-deficient knees and that both structures would provide restraint against internal rotation during a simulated pivot-shift test. Controlled laboratory study. Ten paired fresh-frozen cadaveric knees (n = 20) were used to investigate the effect of sectioning the ALL and the Kaplan fibers in ACL-deficient knees with a 6 degrees of freedom robotic testing system. After ACL sectioning, sectioning was randomly performed for the ALL and the Kaplan fibers. An established robotic testing protocol was utilized to assess knee kinematics when the specimens were subjected to a 5-N·m internal rotation torque (0°-90° at 15° increments), a simulated pivot shift with 10-N·m valgus and 5-N·m internal rotation torque (15° and 30°), and an 88-N anterior tibial load (30° and 90°). Sectioning of the ACL led to significantly increased tibial internal rotation (from 0° to 90°) and anterior tibial translation (30° and 90°) as compared with the intact state. Significantly increased internal rotation occurred with further sectioning of the ALL (15°-90°) and Kaplan fibers (15°, 60°-90°). At higher flexion angles (60°-90°), sectioning the Kaplan fibers led to significantly greater internal rotation when compared with ALL sectioning. On simulated pivot-shift testing, ALL sectioning led to significantly increased internal rotation and anterior translation at 15° and 30°; sectioning of the Kaplan fibers led to significantly increased tibial internal rotation at 15° and 30° and anterior translation at 15°. No significant difference was found when anterior tibial translation was compared between the ACL/ALL- and ACL/Kaplan fiber-deficient states on simulated pivot-shift testing or isolated anterior tibial load. The ALL and Kaplan fibers restrain internal rotation in the ACL-deficient knee. Sectioning the Kaplan fibers led to greater tibial internal rotation at higher flexion angles (60°-90°) as compared with ALL sectioning. Additionally, the ALL and Kaplan fibers contribute to restraint of the pivot shift and anterior tibial translation in the ACL-deficient knee. This study reports that the ALL and distal iliotibial band Kaplan fibers restrain anterior tibial translation, internal rotation, and pivot shift in the ACL-deficient knee. Furthermore, sectioning the Kaplan fibers led to significantly greater tibial internal rotation when compared with ALL sectioning at high flexion angles. These results demonstrate increased rotational knee laxity with combined ACL and anterolateral extra-articular knee injuries and may allow surgeons to optimize the care of patients with this injury pattern.

  17. Effects of internal gain assumptions in building energy calculations

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Perkins, R.

    1981-01-01

    The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multifamily-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

  18. A quantitative approach to evaluating caring in nursing simulation.

    PubMed

    Eggenberger, Terry L; Keller, Kathryn B; Chase, Susan K; Payne, Linda

    2012-01-01

    This study was designed to test a quantitative method of measuring caring in the simulated environment. Since competency in caring is central to nursing practice, ways of including caring concepts in designing scenarios and in evaluation of performance need to be developed. Coates' Caring Efficacy scales were adapted for simulation and named the Caring Efficacy Scale-Simulation Student Version (CES-SSV) and Caring Efficacy Scale-Simulation Faculty Version (CES-SFV). A correlational study was designed to compare student self-ratings with faculty ratings on caring efficacy during an adult acute simulation experience with traditional and accelerated baccalaureate students in a nursing program grounded in caring theory. Student self-ratings were significantly correlated with objective ratings (r = 0.345, 0.356). Both the CES-SSV and the CES-SFV were found to have excellent internal consistency and significantly correlated interrater reliability. They were useful in measuring caring in the simulated learning environment.

  19. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-07-01

    Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically, internally generated knee adduction and flexion torques. The knee torques that positively correlated with increased tibial slope angle in this investigation are associated with heightened risk of ACL injury. Therefore, the present data indicated that a higher posterior tibial slope is correlated to increased knee loads that are associated with heightened risk of ACL injury. © 2016 The Author(s).

  20. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClenaghan, J.; Lin, Z.; Holod, I.

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  1. Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2

    NASA Astrophysics Data System (ADS)

    Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun

    2018-01-01

    Conflicting results have been presented regarding the link between Arctic sea-ice loss and midlatitude cooling, particularly over Eurasia. This study analyzes uncoupled (atmosphere-only) and coupled (ocean-atmosphere) simulations by the Climate Forecast System, version 2 (CFSv2), to examine this linkage during the Northern Hemisphere winter, focusing on the simulation of the observed surface cooling trend over Eurasia during the last three decades. The uncoupled simulations are Atmospheric Model Intercomparison Project (AMIP) runs forced with mean seasonal cycles of sea surface temperature (SST) and sea ice, using combinations of SST and sea ice from different time periods to assess the role that each plays individually, and to assess the role of atmospheric internal variability. Coupled runs are used to further investigate the role of internal variability via the analysis of initialized predictions and the evolution of the forecast with lead time. The AMIP simulations show a mean warming response over Eurasia due to SST changes, but little response to changes in sea ice. Individual runs simulate cooler periods over Eurasia, and this is shown to be concurrent with a stronger Siberian high and warming over Greenland. No substantial differences in the variability of Eurasian surface temperatures are found between the different model configurations. In the coupled runs, the region of significant warming over Eurasia is small at short leads, but increases at longer leads. It is concluded that, although the models have some capability in highlighting the temperature variability over Eurasia, the observed cooling may still be a consequence of internal variability.

  2. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance.

    PubMed

    Del Seppia, Cristina; Mezzasalma, Lorena; Messerotti, Mauro; Cordelli, Alessandro; Ghione, Sergio

    2009-01-01

    We have previously reported that the exposure to an abnormal magnetic field simulating the one encountered by the International Space Station (ISS) orbiting around the Earth may enhance autonomic response to emotional stimuli. Here we report the results of the second part of that study which tested whether this field also affects cognitive functions. Twenty-four volunteers participated in the study, 12 exposed to the natural geomagnetic field and 12 to the magnetic field encountered by ISS. The test protocol consisted of a set of eight tests chosen from a computerized test battery for the assessment of attentional performance. The duration of exposure was 90 min. No effect of exposure to ISS magnetic field was observed on attentional performance. (c) 2008 Wiley-Liss, Inc.

  3. Robust state preparation in quantum simulations of Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Deng, Fu-Guo; Lamata, Lucas; Muga, J. G.

    2017-02-01

    A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable, but the coupling between momentum and internal levels poses some difficulties to manipulate the internal states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of inverse-engineering techniques to improve the performance of quantum simulation protocols.

  4. A comparison between electromechanical and pneumatic-controlled knee simulators for the investigation of wear of total knee replacements.

    PubMed

    Abdelgaied, Abdellatif; Fisher, John; Jennings, Louise M

    2017-07-01

    More robust preclinical experimental wear simulation methods are required in order to simulate a wider range of activities, observed in different patient populations such as younger more active patients, as well as to fully meet and be capable of going well beyond the existing requirements of the relevant international standards. A new six-station electromechanically driven simulator (Simulation Solutions, UK) with five fully independently controlled axes of articulation for each station, capable of replicating deep knee bending as well as other adverse conditions, which can be operated in either force or displacement control with improved input kinematic following, has been developed to meet these requirements. This study investigated the wear of a fixed-bearing total knee replacement using this electromechanically driven fully independent knee simulator and compared it to previous data from a predominantly pneumatically controlled simulator in which each station was not fully independently controlled. In addition, the kinematic performance and the repeatability of the simulators have been investigated and compared to the international standard requirements. The wear rates from the electromechanical and pneumatic knee simulators were not significantly different, with wear rates of 2.6 ± 0.9 and 2.7 ± 0.9 mm 3 /million cycles (MC; mean ± 95% confidence interval, p = 0.99) and 5.4 ± 1.4 and 6.7 ± 1.5 mm 3 /MC (mean ± 95 confidence interval, p = 0.54) from the electromechanical and pneumatic simulators under intermediate levels (maximum 5 mm) and high levels (maximum 10 mm) of anterior-posterior displacements, respectively. However, the output kinematic profiles of the control system, which drive the motion of the simulator, followed the input kinematic profiles more closely on the electromechanical simulator than the pneumatic simulator. In addition, the electromechanical simulator was capable of following kinematic and loading input cycles within the tolerances of the international standard requirements (ISO 14243-3). The new-generation electromechanical knee simulator with fully independent control has the potential to be used for a much wider range of kinematic conditions, including high-flexion and other severe conditions, due to its improved capability and performance in comparison to the previously used pneumatic-controlled simulators.

  5. A comparison between electromechanical and pneumatic-controlled knee simulators for the investigation of wear of total knee replacements

    PubMed Central

    Abdelgaied, Abdellatif; Fisher, John; Jennings, Louise M

    2017-01-01

    More robust preclinical experimental wear simulation methods are required in order to simulate a wider range of activities, observed in different patient populations such as younger more active patients, as well as to fully meet and be capable of going well beyond the existing requirements of the relevant international standards. A new six-station electromechanically driven simulator (Simulation Solutions, UK) with five fully independently controlled axes of articulation for each station, capable of replicating deep knee bending as well as other adverse conditions, which can be operated in either force or displacement control with improved input kinematic following, has been developed to meet these requirements. This study investigated the wear of a fixed-bearing total knee replacement using this electromechanically driven fully independent knee simulator and compared it to previous data from a predominantly pneumatically controlled simulator in which each station was not fully independently controlled. In addition, the kinematic performance and the repeatability of the simulators have been investigated and compared to the international standard requirements. The wear rates from the electromechanical and pneumatic knee simulators were not significantly different, with wear rates of 2.6 ± 0.9 and 2.7 ± 0.9 mm3/million cycles (MC; mean ± 95% confidence interval, p = 0.99) and 5.4 ± 1.4 and 6.7 ± 1.5 mm3/MC (mean ± 95 confidence interval, p = 0.54) from the electromechanical and pneumatic simulators under intermediate levels (maximum 5 mm) and high levels (maximum 10 mm) of anterior–posterior displacements, respectively. However, the output kinematic profiles of the control system, which drive the motion of the simulator, followed the input kinematic profiles more closely on the electromechanical simulator than the pneumatic simulator. In addition, the electromechanical simulator was capable of following kinematic and loading input cycles within the tolerances of the international standard requirements (ISO 14243-3). The new-generation electromechanical knee simulator with fully independent control has the potential to be used for a much wider range of kinematic conditions, including high-flexion and other severe conditions, due to its improved capability and performance in comparison to the previously used pneumatic-controlled simulators. PMID:28661228

  6. A Comparison of Linking Methods for Estimating National Trends in International Comparative Large-Scale Assessments in the Presence of Cross-national DIF

    ERIC Educational Resources Information Center

    Sachse, Karoline A.; Roppelt, Alexander; Haag, Nicole

    2016-01-01

    Trend estimation in international comparative large-scale assessments relies on measurement invariance between countries. However, cross-national differential item functioning (DIF) has been repeatedly documented. We ran a simulation study using national item parameters, which required trends to be computed separately for each country, to compare…

  7. The Effectiveness of Web-Based Foreign Exchange Trading Simulation in an International Finance Course

    ERIC Educational Resources Information Center

    Chou, Chen-Huei; Liu, Hao-Chen

    2013-01-01

    The purpose of this article is to study if trading simulation is an effective tool to increase students' knowledge of the foreign exchange market. We developed a real-time multiuser web-based trading system that replicates an electronic brokerage foreign exchange market. To assess the effectiveness of the program, we conducted surveys in three…

  8. Reply to Comment by Laprise on 'the Added Value to Global Model Projections of Climate Change by Dynamical Downscaling: a Case Study over the Continental U.S. Using the GISS-ModelE2 and WRF Models'

    NASA Technical Reports Server (NTRS)

    Shindell, Drew Todd; Racherla, Pavan; Milly, George Peter

    2014-01-01

    In his comment, Laprise raises several points that we agree merit consideration. His primary critique is that our study [Racherla et al., 2012] tested the ability of the WRF regional climate model to reproduce historical temperature and precipitation change relative to the driving global climate model (GCM) using only a single simulation rather than an ensemble. He asserts that the observed changes are smaller than the internal variability in the climate system (i.e., not statistically significant) and that thus a single simulation should not necessarily be able to capture the observations. Laprise points out that the statistical signal is reduced for a multi-decadal trend such as the one we analyzed in comparison with mean climatology and cites two studies showing that for particular climate parameters it can take any years for a signal to be discerned over internal variability. He states that The results of theexperiment as designed were strongly influenced by the presence of internal variability and sampling errors,which masked the rather small climate changes that may have occurred as a consequence of changes inforcing during the period considered. While Laprise discusses statistics in general terms at some length, for the actual climate trends examined in our study, he offers no evidence that the forced signal was smallcompared with internal variability. The two studies he cites [de Ela et al., 2013; Maraun, 2013] do not provide convincing evidence as they concern climate variables averaged over different times and areas. One in fact examines extreme precipitation events, which by definition are rare and thus have a lower significance level. We accept the general point that it is important to consider internal variability, and as noted in our paper we agree that an ensemble of simulations is in principle an optimal, though computationally expensive, approach. While we did not present the statistical significance of the observations in our original paper, we have now evaluated those for the regional temperature trends used in our study to evaluate the added value of WRF and thus can analyze data as to the magnitude of the trends with respect to internal variability.

  9. Simulation in the Executive Suite: Lessons Learned for Building Patient Safety Leadership.

    PubMed

    Rosen, Michael A; Goeschel, Christine A; Che, Xin-Xuan; Fawole, Joseph Oluyinka; Rees, Dianne; Curran, Rosemary; Gelinas, Lillee; Martin, Jessica N; Kosel, Keith C; Pronovost, Peter J; Weaver, Sallie J

    2015-12-01

    Simulation is a powerful learning tool for building individual and team competencies of frontline health care providers with demonstrable impact on performance. This article examines the impact of simulation in building strategic leadership competencies for patient safety and quality among executive leaders in health care organizations. We designed, implemented, and evaluated a simulation as part of a larger safety leadership network meeting for executive leaders. This simulation targeted knowledge competencies of governance priority, culture of continuous improvement, and internal transparency and feedback. Eight teams of leaders in health care organizations-a total of 55 participants-participated in a 4-hour session. Each team performed collectively as a new chief executive officer (CEO) tasked with a goal of rescuing a hospital with a failing safety record. Teams worked on a modifiable simulation board reflecting the current dysfunctional organizational structure of the simulated hospital. They assessed and redesigned accountability structures based on information acquired in encounter sessions with confederates playing the role of internal staff and external consultants. Data were analyzed, and results are presented as qualitative themes arising from the simulation exercise, participant reaction data, and performance during the simulation. Key findings include high degrees of variability in solutions developed for the dysfunctional hospital system and generally positive learner reactions to the simulation experience. This study illustrates the potential value of simulation as a mechanism for learning and strategy development for executive leaders grappling with patient safety issues. Future research should explore the cognitive or functional fidelity of organizational simulations and the use of custom scenarios for strategic planning.

  10. Promoting Simulation Globally: Networking with Nursing Colleagues Across Five Continents.

    PubMed

    Alfes, Celeste M; Madigan, Elizabeth A

    Simulation education is gaining momentum internationally and may provide the opportunity to enhance clinical education while disseminating evidence-based practice standards for clinical simulation and learning. There is a need to develop a cohesive leadership group that fosters support, networking, and sharing of simulation resources globally. The Frances Payne Bolton School of Nursing at Case Western Reserve University has had the unique opportunity to establish academic exchange programs with schools of nursing across five continents. Although the joint and mutual simulation activities have been extensive, each international collaboration has also provided insight into the innovations developed by global partners.

  11. Attentional focus and performance anxiety: effects on simulated race-driving performance and heart rate variability.

    PubMed

    Mullen, Richard; Faull, Andrea; Jones, Eleri S; Kingston, Kieran

    2012-01-01

    Previous studies have demonstrated that an external focus can enhance motor learning compared to an internal focus. The benefits of adopting an external focus are attributed to the use of less effortful automatic control processes, while an internal focus relies upon more effort-intensive consciously controlled processes. The aim of this study was to compare the effectiveness of a distal external focus with an internal focus in the acquisition of a simulated driving task and subsequent performance in a competitive condition designed to increase state anxiety. To provide further evidence for the automatic nature of externally controlled movements, the study included heart rate variability (HRV) as an index of mental effort. Sixteen participants completed eight blocks of four laps in either a distal external or internal focus condition, followed by two blocks of four laps in the competitive condition. During acquisition, the performance of both groups improved; however, the distal external focus group outperformed the internal focus group. The poorer performance of the internal focus group was accompanied by a larger reduction in HRV, indicating a greater investment of mental effort. In the competition condition, state anxiety increased, and for both groups, performance improved as a function of the increased anxiety. Increased heart rate and self-reported mental effort accompanied the performance improvement. The distal external focus group also outperformed the internal focus group across both neutral and competitive conditions and this more effective performance was again associated with lower levels of HRV. Overall, the results offer support for the suggestion that an external focus promotes a more automatic mode of functioning. In the competitive condition, both foci enhanced performance and while the improved performance may have been achieved at the expense of greater compensatory mental effort, this was not reflected in HRV scores.

  12. The current status of the simulation theory of cognition.

    PubMed

    Hesslow, Germund

    2012-01-05

    It is proposed that thinking is simulated interaction with the environment. Three assumptions underlie this 'simulation' theory of cognitive function. Firstly, behaviour can be simulated in the sense that we can activate motor structures, as during a normal overt action, but suppress its execution. Secondly, perception can be simulated by internal activation of sensory cortex in a way that resembles its normal activation during perception of external stimuli. The third assumption ('anticipation') is that both overt and simulated actions can elicit perceptual simulation of their most probable consequences. A large body of evidence, mainly from neuroimaging studies, that supports these assumptions, is reviewed briefly. The theory is ontologically parsimonious and does not rely on standard cognitivist constructs such as internal models or representations. It is argued that the simulation approach can explain the relations between motor, sensory and cognitive functions and the appearance of an inner world. It also unifies and explains important features of a wide variety of cognitive phenomena such as memory and cognitive maps. Novel findings from recent developments in memory research on the similarity of imaging and memory and on the role of both prefrontal cortex and sensory cortex in declarative memory and working memory are predicted by the theory and provide striking support for it. This article is part of a Special Issue entitled "The Cognitive Neuroscience". Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Development and psychometric testing of the satisfaction with Cultural Simulation Experience Scale.

    PubMed

    Courtney-Pratt, Helen; Levett-Jones, Tracy; Lapkin, Samuel; Pitt, Victoria; Gilligan, Conor; Van der Riet, Pamela; Rossiter, Rachel; Jones, Donovan; Everson, Naleya

    2015-11-01

    Decreasing the numbers of adverse health events experienced by people from culturally diverse backgrounds rests, in part, on the ability of education providers to provide quality learning experiences that support nursing students in developing cultural competence, an essential professional attribute. This paper reports on the implementation and evaluation of an immersive 3D cultural empathy simulation. The Satisfaction with Cultural Simulation Experience Scale used in this study was adapted and validated as the first stage of this study. Exploratory factor analysis and confirmatory factor analysis were undertaken to investigate the psychometric properties of the scale using two randomly-split sub-samples. Cronbach's Alpha was used to examine internal consistency reliability. Descriptive statistics were used for analysis of mean satisfaction scores and qualitative comments to open-ended questions were analysed and coded. A purposive sample (n = 497) of second of nursing students participated in the study. The overall Cronbach's alpha for the scale was 0.95 and each subscale demonstrated high internal consistency: 0.92; 0.92; 0.72 respectively. The mean satisfaction score was 4.64 (SD 0.51) out of a maximum of 5 indicating a high level of participant satisfaction with the simulation. Three factors emerged from qualitative analysis: "Becoming culturally competent", "Learning from the debrief" and "Reflecting on practice". The cultural simulation was highly regarded by students. Psychometric testing of the Satisfaction with Cultural Simulation Experience Scale demonstrated that it is a reliable instrument. However, there is room for improvement and further testing in other contexts is therefore recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. At center left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. On the left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  16. Wrist Arthroscopy: Can We Gain Proficiency Through Knee Arthroscopy Simulation?

    PubMed

    Ode, Gabriella; Loeffler, Bryan; Chadderdon, Robert Christopher; Haines, Nikkole; Scannell, Brian; Patt, Joshua; Gaston, Glenn

    2018-05-02

    Wrist arthroscopy is a challenging discipline with limited training exposure during residency. The purpose of this study was to evaluate the effectiveness of virtual knee arthroscopy simulation training for gaining proficiency in wrist arthroscopy. Participants were recorded performing a cadaveric wrist arthroscopy simulation. The residents then practiced knee arthroscopy on a virtual reality simulator and repeated the wrist arthroscopy simulation. All videos were blinded prior to assessment. Proficiency was graded using the Arthroscopic Surgery Skill Evaluation Tool global rating scale. In addition, participants were asked to complete a survey assessing the value of the virtual reality knee arthroscopy simulator for wrist arthroscopy. Orthopaedic Surgery Residency Program, Carolinas Medical Center, a large, public, nonprofit hospital located in Charlotte, North Carolina. Orthopaedic residents at our center were asked to participate in the simulation training. Participation was voluntary and nonincentivized. All orthopaedic residents at our institution (N = 27) agreed to participate. In total, there were 10 Intern (PGY-0 and PGY-1), 10 Junior (PGY-2 and PGY-3), and 7 Senior (PGY-4 and PGY-5) residents. In addition, a fellowship-trained hand surgeon was recruited to participate in the study, performing the wrist arthoscopy simulation. Two additional fellowship-trained hand surgeons, for a total of 3, assessed the blinded videos. There was a trend toward better wrist Arthroscopic Surgery Skill Evaluation Tool scores by training level, although the difference was not statistically significant. Interns improved by an average of 1.8 points between baseline and postknee simulation tests. Junior and senior residents decreased by 1.6 and 5.0 points, respectively. Knee arthroscopy simulation training did not objectively improve wrist arthroscopy proficiency among residents. A wrist-specific arthroscopy simulation program is needed if measurable competence through simulation is desired. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method.

    PubMed

    Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P

    2015-03-01

    Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.

  18. 2ND International Symposium on HIFU Therapy HIFU Seattle 2002

    DTIC Science & Technology

    2002-12-01

    Drug Delivery, and Sonodynamic Therapy. One can see from this topic coverage that the symposium was largely on HIFU (essentially the first five topics), yet also broad enough to cover most aspects of therapeutic ultrasound ....This book is a compilation of papers presented at the 2nd International Symposium on Therapeutic Ultrasound , held in Seattle, Washington, July 29...number of topic categories, viz., Clinical Studies, Laboratory Studies, Simulation and Monitoring, Dosimetry, Engineering, Lithotripsy, Ultrasound -Enhanced

  19. State of Simulation in Healthcare Education: An Initial Survey in Beijing

    PubMed Central

    Zhao, Zichen; Niu, Pengfei; Ji, Xiang

    2017-01-01

    Background and Objectives: In 2013, medical error was the third leading cause of death in the United States.1 In China, as in the case with the United States, training and assessment are developing as a strategy to reduce the occurrence of such errors. The objective of this study was to assess the current state of the use of simulation-based training in Beijing and to explore the barriers to further development. Methods: This study included hospitals in Beijing accredited by the Standardized Residency Training (SRT) program. The questionnaire was designed online and distributed to the SRT management departments by e-mail or instant message. Results: Thirty hospitals were invited to participate in this survey, and 15 responses were completed and met the inclusion criteria. Task trainers (15/15), full-scale mannequins (14/15), standardized patients (12/15), and virtual reality workstations (11/15) were the most common types of simulation modalities available for use. Among the given specialties for SRT, the availability of simulation courses was 2/2 for pediatric internal medicine, 1/1 for pediatric surgery, 10/11 for surgery, 11/14 for internal medicine, 7/9 for anesthesiology, 6/8 for emergency medicine, and 3/9 for obstetrics/gynecology. Of the 13 institutions with available simulation curricula, 12/13 had simulation focused on proficiency-based skill training, 11/13 had medical knowledge learning, 10/13 had skill competency assessment. The main targeted trainees in these hospitals were residents (or postgraduate residents) and medical students (or interns). The top 2 barriers were the shortage of sustainable financial resources (12/15) and advocacy from their institutional authorities (7/15). Conclusion: It is evident that there is a need for more development of training facilities, and for training the “trainers” and administrators. Financial funding, curricular design, and research seem to be crucial for building a long-term, sustainable, effective program. PMID:28144123

  20. State of Simulation in Healthcare Education: An Initial Survey in Beijing.

    PubMed

    Zhao, Zichen; Niu, Pengfei; Ji, Xiang; Sweet, Robert M

    2017-01-01

    In 2013, medical error was the third leading cause of death in the United States. 1 In China, as in the case with the United States, training and assessment are developing as a strategy to reduce the occurrence of such errors. The objective of this study was to assess the current state of the use of simulation-based training in Beijing and to explore the barriers to further development. This study included hospitals in Beijing accredited by the Standardized Residency Training (SRT) program. The questionnaire was designed online and distributed to the SRT management departments by e-mail or instant message. Thirty hospitals were invited to participate in this survey, and 15 responses were completed and met the inclusion criteria. Task trainers (15/15), full-scale mannequins (14/15), standardized patients (12/15), and virtual reality workstations (11/15) were the most common types of simulation modalities available for use. Among the given specialties for SRT, the availability of simulation courses was 2/2 for pediatric internal medicine, 1/1 for pediatric surgery, 10/11 for surgery, 11/14 for internal medicine, 7/9 for anesthesiology, 6/8 for emergency medicine, and 3/9 for obstetrics/gynecology. Of the 13 institutions with available simulation curricula, 12/13 had simulation focused on proficiency-based skill training, 11/13 had medical knowledge learning, 10/13 had skill competency assessment. The main targeted trainees in these hospitals were residents (or postgraduate residents) and medical students (or interns). The top 2 barriers were the shortage of sustainable financial resources (12/15) and advocacy from their institutional authorities (7/15). It is evident that there is a need for more development of training facilities, and for training the "trainers" and administrators. Financial funding, curricular design, and research seem to be crucial for building a long-term, sustainable, effective program.

  1. Improvement of Immediate Performance in Neonatal Resuscitation Through Rapid Cycle Deliberate Practice Training.

    PubMed

    Magee, Maclain J; Farkouh-Karoleski, Christiana; Rosen, Tove S

    2018-04-01

    Simulation training is an effective method to teach neonatal resuscitation (NR), yet many pediatrics residents do not feel comfortable with NR. Rapid cycle deliberate practice (RCDP) allows the facilitator to provide debriefing throughout the session. In RCDP, participants work through the scenario multiple times, eventually reaching more complex tasks once basic elements have been mastered. We determined if pediatrics residents have improved observed abilities, confidence level, and recall in NR after receiving RCDP training compared to the traditional simulation debriefing method. Thirty-eight pediatrics interns from a large academic training program were randomized to a teaching simulation session using RCDP or simulation debriefing methods. The primary outcome was the intern's cumulative score on the initial Megacode Assessment Form (MCAF). Secondary outcome measures included surveys of confidence level, recall MCAF scores at 4 months, and time to perform critical interventions. Thirty-four interns were included in analysis. Interns in the RCDP group had higher initial MCAF scores (89% versus 84%, P  < .026), initiated positive pressure ventilation within 1 minute (100% versus 71%, P  < .05), and administered epinephrine earlier (152 s versus 180 s, P  < .039). Recall MCAF scores were not different between the 2 groups. Immediately following RCDP interns had improved observed abilities and decreased time to perform critical interventions in NR simulation as compared to those trained with the simulation debriefing. RCDP was not superior in improving confidence level or retention.

  2. Cardiovascular simulator improvement: pressure versus volume loop assessment.

    PubMed

    Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Leme, Juliana; Legendre, Daniel; Bock, Eduardo; Lucchi, Julio Cesar

    2011-05-01

    This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  4. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  5. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  6. Practical Unitary Simulator for Non-Markovian Complex Processes

    NASA Astrophysics Data System (ADS)

    Binder, Felix C.; Thompson, Jayne; Gu, Mile

    2018-06-01

    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this Letter, we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models, it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.

  7. I Spy with My Little Eye: Jurors' Detection of Internal Validity Threats in Expert Evidence

    PubMed Central

    McAuliff, Bradley D.; Duckworth, Tejah D.

    2010-01-01

    This experiment examined whether jury-eligible community members (N = 223) were able to detect internally invalid psychological science presented at trial. Participants read a simulated child sexual abuse case in which the defense expert described a study he had conducted on witness memory and suggestibility. We varied the study's internal validity (valid, missing control group, confound, and experimenter bias) and publication status (published, unpublished). Expert evidence quality ratings were higher for the valid versus missing control group version only. Publication increased ratings of defendant guilt when the study was missing a control group. Variations in internal validity did not influence perceptions of child victim credibility or police interview quality. Participants' limited detection of internal validity threats underscores the need to examine the effectiveness of traditional legal safeguards against junk science in court and improve the scientific reasoning ability of lay people and legal professionals. PMID:20162342

  8. Simulations in nursing practice: toward authentic leadership.

    PubMed

    Shapira-Lishchinsky, Orly

    2014-01-01

    Aim  This study explores nurses' ethical decision-making in team simulations in order to identify the benefits of these simulations for authentic leadership. Background  While previous studies have indicated that team simulations may improve ethics in the workplace by reducing the number of errors, those studies focused mainly on clinical aspects and not on nurses' ethical experiences or on the benefits of authentic leadership. Methods  Fifty nurses from 10 health institutions in central Israel participated in the study. Data about nurses' ethical experiences were collected from 10 teams. Qualitative data analysis based on Grounded Theory was applied, using the atlas.ti 5.0 software package. Findings  Simulation findings suggest four main benefits that reflect the underlying components of authentic leadership: self-awareness, relational transparency, balanced information processing and internalized moral perspective. Conclusions  Team-based simulation as a training tool may lead to authentic leadership among nurses. Implications for nursing management  Nursing management should incorporate team simulations into nursing practice to help resolve power conflicts and to develop authentic leadership in nursing. Consequently, errors will decrease, patients' safety will increase and optimal treatment will be provided. © 2012 John Wiley & Sons Ltd.

  9. Computer simulation of the effects of shoe cushioning on internal and external loading during running impacts.

    PubMed

    Miller, Ross H; Hamill, Joseph

    2009-08-01

    Biomechanical aspects of running injuries are often inferred from external loading measurements. However, previous research has suggested that relationships between external loading and potential injury-inducing internal loads can be complex and nonintuitive. Further, the loading response to training interventions can vary widely between subjects. In this study, we use a subject-specific computer simulation approach to estimate internal and external loading of the distal tibia during the impact phase for two runners when running in shoes with different midsole cushioning parameters. The results suggest that: (1) changes in tibial loading induced by footwear are not reflected by changes in ground reaction force (GRF) magnitudes; (2) the GRF loading rate is a better surrogate measure of tibial loading and stress fracture risk than the GRF magnitude; and (3) averaging results across groups may potentially mask differential responses to training interventions between individuals.

  10. [3-D finite element modeling of internal fixation of mandibular mental fracture and the design of boundary constraints].

    PubMed

    Luo, Xiaohui; Wang, Hang; Fan, Yubo

    2007-04-01

    This study was aimed to develop a 3-D finite element (3-D FE) model of the mental fractured mandible and design the boundary constrains. The CT images from a health volunteer were used as the original information and put into ANSYS program to build a 3-D FE model. The model of the miniplate and screw which were used for the internal fixation was established by Pro/E. The boundary constrains of different muscle loadings were used to simulate the 3 functional conditions of the mandible. A 3-D FE model of mental fractured mandible under the miniplate-screw internal fixation system was constructed. And by the boundary constraints, the 3 biting conditions were simulated and the model could serve as a foundation on which to analyze the biomechanical behavior of the fractured mandible.

  11. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 1: Secondary Role of the Anterolateral Ligament in the Setting of an Anterior Cruciate Ligament Injury.

    PubMed

    Rasmussen, Matthew T; Nitri, Marco; Williams, Brady T; Moulton, Samuel G; Cruz, Raphael Serra; Dornan, Grant J; Goldsmith, Mary T; LaPrade, Robert F

    2016-03-01

    Recent investigations have described the structural and functional behavior of the anterolateral ligament (ALL) of the knee through pull-apart and isolated sectioning studies. However, the secondary stabilizing role of the ALL in the setting of a complete anterior cruciate ligament (ACL) tear has not been fully defined for common simulated clinical examinations, such as the pivot-shift, anterior drawer, and internal rotation tests. Combined sectioning of the ALL and ACL would lead to increased internal rotation and increased axial plane translation during a pivot-shift test when compared with isolated sectioning of the ACL. Controlled laboratory study. Ten fresh-frozen human cadaveric knees were subjected to a simulated pivot-shift test with coupled 10-N·m valgus and 5-N·m internal rotation torques from 0° to 60° of knee flexion and a 5-N·m internal rotation torque and an 88-N anterior tibial load, both from 0° to 120° of knee flexion via a 6 degrees of freedom robotic system. Kinematic changes were measured and compared with the intact state for isolated sectioning of the ACL and combined sectioning of the ACL and ALL. Combined sectioning of the ACL and ALL resulted in a significant increase in axial plane tibial translation during a simulated pivot shift at 0°, 15°, 30°, and 60° of knee flexion and a significant increase in internal rotation at 0°, 15°, 30°, 45°, 60°, 75°, 90°, 105°, and 120° when compared with the intact and ACL-deficient states. Based on the model results, ALL sectioning resulted in an additional 2.1 mm (95% CI, 1.4-2.9 mm; P < .001) of axial plane translation during the pivot shift when compared with ACL-only sectioning, when pooling evidence over all flexion angles. Likewise, when subjected to IR torque, the ACL+ALL-deficient state resulted in an additional 3.2° of internal rotation (95% CI, 2.4°-4.1°; P < .001) versus the intact state, and the additional sectioning of the ALL increased internal rotation by 2.7° (95% CI, 1.8°-3.6°; P < .001) versus the ACL-deficient state. The results of this study confirm the ALL as an important lateral knee structure that provides rotatory stability to the knee. Specifically, the ALL was a significant secondary stabilizer throughout flexion during an applied internal rotation torque and simulated pivot-shift test in the context of an ACL-deficient knee. Residual internal rotation and a positive pivot shift after ACL reconstruction may be attributed to ALL injury. For these patients, surgical treatment of an ALL tear may be considered. © 2015 The Author(s).

  12. PREFACE: Proceedings of the 2nd International Conference on Quantum Simulators and Design (Tokyo, Japan, 31 May-3 June 2008) Proceedings of the 2nd International Conference on Quantum Simulators and Design (Tokyo, Japan, 31 May-3 June 2008)

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Tsuneyuki, Shinji

    2009-02-01

    This special issue of Journal of Physics: Condensed Matter comprises selected papers from the proceedings of the 2nd International Conference on Quantum Simulators and Design (QSD2008) held in Tokyo, Japan, between 31 May and 3 June 2008. This conference was organized under the auspices of the Development of New Quantum Simulators and Quantum Design Grant-in-Aid for Scientific Research on Priority Areas, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). The conference focused on the development of first principles electronic structure calculations and their applications. The aim was to provide an opportunity for discussion on the progress in computational materials design and, in particular, the development of quantum simulators and quantum design. Computational materials design is a computational approach to the development of new materials. The essential ingredient is the use of quantum simulators to design a material that meets a given specification of properties and functionalities. For this to be successful, the quantum simulator should be very reliable and be applicable to systems of realistic size. During the conference, new methods of quantum simulation and quantum design were discussed including methods beyond the local density approximation of density functional theory, order-N methods, methods dealing with excitations and reactions, and the application of these methods to the design of novel materials, devices and systems. The conference provided an international forum for experimental and theoretical researchers to exchange ideas. A total of 220 delegates from eight countries participated in the conference. There were 13 invited talks, ten oral presentations and 120 posters. The 3rd International Conference on Quantum Simulators and Design will be held in Germany in the autumn of 2011.

  13. Los Angeles International Airport Runway Incursion Studies: Phase III--Center-Taxiway Simulation

    NASA Technical Reports Server (NTRS)

    Madson, Michael D.

    2004-01-01

    Phase III of the Los Angeles International Airport Runway Incursion Studies was conducted, under an agreement with HNTB Corporation, at the NASA Ames FutureFlight Central (FFC) facility in June 2003. The objective of the study was the evaluation of a new center-taxiway concept at LAX. This study is an extension of the Phase I and Phase II studies previously conducted at FFC. This report presents results from Phase III of the study, in which a center-taxiway concept between runways 25L and 25R was simulated and evaluated. Phase III data were compared objectively against the Baseline data. Subjective evaluations by participating LAX controllers were obtained with regard to workload, efficiency, and safety criteria. To facilitate a valid comparison between Baseline and Phase III data, the same scenarios were used for Phase III that were tested during Phases I and II. This required briefing participating controllers on differences in airport and airline operations between 2001 and today.

  14. The Emergence of Simulation and Gaming.

    ERIC Educational Resources Information Center

    Becker, Henk A.

    1980-01-01

    Describes the historical and international development of simulation and gaming in terms of simulation as analytical models, and games as communicative models; and forecasts possible futures of simulation and gaming. (CMV)

  15. Designing an International Joint Venture Negotiation Game.

    ERIC Educational Resources Information Center

    Kenkel, Phil; And Others

    1996-01-01

    Evaluates a simulation game that models management problems encountered in negotiating and managing international joint ventures. Designed to instruct executives of state-owned agribusinesses in Indonesia in abstract concepts such as partner rapport, transfer price conflicts, and marketing disagreements, its success suggests that simulation games…

  16. Turmoil: A Simulation Game Dealing With International Oil Trade

    ERIC Educational Resources Information Center

    Kelly, Robert

    1976-01-01

    This simulation game is intended to help secondary students understand the complexities of the international oil trade. Students represent nations involved in trading oil and other commodities. The game takes about five classroom periods to teach. The article includes all essential materials. (Author/RM)

  17. Solid rocket booster performance evaluation model. Volume 3: Sample case. [propellant combustion simulation/internal ballistics

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The solid rocket booster performance evaluation model (SRB-11) is used to predict internal ballistics in a sample motor. This motor contains a five segmented grain. The first segment has a 14 pointed star configuration with a web which wraps partially around the forward dome. The other segments are circular in cross-section and are tapered along the interior burning surface. Two of the segments are inhibited on the forward face. The nozzle is not assumed to be submerged. The performance prediction is broken into two simulation parts: the delivered end item specific impulse and the propellant properties which are required as inputs for the internal ballistics module are determined; and the internal ballistics for the entire burn duration of the motor are simulated.

  18. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation

    PubMed Central

    Ozaki, Y.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.

    2017-01-01

    Abstract Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. PMID:28339846

  19. A Randomized Trial Comparing Didactics, Demonstration, and Simulation for Teaching Teamwork to Medical Residents

    PubMed Central

    Keriwala, Raj D.; Clune, Jennifer K.; Rice, Todd W.; Pugh, Meredith E.; Wheeler, Arthur P.; Miller, Alison N.; Banerjee, Arna; Terhune, Kyla; Bastarache, Julie A.

    2015-01-01

    Rationale: Effective teamwork is fundamental to the management of medical emergencies, and yet the best method to teach teamwork skills to trainees remains unknown. Objectives: In a cohort of incoming internal medicine interns, we tested the hypothesis that expert demonstration of teamwork principles and participation in high-fidelity simulation would each result in objectively assessed teamwork behavior superior to traditional didactics. Methods: This was a randomized, controlled, parallel-group trial comparing three teamwork teaching modalities for incoming internal medicine interns. Participants in a single-day orientation at the Vanderbilt University Center for Experiential Learning and Assessment were randomized 1:1:1 to didactic, demonstration-based, or simulation-based instruction and then evaluated in their management of a simulated crisis by five independent, blinded observers using the Teamwork Behavioral Rater score. Clinical performance was assessed using the American Heart Association Advanced Cardiac Life Support algorithm and a novel “Recognize, Respond, Reassess” score. Measurements and Main Results: Participants randomized to didactics (n = 18), demonstration (n = 17), and simulation (n = 17) were similar at baseline. The primary outcome of average overall Teamwork Behavioral Rater score for those who received demonstration-based training was similar to simulation participation (4.40 ± 1.15 vs. 4.10 ± 0.95, P = 0.917) and significantly higher than didactic instruction (4.40 ± 1.15 vs. 3.10 ± 0.51, P = 0.045). Clinical performance scores were similar between the three groups and correlated only weakly with teamwork behavior (coefficient of determination [Rs2] = 0.267, P < 0.001). Conclusions: Among incoming internal medicine interns, teamwork training by expert demonstration resulted in similar teamwork behavior to participation in high-fidelity simulation and was more effective than traditional didactics. Clinical performance was largely independent of teamwork behavior and did not differ between training modalities. PMID:25730661

  20. New Communitarianism Movements and Complex Utopia

    NASA Astrophysics Data System (ADS)

    Akdeniz, K. Gediz

    Simulation is a rapidly growing field in social sciences. Simulation theories in social sciences are considered to critique social dynamics and societies which are mostly simulated by media, cinema, TV, internet, etc. Recently we (Akdeniz KG, Disorder in complex human system. In: Fritzsch H, Phua KK (eds) Singapore: proceedings of the conference in Honour of Murray Gell-Mann's 80th birthday quantum mechanics, elementary particles, quantum cosmology and complexity. World Scientific Publishing, Hackensack, pp 630-637, 2009) purposed a simulation theory as a critique theory to investigate disordered human behaviors. In this theory, "Disorder-Sensitive Human Behaviors (DSHB) Simulation Theory", chaotic awareness is also considered as a reality principle in simulation world to complete Baudrillard Simulation Theory (Baudrillard J, Simulacra and simulation. University of Michigan Press, Michigan, 1995). We call the emergence of this reality as zuhur which is different than simulacra. More recently we proposed the complex utopia (Akdeniz KG, From Simulacra to Zuhur in Complex Utopia. 11th International Conference of the Utopian Studies Society, Lublin, 2010; Akdeniz KG, The new identities of the physicist: cyborg-physicist and post-physicist. In: Proceedings of the conference of world international conference of technology and education, Beirut, 2010) to critique the complex societies and communities in simulation world. The challenging agents in the complex utopia are both simulacra and zuhur. In this paper we would like to review "What is the complex utopia?" And we shall critique some global events in framework of complex utopia with particular examples in socio-economic and political contexts.

  1. Numerical Simulation Of Flow Through An Artificial Heart

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Kutler, Paul; Kwak, Dochan; Kiris, Centin

    1991-01-01

    Research in both artificial hearts and fluid dynamics benefits from computational studies. Algorithm that implements Navier-Stokes equations of flow extended to simulate flow of viscous, incompressible blood through articifial heart. Ability to compute details of such flow important for two reasons: internal flows with moving boundaries of academic interest in their own right, and many of deficiencies of artificial hearts attributable to dynamics of flow.

  2. A study of workstation computational performance for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Cleveland, Jeff I., II

    1995-01-01

    With recent advances in microprocessor technology, some have suggested that modern workstations provide enough computational power to properly operate a real-time simulation. This paper presents the results of a computational benchmark, based on actual real-time flight simulation code used at Langley Research Center, which was executed on various workstation-class machines. The benchmark was executed on different machines from several companies including: CONVEX Computer Corporation, Cray Research, Digital Equipment Corporation, Hewlett-Packard, Intel, International Business Machines, Silicon Graphics, and Sun Microsystems. The machines are compared by their execution speed, computational accuracy, and porting effort. The results of this study show that the raw computational power needed for real-time simulation is now offered by workstations.

  3. Dynamics of internal models in game players

    NASA Astrophysics Data System (ADS)

    Taiji, Makoto; Ikegami, Takashi

    1999-10-01

    A new approach for the study of social games and communications is proposed. Games are simulated between cognitive players who build the opponent’s internal model and decide their next strategy from predictions based on the model. In this paper, internal models are constructed by the recurrent neural network (RNN), and the iterated prisoner’s dilemma game is performed. The RNN allows us to express the internal model in a geometrical shape. The complicated transients of actions are observed before the stable mutually defecting equilibrium is reached. During the transients, the model shape also becomes complicated and often experiences chaotic changes. These new chaotic dynamics of internal models reflect the dynamical and high-dimensional rugged landscape of the internal model space.

  4. PREFACE: The International Workshop on Positron Studies of Defects 2014

    NASA Astrophysics Data System (ADS)

    Sugita, Kazuki; Shirai, Yasuharu

    2016-01-01

    The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 14-19 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows: • Positron studies of defects in semiconductors and oxides • Positron studies of defects in metals • New experimental methods and equipment • Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects • Positron studies of defects in combination with complementary methods • Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films • Nanostructures and amorphous materials

  5. Framework for incorporating simulation into urology training.

    PubMed

    Arora, Sonal; Lamb, Benjamin; Undre, Shabnam; Kneebone, Roger; Darzi, Ara; Sevdalis, Nick

    2011-03-01

    • Changes to working hours, new technologies and increased accountability have rendered the need for alternative training environments for urologists. • Simulation offers a promising arena for learning to take place in a safe, realistic setting. • Despite its benefits, the incorporation of simulation into urological training programmes remains minimal. • The current status and future directions of simulation for training in technical and non-technical skills are reviewed as they pertain to urology. • A framework is presented for how simulation-based training could be incorporated into the entire urological curriculum. • The literature on simulation in technical and non-technical skills training is reviewed, with a specific focus upon urology. • To fully integrate simulation into a training curriculum, its possibilities for addressing all the competencies required by a urologist must be realized. • At an early stage of training, simulation has been used to develop basic technical skills and cognitive skills, such as decision-making and communication. • At an intermediate stage, the studies focus upon more advanced technical skills learnt with virtual reality simulators. • Non-technical skills training would include leadership and could be delivered with in situ models. • At the final stage, experienced trainees can practise technical and non-technical skills in full crisis simulations situated within a fully-simulated operating rooms. • Simulation can provide training in the technical and non-technical skills required to be a competent urologist. • The framework presented may guide how best to incorporate simulation into training curricula. • Future work should determine whether acquired skills transfer to clinical practice and improve patient care. © 2010 THE AUTHORS. BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.

  6. Zero-gravity movement studies

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  7. Peptide chain dynamics in light and heavy water: zooming in on internal friction.

    PubMed

    Schulz, Julius C F; Schmidt, Lennart; Best, Robert B; Dzubiella, Joachim; Netz, Roland R

    2012-04-11

    Frictional effects due to the chain itself, rather than the solvent, may have a significant effect on protein dynamics. Experimentally, such "internal friction" has been investigated by studying folding or binding kinetics at varying solvent viscosity; however, the molecular origin of these effects is hard to pinpoint. We consider the kinetics of disordered glycine-serine and α-helix forming alanine peptides and a coarse-grained protein folding model in explicit-solvent molecular dynamics simulations. By varying the solvent mass over more than two orders of magnitude, we alter only the solvent viscosity and not the folding free energy. Folding dynamics at the near-vanishing solvent viscosities accessible by this approach suggests that solvent and internal friction effects are intrinsically entangled. This finding is rationalized by calculation of the polymer end-to-end distance dynamics from a Rouse model that includes internal friction. An analysis of the friction profile along different reaction coordinates, extracted from the simulation data, demonstrates that internal as well as solvent friction varies substantially along the folding pathways and furthermore suggests a connection between friction and the formation of hydrogen bonds upon folding. © 2012 American Chemical Society

  8. A Study into the Impact of Physical Structures on the Runway Velocity Field at the Atlantic City International Airport

    NASA Astrophysics Data System (ADS)

    King, David, Jr.; Manson, Russell; Trout, Joseph; Decicco, Nicholas; Rios, Manny

    2015-04-01

    Wake vortices are generated by airplanes in flight. These vortices decay slowly and may persist for several minutes after their creation. These vortices and associated smaller scale turbulent structures present a hazard to incoming flights. It is for this reason that incoming flights are timed to arrive after these vortices have dissipated. Local weather conditions, mainly prevailing winds, can affect the transport and evolution of these vortices; therefore, there is a need to fully understand localized wind patterns at the airport-sized mircoscale. Here we have undertaken a computational investigation into the impacts of localized wind flows and physical structures on the velocity field at Atlantic City International Airport. The simulations are undertaken in OpenFOAM, an open source computational fluid dynamics software package, using an optimized geometric mesh of the airport. Initial conditions for the simulations are based on historical data with the option to run simulations based on projected weather conditions imported from the Weather Research & Forcasting (WRF) Model. Sub-grid scale turbulence is modeled using a Large Eddy Simulation (LES) approach. The initial results gathered from the WRF Model simulations and historical weather data analysis are presented elsewhere.

  9. Inability of CMIP5 Climate Models to Simulate Recent Multi-decadal Climate Change in the Tropical Pacific.

    NASA Astrophysics Data System (ADS)

    Power, S.; Delage, F.; Kociuba, G.; Wang, G.; Smith, I.

    2017-12-01

    Observed 15-year surface temperature trends beginning 1998 or later have attracted a great deal of interest because of an apparent slowdown in the rate of global warming, and contrasts between climate model simulations and observations of such trends. Many studies have addressed the statistical significance of these relatively short trends, whether they indicate a possible bias in models and the implications for global warming generally. Here we analyse historical and projected changes in 38 CMIP5 climate models. All of the models simulate multi-decadal warming in the Pacific over the past half-century that exceeds observed values. This stark difference cannot be fully explained by observed, internal multi-decadal climate variability, even if allowance is made for an apparent tendency for models to underestimate internal multi-decadal variability in the Pacific. We also show that CMIP5 models are not able to simulate the magnitude of the strengthening of the Walker Circulation over the past thirty years. Some of the reasons for these major shortcomings in the ability of models to simulate multi-decadal variability in the Pacific, and the impact these findings have on our confidence in global 21st century projections, will be discussed.

  10. Effects of crossflow in an internal-cooling channel on film cooling of a flat plate through compound-angle holes

    NASA Astrophysics Data System (ADS)

    Stratton, Zachary T.

    The film-cooling holes in turbine blades are fed from an internal cooling channel. This channel imposes a crossflow at the entrance of the holes that can significantly affect the performance of the cooling jets that emanate from those holes. In this study, CFD simulations based on steady RANS with the shear-stress transport (SST) and the realizable k-epsilon turbulence models were performed to study film cooling of a flat plate with cooling jets issuing from eight round holes with a compound angle of 45 degrees, where the coolant channel that fed the cooling jets was oriented perpendicular to the direction of the hot-gas flow. One case was also performed by using large-eddy simulation (LES) to get a sense of the unsteady nature of the flow. Operating conditions were chosen to match the laboratory conditions, which maintained a density ratio of 1.5 between the coolant and the hot gas. Parameters studied include internal crossflow direction and blowing ratios of 0.5, 1.0, and 1.5. Results obtained showed an unsteady vortex forms inside the hole, causing a side-to-side shedding of the coolant jet. Values of adiabatic effectiveness predicted by the CFD simulations were compared with experimentally measured values. Steady RANS was found to be inconsistent in its ability to predict adiabatic effectiveness with relative error ranging from 10% to over 100%. LES was able to predict adiabatic effectiveness with reasonable accuracy.

  11. Reproducibility of the Internal Load and Performance-Based Responses to Simulated Amateur Boxing.

    PubMed

    Thomson, Edward D; Lamb, Kevin L

    2017-12-01

    Thomson, ED and Lamb, KL. Reproducibility of the internal load and performance-based responses to simulated amateur boxing. J Strength Cond Res 31(12): 3396-3402, 2017-The aim of this study was to examine the reproducibility of the internal load and performance-based responses to repeated bouts of a three-round amateur boxing simulation protocol (boxing conditioning and fitness test [BOXFIT]). Twenty-eight amateur boxers completed 2 familiarization trials before performing 2 complete trials of the BOXFIT, separated by 4-7 days. To characterize the internal load, mean (HRmean) and peak (HRpeak) heart rate, breath-by-breath oxygen uptake (V[Combining Dot Above]O2), aerobic energy expenditure, excess carbon dioxide production (CO2excess), and ratings of perceived exertion were recorded throughout each round, and blood lactate determined post-BOXFIT. Additionally, an indication of the performance-based demands of the BOXFIT was provided by a measure of acceleration of the punches thrown in each round. Analyses revealed there were no significant differences (p > 0.05) between repeated trials in any round for all dependent measures. The typical error (coefficient variation %) for all but 1 marker of internal load (CO2excess) was 1.2-16.5% and reflected a consistency that was sufficient for the detection of moderate changes in variables owing to an intervention. The reproducibility of the punch accelerations was high (coefficient of variance % range = 2.1-2.7%). In general, these findings suggest that the internal load and performance-based efforts recorded during the BOXFIT are reproducible and, thereby, offer practitioners a method by which meaningful changes impacting on performance could be identified.

  12. Multi-scale study of condensation in water jets using ellipsoidal-statistical Bhatnagar-Gross-Krook and molecular dynamics modeling

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Borner, Arnaud; Levin, Deborah A.

    2014-06-01

    Homogeneous water condensation and ice formation in supersonic expansions to vacuum for stagnation pressures from 12 to 1000 mbar are studied using the particle-based Ellipsoidal-Statistical Bhatnagar-Gross-Krook (ES-BGK) method. We find that when condensation starts to occur, at a stagnation pressure of 96 mbar, the increase in the degree of condensation causes an increase in the rotational temperature due to the latent heat of vaporization. The simulated rotational temperature profiles along the plume expansion agree well with measurements confirming the kinetic homogeneous condensation models and the method of simulation. Comparisons of the simulated gas and cluster number densities, cluster size for different stagnation pressures along the plume centerline were made and it is found that the cluster size increase linearly with respect to stagnation pressure, consistent with classical nucleation theory. The sensitivity of our results to cluster nucleation model and latent heat values based on bulk water, specific cluster size, or bulk ice are examined. In particular, the ES-BGK simulations are found to be too coarse-grained to provide information on the phase or structure of the clusters formed. For this reason, molecular dynamics simulations of water condensation in a one-dimensional free expansion to simulate the conditions in the core of a plume are performed. We find that the internal structure of the clusters formed depends on the stagnation temperature. A larger cluster of average size 21 was tracked down the expansion, and a calculation of its average internal temperature as well as a comparison of its radial distribution functions (RDFs) with values measured for solid amorphous ice clusters lead us to conclude that this cluster is in a solid-like rather than liquid form. In another molecular-dynamics simulation at a much lower stagnation temperature, a larger cluster of size 324 and internal temperature 200 K was extracted from an expansion plume and equilibrated to determine its RDF and self-diffusion coefficient. The value of the latter shows that this cluster is formed in a supercooled liquid state rather than in an amorphous solid state.

  13. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses included three-dimensional models of the RSRM and FSM aft motors with four-degree vectored nozzles.

  14. Risk of anterior cruciate ligament fatigue failure is increased by limited internal femoral rotation during in vitro repeated pivot landings.

    PubMed

    Beaulieu, Mélanie L; Wojtys, Edward M; Ashton-Miller, James A

    2015-09-01

    A reduced range of hip internal rotation is associated with increased peak anterior cruciate ligament (ACL) strain and risk for injury. It is unknown, however, whether limiting the available range of internal femoral rotation increases the susceptibility of the ACL to fatigue failure. Risk of ACL failure is significantly greater in female knee specimens with a limited range of internal femoral rotation, smaller femoral-ACL attachment angle, and smaller tibial eminence volume during repeated in vitro simulated single-leg pivot landings. Controlled laboratory study. A custom-built testing apparatus was used to simulate repeated single-leg pivot landings with a 4×-body weight impulsive load that induces knee compression, knee flexion, and internal tibial torque in 32 paired human knee specimens from 8 male and 8 female donors. These test loads were applied to each pair of specimens, in one knee with limited internal femoral rotation and in the contralateral knee with femoral rotation resisted by 2 springs to simulate the active hip rotator muscles' resistance to stretch. The landings were repeated until ACL failure occurred or until a minimum of 100 trials were executed. The angle at which the ACL originates from the femur and the tibial eminence volume were measured on magnetic resonance images. The final Cox regression model (P = .024) revealed that range of internal femoral rotation and sex of donor were significant factors in determining risk of ACL fatigue failure. The specimens with limited range of internal femoral rotation had a failure risk 17.1 times higher than did the specimens with free rotation (P = .016). The female knee specimens had a risk of ACL failure 26.9 times higher than the male specimens (P = .055). Limiting the range of internal femoral rotation during repetitive pivot landings increases the risk of an ACL fatigue failure in comparison with free rotation in a cadaveric model. Screening for restricted internal rotation at the hip in ACL injury prevention programs as well as in individuals with ACL injuries and/or reconstructions is warranted. © 2015 The Author(s).

  15. Investigation of parabolic computational techniques for internal high-speed viscous flows

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Power, G. D.

    1985-01-01

    A feasibility study was conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves were present. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required.

  16. A Fast Monte Carlo Simulation for the International Linear Collider Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, D.; /Georgia Tech

    2005-12-15

    The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptionsmore » of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results.« less

  17. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected tomore » mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.« less

  18. A Biomechanical Comparison of Three 1.5-mm Plate and Screw Configurations and a Single 2.0-mm Plate for Internal Fixation of a Mandibular Condylar Fracture

    PubMed Central

    Aquilina, Peter; Parr, William C.H.; Chamoli, Uphar; Wroe, Stephen; Clausen, Philip

    2014-01-01

    The most stable pattern of internal fixation for mandibular condyle fractures is an area of ongoing discussion. This study investigates the stability of three patterns of plate fixation using readily available, commercially pure titanium implants. Finite element models of a simulated mandibular condyle fracture were constructed. The completed models were heterogeneous in bone material properties, contained approximately 1.2 million elements and incorporated simulated jaw adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. No human subjects were involved in this investigation. The stability of the simulated condylar fracture reduced with the different implant configurations, and the von Mises stresses of a 1.5-mm X-shaped plate, a 1.5-mm rectangular plate, and a 1.5-mm square plate (all Synthes (Synthes GmbH, Zuchwil, Switzerland) were compared. The 1.5-mm X plate was the most stable of the three 1.5-mm profile plate configurations examined and had comparable mechanical performance to a single 2.0-mm straight four-hole plate. This study does not support the use of rectangular or square plate patterns in the open reduction and internal fixation of mandibular condyle fractures. It does provide some support for the use of a 1.5-mm X plate to reduce condylar fractures in selected clinical cases. PMID:25136411

  19. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    NASA Astrophysics Data System (ADS)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate the indoor condition regardless of the contribution of internal and external loads. To deploy the methodology to another portfolio of buildings, simulated LEED NC office buildings are selected. The advantage of this approach is to isolate energy performance due to inherent building characteristics and location, rather than operational and maintenance factors that can contribute to significant variation in building energy use. A framework for detailed building energy databases with annual energy end-uses is developed to select variables and omit outliers. The results show that the high performance office buildings are internally-load dominated with existence of three different clusters of low-intensity, medium-intensity, and high-intensity energy use pattern for the reviewed office buildings. Low-intensity cluster buildings benefit from small building area, while the medium- and high-intensity clusters have a similar range of floor areas and different energy use intensities. Half of the energy use in the low-intensity buildings is associated with the internal loads, such as lighting and plug loads, indicating that there are opportunities to save energy by using lighting or plug load management systems. A comparison between the frameworks developed for the campus buildings and LEED NC office buildings indicates these two frameworks are complementary to each other. Availability of the information has yielded to two different procedures, suggesting future studies for a portfolio of buildings such as city benchmarking and disclosure ordinance should collect and disclose minimal required inputs suggested by this study with the minimum level of monthly energy consumption granularity. This dissertation developed automated methods using the OpenStudio API (Application Programing Interface) to create energy models based on the building class. ASHRAE Guideline 14 defines well-accepted criteria to measure accuracy of energy simulations; however, there is no well-accepted methodology to quantify the model complexity without the influence of the energy modeler judgment about the model complexity. This study developed a novel method using two weighting factors, including weighting factors based on (1) computational time and (2) easiness of on-site data collection, to measure complexity of the energy models. Therefore, this dissertation enables measurement of both model complexity and accuracy as well as assessment of the inherent tradeoffs between energy simulation model complexity and accuracy. The results of this methodology suggest for most of the internal load contributors such as operation schedules the on-site data collection adds more complexity to the model compared to the computational time. Overall, this study provided specific data on tradeoffs between accuracy and model complexity that points to critical inputs for different building classes, rather than an increase in the volume and detail of model inputs as the current research and consulting practice indicates. (Abstract shortened by UMI.).

  20. Exploring International Investment through a Classroom Portfolio Simulation Project

    ERIC Educational Resources Information Center

    Chen, Xiaoying; Yur-Austin, Jasmine

    2013-01-01

    A rapid integration of financial markets has prevailed during the last three decades. Investors are able to diversify investment beyond national markets to mitigate return volatility of a "pure domestic portfolio." This article discusses a simulation project through which students learn the role of international investment by managing…

  1. Analyzing self-controlled case series data when case confirmation rates are estimated from an internal validation sample.

    PubMed

    Xu, Stanley; Clarke, Christina L; Newcomer, Sophia R; Daley, Matthew F; Glanz, Jason M

    2018-05-16

    Vaccine safety studies are often electronic health record (EHR)-based observational studies. These studies often face significant methodological challenges, including confounding and misclassification of adverse event. Vaccine safety researchers use self-controlled case series (SCCS) study design to handle confounding effect and employ medical chart review to ascertain cases that are identified using EHR data. However, for common adverse events, limited resources often make it impossible to adjudicate all adverse events observed in electronic data. In this paper, we considered four approaches for analyzing SCCS data with confirmation rates estimated from an internal validation sample: (1) observed cases, (2) confirmed cases only, (3) known confirmation rate, and (4) multiple imputation (MI). We conducted a simulation study to evaluate these four approaches using type I error rates, percent bias, and empirical power. Our simulation results suggest that when misclassification of adverse events is present, approaches such as observed cases, confirmed case only, and known confirmation rate may inflate the type I error, yield biased point estimates, and affect statistical power. The multiple imputation approach considers the uncertainty of estimated confirmation rates from an internal validation sample, yields a proper type I error rate, largely unbiased point estimate, proper variance estimate, and statistical power. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A novel critical skills curriculum for surgical interns incorporating simulation training improves readiness for acute inpatient care.

    PubMed

    Antonoff, Mara B; Shelstad, Ryan C; Schmitz, Connie; Chipman, Jeffrey; D'Cunha, Jonathan

    2009-01-01

    Surgical interns encounter complex, acute care situations often managed with limited supervision. Furthermore, medical school training does not adequately prepare students for special surgical considerations. Using simulation training, we implemented a course aimed at improving surgical intern readiness for responding to unique, life-threatening issues encountered in daily surgical care. Twenty University of Minnesota surgical interns participated in the 3-week course. The first session consisted of interactive didactics and simulation covering hypoxia, shock, and metabolic disturbances; the second session addressed cardiopulmonary emergencies, including ventricular assist device and pacemaker use. Electronic simulation scenarios comprised the third session, allowing learners to demonstrate learned/practiced skills. The outcomes were assessed objectively (pretest and posttest) and subjectively (standardized feedback evaluations). Fifteen learners completed the pretest and posttest. The mean absolute score increase was 14% with average relative score improvement of 43%. Twenty learners completed feedback evaluations using a standard 5-point Likert scale. Respondents scored the first 2 sessions on topic importance (5 = very important), giving the first session 4.90 (+/- 0.31) and the second session 4.45 (+/- 0.89). Respondents ranked their confidence in executing practiced skills on actual patients (5 = very confident) as 4.24 (+/- 0.71). There was uniform support for the value of the electronic simulation scenarios as enhanced learning tools. We developed a course for surgical interns incorporating didactics and simulation. Learners demonstrated objective improvement in testing and reported that the course topics were highly important. After course completion, learners provided feedback indicating a high level of confidence in executing practiced skills, suggesting improved preparation for acute surgical care.

  3. The rationale for combining an online audiovisual curriculum with simulation to better educate general surgery trainees.

    PubMed

    AlJamal, Yazan N; Ali, Shahzad M; Ruparel, Raaj K; Brahmbhatt, Rushin D; Yadav, Siddhant; Farley, David R

    2014-09-01

    Surgery interns' training has historically been weighted toward patient care, operative observation, and sleeping when possible. With more protected free time and less clinical time, real educational hours for trainees in 2013 are precious. We created a 20-session (3 hours each) simulation curriculum (with pre- and post-tests) and a 24/7 online audiovisual (AV) curriculum for surgery interns. Friday morning simulation sessions emphasize operative skills and judgment. AV clips (using operating room, whiteboard, and simulation center videos) take learners through 20 different general surgery operations with follow-up quizzes. We report our early experience with this novel setup. Thirty-two surgical interns (2012-2013) attended simulation sessions on 20 separate subjects (hernia, breast, hepatobiliary, endocrine, etc). Post-test scores improved (P < .05) and trainees enjoyed using surgical skills for 3 hours each Friday morning (mean, >4.5; Likert scale, 1-5). The AV curriculum feedback is similar (mean, >4.3) and usage is available 24/7 preparing learners for both operating room and simulation sessions. Most simulation sessions utilize low-fidelity models to keep costs <$50 per session. Scores on our semiannual Surgical Olympics (mean score of 49.6 in July vs 82.9 in January; P < .05) improved significantly, suggesting that interns are improving their surgical skills and knowledge. Residents enjoy and learn from the step-by-step, in-house, AV curriculum and both appreciate and thrive on the 'hands-on' simulation sessions mimicking operations they see in real operating rooms. The cost of these programs is not prohibitive and the programs offer simulated repetitions for duty-hour-regulated trainees. Copyright © 2014 Mosby, Inc. All rights reserved.

  4. Analysis of Change in the Wind Speed Ratio according to Apartment Layout and Solutions

    PubMed Central

    Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo

    2014-01-01

    Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended. PMID:24688430

  5. Analysis of change in the wind speed ratio according to apartment layout and solutions.

    PubMed

    Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo

    2014-01-01

    Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended.

  6. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2001-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple three-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady-state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discrete locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  7. Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model with Ribs and Bleed

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip

    2000-01-01

    An experimental study was made to obtain heat transfer and air temperature data for a simple 3-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discreet locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.

  8. Adjustable internal structure for reconstructing gradient index profile of crystalline lens.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V; Pierscionek, Barbara K

    2014-03-01

    Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models. The refractive index profile assigned to this rotationally symmetric geometry is calculated numerically, yet it is shown that this does not limit the model. The study provides a basis for developing lens models with sophisticated external and internal structures without the need for analytical solutions to calculate refractive index profiles.

  9. Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)

    2002-01-01

    During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya, E-mail: takahashi@kwasan.kyoto-u.ac.jp

    Flare-associated coronal shock waves sometimes interact with solar prominences, leading to large-amplitude prominence oscillations (LAPOs). Such prominence activation gives us a unique opportunity to track the time evolution of shock–cloud interaction in cosmic plasmas. Although the dynamics of interstellar shock–cloud interaction has been extensively studied, coronal shock–solar prominence interaction is rarely studied in the context of shock–cloud interaction. Associated with the X5.4 class solar flare that occurred on 2012 March 7, a globally propagated coronal shock wave interacted with a polar prominence, leading to LAPO. In this paper, we studied bulk acceleration and excitation of the internal flow of themore » shocked prominence using three-dimensional magnetohydrodynamic (MHD) simulations. We studied eight MHD simulation runs, each with different mass density structure of the prominence, and one hydrodynamic simulation run, and we compared the result. In order to compare the observed motion of activated prominence with the corresponding simulation, we also studied prominence activation by injection of a triangular-shaped coronal shock. We found that the prominence is first accelerated mainly by magnetic tension force as well as direct transmission of the shock, and later decelerated mainly by magnetic tension force. The internal flow, on the other hand, is excited during the shock front sweeps through the prominence and damps almost exponentially. We construct a phenomenological model of bulk momentum transfer from the shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence activation model, we diagnosed physical parameters of the coronal shock wave. The estimated energy of the coronal shock is several percent of the total energy released during the X5.4 flare.« less

  11. Development of a tool for calculating early internal doses in the Fukushima Daiichi nuclear power plant accident based on atmospheric dispersion simulation

    NASA Astrophysics Data System (ADS)

    Kurihara, Osamu; Kim, Eunjoo; Kunishima, Naoaki; Tani, Kotaro; Ishikawa, Tetsuo; Furuyama, Kazuo; Hashimoto, Shozo; Akashi, Makoto

    2017-09-01

    A tool was developed to facilitate the calculation of the early internal doses to residents involved in the Fukushima Nuclear Disaster based on atmospheric transport and dispersion model (ATDM) simulations performed using Worldwide version of System for Prediction of Environmental Emergency Information 2nd version (WSPEEDI-II) together with personal behavior data containing the history of the whereabouts of individul's after the accident. The tool generates hourly-averaged air concentration data for the simulation grids nearest to an individual's whereabouts using WSPEEDI-II datasets for the subsequent calculation of internal doses due to inhalation. This paper presents an overview of the developed tool and provides tentative comparisons between direct measurement-based and ATDM-based results regarding the internal doses received by 421 persons from whom personal behavior data available.

  12. Simulation and mitigation of higher-order ionospheric errors in PPP

    NASA Astrophysics Data System (ADS)

    Zus, Florian; Deng, Zhiguo; Wickert, Jens

    2017-04-01

    We developed a rapid and precise algorithm to compute ionospheric phase advances in a realistic electron density field. The electron density field is derived from a plasmaspheric extension of the International Reference Ionosphere (Gulyaeva and Bilitza, 2012) and the magnetic field stems from the International Geomagnetic Reference Field. For specific station locations, elevation and azimuth angles the ionospheric phase advances are stored in a look-up table. The higher-order ionospheric residuals are computed by forming the standard linear combination of the ionospheric phase advances. In a simulation study we examine how the higher-order ionospheric residuals leak into estimated station coordinates, clocks, zenith delays and tropospheric gradients in precise point positioning. The simulation study includes a few hundred globally distributed stations and covers the time period 1990-2015. We take a close look on the estimated zenith delays and tropospheric gradients as they are considered a data source for meteorological and climate related research. We also show how the by product of this simulation study, the look-up tables, can be used to mitigate higher-order ionospheric errors in practise. Gulyaeva, T.L., and Bilitza, D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model. In: New Developments in the Standard Model, edited by R.J. Larsen, pp. 1-39, NOVA, Hauppauge, New York, 2012, available at https://www.novapublishers.com/catalog/product_info.php?products_id=35812

  13. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization

    NASA Astrophysics Data System (ADS)

    Walrand, Stephan; Hesse, Michel; Jamar, François; Lhommel, Renaud

    2018-04-01

    Our literature survey revealed a physical effect unknown to the nuclear medicine community, i.e. internal bremsstrahlung emission, and also the existence of long energy resolution tails in crystal scintillation. None of these effects has ever been modelled in PET Monte Carlo (MC) simulations. This study investigates whether these two effects could be at the origin of two unexplained observations in 90Y imaging by PET: the increasing tails in the radial profile of true coincidences, and the presence of spurious extrahepatic counts post radioembolization in non-TOF PET and their absence in TOF PET. These spurious extrahepatic counts hamper the microsphere delivery check in liver radioembolization. An acquisition of a 32P vial was performed on a GSO PET system. This is the ideal setup to study the impact of bremsstrahlung x-rays on the true coincidence rate when no positron emission and no crystal radioactivity are present. A MC simulation of the acquisition was performed using Gate-Geant4. MC simulations of non-TOF PET and TOF-PET imaging of a synthetic 90Y human liver radioembolization phantom were also performed. Internal bremsstrahlung and long energy resolution tails inclusion in MC simulations quantitatively predict the increasing tails in the radial profile. In addition, internal bremsstrahlung explains the discrepancy previously observed in bremsstrahlung SPECT between the measure of the 90Y bremsstrahlung spectrum and its simulation with Gate-Geant4. However the spurious extrahepatic counts in non-TOF PET mainly result from the failure of conventional random correction methods in such low count rate studies and poor robustness versus emission-transmission inconsistency. A novel proposed random correction method succeeds in cleaning the spurious extrahepatic counts in non-TOF PET. Two physical effects not considered up to now in nuclear medicine were identified to be at the origin of the unusual 90Y true coincidences radial profile. TOF reconstruction removing of the spurious extrahepatic counts was theoretically explained by a better robustness against emission-transmission inconsistency. A novel random correction method was proposed to overcome the issue in non-TOF PET. Further studies are needed to assess the novel random correction method robustness.

  14. Development and validation of the simulation-based learning evaluation scale.

    PubMed

    Hung, Chang-Chiao; Liu, Hsiu-Chen; Lin, Chun-Chih; Lee, Bih-O

    2016-05-01

    The instruments that evaluate a student's perception of receiving simulated training are English versions and have not been tested for reliability or validity. The aim of this study was to develop and validate a Chinese version Simulation-Based Learning Evaluation Scale (SBLES). Four stages were conducted to develop and validate the SBLES. First, specific desired competencies were identified according to the National League for Nursing and Taiwan Nursing Accreditation Council core competencies. Next, the initial item pool was comprised of 50 items related to simulation that were drawn from the literature of core competencies. Content validity was established by use of an expert panel. Finally, exploratory factor analysis and confirmatory factor analysis were conducted for construct validity, and Cronbach's coefficient alpha determined the scale's internal consistency reliability. Two hundred and fifty students who had experienced simulation-based learning were invited to participate in this study. Two hundred and twenty-five students completed and returned questionnaires (response rate=90%). Six items were deleted from the initial item pool and one was added after an expert panel review. Exploratory factor analysis with varimax rotation revealed 37 items remaining in five factors which accounted for 67% of the variance. The construct validity of SBLES was substantiated in a confirmatory factor analysis that revealed a good fit of the hypothesized factor structure. The findings tally with the criterion of convergent and discriminant validity. The range of internal consistency for five subscales was .90 to .93. Items were rated on a 5-point scale from 1 (strongly disagree) to 5 (strongly agree). The results of this study indicate that the SBLES is valid and reliable. The authors recommend that the scale could be applied in the nursing school to evaluate the effectiveness of simulation-based learning curricula. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Swarms with canonical active Brownian motion.

    PubMed

    Glück, Alexander; Hüffel, Helmuth; Ilijić, Saša

    2011-05-01

    We present a swarm model of Brownian particles with harmonic interactions, where the individuals undergo canonical active Brownian motion, i.e., each Brownian particle can convert internal energy to mechanical energy of motion. We assume the existence of a single global internal energy of the system. Numerical simulations show amorphous swarming behavior as well as static configurations. Analytic understanding of the system is provided by studying stability properties of equilibria.

  16. Simulations of Collisional Disruption at the Catastrophic Impact Energy Threshold: Effect of the Target's Internal Structure and Diameter

    NASA Astrophysics Data System (ADS)

    Michel, P.; Benz, W.; Richardson, D. C.

    2005-08-01

    Recent simulations of asteroid break-ups, including both the fragmentation of the parent body and the gravitational interactions of the fragments, have allowed to reproduced successfully the main properties of asteroid families formed in different regimes of impact energy. Here, using the same kind of simulations, we concentrate on a single regime of impact energy, the so-called catastrophic threshold usually designated by Qcrit, which results in the escape of half of the target's mass. Considering a wide range of diameter values and two kinds of internal structures of the parent body, monolithic and pre-shattered, we analyse their potential influences on the value of Qcrit and on the collisional outcome limited here to the fragment size and ejection speed distributions, which are the main outcome properties used by collisional models to study the evolutions of the different populations of small bodies. For all the considered diameters and the two internal structures of the parent body, we confirm that the process of gravitational reaccumulation is at the origin of the largest remnant's mass. We then find that, for a given diameter of the parent body, the impact energy corresponding to the catastrophic disruption threshold is highly dependent on the internal structure of the parent body. In particular, a pre-shattered parent body containing only damaged zones but no macroscopic voids is easier to disrupt than a monolithic parent body. Other kinds of internal properties that can also characterize small bodies in real populations will be investigated in a future work.

  17. Numerical simulation of abutment pressure redistribution during face advance

    NASA Astrophysics Data System (ADS)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  18. Interprofessional collaboration between residents and nurses in general internal medicine: a qualitative study on behaviours enhancing teamwork quality.

    PubMed

    Muller-Juge, Virginie; Cullati, Stéphane; Blondon, Katherine S; Hudelson, Patricia; Maître, Fabienne; Vu, Nu V; Savoldelli, Georges L; Nendaz, Mathieu R

    2014-01-01

    Effective teamwork is necessary for optimal patient care. There is insufficient understanding of interactions between physicians and nurses on internal medicine wards. To describe resident physicians' and nurses' actual behaviours contributing to teamwork quality in the setting of a simulated internal medicine ward. A volunteer sample of 14 pairs of residents and nurses in internal medicine was asked to manage one non-urgent and one urgent clinical case in a simulated ward, using a high-fidelity manikin. After the simulation, participants attended a stimulated-recall session during which they viewed the videotape of the simulation and explained their actions and perceptions. All simulations were transcribed, coded, and analyzed, using a qualitative method (template analysis). Quality of teamwork was assessed, based on patient management efficiency and presence of shared management goals and of team spirit. Most resident-nurse pairs tended to interact in a traditional way, with residents taking the leadership and nurses executing medical prescriptions and assuming their own specific role. They also demonstrated different types of interactions involving shared responsibilities and decision making, constructive suggestions, active communication and listening, and manifestations of positive team building. The presence of a leader in the pair or a truly shared leadership between resident and nurse contributed to teamwork quality only if both members of the pair demonstrated sufficient autonomy. In case of a lack of autonomy of one member, the other member could compensate for it, if his/her own autonomy was sufficiently strong and if there were demonstrations of mutual listening, information sharing, and positive team building. Although they often relied on traditional types of interaction, residents and nurses also demonstrated readiness for increased sharing of responsibilities. Interprofessional education should insist on better redefinition of respective roles and reinforce behaviours shown to enhance teamwork quality.

  19. Interprofessional Collaboration between Residents and Nurses in General Internal Medicine: A Qualitative Study on Behaviours Enhancing Teamwork Quality

    PubMed Central

    Muller-Juge, Virginie; Cullati, Stéphane; Blondon, Katherine S.; Hudelson, Patricia; Maître, Fabienne; Vu, Nu V.; Savoldelli, Georges L.; Nendaz, Mathieu R.

    2014-01-01

    Background Effective teamwork is necessary for optimal patient care. There is insufficient understanding of interactions between physicians and nurses on internal medicine wards. Objective To describe resident physicians’ and nurses’ actual behaviours contributing to teamwork quality in the setting of a simulated internal medicine ward. Methods A volunteer sample of 14 pairs of residents and nurses in internal medicine was asked to manage one non-urgent and one urgent clinical case in a simulated ward, using a high-fidelity manikin. After the simulation, participants attended a stimulated-recall session during which they viewed the videotape of the simulation and explained their actions and perceptions. All simulations were transcribed, coded, and analyzed, using a qualitative method (template analysis). Quality of teamwork was assessed, based on patient management efficiency and presence of shared management goals and of team spirit. Results Most resident-nurse pairs tended to interact in a traditional way, with residents taking the leadership and nurses executing medical prescriptions and assuming their own specific role. They also demonstrated different types of interactions involving shared responsibilities and decision making, constructive suggestions, active communication and listening, and manifestations of positive team building. The presence of a leader in the pair or a truly shared leadership between resident and nurse contributed to teamwork quality only if both members of the pair demonstrated sufficient autonomy. In case of a lack of autonomy of one member, the other member could compensate for it, if his/her own autonomy was sufficiently strong and if there were demonstrations of mutual listening, information sharing, and positive team building. Conclusions Although they often relied on traditional types of interaction, residents and nurses also demonstrated readiness for increased sharing of responsibilities. Interprofessional education should insist on better redefinition of respective roles and reinforce behaviours shown to enhance teamwork quality. PMID:24769672

  20. Impact of Just-in-Time and Just-in-Place Simulation on Intern Success With Infant Lumbar Puncture.

    PubMed

    Kessler, David; Pusic, Martin; Chang, Todd P; Fein, Daniel M; Grossman, Devin; Mehta, Renuka; White, Marjorie; Jang, Jaewon; Whitfill, Travis; Auerbach, Marc

    2015-05-01

    Simulation-based skill trainings are common; however, optimal instructional designs that improve outcomes are not well specified. We explored the impact of just-in-time and just-in-place training (JIPT) on interns' infant lumbar puncture (LP) success. This prospective study enrolled pediatric and emergency medicine interns from 2009 to 2012 at 34 centers. Two distinct instructional design strategies were compared. Cohort A (2009-2010) completed simulation-based training at commencement of internship, receiving individually coached practice on the LP simulator until achieving a predefined mastery performance standard. Cohort B (2010-2012) had the same training plus JIPT sessions immediately before their first clinical LP. Main outcome was LP success, defined as obtaining fluid with first needle insertion and <1000 red blood cells per high-power field. Process measures included use of analgesia, early stylet removal, and overall attempts. A total of 436 first infant LPs were analyzed. The LP success rate in cohort A was 35% (13/37), compared with 38% (152/399) in cohort B (95% confidence interval for difference [CI diff], -15% to +18%). Cohort B exhibited greater analgesia use (68% vs 19%; 95% CI diff, 33% to 59%), early stylet removal (69% vs 54%; 95% CI diff, 0% to 32%), and lower mean number of attempts (1.4 ± 0.6 vs 2.1 ± 1.6, P < .01) compared with cohort A. Across multiple institutions, intern success rates with infant LP are poor. Despite improving process measures, adding JIPT to training bundles did not improve success rate. More research is needed on optimal instructional design strategies for infant LP. Copyright © 2015 by the American Academy of Pediatrics.

  1. Role-Playing Games and Simulations for International Issues Courses

    ERIC Educational Resources Information Center

    Wheeler, Sarah M.

    2006-01-01

    This paper proposes criteria that instructors should be sensitive to when evaluating simulations or role-plays for use in international/comparative politics courses. The potential benefits and drawbacks to these interactive exercises are addressed as well as the special circumstances that must be taken into consideration to reap the full promise…

  2. International Futures (IFs): A Global Issues Simulation for Teaching and Research.

    ERIC Educational Resources Information Center

    Hughes, Barry B.

    This paper describes the International Futures (IFs) computer assisted simulation game for use with undergraduates. Written in Standard Fortran IV, the model currently runs on mainframe or mini computers, but has not been adapted for micros. It has been successfully installed on Harris, Burroughs, Telefunken, CDC, Univac, IBM, and Prime machines.…

  3. High velocity collisions of nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Donald F.; Mattson, William D.

    2017-01-01

    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  4. Validity evidence for procedural competency in virtual reality robotic simulation, establishing a credible pass/fail standard for the vaginal cuff closure procedure.

    PubMed

    Hovgaard, Lisette Hvid; Andersen, Steven Arild Wuyts; Konge, Lars; Dalsgaard, Torur; Larsen, Christian Rifbjerg

    2018-03-30

    The use of robotic surgery for minimally invasive procedures has increased considerably over the last decade. Robotic surgery has potential advantages compared to laparoscopic surgery but also requires new skills. Using virtual reality (VR) simulation to facilitate the acquisition of these new skills could potentially benefit training of robotic surgical skills and also be a crucial step in developing a robotic surgical training curriculum. The study's objective was to establish validity evidence for a simulation-based test for procedural competency for the vaginal cuff closure procedure that can be used in a future simulation-based, mastery learning training curriculum. Eleven novice gynaecological surgeons without prior robotic experience and 11 experienced gynaecological robotic surgeons (> 30 robotic procedures) were recruited. After familiarization with the VR simulator, participants completed the module 'Guided Vaginal Cuff Closure' six times. Validity evidence was investigated for 18 preselected simulator metrics. The internal consistency was assessed using Cronbach's alpha and a composite score was calculated based on metrics with significant discriminative ability between the two groups. Finally, a pass/fail standard was established using the contrasting groups' method. The experienced surgeons significantly outperformed the novice surgeons on 6 of the 18 metrics. The internal consistency was 0.58 (Cronbach's alpha). The experienced surgeons' mean composite score for all six repetitions were significantly better than the novice surgeons' (76.1 vs. 63.0, respectively, p < 0.001). A pass/fail standard of 75/100 was established. Four novice surgeons passed this standard (false positives) and three experienced surgeons failed (false negatives). Our study has gathered validity evidence for a simulation-based test for procedural robotic surgical competency in the vaginal cuff closure procedure and established a credible pass/fail standard for future proficiency-based training.

  5. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation.

    PubMed

    Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T

    2017-07-01

    Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Structural Dynamics of Carbon Dots in Water and N, N-Dimethylformamide Probed by All-Atom Molecular Dynamics Simulations.

    PubMed

    Paloncýová, Markéta; Langer, Michal; Otyepka, Michal

    2018-04-10

    Carbon dots (CDs), one of the youngest members of the carbon nanostructure family, are now widely experimentally studied for their tunable fluorescence properties, bleaching resistance, and biocompatibility. Their interaction with biomolecular systems has also been explored experimentally. However, many atomistic details still remain unresolved. Molecular dynamics (MD) simulations enabling atomistic and femtosecond resolutions simultaneously are a well-established tool of computational chemistry which can provide useful insights into investigated systems. Here we present a full procedure for performing MD simulations of CDs. We developed a builder for generating CDs of a desired size and with various oxygen-containing surface functional groups. Further, we analyzed the behavior of various CDs differing in size, surface functional groups, and degrees of functionalization by MD simulations. These simulations showed that surface functionalized CDs are stable in a water environment through the formation of an extensive hydrogen bonding network. We also analyzed the internal dynamics of individual layers of CDs and evaluated the role of surface functional groups on CD stability. We observed that carboxyl groups interconnected the neighboring layers and decreased the rate of internal rotations. Further, we monitored changes in the CD shape caused by an excess of charged carboxyl groups or carbonyl groups. In addition to simulations in water, we analyzed the behavior of CDs in the organic solvent DMF, which decreased the stability of pure CDs but increased the level of interlayer hydrogen bonding. We believe that the developed protocol, builder, and parameters will facilitate future studies addressing various aspects of structural features of CDs and nanocomposites containing CDs.

  7. Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes

    NASA Technical Reports Server (NTRS)

    Kern, Alexander

    1991-01-01

    Direct lightning strikes melt metal parts of various systems, like fuel and propellant tanks of rockets and airplanes, at the point of strike. Responsible for this melting are the impulse current and, if occurring, the long duration current, both carrying a remarkable charge Q. For studying these meltings the simulation in the laboratory has to be based on the parameters of natural lightnings. International standards exist defining certain threat levels of natural lightnings and giving possible generator circuits for the simulation. The melting caused by both types of lightning currents show different appearance. Their characteristics, their differences in melting and heating of metal sheets are investigated. Nevertheless the simulation of lightning in the laboratory is imperfect. While natural lightning is a discharge without a counter electrode, the simulation always demands a close counter electrode. The influence of this counter electrode is studied.

  8. Internally Generated and Externally Forced Multidecadal Oceanic Modes and their Influence on the Summer Rainfall over East Asia

    NASA Astrophysics Data System (ADS)

    Si, D.; Hu, A.

    2017-12-01

    The interdecadal oceanic variabilities can be generated from both internal and external processes, and these variabilities can significantly modulate our climate on global and regional scale, such as the warming slowdown in the early 21st century, and the rainfall in East Asia. By analyzing simulations from a unique Community Earth System Model (CESM) Large Ensemble (CESM_LE) project, we show that the Interdecadal Pacific Oscillation (IPO) is primarily an internally generated oceanic variability, while the Atlantic Multidecadal Oscillation (AMO) may be an oceanic variability generated by internal oceanic processes and modulated by external forcings in the 20th century. Although the observed relationship between IPO and the Yangtze-Huaihe River valley (YHRV) summer rainfall in China is well simulated in both the preindustrial control and 20th century ensemble, none of the 20th century ensemble members can reproduce the observed time evolution of both IPO and YHRV due to the unpredictable nature of IPO on multidecade timescale. On the other hand, although CESM_LE cannot reproduce the observed relationship between AMO and Huanghe River valley (HRV) summer rainfall of China in the preindustrial control simulation, this relationship in the 20th century simulations is well reproduced, and the chance to reproduce the observed time evolution of both AMO and HRV rainfall is about 30%, indicating the important role of the interaction between the internal processes and the external forcing to realistically simulate the AMO and HRV rainfall.

  9. Use of simulation-based education to reduce catheter-related bloodstream infections.

    PubMed

    Barsuk, Jeffrey H; Cohen, Elaine R; Feinglass, Joe; McGaghie, William C; Wayne, Diane B

    2009-08-10

    Simulation-based education improves procedural competence in central venous catheter (CVC) insertion. The effect of simulation-based education in CVC insertion on the incidence of catheter-related bloodstream infection (CRBSI) is unknown. The aim of this study was to determine if simulation-based training in CVC insertion reduces CRBSI. This was an observational education cohort study set in an adult intensive care unit (ICU) in an urban teaching hospital. Ninety-two internal medicine and emergency medicine residents completed a simulation-based mastery learning program in CVC insertion skills. Rates of CRBSI from CVCs inserted by residents in the ICU before and after the simulation-based educational intervention were compared over a 32-month period. There were fewer CRBSIs after the simulator-trained residents entered the intervention ICU (0.50 infections per 1000 catheter-days) compared with both the same unit prior to the intervention (3.20 per 1000 catheter-days) (P = .001) and with another ICU in the same hospital throughout the study period (5.03 per 1000 catheter-days) (P = .001). An educational intervention in CVC insertion significantly improved patient outcomes. Simulation-based education is a valuable adjunct in residency education.

  10. Minimizing distortion and internal forces in truss structures by simulated annealing

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Padula, Sharon L.

    1990-01-01

    Inaccuracies in the length of members and the diameters of joints of large space structures may produce unacceptable levels of surface distortion and internal forces. Here, two discrete optimization problems are formulated, one to minimize surface distortion (DSQRMS) and the other to minimize internal forces (FSQRMS). Both of these problems are based on the influence matrices generated by a small-deformation linear analysis. Good solutions are obtained for DSQRMS and FSQRMS through the use of a simulated annealing heuristic.

  11. Critical threshold behavior for steady-state internal transport barriers in burning plasmas.

    PubMed

    García, J; Giruzzi, G; Artaud, J F; Basiuk, V; Decker, J; Imbeaux, F; Peysson, Y; Schneider, M

    2008-06-27

    Burning tokamak plasmas with internal transport barriers are investigated by means of integrated modeling simulations. The barrier sustainment in steady state, differently from the barrier formation process, is found to be characterized by a critical behavior, and the critical number of the phase transition is determined. Beyond a power threshold, alignment of self-generated and noninductively driven currents occurs and steady state becomes possible. This concept is applied to simulate a steady-state scenario within the specifications of the International Thermonuclear Experimental Reactor.

  12. Evaluation of DNA damage induced by Auger electrons from 137Cs.

    PubMed

    Watanabe, Ritsuko; Hattori, Yuya; Kai, Takeshi

    2016-11-01

    To understand the biological effect of external and internal exposure from 137 Cs, DNA damage spectrum induced by directly emitted electrons (γ-rays, internal conversion electrons, Auger electrons) from 137 Cs was compared with that induced by 137 Cs γ-rays. Monte Carlo track simulation method was used to calculate the microscopic energy deposition pattern in liquid water. Simulation was performed for the two simple target systems in microscale. Radiation sources were placed inside for one system and outside for another system. To simulate the energy deposition by directly emitted electrons from 137 Cs placed inside the system, the multiple ejections of electrons after internal conversion were considered. In the target systems, induction process of DNA damage was modeled and simulated for both direct energy deposition and the water radical reaction on the DNA. The yield and spatial distribution of simple and complex DNA damage including strand breaks and base lesions were calculated for irradiation by electrons and γ-rays from 137 Cs. The simulation showed that the significant difference in DNA damage spectrum was not caused by directly ejected electrons and γ-rays from 137 Cs. The result supports the existing perception that the biological effects by internal and external exposure by 137 Cs are equivalent.

  13. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.

    PubMed

    Zhang, Cui; Li, Liang; Chen, Jianling; Wang, Jinfu

    2015-06-01

    With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells. © 2015 International Federation for Cell Biology.

  14. Simulation studies for the PANDA experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopf, B.

    2005-10-26

    One main component of the planned Facility for Antiproton and Ion Research (FAIR) is the High Energy Storage Ring (HESR) at GSI, Darmstadt, which will provide cooled antiprotons with momenta between 1.5 and 15 GeV/c. The PANDA experiment will investigate p-barannihilations with internal hydrogen and nuclear targets. Due to the planned extensive physics program a multipurpose detector with nearly complete solid angle coverage, proper particle identification over a large momentum range, and high resolution calorimetry for neutral particles is required. For the optimization of the detector design simulation studies of several benchmark channels are in progress which are covering themore » most relevant physics topics. Some important simulation results are discussed here.« less

  15. Simulation studies for the evaluation of health information technologies: experiences and results.

    PubMed

    Ammenwerth, Elske; Hackl, Werner O; Binzer, Kristine; Christoffersen, Tue E H; Jensen, Sanne; Lawton, Kitta; Skjoet, Peter; Nohr, Christian

    It is essential for new health information technologies (IT) to undergo rigorous evaluations to ensure they are effective and safe for use in real-world situations. However, evaluation of new health IT is challenging, as field studies are often not feasible when the technology being evaluated is not sufficiently mature. Laboratory-based evaluations have also been shown to have insufficient external validity. Simulation studies seem to be a way to bridge this gap. The aim of this study was to evaluate, using a simulation methodology, the impact of a new prototype of an electronic medication management system on the appropriateness of prescriptions and drug-related activities, including laboratory test ordering or medication changes. This article presents the results of a controlled simulation study with 50 simulation runs, including ten doctors and five simulation patients, and discusses experiences and lessons learnt while conducting the study. Although the new electronic medication management system showed tendencies to improve medication safety when compared with the standard system, this tendency was not significant. Altogether, five distinct situations were identified where the new medication management system did help to improve medication safety. This simulation study provided a good compromise between internal validity and external validity. However, several challenges need to be addressed when undertaking simulation evaluations including: preparation of adequate test cases; training of participants before using unfamiliar applications; consideration of time, effort and costs of conducting the simulation; technical maturity of the evaluated system; and allowing adequate preparation of simulation scenarios and simulation setting. Simulation studies are an interesting but time-consuming approach, which can be used to evaluate newly developed health IT systems, particularly those systems that are not yet sufficiently mature to undergo field evaluation studies.

  16. Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.

    PubMed

    Abe, Yutaka; Hyuga, Daisuke; Yamada, Shogo; Aoki, Kazuyoshi

    2006-09-01

    It is expected that new materials will be manufactured with containerless processing under the microgravity environment in space. Under the microgravity environment, handling technology of molten metal is important for such processes. There are a lot of previous studies about droplet levitation technologies, including the use of acoustic waves, as the holding technology. However, experimental and analytical information about the relationship between surface deformation and internal flow of a large levitated droplet is still unknown. The purpose of this study is to experimentally investigate the large droplet behavior levitated by the acoustic wave field and its internal flow. To achieve this, first, numerical simulation is conducted to clarify the characteristics of acoustic wave field. Second, the levitation characteristic and the internal flow of the levitated droplet are investigated by the ultrasonic standing wave under normal gravity environment. Finally, the levitation characteristic and internal flow of levitated droplet are observed under microgravity in an aircraft to compare results with the experiment performed under the normal gravity environment.

  17. SU-E-T-507: Internal Dosimetry in Nuclear Medicine Using GATE and XCAT Phantom: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallahpoor, M; Abbasi, M; Sen, A

    Purpose Monte Carlo simulations are routinely used for internal dosimetry studies. These studies are conducted with humanoid phantoms such as the XCAT phantom. In this abstract we present the absorbed doses for various pairs of source and target organs using three common radiotracers in nuclear medicine. Methods The GATE software package is used for the Monte Carlo simulations. A typical female XCAT phantom is used as the input. Three radiotracers 153Sm, 131I and 99mTc are studied. The Specific Absorbed Fraction (SAF) for gamma rays (99mTc, 153Sm and 131I) and Specific Fraction (SF) for beta particles (153Sm and 131I) are calculatedmore » for all 100 pairs of source target organs including brain, liver, lung, pancreas, kidney, adrenal, spleen, rib bone, bladder and ovaries. Results The source organs themselves gain the highest absorbed dose as compared to other organs. The dose is found to be inversely proportional to distance from the source organ. In SAF results of 153Sm, when the source organ is lung, the rib bone, gain 0.0730 (Kg-1) that is more than lung itself. Conclusion The absorbed dose for various organs was studied in terms of SAF and SF. Such studies hold importance for future therapeutic procedures and optimization of induced radiotracer.« less

  18. Pharmacokinetics and pharmacodynamics of CD4-anchoring bi-functional fusion inhibitor in monkeys.

    PubMed

    Liu, Xingrong; Ou, Ying C; Zhang, Jun; Ahene, Ago; Clark, Douglas; Hsieh, Su-Chun; Cooper, Matthew; Ji, Changhua

    2014-03-01

    This study was to characterize the pharmacokinetics (PK) and pharmacodynamics (PD) of a chimeric protein, CD4-anchoring bi-functional fusion inhibitor (CD4-BFFI), in monkeys and assess the feasibility for HIV-1 treatment in humans. The serum concentrations of CD4-BFFI and CD4 receptors were determined and modeled using a target-mediated drug disposition (TMDD) model following intravenous administration of 1 or 10 mg/kg in monkeys. In vitro CD4 internalization was examined in human peripheral blood mononuclear cells. Noncompartmental analysis showed a decrease in clearance (1.35 to 0.563 mL/h/kg) and an increase in half-lives (35 to 50 h) with increasing doses. Dose-dependent CD4 occupancy was observed. The TMDD model reasonably captured the PK/PD profiles and suggested greater degradation rate constant for the free CD4 than the bound CD4. In vitro assay showed CD4-BFFI did not reduce the internalization of cell surface CD4. The simulated serum concentrations of CD4-BFFI were 20-fold above its in vitro IC50 for HIV-1 at 3 mg/kg weekly or biweekly following subcutaneous administration in humans. The TMDD modeling and in vitro CD4 internalization study indicate that CD4-BFFI does not induce CD4 internalization and CD4-BFFI short half-life is likely due to normal CD4 internalization. The simulated human PK supports CD4-BFFI as a promising anti-HIV-1 agent.

  19. SAR Observation and Numerical Simulation of Internal Solitary Wave Refraction and Reconnection Behind the Dongsha Atoll

    NASA Astrophysics Data System (ADS)

    Jia, T.; Liang, J. J.; Li, X.-M.; Sha, J.

    2018-01-01

    The refraction and reconnection of internal solitary waves (ISWs) around the Dongsha Atoll (DSA) in the northern South China Sea (SCS) are investigated based on spaceborne synthetic aperture radar (SAR) observations and numerical simulations. In general, a long ISW front propagating from the deep basin of the northern SCS splits into northern and southern branches when it passes the DSA. In this study, the statistics of Envisat Advanced SAR (ASAR) images show that the northern and southern wave branches can reconnect behind the DSA, but the reconnection location varies. A previously developed nonlinear refraction model is set up to simulate the refraction and reconnection of the ISWs behind the DSA, and the model is used to evaluate the effects of ocean stratification, background currents, and incoming ISW characteristics at the DSA on the variation in reconnection locations. The results of the first realistic simulation agree with consecutive TerraSAR-X (TSX) images captured within 12 h of each other. Further sensitivity simulations show that ocean stratification, background currents, and initial wave amplitudes all affect the phase speeds of wave branches and therefore shift their reconnection locations while shapes and locations of incoming wave branches upstream of the DSA profoundly influence the subsequent propagation paths. This study clarifies the variation in reconnection locations of ISWs downstream of the DSA and reveals the important mechanisms governing the reconnection process, which can improve our understanding of the propagation of ISWs near the DSA.

  20. Internal rib structure can be predicted using mathematical models: An anatomic study comparing the chest to a shell dome with application to understanding fractures.

    PubMed

    Casha, Aaron R; Camilleri, Liberato; Manché, Alexander; Gatt, Ruben; Attard, Daphne; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Mcdonald, Stuart; Grima, Joseph N

    2015-11-01

    The human rib cage resembles a masonry dome in shape. Masonry domes have a particular construction that mimics stress distribution. Rib cortical thickness and bone density were analyzed to determine whether the morphology of the rib cage is sufficiently similar to a shell dome for internal rib structure to be predicted mathematically. A finite element analysis (FEA) simulation was used to measure stresses on the internal and external surfaces of a chest-shaped dome. Inner and outer rib cortical thickness and bone density were measured in the mid-axillary lines of seven cadaveric rib cages using computerized tomography scanning. Paired t tests and Pearson correlation were used to relate cortical thickness and bone density to stress. FEA modeling showed that the stress was 82% higher on the internal than the external surface, with a gradual decrease in internal and external wall stresses from the base to the apex. The inner cortex was more radio-dense, P < 0.001, and thicker, P < 0.001, than the outer cortex. Inner cortical thickness was related to internal stress, r = 0.94, P < 0.001, inner cortical bone density to internal stress, r = 0.87, P = 0.003, and outer cortical thickness to external stress, r = 0.65, P = 0.035. Mathematical models were developed relating internal and external cortical thicknesses and bone densities to rib level. The internal anatomical features of ribs, including the inner and outer cortical thicknesses and bone densities, are similar to the stress distribution in dome-shaped structures modeled using FEA computer simulations of a thick-walled dome pressure vessel. Fixation of rib fractures should include the stronger internal cortex. © 2015 Wiley Periodicals, Inc.

  1. A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology.

    PubMed

    Lifton, Joseph J; Malcolm, Andrew A; McBride, John W

    2015-01-01

    X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.

  2. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  3. A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics

    NASA Astrophysics Data System (ADS)

    Halpern, Federico

    2017-10-01

    The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.

  4. Simulation loop between cad systems, GEANT-4 and GeoModel: Implementation and results

    NASA Astrophysics Data System (ADS)

    Sharmazanashvili, A.; Tsutskiridze, Niko

    2016-09-01

    Compare analysis of simulation and as-built geometry descriptions of detector is important field of study for data_vs_Monte-Carlo discrepancies. Shapes consistency and detalization is not important while adequateness of volumes and weights of detector components are essential for tracking. There are 2 main reasons of faults of geometry descriptions in simulation: (1) Difference between simulated and as-built geometry descriptions; (2) Internal inaccuracies of geometry transformations added by simulation software infrastructure itself. Georgian Engineering team developed hub on the base of CATIA platform and several tools enabling to read in CATIA different descriptions used by simulation packages, like XML->CATIA; VP1->CATIA; Geo-Model->CATIA; Geant4->CATIA. As a result it becomes possible to compare different descriptions with each other using the full power of CATIA and investigate both classes of reasons of faults of geometry descriptions. Paper represents results of case studies of ATLAS Coils and End-Cap toroid structures.

  5. Do Simulations Enhance Student Learning? An Empirical Evaluation of an IR Simulation

    ERIC Educational Resources Information Center

    Shellman, Stephen M.; Turan, Kursad

    2006-01-01

    There is a nascent literature on the question of whether active learning methods, and in particular simulation methods, enhance student learning. In this article, the authors evaluate the utility of an international relations simulation in enhancing learning objectives. Student evaluations provide evidence that the simulation process enhances…

  6. Toward noninvasive monitoring of ongoing electrical activity of human uterus and fetal heart and brain.

    PubMed

    Lew, S; Hämäläinen, M S; Okada, Y

    2017-12-01

    To evaluate whether a full-coverage fetal-maternal scanner can noninvasively monitor ongoing electrophysiological activity of maternal and fetal organs. A simulation study was carried out for a scanner with an array of magnetic field sensors placed all around the torso from the chest to the hip within a horizontal magnetic shielding enclosure. The magnetic fields from internal organs and an external noise source were computed for a pregnant woman with a 35-week old fetus. Signal processing methods were used to reject the external and internal interferences, to visualize uterine activity, and to detect activity of fetal heart and brain. External interference was reduced by a factor of 1000, sufficient for detecting signals from internal organs when combined with passive and active shielding. The scanner rejects internal interferences better than partial-coverage arrays. It can be used to estimate currents around the uterus. It clearly detects spontaneous activity from the fetal heart and brain without averaging and weaker evoked brain activity at all fetal head positions after averaging. The simulated device will be able to monitor the ongoing activity of the fetal and maternal organs. This type of scanner may become a novel tool in fetal medicine. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  8. Comparing the Performance of Distance Learning and Traditional Students in a Business Simulation Exercise

    ERIC Educational Resources Information Center

    Kotey, Bernice; Anderson, Philip H.

    2005-01-01

    The performance of distant students in a simulation exercise for a Small Business Management (SBM) course was compared with that of internal students and the demographic and psychological variables associated with the performance of each student group were examined. Distant students matched or exceeded the performance of internal students in…

  9. Estimating Flow-Through Balance Momentum Tares with CFD

    NASA Technical Reports Server (NTRS)

    Melton, John E.; James, Kevin D.; Long, Kurtis R.; Flamm, Jeffrey D.

    2016-01-01

    This paper describes the process used for estimating flow-through balance momentum tares. The interaction of jet engine exhausts on the BOEINGERA Hybrid Wing Body (HWB) was simulated in the NFAC 40x80 wind tunnel at NASA Ames using a pair of turbine powered simulators (TPS). High-pressure air was passed through a flow-through balance and manifold before being delivered to the TPS units. The force and moment tares that result from the internal shear and pressure distribution were estimated using CFD. Validation of the CFD simulations for these complex internal flows is a challenge, given limited experimental data due to the complications of the internal geometry. Two CFD validation efforts are documented, and comparisons with experimental data from the final model installation are provided.

  10. Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model

    NASA Astrophysics Data System (ADS)

    Lin, Caiyan; Zhang, Zhongfeng; Pu, Zhaoxia; Wang, Fengyun

    2017-10-01

    A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.

  11. The Long Game: Five Years of Simulating the Middle East

    ERIC Educational Resources Information Center

    Hardy, Mat; Totman, Sally

    2017-01-01

    Scholarly literature attesting to the benefits of role play in teaching international relations or political science subjects is abundant and universally positive. However, despite many case studies presenting snapshots of single examples, long term data concerning a role play exercise is difficult to find. This study presents student feedback…

  12. A method for determining internal noise criteria based on practical speech communication applied to helicopters

    NASA Technical Reports Server (NTRS)

    Sternfeld, H., Jr.; Doyle, L. B.

    1978-01-01

    The relationship between the internal noise environment of helicopters and the ability of personnel to understand commands and instructions was studied. A test program was conducted to relate speech intelligibility to a standard measurement called Articulation Index. An acoustical simulator was used to provide noise environments typical of Army helicopters. Speech material (command sentences and phonetically balanced word lists) were presented at several voice levels in each helicopter environment. Recommended helicopter internal noise criteria, based on speech communication, were derived and the effectiveness of hearing protection devices were evaluated.

  13. Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A

    2013-01-01

    Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. Wemore » observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to conflicting trends between the exponential temperature dependence of the energetic term and the temperature dependence of the vibrational partition function of the transitional modes.« less

  14. Apparent and internal validity of a Monte Carlo-Markov model for cardiovascular disease in a cohort follow-up study.

    PubMed

    Nijhuis, Rogier L; Stijnen, Theo; Peeters, Anna; Witteman, Jacqueline C M; Hofman, Albert; Hunink, M G Myriam

    2006-01-01

    To determine the apparent and internal validity of the Rotterdam Ischemic heart disease & Stroke Computer (RISC) model, a Monte Carlo-Markov model, designed to evaluate the impact of cardiovascular disease (CVD) risk factors and their modification on life expectancy (LE) and cardiovascular disease-free LE (DFLE) in a general population (hereinafter, these will be referred to together as (DF)LE). The model is based on data from the Rotterdam Study, a cohort follow-up study of 6871 subjects aged 55 years and older who visited the research center for risk factor assessment at baseline (1990-1993) and completed a follow-up visit 7 years later (original cohort). The transition probabilities and risk factor trends used in the RISC model were based on data from 3501 subjects (the study cohort). To validate the RISC model, the number of simulated CVD events during 7 years' follow-up were compared with the observed number of events in the study cohort and the original cohort, respectively, and simulated (DF)LEs were compared with the (DF)LEs calculated from multistate life tables. Both in the study cohort and in the original cohort, the simulated distribution of CVD events was consistent with the observed number of events (CVD deaths: 7.1% v. 6.6% and 7.4% v. 7.6%, respectively; non-CVD deaths: 11.2% v. 11.5% and 12.9% v. 13.0%, respectively). The distribution of (DF)LEs estimated with the RISC model consistently encompassed the (DF)LEs calculated with multistate life tables. The simulated events and (DF)LE estimates from the RISC model are consistent with observed data from a cohort follow-up study.

  15. Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.

    2018-01-01

    Aims: Twisted magnetic flux ropes (MFRs) in the solar atmosphere have been researched extensively because of their close connection to many solar eruptive phenomena, such as flares, filaments, and coronal mass ejections (CMEs). In this work, we performed a set of 3D isothermal magnetohydrodynamic (MHD) numerical simulations, which use analytical twisted MFR models and study dynamical processes parametrically inside and around current-carrying twisted loops. We aim to generalize earlier findings by applying finite plasma β conditions. Methods: Inside the MFR, approximate internal equilibrium is obtained by pressure from gas and toroidal magnetic fields to maintain balance with the poloidal magnetic field. We selected parameter values to isolate best either internal or external kink instability before studying complex evolutions with mixed characteristics. We studied kink instabilities and magnetic reconnection in MFRs with low and high twists. Results: The curvature of MFRs is responsible for a tire tube force due to its internal plasma pressure, which tends to expand the MFR. The curvature effect of toroidal field inside the MFR leads to a downward movement toward the photosphere. We obtain an approximate internal equilibrium using the opposing characteristics of these two forces. A typical external kink instability totally dominates the evolution of MFR with infinite twist turns. Because of line-tied conditions and the curvature, the central MFR region loses its external equilibrium and erupts outward. We emphasize the possible role of two different kink instabilities during the MFR evolution: internal and external kink. The external kink is due to the violation of the Kruskal-Shafranov condition, while the internal kink requires a safety factor q = 1 surface inside the MFR. We show that in mixed scenarios, where both instabilities compete, complex evolutions occur owing to reconnections around and within the MFR. The S-shaped structures in current distributions appear naturally without invoking flux emergence. Magnetic reconfigurations common to eruptive MFRs and flare loop systems are found in our simulations.

  16. Validity Evidence for the Neuro-Endoscopic Ventriculostomy Assessment Tool (NEVAT).

    PubMed

    Breimer, Gerben E; Haji, Faizal A; Cinalli, Giuseppe; Hoving, Eelco W; Drake, James M

    2017-02-01

    Growing demand for transparent and standardized methods for evaluating surgical competence prompted the construction of the Neuro-Endoscopic Ventriculostomy Assessment Tool (NEVAT). To provide validity evidence of the NEVAT by reporting on the tool's internal structure and its relationship with surgical expertise during simulation-based training. The NEVAT was used to assess performance of trainees and faculty at an international neuroendoscopy workshop. All participants performed an endoscopic third ventriculostomy (ETV) on a synthetic simulator. Participants were simultaneously scored by 2 raters using the NEVAT procedural checklist and global rating scale (GRS). Evidence of internal structure was collected by calculating interrater reliability and internal consistency of raters' scores. Evidence of relationships with other variables was collected by comparing the ETV performance of experts, experienced trainees, and novices using Jonckheere's test (evidence of construct validity). Thirteen experts, 11 experienced trainees, and 10 novices participated. The interrater reliability by the intraclass correlation coefficient for the checklist and GRS was 0.82 and 0.94, respectively. Internal consistency (Cronbach's α) for the checklist and the GRS was 0.74 and 0.97, respectively. Median scores with interquartile range on the checklist and GRS for novices, experienced trainees, and experts were 0.69 (0.58-0.86), 0.85 (0.63-0.89), and 0.85 (0.81-0.91) and 3.1 (2.5-3.8), 3.7 (2.2-4.3) and 4.6 (4.4-4.9), respectively. Jonckheere's test showed that the median checklist and GRS score increased with performer expertise ( P = .04 and .002, respectively). This study provides validity evidence for the NEVAT to support its use as a standardized method of evaluating neuroendoscopic competence during simulation-based training. Copyright © 2016 by the Congress of Neurological Surgeons

  17. Effect of the internal optics on the outcome of custom-LASIK in an eye model

    NASA Astrophysics Data System (ADS)

    Manns, Fabrice; Ho, Arthur; Parel, Jean-Marie

    2004-07-01

    Purpose. The purpose of this study was to evaluate if changes in the aberration-contribution of the internal optics of the eye have a significant effect on the outcome of wavefront-guided corneal reshaping. Methods. The Navarro-Escudero eye model was simulated using optical analysis software. The eye was rendered myopic by shifting the plane of the retina. Custom-LASIK was simulated by changing the radius of curvature and asphericity of the anterior corneal surface of the eye model. The radius of curvature was adjusted to provide a retinal conjugate at infinity. Three approaches were used to determine the postoperative corneal asphericity: minimizing third-order spherical aberration, minimizing third-order coma, and maximizing the Strehl ratio. The aberration contribution of the anterior corneal surface and internal optics was calculated before and after each simulated customized correction. Results. For a 5.2mm diameter pupil, the contribution of the anterior corneal surface to third-order spherical aberration and coma (in micrometers) was 2.22 and 2.49 preop, -0.36 and 2.83 postop when spherical aberration is minimized, 5.88 and 1.10 postop when coma is minimized, and -0.63 and 2.91 postop when Strehl ratio is maximized. The contribution of the internal optics of the eye to spherical aberration and coma for the same four conditions was: 0.43 and -1.13, 0.37 and -1.10, 0.37 and -1.10 and 0.37 and -1.10, respectively. Conclusion. In the model eye, the contribution of the internal optics of the eye to the change in the ocular aberration state is negligible.

  18. SMC: SCENIC Model Control

    NASA Technical Reports Server (NTRS)

    Srivastava, Priyaka; Kraus, Jeff; Murawski, Robert; Golden, Bertsel, Jr.

    2015-01-01

    NASAs Space Communications and Navigation (SCaN) program manages three active networks: the Near Earth Network, the Space Network, and the Deep Space Network. These networks simultaneously support NASA missions and provide communications services to customers worldwide. To efficiently manage these resources and their capabilities, a team of student interns at the NASA Glenn Research Center is developing a distributed system to model the SCaN networks. Once complete, the system shall provide a platform that enables users to perform capacity modeling of current and prospective missions with finer-grained control of information between several simulation and modeling tools. This will enable the SCaN program to access a holistic view of its networks and simulate the effects of modifications in order to provide NASA with decisional information. The development of this capacity modeling system is managed by NASAs Strategic Center for Education, Networking, Integration, and Communication (SCENIC). Three primary third-party software tools offer their unique abilities in different stages of the simulation process. MagicDraw provides UMLSysML modeling, AGIs Systems Tool Kit simulates the physical transmission parameters and de-conflicts scheduled communication, and Riverbed Modeler (formerly OPNET) simulates communication protocols and packet-based networking. SCENIC developers are building custom software extensions to integrate these components in an end-to-end space communications modeling platform. A central control module acts as the hub for report-based messaging between client wrappers. Backend databases provide information related to mission parameters and ground station configurations, while the end user defines scenario-specific attributes for the model. The eight SCENIC interns are working under the direction of their mentors to complete an initial version of this capacity modeling system during the summer of 2015. The intern team is composed of four students in Computer Science, two in Computer Engineering, one in Electrical Engineering, and one studying Space Systems Engineering.

  19. High resolution simulations of a variable HH jet

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; de Colle, F.; Kajdič, P.; Esquivel, A.; Cantó, J.

    2007-04-01

    Context: In many papers, the flows in Herbig-Haro (HH) jets have been modeled as collimated outflows with a time-dependent ejection. In particular, a supersonic variability of the ejection velocity leads to the production of "internal working surfaces" which (for appropriate forms of the time-variability) can produce emitting knots that resemble the chains of knots observed along HH jets. Aims: In this paper, we present axisymmetric simulations of an "internal working surface" in a radiative jet (produced by an ejection velocity variability). We concentrate on a given parameter set (i.e., on a jet with a constante ejection density, and a sinusoidal velocity variability with a 20 yr period and a 40 km s-1 half-amplitude), and carry out a study of the behaviour of the solution for increasing numerical resolutions. Methods: In our simulations, we solve the gasdynamic equations together with a 17-species atomic/ionic network, and we are therefore able to compute emission coefficients for different emission lines. Results: We compute 3 adaptive grid simulations, with 20, 163 and 1310 grid points (at the highest grid resolution) across the initial jet radius. From these simulations we see that successively more complex structures are obtained for increasing numerical resolutions. Such an effect is seen in the stratifications of the flow variables as well as in the predicted emission line intensity maps. Conclusions: .We find that while the detailed structure of an internal working surface depends on resolution, the predicted emission line luminosities (integrated over the volume of the working surface) are surprisingly stable. This is definitely good news for the future computation of predictions from radiative jet models for carrying out comparisons with observations of HH objects.

  20. Updated model assessment of pollution at major U. S. Airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamartino, R.J.; Rote, D.M.

    1979-02-01

    The air quality impact of aircraft at and around Los Angeles International Airport (LAX) is simulated for hours of peak aircraft operation and worst case pollutant dispersion conditions. An updated version of the Argonne Airport Vicinity Air Pollution (AVAP) model is used in the simulation; model refinements reflect new theoretical formulations and data from field programs at LAX, O'Hare, and John F. Kennedy International Airports. Maximum carbon monoxide concentrations at LAX are found to be low relative to the NAAQS. Relatively high, widespread hydrocarbon levels indicate that aircraft emissions may aggravate oxidant problems near the airport. Concentrations of oxides ofmore » nitrogen are high enough relative to proposed standards to warrant further study. Similar modeling is underway for the O'Hare and JFK airports.« less

  1. Three-dimensional transient numerical simulation for intake process in the engine intake port-valve-cylinder system.

    PubMed

    Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao

    2003-01-01

    This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.

  2. The Development and Validation of a Concise Instrument for Formative Assessment of Team Leader Performance During Simulated Pediatric Resuscitations.

    PubMed

    Nadkarni, Lindsay D; Roskind, Cindy G; Auerbach, Marc A; Calhoun, Aaron W; Adler, Mark D; Kessler, David O

    2018-04-01

    The aim of this study was to assess the validity of a formative feedback instrument for leaders of simulated resuscitations. This is a prospective validation study with a fully crossed (person × scenario × rater) study design. The Concise Assessment of Leader Management (CALM) instrument was designed by pediatric emergency medicine and graduate medical education experts to be used off the shelf to evaluate and provide formative feedback to resuscitation leaders. Four experts reviewed 16 videos of in situ simulated pediatric resuscitations and scored resuscitation leader performance using the CALM instrument. The videos consisted of 4 pediatric emergency department resuscitation teams each performing in 4 pediatric resuscitation scenarios (cardiac arrest, respiratory arrest, seizure, and sepsis). We report on content and internal structure (reliability) validity of the CALM instrument. Content validity was supported by the instrument development process that involved professional experience, expert consensus, focused literature review, and pilot testing. Internal structure validity (reliability) was supported by the generalizability analysis. The main component that contributed to score variability was the person (33%), meaning that individual leaders performed differently. The rater component had almost zero (0%) contribution to variance, which implies that raters were in agreement and argues for high interrater reliability. These results provide initial evidence to support the validity of the CALM instrument as a reliable assessment instrument that can facilitate formative feedback to leaders of pediatric simulated resuscitations.

  3. An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 2: Anterolateral Ligament Reconstruction Combined With Anterior Cruciate Ligament Reconstruction.

    PubMed

    Nitri, Marco; Rasmussen, Matthew T; Williams, Brady T; Moulton, Samuel G; Cruz, Raphael Serra; Dornan, Grant J; Goldsmith, Mary T; LaPrade, Robert F

    2016-03-01

    Recent biomechanical studies have demonstrated that an extra-articular lateral knee structure, most recently referred to as the anterolateral ligament (ALL), contributes to overall rotational stability of the knee. However, the effect of anatomic ALL reconstruction (ALLR) in the setting of anterior cruciate ligament (ACL) reconstruction (ACLR) has not been biomechanically investigated or validated. The purpose of this study was to investigate the biomechanical function of anatomic ALLR in the setting of a combined ACL and ALL injury. More specifically, this investigation focused on the effect of ALLR on resultant rotatory stability when performed in combination with concomitant ACLR. It was hypothesized that ALLR would significantly reduce internal rotation and axial plane translation laxity during a simulated pivot-shift test compared with isolated ACLR. Controlled laboratory study. Ten fresh-frozen cadaveric knees were evaluated with a 6 degrees of freedom robotic system. Knee kinematics were evaluated with simulated clinical examinations including a simulated pivot-shift test consisting of coupled 10-N·m valgus and 5-N·m internal rotation torques, a 5-N·m internal rotation torque, and an 88-N anterior tibial load. Kinematic differences between ACLR with an intact ALL, ACLR with ALLR, and ACLR with a deficient ALL were compared with the intact state. Single-bundle ACLR tunnels and ALLR tunnels were placed anatomically according to previous quantitative anatomic attachment descriptions. Combined anatomic ALLR and ACLR significantly improved the rotatory stability of the knee compared with isolated ACLR in the face of a concurrent ALL deficiency. During a simulated pivot-shift test, ALLR significantly reduced internal rotation and axial plane tibial translation when compared with ACLR with an ALL deficiency. Isolated ACLR for the treatment of a combined ACL and ALL injury was not able to restore stability of the knee, resulting in a significant increase in residual internal rotation laxity. ALLR did not affect anterior tibial translation; no significant differences were observed between the varying ALL conditions with ACLR except between ACLR with an intact ALL and ACLR with a deficient ALL at 0° of flexion. In the face of a combined ACL and ALL deficiency, concurrent ACLR and ALLR significantly improved the rotatory stability of the knee compared with solely reconstructing the ACL. Significant increases in residual internal rotation and laxity during the pivot-shift test may exist in both acute and chronic settings of an ACL deficiency and in patients treated with isolated ACLR for a combined ACL and ALL deficiency. For this subset of patients, surgical treatment of the ALL, in addition to ACLR, should be considered to restore knee stability. © 2016 The Author(s).

  4. Status of simulation in health care education: an international survey.

    PubMed

    Qayumi, Karim; Pachev, George; Zheng, Bin; Ziv, Amitai; Koval, Valentyna; Badiei, Sadia; Cheng, Adam

    2014-01-01

    Simulation is rapidly penetrating the terrain of health care education and has gained growing acceptance as an educational method and patient safety tool. Despite this, the state of simulation in health care education has not yet been evaluated on a global scale. In this project, we studied the global status of simulation in health care education by determining the degree of financial support, infrastructure, manpower, information technology capabilities, engagement of groups of learners, and research and scholarly activities, as well as the barriers, strengths, opportunities for growth, and other aspects of simulation in health care education. We utilized a two-stage process, including an online survey and a site visit that included interviews and debriefings. Forty-two simulation centers worldwide participated in this study, the results of which show that despite enormous interest and enthusiasm in the health care community, use of simulation in health care education is limited to specific areas and is not a budgeted item in many institutions. Absence of a sustainable business model, as well as sufficient financial support in terms of budget, infrastructure, manpower, research, and scholarly activities, slows down the movement of simulation. Specific recommendations are made based on current findings to support simulation in the next developmental stages.

  5. A Point Rainfall Generator With Internal Storm Structure

    NASA Astrophysics Data System (ADS)

    Marien, J. L.; Vandewiele, G. L.

    1986-04-01

    A point rainfall generator is a probabilistic model for the time series of rainfall as observed in one geographical point. The main purpose of such a model is to generate long synthetic sequences of rainfall for simulation studies. The present generator is a continuous time model based on 13.5 years of 10-min point rainfalls observed in Belgium and digitized with a resolution of 0.1 mm. The present generator attempts to model all features of the rainfall time series which are important for flood studies as accurately as possible. The original aspects of the model are on the one hand the way in which storms are defined and on the other hand the theoretical model for the internal storm characteristics. The storm definition has the advantage that the important characteristics of successive storms are fully independent and very precisely modelled, even on time bases as small as 10 min. The model of the internal storm characteristics has a strong theoretical structure. This fact justifies better the extrapolation of this model to severe storms for which the data are very sparse. This can be important when using the model to simulate severe flood events.

  6. Effects of Density Stratification in Compressible Polytropic Convection

    NASA Astrophysics Data System (ADS)

    Manduca, Cathryn M.; Anders, Evan H.; Bordwell, Baylee; Brown, Benjamin P.; Burns, Keaton J.; Lecoanet, Daniel; Oishi, Jeffrey S.; Vasil, Geoffrey M.

    2017-11-01

    We study compressible convection in polytropically-stratified atmospheres, exploring the effect of varying the total density stratification. Using the Dedalus pseudospectral framework, we perform 2D and 3D simulations. In these experiments we vary the number of density scale heights, studying atmospheres with little stratification (1 density scale height) and significant stratification (5 density scale heights). We vary the level of convective driving (quantified by the Rayleigh number), and study flows at similar Mach numbers by fixing the initial superadiabaticity. We explore the differences between 2D and 3D simulations, and in particular study the equilibration between different reservoirs of energy (kinetic, potential and internal) in the evolved states.

  7. An Analysis of Delay and Travel Times at Sao Paulo International Airport (AISP/GRU): Planning Based on Simulation Model

    NASA Technical Reports Server (NTRS)

    Santana, Erico Soriano Martins; Mueller, Carlos

    2003-01-01

    The occurrence of flight delays in Brazil, mostly verified at the ground (airfield), is responsible for serious disruptions at the airport level but also for the unchaining of problems in all the airport system, affecting also the airspace. The present study develops an analysis of delay and travel times at Sao Paulo International Airport/ Guarulhos (AISP/GRU) airfield based on simulation model. Different airport physical and operational scenarios had been analyzed by means of simulation. SIMMOD Plus 4.0, the computational tool developed to represent aircraft operation in the airspace and airside of airports, was used to perform these analysis. The study was mainly focused on aircraft operations on ground, at the airport runway, taxi-lanes and aprons. The visualization of the operations with increasing demand facilitated the analyses. The results generated in this work certify the viability of the methodology, they also indicated the solutions capable to solve the delay problem by travel time analysis, thus diminishing the costs for users mainly airport authority. It also indicated alternatives for airport operations, assisting the decision-making process and in the appropriate timing of the proposed changes in the existing infrastructure.

  8. An assessment of the realism of digital human manikins used for simulation in ergonomics.

    PubMed

    Nérot, Agathe; Skalli, Wafa; Wang, Xuguang

    2015-01-01

    In this study, the accuracy of the joint centres of the manikins generated by RAMSIS and Human Builder (HB), two digital human modelling (DHM) systems widely used in industry for virtual ergonomics simulation, was investigated. Eighteen variously sized females and males were generated from external anthropometric dimensions and six joint centres (knee, hip and four spine joints) were compared with their anatomic locations obtained from the three-dimensional reconstructed bones from a low-dose X-ray system. Both RAMSIS and HB could correctly reproduce external anthropometric dimensions, while the estimation of internal joint centres location presented an average error of 27.6 mm for HB and 38.3 mm for RAMSIS. Differences between both manikins showed that a more realistic kinematic linkage led to better accuracy in joint location. This study opens the way to further research on the relationship between the external body geometry and internal skeleton in order to improve the realism of the internal skeleton of DHMs, especially for a biomechanical analysis requiring information of joint load and muscle force estimation. This study assessed two digital human modelling (DHM) systems widely used in industry for virtual ergonomics. Results support the need of a more realistic human modelling, especially for a biomechanical analysis and a standardisation of DHMs.

  9. Robustness of external/internal correlation models for real-time tumor tracking to breathing motion variations

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Cerveri, P.; Riboldi, M.; Pella, A.; Baroni, G.

    2012-11-01

    In radiotherapy, organ motion mitigation by means of dynamic tumor tracking requires continuous information about the internal tumor position, which can be estimated relying on external/internal correlation models as a function of external surface surrogates. In this work, we propose a validation of a time-independent artificial neural networks-based tumor tracking method in the presence of changes in the breathing pattern, evaluating the performance on two datasets. First, simulated breathing motion traces were specifically generated to include gradually increasing respiratory irregularities. Then, seven publically available human liver motion traces were analyzed for the assessment of tracking accuracy, whose sensitivity with respect to the structural parameters of the model was also investigated. Results on simulated data showed that the proposed method was not affected by hysteretic target trajectories and it was able to cope with different respiratory irregularities, such as baseline drift and internal/external phase shift. The analysis of the liver motion traces reported an average RMS error equal to 1.10 mm, with five out of seven cases below 1 mm. In conclusion, this validation study proved that the proposed method is able to deal with respiratory irregularities both in controlled and real conditions.

  10. Microcanonical ensemble simulation method applied to discrete potential fluids

    NASA Astrophysics Data System (ADS)

    Sastre, Francisco; Benavides, Ana Laura; Torres-Arenas, José; Gil-Villegas, Alejandro

    2015-09-01

    In this work we extend the applicability of the microcanonical ensemble simulation method, originally proposed to study the Ising model [A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002), 10.1142/S0129183102003693], to the case of simple fluids. An algorithm is developed by measuring the transition rates probabilities between macroscopic states, that has as advantage with respect to conventional Monte Carlo NVT (MC-NVT) simulations that a continuous range of temperatures are covered in a single run. For a given density, this new algorithm provides the inverse temperature, that can be parametrized as a function of the internal energy, and the isochoric heat capacity is then evaluated through a numerical derivative. As an illustrative example we consider a fluid composed of particles interacting via a square-well (SW) pair potential of variable range. Equilibrium internal energies and isochoric heat capacities are obtained with very high accuracy compared with data obtained from MC-NVT simulations. These results are important in the context of the application of the Hüller-Pleimling method to discrete-potential systems, that are based on a generalization of the SW and square-shoulder fluids properties.

  11. Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratihar, Subha; Barnes, George L.; Laskin, Julia

    In this Perspective mass spectrometry experiments and chemical dynamics simulations are described which have explored the atomistic dynamics of protonated peptide ions, peptide-H+, colliding with organic surfaces. These studies have investigated surface-induced dissociation (SID) for which peptide-H+ fragments upon collision with the surface, peptide-H+ physisorption on the surface, soft landing (SL), and peptide-H+ reaction with the surface, reactive landing (RL). The simulations include QM+MM and QM/MM direct dynamics. For collisions with self-assembled monolayer (SAM) surfaces there is quite good agreement between experiment and simulation in the efficiency of energy transfer to the peptide-H+ ion’s internal degrees of freedom. Both themore » experiments and simulations show two mechanisms for peptide-H+ fragmentation, i.e. shattering and statistical, RRKM dynamics. Mechanisms for SL are probed in simulations of collisions of protonated dialanine with a perfluorinated SAM surface. RL has been studied experimentally for a number of peptide-H+ + surface systems, and qualitative agreement between simulation and experiment is found for two similar systems.« less

  12. Evaluating the Impact of Classroom Education on the Management of Septic Shock Using Human Patient Simulation.

    PubMed

    Lighthall, Geoffrey K; Bahmani, Dona; Gaba, David

    2016-02-01

    Classroom lectures are the mainstay of imparting knowledge in a structured manner and have the additional goals of stimulating critical thinking, lifelong learning, and improvements in patient care. The impact of lectures on patient care is difficult to examine in critical care because of the heterogeneity in patient conditions and personnel as well as confounders such as time pressure, interruptions, fatigue, and nonstandardized observation methods. The critical care environment was recreated in a simulation laboratory using a high-fidelity mannequin simulator, where a mannequin simulator with a standardized script for septic shock was presented to trainees. The reproducibility of this patient and associated conditions allowed the evaluation of "clinical performance" in the management of septic shock. In a previous study, we developed and validated tools for the quantitative analysis of house staff managing septic shock simulations. In the present analysis, we examined whether measures of clinical performance were improved in those cases where a lecture on the management of shock preceded a simulated exercise on the management of septic shock. The administration of the septic shock simulations allowed for performance measurements to be calculated for both medical interns and for subsequent management by a larger resident-led team. The analysis revealed that receiving a lecture on shock before managing a simulated patient with septic shock did not produce scores higher than for those who did not receive the previous lecture. This result was similar for both interns managing the patient and for subsequent management by a resident-led team. We failed to find an immediate impact on clinical performance in simulations of septic shock after a lecture on the management of this syndrome. Lectures are likely not a reliable sole method for improving clinical performance in the management of complex disease processes.

  13. A Scholar and a Simulation Ahead of Their Time: Memories of Harold Guetzkow

    ERIC Educational Resources Information Center

    Janda, Kenneth

    2011-01-01

    Research on international relations at Northwestern University in the 1960s and 1970s revolved around Harold Guetzkow's pioneering work on the simulation of international processes. As a beginning faculty member, I benefited from the insights and excitement of that special time and place. As a participant in one of his events, I experienced the…

  14. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled ;Advances in Numerical Simulation of Plasmas,; presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  15. Unifying interdisciplinary education: designing and implementing an intern simulation educational curriculum to increase confidence in critical care from PGY1 to PGY2.

    PubMed

    Bullard, Mark J; Leuck, Jo Anna; Howley, Lisa D

    2017-11-06

    A longitudinal, multidisciplinary critical care simulation curriculum was developed and implemented within a teaching hospital to address the need for consistent, safe, efficient, and unified critical care training within graduate medical education. Primary goals were to increase learner confidence in critical care topics and procedural skills across all specialties. Secondary goals included improving communication skills and obtaining a high level of learner satisfaction. All interns caring for adult patients within our hospital participated in three 4-h simulation-based sessions scheduled over the second half of their intern year. Pre- and postcurricular surveys evaluated self-confidence in critical care topics, procedures, and communication skills. The Debriefing Assessment for Simulation in Healthcare Student Version (DASH-SV) Short Form was used to evaluate facilitator debriefing. Data were compared with Wilcoxon rank sum and signed rank test. Pre- and postcurricular surveys were collected from 51 of 52 interns (98% response rate) in curricular year 1 and 59 of 59 interns (100% response rate) in curricular year 2 in six programs within the hospital. Resident confidence significantly improved in all areas (p < .05). DASH-SV demonstrated overall effective facilitator debriefing and > 75% of interns in both curricular years 1 and 2 expressed a desire for future educational sessions. The implemented curriculum increased learner confidence in select critical care topics, procedures, and communication skills and demonstrated a high level of learner satisfaction. The curriculum has expanded to learners from three other teaching hospitals within our system to unify critical care education for all interns caring for adult patients.

  16. PREFACE: International Conference on Quantum Simulators and Design, Hiroshima, Japan, 3 6 December 2006

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Oguchi, Tamio

    2007-09-01

    This special issue of Journal of Physics: Condensed Matter comprises selected papers from the 1st International Conference on Quantum Simulators and Design (QSD2006) held in Hiroshima, Japan, 3-6 December 2006. This conference was organized under the auspices of the Development of New Quantum Simulators and Quantum Design Grant-in-Aid for Scientific Research on Priority Areas, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and Hiroshima University Quantum design is a computational approach to the development of new materials with specified properties and functionalities. The basic ingredient is the use of quantum simulations to design a material that meets a given specification of properties and functionalities. For this to be successful, the quantum simulation should be highly reliable and be applicable to systems of realistic size. A central interest is, therefore, the development of new methods of quantum simulation and quantum design. This includes methods beyond the local density approximation of density functional theory (LDA), order-N methods, methods dealing with excitations and reactions, and so on, as well as the application of these methods to the design of new materials and devices. The field of quantum design has developed rapidly in the past few years and this conference provides an international forum for experimental and theoretical researchers to exchange ideas. A total of 183 delegates from 8 countries participated in the conference. There were 18 invited talks, 16 oral presentations and 100 posters. There were many new ideas and we foresee dramatic progress in the coming years. The 2nd International Conference on Quantum Simulators and Design will be held in Tokyo, Japan, 31 May-3 June 2008.

  17. Estimation of Error in Maximal Intensity Projection-Based Internal Target Volume of Lung Tumors: A Simulation and Comparison Study Using Dynamic Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Jing; Read, Paul W.; Baisden, Joseph M.

    Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA)more » from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.« less

  18. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging.

    PubMed

    Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke

    2007-11-01

    To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.

  19. A numerical simulation approach to studying anterior cruciate ligament strains and internal forces among young recreational women performing valgus inducing stop-jump activities.

    PubMed

    Kar, Julia; Quesada, Peter M

    2012-08-01

    Anterior cruciate ligament (ACL) injuries are commonly incurred by recreational and professional women athletes during non-contact jumping maneuvers in sports like basketball and volleyball, where incidences of ACL injury is more frequent to females compared to males. What remains a numerical challenge is in vivo calculation of ACL strain and internal force. This study investigated effects of increasing stop-jump height on neuromuscular and bio-mechanical properties of knee and ACL, when performed by young female recreational athletes. The underlying hypothesis is increasing stop-jump (platform) height increases knee valgus angles and external moments which also increases ACL strain and internal force. Using numerical analysis tools comprised of Inverse Kinematics, Computed Muscle Control and Forward Dynamics, a novel approach is presented for computing ACL strain and internal force based on (1) knee joint kinematics and (2) optimization of muscle activation, with ACL insertion into musculoskeletal model. Results showed increases in knee valgus external moments and angles with increasing stop-jump height. Increase in stop-jump height from 30 to 50 cm lead to increase in average peak valgus external moment from 40.5 ± 3.2 to 43.2 ± 3.7 Nm which was co-incidental with increase in average peak ACL strain, from 9.3 ± 3.1 to 13.7 ± 1.1%, and average peak ACL internal force, from 1056.1 ± 71.4 to 1165.4 ± 123.8 N for the right side with comparable increases in the left. In effect this study demonstrates a technique for estimating dynamic changes to knee and ACL variables by conducting musculoskeletal simulation on motion analysis data, collected from actual stop-jump tasks performed by young recreational women athletes.

  20. Simulation environment and graphical visualization environment: a COPD use-case

    PubMed Central

    2014-01-01

    Background Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. Results In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. This simulation environment has been validated with the integration of three models: two deterministic, i.e. based on linear and differential equations, and one probabilistic, i.e., based on probability theory. These models have been selected based on the disease under study in this project, i.e., chronic obstructive pulmonary disease. Conclusion It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios. PMID:25471327

  1. Imaginary alternatives: The effects of mental simulation on powerless negotiators.

    PubMed

    Schaerer, Michael; Schweinsberg, Martin; Swaab, Roderick I

    2018-03-29

    This research demonstrates that people can act more powerfully without having power. Researchers and practitioners advise people to obtain alternatives in social exchange relationships to enhance their power. However, alternatives are not always readily available, often forcing people to interact without having much power. Building on research suggesting that subjective power and objective outcomes are disconnected and that mental simulation can improve aspirations, we show that the mental imagery of a strong alternative can provide some of the benefits that real alternatives provide. We tested this hypothesis in one context of social exchange-negotiations-and demonstrate that imagining strong alternatives (vs. not) causes powerless individuals to negotiate more ambitiously. Negotiators reached more profitable agreements when they had a stronger tendency to simulate alternatives (Study 1) or when they were instructed to simulate an alternative (Studies 3-6). Mediation analyses suggest that mental simulation enhanced performance because it boosted negotiators' aspirations and subsequent first offers (Studies 2-6), but only when the simulated alternative was attractive (Study 5). We used various negotiation contexts, which also allowed us to identify important boundary conditions of mental simulations in interdependent settings: mental simulation no longer helped when negotiators did not make the first offer, when their opponents simultaneously engaged in mental simulation (Study 6), and even backfired in settings where negotiators' positions were difficult to reconcile (Study 7). An internal meta-analysis of the file-drawer produces conservative effect size estimates and demonstrates the robustness of the effect. We contribute to social power, negotiations, and mental simulation research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Urology technical and non-technical skills development: the emerging role of simulation.

    PubMed

    Rashid, Prem; Gianduzzo, Troy R J

    2016-04-01

    To review the emerging role of technical and non-technical simulation in urological education and training. A review was conducted to examine the current role of simulation in urology training. A PUBMED search of the terms 'urology training', 'urology simulation' and 'urology education' revealed 11,504 titles. Three hundred and fifty-seven abstracts were identified as English language, peer reviewed papers pertaining to the role of simulation in urology and related topics. Key papers were used to explore themes. Some cross-referenced papers were also included. There is an ongoing need to ensure that training time is efficiently utilised while ensuring that optimal technical and non-technical skills are achieved. Changing working conditions and the need to minimise patient harm by inadvertent errors must be taken into account. Simulation models for specific technical aspects have been the mainstay of graduated step-wise low and high fidelity training. Whole scenario environments as well as non-technical aspects can be slowly incorporated into the curriculum. Doing so should also help define what have been challenging competencies to teach and evaluate. Dedicated time, resources and trainer up-skilling are important. Concurrent studies are needed to help evaluate the effectiveness of introducing step-wise simulation for technical and non-technical competencies. Simulation based learning remains the best avenue of progressing surgical education. Technical and non-technical simulation could be used in the selection process. There are good economic, logistic and safety reasons to pursue the process of ongoing development of simulation co-curricula. While the role of simulation is assured, its progress will depend on a structured program that takes advantage of what can be delivered via this medium. Overall, simulation can be developed further for urological training programs to encompass technical and non-technical skill development at all stages, including recertification. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.

  3. Current status of validation for robotic surgery simulators - a systematic review.

    PubMed

    Abboudi, Hamid; Khan, Mohammed S; Aboumarzouk, Omar; Guru, Khurshid A; Challacombe, Ben; Dasgupta, Prokar; Ahmed, Kamran

    2013-02-01

    To analyse studies validating the effectiveness of robotic surgery simulators. The MEDLINE(®), EMBASE(®) and PsycINFO(®) databases were systematically searched until September 2011. References from retrieved articles were reviewed to broaden the search. The simulator name, training tasks, participant level, training duration and evaluation scoring were extracted from each study. We also extracted data on feasibility, validity, cost-effectiveness, reliability and educational impact. We identified 19 studies investigating simulation options in robotic surgery. There are five different robotic surgery simulation platforms available on the market. In all, 11 studies sought opinion and compared performance between two different groups; 'expert' and 'novice'. Experts ranged in experience from 21-2200 robotic cases. The novice groups consisted of participants with no prior experience on a robotic platform and were often medical students or junior doctors. The Mimic dV-Trainer(®), ProMIS(®), SimSurgery Educational Platform(®) (SEP) and Intuitive systems have shown face, content and construct validity. The Robotic Surgical SimulatorTM system has only been face and content validated. All of the simulators except SEP have shown educational impact. Feasibility and cost-effectiveness of simulation systems was not evaluated in any trial. Virtual reality simulators were shown to be effective training tools for junior trainees. Simulation training holds the greatest potential to be used as an adjunct to traditional training methods to equip the next generation of robotic surgeons with the skills required to operate safely. However, current simulation models have only been validated in small studies. There is no evidence to suggest one type of simulator provides more effective training than any other. More research is needed to validate simulated environments further and investigate the effectiveness of animal and cadaveric training in robotic surgery. © 2012 BJU International.

  4. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  5. KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  6. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  7. Photoionization in a Numerical Simulation of a Spark Discharge in Air

    DTIC Science & Technology

    2016-09-01

    thunder , exploding thin conductors, and ignition of a fuel/air mixture in an internal combustion engine. All of these arcs have a circular cylindrical...that this arc resistance can be questioned. A detailed numerical study of an arc came from the research on thunder and lightning.4 This study is

  8. Simulation Framework for Teaching in Modeling and Simulation Areas

    ERIC Educational Resources Information Center

    De Giusti, Marisa Raquel; Lira, Ariel Jorge; Villarreal, Gonzalo Lujan

    2008-01-01

    Simulation is the process of executing a model that describes a system with enough detail; this model has its entities, an internal state, some input and output variables and a list of processes bound to these variables. Teaching a simulation language such as general purpose simulation system (GPSS) is always a challenge, because of the way it…

  9. Numerical Uncertainties in the Simulation of Reversible Isentropic Processes and Entropy Conservation.

    NASA Astrophysics Data System (ADS)

    Johnson, Donald R.; Lenzen, Allen J.; Zapotocny, Tom H.; Schaack, Todd K.

    2000-11-01

    A challenge common to weather, climate, and seasonal numerical prediction is the need to simulate accurately reversible isentropic processes in combination with appropriate determination of sources/sinks of energy and entropy. Ultimately, this task includes the distribution and transport of internal, gravitational, and kinetic energies, the energies of water substances in all forms, and the related thermodynamic processes of phase changes involved with clouds, including condensation, evaporation, and precipitation processes.All of the processes noted above involve the entropies of matter, radiation, and chemical substances, conservation during transport, and/or changes in entropies by physical processes internal to the atmosphere. With respect to the entropy of matter, a means to study a model's accuracy in simulating internal hydrologic processes is to determine its capability to simulate the appropriate conservation of potential and equivalent potential temperature as surrogates of dry and moist entropy under reversible adiabatic processes in which clouds form, evaporate, and precipitate. In this study, a statistical strategy utilizing the concept of `pure error' is set forth to assess the numerical accuracies of models to simulate reversible processes during 10-day integrations of the global circulation corresponding to the global residence time of water vapor. During the integrations, the sums of squared differences between equivalent potential temperature e numerically simulated by the governing equations of mass, energy, water vapor, and cloud water and a proxy equivalent potential temperature te numerically simulated as a conservative property are monitored. Inspection of the differences of e and te in time and space and the relative frequency distribution of the differences details bias and random errors that develop from nonlinear numerical inaccuracies in the advection and transport of potential temperature and water substances within the global atmosphere.A series of nine global simulations employing various versions of Community Climate Models CCM2 and CCM3-all Eulerian spectral numerics, all semi-Lagrangian numerics, mixed Eulerian spectral, and semi-Lagrangian numerics-and the University of Wisconsin-Madison (UW) isentropic-sigma gridpoint model provides an interesting comparison of numerical accuracies in the simulation of reversibility. By day 10, large bias and random differences were identified in the simulation of reversible processes in all of the models except for the UW isentropic-sigma model. The CCM2 and CCM3 simulations yielded systematic differences that varied zonally, vertically, and temporally. Within the comparison, the UW isentropic-sigma model was superior in transporting water vapor and cloud water/ice and in simulating reversibility involving the conservation of dry and moist entropy. The only relative frequency distribution of differences that appeared optimal, in that the distribution remained unbiased and equilibrated with minimal variance as it remained statistically stationary, was the distribution from the UW isentropic-sigma model. All other distributions revealed nonstationary characteristics with spreading and/or shifting of the maxima as the biases and variances of the numerical differences of e and te amplified.

  10. First International Workshop on Grid Simulator Testing of Wind Turbine

    Science.gov Websites

    of Wind Turbine Drivetrains First International Workshop on Grid Simulator Testing of Wind Turbine Wind Turbine Drivetrains June 13-14, 2013, at the National Wind Technology Center near Boulder apparatuses involved in grid compliance testing of utility-scale wind turbine generators. This includes both

  11. High-performing simulations of the space radiation environment for the International Space Station and Apollo Missions

    NASA Astrophysics Data System (ADS)

    Lund, Matthew Lawrence

    The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.

  12. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, G.; Lackner, M.; Haid, L.

    2013-07-01

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation lengthmore » on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.« less

  13. Overall migration and specific migration of bisphenol A diglycidyl ether monomer and m-xylylenediamine hardener from an optimized epoxy-amine formulation into water-based food simulants.

    PubMed

    Simal Gándara, J; López Mahía, P; Paseiro Losada, P; Simal Lozano, J; Paz Abuín, S

    1993-01-01

    The overall and specific migrations of BADGE n = 0 monomer and m-XDA hardener from a BEPOX LAB 889 (Gairesa internal code), epoxy system cured at room temperature, into three water-based food simulants are studied. Hydrolysis of BADGE n = 0 was observed in all of these simulants, giving more polar products. We thus propose changing the EEC Directives, which at present only legislate for levels of BADGE n = 0 monomer in the simulants, to include the hydrolysis products of BADGE monomers. Another alternative would be to express all the migration levels due to BADGE and its derived products in terms of BADGE itself.

  14. Figures of Merit for Lunar Simulants

    NASA Technical Reports Server (NTRS)

    Slane, Frederick A.; Rickman, Douglas L.

    2012-01-01

    At an earlier SRR the concept for an international standard on Lunar regolith simulants was presented. The international standard, ISO 10788, Lunar Simulants, has recently been published. This paper presents the final content of the standard. Therefore, we are presenting an update of the following: The collection and analysis of lunar samples from 1969 to present has yielded large amounts of data. Published analyses give some idea of the complex nature of the regolith at all scales, rocks, soils and the smaller particulates commonly referred to as dust. Data recently acquired in support of NASA s simulant effort has markedly increased our knowledge and quantitatively demonstrates that complexity. It is anticipated that future analyses will further add to the known complexity. In an effort to communicate among the diverse technical communities performing research on or research using regolith samples and simulants, a set of Figures of Merit (FoM) have been devised. The objective is to allow consistent and concise comparative communication between researchers from multiple organizations and nations engaged in lunar exploration. This paper describes Figures of Merit in a new international standard for Lunar Simulants. The FoM methodology uses scientific understanding of the lunar samples to formulate parameters which are reproducibly quantifiable. Contaminants and impurities in the samples are also addressed.

  15. Interaction of external conditions with the internal flowfield in liquid rocket engines - A computational study

    NASA Technical Reports Server (NTRS)

    Trinh, H. P.; Gross, K. W.

    1989-01-01

    Computational studies have been conducted to examine the capability of a CFD code by simulating the steady state thrust chamber internal flow. The SSME served as the sample case, and significant parameter profiles are presented and discussed. Performance predictions from TDK, the recommended JANNAF reference computer program, are compared with those from PHOENICS to establish the credibility of its results. The investigation of an overexpanded nozzle flow is particularly addressed since it plays an important role in the area ratio selection of future rocket engines. Experience gained during this uncompleted flow separation study and future steps are outlined.

  16. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1975-01-01

    An investigation of the behavior of the power-conditioning system as a whole is a necessity to ensure the integrity of the aggregate system in the case of space applications. An approach for conducting such an investigation is considered. A description is given of the application of a general digital analog simulator program to the study of an aggregate power-conditioning system which is being developed for use on the International Ultraviolet Explorer spacecraft. The function of the direct energy transfer system studied involves a coupling of a solar array through a main distribution bus to the spacecraft electrical loads.

  17. Status of the EDDA experiment at COSY

    NASA Astrophysics Data System (ADS)

    Scobel, W.; EDDA Collaboration; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Dorner, G.; Drüke, V.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Stein, H.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.

    1993-07-01

    The EDDA experiment is designed to study p + p excitation functions with high energy resolution and narrow step size in the kinetic energy range from 250 MeV to 2500 MeV at the Cooler Synchrotron COSY. Measurements during the accelertion phase in conjunction with internal targets will allow to achieve a fast and precise energy variation. Prototypes of the detector elements and the fiber target have been extensively tested with proton and electron beams; the detector performance and trigger efficiency have been studied in Monte Carlo simulations. In this contribution, results concerning detector design, prototype studies, Monte Carlo simulations and the anticipated detector resolutions will be reported.

  18. The feasibility of sharing simulation-based evaluation scenarios in anesthesiology.

    PubMed

    Berkenstadt, Haim; Kantor, Gareth S; Yusim, Yakov; Gafni, Naomi; Perel, Azriel; Ezri, Tiberiu; Ziv, Amitai

    2005-10-01

    We prospectively assessed the feasibility of international sharing of simulation-based evaluation tools despite differences in language, education, and anesthesia practice, in an Israeli study, using validated scenarios from a multi-institutional United States (US) study. Thirty-one Israeli junior anesthesia residents performed four simulation scenarios. Training sessions were videotaped and performance was assessed using two validated scoring systems (Long and Short Forms) by two independent raters. Subjects scored from 37 to 95 (70 +/- 12) of 108 possible points with the "Long Form" and "Short Form" scores ranging from 18 to 35 (28.2 +/- 4.5) of 40 possible points. Scores >70% of the maximal score were achieved by 61% of participants in comparison to only 5% in the original US study. The scenarios were rated as very realistic by 80% of the participants (grade 4 on a 1-4 scale). Reliability of the original assessment tools was demonstrated by internal consistencies of 0.66 for the Long and 0.75 for the Short Form (Cronbach alpha statistic). Values in the original study were 0.72-0.76 for the Long and 0.71-0.75 for the Short Form. The reliability did not change when a revised Israeli version of the scoring was used. Interrater reliability measured by Pearson correlation was 0.91 for the Long and 0.96 for the Short Form (P < 0.01). The high scores for plausibility given to the scenarios and the similar reliability of the original assessment tool support the feasibility of using simulation-based evaluation tools, developed in the US, in Israel. The higher scores achieved by Israeli residents may be related to the fact that most Israeli residents are immigrants with previous training in anesthesia. Simulation-based assessment tools developed in a multi-institutional study in the United States can be used in Israel despite the differences in language, education, and medical system.

  19. High Explosive Simulation of a Nuclear Surface Burst. A Feasibility Study

    DTIC Science & Technology

    1979-06-30

    International Compan ! proposed a method for applying the required close-in airblast loading to the ground surface in conjunction with the MINE THROW...internal energy, e. A check was made to ensure that the above EQS formulation did not introduce large artificial gradients into the pressure. 4.1.3 Some...Proj. Agency Harry Diamond Laboratories ATTN: TIO Department of the Army ATTN: DELHD-N-P Defense Intelligence Agency ATTN: DELHD-I-TL ATTN: DB-4C, E

  20. Molecular gas dynamics applied to low-thrust propulsion

    NASA Astrophysics Data System (ADS)

    Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.

    1993-11-01

    The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.

  1. Molecular gas dynamics applied to low-thrust propulsion

    NASA Technical Reports Server (NTRS)

    Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.

    1993-01-01

    The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.

  2. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  3. Biodiesel Production using Heterogeneous Catalyst in CSTR: Sensitivity Analysis and Optimization

    NASA Astrophysics Data System (ADS)

    Keong, L. S.; Patle, D. S.; Shukor, S. R.; Ahmad, Z.

    2016-03-01

    Biodiesel as a renewable fuel has emerged as a potential replacement for petroleum-based diesels. Heterogeneous catalyst has become the focus of researches in biodiesel production with the intention to overcome problems associated with homogeneous catalyzed processes. The simulation of heterogeneous catalyzed biodiesel production has not been thoroughly studied. Hence, a simulation of carbon-based solid acid catalyzed biodiesel production from waste oil with high FFA content (50 weight%) was developed in the present work to study the feasibility and potential of the simulated process. The simulated process produces biodiesel through simultaneous transesterification and esterification with the consideration of reaction kinetics. The developed simulation is feasible and capable to produce 2.81kmol/hr of FAME meeting the international standard (EN 14214). Yields of 68.61% and 97.19% are achieved for transesterification and esterification respectively. Sensitivity analyses of FFA composition in waste oil, methanol to oil ratio, reactor pressure and temperature towards FAME yield from both reactions were carried out. Optimization of reactor temperature was done to maximize FAME products.

  4. α - synuclein under the magnifying glass. Insights from atomistic and coarse-grain simulations

    NASA Astrophysics Data System (ADS)

    Ilie, Ioana M.; Nayar, Divya; den Otter, Wouter K.; van der Vegt, Nico F. A.; Briels, Wim J.; University of Twente Collaboration; University of Darmstadt Collaboration

    Neurodegenerative diseases are linked to the accumulation of misfolded intrinsically disordered proteins in the brain. Here, we use both all-atom and coarse-grain simulations to explore the intricate dynamics and the aggregation of α-synuclein, the protein implicated in Parkinson's disease. We explore the free energy landscapes of α-synuclein by using Molecular Dynamics simulations and extract information on the structure of the protein as well as on its binding affinities. Next, to study the aggregation, we proceed with representing α-synuclein as a chain of deformable particles that can adapt their geometry, binding affinities and can rearrange into different disordered and ordered structures. We use Brownian Dynamics to simulate the translational and rotational motions of the particles, as well as their interaction properties. The simulations show valuable insight into the internal dynamics of α-synuclein and the formation of ordered and disordered aggregates. In addition, the study is extended to investigate the attachment and folding of a protein to a fiber.

  5. LCFIPlus: A framework for jet analysis in linear collider studies

    NASA Astrophysics Data System (ADS)

    Suehara, Taikan; Tanabe, Tomohiko

    2016-02-01

    We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.

  6. Understanding the kinetics of ligand binding to globins with molecular dynamics simulations: the necessity of multiple state models.

    PubMed

    Estarellas Martin, Carolina; Seira Castan, Constantí; Luque Garriga, F Javier; Bidon-Chanal Badia, Axel

    2015-10-01

    Residue conformational changes and internal cavity migration processes play a key role in regulating the kinetics of ligand migration and binding events in globins. Molecular dynamics simulations have demonstrated their value in the study of these processes in different haemoglobins, but derivation of kinetic data demands the use of more complex techniques like enhanced sampling molecular dynamics methods. This review discusses the different methodologies that are currently applied to study the ligand migration process in globins and highlight those specially developed to derive kinetic data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Numerical Simulations of a 96-rod Polysilicon CVD Reactor

    NASA Astrophysics Data System (ADS)

    Guoqiang, Tang; Cong, Chen; Yifang, Cai; Bing, Zong; Yanguo, Cai; Tihu, Wang

    2018-05-01

    With the rapid development of the photovoltaic industry, pressurized Siemens belljar-type polysilicon CVD reactors have been enlarged from 24 rods to 96 rods in less than 10 years aimed at much greater single-reactor productivity. A CFD model of an industry-scale 96-rod CVD reactor was established to study the internal temperature distribution and the flow field of the reactor. Numerical simulations were carried out and compared with actual growth results from a real CVD reactor. Factors affecting polysilicon depositions such as inlet gas injections, flow field, and temperature distribution in the CVD reactor are studied.

  8. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory

    PubMed Central

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities. PMID:28082941

  9. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory.

    PubMed

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities.

  10. Structural Stability of a Stiffened Aluminum Fuselage Panel Subjected to Combined Mechanical and Internal Pressure Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Young, Richard D.; Gehrki, Ralph R.

    2003-01-01

    Results from an experimental and analytical study of a curved stiffened aluminum panel subjected to combined mechanical and internal pressure loads are presented. The panel loading conditions were simulated using a D-box test fixture. Analytical buckling load results calculated from a finite element analysis are presented and compared to experimental results. Buckling results presented indicate that the buckling load of the fuselage panel is significantly influenced by internal pressure loading. The experimental results suggest that the stress distribution is uniform in the panel prior to buckling. Nonlinear finite element analysis results correlates well with experimental results up to buckling.

  11. Towards the estimation of the scattered energy spectra reaching the head of the medical staff during interventional radiology: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Zagorska, A.; Bliznakova, K.; Buchakliev, Z.

    2015-09-01

    In 2012, the International Commission on Radiological Protection has recommended a reduction of the dose limits to the eye lens for occupational exposure. Recent studies showed that in interventional rooms is possible to reach these limits especially without using protective equipment. The aim of this study was to calculate the scattered energy spectra distribution at the level of the operator's head. For this purpose, an in-house developed Monte Carlo-based computer application was used to design computational phantoms (patient and operator), the acquisition geometry as well as to simulate the photon transport through the designed system. The initial spectra from 70 kV tube voltage and 8 different filtrations were calculated according to the IPEM Report 78. An experimental study was carried out to verify the results from the simulations. The calculated scattered radiation distributions were compared to the initial incident on the patient spectra. Results showed that there is no large difference between the effective energies of the scattered spectra registered in front of the operator's head obtained from simulations of all 8 incident spectra. The results from the experimental study agreed well to simulations as well.

  12. Will the Playstation generation become better endoscopic surgeons?

    PubMed

    van Dongen, Koen W; Verleisdonk, Egbert-Jan M M; Schijven, Marlies P; Broeders, Ivo A M J

    2011-07-01

    A frequently heard comment is that the current "Playstation generation" will have superior baseline psychomotor skills. However, research has provided inconsistent results on this matter. The purpose of this study was to investigate whether the "Playstation generation" shows superior baseline psychomotor skills for endoscopic surgery on a virtual reality simulator. The 46 study participants were interns (mean age 24 years) of the department of surgery and schoolchildren (mean age 12.5 years) of the first year of a secondary school. Participants were divided into four groups: 10 interns with videogame experience and 10 without, 13 schoolchildren with videogame experience and 13 without. They performed four tasks twice on a virtual reality simulator for basic endoscopic skills. The one-way analysis of variance (ANOVA) with post hoc test Tukey-Bonferroni and the independent Student's t test were used to determine differences in mean scores. Interns with videogame experience scored significantly higher on total score (93 vs. 74.5; p=0.014) compared with interns without this experience. There was a nonsignificant difference in mean total scores between the group of schoolchildren with and those without videogame experience (61.69 vs. 55.46; p=0.411). The same accounts for interns with regard to mean scores on efficiency (50.7 vs. 38.9; p=0.011) and speed (18.8 vs. 14.3; p=0.023). In the group of schoolchildren, there was no statistical difference for efficiency (32.69 vs. 27.31; p=0.218) or speed (13.92 vs. 13.15; p=0.54). The scores concerning precision parameters did not differ for interns (23.5 vs. 21.3; p=0.79) or for schoolchildren (mean 15.08 vs. 15; p=0.979). Our study results did not predict an advantage of videogame experience in children with regard to superior psychomotor skills for endoscopic surgery. However, at adult age, a difference in favor of gaming is present. The next generation of surgeons might benefit from videogame experience during their childhood.

  13. Internal variability of a dynamically downscaled climate over North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Bessac, Julie; Kotamarthi, Rao

    This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 km and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemblemore » during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late 21st century. However, the IV is larger than the projected changes in precipitation for the mid- and late 21st century.« less

  14. Internal variability of a dynamically downscaled climate over North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Bessac, Julie; Kotamarthi, Rao

    This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble duringmore » the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.« less

  15. Internal variability of a dynamically downscaled climate over North America

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth

    2018-06-01

    This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.

  16. Internal variability of a dynamically downscaled climate over North America

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth

    2017-09-01

    This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.

  17. Modeling of Instrument Landing System (ILS) localizer signal on runway 25L at Los Angeles International Airport

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Knox, Charles E.

    1994-01-01

    A joint NASA/FAA flight test has been made to record instrument landing system (ILS) localizer receiver signals for use in mathematically modeling the ILS localizer for future simulation studies and airplane flight tracking tasks. The flight test was conducted on a portion of the ILS localizer installed on runway 25L at the Los Angeles International Airport. The tests covered the range from 10 to 32 n.mi. from the localizer antenna. Precision radar tracking information was compared with the recorded localizer deviation data. Data analysis showed that the ILS signal centerline was offset to the left of runway centerline by 0.071 degrees and that no significant bends existed on the localizer beam. Suggested simulation models for the ILS localizer are formed from a statistical analysis.

  18. Effect of ACL Transection on Internal Tibial Rotation in an in Vitro Simulated Pivot Landing

    PubMed Central

    Oh, Youkeun K.; Kreinbrink, Jennifer L.; Ashton-Miller, James A.; Wojtys, Edward M.

    2011-01-01

    Background: The amount of resistance provided by the ACL (anterior cruciate ligament) to axial tibial rotation remains controversial. The goal of this study was to test the primary hypotheses that ACL transection would not significantly affect tibial rotation under the large impulsive loads associated with a simulated pivot landing but would increase anterior tibial translation. Methods: Twelve cadaveric knees (mean age of donors [and standard deviation] at the time of death, 65.0 ± 10.5 years) were mounted in a custom testing apparatus to simulate a single-leg pivot landing. A compound impulsive load was applied to the distal part of the tibia with compression (∼800 N), flexion moment (∼40 N-m), and axial tibial torque (∼17 N-m) in the presence of five trans-knee muscle forces. A differential variable reluctance transducer mounted on the anteromedial aspect of the ACL measured relative strain. With the knee initially in 15° of flexion, and after five combined compression and flexion moment (baseline) loading trials, six trials were conducted with the addition of either internal or external tibial torque (internal or external loading), and then six baseline trials were performed. The ACL was then sectioned, six baseline trials were repeated, and then six trials of either the internal or the external loading condition, whichever had initially resulted in the larger relative ACL strain, were carried out. Tibiofemoral kinematics were measured optoelectronically. The results were analyzed with a nonparametric Wilcoxon signed-rank test. Results: Following ACL transection, the increase in the normalized internal tibial rotation was significant but small (0.7°/N-m ± 0.3°/N-m to 0.8°/N-m ± 0.3°/N-m, p = 0.012), while anterior tibial translation increased significantly (3.8 ± 2.9 to 7.0 ± 2.9 mm, p = 0.017). Conclusions: ACL transection leads to a small increase in internal tibial rotation, equivalent to a 13% decrease in the dynamic rotational resistance, under the large forces associated with a simulated pivot landing, but it leads to a significant increase in anterior tibial translation. Clinical Relevance: An ACL reconstruction that restores both ligament orientation and stiffness will provide major resistance to anterior tibial translation while providing minor resistance to axial tibial rotation. PMID:21325589

  19. The role of internal variability for decadal carbon uptake anomalies in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Spring, Aaron; Hi, Hongmei; Ilyina, Tatiana

    2017-04-01

    The Southern Ocean is a major sink for anthropogenic CO2 emissions and hence it plays an essential role in modulating global carbon cycle and climate change. Previous studies based on observations (e.g., Landschützer et al. 2015) show pronounced decadal variations of carbon uptake in the Southern Ocean in recent decades and this variability is largely driven by internal climate variability. However, due to limited ensemble size of simulations, the variability of this important ocean sink is still poorly assessed by the state-of-the-art earth system models (ESMs). To assess the internal variability of carbon sink in the Southern Ocean, we use a large ensemble of 100 member simulations based on the Max Planck Institute-ESM (MPI-ESM). The large ensemble of simulations is generated via perturbed initial conditions in the ocean and atmosphere. Each ensemble member includes a historical simulation from 1850 to 2005 with an extension until 2100 under Representative Concentration Pathway (RCP) 4.5 future projections. Here we use model simulations from 1980-2015 to compare with available observation-based dataset. We found several ensemble members showing decadal decreasing trends in the carbon sink, which are similar to the trend shown in observations. This result suggests that MPI-ESM large ensemble simulations are able to reproduce decadal variation of carbon sink in the Southern Ocean. Moreover, the decreasing trends of Southern Ocean carbon sink in MPI-ESM are mainly contributed by region between 50-60°S. To understand the internal variability of the air-sea carbon fluxes in the Southern Ocean, we further investigate the variability of underlying processes, such as physical climate variability and ocean biological processes. Our results indicate two main drivers for the decadal decreasing trend of carbon sink: i) Intensified winds enhance upwelling of old carbon-rich waters, this leads to increase of the ocean surface pCO2; ii) Primary production is reduced in area from 50-60°S, probably induced by reduced euphotic water column stability; therefore the biological drawdown of ocean surface pCO2 is weakened accordingly and hence the ocean is in favor of carbon outgassing. Landschützer, et al. (2015): The reinvigoration of the Southern Ocean carbon sink, Science, 349, 1221-1224.

  20. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  1. Evaluation of internal noise methods for Hotelling observers

    NASA Astrophysics Data System (ADS)

    Zhang, Yani; Pham, Binh T.; Eckstein, Miguel P.

    2005-04-01

    Including internal noise in computer model observers to degrade model observer performance to human levels is a common method to allow for quantitatively comparisons of human and model performance. In this paper, we studied two different types of methods for injecting internal noise to Hotelling model observers. The first method adds internal noise to the output of the individual channels: a) Independent non-uniform channel noise, b) Independent uniform channel noise. The second method adds internal noise to the decision variable arising from the combination of channel responses: a) internal noise standard deviation proportional to decision variable's standard deviation due to the external noise, b) internal noise standard deviation proportional to decision variable's variance caused by the external noise. We tested the square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO). The studied task was detection of a filling defect of varying size/shape in one of four simulated arterial segment locations with real x-ray angiography backgrounds. Results show that the internal noise method that leads to the best prediction of human performance differs across the studied models observers. The CHO model best predicts human observer performance with the channel internal noise. The HO and LGHO best predict human observer performance with the decision variable internal noise. These results might help explain why previous studies have found different results on the ability of each Hotelling model to predict human performance. Finally, the present results might guide researchers with the choice of method to include internal noise into their Hotelling models.

  2. Simulation Study on Missile Penetration Based on LS - DYNA

    NASA Astrophysics Data System (ADS)

    Tang, Jue; Sun, Xinli

    2017-12-01

    Penetrating the shell armor is an effective means of destroying hard targets with multiple layers of protection. The penetration process is a high-speed impact dynamics research category, involving high pressure, high temperature, high speed and internal material damage, including plugging, penetration, spalling, caving, splashing and other complex forms, therefore, Analysis is one of the difficulties in the study of impact dynamics. In this paper, the Lagrang algorithm and the SPH algorithm are used to analyze the penetrating steel plate, and the penetration model of the rocket penetrating the steel plate, the failure mode of the steel plate and the missile and the advantages and disadvantages of Lagrang algorithm and SPH algorithm in the simulation of high-speed collision problem are analyzed and compared, which provides a reference for the study of simulation collision problem.

  3. Relaxation dynamics of internal segments of DNA chains in nanochannels

    NASA Astrophysics Data System (ADS)

    Jain, Aashish; Muralidhar, Abhiram; Dorfman, Kevin; Dorfman Group Team

    We will present relaxation dynamics of internal segments of a DNA chain confined in nanochannel. The results have direct application in genome mapping technology, where long DNA molecules containing sequence-specific fluorescent probes are passed through an array of nanochannels to linearize them, and then the distances between these probes (the so-called ``DNA barcode'') are measured. The relaxation dynamics of internal segments set the experimental error due to dynamic fluctuations. We developed a multi-scale simulation algorithm, combining a Pruned-Enriched Rosenbluth Method (PERM) simulation of a discrete wormlike chain model with hard spheres with Brownian dynamics (BD) simulations of a bead-spring chain. Realistic parameters such as the bead friction coefficient and spring force law parameters are obtained from PERM simulations and then mapped onto the bead-spring model. The BD simulations are carried out to obtain the extension autocorrelation functions of various segments, which furnish their relaxation times. Interestingly, we find that (i) corner segments relax faster than the center segments and (ii) relaxation times of corner segments do not depend on the contour length of DNA chain, whereas the relaxation times of center segments increase linearly with DNA chain size.

  4. A Validation Study of Merging and Spacing Techniques in a NAS-Wide Simulation

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia C.

    2011-01-01

    In November 2010, Intelligent Automation, Inc. (IAI) delivered an M&S software tool to that allows system level studies of the complex terminal airspace with the ACES simulation. The software was evaluated against current day arrivals in the Atlanta TRACON using Atlanta's Hartsfield-Jackson International Airport (KATL) arrival schedules. Results of this validation effort are presented describing data sets, traffic flow assumptions and techniques, and arrival rate comparisons between reported landings at Atlanta versus simulated arrivals using the same traffic sets in ACES equipped with M&S. Initial results showed the simulated system capacity to be significantly below arrival capacity seen at KATL. Data was gathered for Atlanta using commercial airport and flight tracking websites (like FlightAware.com), and analyzed to insure compatible techniques were used for result reporting and comparison. TFM operators for Atlanta were consulted for tuning final simulation parameters and for guidance in flow management techniques during high volume operations. Using these modified parameters and incorporating TFM guidance for efficiencies in flowing aircraft, arrival capacity for KATL was matched for the simulation. Following this validation effort, a sensitivity study was conducted to measure the impact of variations in system parameters on the Atlanta airport arrival capacity.

  5. KSC-04PD-0003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  6. KSC-04PD-0002

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  7. KSC-04PD-0001

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  8. Development of the teaching simulator based on animated film to strengthening pedagogical competencies of prospective teachers

    NASA Astrophysics Data System (ADS)

    Fatimah, Siti; Setiawan, Wawan; Kusnendar, Jajang; Rasim, Junaeti, Enjun; Anggraeni, Ria

    2017-05-01

    Debriefing of pedagogical competence through both theory and practice which became a requirement for prospective teachers were through micro teaching and teaching practice program. But, some reports from the partner schools stated that the participants of teaching practice program have not well prepared on implementing the learning in the classroom because of lacking the debriefing. In line with the development of information technology, it is very possible to develop a media briefing of pedagogical competencies for prospective teachers through an application so that they can use it anytime and anywhere. This study was one answer to the problem of unpreparedness participants of the teaching practice program. This study developed a teaching simulator, which was an application for learning simulation with the animated film to enhance the professional pedagogical competence prospective teachers. By the application of this teaching simulator, students as prospective teacher could test their own pedagogic competence through learning models with different varied characteristics of students. Teaching Simulator has been equipped with features that allow users to be able to explore the quality of teaching techniques that they employ for the teaching and learning activities in the classroom. These features included the election approaches, the student's character, learning materials, questioning techniques, discussion, and evaluation. Teaching simulator application provided the ease of prospective teachers or teachers in implementing the development of lessons for practice in the classroom. Applications that have been developed to apply simulation models allow users to freely manage a lesson. Development of teaching simulator application was passed through the stages which include needs assessment, design, coding, testing, revision, improvement, grading, and packaging. The application of teaching simulator was also enriched with some real instructional video as a comparison for the user. Based on the two experts, the media expert and education expert, stated that the application of teaching simulator is feasible to be used as an instrument for the debriefing of students as potential participants of the teaching practice program. The results of the use of the application to the students as potential participants of teaching practice program, showed significant increases in the pedagogic competence. This study was presented at an international seminar and in the process of publishing in international reputated journals. Applications teaching simulator was in the process of registration to obtain the copyright of the Ministry of Justice and Human Rights. Debriefing for prospective teachers to use teaching simulator application could improve the mastery of pedagogy, give clear feedback, and perform repetitions at anytime.

  9. Simulating Aerosol Optical Properties With the Aerosol Simulation Program (ASP): Closure Studies Using ARCTAS Data

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Macintyre, H. L.; Bian, H.; Chin, M.; Wang, C.

    2012-12-01

    The scattering and absorption of ultraviolet and visible radiation by aerosols can significantly alter actinic fluxes and photolysis rates. Accurate modeling of aerosol optical properties is thus essential to simulating atmospheric chemistry, air quality, and climate. Here we evaluate the aerosol optical property predictions of the Aerosol Simulation Program (ASP) with in situ data on aerosol scattering and absorption gathered during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The model simulations are initialized with in situ data on the aerosol size distribution and composition. We perform a set of sensitivity studies (e.g., internal vs. external mixture, core-in-shell versus Maxwell-Garnett, fraction of the organic carbon mass that is light-absorbing "brown carbon," etc.) to determine the model framework and parameters most consistent with the observations. We compare the ASP results to the aerosol optical property lookup tables in FAST-JX and suggest improvements that will better enable FAST-JX to simulate the impact of aerosols on photolysis rates and atmospheric chemistry.

  10. A Multi-Model Assessment for the 2006 and 2010 Simulations under the AirQuality Model Evaluation International Initiative (AQMEII) Phase 2 over North America: Part I. Indicators of the Sensitivity of O3 and PM2.5 Formation Regimes

    EPA Science Inventory

    Under the Air Quality Model Evaluation International Initiative, Phase 2 (AQMEII-2), three online coupled air quality model simulations, with six different configurations, are analyzed for their performance, inter-model agreement, and responses to emission and meteorological chan...

  11. A Multi-Model Assessment for the 2006 and 2010 Simulations under the Air Quality Model Evaluation International Initiative (AQMEII) Phase 2 over North America: Part II. Evaluation of Column Variable Predictions Using Satellite Data

    EPA Science Inventory

    Within the context of the Air Quality Model Evaluation International Initiative phase 2 (AQMEII2) project, this part II paper performs a multi-model assessment of major column abundances of gases, radiation, aerosol, and cloud variables for 2006 and 2010 simulations with three on...

  12. The Application of Simulated Experimental Teaching in International Trade Course

    ERIC Educational Resources Information Center

    Ma, Tao; Chen, Wen

    2009-01-01

    International Trade Practice is a professional basic course for specialty of International Economy and Trade. As the core of International Trade Practice, it is extremely related to foreign affairs and needs much practical experience. This paper puts forward some suggestions on how to improve the performance of teaching in order to educate the…

  13. Millimeter spatial resolution in vivo sodium MRI of the human eye at 7 T using a dedicated radiofrequency transceiver array.

    PubMed

    Wenz, Daniel; Kuehne, Andre; Huelnhagen, Till; Nagel, Armin M; Waiczies, Helmar; Weinberger, Oliver; Oezerdem, Celal; Stachs, Oliver; Langner, Soenke; Seeliger, Erdmann; Flemming, Bert; Hodge, Russell; Niendorf, Thoralf

    2018-08-01

    The aim of this study was to achieve millimeter spatial resolution sodium in vivo MRI of the human eye at 7 T using a dedicated six-channel transceiver array. We present a detailed description of the radiofrequency coil design, along with electromagnetic field and specific absorption ratio simulations, data validation, and in vivo application. Electromagnetic field and specific absorption ratio simulations were performed. Transmit field uniformity was optimized by using a multi-objective genetic algorithm. Transmit field mapping was conducted using a phase-sensitive method. An in vivo feasibility study was carried out with 3-dimensional density-adapted projection reconstruction imaging technique. Measured transmit field distribution agrees well with the one obtained from simulations. The specific absorption ratio simulations confirm that the radiofrequency coil is safe for clinical use. Our radiofrequency coil is light and conforms to an average human head. High spatial resolution (nominal 1.4 and 1.0 mm isotropic) sodium in vivo images of the human eye were acquired within scan times suitable for clinical applications (∼ 10 min). Three most important eye compartments in the context of sodium physiology were clearly delineated in all of the images: the vitreous humor, the aqueous humor, and the lens. Our results provide encouragement for further clinical studies. The implications for research into eye diseases including ocular melanoma, cataract, and glaucoma are discussed. Magn Reson Med 80:672-684, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  14. International Space Station (ISS) External Thermal Control System (ETCS) Loop A Pump Module (PM) Jettison Options Assessment

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Dwyer Cianciolo, Alicia; Shidner, Jeremy D.; Powell, Richard W.

    2014-01-01

    On December 11, 2013, the International Space Station (ISS) experienced a failure of the External Thermal Control System (ETCS) Loop A Pump Module (PM). To minimize the number of extravehicular activities (EVA) required to replace the PM, jettisoning the faulty pump was evaluated. The objective of this study was to independently evaluate the jettison options considered by the ISS Trajectory Operations Officer (TOPO) and to provide recommendations for safe jettison of the ETCS Loop A PM. The simulation selected to evaluate the TOPO options was the NASA Engineering and Safety Center's (NESC) version of Program to Optimize Simulated Trajectories II (POST2) developed to support another NESC assessment. The objective of the jettison analysis was twofold: (1) to independently verify TOPO posigrade and retrograde jettison results, and (2) to determine jettison guidelines based on additional sensitivity, trade study, and Monte Carlo (MC) analysis that would prevent PM recontact. Recontact in this study designates a propagated PM trajectory that comes within 500 m of the ISS propagated trajectory. An additional simulation using Systems Tool Kit (STK) was run for independent verification of the POST2 simulation results. Ultimately, the ISS Program removed the PM jettison option from consideration. However, prior to the Program decision, the retrograde jettison option remained part of the EVA contingency plan. The jettison analysis presented showed that, in addition to separation velocity/direction and the atmosphere conditions, the key variables in determining the time to recontact the ISS is highly dependent on the ballistic number (BN) difference between the object being jettisoned and the ISS.

  15. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.

    PubMed

    Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin

    2011-09-01

    A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America

  16. Model of fluid flow and internal erosion of a porous fragile medium

    NASA Astrophysics Data System (ADS)

    Kudrolli, Arshad; Clotet, Xavier

    2016-11-01

    We discuss the internal erosion and transport of particles leading to heterogeneity and channelization of a porous granular bed driven by fluid flow by introducing a model experimental system which enables direct visualization of the evolution of porosity from the single particle up to the system scale. Further, we develop a hybrid hydrodynamic-statistical model to understand the main ingredients needed to simulate our observations. A uniqueness of our study is the close coupling of the experiments and simulations with control parameters used in the simulations derived from the experiments. Understanding this system is of fundamental importance to a number of geophysical processes, and in the extraction of hydrocarbons in the subsurface including the deposition of proppants used in hydraulic fracturing. We provide clear evidence for the importance of curvature of the interface between high and low porosity regions in determining the flux rate needed for erosion and the spatial locations where channels grow. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences program under DE-SC0010274.

  17. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation

    PubMed Central

    Misyura, S. Y.

    2016-01-01

    Methane hydrate dissociation at negative temperatures was studied experimentally for different artificial and natural samples, differing by macro- and micro-structural parameters. Four characteristic dissociation types are discussed in the paper. The internal kinetics of artificial granule gas hydrates and clathrate hydrates in coal is dependent on the porosity, defectiveness and gas filtration rate. The density of pores distribution in the crust of formed ice decreases by the several orders of magnitude and this change significantly the rate of decay. Existing models for describing dissociation at negative temperatures do not take into account the structural parameters of samples. The dissociation is regulated by internal physical processes that must be considered in the simulation. Non-isothermal dissociation with constant external heat flux was simulated numerically. The dissociation is simulated with consideration of heat and mass transfer, kinetics of phase transformation and gas filtering through a porous medium of granules for the negative temperatures. It is shown that the gas hydrate dissociation in the presence of mainly microporous structures is fundamentally different from the disintegration of gas hydrates containing meso and macropores. PMID:27445113

  18. The "Statecraft" Simulation and Foreign Policy Attitudes among Undergraduate Students

    ERIC Educational Resources Information Center

    Saiya, Nilay

    2016-01-01

    Professors of international relations are increasingly realizing that simulations can be a fun and effective way of teaching the complexities of the field to their students. One popular simulation that has emerged in recent years--the "Statecraft" simulation--is now used by more than 190 colleges and universities worldwide. Despite…

  19. Status of simulation in health care education: an international survey

    PubMed Central

    Qayumi, Karim; Pachev, George; Zheng, Bin; Ziv, Amitai; Koval, Valentyna; Badiei, Sadia; Cheng, Adam

    2014-01-01

    Simulation is rapidly penetrating the terrain of health care education and has gained growing acceptance as an educational method and patient safety tool. Despite this, the state of simulation in health care education has not yet been evaluated on a global scale. In this project, we studied the global status of simulation in health care education by determining the degree of financial support, infrastructure, manpower, information technology capabilities, engagement of groups of learners, and research and scholarly activities, as well as the barriers, strengths, opportunities for growth, and other aspects of simulation in health care education. We utilized a two-stage process, including an online survey and a site visit that included interviews and debriefings. Forty-two simulation centers worldwide participated in this study, the results of which show that despite enormous interest and enthusiasm in the health care community, use of simulation in health care education is limited to specific areas and is not a budgeted item in many institutions. Absence of a sustainable business model, as well as sufficient financial support in terms of budget, infrastructure, manpower, research, and scholarly activities, slows down the movement of simulation. Specific recommendations are made based on current findings to support simulation in the next developmental stages. PMID:25489254

  20. Attention and driving performance modulations due to anger state: Contribution of electroencephalographic data.

    PubMed

    Techer, Franck; Jallais, Christophe; Corson, Yves; Moreau, Fabien; Ndiaye, Daniel; Piechnick, Bruno; Fort, Alexandra

    2017-01-01

    Driver internal state, including emotion, can have negative impacts on road safety. Studies have shown that an anger state can provoke aggressive behavior and impair driving performance. Apart from driving, anger can also influence attentional processing and increase the benefits taken from auditory alerts. However, to our knowledge, no prior event-related potentials study assesses this impact on attention during simulated driving. Therefore, the aim of this study was to investigate the impact of anger on attentional processing and its consequences on driving performance. For this purpose, 33 participants completed a simulated driving scenario once in an anger state and once during a control session. Results indicated that anger impacted driving performance and attention, provoking an increase in lateral variations while reducing the amplitude of the visual N1 peak. The observed effects were discussed as a result of high arousal and mind-wandering associated with anger. This kind of physiological data may be used to monitor a driver's internal state and provide specific assistance corresponding to their current needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Numerical simulation of pressure fluctuation in 1000MW Francis turbine under small opening condition

    NASA Astrophysics Data System (ADS)

    Gong, R. Z.; Wang, H. G.; Yao, Y.; Shu, L. F.; Huang, Y. J.

    2012-11-01

    In order to study the cause of abnormal vibration in large Francis turbine under small opening condition, CFD method was adopted to analyze the flow filed and pressure fluctuation. Numerical simulation was performed on the commercial CFD code Ansys FLUENT 12, using DES method. After an effective validation of the computation result, the flow behaviour of internal flow field under small opening condition is analyzed. Pressure fluctuation in different working mode is obtained by unsteady CFD simulation, and results is compared to study its change. Radial force fluctuation is also analyzed. The result shows that the unstable flow under small opening condition leads to an increase of turbine instability in reverse pump mode, and is one possible reason of the abnormal oscillation.

  2. Multiple Exposure of Rendezvous Docking Simulator - Gemini Program

    NASA Image and Video Library

    1964-02-07

    Multiple exposure of Rendezvous Docking Simulator. Francis B. Smith, described the simulator as follows: The rendezvous and docking operation of the Gemini spacecraft with the Agena and of the Apollo Command Module with the Lunar Excursion Module have been the subject of simulator studies for several years. This figure illustrates the Gemini-Agena rendezvous docking simulator at Langley. The Gemini spacecraft was supported in a gimbal system by an overhead crane and gantry arrangement which provided 6 degrees of freedom - roll, pitch, yaw, and translation in any direction - all controllable by the astronaut in the spacecraft. Here again the controls fed into a computer which in turn provided an input to the servos driving the spacecraft so that it responded to control motions in a manner which accurately simulated the Gemini spacecraft. -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203 Francis B. Smith, Simulators for Manned Space Research, Paper presented at the 1966 IEEE International convention, March 21-25, 1966.

  3. Characteristics of energy exchange between inter- and intramolecular degrees of freedom in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) with implications for coarse-grained simulations of shock waves in polyatomic molecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroonblawd, Matthew P.; Sewell, Thomas D., E-mail: sewellt@missouri.edu; Maillet, Jean-Bernard, E-mail: jean-bernard.maillet@cea.fr

    2016-02-14

    In this report, we characterize the kinetics and dynamics of energy exchange between intramolecular and intermolecular degrees of freedom (DoF) in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). All-atom molecular dynamics (MD) simulations are used to obtain predictions for relaxation from certain limiting initial distributions of energy between the intra- and intermolecular DoF. The results are used to parameterize a coarse-grained Dissipative Particle Dynamics at constant Energy (DPDE) model for TATB. Each TATB molecule in the DPDE model is represented as an all-atom, rigid-molecule mesoparticle, with explicit external (molecular translational and rotational) DoF and coarse-grained implicit internal (vibrational) DoF. In addition to conserving linearmore » and angular momentum, the DPDE equations of motion conserve the total system energy provided that particles can exchange energy between their external and internal DoF. The internal temperature of a TATB molecule is calculated using an internal equation of state, which we develop here, and the temperatures of the external and internal DoF are coupled using a fluctuation-dissipation relation. The DPDE force expression requires specification of the input parameter σ that determines the rate at which energy is exchanged between external and internal DoF. We adjusted σ based on the predictions for relaxation processes obtained from MD simulations. The parameterized DPDE model was employed in large-scale simulations of shock compression of TATB. We show that the rate of energy exchange governed by σ can significantly influence the transient behavior of the system behind the shock.« less

  4. Multinational Business Gaming: Is Gender Important?

    ERIC Educational Resources Information Center

    Johnson, Scott D.; And Others

    1997-01-01

    A study investigated influence of gender on undergraduate students (n=119) involved in international business games. Females tended to view the simulation as less complex, have less cohesive group structures, and show less self-confidence than males. However, game performance measures showed no significant gender differences. Implications for…

  5. Simulating the Global Workplace for Graduate Employability

    ERIC Educational Resources Information Center

    Schech, Susanne; Kelton, Maryanne; Carati, Colin; Kingsmill, Verity

    2017-01-01

    Higher education institutions increasingly recognise the need to develop both disciplinary knowledge and soft skills to foster the employability of their graduates. For students in International Studies programmes, the workplace opportunities to develop soft skills relevant to their intended professions are scarce, costly and unavailable to many.…

  6. Numerical Simulation of Internal Heat Transfer Phenomena Occurring During De-Icing of Aircraft Components

    NASA Technical Reports Server (NTRS)

    DeWitt, Keneth J.

    1996-01-01

    An experimental study to determine the convective heat transfer coefficient from castings made from ice-roughened plates is reported. A corresponding topic, 'Measurements of the Convective Heat Transfer Coefficient from Ice Roughened Surfaces in Parallel and Accelerated Flows,' is presented.

  7. Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms

    PubMed Central

    Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju

    2010-01-01

    The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022

  8. Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.

    PubMed

    Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju

    2011-01-01

    The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.

  9. Impact of velocity space distribution on hybrid kinetic-magnetohydrodynamic simulation of the (1,1) mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Charlson C.

    2008-07-15

    Numeric studies of the impact of the velocity space distribution on the stabilization of (1,1) internal kink mode and excitation of the fishbone mode are performed with a hybrid kinetic-magnetohydrodynamic model. These simulations demonstrate an extension of the physics capabilities of NIMROD[C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)], a three-dimensional extended magnetohydrodynamic (MHD) code, to include the kinetic effects of an energetic minority ion species. Kinetic effects are captured by a modification of the usual MHD momentum equation to include a pressure tensor calculated from the {delta}f particle-in-cell method [S. E. Parker and W. W. Lee,more » Phys. Fluids B 5, 77 (1993)]. The particles are advanced in the self-consistent NIMROD fields. We outline the implementation and present simulation results of energetic minority ion stabilization of the (1,1) internal kink mode and excitation of the fishbone mode. A benchmark of the linear growth rate and real frequency is shown to agree well with another code. The impact of the details of the velocity space distribution is examined; particularly extending the velocity space cutoff of the simulation particles. Modestly increasing the cutoff strongly impacts the (1,1) mode. Numeric experiments are performed to study the impact of passing versus trapped particles. Observations of these numeric experiments suggest that assumptions of energetic particle effects should be re-examined.« less

  10. Occupant kinematics and estimated effectiveness of side airbags in pole side impacts using a human FE model with internal organs.

    PubMed

    Hayashi, Shigeki; Yasuki, Tsuyoshi; Kitagawa, Yuichi

    2008-11-01

    When a car collides against a pole-like obstacle, the deformation pattern of the vehicle body-side tends to extend to its upper region. A possible consequence is an increase of loading to the occupant thorax. Many studies have been conducted to understand human thoracic responses to lateral loading, and injury criteria have been developed based on the results. However, injury mechanisms, especially those of internal organs, are not well understood. A human body FE model was used in this study to simulate occupant kinematics in a pole side impact. Internal organ parts were introduced into the torso model, including their geometric features, material properties and connections with other tissues. The mechanical responses of the model were validated against PMHS data in the literature. Although injury criterion for each organ has not been established, pressure level and its changes can be estimated from the organ models. Finite element simulations were conducted assuming a case where a passenger vehicle collides against a pole at 29km/h. Occupant kinematics, force-deformation responses and pressure levels were compared between cases with and without side airbag deployment. The results indicated that strain to the ribs and pressure to the organs was smaller with side airbag deployment. The side airbag widened the contact area at the torso, helping to distribute the force to the shoulder, arm and chest. Such distributed force helped generate relatively smaller deformation in the ribs. Furthermore, the side airbag deployment helped restrict the spine displacement. The smaller displacement contributed to lowering the magnitude of contact force between the torso and the door. The study also examined the correlations between the pressure levels in the internal organs, rib deflection, and V*C of chest. The study found that the V*C(t) peak appeared to be synchronized with the organ pressure peak, suggesting that the pressure level of the internal organs could be one possible indicator to estimate their injury risk.

  11. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.

    PubMed

    Colosi, John A

    2008-09-01

    While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.

  12. Cross-entropy optimization for neuromodulation.

    PubMed

    Brar, Harleen K; Yunpeng Pan; Mahmoudi, Babak; Theodorou, Evangelos A

    2016-08-01

    This study presents a reinforcement learning approach for the optimization of the proportional-integral gains of the feedback controller represented in a computational model of epilepsy. The chaotic oscillator model provides a feedback control systems view of the dynamics of an epileptic brain with an internal feedback controller representative of the natural seizure suppression mechanism within the brain circuitry. Normal and pathological brain activity is simulated in this model by adjusting the feedback gain values of the internal controller. With insufficient gains, the internal controller cannot provide enough feedback to the brain dynamics causing an increase in correlation between different brain sites. This increase in synchronization results in the destabilization of the brain dynamics, which is representative of an epileptic seizure. To provide compensation for an insufficient internal controller an external controller is designed using proportional-integral feedback control strategy. A cross-entropy optimization algorithm is applied to the chaotic oscillator network model to learn the optimal feedback gains for the external controller instead of hand-tuning the gains to provide sufficient control to the pathological brain and prevent seizure generation. The correlation between the dynamics of neural activity within different brain sites is calculated for experimental data to show similar dynamics of epileptic neural activity as simulated by the network of chaotic oscillators.

  13. A Combined Experimental and Molecular Simulation Study of Factors Influencing the Selection of Antioxidants in Butadiene Rubber.

    PubMed

    Zheng, Wei; Wu, Youping; Yang, Wei; Zhang, Zhuo; Zhang, Liqun; Wu, Sizhu

    2017-02-16

    For the selection of antioxidants, internal factors were proposed by analyzing the thermal-oxidative aging process, which consisted of the following two inseparable steps: (1) the physical process of oxygen (O 2 ) entering the rubber network and (2) the complex chemical process of O 2 reacting with the rubber network. Antioxidants 2246, 6PPD, and MB, examples of amines, phenols, and heterocycles, respectively, were chosen to study these factors influencing the selection of antioxidants for the thermal-oxidative aging of butadiene rubber (BR). Through thermogravimetric analysis coupled with Fourier transform infrared spectroscopy and kinetic analysis by the Flynn-Wall-Ozawa method, the dissociation reaction of BR was identified to be the rate-determining step for the thermal-oxidative aging of BR. Meanwhile, the decisive positions of the dissociation reactions for the three antioxidants in improving the thermal-oxidative stability of BR were also identified. Therefore, the internal factors were subdivided into five items (i.e., the free energy of reaction for the dissociation of antioxidant, the mole ratio of active radicals or hydroperoxides that could react with the same mass of antioxidant, the solubility and mobility of the antioxidant in BR, and the permeability of O 2 ). Combined with molecular dynamics simulations and quantum mechanics simulations, the five internal factors were clarified and quantified over the entire usable temperature range of BR. To clarify the relative importance of each factor in the selection of antioxidants, we identified the time-dependent tensile strength and elongation at break as the only responses for the first and second gray relational analyses. The relative importance of the five internal factors was evaluated and ranked in terms of gray relational grade. The two analyses were consistent and showed that, in the selection of antioxidants, we should give priority to the free energy of the dissociation reaction and the permeability of O 2 .

  14. Interaction of hydraulic and buckling mechanisms in blowout fractures.

    PubMed

    Nagasao, Tomohisa; Miyamoto, Junpei; Jiang, Hua; Tamaki, Tamotsu; Kaneko, Tsuyoshi

    2010-04-01

    The etiology of blowout fractures is generally attributed to 2 mechanisms--increase in the pressure of the orbital contents (the hydraulic mechanism) and direct transmission of impacts on the orbital walls (the buckling mechanism). The present study aims to elucidate whether or not an interaction exists between these 2 mechanisms. We performed a simulation experiment using 10 Computer-Aided-Design skull models. We applied destructive energy to the orbits of the 10 models in 3 different ways. First, to simulate pure hydraulic mechanism, energy was applied solely on the internal walls of the orbit. Second, to simulate pure buckling mechanism, energy was applied solely on the inferior rim of the orbit. Third, to simulate the combined effect of the hydraulic and buckling mechanisms, energy was applied both on the internal wall of the orbit and inferior rim of the orbit. After applying the energy, we calculated the areas of the regions where fracture occurred in the models. Thereafter, we compared the areas among the 3 energy application patterns. When the hydraulic and buckling mechanisms work simultaneously, fracture occurs on wider areas of the orbital walls than when each of these mechanisms works separately. The hydraulic and buckling mechanisms interact, enhancing each other's effect. This information should be taken into consideration when we examine patients in whom blowout fracture is suspected.

  15. Extended molecular dynamics of a c-kit promoter quadruplex

    PubMed Central

    Islam, Barira; Stadlbauer, Petr; Krepl, Miroslav; Koca, Jaroslav; Neidle, Stephen; Haider, Shozeb; Sponer, Jiri

    2015-01-01

    The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 μs long, ∼50 μs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal μs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex. PMID:26245347

  16. External versus internal triggers of bar formation in cosmological zoom-in simulations

    NASA Astrophysics Data System (ADS)

    Zana, Tommaso; Dotti, Massimo; Capelo, Pedro R.; Bonoli, Silvia; Haardt, Francesco; Mayer, Lucio; Spinoso, Daniele

    2018-01-01

    The emergence of a large-scale stellar bar is one of the most striking features in disc galaxies. By means of state-of-the-art cosmological zoom-in simulations, we study the formation and evolution of bars in Milky Way-like galaxies in a fully cosmological context, including the physics of gas dissipation, star formation and supernova feedback. Our goal is to characterize the actual trigger of the non-axisymmetric perturbation that leads to the strong bar observable in the simulations at z = 0, discriminating between an internal/secular and an external/tidal origin. To this aim, we run a suite of cosmological zoom-in simulations altering the original history of galaxy-satellite interactions at a time when the main galaxy, though already bar-unstable, does not feature any non-axisymmetric structure yet. We find that the main effect of a late minor merger and of a close fly-by is to delay the time of bar formation and those two dynamical events are not directly responsible for the development of the bar and do not alter significantly its global properties (e.g. its final extension). We conclude that, once the disc has grown to a mass large enough to sustain global non-axisymmetric modes, then bar formation is inevitable.

  17. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.

    PubMed

    Hüls, Anke; Krämer, Ursula; Carlsten, Christopher; Schikowski, Tamara; Ickstadt, Katja; Schwender, Holger

    2017-12-16

    Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign weights, the gold standard is to use external weights from an independent study. However, appropriate external weights are not always available. In such situations and in the presence of predominant marginal genetic effects, we have shown in a previous study that GRS with internal weights from marginal genetic effects ("GRS-marginal-internal") are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However, this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect stronger than the marginal genetic effect. In this paper, we present a weighting approach for such predominant interactions ("GRS-interaction-training") in which parts of the data are used to estimate the weights from the interaction terms and the remaining data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to the GRS-marginal-internal approach and to GRS with external weights. Our simulation study showed that in the absence of external weights and with predominant interaction effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations). When appropriate external weights are unavailable, we recommend to use internal weights from the study population itself to construct weighted GRS for GxE interaction studies. If the SNPs were chosen because a strong marginal genetic effect was hypothesized, GRS-marginal-internal should be used. If the SNPs were chosen because of their collective impact on the biological mechanisms mediating the environmental effect (hypothesis of predominant interactions) GRS-interaction-training should be applied.

  18. Spreading out Muscle Mass within a Hill-Type Model: A Computer Simulation Study

    PubMed Central

    Günther, Michael; Röhrle, Oliver; Haeufle, Daniel F. B.; Schmitt, Syn

    2012-01-01

    It is state of the art that muscle contraction dynamics is adequately described by a hyperbolic relation between muscle force and contraction velocity (Hill relation), thereby neglecting muscle internal mass inertia (first-order dynamics). Accordingly, the vast majority of modelling approaches also neglect muscle internal inertia. Assuming that such first-order contraction dynamics yet interacts with muscle internal mass distribution, this study investigates two questions: (i) what is the time scale on which the muscle responds to a force step? (ii) How does this response scale with muscle design parameters? Thereto, we simulated accelerated contractions of alternating sequences of Hill-type contractile elements and point masses. We found that in a typical small muscle the force levels off after about 0.2 ms, contraction velocity after about 0.5 ms. In an upscaled version representing bigger mammals' muscles, the force levels off after about 20 ms, and the theoretically expected maximum contraction velocity is not reached. We conclude (i) that it may be indispensable to introduce second-order contributions into muscle models to understand high-frequency muscle responses, particularly in bigger muscles. Additionally, (ii) constructing more elaborate measuring devices seems to be worthwhile to distinguish viscoelastic and inertia properties in rapid contractile responses of muscles. PMID:23227110

  19. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE PAGES

    Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...

    2017-12-28

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  20. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Jae; Manuel, Lance; Churchfield, Matthew

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  1. A monte carlo study of restricted diffusion: Implications for diffusion MRI of prostate cancer.

    PubMed

    Gilani, Nima; Malcolm, Paul; Johnson, Glyn

    2017-04-01

    Diffusion MRI is used frequently to assess prostate cancer. The prostate consists of cellular tissue surrounding fluid filled ducts. Here, the diffusion properties of the ductal fluid alone were studied. Monte Carlo simulations were used to investigate ductal residence times to determine whether ducts can be regarded as forming a separate compartment and whether ductal radius could determine the Apparent Diffusion Coefficient (ADC) of the ductal fluid. Random walks were simulated in cavities. Average residence times were estimated for permeable cavities. Signal reductions resulting from application of a Stejskal-Tanner pulse sequence were calculated in impermeable cavities. Simulations were repeated for cavities of different radii and different diffusion times. Residence times are at least comparable with diffusion times even in relatively high grade tumors. ADCs asymptotically approach theoretical limiting values. At large radii and short diffusion times, ADCs are similar to free diffusion. At small radii and long diffusion times, ADCs are reduced toward zero, and kurtosis approaches a value of -1.2. Restricted diffusion in cavities of similar sizes to prostate ducts may reduce ductal ADCs. This may contribute to reductions in total ADC seen in prostate cancer. Magn Reson Med 77:1671-1677, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Water Quality, Hydrology, and Simulated Response to Changes in Phosphorus Loading of Butternut Lake, Price and Ashland Counties, Wisconsin, with Special Emphasis on the Effects of Internal Phosphorus Loading in a Polymictic Lake

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2008-01-01

    Butternut Lake is a 393-hectare, eutrophic to hypereutrophic lake in northcentral Wisconsin. After only minor improvements in water quality were observed following several actions taken to reduce the nutrient inputs to the lake, a detailed study was conducted from 2002 to 2007 by the U.S. Geological Survey to better understand how the lake functions. The goals of this study were to describe the water quality and hydrology of the lake, quantify external and internal sources of phosphorus, and determine the effects of past and future changes in phosphorus inputs on the water quality of the lake. Since the early 1970s, the water quality of Butternut Lake has changed little in response to nutrient reductions from the watershed. The largest changes were in near-surface total phosphorus concentrations: August concentrations decreased from about 0.09 milligrams per liter (mg/L) to about 0.05 mg/L, but average summer concentrations decreased only from about 0.055-0.060 mg/L to about 0.045 mg/L. Since the early 1970s, only small changes were observed in chlorophyll a concentrations and water clarity (Secchi depths). All major water and phosphorus sources, including the internal release of phosphorus from the sediments (internal loading), were measured directly, and minor sources were estimated to construct detailed water and phosphorus budgets for the lake during monitoring years (MY) 2003 and 2004. During these years, Butternut Creek, Spiller Creek, direct precipitation, small tributaries and near-lake drainage area, and ground water contributed about 62, 20, 8, 7, and 3 percent of the inflow, respectively. The average annual load of phosphorus to the lake was 2,540 kilograms (kg), of which 1,590 kg came from external sources (63 percent) and 945 kg came from the sediments in the lake (37 percent). Of the total external sources, Butternut Creek, Spiller Creek, small tributaries and near-lake drainage area, septic systems, precipitation, and ground water contributed about 63, 23, 9, 3, 1, and 1 percent, respectively. Because of the high internal phosphorus loading, the eutrophication models used in this study were unable to simulate the observed water-quality characteristics in the lake without incorporating this source of phosphorus. However, when internal loading of phosphorus was added to the BATHTUB model, it accurately simulated the average water-quality characteristics measured in MY 2003 and 2004. Model simulations demonstrated a relatively linear response between in-lake total phosphorus concentrations and external phosphorus loading; however, the changes in concentrations were smaller than the changes in external phosphorus loadings (about 25-40 percent of the change in phosphorus loading). Changes in chlorophyll a concentrations, the percentage of days with algal blooms, and Secchi depths were nonlinear and had a greater response to reductions in phosphorus loading than to increases in phosphorus loading. A 50-percent reduction in external phosphorus loading caused an 18-percent decrease in chlorophyll a concentrations, a 41-percent decrease in the percentage of days with algal blooms, and a 12-percent increase in Secchi depth. When the additional internal phosphorus loading was removed from model simulations, all of these constituents showed a much greater response to changes in external phosphorus loading. Because of Butternut Lake's morphometry, it is polymictic, which means it mixes frequently and does not develop stable thermal stratification throughout the summer. This characteristic makes it more vulnerable than dimictic lakes, which mix in spring and fall and develop stable thermal stratification during summer, to the high internal phosphorus loading that has resulted from historically high, nonnatural, external phosphorus loading. In polymictic lakes, the phosphorus released from the sediments is mixed into the upper part of the lake throughout summer. Once Butternut Lake became hypereutrophic (very p

  3. Research Tool to Evaluate the Safety Response of Lithium Batteries to an Internal Short Circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew; Darcy, Eric; Pesaran, Ahmad

    Li-ion cells provide the highest specific energy and energy density rechargeable battery with the longest life. Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture. NREL's internal short circuit (ISC) device is capable of simulating shorts and produces consistent and reproducible results. The cell behaves normally until the ISC device is activated wherein a latent defect (i.e., built into the cell during manufacturing) gradually moves into position to create an internal short while the battery is in use, providing relevant data to verifymore » abuse models. The ISC device is an effective tool for studying the safety features of parts of Li-ion batteries.« less

  4. Climate variability in China during the last millennium based on reconstructions and simulations

    NASA Astrophysics Data System (ADS)

    García-Bustamante, E.; Luterbacher, J.; Xoplaki, E.; Werner, J. P.; Jungclaus, J.; Zorita, E.; González-Rouco, J. F.; Fernández-Donado, L.; Hegerl, G.; Ge, Q.; Hao, Z.; Wagner, S.

    2012-04-01

    Multi-decadal to centennial climate variability in China during the last millennium is analysed. We compare the low frequency temperature and precipitation variations from proxy-based reconstructions and palaeo-simulations from climate models. Focusing on the regional responses to the global climate evolution is of high relevance due to the complexity of the interactions between physical mechanisms at different spatio-temporal scales and the potential severity of the derived multiple socio-economic impacts. China stands out as a particularly interesting region, not only due to its complex climatic features, ranging from the semiarid northwestern Tibetan Plateau to the tropical monsoon southeastern climates, but also because of its wealth of proxy data. However, comprehensive assessments of proxy- and model-based information about palaeo-climatic variations in China are, to our knowledge, still lacking. In addition, existing studies depict a general lack of agreement between reconstructions and model simulations with respect to the amplitude and/or occurrence of warmer/colder and wetter/drier periods during the last millennium and the magnitude of the 20th century warming trend. Furthermore, these works are mainly focused on eastern China regions that show a denser proxy data coverage. We investigate how last millennium palaeo-runs compare to independent evidences from an unusual large number of proxy reconstructions over the study area by employing state-of-the-art palaeo-simulations with multi-member ensembles from the CMIP5/PMIP3 project. This shapes an ideal frame for the evaluation of the uncertainties associated to internal and intermodel model variability. Preliminary results indicate that despite the strong regional and seasonal dependencies, temperature reconstructions in China evidence coherent variations among all regions at centennial scale, especially during the last 500 years. The spatial consistency of low frequency temperature changes is an interesting aspect and of relevance for the assessment of forced climatic responses in China. The comparison between reconstructions and simulations from climate models show that, apart from the 20th century warming trend, the variance of the reconstructed mean China temperature lies in the envelope (uncertainty range) spanned by the temperature simulations. The uncertainty arises from the internal (multi-member ensembles) and the inter-model variability. Centennial variations tend to be broadly synchronous in the reconstructions and the simulations. However, the simulations show a delay of the warm period 1000-1300 AD. This warm medieval period both in the simulations and the reconstructions is followed by cooling till 1800 AD. Based on the simulations, the recent warming is not unprecedented and is comparable to the medieval warming. Further steps of this study will address the individual contribution of anthropogenic and natural forcings on climate variability and change during the last millennium in China. We will make use of of models that provide runs including single forcings (fingerprints) for the attribution of climate variations from decadal to multi-centennial time scales. With this aim, we will implement statistical techniques for the detection of optimal signal-to-noise-ratio between external forcings and internal variability of reconstructed temperatures and precipitation. To apply these approaches the uncertainties associated with both reconstructions and simulations will be estimated. The latter will shed some light into the mechanisms behind current climate evolution and will help to constrain uncertainties in the sensitivity of model simulations to increasing CO2 scenarios of future climate change. This work will also contribute to the overall aims of the PAGES 2k initiative in Asia (http://www.pages.unibe.ch/workinggroups/2k-network)

  5. Standardized, Interdepartmental, Simulation-Based Central Line Insertion Course Closes an Educational Gap and Improves Intern Comfort with the Procedure.

    PubMed

    Grudziak, Joanna; Herndon, Blair; Dancel, Ria D; Arora, Harendra; Tignanelli, Christopher J; Phillips, Michael R; Crowner, Jason R; True, Nicholas A; Kiser, Andy C; Brown, Rebecca F; Goodell, Harry P; Murty, Neil; Meyers, Michael O; Montgomery, Sean P

    2017-06-01

    Central line placement is a common procedure, routinely performed by junior residents in medical and surgical departments. Before this project, no standardized instructional course on the insertion of central lines existed at our institution, and few interns had received formal ultrasound training. Interns from five departments participated in a simulation-based central line insertion course. Intern familiarity with the procedure and with ultrasound, as well as their prior experience with line placement and their level of comfort, was assessed. Of the 99 interns in participating departments, 45 per cent had been trained as of October 2015. Forty-one per cent were female. The majority (59.5%) had no prior formal ultrasound training, and 46.0 per cent had never placed a line as primary operator. Scores increased significantly, from a precourse score mean of 13.7 to a postcourse score mean of 16.1, P < 0.001. All three of the self-reported measures of comfort with ultrasound also improved significantly. All interns reported the course was "very much" helpful, and 100 per cent reported they felt "somewhat" or "much" more comfortable with the procedure after attendance. To our knowledge, this is the first hospital-wide, standardized, simulation-based central line insertion course in the United States. Preliminary results indicate overwhelming satisfaction with the course, better ultrasound preparedness, and improved comfort with central line insertion.

  6. Revisiting ocean carbon sequestration by direct injection: a global carbon budget perspective

    NASA Astrophysics Data System (ADS)

    Reith, Fabian; Keller, David P.; Oschlies, Andreas

    2016-11-01

    In this study we look beyond the previously studied effects of oceanic CO2 injections on atmospheric and oceanic reservoirs and also account for carbon cycle and climate feedbacks between the atmosphere and the terrestrial biosphere. Considering these additional feedbacks is important since backfluxes from the terrestrial biosphere to the atmosphere in response to reducing atmospheric CO2 can further offset the targeted reduction. To quantify these dynamics we use an Earth system model of intermediate complexity to simulate direct injection of CO2 into the deep ocean as a means of emissions mitigation during a high CO2 emission scenario. In three sets of experiments with different injection depths, we simulate a 100-year injection period of a total of 70 GtC and follow global carbon cycle dynamics over another 900 years. In additional parameter perturbation runs, we varied the default terrestrial photosynthesis CO2 fertilization parameterization by ±50 % in order to test the sensitivity of this uncertain carbon cycle feedback to the targeted atmospheric carbon reduction through direct CO2 injections. Simulated seawater chemistry changes and marine carbon storage effectiveness are similar to previous studies. As expected, by the end of the injection period avoided emissions fall short of the targeted 70 GtC by 16-30 % as a result of carbon cycle feedbacks and backfluxes in both land and ocean reservoirs. The target emissions reduction in the parameter perturbation simulations is about 0.2 and 2 % more at the end of the injection period and about 9 % less to 1 % more at the end of the simulations when compared to the unperturbed injection runs. An unexpected feature is the effect of the model's internal variability of deep-water formation in the Southern Ocean, which, in some model runs, causes additional oceanic carbon uptake after injection termination relative to a control run without injection and therefore with slightly different atmospheric CO2 and climate. These results of a model that has very low internal climate variability illustrate that the attribution of carbon fluxes and accounting for injected CO2 may be very challenging in the real climate system with its much larger internal variability.

  7. Effect of varying internal geometry on the static performance of rectangular thrust-reverser ports

    NASA Technical Reports Server (NTRS)

    Re, Richard J.; Mason, Mary L.

    1987-01-01

    An investigation has been conducted to evaluate the effects of several geometric parameters on the internal performance of rectangular thrust-reverser ports for nonaxisymmetric nozzles. Internal geometry was varied with a test apparatus which simulated a forward-flight nozzle with a single, fully deployed reverser port. The test apparatus was designed to simulate thrust reversal (conceptually) either in the convergent section of the nozzle or in the constant-area duct just upstream of the nozzle. The main geometric parameters investigated were port angle, port corner radius, port location, and internal flow blocker angle. For all reverser port geometries, the port opening had an aspect ratio (throat width to throat height) of 6.1 and had a constant passage area from the geometric port throat to the exit. Reverser-port internal performance and thrust-vector angles computed from force-balance measurements are presented.

  8. Influence of an Internally-Generated QBO on Modeled Stratospheric Dynamics and Ozone

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Newman, P. A.; Song, I. S.

    2011-01-01

    A GEOS V2 CCM simulation with an internally generated quasi-biennial oscillation (QBO) signal is compared to an otherwise identical simulation without a QBO. In a present-day climate, inclusion of the modeled QBO makes a significant difference to stratospheric dynamics and ozone throughout the year. The QBO enhances variability in the tropics, as expected, but also in the polar stratosphere in some seasons. The modeled QBO also affects the mean stratospheric climate. Because tropical zonal winds in the baseline simulation are generally easterly, there is a relative increase in zonal wind magnitudes in tropical lower and middle stratosphere in the QBO simulation. Extra-tropical differences between the QBO and 'no QBO' simulations thus reflect a bias toward the westerly phase of the QBO: a relative strengthening and poleward shifting the polar stratospheric jets, and a reduction in Arctic lower stratospheric ozone.

  9. The politics of space mining - An account of a simulation game

    NASA Astrophysics Data System (ADS)

    Paikowsky, Deganit; Tzezana, Roey

    2018-01-01

    Celestial bodies like the Moon and asteroids contain materials and precious metals, which are valuable for human activity on Earth and beyond. Space mining has been mainly relegated to the realm of science fiction, and was not treated seriously by the international community. The private industry is starting to assemble towards space mining, and success on this front would have major impact on all nations. We present in this paper a review of current space mining ventures, and the international legislation, which could stand in their way - or aid them in their mission. Following that, we present the results of a role-playing simulation in which the role of several important nations was played by students of international relations. The results of the simulation are used as a basis for forecasting the potential initial responses of the nations of the world to a successful space mining operation in the future.

  10. Working Together: An Empirical Analysis of a Multiclass Legislative-Executive Branch Simulation

    ERIC Educational Resources Information Center

    Kalaf-Hughes, Nicole; Mills, Russell W.

    2016-01-01

    Much of the research on the use of simulations in the political science classroom focuses on how simulations model different events in the real world, including political campaigns, international diplomacy, and legislative bargaining. In the case of American Politics, many simulations focus on the behavior of Congress and the legislative process,…

  11. Teaching Experience: How to Make and Use PowerPoint-Based Interactive Simulations for Undergraduate IR Teaching

    ERIC Educational Resources Information Center

    Meibauer, Gustav; Aagaard Nøhr, Andreas

    2018-01-01

    This article is about designing and implementing PowerPoint-based interactive simulations for use in International Relations (IR) introductory undergraduate classes based on core pedagogical literature, models of human skill acquisition, and previous research on simulations in IR teaching. We argue that simulations can be usefully employed at the…

  12. 78 FR 6269 - Amendment to the International Traffic in Arms Regulations: Revision of U.S. Munitions List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... remain subject to USML control are modeling or simulation tools that model or simulate the environments... USML revision process, the public is asked to provide specific examples of nuclear-related items whose...) Modeling or simulation tools that model or simulate the environments generated by nuclear detonations or...

  13. Numerical simulation of hemorrhage in human injury

    NASA Astrophysics Data System (ADS)

    Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff

    2015-11-01

    Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.

  14. The pathology of innactivation in monkeys.

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Golarz De Bourne, M. N.; Mcclure, H.; Keeling, M.

    1973-01-01

    Progress report on a long-term experiment using rhesus monkeys and designed to study the effects of isolation up to one year, as well as the effects of bed rest simulated by immobilization in a plaster cast for six months. The investigation includes histopathological and histochemical studies of these effects on various internal organs and tissues, and some of the preliminary results of these studies are presented and discussed.

  15. The Interplay of Internal and Forced Modes of Hadley Cell Expansion: Lessons from the Global Warming Hiatus

    NASA Astrophysics Data System (ADS)

    Amaya, D. J.; Siler, N.; Xie, S. P.; Miller, A. J.

    2017-12-01

    The poleward branches of the Hadley Cells show a robust shift poleward shift during the satellite era, leading to concerns over the possible encroachment of the globe's subtropical dry zones into currently temperate climates. The extent to which this trend is caused by anthropogenic forcing versus internal variability remains the subject of considerable debate. In this study, we us a joint EOF method to identify two distinct modes of Hadley Cell variability: (i) an anthropogenically-forced mode, which we identify using a 20-member simulation of the historical climate, and (ii) an internal mode, which identify using a 1000-year pre-industrial control simulation with a global climate model. The forced mode is found to be closely related to the TOA radiative imbalance and exhibits a long-term trend since 1860, while the internal mode is found to be essentially indistinguishable from the El Niño Southern Oscillation (ENSO). Together these two modes explain an average of 70% of the interannual variability seen in model "edge indices" over the historical period. Since 1980, the superposition of forced and internal modes has resulted in a period of accelerated Hadley Cell expansion and decelerated global warming (i.e., the "hiatus"). A comparison of the change in these modes since 1980 indicates that by 2013 the signal has emerged above the noise of internal variability in the Southern Hemisphere (SH), but not in the Northern Hemisphere (NH), with the latter also exhibiting strong zonal asymmetry, particularly in the North Atlantic. Our results highlight the important interplay of internal and forced modes of Hadley Cell width change and improve our understanding of the interannual variability and long-term trend seen in observations.

  16. The interplay of internal and forced modes of Hadley Cell expansion: lessons from the global warming hiatus

    NASA Astrophysics Data System (ADS)

    Amaya, Dillon J.; Siler, Nicholas; Xie, Shang-Ping; Miller, Arthur J.

    2017-09-01

    The poleward branches of the Hadley Cells and the edge of the tropics show a robust poleward shift during the satellite era, leading to concerns over the possible encroachment of the globe's subtropical dry zones into currently temperate climates. The extent to which this trend is caused by anthropogenic forcing versus internal variability remains the subject of considerable debate. In this study, we use a Joint EOF method to identify two distinct modes of tropical width variability: (1) an anthropogenically-forced mode, which we identify using a 20-member simulation of the historical climate, and (2) an internal mode, which we identify using a 1000-year pre-industrial control simulation. The forced mode is found to be closely related to the top of the atmosphere radiative imbalance and exhibits a long-term trend since 1860, while the internal mode is essentially indistinguishable from the El Niño Southern Oscillation. Together these two modes explain an average of 70% of the interannual variability seen in model "edge indices" over the historical period. Since 1980, the superposition of forced and internal modes has resulted in a period of accelerated Hadley Cell expansion and decelerated global warming (i.e., the "hiatus"). A comparison of the change in these modes since 1980 indicates that by 2013 the signal has emerged above the noise of internal variability in the Southern Hemisphere, but not in the Northern Hemisphere, with the latter also exhibiting strong zonal asymmetry, particularly in the North Atlantic. Our results highlight the important interplay of internal and forced modes of tropical width change and improve our understanding of the interannual variability and long-term trend seen in observations.

  17. Development and evaluation of a simulation-based continuing medical education course: beyond lectures and credit hours.

    PubMed

    Pugh, Carla M; Arafat, Fahd O; Kwan, Calvin; Cohen, Elaine R; Kurashima, Yo; Vassiliou, Melina C; Fried, Gerald M

    2015-10-01

    The aim of our study was to modify our previously developed laparoscopic ventral hernia (LVH) simulator to increase difficulty and then reassess validity and feasibility for using the simulator in a newly developed simulation-based continuing medical education course. Participants (N = 30) were practicing surgeons who signed up for a hands-on postgraduate laparoscopic hernia course. An LVH simulator, with prior validity evidence, was modified for the course to increase difficulty. Participants completed 1 of the 3 variations in hernia anatomy: incarcerated omentum, incarcerated bowel, and diffuse adhesions. During the procedure, course faculty and peer observers rated surgeon performance using Global Operative Assessment of Laparoscopic Skills-Incisional Hernia and Global Operative Assessment of Laparoscopic Skills rating scales with prior validity evidence. Rating scale reliability was reassessed for internal consistency. Peer and faculty raters' scores were compared. In addition, quality and completeness of the hernia repairs were rated. Internal consistency on the general skills performance (peer α = .96, faculty α = .94) and procedure-specific performance (peer α = .91, faculty α = .88) scores were high. Peers were more lenient than faculty raters on all LVH items in both the procedure-specific skills and general skills ratings. Overall, participants scored poorly on the quality and completeness of their hernia repairs (mean = 3.90/16, standard deviation = 2.72), suggesting a mismatch between course attendees and hernia difficulty and identifying a learning need. Simulation-based continuing medical education courses provide hands-on experiences that can positively affect clinical practice. Although our data appear to show a significant mismatch between clinical skill and simulator difficulty, these findings also underscore significant learning needs in the surgical community. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. UCLA IGPP Space Plasma Simulation Group

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.

  19. Contribution of rivaroxaban to the international normalized ratio when switching to warfarin for anticoagulation as determined by simulation studies

    PubMed Central

    Siegmund, Hans-Ulrich; Burghaus, Rolf; Kubitza, Dagmar; Coboeken, Katrin

    2015-01-01

    Aim This study evaluated the influence of rivaroxaban 20 mg once daily on international normalized ratio (INR) during the co-administration period when switching from rivaroxaban to warfarin. Methods We developed a calibrated coagulation model that was qualified with phase I clinical data. Prothrombin time and INR values were simulated by use of phospholipid concentrations that matched Neoplastin Plus® and Innovin® reagents. To simulate the combined effects of rivaroxaban and warfarin on INR during switching, warfarin initiation was simulated by adjusting the magnitude of the warfarin effect to reach the desired target INRs over the course of 21 days. The warfarin effect values (obtained every 6 h) and the desired rivaroxaban plasma concentrations were used. Nomograms were generated from rivaroxaban induced increases in INR. Results The simulation had good prediction quality. Rivaroxaban induced increases in the total INR from the warfarin attributed INR were seen, which increased with rivaroxaban plasma concentration. When the warfarin only INR was 2.0–3.0, the INR contribution of rivaroxaban with Neoplastin Plus® was 0.5–1.2, decreasing to 0.3–0.6 with Innovin® at median trough rivaroxaban plasma concentrations (38 μg l−1). Conclusions The data indicate that measuring warfarin induced changes in INR are best performed at trough rivaroxaban concentrations (24 h after rivaroxaban dosing) during the co-administration period when switching from rivaroxaban to warfarin. Furthermore, Innovin® is preferable to Neoplastin Plus® because of its substantially lower sensitivity to rivaroxaban, thereby reducing the influence of rivaroxaban on the measured INR. PMID:25510952

  20. Small scale wind tunnel model investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap

    NASA Technical Reports Server (NTRS)

    Waites, W. L.; Chin, Y. T.

    1974-01-01

    A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects.

  1. Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment

    NASA Astrophysics Data System (ADS)

    DeBeer, Chris M.; Pomeroy, John W.

    2017-10-01

    The spatial heterogeneity of mountain snow cover and ablation is important in controlling patterns of snow cover depletion (SCD), meltwater production, and runoff, yet is not well-represented in most large-scale hydrological models and land surface schemes. Analyses were conducted in this study to examine the influence of various representations of snow cover and melt energy heterogeneity on both simulated SCD and stream discharge from a small alpine basin in the Canadian Rocky Mountains. Simulations were performed using the Cold Regions Hydrological Model (CRHM), where point-scale snowmelt computations were made using a snowpack energy balance formulation and applied to spatial frequency distributions of snow water equivalent (SWE) on individual slope-, aspect-, and landcover-based hydrological response units (HRUs) in the basin. Hydrological routines were added to represent the vertical and lateral transfers of water through the basin and channel system. From previous studies it is understood that the heterogeneity of late winter SWE is a primary control on patterns of SCD. The analyses here showed that spatial variation in applied melt energy, mainly due to differences in net radiation, has an important influence on SCD at multiple scales and basin discharge, and cannot be neglected without serious error in the prediction of these variables. A single basin SWE distribution using the basin-wide mean SWE (SWE ‾) and coefficient of variation (CV; standard deviation/mean) was found to represent the fine-scale spatial heterogeneity of SWE sufficiently well. Simulations that accounted for differences in (SWE ‾) among HRUs but neglected the sub-HRU heterogeneity of SWE were found to yield similar discharge results as simulations that included this heterogeneity, while SCD was poorly represented, even at the basin level. Finally, applying point-scale snowmelt computations based on a single SWE depth for each HRU (thereby neglecting spatial differences in internal snowpack energetics over the distributions) was found to yield similar SCD and discharge results as simulations that resolved internal energy differences. Spatial/internal snowpack melt energy effects are more pronounced at times earlier in spring before the main period of snowmelt and SCD, as shown in previously published work. The paper discusses the importance of these findings as they apply to the warranted complexity of snowmelt process simulation in cold mountain environments, and shows how the end-of-winter SWE distribution represents an effective means of resolving snow cover heterogeneity at multiple scales for modelling, even in steep and complex terrain.

  2. How predictable is the timing of a summer ice-free Arctic?

    NASA Astrophysics Data System (ADS)

    Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika M.; Hall, David M.

    2016-09-01

    Climate model simulations give a large range of over 100 years for predictions of when the Arctic could first become ice free in the summer, and many studies have attempted to narrow this uncertainty range. However, given the chaotic nature of the climate system, what amount of spread in the prediction of an ice-free summer Arctic is inevitable? Based on results from large ensemble simulations with the Community Earth System Model, we show that internal variability alone leads to a prediction uncertainty of about two decades, while scenario uncertainty between the strong (Representative Concentration Pathway (RCP) 8.5) and medium (RCP4.5) forcing scenarios adds at least another 5 years. Common metrics of the past and present mean sea ice state (such as ice extent, volume, and thickness) as well as global mean temperatures do not allow a reduction of the prediction uncertainty from internal variability.

  3. Simulation of Ophthalmic Alterations at the Arctic, Antarctica and the International Space Station for Long-Duration Spaceflight

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio; Gonçalves, Cristiane

    2016-07-01

    Well, we propose a series of long-period medical simulations in scientific bases at the Arctic, at Antarctica and aboard the International Space Station (ISS), involving natural ophthalmic diseases such as radiation, solar and trauma retinopathy, keratoconus, cataract, glaucoma, etc., and ophthalmic alterations by accidental injuries. These natural diseases, without a previous diagnosis, specially those specific retinopathy, appear after 1 month to 1.5 year, in average. Such studies will be valuable for the human deep-space exploration because during long-duration spaceflight, such as staying at the ISS, a Moon base and a manned trip to planet Mars, requires several months within such environments, and during such periods ophthalmic diseases and accidents might eventually occur, which could seriously affect the 'round-the-clock' work schedule of the astronauts and the long-duration spaceflight manned program.

  4. Efficient operation scheduling for adsorption chillers using predictive optimization-based control methods

    NASA Astrophysics Data System (ADS)

    Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz

    2017-10-01

    Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.

  5. Preliminary Observing System Simulation Experiments for Doppler Wind Lidars Deployed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kemp, E.; Jacob, J.; Rosenberg, R.; Jusem, J. C.; Emmitt, G. D.; Wood, S.; Greco, L. P.; Riishojgaard, L. P.; Masutani, M.; Ma, Z.; hide

    2013-01-01

    NASA Goddard Space Flight Center's Software Systems Support Office (SSSO) is participating in a multi-agency study of the impact of assimilating Doppler wind lidar observations on numerical weather prediction. Funded by NASA's Earth Science Technology Office, SSSO has worked with Simpson Weather Associates to produce time series of synthetic lidar observations mimicking the OAWL and WISSCR lidar instruments deployed on the International Space Station. In addition, SSSO has worked to assimilate a portion of these observations those drawn from the NASA fvGCM Nature Run into the NASA GEOS-DAS global weather prediction system in a series of Observing System Simulation Experiments (OSSEs). These OSSEs will complement parallel OSSEs prepared by the Joint Center for Satellite Data Assimilation and by NOAA's Atlantic Oceanographic and Meteorological Laboratory. In this talk, we will describe our procedure and provide available OSSE results.

  6. Intrinsic rotation, hysteresis and back transition in reversed shear internal transport barriers

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Jhang, Hogun; Diamond, P. H.; Terzolo, L.; Yi, S.; Hahm, T. S.

    2011-07-01

    A study of intrinsic rotation and hysteresis in ion thermal internal transport barrier (ITB) is presented. Global flux-driven gyrofluid simulations are performed. It is found that significant co-current intrinsic rotation (0.1 <~ Mth <~ 0.2, where Mth is the thermal Mach number) can be produced in ITB plasmas. Exploration of the relationship between the intrinsic rotation and the ITB temperature gradient leads to a novel scaling of intrinsic rotation in ITB plasmas. Long time power ramp simulations with self-consistently evolving profiles clearly demonstrate the existence of hysteresis in reversed shear ITBs. It is shown that intrinsic rotation plays an important role in ITB dynamics and is responsible for determining unique properties of ITB hysteresis. A negative feedback mechanism based on destruction of E × B shear prevails in barrier back transition, triggered by an outward momentum transport event during the power ramp down.

  7. Equating with Miditests Using IRT

    ERIC Educational Resources Information Center

    Fitzpatrick, Joseph; Skorupski, William P.

    2016-01-01

    The equating performance of two internal anchor test structures--miditests and minitests--is studied for four IRT equating methods using simulated data. Originally proposed by Sinharay and Holland, miditests are anchors that have the same mean difficulty as the overall test but less variance in item difficulties. Four popular IRT equating methods…

  8. People Power--Computer Games in the Classroom

    ERIC Educational Resources Information Center

    Hilliard, Ivan

    2014-01-01

    This article presents a case study in the use of the computer simulation game "People Power," developed by the International Center on Nonviolent Conflict. The principal objective of the activity was to offer students an opportunity to understand the dynamics of social conflicts, in a format not possible in a traditional classroom…

  9. Factor Analysis for Clustered Observations.

    ERIC Educational Resources Information Center

    Longford, N. T.; Muthen, B. O.

    1992-01-01

    A two-level model for factor analysis is defined, and formulas for a scoring algorithm for this model are derived. A simple noniterative method based on decomposition of total sums of the squares and cross-products is discussed and illustrated with simulated data and data from the Second International Mathematics Study. (SLD)

  10. Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison

    EPA Science Inventory

    The formulations of tropospheric gas-phase chemistry (“mechanisms”)used in the regional-scale chemistry-transport models participating in theAir Quality Modelling Evaluation International Initiative (AQMEII) Phase2 are intercompared by the means of box model studies. Simulations ...

  11. Influence of Boundary Conditions on Regional Air Quality Simulations—Analysis of AQMEII Phase 3 Results

    EPA Science Inventory

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, performed during the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), we perform annual simulations over North America with chemical boundary con...

  12. A comparison of cylindrical and row trenched cooling holes with alignment angle of 0 degree near the combustor endwall

    NASA Astrophysics Data System (ADS)

    Kianpour, E.; Nor Azwadi, C. S.; Golshokouh, I.

    2013-12-01

    We studied the effects of cylindrical and row trenched cooling holes with alignment angle of 0° at BR=3.18 on the film cooling performance near the endwall surface of a combustor simulator. In this research, a three-dimensional presentation of gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2.26 to gain fundamental data. The current study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages. This combustor simulator combined the interaction of two rows of dilution jets, which were staggered in the stream wise direction and aligned in the span wise direction. The entire findings of the study declared that with using the row trenched holes near the enwall surface; film cooling effectiveness is doubled compared to the cooling performance of baseline case.

  13. Formation of an internal model of environment dynamics during upper limb reaching movements: a fuzzy approach.

    PubMed

    MacDonald, Chad; Moussavi, Zahra; Sarkodie-Gyan, Thompson

    2007-01-01

    This paper presents the development and simulation of a fuzzy logic based learning mechanism to emulate human motor learning. In particular, fuzzy inference was used to develop an internal model of a novel dynamic environment experienced during planar reaching movements with the upper limb. A dynamic model of the human arm was developed and a fuzzy if-then rule base was created to relate trajectory movement and velocity errors to internal model update parameters. An experimental simulation was performed to compare the fuzzy system's performance with that of human subjects. It was found that the dynamic model behaved as expected, and the fuzzy learning mechanism created an internal model that was capable of opposing the environmental force field to regain a trajectory closely resembling the desired ideal.

  14. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  15. Delphi Method Validation of a Procedural Performance Checklist for Insertion of an Ultrasound-Guided Internal Jugular Central Line.

    PubMed

    Hartman, Nicholas; Wittler, Mary; Askew, Kim; Manthey, David

    2016-01-01

    Placement of ultrasound-guided central lines is a critical skill for physicians in several specialties. Improving the quality of care delivered surrounding this procedure demands rigorous measurement of competency, and validated tools to assess performance are essential. Using the iterative, modified Delphi technique and experts in multiple disciplines across the United States, the study team created a 30-item checklist designed to assess competency in the placement of ultrasound-guided internal jugular central lines. Cronbach α was .94, indicating an excellent degree of internal consistency. Further validation of this checklist will require its implementation in simulated and clinical environments. © The Author(s) 2014.

  16. Least action and entropy considerations of self-organization in Benard cells

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi; Iannacchione, Germano

    We study self-organization in complex systems using first principles in physics. Our approach involves the principle of least action and the second law of thermodynamics. In far from equilibrium systems, energy gradients cause internal ordering to facilitate the dissipation of energy in the environment. This internal ordering decreases their internal entropy in order to obey the principle of least action, minimizing the product of time and energy for transport through the system. We are considering the connection between action and entropy decrease inside Benard cells in order to derive some general features of self-organization. We are developing mathematical treatment of this coupling and comparing it to results from experiments and simulations.

  17. Manufacture of Cryoshroud Surfaces for Space Simulation Chambers

    NASA Technical Reports Server (NTRS)

    Ash, Gary S.

    2008-01-01

    Environmental test chambers for space applications use internal shrouds to simulate temperature conditions encountered in space. Shroud temperatures may range from +150 C to -253 C (20 K), and internal surfaces are coated with special high emissivity/absorptivity paints. To obtain temperature uniformity over large areas, detailed thermal design is required for placement of tubing for gaseous or liquid nitrogen and helium and other exotic heat exchange fluids. The recent increase in space simulation activity related to the James Webb Space Telescope has led to the design of new cryogenic shrouds to meet critical needs in instrument package testing. This paper will review the design and manufacturing of shroud surfaces for several of these programs, including fabrication methods and the selection and application of paints for simulation chambers.

  18. Analyzing Transient Turbuelnce in a Stenosed Carotid Artery by Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Grinberg, Leopold; Yakhot, Alexander; Karniadakis, George

    2009-11-01

    High resolution 3D simulation (involving 100M degrees of freedom) were employed to study transient turbulent flow in a carotid arterial bifurcation with a stenosed internal carotid artery (ICA). In the performed simulation an intermittent (in space and time) laminar-turbulent-laminar regime was observed. The simulation reveals the mechanism of the onset of turbulent flow in the stenosed ICA where the narrowing in the artery generates a strong jet flow. Time- and space-window Proper Orthogonal Decomposition (POD) was applied to quantify the different flow regimes in the occluded artery. A simplified version of the POD analysis that utilizes 2D slices only - more appropriate in the clinical setting - was also investigated.

  19. Dependence of Internal Friction on Folding Mechanism

    PubMed Central

    2016-01-01

    An outstanding challenge in protein folding is understanding the origin of “internal friction” in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein. PMID:25721133

  20. Dependence of internal friction on folding mechanism.

    PubMed

    Zheng, Wenwei; De Sancho, David; Hoppe, Travis; Best, Robert B

    2015-03-11

    An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.

  1. A study of internal drag of small-scale ducts at Mach number 4

    NASA Technical Reports Server (NTRS)

    Graham, L. A.; Hunton, L. W.

    1972-01-01

    An experimental investigation was made to examine the applicability of methods used to determine internal drag of small ducts and to study some of the problems encountered in assessing momentum losses in such ducts. Test Mach numbers ranged from 3.7 to 4.4 at angles of attack of 0 and 5 degrees and at a constant Reynolds number of 4.3 million per foot. The configurations represented small ducts used to simulate external aerodynamics of air breathing propulsion systems and consisted of wing nacelle models of ducts with circular, square, and rectangular inlets and with a two-dimensional inlet.

  2. Human Behaviour in Long-Term Missions

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session WP1, the discussion focuses on the following topics: Psychological Support for International Space Station Mission; Psycho-social Training for Man in Space; Study of the Physiological Adaptation of the Crew During A 135-Day Space Simulation; Interpersonal Relationships in Space Simulation, The Long-Term Bed Rest in Head-Down Tilt Position; Psychological Adaptation in Groups of Varying Sizes and Environments; Deviance Among Expeditioners, Defining the Off-Nominal Act in Space and Polar Field Analogs; Getting Effective Sleep in the Space-Station Environment; Human Sleep and Circadian Rhythms are Altered During Spaceflight; and Methodological Approach to Study of Cosmonauts Errors and Its Instrumental Support.

  3. An Antarctic research outpost as a model for planetary exploration.

    PubMed

    Andersen, D T; McKay, C P; Wharton, R A; Rummel, J D

    1990-01-01

    During the next 50 years, human civilization may well begin expanding into the solar system. This colonization of extraterrestrial bodies will most likely begin with the establishment of small research outposts on the Moon and/or Mars. In all probability these facilities, designed primarily for conducting exploration and basic science, will have international participation in their crews, logistical support and funding. High fidelity Earth-based simulations of planetary exploration could help prepare for these expensive and complex operations. Antarctica provides one possible venue for such a simulation. The hostile and remote dry valleys of southern Victoria Land offer a valid analog to the Martian environment but are sufficiently accessible to allow routine logistical support and to assure the relative safety of their inhabitants. An Antarctic research outpost designed as a planetary exploration simulation facility would have great potential as a testbed and training site for the operation of future Mars bases and represents a near-term, relatively low-cost alternative to other precursor activities. Antarctica already enjoys an international dimension, an aspect that is more than symbolically appropriate to an international endeavor of unprecedented scientific and social significance--planetary exploration by humans. Potential uses of such a facility include: 1) studying human factors in an isolated environment (including long-term interactions among an international crew); 2) testing emerging technologies (e.g., advanced life support facilities such as a partial bioregenerative life support system, advanced analytical and sample acquisition instrumentation and equipment, etc.); and 3) conducting basic scientific research similar to the research that will be conducted on Mars, while contributing to the planning for human exploration. (Research of this type is already ongoing in Antarctica).

  4. Stochastically-forced Decadal Variability in Australian Rainfall

    NASA Astrophysics Data System (ADS)

    Taschetto, A.

    2015-12-01

    Iconic Australian dry and wet periods were driven by anomalous conditions in the tropical oceans, such as the worst short-term drought in the southeast in 1982 associated with the strong El Niño and the widespread "Big Wet" in 1974 linked with a La Niña event. The association with oceanic conditions makes droughts predictable to some extent. However, prediction can be difficult when there is no clear external forcing such as El Niños. Can dry spells be triggered and maintained with no ocean memory? In this study, we investigate the potential role of internal multi-century atmospheric variability in controlling the frequency, duration and intensity of long-term dry and wet spells over Australia. Two multi-century-scale simulations were performed with the NCAR CESM: (1) a fully-coupled simulation (CPLD) and (2) an atmospheric simulation forced by a seasonal SST climatology derived from the coupled experiment (ACGM). Results reveal that droughts and wet spells can indeed be generated by internal variability of the atmosphere. Those internally generated events are less severe than those forced by oceanic variability, however the duration of dry and wet spells longer than 3 years is comparable with and without the ocean memory. Large-scale ocean modes of variability seem to play an important role in producing continental-scale rainfall impacts over Australia. While the Pacific Decadal Oscillation plays an important role in generating droughts in the fully coupled model, perturbations of monsoonal winds seem to be the main trigger of dry spells in the AGCM case. Droughts in the mid-latitude regions such as Tasmania can be driven by perturbations in the Southern Annular Mode, not necessarily linked to oceanic conditions even in the fully-coupled model. The mechanisms behind internally-driven mega-droughts and mega-wets will be discussed.

  5. The role of internal variability in prolonging the California drought

    NASA Astrophysics Data System (ADS)

    Buenning, N. H.; Stott, L. D.

    2015-12-01

    The current drought in California has been one of the driest on record. Using atmospheric general circulation models (AGCMs), recent studies have demonstrated that the low precipitation anomalies observed during the first three winters of the current drought are mostly attributable to changes in sea surface temperature (SST) and sea ice forcing. Here we show through AGCM simulations that the fourth and latest winter of the current drought is not attributable to SST and sea ice forcing, but instead a consequence of higher internal variability. Using the Global Spectral Model (GSM) we demonstrate how the surface forcing reproduces dry conditions over California for the first three winters of the current drought, similar to what other models produced. However, when forced with the SST and sea ice conditions for the winter of 2014-2015, GSM robustly simulates high precipitation conditions over California. This significantly differs with observed precipitation anomalies, which suggests a model deficiency or large influence of internal variability within the climate system during the winter of 2014-2015. Ensemble simulations with 234 realizations reveal that the surface forcing created a broader range of precipitation possibilities over California. Thus, the surface forcing caused a greater degree of internal variations, which was driven by a reduced latitudinal temperature gradient and amplified planetary waves over the Pacific. Similar amplified waves are also seen in 21st century climate projections of upper-level geopotential heights, suggesting that 21st century precipitation over California will become more variable and increasingly difficult to predict on seasonal timescales. When an El Nino pattern is applied to the surface forcing the precipitation further increases and the variance amongst model realizations is reduced, which indicates a strong likelihood of an anomalously wet 2015-2016 winter season.

  6. A Monte Carlo model for the internal dosimetry of choroid plexuses in nuclear medicine procedures.

    PubMed

    Amato, Ernesto; Cicone, Francesco; Auditore, Lucrezia; Baldari, Sergio; Prior, John O; Gnesin, Silvano

    2018-05-01

    Choroid plexuses are vascular structures located in the brain ventricles, showing specific uptake of some diagnostic and therapeutic radiopharmaceuticals currently under clinical investigation, such as integrin-binding arginine-glycine-aspartic acid (RGD) peptides. No specific geometry for choroid plexuses has been implemented in commercially available software for internal dosimetry. The aims of the present study were to assess the dependence of absorbed dose to the choroid plexuses on the organ geometry implemented in Monte Carlo simulations, and to propose an analytical model for the internal dosimetry of these structures for 18 F, 64 Cu, 67 Cu, 68 Ga, 90 Y, 131 I and 177 Lu nuclides. A GAMOS Monte Carlo simulation based on direct organ segmentation was taken as the gold standard to validate a second simulation based on a simplified geometrical model of the choroid plexuses. Both simulations were compared with the OLINDA/EXM sphere model. The gold standard and the simplified geometrical model gave similar dosimetry results (dose difference < 3.5%), indicating that the latter can be considered as a satisfactory approximation of the real geometry. In contrast, the sphere model systematically overestimated the absorbed dose compared to both Monte Carlo models (range: 4-50% dose difference), depending on the isotope energy and organ mass. Therefore, the simplified geometric model was adopted to introduce an analytical approach for choroid plexuses dosimetry in the mass range 2-16 g. The proposed model enables the estimation of the choroid plexuses dose by a simple bi-parametric function, once the organ mass and the residence time of the radiopharmaceutical under investigation are provided. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Operational Characteristics Identification and Simulation Model Verification for Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Zhu, Zhifan; Jung, Yoon C.; Jeong, Myeongsook; Kim, Hyounkyong; Oh, Eunmi; Hong, Sungkwon; Lee, Junwon

    2016-01-01

    Incheon International Airport (ICN) is one of the hub airports in East Asia. Airport operations at ICN have been growing more than 5% per year in the past five years. According to the current airport expansion plan, a new passenger terminal will be added and the current cargo ramp will be expanded in 2018. This expansion project will bring 77 new stands without adding a new runway to the airport. Due to such continuous growth in airport operations and future expansion of the ramps, it will be highly likely that airport surface traffic will experience more congestion, and therefore, suffer from efficiency degradation. There is a growing awareness in aviation research community of need for strategic and tactical surface scheduling capabilities for efficient airport surface operations. Specific to ICN airport operations, a need for A-CDM (Airport - Collaborative Decision Making) or S-CDM(Surface - Collaborative Decision Making), and controller decision support tools for efficient air traffic management has arisen since several years ago. In the United States, there has been independent research efforts made by academia, industry, and government research organizations to enhance efficiency and predictability of surface operations at busy airports. Among these research activities, the Spot and Runway Departure Advisor (SARDA) developed and tested by National Aeronautics and Space Administration (NASA) is a decision support tool to provide tactical advisories to the controllers for efficient surface operations. The effectiveness of SARDA concept, was successfully verified through the human-in-the-loop (HITL) simulations for both spot release and runway operations advisories for ATC Tower controllers of Dallas/Fort Worth International Airport (DFW) in 2010 and 2012, and gate pushback advisories for the ramp controller of Charlotte/Douglas International Airport (CLT) in 2014. The SARDA concept for tactical surface scheduling is further enhanced and is being integrated into NASA's Airspace Technology Demonstration - 2 (ATD-2) project for technology demonstration of Integrated Arrival/Departure/Surface (ADS) operations at CLT. This study is a part of the international research collaboration between KAIA (Korea Agency for Infrastructure Technology Advancement)/KARI (Korea Aerospace Research Institute) and NASA, which is being conducted to validate the effectiveness of SARDA concept as a controller decision support tool for departure and surface management of ICN. This paper presents the preliminary results of the collaboration effort. It includes investigation of the operational environment of ICN, data analysis for identification of the operational characteristics of the airport, construction and verification of airport simulation model using Surface Operations Simulator and Scheduler (SOSS), NASA's fast-time simulation tool.

  8. Operational Characteristics Identification and Simulation Model Verification for Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Zhu, Zhifan; Jung, Yoon C.; Jeong, Myeongsook; Kim, Hyounkyong; Oh, Eunmi; Hong, Sungkwon; Lee, Junwon

    2016-01-01

    Incheon International Airport (ICN) is one of the hub airports in East Asia. Airport operations at ICN have been growing more than 5 percent per year in the past five years. According to the current airport expansion plan, a new passenger terminal will be added and the current cargo ramp will be expanded in 2018. This expansion project will bring 77 new stands without adding a new runway to the airport. Due to such continuous growth in airport operations and future expansion of the ramps, it will be highly likely that airport surface traffic will experience more congestion, and therefore, suffer from efficiency degradation. There is a growing awareness in aviation research community of need for strategic and tactical surface scheduling capabilities for efficient airport surface operations. Specific to ICN airport operations, a need for A-CDM (Airport - Collaborative Decision Making) or S-CDM (Surface - Collaborative Decision Making), and controller decision support tools for efficient air traffic management has arisen since several years ago. In the United States, there has been independent research efforts made by academia, industry, and government research organizations to enhance efficiency and predictability of surface operations at busy airports. Among these research activities, the Spot and Runway Departure Advisor (SARDA) developed and tested by National Aeronautics and Space Administration (NASA) is a decision support tool to provide tactical advisories to the controllers for efficient surface operations. The effectiveness of SARDA concept, was successfully verified through the human-in-the-loop (HITL) simulations for both spot release and runway operations advisories for ATC Tower controllers of Dallas-Fort Worth International Airport (DFW) in 2010 and 2012, and gate pushback advisories for the ramp controller of Charlotte-Douglas International Airport (CLT) in 2014. The SARDA concept for tactical surface scheduling is further enhanced and is being integrated into NASA's Airspace Technology Demonstration-2 (ATD-2) project for technology demonstration of Integrated Arrival-Departure-Surface (IADS) operations at CLT. This study is a part of the international research collaboration between KAIA (Korea Agency for Infrastructure Technology Advancement), KARI (Korea Aerospace Research Institute) and NASA, which is being conducted to validate the effectiveness of SARDA concept as a controller decision support tool for departure and surface management of ICN. This paper presents the preliminary results of the collaboration effort. It includes investigation of the operational environment of ICN, data analysis for identification of the operational characteristics of the airport, construction and verification of airport simulation model using Surface Operations Simulator and Scheduler (SOSS), NASA's fast-time simulation tool.

  9. Calibration of a Physically-Based Semi-Distributed Hydrologic Model: The Importance of Internal Justification

    NASA Astrophysics Data System (ADS)

    Tasdighi, A.; Arabi, M.

    2014-12-01

    Calibration of physically-based distributed hydrologic models has always been a challenging task and subject of controversy in the literature. This study is aimed to investigate how different physiographic characteristics of watersheds call for adaption of the methods used in order to have more robust and internally justifiable simulations. Haw Watershed (1300 sq. mi.) is located in the piedmont region of North Carolina draining into B. Everett Jordan Lake located in west of Raleigh. Major land covers in this watershed are forest (50%), urban/suburban (21%) and agriculture (25%) of which a large portion is pasture. Different hydrologic behaviors are observed in this watershed based on the land use composition and size of the sub-watersheds. Highly urbanized sub-watersheds show flashier hydrographs and near instantaneous hydrologic responses. This is also the case with smaller sub-watersheds with relatively lower percentage of urban areas. The Soil and Water Assessment Tool (SWAT) has been widely used in the literature for hydrologic simulation on daily basis using Soil Conservation Service Curve Number method (SCS CN). However, it has not been used as frequently using the sub-daily routines. In this regard there are a number of studies in the literature which have used coarse time scale (daily) precipitation with methods like SCS CN to calibrate SWAT for watersheds containing different types of land uses and soils reporting satisfying results at the outlet of the watershed. This is while for physically-based distributed models, the more important concern should be to check and analyze the internal processes leading to those results. In this study, the watershed is divided into several sub-watersheds to compare the performance of SCS CN and Green & Ampt (GA) methods on different land uses at different spatial scales. The results suggest better performance of GA compared to SCS CN for smaller and highly urbanized sub-watersheds although GA predominance is not very significant for the latter. Also, the better performance of GA in simulating the peak flows and flashy behavior of the hydrographs is notable. GA did not show a significant improvement over SCS CN in simulating the excess rainfall for larger sub-watersheds.

  10. WinDAM C earthen embankment internal erosion analysis software

    USDA-ARS?s Scientific Manuscript database

    Two primary causes of dam failure are overtopping and internal erosion. For the purpose of evaluating dam safety for existing earthen embankment dams and proposed earthen embankment dams, Windows Dam Analysis Modules C (WinDAM C) software will simulate either internal erosion or erosion resulting f...

  11. Business Simulations in Language Teaching.

    ERIC Educational Resources Information Center

    Westerfield, Kay J.; And Others

    This paper describes a pilot project, conducted within the American English Institute at the University of Oregon, on the use of a published business-oriented management simulation in English language training for university-bound international students. The management game simulated competition among a group of manufacturing companies to acquire…

  12. Fuel-Air Explosive Simulation of Far-Field Nuclear Airblasts.

    DTIC Science & Technology

    1979-12-31

    Blastwave Simulator," Sixieme Symposium International sur Les A19 plications Militaires de La Simulation de Souffle, Centre D’Etudes de Gramat , Gramat ... Gramat , Gramat , France, p. 4.2.1, June 1979. 207 7............................. 64. Cooperwaithe, M. and Zwisler, W. H., "TIGER Computer Program

  13. The Chinese House Game.

    ERIC Educational Resources Information Center

    Lee, James R.

    1989-01-01

    Discussion of the use of simulations to teach international relations (IR) highlights the Chinese House Game, a computer-based decision-making game based on Inter Nation Simulation (INS). Topics discussed include the increasing role of artificial intelligence in IR simulations, multi-disciplinary approaches, and the direction of IR as a…

  14. On the gas phase fragmentation of protonated uracil: a statistical perspective.

    PubMed

    Rossich Molina, Estefanía; Salpin, Jean-Yves; Spezia, Riccardo; Martínez-Núñez, Emilio

    2016-06-01

    The potential energy surface of protonated uracil has been explored by an automated transition state search procedure, resulting in the finding of 1398 stationary points and 751 reactive channels, which can be categorized into isomerizations between pairs of isomers, unimolecular fragmentations and bimolecular reactions. The use of statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory and Kinetic Monte Carlo (KMC) simulations allowed us to determine the relative abundances of each fragmentation channel as a function of the ion's internal energy. The KMC/RRKM product abundances are compared with novel mass spectrometry (MS) experiments in the collision energy range 1-6 eV. To facilitate the comparison between theory and experiments, further dynamics simulations are carried out to determine the fraction of collision energy converted into the ion's internal energy. The KMC simulations show that the major fragmentation channels are isocyanic acid and ammonia losses, in good agreement with experiments. The third predominant channel is water loss according to both theory and experiments, although the abundance obtained in the KMC simulations is very low, suggesting that non-statistical dynamics might play an important role in this channel. Isocyanic acid (HNCOH(+)) is also an important product in the KMC simulations, although its abundance is only significant at internal energies not accessible in the MS experiments.

  15. [Three-dimensional finite element modeling and biomechanical simulation for evaluating and improving postoperative internal instrumentation of neck-thoracic vertebral tumor en bloc resection].

    PubMed

    Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu

    2015-04-07

    To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.

  16. Feasibility study of archaeological structures scanning by muon tomography

    NASA Astrophysics Data System (ADS)

    Gómez, H.; Carloganu, C.; Gibert, D.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.

    2015-08-01

    One of the main concerns in archaeology is to find of a method to study precisely archaeological structures in the least invasive way possible to avoid damage. The requirement of preserving the structures integrity prevents, in the case of pyramids or tumuli, the study of any internal structure (halls or tombs) which are not reachable by existing corridors. One non-invasive method is the muon tomography. By placing a detector which allows to register the muon direction after the structure, it is possible to have an idea of its composition based on the attenuation of the muon flux, which depends on the material length and density that muons have crossed. This technique, alone or together with other exploration techniques as seismic tomography or electrical resistivity tomography, can provide useful information about the internal structure of the archaeological form that can not be obtained by conventional archaeological methods. In this work, the time measurement necessary to obtain a significant result about the composition of an archaeological structure is estimated. To do that, a Monte Carlo simulation framework based on the MUSIC software, properly tuned for this study, has been developed. The particular case of the Kastas Amfipoli Macedonian tumulus has been considered to perform the simulations.

  17. Fundamental Studies of Electronic Properties of Materials and Devices for High Power, Compact Terahertz Vacuum Electron Devices

    DTIC Science & Technology

    2011-12-23

    International Conference on Plasma Science, Karlsruhe, Germany, 2008. [9] K.J. Willis, S.C. Hagness, and I. Knezevic, “A global EMC/FDTD simulation...Materials,” 2010 IEEE AP-S International Symposium on Antennas and Propagation and 2010 USNC/ CNC /URSI Meeting in Toronto, ON, Canada, July 11-17...with a High-Q Quasioptical Resonator,” IEEE Int’l Conf. Plasma Sci., Chicago, IL, June 26-30, (2011), paper IO2B-4. [21] M.J. Weber, B.B. Yang, S.L

  18. NASA/ESA CV-990 spacelab simulation

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.

    1976-01-01

    Simplified techniques were applied to conduct an extensive spacelab simulation using the airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy. The mission was successful and provided extensive data relevant to spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for spacelab experiment operators; and schedule requirements to prepare for such a spacelab mission.

  19. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin

    NASA Technical Reports Server (NTRS)

    Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay

    2016-01-01

    The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.

  20. Simulation environment and graphical visualization environment: a COPD use-case.

    PubMed

    Huertas-Migueláñez, Mercedes; Mora, Daniel; Cano, Isaac; Maier, Dieter; Gomez-Cabrero, David; Lluch-Ariet, Magí; Miralles, Felip

    2014-11-28

    Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.

  1. Bureaucratic Politics and Decision Making under Uncertainty in a National Security Crisis: Assessing the Effects of International Relations Theory and the Learning Impact of Role-Playing Simulation at the U.S. Naval Academy

    ERIC Educational Resources Information Center

    Biziouras, Nikolaos

    2013-01-01

    Using a pre-/posttest research design, this article measures the learning impact of active-learning techniques such as role-playing simulations in an international relations course. Using the students' different responses to the pre- and postsimulation surveys in a quasi-experimental design whereby two sections that were taught by the same…

  2. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data

    PubMed Central

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul

    2017-01-01

    Abstract Target motion–induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. PMID:28201522

  3. OpenSim: open-source software to create and analyze dynamic simulations of movement.

    PubMed

    Delp, Scott L; Anderson, Frank C; Arnold, Allison S; Loan, Peter; Habib, Ayman; John, Chand T; Guendelman, Eran; Thelen, Darryl G

    2007-11-01

    Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.

  4. ISO WD 1856. Guideline for radiation exposure of nonmetallic materials. Present status

    NASA Astrophysics Data System (ADS)

    Briskman, B. A.

    In the framework of the International Organization for Standardization (ISO) activity we started development of international standard series for space environment simulation at on-ground tests of materials. The proposal was submitted to ISO Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). A draft of the first international standard "Space Environment Simulation for Radiation Tests of Materials" (1st version) was presented at the 7th International Symposium on Materials in Space Environment (Briskman et al, 1997). The 2nd version of the standard was limited to nonmetallic materials and presented at the 20th Space Simulation Conference (Briskman and Borson, 1998). It covers the testing of nonmetallic materials embracing also polymer composite materials including metal components (metal matrix composites) to simulated space radiation. The standard does not cover semiconductor materials. The types of simulated radiation include charged particles (electrons and protons), solar ultraviolet radiation, and soft X-radiation of solar flares. Synergistic interactions of the radiation environment are covered only for these natural and some induced environmental effects. This standard outlines the recommended methodology and practices for the simulation of space radiation on materials. Simulation methods are used to reproduce the effects of the space radiation environment on materials that are located on surfaces of space vehicles and behind shielding. It was discovered that the problem of radiation environment simulation is very complex and the approaches of different specialists and countries to the problem are sometimes quite opposite. To the present moment we developed seven versions of the standard. The last version is a compromise between these approaches. It was approved at the last ISO TC20/SC14/WG4 meeting in Houston, October 2002. At a splinter meeting of Int. Conference on Materials in a Space Environment, Noordwijk, Netherlands, ESA, June 2003, the experts from ESA, USA, France, Russia and Japan discussed the last version of the draft and approved it with a number of notes. A revised version of the standard will be presented this May at ISO TC20/SC14 meeting in Russia.

  5. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae)

    PubMed Central

    Amore, Valentina; Hernández, Malva I.M.; Carrascal, Luis M.

    2017-01-01

    The insect exoskeleton is a multifunctional coat with a continuum of mechanical and structural properties constituting the barrier between electromagnetic waves and the internal body parts. This paper examines the ability of beetle exoskeleton to regulate internal body temperature considering its thermal permeability or isolation to simulated solar irradiance and infrared radiation. Seven Neotropical species of dung beetles (Coleoptera, Scarabaeinae) differing in colour, surface sculptures, size, sexual dimorphism, period of activity, guild category and altitudinal distribution were studied. Specimens were repeatedly subjected to heating trials under simulated solar irradiance and infrared radiation using a halogen neodymium bulb light with a balanced daylight spectrum and a ceramic infrared heat emitter. The volume of exoskeleton and its weight per volume unit were significantly more important for the heating rate at the beginning of the heating process than for the asymptotic maximum temperature reached at the end of the trials: larger beetles with relatively thicker exoskeletons heated more slowly. The source of radiation greatly influences the asymptotic temperature reached, but has a negligible effect in determining the rate of heat gain by beetles: they reached higher temperatures under artificial sunlight than under infrared radiation. Interspecific differences were negligible in the heating rate but had a large magnitude effect on the asymptotic temperature, only detectable under simulated sun irradiance. The fact that sun irradiance is differentially absorbed dorsally and transformed into heat among species opens the possibility that differences in dorsal exoskeleton would facilitate the heat gain under restrictive environmental temperatures below the preferred ones. The findings provided by this study support the important role played by the exoskeleton in the heating process of beetles, a cuticle able to act passively in the thermal control of body temperature without implying energetic costs and metabolic changes. PMID:28533987

  6. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae).

    PubMed

    Amore, Valentina; Hernández, Malva I M; Carrascal, Luis M; Lobo, Jorge M

    2017-01-01

    The insect exoskeleton is a multifunctional coat with a continuum of mechanical and structural properties constituting the barrier between electromagnetic waves and the internal body parts. This paper examines the ability of beetle exoskeleton to regulate internal body temperature considering its thermal permeability or isolation to simulated solar irradiance and infrared radiation. Seven Neotropical species of dung beetles (Coleoptera, Scarabaeinae) differing in colour, surface sculptures, size, sexual dimorphism, period of activity, guild category and altitudinal distribution were studied. Specimens were repeatedly subjected to heating trials under simulated solar irradiance and infrared radiation using a halogen neodymium bulb light with a balanced daylight spectrum and a ceramic infrared heat emitter. The volume of exoskeleton and its weight per volume unit were significantly more important for the heating rate at the beginning of the heating process than for the asymptotic maximum temperature reached at the end of the trials: larger beetles with relatively thicker exoskeletons heated more slowly. The source of radiation greatly influences the asymptotic temperature reached, but has a negligible effect in determining the rate of heat gain by beetles: they reached higher temperatures under artificial sunlight than under infrared radiation. Interspecific differences were negligible in the heating rate but had a large magnitude effect on the asymptotic temperature, only detectable under simulated sun irradiance. The fact that sun irradiance is differentially absorbed dorsally and transformed into heat among species opens the possibility that differences in dorsal exoskeleton would facilitate the heat gain under restrictive environmental temperatures below the preferred ones. The findings provided by this study support the important role played by the exoskeleton in the heating process of beetles, a cuticle able to act passively in the thermal control of body temperature without implying energetic costs and metabolic changes.

  7. Atomistic simulation of shocks in single crystal and polycrystalline Ta

    NASA Astrophysics Data System (ADS)

    Bringa, E. M.; Higginbotham, A.; Park, N.; Tang, Y.; Suggit, M.; Mogni, G.; Ruestes, C. J.; Hawreliak, J.; Erhart, P.; Meyers, M. A.; Wark, J. S.

    2011-06-01

    Non-equilibrium molecular dynamics (MD) simulations of shocks in Ta single crystals and polycrystals were carried out using up to 360 million atoms. Several EAM and FS type potentials were tested up to 150 GPa, with varying success reproducing the Hugoniot and the behavior of elastic constants under pressure. Phonon modes were studied to exclude possible plasticity nucleation by soft-phonon modes, as observed in MD simulations of Cu crystals. The effect of loading rise time in the resulting microstructure was studied for ramps up to 0.2 ns long. Dislocation activity was not observed in single crystals, unless there were defects acting as dislocation sources above a certain pressure. E.M.B. was funded by CONICET, Agencia Nacional de Ciencia y Tecnología (PICT2008-1325), and a Royal Society International Joint Project award.

  8. Comparing volume of fluid and level set methods for evaporating liquid-gas flows

    NASA Astrophysics Data System (ADS)

    Palmore, John; Desjardins, Olivier

    2016-11-01

    This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.

  9. NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sovinec, C. R.; Gianakon, T. A.; Held, E. D.; Kruger, S. E.; Schnack, D. D.

    2003-05-01

    Nonlinear numerical studies of macroscopic modes in a variety of magnetic fusion experiments are made possible by the flexible high-order accurate spatial representation and semi-implicit time advance in the NIMROD simulation code [A. H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)]. Simulation of a resistive magnetohydrodynamics mode in a shaped toroidal tokamak equilibrium demonstrates computation with disparate time scales, simulations of discharge 87009 in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] confirm an analytic scaling for the temporal evolution of an ideal mode subject to plasma-β increasing beyond marginality, and a spherical torus simulation demonstrates nonlinear free-boundary capabilities. A comparison of numerical results on magnetic relaxation finds the n=1 mode and flux amplification in spheromaks to be very closely related to the m=1 dynamo modes and magnetic reversal in reversed-field pinch configurations. Advances in local and nonlocal closure relations developed for modeling kinetic effects in fluid simulation are also described.

  10. AVCS Simulator Test Plan and Design Guide

    NASA Technical Reports Server (NTRS)

    Shelden, Stephen

    2001-01-01

    Internal document for communication of AVCS direction and documentation of simulator functionality. Discusses methods for AVCS simulation evaluation of pilot functions, implementation strategy of varying functional representation of pilot tasks (by instantiations of a base AVCS to reasonably approximate the interface of various vehicles -- e.g. Altair, GlobalHawk, etc.).

  11. Using "Game of Thrones" to Teach International Relations

    ERIC Educational Resources Information Center

    Young, Laura D.; Carranza Ko, Ñusta; Perrin, Michael

    2018-01-01

    Despite the known benefits of long-term, game-based simulations they remain underutilized in Political Science classrooms. Simulations used are typically designed to reinforce a concept and are short-lived, lasting one or two class sessions; rarely are entire courses designed around a single simulation. Creating real-world conditions in which…

  12. Simulation/Gaming in the EAP Writing Class: Benefits and Drawbacks.

    ERIC Educational Resources Information Center

    Salies, Tania Gastao

    2002-01-01

    Describes an integrated use of simulation/gaming in an English for Academic Purposes (EAP) class, analyzes benefits and drawbacks, and suggest how the technique could apply to other specific contexts. Explains how international students ran a simulation on gun control; discusses the debriefing process; and considers motivation, metacognitive…

  13. Confronting Global Issues: A Multipurpose IR Simulation

    ERIC Educational Resources Information Center

    Shellman, Stephen M.; Turan, Kursad

    2006-01-01

    This article describes an international relations simulation that focuses on threats of transnational insurgent organizations, the future of the Iraqi regime, and the effect of globalization on foreign policies. It contains both the Simulation Director's Guide and the Participant's Guide. The guides explain the steps taken to run the simulation…

  14. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  15. The K1 internal tide simulated by a 1/10° OGCM

    NASA Astrophysics Data System (ADS)

    Li, Zhuhua; von Storch, Jin-Song; Müller, Malte

    2017-05-01

    This paper quantifies the K1 internal tide simulated by the 1/10° STORMTIDE model, which simultaneously resolves the eddying general circulation and tides. An evident feature of the K1 internal tide is the critical latitude φc at 30°, which in the STORMTIDE model is characterized by variations from a high energy level equatorward of 30° to a low energy level poleward of 30°. This critical latitude separates the internal tide dynamics into bottom-trapped (at latitudes |φ| > |φc|) and freely propagating (at |φ| < |φc|) motions, respectively. Both types of motions are examined. The bottom-trapping process reveals a gradual vertical decrease of wave energy away from the bottom. The vertical scale, over which the wave energy decrease occurs, is smaller in shallow than in deep water regions. For the freely propagating K1 internal tides, the STORMTIDE model is able to simulate the first three low modes, with the wavelengths ranging from 200-400 km, 100-200 km, to 60-120 km. These wavelength distributions reveal not only a zonal asymmetry but also a poleward increase up to φc, in particular in the Pacific. Such distributions indicate the impact of stratification N and the Coriolis frequency f on the wavelengths. The large wavelength gradient near φc is caused by the wavelength increase from finite values at subcritical latitudes to infinity at φc. Compared to the M2 internal tide, the lower K1 tidal frequency leads to a stronger role of f, hence a weaker effect of N, for the K1 internal tide.

  16. Altered response of the anterolateral abdominal muscles to simulated weight-bearing in subjects with low back pain.

    PubMed

    Hides, Julie A; Belavý, Daniel L; Cassar, Lana; Williams, Michelle; Wilson, Stephen J; Richardson, Carolyn A

    2009-03-01

    An important aspect of neuromuscular control at the lumbo-pelvic region is stabilization. Subjects with low back pain (LBP) have been shown to exhibit impairments in motor control of key muscles which contribute to stabilization of the lumbo-pelvic region. However, a test of automatic recruitment that relates to function has been lacking. A previous study used ultrasound imaging to show that healthy subjects automatically recruited the transversus abdominis (TrA) and internal oblique (IO) muscles in response to a simulated weight-bearing task. This task has not been investigated in subjects with LBP. The aim of this study was to compare the automatic recruitment of the abdominal muscles among subjects with and without LBP in response to the simulated weight-bearing task. Twenty subjects with and without LBP were tested. Real-time ultrasound imaging was used to assess changes in thickness of the TrA and internal oblique IO muscles as well as lateral movement ("slide") of the anterior fascial insertion of the TrA muscle. Results showed that subjects with LBP showed significantly less shortening of the TrA muscle (P < 0.0001) and greater increases in thickness of the IO muscle (P = 0.002) with the simulated weight-bearing task. There was no significant difference between groups for changes in TrA muscle thickness (P = 0.055). This study provides evidence of changes in motor control of the abdominal muscles in subjects with LBP. This test may provide a functionally relevant and non-invasive method to investigate the automatic recruitment of the abdominal muscles in people with and without LBP.

  17. Understanding observed and simulated historical temperature trends in California

    NASA Astrophysics Data System (ADS)

    Bonfils, C. J.; Duffy, P. B.; Santer, B. D.; Lobell, D. B.; Wigley, T. M.

    2006-12-01

    In our study, we attempt 1) to improve our understanding of observed historical temperature trends and their underlying causes in the context of regional detection of climate change and 2) to identify possible neglected forcings and errors in the model response to imposed forcings at the origin of inconsistencies between models and observations. From eight different observational datasets, we estimate California-average temperature trends over 1950- 1999 and compare them to trends from a suite of IPCC control simulations of natural internal climate variability. We find that the substantial night-time warming occurring from January to September is inconsistent with model-based estimates of natural internal climate variability, and thus requires one or more external forcing agents to be explained. In contrast, we find that a significant day-time warming occurs only from January to March. Our confidence in these findings is increased because there is no evidence that the models systematically underestimate noise on interannual and decadal timescales. However, we also find that IPCC simulations of the 20th century that include combined anthropogenic and natural forcings are not able to reproduce such a pronounced seasonality of the trends. Our first hypothesis is that the warming of Californian winters over the second half of the twentieth century is associated with changes in large-scale atmospheric circulation that are likely to be human-induced. This circulation change is underestimated in the historical simulations, which may explain why the simulated warming of Californian winters is too weak. We also hypothesize that the lack of a detectable observed increase in summertime maximum temperature arises from a cooling associated with large-scale irrigation. This cooling may have, until now, counteracted the warming induced by increasing greenhouse gases and urbanization effects. Omitting to include this forcing in the simulations can result in overestimating the summertime maximum temperature trends. We conduct an empirical study based on observed climate and irrigation changes to evaluate this assumption.

  18. Development and psychometric testing of a Clinical Reasoning Evaluation Simulation Tool (CREST) for assessing nursing students' abilities to recognize and respond to clinical deterioration.

    PubMed

    Liaw, Sok Ying; Rashasegaran, Ahtherai; Wong, Lai Fun; Deneen, Christopher Charles; Cooper, Simon; Levett-Jones, Tracy; Goh, Hongli Sam; Ignacio, Jeanette

    2018-03-01

    The development of clinical reasoning skills in recognising and responding to clinical deterioration is essential in pre-registration nursing education. Simulation has been increasingly used by educators to develop this skill. To develop and evaluate the psychometric properties of a Clinical Reasoning Evaluation Simulation Tool (CREST) for measuring clinical reasoning skills in recognising and responding to clinical deterioration in a simulated environment. A scale development with psychometric testing and mixed methods study. Nursing students and academic staff were recruited at a university. A three-phase prospective study was conducted. Phase 1 involved the development and content validation of the CREST; Phase 2 included the psychometric testing of the tool with 15 second-year and 15 third-year nursing students who undertook the simulation-based assessment; Phase 3 involved the usability testing of the tool with nine academic staff through a survey questionnaire and focus group discussion. A 10-item CREST was developed based on a model of clinical reasoning. A content validity of 0.93 was obtained from the validation of 15 international experts. The construct validity was supported as the third-year students demonstrated significantly higher (p<0.001) clinical reasoning scores than the second-year students. The concurrent validity was also supported with significant positive correlations between global rating scores and almost all subscale scores, and the total scores. The predictive validity was supported with an existing tool. The internal consistency was high with a Cronbach's alpha of 0.92. A high inter-rater reliability was demonstrated with an intraclass correlation coefficient of 0.88. The usability of the tool was rated positively by the nurse educators but the need to ease the scoring process was highlighted. A valid and reliable tool was developed to measure the effectiveness of simulation in developing clinical reasoning skills for recognising and responding to clinical deterioration. Copyright © 2017. Published by Elsevier Ltd.

  19. The global radioxenon background and its impact on the detection capability of underground nuclear explosions (Invited)

    NASA Astrophysics Data System (ADS)

    Ringbom, A.

    2010-12-01

    A detailed knowledge of both the spatial and isotopic distribution of anthropogenic radioxenon is essential in investigations of the performance of the radioxenon part of the IMS, as well as in the development of techniques to discriminate radioxenon signatures from a nuclear explosion from other sources. Further, the production processes in the facilities causing the radioxenon background has to be understood and be compatible with simulations. In this work, several aspects of the observed atmospheric radioxenon background are investigated, including the global distribution as well as the current understanding of the observed isotopic ratios. Analyzed radioxenon data from the IMS, as well as from other measurement stations, are used to create an up-to-date description of the global radioxenon background, including all four CTBT relevant xenon isotopes (133Xe, 131mXe, 133mXe, and 135Xe). In addition, measured isotopic ratios will be compared to simulations of neutron induced fission of 235U, and the uncertainties will be discussed. Finally, the impact of the radioxenon background on the detection capability of the IMS will be investigated. This work is a continuation of studies [1,2] that was presented at the International Scientific Studies conference held in Vienna in 2009. [1] A. Ringbom, et.al., “Characterization of the global distribution of atmospheric radioxenons”, International Scientific Studies Conference on CTBT Verification, 10-12 June 2009. [2] R. D'Amours and A. Ringbom, “A study on the global detection capability of IMS for all CTBT relevant xenon isotopes“, International Scientific Studies Conference on CTBT Verification, 10-12 June 2009.

  20. The Simulation of Read-time Scalable Coherent Interface

    NASA Technical Reports Server (NTRS)

    Li, Qiang; Grant, Terry; Grover, Radhika S.

    1997-01-01

    Scalable Coherent Interface (SCI, IEEE/ANSI Std 1596-1992) (SCI1, SCI2) is a high performance interconnect for shared memory multiprocessor systems. In this project we investigate an SCI Real Time Protocols (RTSCI1) using Directed Flow Control Symbols. We studied the issues of efficient generation of control symbols, and created a simulation model of the protocol on a ring-based SCI system. This report presents the results of the study. The project has been implemented using SES/Workbench. The details that follow encompass aspects of both SCI and Flow Control Protocols, as well as the effect of realistic client/server processing delay. The report is organized as follows. Section 2 provides a description of the simulation model. Section 3 describes the protocol implementation details. The next three sections of the report elaborate on the workload, results and conclusions. Appended to the report is a description of the tool, SES/Workbench, used in our simulation, and internal details of our implementation of the protocol.

  1. The initial safe range of motion of the ankle joint after three methods of internal fixation of simulated fractures of the medial malleolus.

    PubMed

    Shimamura, Yoshio; Kaneko, Kazuo; Kume, Kazuhiko; Maeda, Mutsuhiro; Iwase, Hideaki

    2006-07-01

    Previous studies have demonstrated the safe passive range of ankle motion for inter-bone stiffness after internal fixation under load but there is a lack of information about the safe range of ankle motion for early rehabilitation in the absence of loading. The present study was designed to assess the effect of ankle movement on inter-bone displacement characteristics of medial malleolus fractures following three types of internal fixation to determine the safe range of motion. Five lower legs obtained during autopsy were used to assess three types of internal fixation (two with Kirschner-wires alone; two with Kirschner-wires plus tension band wiring; and, one with an AO/ASIF malleolar screw alone). Following a simulated fracture by sawing through the medial malleolus the displacement between the fractured bone ends was measured during a passive range of movement with continuous monitoring using omega (Omega) shaped transducers and a biaxial flexible goniometer. Statistical analysis was performed with repeated measures analysis of variance. Inter-bone displacement was not proportional to the magnitude of movement throughout the range of ankle motion as, when separation exceeded 25 microm, there was increasingly wide separation as plantar-flexion or dorsal-flexion was increased. There was no statistical significant difference between the small amount of inter-bone displacement observed with three types of fixation within the safe range of dorsal-flexion and plantar-flexion for early rehabilitation. However the inter-bone separation when fixation utilized two Kirschner-wires alone tended to be greater than when using the other two types of fixation during dorsal-flexion and eversion. The present study revealed a reproducible range of ankle motion for early rehabilitation which was estimated to be within the range of 20 degrees of dorsal-flexion and 10 degrees of plantar-flexion without eversion. Also, internal fixation with two Kirschner-wires alone does not seem to provide stability achieved by the other two forms of fixation.

  2. Defining the Simulation Technician Role: Results of a Survey-Based Study.

    PubMed

    Bailey, Rachel; Taylor, Regina G; FitzGerald, Michael R; Kerrey, Benjamin T; LeMaster, Thomas; Geis, Gary L

    2015-10-01

    In health care simulation, simulation technicians perform multiple tasks to support various educational offerings. Technician responsibilities and the tasks that accompany them seem to vary between centers. The objectives were to identify the range and frequency of tasks that technicians perform and to determine if there is a correspondence between what technicians do and what they feel their responsibilities should be. We hypothesized that there is a core set of responsibilities and tasks for the technician position regardless of background, experience, and type of simulation center. We conducted a prospective, survey-based study of individuals currently functioning in a simulation technician role in a simulation center. This survey was designed internally and piloted within 3 academic simulation centers. Potential respondents were identified through a national mailing list, and the survey was distributed electronically during a 3-week period. A survey request was sent to 280 potential participants, 136 (49%) responded, and 73 met inclusion criteria. Five core tasks were identified as follows: equipment setup and breakdown, programming scenarios into software, operation of software during simulation, audiovisual support for courses, and on-site simulator maintenance. Independent of background before they were hired, technicians felt unprepared for their role once taking the position. Formal training was identified as a need; however, the majority of technicians felt experience over time was the main contributor toward developing knowledge and skills within their role. This study represents a first step in defining the technician role within simulation-based education and supports the need for the development of a formal job description to allow recruitment, development, and certification.

  3. Performance of technology-driven simulators for medical students--a systematic review.

    PubMed

    Michael, Michael; Abboudi, Hamid; Ker, Jean; Shamim Khan, Mohammed; Dasgupta, Prokar; Ahmed, Kamran

    2014-12-01

    Simulation-based education has evolved as a key training tool in high-risk industries such as aviation and the military. In parallel with these industries, the benefits of incorporating specialty-oriented simulation training within medical schools are vast. Adoption of simulators into medical school education programs has shown great promise and has the potential to revolutionize modern undergraduate education. An English literature search was carried out using MEDLINE, EMBASE, and psychINFO databases to identify all randomized controlled studies pertaining to "technology-driven" simulators used in undergraduate medical education. A validity framework incorporating the "framework for technology enhanced learning" report by the Department of Health, United Kingdom, was used to evaluate the capabilities of each technology-driven simulator. Information was collected regarding the simulator type, characteristics, and brand name. Where possible, we extracted information from the studies on the simulators' performance with respect to validity status, reliability, feasibility, education impact, acceptability, and cost effectiveness. We identified 19 studies, analyzing simulators for medical students across a variety of procedure-based specialities including; cardiovascular (n = 2), endoscopy (n = 3), laparoscopic surgery (n = 8), vascular access (n = 2), ophthalmology (n = 1), obstetrics and gynecology (n = 1), anesthesia (n = 1), and pediatrics (n = 1). Incorporation of simulators has so far been on an institutional level; no national or international trends have yet emerged. Simulators are capable of providing a highly educational and realistic experience for the medical students within a variety of speciality-oriented teaching sessions. Further research is needed to establish how best to incorporate simulators into a more primary stage of medical education; preclinical and clinical undergraduate medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media.

    PubMed

    Zhou, L; Qu, Z G; Ding, T; Miao, J Y

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  5. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  6. Experimental simulation of internal short circuit in Li-ion and Li-ion-Polymer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Wei; Wang, Hsin; Maleki, Hossein

    A multi-parameter controlled pinch test was developed to study the occurrence of internal short circuits in Li-ion and Li-ion-polymer cells. By tuning the control parameters (i.e., cell voltage as well as pinching area, load, and speed), the pinch test can reproducibly create ~1 to 2 mm wide internal short between a cell jelly-roll s inner layer electrodes. This recreates conditions similar to those that may occur during service. Furthermore, the pinch test is used to determine thermal stability of two Li-ion-polymer cells of different designs built by the same manufacturer. The pinch test method can be used to help distinguishmore » cells with design features or characteristics that lower risk of potential thermal events created by internal short circuits.« less

  7. Analysis of the internal temperature of the cells in a battery pack during SOC balancing

    NASA Astrophysics Data System (ADS)

    Mizanur, R.; Rashid, M. M.; Rahman, A.; Zahirul Alam, A. H. M.; Ihsan, S.; Mollik, M. S.

    2017-03-01

    Lithium-ion batteries are more suitable for the application of electric vehicle due to high energy and power density compared to other rechargeable batteries. However, the battery pack temperature has a great impact on the overall performance, cycle life, normal charging-discharging behaviour and even safety. During rapid charge transferring process, the internal temperature may exceed its allowable limit (460C). In this paper, an analysis of internal temperature during charge balancing and discharging conditions is presented. Specific interest is paid to the effects of temperature on the different rate of ambient temperature and discharging current. Matlab/Simulink Li-ion battery model and quasi-resonant converter base balancing system are used to study the temperature effect. Rising internal temperature depends on the rate of balancing current and ambient temperature found in the simulation results.

  8. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0)

    NASA Astrophysics Data System (ADS)

    Zhu, S.; Sartelet, K. N.; Seigneur, C.

    2015-06-01

    The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.

  9. Evaluating Motivation for the Use of an Electronic Health Record Simulation Game.

    PubMed

    McLeod, Alexander; Hewitt, Barbara; Gibbs, David; Kristof, Caitlin

    2017-01-01

    Experiential learning via simulation offers a variety of benefits including reduced risks, repetitive exposure, and mastery of complex processes. How to motivate people to engage in and enjoy playing games is an important concept in the creation of serious games focused on learning new skills. This study sought to determine the motivators that increase users' pleasurable experience when playing an electronic health record simulation game. To examine how intrinsic and extrinsic motivation affected both engagement and enjoyment, we surveyed students of health professions at one university. Results indicate that while both forms of motivation are significant in increasing engagement and enjoyment, extrinsic motivation such as badges, points, and scoreboards were much more important than internal motivations for our participants. These findings have implications for the development of an electronic health record simulation game.

  10. Evaluating Motivation for the Use of an Electronic Health Record Simulation Game

    PubMed Central

    McLeod, Alexander; Hewitt, Barbara; Gibbs, David; Kristof, Caitlin

    2017-01-01

    Experiential learning via simulation offers a variety of benefits including reduced risks, repetitive exposure, and mastery of complex processes. How to motivate people to engage in and enjoy playing games is an important concept in the creation of serious games focused on learning new skills. This study sought to determine the motivators that increase users’ pleasurable experience when playing an electronic health record simulation game. To examine how intrinsic and extrinsic motivation affected both engagement and enjoyment, we surveyed students of health professions at one university. Results indicate that while both forms of motivation are significant in increasing engagement and enjoyment, extrinsic motivation such as badges, points, and scoreboards were much more important than internal motivations for our participants. These findings have implications for the development of an electronic health record simulation game. PMID:28566987

  11. Airborne simulation of Shuttle/Spacelab management and operation

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Neel, C. B.

    1976-01-01

    The ASSESS (Airborne Science/Spacelab Experiments System Simulation) program is discussed. A simulated Spacelab operation was carried out aboard the CV-990 airborne laboratory at Ames Research Center. A scientific payload was selected to conduct studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England and the U.S. Two experiment operators (EOs) from the U.S. and two from Europe were trained to function as proxies for the principal investigators in operating, maintaining, and repairing the scientific instruments. The simulated mission, in which the EOs and a Mission Manager were confined to the aircraft and living quarters for a 1-week period while making scientific observations during nightly flights, provided experience in the overall management of a complex international payload, experiment preparation, testing, and integration, the training and selection of proxy operators, and data handling.

  12. An evaluation of edge effects in nutritional accessibility and availability measures: a simulation study

    PubMed Central

    2010-01-01

    Background This paper addresses the statistical use of accessibility and availability indices and the effect of study boundaries on these measures. The measures are evaluated via an extensive simulation based on cluster models for local outlet density. We define outlet to mean either food retail store (convenience store, supermarket, gas station) or restaurant (limited service or full service restaurants). We designed a simulation whereby a cluster outlet model is assumed in a large study window and an internal subset of that window is constructed. We performed simulations on various criteria including one scenario representing an urban area with 2000 outlets as well as a non-urban area simulated with only 300 outlets. A comparison is made between estimates obtained with the full study area and estimates using only the subset area. This allows the study of the effect of edge censoring on accessibility measures. Results The results suggest that considerable bias is found at the edges of study regions in particular for accessibility measures. Edge effects are smaller for availability measures (when not smoothed) and also for short range accessibility Conclusions It is recommended that any study utilizing these measures should correct for edge effects. The use of edge correction via guard areas is recommended and the avoidance of large range distance-based accessibility measures is also proposed. PMID:20663199

  13. The effects of solar radiation on thermal comfort.

    PubMed

    Hodder, Simon G; Parsons, Ken

    2007-01-01

    The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm(-2). In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm(-2) on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm(-2) of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0+/-0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (t(sk)) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm(-2). The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.

  14. The CESM Large Ensemble Project: Inspiring New Ideas and Understanding

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; Deser, C.

    2016-12-01

    While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920-2100) 40+ times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 2000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Examples of scientists and stakeholders that are using the CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change will be highlighted the presentation.

  15. Is There Bias against Simulation in Microsurgery Training?

    PubMed

    Theman, Todd A; Labow, Brian I

    2016-09-01

    Background While other surgical specialties have embraced virtual reality simulation for training and recertification, microsurgery has lagged. This study aims to assess the opinions of microsurgeons on the role of simulation in microsurgery assessment and training. Methods We surveyed faculty members of the American Society of Reconstructive Microsurgery to ascertain opinions on their use of simulation in training and opinions about the utility of simulation for skills acquisition, teaching, and skills assessment. The 21-question survey was disseminated online to 675 members. Results Eighty-nine members completed the survey for a 13.2% response rate. Few microsurgeons have experience with high-fidelity simulation, and opinions on its utility are internally inconsistent. Although 84% of respondents could not identify a reason why simulation would not be useful, only 24% believed simulation is a useful measure of clinical performance. Nearly three-fourths of respondents were skeptical that simulation would improve their skills. Ninety-four percent had no experience with simulator-based assessment. Conclusion Simulation has been shown to improve skills acquisition in microsurgery, but our survey suggests that unfamiliarity may foster bias against the technology. Failure to incorporate simulation may adversely affect training and may put surgeons at a disadvantage should these technologies be adopted for recertification by regulatory agencies. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  17. The process of adopting and incorporating simulation into undergraduate nursing curricula: a grounded theory study.

    PubMed

    Taplay, Karyn; Jack, Susan M; Baxter, Pamela; Eva, Kevin; Martin, Lynn

    2015-01-01

    The aim of this study is to explain the process of adopting and incorporating simulation as a teaching strategy in undergraduate nursing programs, define uptake, and discuss potential outcomes. In many countries, simulation is increasingly adopted as a common teaching strategy. However, there is a dearth of knowledge related to the process of adoption and incorporation. We used an interpretive, constructivist approach to grounded theory to guide this research study. We conducted the study was in Ontario, Canada, during 2011-2012. Using multiple data sources, we informed the development of this theory including in-depth interviews (n = 43) and a review of key organizational documents, such as mission and vision statements (n = 67) from multiple nursing programs (n = 13). The adoption and uptake of mid- to high-fidelity simulation equipment is a multistep iterative process involving various organizational levels within the institution that entails a seven-phase process: (a) securing resources, (b) nursing leaders working in tandem, (c) getting it out of the box, (d) learning about simulation and its potential for teaching, (e) finding a fit, (f) trialing the equipment, and (g) integrating into the curriculum. These findings could assist nursing programs in Canada and internationally that wish to adopt or further incorporate simulation into their curricula and highlight potential organizational and program level outcomes. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  18. [Biomechanical study of internal midface distraction after different types of maxillary osteotomy in patients with cleft lip and palate].

    PubMed

    Hou, Min; Shi, Guang-Yu; Pu, Li-Chen; Song, Da-Li; Zhang, Xi-Zhong; Liu, Chun-Ming

    2009-09-01

    To investigate the biomechanical changes of internal midface distraction after different types of maxillary osteotomy in patients with cleft lip and palate (CLP). 3-D finite element (FEM) analysis was used. 3-D models of Le Fort I, II, III osteotomy and soft tissue were established. Based on the new pattern of internal midface distractor, the distraction of maxillary complex was simulated to advance 10 mm anteriorly. The mechanical change was studied. The maxillary complex in CLP were advanced after distraction. Constriction of alveolar crest and palate occurred in Le Fort I osteotomy, but not in Le Fort II and III osteotomy. The maxillary complex was moved anteriorly en bloc after Le Fort III osteotomy, but some degree of rotation of maxillary complex was observed during the distraction after Le Fort I and II osteotomy. In vertical direction, the maxillary complex had more counterclockwise rotation after Le Fort II osteotomy. 3-D FEM analysis can be used for the study of internal distraction. It can reflect the maxillary movement and provide the theory basis for preoperative design.

  19. Conducting multicenter research in healthcare simulation: Lessons learned from the INSPIRE network.

    PubMed

    Cheng, Adam; Kessler, David; Mackinnon, Ralph; Chang, Todd P; Nadkarni, Vinay M; Hunt, Elizabeth A; Duval-Arnould, Jordan; Lin, Yiqun; Pusic, Martin; Auerbach, Marc

    2017-01-01

    Simulation-based research has grown substantially over the past two decades; however, relatively few published simulation studies are multicenter in nature. Multicenter research confers many distinct advantages over single-center studies, including larger sample sizes for more generalizable findings, sharing resources amongst collaborative sites, and promoting networking. Well-executed multicenter studies are more likely to improve provider performance and/or have a positive impact on patient outcomes. In this manuscript, we offer a step-by-step guide to conducting multicenter, simulation-based research based upon our collective experience with the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE). Like multicenter clinical research, simulation-based multicenter research can be divided into four distinct phases. Each phase has specific differences when applied to simulation research: (1) Planning phase , to define the research question, systematically review the literature, identify outcome measures, and conduct pilot studies to ensure feasibility and estimate power; (2) Project Development phase , when the primary investigator identifies collaborators, develops the protocol and research operations manual, prepares grant applications, obtains ethical approval and executes subsite contracts, registers the study in a clinical trial registry, forms a manuscript oversight committee, and conducts feasibility testing and data validation at each site; (3) Study Execution phase , involving recruitment and enrollment of subjects, clear communication and decision-making, quality assurance measures and data abstraction, validation, and analysis; and (4) Dissemination phase , where the research team shares results via conference presentations, publications, traditional media, social media, and implements strategies for translating results to practice. With this manuscript, we provide a guide to conducting quantitative multicenter research with a focus on simulation-specific issues.

  20. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to...the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field

Top