Sample records for internet packet dynamics

  1. Internet traffic load balancing using dynamic hashing with flow volume

    NASA Astrophysics Data System (ADS)

    Jo, Ju-Yeon; Kim, Yoohwan; Chao, H. Jonathan; Merat, Francis L.

    2002-07-01

    Sending IP packets over multiple parallel links is in extensive use in today's Internet and its use is growing due to its scalability, reliability and cost-effectiveness. To maximize the efficiency of parallel links, load balancing is necessary among the links, but it may cause the problem of packet reordering. Since packet reordering impairs TCP performance, it is important to reduce the amount of reordering. Hashing offers a simple solution to keep the packet order by sending a flow over a unique link, but static hashing does not guarantee an even distribution of the traffic amount among the links, which could lead to packet loss under heavy load. Dynamic hashing offers some degree of load balancing but suffers from load fluctuations and excessive packet reordering. To overcome these shortcomings, we have enhanced the dynamic hashing algorithm to utilize the flow volume information in order to reassign only the appropriate flows. This new method, called dynamic hashing with flow volume (DHFV), eliminates unnecessary flow reassignments of small flows and achieves load balancing very quickly without load fluctuation by accurately predicting the amount of transferred load between the links. In this paper we provide the general framework of DHFV and address the challenges in implementing DHFV. We then introduce two algorithms of DHFV with different flow selection strategies and show their performances through simulation.

  2. 106-17 Telemetry Standards Chapter 7 Packet Telemetry Downlink

    DTIC Science & Technology

    2017-07-31

    Acronyms IP Internet Protocol IPv4 Internet Protocol, Version 4 IPv6 Internet Protocol, Version 6 LLP low-latency PTDP MAC media access control...o 4’b0101: PT Internet Protocol (IP) Packet o 4’b0110: PT Chapter 24 TmNSMessage Packet o 4’b0111 – 4’b1111: Reserved • Fragment (bits 17 – 16...packet is defined as a free -running 12-bit counter. The PT test counter packet shall consist of one 12-bit word and shall be encoded as one 24-bit

  3. Inferring the background traffic arrival process in the Internet.

    PubMed

    Hága, Péter; Csabai, István; Vattay, Gábor

    2009-12-01

    Phase transition has been found in many complex interactivity systems. Complex networks are not exception either but there are quite few real systems where we can directly understand the emergence of this nontrivial behavior from the microscopic view. In this paper, we present the emergence of the phase transition between the congested and uncongested phases of a network link. We demonstrate a method to infer the background traffic arrival process, which is one of the key state parameters of the Internet traffic. The traffic arrival process in the Internet has been investigated in several studies, since the recognition of its self-similar nature. The statistical properties of the traffic arrival process are very important since they are fundamental in modeling the dynamical behavior. Here, we demonstrate how the widely used packet train technique can be used to determine the main properties of the traffic arrival process. We show that the packet train dispersion is sensitive to the congestion on the network path. We introduce the packet train stretch as an order parameter to describe the phase transition between the congested and uncongested phases of the bottleneck link in the path. We find that the distribution of the background traffic arrival process can be determined from the average packet train dispersion at the critical point of the system.

  4. Securing internet by eliminating DDOS attacks

    NASA Astrophysics Data System (ADS)

    Niranchana, R.; Gayathri Devi, N.; Santhi, H.; Gayathri, P.

    2017-11-01

    The major threat caused to the authorised usage of Internet is Distributed Denial of Service attack. The mechanisms used to prevent the DDoS attacks are said to overcome the attack’s ability in spoofing the IP packets source addresses. By utilising Internet Protocol spoofing, the attackers cause a consequential load over the networks destination for policing attack packets. To overcome the IP Spoofing level on the Internet, We propose an Inter domain Packet Filter (IPF) architecture. The proposed scheme is not based on global routing information. The packets with reliable source addresses are not rejected, the IPF frame work works in such a manner. The spoofing capability of attackers is confined by IPF, and also the filter identifies the source of an attack packet by minimal number of candidate network.

  5. Encryption for Remote Control via Internet or Intranet

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis

    2005-01-01

    A data-communication protocol has been devised to enable secure, reliable remote control of processes and equipment via a collision-based network, while using minimal bandwidth and computation. The network could be the Internet or an intranet. Control is made secure by use of both a password and a dynamic key, which is sent transparently to a remote user by the controlled computer (that is, the computer, located at the site of the equipment or process to be controlled, that exerts direct control over the process). The protocol functions in the presence of network latency, overcomes errors caused by missed dynamic keys, and defeats attempts by unauthorized remote users to gain control. The protocol is not suitable for real-time control, but is well suited for applications in which control latencies up to about 0.5 second are acceptable. The encryption scheme involves the use of both a dynamic and a private key, without any additional overhead that would degrade performance. The dynamic key is embedded in the equipment- or process-monitor data packets sent out by the controlled computer: in other words, the dynamic key is a subset of the data in each such data packet. The controlled computer maintains a history of the last 3 to 5 data packets for use in decrypting incoming control commands. In addition, the controlled computer records a private key (password) that is given to the remote computer. The encrypted incoming command is permuted by both the dynamic and private key. A person who records the command data in a given packet for hostile purposes cannot use that packet after the public key expires (typically within 3 seconds). Even a person in possession of an unauthorized copy of the command/remote-display software cannot use that software in the absence of the password. The use of a dynamic key embedded in the outgoing data makes the central-processing unit overhead very small. The use of a National Instruments DataSocket(TradeMark) (or equivalent) protocol or the User Datagram Protocol makes it possible to obtain reasonably short response times: Typical response times in event-driven control, using packets sized .300 bytes, are <0.2 second for commands issued from locations anywhere on Earth. The protocol requires that control commands represent absolute values of controlled parameters (e.g., a specified temperature), as distinguished from changes in values of controlled parameters (e.g., a specified increment of temperature). Each command is issued three or more times to ensure delivery in crowded networks. The use of absolute-value commands prevents additional (redundant) commands from causing trouble. Because a remote controlling computer receives "talkback" in the form of data packets from the controlled computer, typically within a time interval < or =1 s, the controlling computer can re-issue a command if network failure has occurred. The controlled computer, the process or equipment that it controls, and any human operator(s) at the site of the controlled equipment or process should be equipped with safety measures to prevent damage to equipment or injury to humans. These features could be a combination of software, external hardware, and intervention by the human operator(s). The protocol is not fail-safe, but by adopting these safety measures as part of the protocol, one makes the protocol a robust means of controlling remote processes and equipment by use of typical office computers via intranets and/or the Internet.

  6. Using the Internet To Create Primary Source Teaching Packets.

    ERIC Educational Resources Information Center

    VanFossen, Phillip J.; Shiveley, James M.

    2000-01-01

    Describes strategies and guidelines for creating age- and content-appropriate primary source documents using the Internet. Discusses the value of using topic-specific primary source teaching packets, or jackdaws. Provides three Internet generated jackdaws: New Deal/FDR, Home Front during World War II, and the Gilded Age. Addresses fair use issues.…

  7. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sendermore » and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.« less

  8. Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing

    PubMed Central

    Havlin, Shlomo; Krioukov, Dmitri

    2015-01-01

    Data transfer is one of the main functions of the Internet. The Internet consists of a large number of interconnected subnetworks or domains, known as Autonomous Systems (ASes). Due to privacy and other reasons the information about what route to use to reach devices within other ASes is not readily available to any given AS. The Border Gateway Protocol (BGP) is responsible for discovering and distributing this reachability information to all ASes. Since the topology of the Internet is highly dynamic, all ASes constantly exchange and update this reachability information in small chunks, known as routing control packets or BGP updates. In the view of the quick growth of the Internet there are significant concerns with the scalability of the BGP updates and the efficiency of the BGP routing in general. Motivated by these issues we conduct a systematic time series analysis of BGP update rates. We find that BGP update time series are extremely volatile, exhibit long-term correlations and memory effects, similar to seismic time series, or temperature and stock market price fluctuations. The presented statistical characterization of BGP update dynamics could serve as a basis for validation of existing and developing better models of Internet interdomain routing. PMID:26529312

  9. Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing.

    PubMed

    Kitsak, Maksim; Elmokashfi, Ahmed; Havlin, Shlomo; Krioukov, Dmitri

    2015-01-01

    Data transfer is one of the main functions of the Internet. The Internet consists of a large number of interconnected subnetworks or domains, known as Autonomous Systems (ASes). Due to privacy and other reasons the information about what route to use to reach devices within other ASes is not readily available to any given AS. The Border Gateway Protocol (BGP) is responsible for discovering and distributing this reachability information to all ASes. Since the topology of the Internet is highly dynamic, all ASes constantly exchange and update this reachability information in small chunks, known as routing control packets or BGP updates. In the view of the quick growth of the Internet there are significant concerns with the scalability of the BGP updates and the efficiency of the BGP routing in general. Motivated by these issues we conduct a systematic time series analysis of BGP update rates. We find that BGP update time series are extremely volatile, exhibit long-term correlations and memory effects, similar to seismic time series, or temperature and stock market price fluctuations. The presented statistical characterization of BGP update dynamics could serve as a basis for validation of existing and developing better models of Internet interdomain routing.

  10. Packet spacing : an enabling mechanism for delivering multimedia content in computational grids /

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, A. C.; Feng, W. C.; Belford, Geneva G.

    2001-01-01

    Streaming multimedia with UDP has become increasingly popular over distributed systems like the Internet. Scientific applications that stream multimedia include remote computational steering of visualization data and video-on-demand teleconferencing over the Access Grid. However, UDP does not possess a self-regulating, congestion-control mechanism; and most best-efort traflc is served by congestion-controlled TCF! Consequently, UDP steals bandwidth from TCP such that TCP$ows starve for network resources. With the volume of Internet traffic continuing to increase, the perpetuation of UDP-based streaming will cause the Internet to collapse as it did in the mid-1980's due to the use of non-congestion-controlled TCP. To address thismore » problem, we introduce the counterintuitive notion of inter-packet spacing with control feedback to enable UDP-based applications to perform well in the next-generation Internet and computational grids. When compared with traditional UDP-based streaming, we illustrate that our approach can reduce packet loss over SO% without adversely afecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, streaming, TCI: UDlq rate-adjusting congestion control, computational grid, Access Grid.« less

  11. Performance optimization of internet firewalls

    NASA Astrophysics Data System (ADS)

    Chiueh, Tzi-cker; Ballman, Allen

    1997-01-01

    Internet firewalls control the data traffic in and out of an enterprise network by checking network packets against a set of rules that embodies an organization's security policy. Because rule checking is computationally more expensive than routing-table look-up, it could become a potential bottleneck for scaling up the performance of IP routers, which typically implement firewall functions in software. in this paper, we analyzed the performance problems associated with firewalls, particularly packet filters, propose a good connection cache to amortize the costly security check over the packets in a connection, and report the preliminary performance results of a trace-driven simulation that show the average packet check time can be reduced by a factor of 2.5 at the least.

  12. Speech transport for packet telephony and voice over IP

    NASA Astrophysics Data System (ADS)

    Baker, Maurice R.

    1999-11-01

    Recent advances in packet switching, internetworking, and digital signal processing technologies have converged to allow realizable practical implementations of packet telephony systems. This paper provides a tutorial on transmission engineering for packet telephony covering the topics of speech coding/decoding, speech packetization, packet data network transport, and impairments which may negatively impact end-to-end system quality. Particular emphasis is placed upon Voice over Internet Protocol given the current popularity and ubiquity of IP transport.

  13. Packet flow monitoring tool and method

    DOEpatents

    Thiede, David R [Richland, WA

    2009-07-14

    A system and method for converting packet streams into session summaries. Session summaries are a group of packets each having a common source and destination internet protocol (IP) address, and, if present in the packets, common ports. The system first captures packets from a transport layer of a network of computer systems, then decodes the packets captured to determine the destination IP address and the source IP address. The system then identifies packets having common destination IP addresses and source IP addresses, then writes the decoded packets to an allocated memory structure as session summaries in a queue.

  14. Energy Efficient, Cross-Layer Enabled, Dynamic Aggregation Networks for Next Generation Internet

    NASA Astrophysics Data System (ADS)

    Wang, Michael S.

    Today, the Internet traffic is growing at a near exponential rate, driven predominately by data center-based applications and Internet-of-Things services. This fast-paced growth in Internet traffic calls into question the ability of the existing optical network infrastructure to support this continued growth. The overall optical networking equipment efficiency has not been able to keep up with the traffic growth, creating a energy gap that makes energy and cost expenditures scale linearly with the traffic growth. The implication of this energy gap is that it is infeasible to continue using existing networking equipment to meet the growing bandwidth demand. A redesign of the optical networking platform is needed. The focus of this dissertation is on the design and implementation of energy efficient, cross-layer enabled, dynamic optical networking platforms, which is a promising approach to address the exponentially growing Internet bandwidth demand. Chapter 1 explains the motivation for this work by detailing the huge Internet traffic growth and the unsustainable energy growth of today's networking equipment. Chapter 2 describes the challenges and objectives of enabling agile, dynamic optical networking platforms and the vision of the Center for Integrated Access Networks (CIAN) to realize these objectives; the research objectives of this dissertation and the large body of related work in this field is also summarized. Chapter 3 details the design and implementation of dynamic networking platforms that support wavelength switching granularity. The main contribution of this work involves the experimental validation of deep cross-layer communication across the optical performance monitoring (OPM), data, and control planes. The first experiment shows QoS-aware video streaming over a metro-scale test-bed through optical power monitoring of the transmission wavelength and cross-layer feedback control of the power level. The second experiment extends the performance monitoring capabilities to include real-time monitoring of OSNR and polarization mode dispersion (PMD) to enable dynamic wavelength switching and selective restoration. Chapter 4 explains the author?s contributions in designing dynamic networking at the sub-wavelength switching granularity, which can provide greater network efficiency due to its finer granularity. To support dynamic switching, regeneration, adding/dropping, and control decisions on each individual packet, the cross-layer enabled node architecture is enhanced with a FPGA controller that brings much more precise timing and control to the switching, OPM, and control planes. Furthermore, QoS-aware packet protection and dynamic switching, dropping, and regeneration functionalities were experimentally demonstrated in a multi-node network. Chapter 5 describes a technique to perform optical grooming, a process of optically combining multiple incoming data streams into a single data stream, which can simultaneously achieve greater bandwidth utilization and increased spectral efficiency. In addition, an experimental demonstration highlighting a fully functioning multi-node, agile optical networking platform is detailed. Finally, a summary and discussion of future work is provided in Chapter 6. The future of the Internet is very exciting, filled with not-yet-invented applications and services driven by cloud computing and Internet-of-Things. The author is cautiously optimistic that agile, dynamically reconfigurable optical networking is the solution to realizing this future.

  15. Measurement and Statistics of Application Business in Complex Internet

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Yang; Li, Yipeng; Wu, Shuhang; Song, Shiji; Ren, Yong

    Owing to independent topologies and autonomic routing mechanism, the logical networks formed by Internet application business behavior cause the significant influence on the physical networks. In this paper, the backbone traffic of TUNET (Tsinghua University Networks) is measured, further more, the two most important application business: HTTP and P2P are analyzed at IP-packet level. It is shown that uplink HTTP and P2P packets behavior presents spatio-temporal power-law characteristics with exponents 1.25 and 1.53 respectively. Downlink HTTP packets behavior also presents power-law characteristics, but has more little exponents γ = 0.82 which differs from traditional complex networks research result. Moreover, downlink P2P packets distribution presents an approximate power-law which means that flow equilibrium profits little from distributed peer-to peer mechanism actually.

  16. Effects of inter-packet spacing on the delivery of multimedia content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapadia, A. C.; Feng, A. C.; Feng, W. C.

    2001-01-01

    Streaming multimedia content with UDP has become increasingly popular over distributed systems such as the Internet. However, because UDP does not possess any congestion-control mechanism and most best-effort trafic is served by the congestion-controlled TCP, UDP flows steal bandwidth from TCP to the point that TCP flows can starve for network resources. Furthermore, such applications may cause the Internet infrastructure to eventually suffer from congestion collapse because UDP trafic does not self-regulate itself. To address this problem, next-generation Internet routers will implement active queue-management schemes to punish malicious traffic, e.g., non-adaptive UDP flows, and to the improve the performance ofmore » congestion-controlled traffic, e.g., TCP flows. The arrival of such routers will cripple the performance of today's UDP-based multimedia applications. So, in this paper, we introduce the notion of inter-packet spacing with control feedback to enable these UDP-based applications to perform well in the next-generation Internet while being adaptive and self-regulating. When compared with traditional UDP-based multimedia streaming, we illustrate that our counterintuitive, interpacket-spacing scheme with control feedback can reduce packet loss by 90% without adversely affecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, rate-adjusting congestion control.« less

  17. Applying a rateless code in content delivery networks

    NASA Astrophysics Data System (ADS)

    Suherman; Zarlis, Muhammad; Parulian Sitorus, Sahat; Al-Akaidi, Marwan

    2017-09-01

    Content delivery network (CDN) allows internet providers to locate their services, to map their coverage into networks without necessarily to own them. CDN is part of the current internet infrastructures, supporting multi server applications especially social media. Various works have been proposed to improve CDN performances. Since accesses on social media servers tend to be short but frequent, providing redundant to the transmitted packets to ensure lost packets not degrade the information integrity may improve service performances. This paper examines the implementation of rateless code in the CDN infrastructure. The NS-2 evaluations show that rateless code is able to reduce packet loss up to 50%.

  18. Unified study of Quality of Service (QoS) in OPS/OBS networks

    NASA Astrophysics Data System (ADS)

    Hailu, Dawit Hadush; Lema, Gebrehiwet Gebrekrstos; Yekun, Ephrem Admasu; Kebede, Samrawit Haylu

    2017-07-01

    With the growth of Internet traffic, an inevitable use of optical networks provide a large bandwidth, fast data transmission rates and Quality of Service (QoS) support. Currently, Optical Burst Switched (OBS)/Optical Packet Switched (OPS) networks are under study as future solutions for addressing the increase demand of Internet traffic. However, due to their high blocking probability in the intermediate nodes they have been delayed in the industries. Packet loss in OBS/OPS networks is mainly occur due to contention. Hence, the contribution of this study is to analyze the file loss ratio (FLR), packet overhead and number of disjoint paths, and processing delay over Coded Packet Transport (CPT) scheme for OBS/OPS network using simulation. The simulations show that CPT scheme reduces the FLR in OBS/OPS network for the evaluated scenarios since the data packets are chopped off into blocks of the data packet for transmission over a network. Simulation results for secrecy and survivability are verified with the help of the analytical model to define the operational range of CPT scheme.

  19. Employing Deceptive Dynamic Network Topology Through Software-Defined Networking

    DTIC Science & Technology

    2014-03-01

    manage economies, banking, and businesses , to the way we gather intelligence and militaries wage war. With computer networks and the Internet, we have seen...space, along with other generated statistics , similar to that performed by the Ant Census project. As we have shown, there is an extensive and diverse...calculated RTT for each probe. In the ping statistics , we are presented the details of probes sent and responses received, and the calculated packet loss

  20. Performance of Wireless Networks in Highly Reflective Rooms with Variable Absorption

    DTIC Science & Technology

    2014-09-01

    methods used to take these measurements , and an analysis of the results. 1. Packet Internet Groper Packet Internet Groper (PING) is a utility that can...such as 802.15 Bluetooth and ZigBee [4]. The handsets used in many of these systems, especially 802.11- based devices, have complex ...phase shifts of the original signal due to differences in time of arrivals for the various multiple paths. The signal power fluctuates around a mean

  1. Final report for the Multiprotocol Label Switching (MPLS) control plane security LDRD project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torgerson, Mark Dolan; Michalski, John T.; Tarman, Thomas David

    2003-09-01

    As rapid Internet growth continues, global communications becomes more dependent on Internet availability for information transfer. Recently, the Internet Engineering Task Force (IETF) introduced a new protocol, Multiple Protocol Label Switching (MPLS), to provide high-performance data flows within the Internet. MPLS emulates two major aspects of the Asynchronous Transfer Mode (ATM) technology. First, each initial IP packet is 'routed' to its destination based on previously known delay and congestion avoidance mechanisms. This allows for effective distribution of network resources and reduces the probability of congestion. Second, after route selection each subsequent packet is assigned a label at each hop, whichmore » determines the output port for the packet to reach its final destination. These labels guide the forwarding of each packet at routing nodes more efficiently and with more control than traditional IP forwarding (based on complete address information in each packet) for high-performance data flows. Label assignment is critical in the prompt and accurate delivery of user data. However, the protocols for label distribution were not adequately secured. Thus, if an adversary compromises a node by intercepting and modifying, or more simply injecting false labels into the packet-forwarding engine, the propagation of improperly labeled data flows could create instability in the entire network. In addition, some Virtual Private Network (VPN) solutions take advantage of this 'virtual channel' configuration to eliminate the need for user data encryption to provide privacy. VPN's relying on MPLS require accurate label assignment to maintain user data protection. This research developed a working distributive trust model that demonstrated how to deploy confidentiality, authentication, and non-repudiation in the global network label switching control plane. Simulation models and laboratory testbed implementations that demonstrated this concept were developed, and results from this research were transferred to industry via standards in the Optical Internetworking Forum (OIF).« less

  2. Performance of circuit switching in the Internet

    NASA Astrophysics Data System (ADS)

    Molinero-Fernández, Pablo; McKeown, Nick

    2003-04-01

    We study the performance of an Internet that uses circuit switching (CS) instead of, or in addition to, packet switching (PS). On the face of it, this would seem a pointless exercise; the Internet is packet switched, and it was deliberately built that way to enable the efficiencies afforded by statistical multiplexing and the robustness of fast rerouting around failures. But link utilization is low particularly at the core of the Internet, which makes statistical multiplexing less important than it once was. Moreover, circuit switches today are capable of rapid reconfiguration around failures. There is also renewed interest in CS because of the ease of building very-high-capacity optical circuit switches. Although several proposals have suggested ways in which CS may be introduced into the Internet, the research presented here is based on Transmission Control Protocol (TCP) switching, in which a new circuit is created for each application flow. Here we explore the performance of a network that uses TCP switching, with particular emphasis on the response time experienced by users. We use simple M/GI/1 and M/GI/N queues to model application flows in both packet-switched and circuit-switched networks, as well as ns-2 simulations. We conclude that because of high-bandwidth long-lived flows, it does not make sense to use CS in shared-access or local area networks. But our results suggest that in the core of the network, where high capacity is needed most, and where peak flow rate is limited by the access link, there is little or no difference in performance between CS and PS. Given that circuit switches can be built to be much faster than packet switches, this suggests that a circuit-switched core warrants further investigation.

  3. Modeling and analyzing cascading dynamics of the Internet based on local congestion information

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Nie, Jianlong; Zhu, Zhiliang; Yu, Hai; Xue, Yang

    2018-06-01

    Cascading failure has already become one of the vital issues in network science. By considering realistic network operational settings, we propose the congestion function to represent the congested extent of node and construct a local congestion-aware routing strategy with a tunable parameter. We investigate the cascading failures on the Internet triggered by deliberate attacks. Simulation results show that the tunable parameter has an optimal value that makes the network achieve a maximum level of robustness. The robustness of the network has a positive correlation with tolerance parameter, but it has a negative correlation with the packets generation rate. In addition, there exists a threshold of the attacking proportion of nodes that makes the network achieve the lowest robustness. Moreover, by introducing the concept of time delay for information transmission on the Internet, we found that an increase of the time delay will decrease the robustness of the network rapidly. The findings of the paper will be useful for enhancing the robustness of the Internet in the future.

  4. Asserting National Sovereignty in Cyberspace: The Case for Internet Border Inspection

    DTIC Science & Technology

    2003-06-01

    Influencing Foreign Policy. in Internet and International Systems: Information Technology and American Foreign Policy Decisionmaking Workshop. 1999...investigative Agencies that investigate violations of federal law IO Information Operations, military operations in information realm IP Internet ...Protocol, a specific format for Internet packet headers IW Information Warfare, part of information operations NCP Network Control Protocol NSA

  5. Network Quality of Service Monitoring for IP Telephony.

    ERIC Educational Resources Information Center

    Ghita, B. V.; Furnell, S. M.; Lines, B. M.; Le-Foll, D.; Ifeachor, E. C.

    2001-01-01

    Discusses the development of real-time applications on the Internet for telecommunications and presents a non-intrusive way of determining network performance parameters for voice packet flows within a voice over IP (Internet Protocol), or Internet telephony call. Considers measurement of quality of service and describes results of a preliminary…

  6. The ARPANET and DARPA Internet.

    ERIC Educational Resources Information Center

    Perry, Dennis G.; And Others

    1988-01-01

    Reviews the development and growth of the ARPANET, a wide-area packet switching network initiated by the U.S. Department of Defense in 1969. Evolution of the ARPANET into the DARPA (Advanced Research Projects Agency) Internet in the 1970s and current uses of the internet are discussed. (16 references) (MES)

  7. 48 CFR 3452.239-70 - Internet protocol version 6 (IPv6).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... utilizing system packets that are formatted in accordance with commercial standards of Internet protocol (IP... of IPv4 products. (b) Specifically, any new IP product or system developed, acquired, or produced...

  8. Combined Wavelet Video Coding and Error Control for Internet Streaming and Multicast

    NASA Astrophysics Data System (ADS)

    Chu, Tianli; Xiong, Zixiang

    2003-12-01

    This paper proposes an integrated approach to Internet video streaming and multicast (e.g., receiver-driven layered multicast (RLM) by McCanne) based on combined wavelet video coding and error control. We design a packetized wavelet video (PWV) coder to facilitate its integration with error control. The PWV coder produces packetized layered bitstreams that are independent among layers while being embedded within each layer. Thus, a lost packet only renders the following packets in the same layer useless. Based on the PWV coder, we search for a multilayered error-control strategy that optimally trades off source and channel coding for each layer under a given transmission rate to mitigate the effects of packet loss. While both the PWV coder and the error-control strategy are new—the former incorporates embedded wavelet video coding and packetization and the latter extends the single-layered approach for RLM by Chou et al.—the main distinction of this paper lies in the seamless integration of the two parts. Theoretical analysis shows a gain of up to 1 dB on a channel with 20% packet loss using our combined approach over separate designs of the source coder and the error-control mechanism. This is also substantiated by our simulations with a gain of up to 0.6 dB. In addition, our simulations show a gain of up to 2.2 dB over previous results reported by Chou et al.

  9. Cross-layer protocols optimized for real-time multimedia services in energy-constrained mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2003-07-01

    Mobile ad hoc networking (MANET) supports self-organizing, mobile infrastructures and enables an autonomous network of mobile nodes that can operate without a wired backbone. Ad hoc networks are characterized by multihop, wireless connectivity via packet radios and by the need for efficient dynamic protocols. All routers are mobile and can establish connectivity with other nodes only when they are within transmission range. Importantly, ad hoc wireless nodes are resource-constrained, having limited processing, memory, and battery capacity. Delivery of high quality-ofservice (QoS), real-time multimedia services from Internet-based applications over a MANET is a challenge not yet achieved by proposed Internet Engineering Task Force (IETF) ad hoc network protocols in terms of standard performance metrics such as end-to-end throughput, packet error rate, and delay. In the distributed operations of route discovery and maintenance, strong interaction occurs across MANET protocol layers, in particular, the physical, media access control (MAC), network, and application layers. The QoS requirements are specified for the service classes by the application layer. The cross-layer design must also satisfy the battery-limited energy constraints, by minimizing the distributed power consumption at the nodes and of selected routes. Interactions across the layers are modeled in terms of the set of concatenated design parameters including associated energy costs. Functional dependencies of the QoS metrics are described in terms of the concatenated control parameters. New cross-layer designs are sought that optimize layer interdependencies to achieve the "best" QoS available in an energy-constrained, time-varying network. The protocol design, based on a reactive MANET protocol, adapts the provisioned QoS to dynamic network conditions and residual energy capacities. The cross-layer optimization is based on stochastic dynamic programming conditions derived from time-dependent models of MANET packet flows. Regulation of network behavior is modeled by the optimal control of the conditional rates of multivariate point processes (MVPPs); these rates depend on the concatenated control parameters through a change of probability measure. The MVPP models capture behavior of many service applications, e.g., voice, video and the self-similar behavior of Internet data sessions. Performance verification of the cross-layer protocols, derived from the dynamic programming conditions, can be achieved by embedding the conditions in a reactive routing protocol for MANETs, in a simulation environment, such as the wireless extension of ns-2. A canonical MANET scenario consists of a distributed collection of battery-powered laptops or hand-held terminals, capable of hosting multimedia applications. Simulation details and performance tradeoffs, not presented, remain for a sequel to the paper.

  10. Symplectic semiclassical wave packet dynamics II: non-Gaussian states

    NASA Astrophysics Data System (ADS)

    Ohsawa, Tomoki

    2018-05-01

    We generalize our earlier work on the symplectic/Hamiltonian formulation of the dynamics of the Gaussian wave packet to non-Gaussian semiclassical wave packets. We find the symplectic forms and asymptotic expansions of the Hamiltonians associated with these semiclassical wave packets, and obtain Hamiltonian systems governing their dynamics. Numerical experiments demonstrate that the dynamics give a very good approximation to the short-time dynamics of the expectation values computed by a method based on Egorov’s theorem or the initial value representation.

  11. Internet Telephony: The Next Killer Application? (Or, How I Cut My Long-Distance Phone Bill to Nothing!).

    ERIC Educational Resources Information Center

    Learn, Larry L., Ed.

    1995-01-01

    Discusses the evolution of real-time telephony and broadcast applications using the Internet; resulting issues and opportunities; and future implications for regulators, Internet users, and service providers. Topics covered include bandpass, packetized voice, IP structures, class D datagrams, software, technical parameters, legal and regulatory…

  12. The exact thermal rotational spectrum of a two-dimensional rigid rotor obtained using Gaussian wave packet dynamics

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Heller, E. J.

    1985-01-01

    The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.

  13. Caught in the Network

    ERIC Educational Resources Information Center

    Cesarini, Paul

    2007-01-01

    This article describes The Onion Router (TOR). It is a freely available, open-source program developed by the U.S. Navy about a decade ago. A browser plug-in, it thwarts online traffic analysis and related forms of Internet surveillance by sending your data packets through different routers around the world. As each packet moves from one router to…

  14. A feasibility study of stateful automaton packet inspection for streaming application detection systems

    NASA Astrophysics Data System (ADS)

    Tseng, Kuo-Kun; Lo, Jiao; Liu, Yiming; Chang, Shih-Hao; Merabti, Madjid; Ng, Felix, C. K.; Wu, C. H.

    2017-10-01

    The rapid development of the internet has brought huge benefits and social impacts; however, internet security has also become a great problem for users, since traditional approaches to packet classification cannot achieve satisfactory detection performance due to their low accuracy and efficiency. In this paper, a new stateful packet inspection method is introduced, which can be embedded in the network gateway and used by a streaming application detection system. This new detection method leverages the inexact automaton approach, using part of the header field and part of the application layer data of a packet. Based on this approach, an advanced detection system is proposed for streaming applications. The workflow of the system involves two stages: the training stage and the detection stage. In the training stage, the system initially captures characteristic patterns from a set of application packet flows. After this training is completed, the detection stage allows the user to detect the target application by capturing new application flows. This new detection approach is also evaluated using experimental analysis; the results of this analysis show that this new approach not only simplifies the management of the state detection system, but also improves the accuracy of data flow detection, making it feasible for real-world network applications.

  15. Glossary of Internet Terms.

    ERIC Educational Resources Information Center

    Microcomputers for Information Management, 1995

    1995-01-01

    Provides definitions for 71 terms related to the Internet, including Archie, bulletin board system, cyberspace, e-mail (electronic mail), file transfer protocol, gopher, hypertext, integrated services digital network, local area network, listserv, modem, packet switching, server, telnet, UNIX, WAIS (wide area information servers), and World Wide…

  16. End-to-End QoS for Differentiated Services and ATM Internetworking

    NASA Technical Reports Server (NTRS)

    Su, Hongjun; Atiquzzaman, Mohammed

    2001-01-01

    The Internet was initially design for non real-time data communications and hence does not provide any Quality of Service (QoS). The next generation Internet will be characterized by high speed and QoS guarantee. The aim of this paper is to develop a prioritized early packet discard (PEPD) scheme for ATM switches to provide service differentiation and QoS guarantee to end applications running over next generation Internet. The proposed PEPD scheme differs from previous schemes by taking into account the priority of packets generated from different application. We develop a Markov chain model for the proposed scheme and verify the model with simulation. Numerical results show that the results from the model and computer simulation are in close agreement. Our PEPD scheme provides service differentiation to the end-to-end applications.

  17. Coding and transmission of subband coded images on the Internet

    NASA Astrophysics Data System (ADS)

    Wah, Benjamin W.; Su, Xiao

    2001-09-01

    Subband-coded images can be transmitted in the Internet using either the TCP or the UDP protocol. Delivery by TCP gives superior decoding quality but with very long delays when the network is unreliable, whereas delivery by UDP has negligible delays but with degraded quality when packets are lost. Although images are delivered currently over the Internet by TCP, we study in this paper the use of UDP to deliver multi-description reconstruction-based subband-coded images. First, in order to facilitate recovery from UDP packet losses, we propose a joint sender-receiver approach for designing optimized reconstruction-based subband transform (ORB-ST) in multi-description coding (MDC). Second, we carefully evaluate the delay-quality trade-offs between the TCP delivery of SDC images and the UDP and combined TCP/UDP delivery of MDC images. Experimental results show that our proposed ORB-ST performs well in real Internet tests, and UDP and combined TCP/UDP delivery of MDC images provide a range of attractive alternatives to TCP delivery.

  18. Analytical Characterization of Internet Security Attacks

    ERIC Educational Resources Information Center

    Sellke, Sarah H.

    2010-01-01

    Internet security attacks have drawn significant attention due to their enormously adverse impact. These attacks includes Malware (Viruses, Worms, Trojan Horse), Denial of Service, Packet Sniffer, and Password Attacks. There is an increasing need to provide adequate defense mechanisms against these attacks. My thesis proposal deals with analytical…

  19. Using Internet Audio to Enhance Online Accessibility

    ERIC Educational Resources Information Center

    Schwartz, Linda Matula

    2004-01-01

    Accessibility to online education programs is an important factor that requires continued research, improvement, and regulation. Particularly valuable in the enhancement of online accessibility is the Voice-over Internet Protocol (VOIP) medium. VOIP compresses analog voice data and converts it into digital packets for transmission over the…

  20. Impact of VoIP and QoS on Open and Distance Learning

    ERIC Educational Resources Information Center

    Saxena, P. C.; Jasola, Sanjay; Sharma, Ramesh C.

    2006-01-01

    Voice over Internet Protocol (VoIP) is becoming a reality in many organizations. The potential for mobility in voice over wi-fi networks will derive demand for the technology. Wireless VoIP is poised to rival VoIP as an alternative telephony tool. Internet has been used to transport data in the form of packet. In the past, Internet did not support…

  1. Packet Scheduling Mechanism to Improve Quality of Short Flows and Low-Rate Flows

    NASA Astrophysics Data System (ADS)

    Yokota, Kenji; Asaka, Takuya; Takahashi, Tatsuro

    In recent years elephant flows are increasing by expansion of peer-to-peer (P2P) applications on the Internet. As a result, bandwidth is occupied by specific users triggering unfair resource allocation. The main packet-scheduling mechanism currently employed is first-in first-out (FIFO) where the available bandwidth of short flows is limited by elephant flows. Least attained service (LAS), which decides transfer priority of packets by the total amount of transferred data in all flows, was proposed to solve this problem. However, routers with LAS limit flows with large amount of transferred data even if they are low-rate. Therefore, it is necessary to improve the quality of low-rate flows with long holding times such as voice over Internet protocol (VoIP) applications. This paper proposes rate-based priority control (RBPC), which calculates the flow rate and control the priority by using it. Our proposed method can transfer short flows and low-rate flows in advance. Moreover, its fair performance is shown through simulations.

  2. Wiretapping the Internet

    NASA Astrophysics Data System (ADS)

    Antonelli, Charles J.; Honeyman, Peter

    2001-02-01

    This paper describes the Advanced Packet Vault, a technology for creating such a record by collecting and securely storing all packets observed on a network, with a scalable architecture intended to support network speeds in excess of 100 Mbps. Encryption is used to preserve users' security and privacy, permitting selected traffic to be made available without revealing other traffic. The Vault implementation, based on Linux and OpenBSD, is open-source.

  3. Photoionization of NaK molecule with a double-well potential in femtosecond pump probe pulse laser fields

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Wang, Sen-Ming; Yuan, Kai-Jun; Cong, Shu-Lin

    2006-09-01

    The method of time-dependent quantum wave packet dynamics is used to calculate the femtosecond pump-probe photoelectron spectra and study the wave packet dynamic processes of the double-minimum potential state 61Σ+ of NaK in intense laser fields. The evolutions of the wave packet and the photoelectron energy spectra with time and internuclear distance are described in detail. The wave packet dynamic information of the 61Σ+ state can be extracted from the photoelectron energy spectra.

  4. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks.

    PubMed

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-07-09

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.

  5. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks †

    PubMed Central

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  6. Monitoring and Indentification Packet in Wireless With Deep Packet Inspection Method

    NASA Astrophysics Data System (ADS)

    Fali Oklilas, Ahmad; Tasmi

    2017-04-01

    Layer 2 and Layer 3 are used to make a process of network monitoring, but with the development of applications on the network such as the p2p file sharing, VoIP, encrypted, and many applications that already use the same port, it would require a system that can classify network traffics, not only based on port number classification. This paper reports the implementation of the deep packet inspection method to analyse data packets based on the packet header and payload to be used in packet data classification. If each application can be grouped based on the application layer, then we can determine the pattern of internet users and also to perform network management of computer science department. In this study, a prototype wireless network and applications SSO were developed to detect the active user. The focus is on the ability of open DPI and nDPI in detecting the payload of an application and the results are elaborated in this paper.

  7. Development of Mobile Communications in Slovenia: Looking to the Future Global Information (Mobile/Internet) Society.

    ERIC Educational Resources Information Center

    Simonic, Tomaz; Mlinar, Tomi

    2000-01-01

    Discusses the planning and provision of mobile communications in Slovenia and suggests areas that will be developed in the future. Topics include the global mobile market; digital mobile networks; evolution from voice to multimedia services; wireless application protocol; the Internet; general packet radio service; and universal mobile…

  8. Femtosecond laser spectroscopy on the vibrational wave packet dynamics of the A 1Σ+ state of NaK

    NASA Astrophysics Data System (ADS)

    Berg, L.-E.; Beutter, M.; Hansson, T.

    1996-05-01

    The vibrational wave packet dynamics of a heteronuclear diatomic alkali molecule in an excited state, the A 1Σ+ state of gaseous NaK, has been measured for the first time. At λpump = 790 nm, a wave packet oscillation period of 442 fs and dephasing within 10 ps has been observed. This dynamics has been analysed by calculation of Franck-Condon factors and difference potentials. It is from this seen that initially the pump pulse prepares a wave packet at the inner turning point of the A-state. The wave packet then evolves in time and is probed at the outer turning point by a transition to the E-state with subsequent fluorescence detection.

  9. The exact eigenfunctions and eigenvalues of a two-dimensional rigid rotor obtained using Gaussian wave packet dynamics

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Heller, E. J.

    1985-01-01

    Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.

  10. Dynamically reconfigurable optical packet switch (DROPS)

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ

    2006-12-01

    A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.

  11. Moving Data, Moving Students: Involving Students in Learning about Internet Data Traffic

    ERIC Educational Resources Information Center

    Reinicke, Bryan A.; Yaylacicegi, Ulku

    2010-01-01

    Undergraduate students often have difficulty understanding the way in which data moves across a TCP/IP network, such as the Internet. From the initial data request, to larger files being packetized and transmitted via multiple routes, the students can become lost in the details. These are important concepts for both introductory Management…

  12. Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP.

    PubMed

    Tsai, Meng-Hsun; Chou, Chien-Ming; Lan, Kun-Chan

    2016-01-01

    Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance.

  13. GREEN + IDMaps: A practical soulution for ensuring fairness in a biased internet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapadia, A. C.; Thulasidasan, S.; Feng, W. C.

    2002-01-01

    GREEN is a proactive queue-management (PQM) algorithm that removes TCP's bias against connections with longer round-trip times, while maintaining high link utilization and low packet-loss. GREEN applies knowledge of the steady-state behavior of TCP connections to proactively drop packets, thus preventing congestion from ever occurring. As a result, GREEN ensures much higher fairness between flows than other active queue management schemes like Flow Random Early Drop (FRED) and Stochastic Fair Blue (SFB), which suffer in topologies where a large number of flows have widely varying round-trip times. GREEN'S performance relies on its ability to gauge a flow's round-trip time (RTT).more » In previous work, we presented results for an ideal GREEN router which has accurate RTT information for a flow. In this paper, we present a practical solution based on IDMaps, an Internet distance-estimation service, and compare its performance to an ideal GREEN router. We show that a solution based on IDMaps is practical and maintains high fairness and link utilization, and low packet-loss rates.« less

  14. Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP

    PubMed Central

    2016-01-01

    Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance. PMID:27529783

  15. A Search Strategy of Level-Based Flooding for the Internet of Things

    PubMed Central

    Qiu, Tie; Ding, Yanhong; Xia, Feng; Ma, Honglian

    2012-01-01

    This paper deals with the query problem in the Internet of Things (IoT). Flooding is an important query strategy. However, original flooding is prone to cause heavy network loads. To address this problem, we propose a variant of flooding, called Level-Based Flooding (LBF). With LBF, the whole network is divided into several levels according to the distances (i.e., hops) between the sensor nodes and the sink node. The sink node knows the level information of each node. Query packets are broadcast in the network according to the levels of nodes. Upon receiving a query packet, sensor nodes decide how to process it according to the percentage of neighbors that have processed it. When the target node receives the query packet, it sends its data back to the sink node via random walk. We show by extensive simulations that the performance of LBF in terms of cost and latency is much better than that of original flooding, and LBF can be used in IoT of different scales. PMID:23112594

  16. Speech perception benefits of internet versus conventional telephony for hearing-impaired individuals.

    PubMed

    Mantokoudis, Georgios; Dubach, Patrick; Pfiffner, Flurin; Kompis, Martin; Caversaccio, Marco; Senn, Pascal

    2012-07-16

    Telephone communication is a challenge for many hearing-impaired individuals. One important technical reason for this difficulty is the restricted frequency range (0.3-3.4 kHz) of conventional landline telephones. Internet telephony (voice over Internet protocol [VoIP]) is transmitted with a larger frequency range (0.1-8 kHz) and therefore includes more frequencies relevant to speech perception. According to a recently published, laboratory-based study, the theoretical advantage of ideal VoIP conditions over conventional telephone quality has translated into improved speech perception by hearing-impaired individuals. However, the speech perception benefits of nonideal VoIP network conditions, which may occur in daily life, have not been explored. VoIP use cannot be recommended to hearing-impaired individuals before its potential under more realistic conditions has been examined. To compare realistic VoIP network conditions, under which digital data packets may be lost, with ideal conventional telephone quality with respect to their impact on speech perception by hearing-impaired individuals. We assessed speech perception using standardized test material presented under simulated VoIP conditions with increasing digital data packet loss (from 0% to 20%) and compared with simulated ideal conventional telephone quality. We monaurally tested 10 adult users of cochlear implants, 10 adult users of hearing aids, and 10 normal-hearing adults in the free sound field, both in quiet and with background noise. Across all participant groups, mean speech perception scores using VoIP with 0%, 5%, and 10% packet loss were 15.2% (range 0%-53%), 10.6% (4%-46%), and 8.8% (7%-33%) higher, respectively, than with ideal conventional telephone quality. Speech perception did not differ between VoIP with 20% packet loss and conventional telephone quality. The maximum benefits were observed under ideal VoIP conditions without packet loss and were 36% (P = .001) for cochlear implant users, 18% (P = .002) for hearing aid users, and 53% (P = .001) for normal-hearing adults. With a packet loss of 10%, the maximum benefits were 30% (P = .002) for cochlear implant users, 6% (P = .38) for hearing aid users, and 33% (P = .002) for normal-hearing adults. VoIP offers a speech perception benefit over conventional telephone quality, even when mild or moderate packet loss scenarios are created in the laboratory. VoIP, therefore, has the potential to significantly improve telecommunication abilities for the large community of hearing-impaired individuals.

  17. Speech Perception Benefits of Internet Versus Conventional Telephony for Hearing-Impaired Individuals

    PubMed Central

    Dubach, Patrick; Pfiffner, Flurin; Kompis, Martin; Caversaccio, Marco

    2012-01-01

    Background Telephone communication is a challenge for many hearing-impaired individuals. One important technical reason for this difficulty is the restricted frequency range (0.3–3.4 kHz) of conventional landline telephones. Internet telephony (voice over Internet protocol [VoIP]) is transmitted with a larger frequency range (0.1–8 kHz) and therefore includes more frequencies relevant to speech perception. According to a recently published, laboratory-based study, the theoretical advantage of ideal VoIP conditions over conventional telephone quality has translated into improved speech perception by hearing-impaired individuals. However, the speech perception benefits of nonideal VoIP network conditions, which may occur in daily life, have not been explored. VoIP use cannot be recommended to hearing-impaired individuals before its potential under more realistic conditions has been examined. Objective To compare realistic VoIP network conditions, under which digital data packets may be lost, with ideal conventional telephone quality with respect to their impact on speech perception by hearing-impaired individuals. Methods We assessed speech perception using standardized test material presented under simulated VoIP conditions with increasing digital data packet loss (from 0% to 20%) and compared with simulated ideal conventional telephone quality. We monaurally tested 10 adult users of cochlear implants, 10 adult users of hearing aids, and 10 normal-hearing adults in the free sound field, both in quiet and with background noise. Results Across all participant groups, mean speech perception scores using VoIP with 0%, 5%, and 10% packet loss were 15.2% (range 0%–53%), 10.6% (4%–46%), and 8.8% (7%–33%) higher, respectively, than with ideal conventional telephone quality. Speech perception did not differ between VoIP with 20% packet loss and conventional telephone quality. The maximum benefits were observed under ideal VoIP conditions without packet loss and were 36% (P = .001) for cochlear implant users, 18% (P = .002) for hearing aid users, and 53% (P = .001) for normal-hearing adults. With a packet loss of 10%, the maximum benefits were 30% (P = .002) for cochlear implant users, 6% (P = .38) for hearing aid users, and 33% (P = .002) for normal-hearing adults. Conclusions VoIP offers a speech perception benefit over conventional telephone quality, even when mild or moderate packet loss scenarios are created in the laboratory. VoIP, therefore, has the potential to significantly improve telecommunication abilities for the large community of hearing-impaired individuals. PMID:22805169

  18. Propagation of arbitrary initial wave packets in a quantum parametric oscillator: Instability zones for higher order moments

    NASA Astrophysics Data System (ADS)

    Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.

    2018-05-01

    We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.

  19. Optimization of OSPF Routing in IP Networks

    NASA Astrophysics Data System (ADS)

    Bley, Andreas; Fortz, Bernard; Gourdin, Eric; Holmberg, Kaj; Klopfenstein, Olivier; Pióro, Michał; Tomaszewski, Artur; Ümit, Hakan

    The Internet is a huge world-wide packet switching network comprised of more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs) autonomous system AS . They all rely on the Internet Protocol (IP) internet protocol IP for transport of packets across the network. And most of them use shortest path routing protocols shortest path routing!protocols , such as OSPF or IS-IS, to control the routing of IP packets routing!of IP packets within an AS. The idea of the routing is extremely simple — every packet is forwarded on IP links along the shortest route between its source and destination nodes of the AS. The AS network administrator can manage the routing of packets in the AS by supplying the so-called administrative weights of IP links, which specify the link lengths that are used by the routing protocols for their shortest path computations. The main advantage of the shortest path routing policy is its simplicity, allowing for little administrative overhead. From the network engineering perspective, however, shortest path routing can pose problems in achieving satisfactory traffic handling efficiency. As all routing paths depend on the same routing metric routing!metric , it is not possible to configure the routing paths for the communication demands between different pairs of nodes explicitly or individually; the routing can be controlled only indirectly and only as a whole by modifying the routing metric. Thus, one of the main tasks when planning such networks is to find administrative link weights that induce a globally efficient traffic routing traffic!routing configuration of an AS. It turns out that this task leads to very difficult mathematical optimization problems. In this chapter, we discuss and describe exact integer programming models and solution approaches as well as practically efficient smart heuristics for such shortest path routing problems shortest path routing!problems .

  20. Stochastic Stability in Internet Router Congestion Games

    NASA Astrophysics Data System (ADS)

    Chung, Christine; Pyrga, Evangelia

    Congestion control at bottleneck routers on the internet is a long standing problem. Many policies have been proposed for effective ways to drop packets from the queues of these routers so that network endpoints will be inclined to share router capacity fairly and minimize the overflow of packets trying to enter the queues. We study just how effective some of these queuing policies are when each network endpoint is a self-interested player with no information about the other players’ actions or preferences. By employing the adaptive learning model of evolutionary game theory, we study policies such as Droptail, RED, and the greedy-flow-punishing policy proposed by Gao et al. [10] to find the stochastically stable states: the states of the system that will be reached in the long run.

  1. A Global Perspective on Virtual Reality. Grade Levels 9-12. Technology in the Classroom.

    ERIC Educational Resources Information Center

    American Forum for Global Education, New York, NY.

    This activity packet addresses technology in the classroom, specifically using the Internet. It presents three activities that use the Internet as a resource: (1) "Whose Point of View" (the transfer of Hong Kong to Chinese control); (2) "Where to Look" (an earthquake in Afghanistan); and (3) "Research Project: The Pros and Cons of Free Trade."…

  2. Coherent wave packet dynamics in a double-well potential in cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui

    2018-02-01

    We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.

  3. Towards Internet QoS provisioning based on generic distributed QoS adaptive routing engine.

    PubMed

    Haikal, Amira Y; Badawy, M; Ali, Hesham A

    2014-01-01

    Increasing efficiency and quality demands of modern Internet technologies drive today's network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature.

  4. Towards Internet QoS Provisioning Based on Generic Distributed QoS Adaptive Routing Engine

    PubMed Central

    Haikal, Amira Y.; Badawy, M.; Ali, Hesham A.

    2014-01-01

    Increasing efficiency and quality demands of modern Internet technologies drive today's network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature. PMID:25309955

  5. 40-Gbps optical backbone network deep packet inspection based on FPGA

    NASA Astrophysics Data System (ADS)

    Zuo, Yuan; Huang, Zhiping; Su, Shaojing

    2014-11-01

    In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.

  6. Internet Protocol Enhanced over Satellite Networks

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1999-01-01

    Extensive research conducted by the Satellite Networks and Architectures Branch of the NASA Lewis Research Center led to an experimental change to the Internet's Transmission Control Protocol (TCP) that will increase performance over satellite channels. The change raises the size of the initial burst of data TCP can send from 1 packet to 4 packets or roughly 4 kilobytes (kB), whichever is less. TCP is used daily by everyone on the Internet for e-mail and World Wide Web access, as well as other services. TCP is one of the feature protocols used in computer communications for reliable data delivery and file transfer. Increasing TCP's initial data burst from the previously specified single segment to approximately 4 kB may improve data transfer rates by up to 27 percent for very small files. This is significant because most file transfers in wide-area networks today are small files, 4 kilobytes or less. In addition, because data transfers over geostationary satellites can take 5 to 20 times longer than over typical terrestrial connections, increasing the initial burst of data that can be sent is extremely important. This research along with research from other institutions has led to the release of two new Request for Comments from the Internet Engineering Task Force (IETF, the international body that sets Internet standards). In addition, two studies of the implications of this mechanism were also funded by NASA Lewis.

  7. Network traffic behaviour near phase transition point

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-03-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.

  8. Delivery of video-on-demand services using local storages within passive optical networks.

    PubMed

    Abeywickrama, Sandu; Wong, Elaine

    2013-01-28

    At present, distributed storage systems have been widely studied to alleviate Internet traffic build-up caused by high-bandwidth, on-demand applications. Distributed storage arrays located locally within the passive optical network were previously proposed to deliver Video-on-Demand services. As an added feature, a popularity-aware caching algorithm was also proposed to dynamically maintain the most popular videos in the storage arrays of such local storages. In this paper, we present a new dynamic bandwidth allocation algorithm to improve Video-on-Demand services over passive optical networks using local storages. The algorithm exploits the use of standard control packets to reduce the time taken for the initial request communication between the customer and the central office, and to maintain the set of popular movies in the local storage. We conduct packet level simulations to perform a comparative analysis of the Quality-of-Service attributes between two passive optical networks, namely the conventional passive optical network and one that is equipped with a local storage. Results from our analysis highlight that strategic placement of a local storage inside the network enables the services to be delivered with improved Quality-of-Service to the customer. We further formulate power consumption models of both architectures to examine the trade-off between enhanced Quality-of-Service performance versus the increased power requirement from implementing a local storage within the network.

  9. Digital optical processing of optical communications: towards an Optical Turing Machine

    NASA Astrophysics Data System (ADS)

    Touch, Joe; Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Willner, Alan E.

    2017-01-01

    Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK), semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.

  10. IP over fiber technologies: ATM/POS/SDL

    NASA Astrophysics Data System (ADS)

    Jin, Depeng; Zeng, Lieguang

    2001-10-01

    The explosive growth of Internet traffic has created the need to transport IP over high-speed links such as fiber. Three main IP over fiber technologies have been developed: ATM, POS and SDL. As ATM has been widely researched and developed, this paper mainly discusses the POS and SDL. POS is a traditional mapping method of packets, and this paper presents the realization state machine of POS and analyzes the Probability of Packet Loss. SDL is a new framing protocol for variable/fixed length of packet, which extends the HEC-liking framing mechanism used in ATM. This paper analyzes this new protocol and gives the performance results such as MTTF and PFP. Finally, the comparison of POS and SDL is provided.

  11. Simple Automatic File Exchange (SAFE) to Support Low-Cost Spacecraft Operation via the Internet

    NASA Technical Reports Server (NTRS)

    Baker, Paul; Repaci, Max; Sames, David

    1998-01-01

    Various issues associated with Simple Automatic File Exchange (SAFE) are presented in viewgraph form. Specific topics include: 1) Packet telemetry, Internet IP networks and cost reduction; 2) Basic functions and technical features of SAFE; 3) Project goals, including low-cost satellite transmission to data centers to be distributed via an Internet; 4) Operations with a replicated file protocol; 5) File exchange operation; 6) Ground stations as gateways; 7) Lessons learned from demonstrations and tests with SAFE; and 8) Feedback and future initiatives.

  12. Video Conferences through the Internet: How to Survive in a Hostile Environment

    PubMed Central

    Fernández, Carlos; Fernández-Navajas, Julián; Sequeira, Luis; Casadesus, Luis

    2014-01-01

    This paper analyzes and compares two different video conference solutions, widely used in corporate and home environments, with a special focus on the mechanisms used for adapting the traffic to the network status. The results show how these mechanisms are able to provide a good quality in the hostile environment of the public Internet, a best effort network without delay or delivery guarantees. Both solutions are evaluated in a laboratory, where different network impairments (bandwidth limit, delay, and packet loss) are set, in both the uplink and the downlink, and the reaction of the applications is measured. The tests show how these solutions modify their packet size and interpacket time, in order to increase or reduce the sent data. One of the solutions also uses a scalable video codec, able to adapt the traffic to the network status and to the end devices. PMID:24605066

  13. Internet stream synchronization using Concord

    NASA Astrophysics Data System (ADS)

    Sreenan, Cormac J.; Narendran, B.; Agrawal, Prathima; Shivakumar, Narayanan

    1996-03-01

    Using packet networks to transport multimedia introduces delay variations within and across streams, necessitating synchronization at the receiver. This requires stream data to be buffered prior to presentation, which also increases its total end to end delay. Concord recognizes that applications may wish to influence the underlying synchronization policy in terms of its effect on quality of service. It provides a single framework for synchronization within and across streams and employs an application specific tradeoff between packet losses, delay and inter- stream skew. We present a new predictive approach for synchronization and a selection of results from an extensive evaluation of Concord for use in the Internet. A trace driven simulator is used, allowing a direct comparison with alternative approaches. We demonstrate that Concord can operate with lower maximum delay and less variation in total end to end delay, which in turn can allow receiver buffer requirements to be reduced.

  14. Analysis of Handoff Mechanisms in Mobile IP

    NASA Astrophysics Data System (ADS)

    Jayaraj, Maria Nadine Simonel; Issac, Biju; Haldar, Manas Kumar

    2011-06-01

    One of the most important challenges in mobile Internet Protocol (IP) is to provide service for a mobile node to maintain its connectivity to network when it moves from one domain to another. IP is responsible for routing packets across network. The first major version of IP is the Internet Protocol version 4 (IPv4). It is one of the dominant protocols relevant to wireless network. Later a newer version of IP called the IPv6 was proposed. Mobile IPv6 is mainly introduced for the purpose of mobility. Mobility management enables network to locate roaming nodes in order to deliver packets and maintain connections with them when moving into new domains. Handoff occurs when a mobile node moves from one network to another. It is a key factor of mobility because a mobile node can trigger several handoffs during a session. This paper briefly explains on mobile IP and its handoff issues, along with the drawbacks of mobile IP.

  15. WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Hartmann, Carsten

    2018-07-01

    WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.

  16. Symmetry and conservation laws in semiclassical wave packet dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum asmore » well as naturally corresponds to the quantum picture.« less

  17. Effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Ma, Jian-Feng

    Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.

  18. Combined Quarterly Technical Report Number 16. SATNET Development and Operation, Pluribus Satellite IMP Development, Remote Site Maintenance, Internet Development, Mobile Access Terminal Network.

    DTIC Science & Technology

    1980-02-01

    Reserch Projects Agency I t&* ISO~p~A d m* ab~b ~I 41 b~bmso 544,A UNCLASSIFIED S@MYT SLAMIICAIGH OF TNNI PAOE tpvm Gamb.______________ RI...Wi do m,.we a#& N m WUNP SMei r -- This Quarterly Technical Report describes work on the development of and experimentation with packet broadcast by...interval by either segmenting or aggregating the stream packets such that they match the system interval. Since this approach is simple with respect

  19. Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks

    NASA Astrophysics Data System (ADS)

    Vadrevu, Sree Krishna Chaitanya

    Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will preempt IP services routed over them, and thus it is important to ensure IP topology survivability to successfully re-route preempted IP services. Integer-linear-program (ILP) and heuristic solutions have been developed and network cost reduction up to 60% has been observed. In ESnet, we study loaning packet links to support circuit services. Mixed-line-rate (MLR) networks supporting 10/40/100 Gbps on the same fiber are becoming increasingly popular. Services that accept degradation in bandwidth, latency, jitter, etc. under failure scenarios for lower cost are known as degraded services. We study degradation in bandwidth for lower cost under failure scenarios, a concept called partial protection, in the context of MLR networks. We notice partial protection enables significant cost savings compared to full protection. To cope with traffic growth, network operators need to deploy equipment at periodic time intervals, and this is known as the multi-period planning and upgrade problem. We study three important multi-period planning approaches, namely incremental planning, all-period planning, and two-period planning with mixed line rates. Our approaches predict the network equipment that needs to be deployed optimally at which nodes and at which time periods in the network to meet QoS requirements.

  20. Generalized Gaussian wave packet dynamics: Integrable and chaotic systems.

    PubMed

    Pal, Harinder; Vyas, Manan; Tomsovic, Steven

    2016-01-01

    The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories.

  1. A Proposal for IoT Dynamic Routes Selection Based on Contextual Information.

    PubMed

    Araújo, Harilton da Silva; Filho, Raimir Holanda; Rodrigues, Joel J P C; Rabelo, Ricardo de A L; Sousa, Natanael de C; Filho, José C C L S; Sobral, José V V

    2018-01-26

    The Internet of Things (IoT) is based on interconnection of intelligent and addressable devices, allowing their autonomy and proactive behavior with Internet connectivity. Data dissemination in IoT usually depends on the application and requires context-aware routing protocols that must include auto-configuration features (which adapt the behavior of the network at runtime, based on context information). This paper proposes an approach for IoT route selection using fuzzy logic in order to attain the requirements of specific applications. In this case, fuzzy logic is used to translate in math terms the imprecise information expressed by a set of linguistic rules. For this purpose, four Objective Functions (OFs) are proposed for the Routing Protocol for Low Power and Loss Networks (RPL); such OFs are dynamically selected based on context information. The aforementioned OFs are generated from the fusion of the following metrics: Expected Transmission Count (ETX), Number of Hops (NH) and Energy Consumed (EC). The experiments performed through simulation, associated with the statistical data analysis, conclude that this proposal provides high reliability by successfully delivering nearly 100% of data packets, low delay for data delivery and increase in QoS. In addition, an 30% improvement is attained in the network life time when using one of proposed objective function, keeping the devices alive for longer duration.

  2. FloCon 2011 Proceedings

    DTIC Science & Technology

    2011-01-01

    and G. Armitage. Dening and evaluating greynets (sparse darknets ). In LCN󈧉: Proceedings of the IEEE Conference on Local Computer Networks 30th...analysis of distributed darknet trac. In IMC󈧉: Proceedings of the USENIX/ACM Internet Measurement Conference, 2005. Indexing Full Packet Capture Data

  3. Frequency Count Attribute Oriented Induction of Corporate Network Data for Mapping Business Activity

    NASA Astrophysics Data System (ADS)

    Tanutama, Lukas

    2014-03-01

    Companies increasingly rely on Internet for effective and efficient business communication. As Information Technology infrastructure backbone for business activities, corporate network connects the company to Internet and enables its activities globally. It carries data packets generated by the activities of the users performing their business tasks. Traditionally, infrastructure operations mainly maintain data carrying capacity and network devices performance. It would be advantageous if a company knows what activities are running in its network. The research provides a simple method of mapping the business activity reflected by the network data. To map corporate users' activities, a slightly modified Attribute Oriented Induction (AOI) approach to mine the network data was applied. The frequency of each protocol invoked were counted to show what the user intended to do. The collected data was samples taken within a certain sampling period. Samples were taken due to the enormous data packets generated. Protocols of interest are only Internet related while intranet protocols are ignored. It can be concluded that the method could provide the management a general overview of the usage of its infrastructure and lead to efficient, effective and secure ICT infrastructure.

  4. Coupled wave-packets for non-adiabatic molecular dynamics: a generalization of Gaussian wave-packet dynamics to multiple potential energy surfaces

    DOE PAGES

    White, Alexander James; Tretiak, Sergei; Mozyrsky, Dima V.

    2016-04-25

    Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitablemore » for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.« less

  5. Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah

    PubMed Central

    Tian, Le; Latré, Steven

    2017-01-01

    IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum. Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features, referred to as the Restricted Access Window (RAW), focuses on improving scalability in highly dense deployments. RAW divides stations into groups and reduces contention and collisions by only allowing channel access to one group at a time. However, the standard does not dictate how to determine the optimal RAW grouping parameters. The optimal parameters depend on the current network conditions, and it has been shown that incorrect configuration severely impacts throughput, latency and energy efficiency. In this paper, we propose a traffic-adaptive RAW optimization algorithm (TAROA) to adapt the RAW parameters in real time based on the current traffic conditions, optimized for sensor networks in which each sensor transmits packets with a certain (predictable) frequency and may change the transmission frequency over time. The TAROA algorithm is executed at each target beacon transmission time (TBTT), and it first estimates the packet transmission interval of each station only based on packet transmission information obtained by access point (AP) during the last beacon interval. Then, TAROA determines the RAW parameters and assigns stations to RAW slots based on this estimated transmission frequency. The simulation results show that, compared to enhanced distributed channel access/distributed coordination function (EDCA/DCF), the TAROA algorithm can highly improve the performance of IEEE 802.11ah dense networks in terms of throughput, especially when hidden nodes exist, although it does not always achieve better latency performance. This paper contributes with a practical approach to optimizing RAW grouping under dynamic traffic in real time, which is a major leap towards applying RAW mechanism in real-life IoT networks. PMID:28677617

  6. Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah.

    PubMed

    Tian, Le; Khorov, Evgeny; Latré, Steven; Famaey, Jeroen

    2017-07-04

    IEEE 802.11ah, marketed as Wi-Fi HaLow, extends Wi-Fi to the sub-1 GHz spectrum. Through a number of physical layer (PHY) and media access control (MAC) optimizations, it aims to bring greatly increased range, energy-efficiency, and scalability. This makes 802.11ah the perfect candidate for providing connectivity to Internet of Things (IoT) devices. One of these new features, referred to as the Restricted Access Window (RAW), focuses on improving scalability in highly dense deployments. RAW divides stations into groups and reduces contention and collisions by only allowing channel access to one group at a time. However, the standard does not dictate how to determine the optimal RAW grouping parameters. The optimal parameters depend on the current network conditions, and it has been shown that incorrect configuration severely impacts throughput, latency and energy efficiency. In this paper, we propose a traffic-adaptive RAW optimization algorithm (TAROA) to adapt the RAW parameters in real time based on the current traffic conditions, optimized for sensor networks in which each sensor transmits packets with a certain (predictable) frequency and may change the transmission frequency over time. The TAROA algorithm is executed at each target beacon transmission time (TBTT), and it first estimates the packet transmission interval of each station only based on packet transmission information obtained by access point (AP) during the last beacon interval. Then, TAROA determines the RAW parameters and assigns stations to RAW slots based on this estimated transmission frequency. The simulation results show that, compared to enhanced distributed channel access/distributed coordination function (EDCA/DCF), the TAROA algorithm can highly improve the performance of IEEE 802.11ah dense networks in terms of throughput, especially when hidden nodes exist, although it does not always achieve better latency performance. This paper contributes with a practical approach to optimizing RAW grouping under dynamic traffic in real time, which is a major leap towards applying RAW mechanism in real-life IoT networks.

  7. Traffic management mechanism for intranets with available-bit-rate access to the Internet

    NASA Astrophysics Data System (ADS)

    Hassan, Mahbub; Sirisena, Harsha R.; Atiquzzaman, Mohammed

    1997-10-01

    The design of a traffic management mechanism for intranets connected to the Internet via an available bit rate access- link is presented. Selection of control parameters for this mechanism for optimum performance is shown through analysis. An estimate for packet loss probability at the access- gateway is derived for random fluctuation of available bit rate of the access-link. Some implementation strategies of this mechanism in the standard intranet protocol stack are also suggested.

  8. A QoS scheme for a congestion core network based on dissimilar QoS structures in smart-phone environments.

    PubMed

    Hong, Sung-Ryong; Na, Wonshik; Kang, Jang-Mook

    2010-01-01

    This study suggests an approach to effective transmission of multimedia content in a rapidly changing Internet environment including smart-phones. Guaranteeing QoS in networks is currently an important research topic. When transmitting Assured Forwarding (AF) packets in a Multi-DiffServ network environment, network A may assign priority in an order AF1, AF2, AF3 and AF4; on the other hand, network B may reverse the order to a priority AF4, AF3, AF2 and AF1. In this case, the AF1 packets that received the best quality of service in network A will receive the lowest in network B, which may result in dropping of packets in network B and vice versa. This study suggests a way to guarantee QoS between hosts by minimizing the loss of AF packet class when one network transmits AF class packets to another network with differing principles. It is expected that QoS guarantees and their experimental value may be utilized as principles which can be applied to various mobile-web environments based on smart-phones.

  9. A QoS Scheme for a Congestion Core Network Based on Dissimilar QoS Structures in Smart-Phone Environments

    PubMed Central

    Hong, Sung-Ryong; Na, Wonshik; Kang, Jang-Mook

    2010-01-01

    This study suggests an approach to effective transmission of multimedia content in a rapidly changing Internet environment including smart-phones. Guaranteeing QoS in networks is currently an important research topic. When transmitting Assured Forwarding (AF) packets in a Multi-DiffServ network environment, network A may assign priority in an order AF1, AF2, AF3 and AF4; on the other hand, network B may reverse the order to a priority AF4, AF3, AF2 and AF1. In this case, the AF1 packets that received the best quality of service in network A will receive the lowest in network B, which may result in dropping of packets in network B and vice versa. This study suggests a way to guarantee QoS between hosts by minimizing the loss of AF packet class when one network transmits AF class packets to another network with differing principles. It is expected that QoS guarantees and their experimental value may be utilized as principles which can be applied to various mobile-web environments based on smart-phones. PMID:22163453

  10. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  11. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1995-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.

  12. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    NASA Astrophysics Data System (ADS)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  13. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules.

    PubMed

    Huang, Jiayu; Liu, Shu; Zhang, Dong H; Krems, Roman V

    2018-04-06

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  14. Hybridization effects on wave packet dynamics in topological insulator thin films.

    PubMed

    Yar, Abdullah; Naeem, Muhammad; Khan, Safi Ullah; Sabeeh, Kashif

    2017-11-22

    Theoretical study of electron wave packet dynamics in topological insulator (TI) thin films is presented. We have investigated real space trajectories and spin dynamics of electron wave packets in TI thin films. Our focus is on the role of hybridization between the electronic states of the two surfaces. This allows us to access the crossover regime of a thick film with no hybridization to a thin film with finite hybridization. We show that the electron wave packet undergoes side-jump motion in addition to zitterbewegung. The oscillation frequency of zitterbewegung can be tuned by the strength of hybridization, which in turn can be tuned by the thickness of the film. We find that the spin expectations also exhibit zitterbewegung tunable by hybridization. We also show that it is possible to obtain persistent zitterbewegung, oscillations which do not decay, in both the real space trajectories as well as spin dynamics. The zitterbewegung oscillation frequency in TI thin films falls in a parameter regime where it might be possible to observe these effects using present day experimental techniques.

  15. WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Lorenz, Ulf

    2017-04-01

    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.

  16. Evolving PSTN to NGN

    NASA Astrophysics Data System (ADS)

    Wu, Liang T.

    2004-04-01

    The concept of Next Generation Network (NGN) was conceived around 1998 as an integrated solution to combine the quality and features of the PSTN with the low cost and routing flexibility of the Internet to provide a single infrastructure for the future public network. This carrier grade Internet solution calls for the creation of a consolidated, packet transport and switching infrastructure and the development of a flexible, open, software switch (softswitch) to handle voice telephony as well as multimedia services. Almost all the telecom equipment manufacturers as well as some Internet equipment vendors immediately subscribed to this vision and joined the race to create convergent products for the NGN market.

  17. A dynamic routing strategy with limited buffer on scale-free network

    NASA Astrophysics Data System (ADS)

    Wang, Yufei; Liu, Feng

    2016-04-01

    In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.

  18. OSI Network-layer Abstraction: Analysis of Simulation Dynamics and Performance Indicators

    NASA Astrophysics Data System (ADS)

    Lawniczak, Anna T.; Gerisch, Alf; Di Stefano, Bruno

    2005-06-01

    The Open Systems Interconnection (OSI) reference model provides a conceptual framework for communication among computers in a data communication network. The Network Layer of this model is responsible for the routing and forwarding of packets of data. We investigate the OSI Network Layer and develop an abstraction suitable for the study of various network performance indicators, e.g. throughput, average packet delay, average packet speed, average packet path-length, etc. We investigate how the network dynamics and the network performance indicators are affected by various routing algorithms and by the addition of randomly generated links into a regular network connection topology of fixed size. We observe that the network dynamics is not simply the sum of effects resulting from adding individual links to the connection topology but rather is governed nonlinearly by the complex interactions caused by the existence of all randomly added and already existing links in the network. Data for our study was gathered using Netzwerk-1, a C++ simulation tool that we developed for our abstraction.

  19. A double candidate survivable routing protocol for HAP network

    NASA Astrophysics Data System (ADS)

    He, Panfeng; Li, Chunyue; Ni, Shuyan

    2016-11-01

    To improve HAP network invulnerability, and at the same time considering the quasi-dynamic topology in HAP network, a simple and reliable routing protocol is proposed in the paper. The protocol firstly uses a double-candidate strategy for the next-node select to provide better robustness. Then during the maintenance stage, short hello packets instead of long routing packets are used only to check link connectivity in the quasi-dynamic HAP network. The route maintenance scheme based on short hello packets can greatly reduce link spending. Simulation results based on OPNET demonstrate the effectiveness of the proposed routing protocol.

  20. Wave packet dynamics for a system with position and time-dependent effective mass in an infinite square well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vubangsi, M.; Tchoffo, M.; Fai, L. C.

    The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .

  1. Mixed H2/H∞ distributed robust model predictive control for polytopic uncertain systems subject to actuator saturation and missing measurements

    NASA Astrophysics Data System (ADS)

    Song, Yan; Fang, Xiaosheng; Diao, Qingda

    2016-03-01

    In this paper, we discuss the mixed H2/H∞ distributed robust model predictive control problem for polytopic uncertain systems subject to randomly occurring actuator saturation and packet loss. The global system is decomposed into several subsystems, and all the subsystems are connected by a fixed topology network, which is the definition for the packet loss among the subsystems. To better use the successfully transmitted information via Internet, both the phenomena of actuator saturation and packet loss resulting from the limitation of the communication bandwidth are taken into consideration. A novel distributed controller model is established to account for the actuator saturation and packet loss in a unified representation by using two sets of Bernoulli distributed white sequences with known conditional probabilities. With the nonlinear feedback control law represented by the convex hull of a group of linear feedback laws, the distributed controllers for subsystems are obtained by solving an linear matrix inequality (LMI) optimisation problem. Finally, numerical studies demonstrate the effectiveness of the proposed techniques.

  2. Numerical and experimental study of a high port-density WDM optical packet switch architecture for data centers.

    PubMed

    Di Lucente, S; Luo, J; Centelles, R Pueyo; Rohit, A; Zou, S; Williams, K A; Dorren, H J S; Calabretta, N

    2013-01-14

    Data centers have to sustain the rapid growth of data traffic due to the increasing demand of bandwidth-hungry internet services. The current intra-data center fat tree topology causes communication bottlenecks in the server interaction process, power-hungry O-E-O conversions that limit the minimum latency and the power efficiency of these systems. In this paper we numerically and experimentally investigate an optical packet switch architecture with modular structure and highly distributed control that allow configuration times in the order of nanoseconds. Numerical results indicate that the candidate architecture scaled over 4000 ports, provides an overall throughput over 50 Tb/s and a packet loss rate below 10(-6) while assuring sub-microsecond latency. We present experimental results that demonstrate the feasibility of a 16x16 optical packet switch based on parallel 1x4 integrated optical cross-connect modules. Error-free operations can be achieved with 4 dB penalty while the overall energy consumption is of 66 pJ/b. Based on those results, we discuss feasibility to scale the architecture to a much larger port count.

  3. This Is Not Your Father's Bookmobile.

    ERIC Educational Resources Information Center

    King, Bobby; Shanks, Todd

    2000-01-01

    Describes the mobile library service in Memphis/ Shelby County (Tennessee) that was designed to meet the needs of non-English speaking residents. Discusses identifying target populations; funding; technology to provide access to the Internet; English as Second Language and multicultural Web sites; and cellular digital packet data (CDPD) and…

  4. Estimating Bottleneck Bandwidth using TCP

    NASA Technical Reports Server (NTRS)

    Allman, Mark

    1998-01-01

    Various issues associated with estimating bottleneck bandwidth using TCP are presented in viewgraph form. Specific topics include: 1) Why TCP is wanted to estimate the bottleneck bandwidth; 2) Setting ssthresh to an appropriate value to reduce loss; 3) Possible packet-pair solutions; and 4) Preliminary results: ACTS and the Internet.

  5. A Proposal for IoT Dynamic Routes Selection Based on Contextual Information

    PubMed Central

    Filho, Raimir Holanda; Rabelo, Ricardo de A. L.; Sousa, Natanael de C.; Filho, José C. C. L. S.

    2018-01-01

    The Internet of Things (IoT) is based on interconnection of intelligent and addressable devices, allowing their autonomy and proactive behavior with Internet connectivity. Data dissemination in IoT usually depends on the application and requires context-aware routing protocols that must include auto-configuration features (which adapt the behavior of the network at runtime, based on context information). This paper proposes an approach for IoT route selection using fuzzy logic in order to attain the requirements of specific applications. In this case, fuzzy logic is used to translate in math terms the imprecise information expressed by a set of linguistic rules. For this purpose, four Objective Functions (OFs) are proposed for the Routing Protocol for Low Power and Loss Networks (RPL); such OFs are dynamically selected based on context information. The aforementioned OFs are generated from the fusion of the following metrics: Expected Transmission Count (ETX), Number of Hops (NH) and Energy Consumed (EC). The experiments performed through simulation, associated with the statistical data analysis, conclude that this proposal provides high reliability by successfully delivering nearly 100% of data packets, low delay for data delivery and increase in QoS. In addition, an 30% improvement is attained in the network life time when using one of proposed objective function, keeping the devices alive for longer duration. PMID:29373499

  6. Analysing efficiency of IPv6 packet transmission over 6LoWPAN network

    NASA Astrophysics Data System (ADS)

    Kozłowski, Adam; Sosnowski, Janusz

    2017-08-01

    Practical proliferation of Internet of Things (IoT) concept depends upon communication efficiency in the related network. In the paper we outline basic features of wireless communication protocols used in IoT and concentrate on analysing communication overheads. In particular, we discuss the impact of IPv6 packet length on 6LoWPAN network operation with physical and MAC layer defined by IEEE 802.15.4 standard. The presented analysis methodology is useful in estimation of the total goodput (throughput at the application level) and energy consumptions within the whole traffic model which are the crucial features of IoT networks.

  7. Multicasting in Wireless Communications (Ad-Hoc Networks): Comparison against a Tree-Based Approach

    NASA Astrophysics Data System (ADS)

    Rizos, G. E.; Vasiliadis, D. C.

    2007-12-01

    We examine on-demand multicasting in ad hoc networks. The Core Assisted Mesh Protocol (CAMP) is a well-known protocol for multicast routing in ad-hoc networks, generalizing the notion of core-based trees employed for internet multicasting into multicast meshes that have much richer connectivity than trees. On the other hand, wireless tree-based multicast routing protocols use much simpler structures for determining route paths, using only parent-child relationships. In this work, we compare the performance of the CAMP protocol against the performance of wireless tree-based multicast routing protocols, in terms of two important factors, namely packet delay and ratio of dropped packets.

  8. Development of optical packet and circuit integrated ring network testbed.

    PubMed

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  9. Dynamical jumping real-time fault-tolerant routing protocol for wireless sensor networks.

    PubMed

    Wu, Guowei; Lin, Chi; Xia, Feng; Yao, Lin; Zhang, He; Liu, Bing

    2010-01-01

    In time-critical wireless sensor network (WSN) applications, a high degree of reliability is commonly required. A dynamical jumping real-time fault-tolerant routing protocol (DMRF) is proposed in this paper. Each node utilizes the remaining transmission time of the data packets and the state of the forwarding candidate node set to dynamically choose the next hop. Once node failure, network congestion or void region occurs, the transmission mode will switch to jumping transmission mode, which can reduce the transmission time delay, guaranteeing the data packets to be sent to the destination node within the specified time limit. By using feedback mechanism, each node dynamically adjusts the jumping probabilities to increase the ratio of successful transmission. Simulation results show that DMRF can not only efficiently reduce the effects of failure nodes, congestion and void region, but also yield higher ratio of successful transmission, smaller transmission delay and reduced number of control packets.

  10. Scalable, high-capacity optical switches for Internet routers and moving platforms

    NASA Astrophysics Data System (ADS)

    Joe, In-Sung

    Internet traffic nearly doubles every year, and we need faster routers with higher ports count, yet lower electrical power consumption. Current internet routers use electrical switches that consume large amounts of electrical power to operate at high data rates. These internet routers dissipate ˜ 10kW per rack, and their capacity is limited by cooling constraints. The power consumption is also critical for moving platforms. As avionics advance, the demand for larger capacity networks increases. Optical fibers are already chosen for high speed data transmission in advanced aircraft. In optical communication systems, integrated passive optical components, such as Array Waveguide Gratings (AWGs), have provided larger capacity with lower power consumption, because minimal electrical power is required for their operation. In addition, compact, wavelength-tunable semiconductor lasers with wide tuning ranges that can switch their wavelengths in tens of nanoseconds have been demonstrated. Here we present a wavelength-selective optical packet switch based on Waveguide Grating Routers (WGRs), passive splitters, and combiners. Tunable lasers on the transmitter side are the only active switching elements. The WGR is operated on multiple Free Spectral Ranges (FSRs) to achieve increased port count and switching capacity while maintaining strict-sense, non-blocking operation. Switching times of less than 24ns between two wavelengths covering three FSRs is demonstrated experimentally. The electrical power consumption, size, weight, and cost of our optical switch is compared with those of conventional electrical switches, showing substantial improvements at large throughputs (˜2 Tb/s full duplex). A revised switch design that does not suffer optical loss from star couplers is proposed. This switch design uses only WGRs, and it is suitable for networks with stringent power budgets. The burst nature of the optical packet transmission requires clock recovery for every incoming packet, and conventional continuous-mode receivers are not suitable for this application. An Embedded Clock Transport (ECT) technique is adopted here. The ECT combines a clock tone with the data payload before the transmission. Simple band pass filtering can extract the transmitted clock tone, and low pass filtering can recover the data. Error-free transmissions at 2.488 Gb/s with ˜16 ns clock recovery time were demonstrated.

  11. An infrastructure with a unified control plane to integrate IP into optical metro networks to provide flexible and intelligent bandwidth on demand for cloud computing

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hall, Trevor

    2012-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.

  12. Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozel, Omur; Weekrakkody, Sean; Sinopoli, Bruno

    Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. Withmore » the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.« less

  13. Spatial Reuse through Dynamic Power and Routing Control in Common-Channel Random-Access Packet Radio Networks

    DTIC Science & Technology

    1988-08-01

    routing at the network layer. Methods of implementing dynamic power control at the link la -er on an individual packet- by-packe transmission basis are...versions of the simulators that were used to obtain many of the results. Vida Pitman of Rockwell provided an appreciated review of the grammar and style of...155 R EFER EN C ES

  14. Priority-based methods for reducing the impact of packet loss on HEVC encoded video streams

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2013-02-01

    The rapid growth in the use of video streaming over IP networks has outstripped the rate at which new network infrastructure has been deployed. These bandwidth-hungry applications now comprise a significant part of all Internet traffic and present major challenges for network service providers. The situation is more acute in mobile networks where the available bandwidth is often limited. Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently on track for completion in 2013. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC) for the same quality. However, there has been very little published research on HEVC streaming or the challenges of delivering HEVC streams in resource-constrained network environments. In this paper we consider the problem of adapting an HEVC encoded video stream to meet the bandwidth limitation in a mobile networks environment. Video sequences were encoded using the Test Model under Consideration (TMuC HM6) for HEVC. Network abstraction layers (NAL) units were packetized, on a one NAL unit per RTP packet basis, and transmitted over a realistic hybrid wired/wireless testbed configured with dynamically changing network path conditions and multiple independent network paths from the streamer to the client. Two different schemes for the prioritisation of RTP packets, based on the NAL units they contain, have been implemented and empirically compared using a range of video sequences, encoder configurations, bandwidths and network topologies. In the first prioritisation method the importance of an RTP packet was determined by the type of picture and the temporal switching point information carried in the NAL unit header. Packets containing parameter set NAL units and video coding layer (VCL) NAL units of the instantaneous decoder refresh (IDR) and the clean random access (CRA) pictures were given the highest priority followed by NAL units containing pictures used as reference pictures from which others can be predicted. The second method assigned a priority to each NAL unit based on the rate-distortion cost of the VCL coding units contained in the NAL unit. The sum of the rate-distortion costs of each coding unit contained in a NAL unit was used as the priority weighting. The preliminary results of extensive experiments have shown that all three schemes offered an improvement in PSNR, when comparing original and decoded received streams, over uncontrolled packet loss. Using the first method consistently delivered a significant average improvement of 0.97dB over the uncontrolled scenario while the second method provided a measurable, but less consistent, improvement across the range of testing conditions and encoder configurations.

  15. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  16. A scheme for synchronizing clocks connected by a packet communication network

    NASA Astrophysics Data System (ADS)

    dos Santos, R. V.; Monteiro, L. H. A.

    2012-07-01

    Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values.

  17. Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets

    PubMed Central

    Anh, Khuong Quoc; Choo, Hyunseung

    2017-01-01

    Mobile IP allows for location-independent routing of IP datagrams on the Internet. Mobile IP specifies how a mobile node (MN) registers with its home agent and how the home agent routes datagrams to the MN through the tunnel. Current Mobile IP protocols have difficulties meeting the stringent handover delay requirements of future wireless networks. Fast handover for Proxy Mobile IPv6 (FPMIPv6) is used to resolve handover latency and packet loss problems that occur in the Proxy Mobile IPv6 (PMIPv6) protocol. However, while implementing the FPMIPv6 scheme in a testbed, we encounter the out-of-order packet (OoOP) problem. The cause of this problem is the existence of two paths for data transmitted from a correspondent node (CN) to an MN. Since the problem affects the quality of service (QoS) of the network and the performance of the MN, we propose a new scheme using the last packet marker and packet buffering to solve this problem in FPMIPv6. The new Mobile Access Gateway (MAG) can control and deliver the data transmitted via the old path or the new path to an MN in order, using the last packet marker to notify the end of the data delivery in the old path and the packet buffering for holding the data delivered in the new path. We implement both the proposed scheme and FPMIPv6 in a testbed as a real network environment to demonstrate the correctness, cost effectiveness, and performance of the proposed scheme. A performance evaluation reveals that the proposed scheme can handle the OoOP problem efficiently. PMID:28968450

  18. Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets.

    PubMed

    Kang, Byungseok; Anh, Khuong Quoc; Choo, Hyunseung

    2017-01-01

    Mobile IP allows for location-independent routing of IP datagrams on the Internet. Mobile IP specifies how a mobile node (MN) registers with its home agent and how the home agent routes datagrams to the MN through the tunnel. Current Mobile IP protocols have difficulties meeting the stringent handover delay requirements of future wireless networks. Fast handover for Proxy Mobile IPv6 (FPMIPv6) is used to resolve handover latency and packet loss problems that occur in the Proxy Mobile IPv6 (PMIPv6) protocol. However, while implementing the FPMIPv6 scheme in a testbed, we encounter the out-of-order packet (OoOP) problem. The cause of this problem is the existence of two paths for data transmitted from a correspondent node (CN) to an MN. Since the problem affects the quality of service (QoS) of the network and the performance of the MN, we propose a new scheme using the last packet marker and packet buffering to solve this problem in FPMIPv6. The new Mobile Access Gateway (MAG) can control and deliver the data transmitted via the old path or the new path to an MN in order, using the last packet marker to notify the end of the data delivery in the old path and the packet buffering for holding the data delivered in the new path. We implement both the proposed scheme and FPMIPv6 in a testbed as a real network environment to demonstrate the correctness, cost effectiveness, and performance of the proposed scheme. A performance evaluation reveals that the proposed scheme can handle the OoOP problem efficiently.

  19. Monte Carlo wave packet study of negative ion mediated vibrationally inelastic scattering of NO from the metal surface

    NASA Astrophysics Data System (ADS)

    Li, Shenmin; Guo, Hua

    2002-09-01

    The scattering dynamics of vibrationally excited NO from a metal surface is investigated theoretically using a dissipative model that includes both the neutral and negative ion states. The Liouville-von Neumann equation is solved numerically by a Monte Carlo wave packet method, in which the wave packet is allowed to "jump" between the neutral and negative ion states in a stochastic fashion. It is shown that the temporary population of the negative ion state results in significant changes in vibrational dynamics, which eventually lead to vibrationally inelastic scattering of NO. Reasonable agreement with experiment is obtained with empirical potential energy surfaces. In particular, the experimentally observed facile multiquantum relaxation of the vibrationally highly excited NO is reproduced. The simulation also provides interesting insight into the scattering dynamics.

  20. The Nosé–Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughtrie, David J.; Tew, David P.

    2014-05-21

    We have used a generalised coherent state resolution of the identity to map the quantum canonical statistical average for a general system onto a phase-space average over the centre and width parameters of a thawed Gaussian wave packet. We also propose an artificial phase-space density that has the same behaviour as the canonical phase-space density in the low-temperature limit, and have constructed a novel Nosé–Hoover looped chain thermostat that generates this density in conjunction with variational thawed Gaussian wave-packet dynamics. This forms a new platform for evaluating statistical properties of quantum condensed-phase systems that has an explicit connection to themore » time-dependent Schrödinger equation, whilst retaining many of the appealing features of path-integral molecular dynamics.« less

  1. Spatial control of recollision wave packets with attosecond precision.

    PubMed

    Kitzler, Markus; Lezius, Matthias

    2005-12-16

    We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.

  2. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less

  3. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DOE PAGES

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; ...

    2017-05-24

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less

  4. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    NASA Astrophysics Data System (ADS)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco

    2017-05-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.

  5. Performance Analysis of Power Saving Class of Type I for Voice Service in Two-Way Communication in IEEE 802.16e

    NASA Astrophysics Data System (ADS)

    Hwang, Eunju; Kim, Kyung Jae; Choi, Bong Dae

    In IEEE 802.16e, power saving is one of the important issues for battery-powered mobile stations (MSs). We present a performance analysis of power saving class (PSC) of type I in IEEE 802.16e standard for voice over Internet protocol (VoIP) service with silence suppression in two-way communication. On-off pattern of a voice user in two-way communication is characterized by the modified Brady model, which includes short silence gaps less than 200ms and talkspurt periods shorter than 15ms, and so differs from the Brady model. Our analysis of PSC I follows the standard-based procedure for the deactivation of the sleep mode, where a uplink packet arrival during a mutual silence period wakes up the MS immediately while a downlink packet arrival waits to be served until the next listening window. We derive the delay distribution of the first downlink packet arriving during a mutual silence period, and find the dropping probability of downlink packets since a voice packet drops if it is not transmitted within maximum delay constraint. In addition, we calculate the average power consumption under the modified Brady model. Analysis and simulation results show that the sleep mode operation for the MS with VoIP service yields 32 ∼ 39% reduction in the power consumption of the MS. Finally we obtain the optimal initial/final-sleep windows that yield the minimum average power consumption while satisfying QoS constraints on the packet dropping probability and the maximum delay.

  6. A review on transport layer protocol performance for delivering video on an adhoc network

    NASA Astrophysics Data System (ADS)

    Suherman; Suwendri; Al-Akaidi, Marwan

    2017-09-01

    The transport layer protocol is responsible for the end to end data transmission. Transmission control protocol (TCP) provides a reliable connection and user datagram protocol (UDP) offers fast but unguaranteed data transfer. Meanwhile, the 802.11 (wireless fidelity/WiFi) networks have been widely used as internet hotspots. This paper evaluates TCP, TCP variants and UDP performances for video transmission on an adhoc network. The transport protocol - medium access cross-layer is proposed by prioritizing TCP acknowledgement to reduce delay. The NS-2 evaluations show that the average delays increase linearly for all the evaluated protocols and the average packet losses grow logarithmically. UDP produces the lowest transmission delay; 5.4% and 5.8% lower than TCP and TCP variant, but experiences the highest packet loss. Both TCP and TCP Vegas maintain packet loss as low as possible. The proposed cross-layer successfully decreases TCP and TCP Vegas delay about 0.12 % and 0.15%, although losses remain similar.

  7. Assessment of spare reliability for multi-state computer networks within tolerable packet unreliability

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Kuei; Huang, Cheng-Fu

    2015-04-01

    From a quality of service viewpoint, the transmission packet unreliability and transmission time are both critical performance indicators in a computer system when assessing the Internet quality for supervisors and customers. A computer system is usually modelled as a network topology where each branch denotes a transmission medium and each vertex represents a station of servers. Almost every branch has multiple capacities/states due to failure, partial failure, maintenance, etc. This type of network is known as a multi-state computer network (MSCN). This paper proposes an efficient algorithm that computes the system reliability, i.e., the probability that a specified amount of data can be sent through k (k ≥ 2) disjoint minimal paths within both the tolerable packet unreliability and time threshold. Furthermore, two routing schemes are established in advance to indicate the main and spare minimal paths to increase the system reliability (referred to as spare reliability). Thus, the spare reliability can be readily computed according to the routing scheme.

  8. Femtosecond Dynamics of the Photo-Induced Lattice Rearrangements in Quasi-One Halogen-Bridged Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Suemoto, Tohru; Tomimoto, Shinichi; Matsuoka, Taira

    Recent developments in femtosecond dynamics of the photoexcited state in quasi-one-dimensional platinum complexes [Pt(en)2][Pt(en)2X2] (ClO4)4 with X = Cl, Br and I are reviewed. The experimental results of time-resolved luminescence spectroscopy based on up-conversion technique are presented and analyzed in terms of a theory of wave-packet motion. An attempt to make a movie of wave-packet motion is mentioned. In Sec. 1, a brief introduction to the dynamics of the excited states in quasi-one-dimensional platinum complexes is given. It is stressed that this system can be a good model system for investigating the photo-induced structural phase transition. In order to describe a one-dimensional chain consisting of metal ions and halogen ions, the extended Peierls-Hubbard model is introduced in Sec. 2. The theoretical model of the relaxation dynamics in the excited states with a strong electron-lattice coupling is given in Sec. 3. The model is based on the interaction mode, which is appropriate for understanding the vibrational relaxation of localized centers in solids. Experimental backgrounds with some historical survey are given in Sec. 4. The recent experimental results of time-resolved luminescence for Pt-Cl, Pt-Br and Pt-I systems are presented in Secs. 5 to 8. The main result contains the direct observation of the wave-packet oscillation in the self-trapped excitons. The relaxation process observed in experiments has been successfully interpreted in terms of the model based on the interaction mode and the dynamical aspects are compared with the transient absorption measurements. The lifetime of the STE is shorter in Pt-X with heavier halogen ions. This behavior is discussed in relation with the non-radiative process leading to lattice rearrangements. In Secs. 9 and 10, visualization of the wave-packet form is presented. The basic behavior of the wave-packet is well understood in terms of a harmonic oscillator model. A non-exponential decay profiles are revealed from the center of gravity motion of the wave-packets. The exciton localization process is also discussed in the last section.

  9. Dynamics of a quasiparticle in the α-T3 model: role of pseudospin polarization and transverse magnetic field on zitterbewegung

    NASA Astrophysics Data System (ADS)

    Biswas, Tutul; Kanti Ghosh, Tarun

    2018-02-01

    We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for 0<α<1 the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for α=0 and α=1 . It is also unveiled that the frequency of ZB corresponding to α=1 gets exactly half of that corresponding to the α=0 case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.

  10. Dynamics of a quasiparticle in the α-T3 model: role of pseudospin polarization and transverse magnetic field on zitterbewegung.

    PubMed

    Biswas, Tutul; Kanti Ghosh, Tarun

    2018-01-22

    We consider the α-T 3 model which provides a smooth crossover between the honeycomb lattice with pseudospin 1/2 and the dice lattice with pseudospin 1 through the variation of a parameter α. We study the dynamics of a wave packet representing a quasiparticle in the α-T 3 model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient zitterbewegung (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter α i.e. for [Formula: see text] the resulting ZB consists of two distinct frequencies when the wave packet was located initially in rim site. However, the wave packet exhibits single frequency ZB for [Formula: see text] and [Formula: see text]. It is also unveiled that the frequency of ZB corresponding to [Formula: see text] gets exactly half of that corresponding to the [Formula: see text] case. On the other hand, when the initial wave packet was in hub site, the ZB consists of only one frequency for all values of α. Using stationary phase approximation, we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary, the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of a large number of Landau energy levels, the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter α.

  11. Least mean square fourth based microgrid state estimation algorithm using the internet of things technology.

    PubMed

    Rana, Md Masud

    2017-01-01

    This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations.

  12. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes

    PubMed Central

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-01-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113

  13. Ship-Shore Packet Switched Communications System.

    DTIC Science & Technology

    1986-06-01

    PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If applicable ) Naval Postgraduate School 54 Naval Postgraduate School 6c...OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable ) 8c ADDRESS (City, State, and ZIPCode) 10 SOURCE OF FUNDING...level acknowledgement system. 37 Network Protocol Application P re sen tation Session ____ ____ ____ ___Internet TranportProtocol Network

  14. A classical phase r-centroid approach to molecular wave packet dynamics illustrating the danger of using an incomplete set of initial states for thermal averaging

    NASA Astrophysics Data System (ADS)

    Hansson, Tony

    1999-08-01

    An inexpensive semiclassical method to simulate time-resolved pump-probe spectroscopy on molecular wave packets is applied to NaK molecules at high temperature. The method builds on the introduction of classical phase factors related to the r-centroids for vibronic transitions and assumes instantaneous laser-molecule interaction. All observed quantum mechanical features are reproduced - for short times where experimental data are available even quantitatively. Furthermore, it is shown that fully quantum dynamical molecular wave packet calculations on molecules at elevated temperatures, which do not include all rovibrational states, must be regarded with caution, as they easily might yield even qualitatively incorrect results.

  15. Hierarchical Organization for Large, Dynamic Radio Networks.

    DTIC Science & Technology

    1988-01-01

    January 1985. [3] N. Shacharm and J. Tornow . Future Directions in Packet Radio Technology. In - Proc. of IEEE INFOCOM󈨙, Washington, D.C., 1985. [4] J.J...Freeman and Company, 1979. [7] J. Jubin and J. Tornow . The DARPA Packet Radio Network Protocols. Proceed- inga of the IEEE, 75(1):21-32, January 1987... Tornow . Future Directions in Packet Radio Technology. In Proc. of IEEE INFOCOM󈨙, Washington, D.C., 1985. [28] N. Shacham and J. Westcott. Future

  16. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy.

    PubMed

    Plemmons, Dayne A; Tae Park, Sang; Zewail, Ahmed H; Flannigan, David J

    2014-11-01

    The development of ultrafast electron microscopy (UEM) and variants thereof (e.g., photon-induced near-field electron microscopy, PINEM) has made it possible to image atomic-scale dynamics on the femtosecond timescale. Accessing the femtosecond regime with UEM currently relies on the generation of photoelectrons with an ultrafast laser pulse and operation in a stroboscopic pump-probe fashion. With this approach, temporal resolution is limited mainly by the durations of the pump laser pulse and probe electron packet. The ability to accurately determine the duration of the electron packets, and thus the instrument response function, is critically important for interpretation of dynamics occurring near the temporal resolution limit, in addition to quantifying the effects of the imaging mode. Here, we describe a technique for in situ characterization of ultrashort electron packets that makes use of coupling with photons in the evanescent near-field of the specimen. We show that within the weakly-interacting (i.e., low laser fluence) regime, the zero-loss peak temporal cross-section is precisely the convolution of electron packet and photon pulse profiles. Beyond this regime, we outline the effects of non-linear processes and show that temporal cross-sections of high-order peaks explicitly reveal the electron packet profile, while use of the zero-loss peak becomes increasingly unreliable. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Dimension reduction and multiscaling law through source extraction

    NASA Astrophysics Data System (ADS)

    Capobianco, Enrico

    2003-04-01

    Through the empirical analysis of financial return generating processes one may find features that are common to other research fields, such as internet data from network traffic, physiological studies about human heart beat, speech and sleep recorded time series, geophysics signals, just to mention well-known cases of study. In particular, long range dependence, intermittency, heteroscedasticity are clearly appearing, and consequently power laws and multi-scaling behavior result typical signatures of either the spectral or the time correlation diagnostics. We study these features and the dynamics underlying financial volatility, which can respectively be detected and inferred from high frequency realizations of stock index returns, and show that they vary according to the resolution levels used for both the analysis and the synthesis of the available information. Discovering whether the volatility dynamics are subject to changes in scaling regimes requires the consideration of a model embedding scale-dependent information packets, thus accounting for possible heterogeneous activity occurring in financial markets. Independent component analysis result to be an important tool for reducing the dimension of the problem and calibrating greedy approximation techniques aimed to learn the structure of the underlying volatility.

  18. Analysis of random drop for gateway congestion control. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hashem, Emam Salaheddin

    1989-01-01

    Lately, the growing demand on the Internet has prompted the need for more effective congestion control policies. Currently No Gateway Policy is used to relieve and signal congestion, which leads to unfair service to the individual users and a degradation of overall network performance. Network simulation was used to illustrate the character of Internet congestion and its causes. A newly proposed gateway congestion control policy, called Random Drop, was considered as a promising solution to the pressing problem. Random Drop relieves resource congestion upon buffer overflow by choosing a random packet from the service queue to be dropped. The random choice should result in a drop distribution proportional to the bandwidth distribution among all contending TCP connections, thus applying the necessary fairness. Nonetheless, the simulation experiments demonstrate several shortcomings with this policy. Because Random Drop is a congestion control policy, which is not applied until congestion has already occurred, it usually results in a high drop rate that hurts too many connections including well-behaved ones. Even though the number of packets dropped is different from one connection to another depending on the buffer utilization upon overflow, the TCP recovery overhead is high enough to neutralize these differences, causing unfair congestion penalties. Besides, the drop distribution itself is an inaccurate representation of the average bandwidth distribution, missing much important information about the bandwidth utilization between buffer overflow events. A modification of Random Drop to do congestion avoidance by applying the policy early was also proposed. Early Random Drop has the advantage of avoiding the high drop rate of buffer overflow. The early application of the policy removes the pressure of congestion relief and allows more accurate signaling of congestion. To be used effectively, algorithms for the dynamic adjustment of the parameters of Early Random Drop to suite the current network load must still be developed.

  19. Packet Traffic Dynamics Near Onset of Congestion in Data Communication Network Model

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-05-01

    The dominant technology of data communication networks is the Packet Switching Network (PSN). It is a complex technology organized as various hierarchical layers according to the International Standard Organization (ISO) Open Systems Interconnect (OSI) Reference Model. The Network Layer of the ISO OSI Reference Model is responsible for delivering packets from their sources to their destinations and for dealing with congestion if it arises in a network. Thus, we focus on this layer and present an abstraction of the Network Layer of the ISO OSI Reference Model. Using this abstraction we investigate how onset of traffic congestion is affected for various routing algorithms by changes in network connection topology. We study how aggregate measures of network performance depend on network connection topology and routing. We explore packets traffic spatio-temporal dynamics near the phase transition point from free flow to congestion for various network connection topologies and routing algorithms. We consider static and adaptive routings. We present selected simulation results.

  20. A Design of a Network Model to the Electric Power Trading System Using Web Services

    NASA Astrophysics Data System (ADS)

    Maruo, Tomoaki; Matsumoto, Keinosuke; Mori, Naoki; Kitayama, Masashi; Izumi, Yoshio

    Web services are regarded as a new application paradigm in the world of the Internet. On the other hand, many business models of a power trading system has been proposed to aim at load reduction by consumers cooperating with electric power suppliers in an electric power market. Then, we propose a network model of power trading system using Web service in this paper. The adaptability of Web services to power trading system was checked in the prototype of our network model and we got good results for it. Each server provides functions as a SOAP server, and it is coupled loosely with each other through SOAP. Storing SOAP message in HTTP packet can establish the penetration communication way that is not conscious of a firewall. Switching of a dynamic server is possible by means of rewriting the server point information on WSDL at the time of obstacle generating.

  1. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  2. Lightweight active router-queue management for multimedia networking

    NASA Astrophysics Data System (ADS)

    Parris, Mark; Jeffay, Kevin; Smith, F. D.

    1998-12-01

    The Internet research community is promoting active queue management in routers as a proactive means of addressing congestion in the Internet. Active queue management mechanisms such as Random Early Detection (RED) work well for TCP flows but can fail in the presence of unresponsive UDP flows. Recent proposals extend RED to strongly favor TCP and TCP-like flows and to actively penalize `misbehaving' flows. This is problematic for multimedia flows that, although potentially well-behaved, do not, or can not, satisfy the definition of a TCP-like flow. In this paper we investigate an extension to RED active queue management called Class-Based Thresholds (CBT). The goal of CBT is to reduce congestion in routers and to protect TCP from all UDP flows while also ensuring acceptable throughput and latency for well-behaved UDP flows. CBT attempts to realize a `better than best effort' service for well-behaved multimedia flows that is comparable to that achieved by a packet or link scheduling discipline, however, CBT does this by queue management rather than by scheduling. We present results of experiments comparing our mechanisms to plain RED and to FRED, a variant of RED designed to ensure fair allocation of bandwidth amongst flows. We also compare CBT to a packet scheduling scheme. The experiments show that CBT (1) realizes protection for TCP, and (2) provides throughput and end-to-end latency for tagged UDP flows, that is better than that under FRED and RED and comparable to that achieved by packet scheduling. Moreover CBT is a lighter-weight mechanism than FRED in terms of its state requirements and implementation complexity.

  3. Artificial magnetic-field quenches in synthetic dimensions

    NASA Astrophysics Data System (ADS)

    Yılmaz, F.; Oktel, M. Ö.

    2018-02-01

    Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and final fluxes. Finally, we show that edge states in a thick ribbon are robust under the quench only when the same gap supports an edge state for the final Hamiltonian.

  4. A model with chaotic scattering and reduction of wave packets

    NASA Astrophysics Data System (ADS)

    Guarneri, Italo

    2018-03-01

    Some variants of Smilansky’s model of a particle interacting with harmonic oscillators are examined in the framework of scattering theory. A dynamical proof is given of the existence of wave operators. Analysis of a classical version of the model provides a transparent picture for the spectral transition to which the quantum model owes its renown, and for the underlying dynamical behaviour. The model is thereby classified as an extreme case of chaotic scattering, with aspects related to wave packet reduction and irreversibility.

  5. Universal potential-barrier penetration by initially confined wave packets

    NASA Astrophysics Data System (ADS)

    Granot, Er'El; Marchewka, Avi

    2007-07-01

    The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.

  6. Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis; Wiescher, Michael

    2018-05-01

    A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.

  7. Flow interaction based propagation model and bursty influence behavior analysis of Internet flows

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Yu; Gu, Ren-Tao; Ji, Yue-Feng

    2016-11-01

    QoS (quality of service) fluctuations caused by Internet bursty flows influence the user experience in the Internet, such as the increment of packet loss and transmission time. In this paper, we establish a mathematical model to study the influence propagation behavior of the bursty flow, which is helpful for developing a deep understanding of the network dynamics in the Internet complex system. To intuitively reflect the propagation process, a data flow interaction network with a hierarchical structure is constructed, where the neighbor order is proposed to indicate the neighborhood relationship between the bursty flow and other flows. The influence spreads from the bursty flow to each order of neighbors through flow interactions. As the influence spreads, the bursty flow has negative effects on the odd order neighbors and positive effects on the even order neighbors. The influence intensity of bursty flow decreases sharply between two adjacent orders and the decreasing degree can reach up to dozens of times in the experimental simulation. Moreover, the influence intensity increases significantly when network congestion situation becomes serious, especially for the 1st order neighbors. Network structural factors are considered to make a further study. Simulation results show that the physical network scale expansion can reduce the influence intensity of bursty flow by decreasing the flow distribution density. Furthermore, with the same network scale, the influence intensity in WS small-world networks is 38.18% and 18.40% lower than that in ER random networks and BA scale-free networks, respectively, due to a lower interaction probability between flows. These results indicate that the macro-structural changes such as network scales and styles will affect the inner propagation behaviors of the bursty flow.

  8. Comparing the Effectiveness of On-Line versus In-Person Caregiver Education and Training for Behavioral Regulation in Families of Children with FASD

    ERIC Educational Resources Information Center

    Kable, Julie A.; Coles, Claire D.; Strickland, Dorothy; Taddeo, Elles

    2012-01-01

    Different formats for delivering parent education designed to improve the functioning of children with FASD were evaluated. Participants were randomly assigned to a treatment condition: (1) Community Standard/Informational Packet, (2) Group Workshops, and (3) Internet Training. Overall satisfaction was high for all formats but the Workshop group…

  9. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    PubMed

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  10. Synchronization Control for a Class of Discrete-Time Dynamical Networks With Packet Dropouts: A Coding-Decoding-Based Approach.

    PubMed

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2017-09-06

    The synchronization control problem is investigated for a class of discrete-time dynamical networks with packet dropouts via a coding-decoding-based approach. The data is transmitted through digital communication channels and only the sequence of finite coded signals is sent to the controller. A series of mutually independent Bernoulli distributed random variables is utilized to model the packet dropout phenomenon occurring in the transmissions of coded signals. The purpose of the addressed synchronization control problem is to design a suitable coding-decoding procedure for each node, based on which an efficient decoder-based control protocol is developed to guarantee that the closed-loop network achieves the desired synchronization performance. By applying a modified uniform quantization approach and the Kronecker product technique, criteria for ensuring the detectability of the dynamical network are established by means of the size of the coding alphabet, the coding period and the probability information of packet dropouts. Subsequently, by resorting to the input-to-state stability theory, the desired controller parameter is obtained in terms of the solutions to a certain set of inequality constraints which can be solved effectively via available software packages. Finally, two simulation examples are provided to demonstrate the effectiveness of the obtained results.

  11. Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.

    2018-02-01

    The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.

  12. Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Müller, Björn

    2018-01-01

    We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.

  13. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    PubMed

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  14. 4D multiple-cathode ultrafast electron microscopy

    PubMed Central

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H.

    2014-01-01

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging. PMID:25006261

  15. 4D multiple-cathode ultrafast electron microscopy.

    PubMed

    Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H

    2014-07-22

    Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.

  16. A Cellular Neural Networks Based DiffServ Switch for Satellite Communication Systems

    NASA Astrophysics Data System (ADS)

    Tarchi, Daniele; Fantacci, Romano; Gubellini, Roberto; Pecorella, Tommaso

    2003-07-01

    Recent developments of Internet services and advanced compression methods has revived interest on IP based multimedia satellite communication systems. However a main problem arising here is to guarantee specific Quality of Service (QoS) constraints in order to have good performance for each traffic class.Among various QoS approach used in Internet, recently the DiffServ technique has became the most promising so- lution, mainly for its simplicity with respect to different alternatives. Moreover, in satellite communication systems, DiffServ policy computational capabilities are placed at the edge points (end-to-end philosophy); this is very important for a network constituted by one satellite link because it allows to reduce the implementation complexity of the satellite on-board equipments.The satellite switch under consideration makes use of the Multiple Input Queuing approach. Packets arrived at a switch input are stored in a shared buffer but they are logically ordered in individual queues, one for each possible output link. According to the DiffServ policy, within a same logical queue, packets are reordered in individual sub-queues according to the priority. A suitable implementation of the DiffServ policy based on a Cellular Neural Network (CNN) is proposed in the paper in order to achieve QoS requirements.The CNNs are a set of linear and nonlinear circuits connected among them that allow parallel and asynchronous computation. CNNs are a class of neural networks similar to Hopfield Neural Networks (HNN), but more flexible and suitable for solving the output contention problem, inherent of switching systems, for VLSI implementation.In this paper a CNN has been designed in order to maximize a cost functional, related to the on-board switch through- put and QoS constraints. The initial state for each neural cell is obtained looking at the presence of at least one packet from a certain input logical queue to a specific output line. The input value for each neural cell is a function of priority and length of each input logical queue. The versatility of neural network make feasible to take the best decision for the packet to be delivered to each output satellite beam, in order to meet specific QoS constraints. Numerical results for CNN approach highlights that Neural network convergence within a time slot is guaranteed, and an optimal, or at least near-optimal, solution in terms of cost function is achieved.The proposed system is based on the IETF (Internet Engineering Task Force) recommendations; this means that traffic entering the switching fabric could be marked as Expedited Forward (EF) or Assured Forward (AF), otherwise handled as Best Effort (BE). Two Assured Forward classes with different emission priority have been implemented, taking into account time spent inside the logical queue and its length. Expedited Forward traffic is typical of services to be delivered with the maximum priority, as streaming or interactive services. The packets, belonging to services that need a certain level of priority with low packet loss, are marked as Assured Forward. Best Effort traffic is related to e-mail or file transfer, or other that have not particular QoS requirements. The CNN used to solve conflict situations act as an arbiter for all the output links. Differently from other Multiple Input Queuing approach, where one arbiter for each output line is present, in proposed approach there exist only one arbiter that make the best decision. The selected rule has been defined in order to give priority to packets, according to opportunely defined functionals characteristic of each traffic class, under the constraint that no more than one packet can be delivered to the same output line. The functionals depend on queue length and time spent inside the queue by front packet.The performance of the proposed DiffServ switch has been derived in terms of delay and jitter; buffer occupancy has been analyzed for different configuration, such as a unique common buffer, one buffer for each input line, one buffer for each input line and each priority class.The obtained results highlight an high flexibility of satellite switch with CNN, taking into account that functional used to calculate priority of each queue could be easily changed, without any complexity gain nor change in CNN structure, in order to consider different traffic characteristic. Numerical results show that proposed algorithm outperform the switches based on Multiple Input Queuing, that use strictly priority methods, in terms of delay and jitter. Different buffer size have been also considered in order to analyze packet loss for CNN switch algorithm, comparing different configuration described above.The good behavior of the proposed DiffServ switch has been verified in the case of traffic with pareto distribution for packet length and a geometrical distribution for packet interarrival time, highlighting good performance in terms of delay and jitter. Numerical results also demonstrate the stability of this method for heavy load traffic; in particular maximum permitted load is higher for higher priority classes.

  17. Least mean square fourth based microgrid state estimation algorithm using the internet of things technology

    PubMed Central

    2017-01-01

    This paper proposes an innovative internet of things (IoT) based communication framework for monitoring microgrid under the condition of packet dropouts in measurements. First of all, the microgrid incorporating the renewable distributed energy resources is represented by a state-space model. The IoT embedded wireless sensor network is adopted to sense the system states. Afterwards, the information is transmitted to the energy management system using the communication network. Finally, the least mean square fourth algorithm is explored for estimating the system states. The effectiveness of the developed approach is verified through numerical simulations. PMID:28459848

  18. Dynamics of a quasiparticle in the α-T3 model: Role of pseudospin polarization and transverse magnetic field on zitterbewegung.

    PubMed

    Biswas, Tutul; Ghosh, Tarun Kanti

    2018-01-09

    We consider the $\\alpha$-$T_3$ model which provides a smooth crossover between the honeycomb lattice with pseudospin $1/2$ and the dice lattice with pseudospin $1$ through the variation of a parameter $\\alpha$. We study the dynamics of a wave packet representing a quasiparticle in the $\\alpha$-T$_3$ model with zero and finite transverse magnetic field. For zero field, it is shown that the wave packet undergoes a transient $zitterbewegung$ (ZB). Various features of ZB depending on the initial pseudospin polarization of the wave packet have been revealed. For an intermediate value of the parameter $\\alpha$ i.e. for $0<\\alpha<1$ the resulting ZB consists of two distinct frequencies when the wave packet was located initially in $rim$ site. However, the wave packet exhibits single frequency ZB for $\\alpha=0$ and $\\alpha=1$. It is also unveiled that the frequency of ZB corresponding to $\\alpha=1$ gets exactly half of that corresponding to the $\\alpha=0$ case. On the other hand, when the initial wave packet was in $hub$ site, the ZB consists of only one frequency for all values of $\\alpha$. Using stationary phase approximation we find analytical expression of velocity average which can be used to extract the associated timescale over which the transient nature of ZB persists. On the contrary the wave packet undergoes permanent ZB in presence of a transverse magnetic field. Due to the presence of large number of Landau energy levels the oscillations in ZB appear to be much more complicated. The oscillation pattern depends significantly on the initial pseudospin polarization of the wave packet. Furthermore, it is revealed that the number of the frequency components involved in ZB depends on the parameter $\\alpha$. © 2018 IOP Publishing Ltd.

  19. Excited-State Vibrational Coherence in Perylene Bisimide Probed by Femtosecond Broadband Pump-Probe Spectroscopy.

    PubMed

    Son, Minjung; Park, Kyu Hyung; Yoon, Min-Chul; Kim, Pyosang; Kim, Dongho

    2015-06-18

    Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics.

  20. Kapitza resistance of Si/SiO2 interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen Deng; Aleksandr Chenatynskiy; Marat Khafizov

    2014-02-01

    A phonon wave packet dynamics method is used to characterize the Kapitza resistance of a Si/SiO2 interface in a Si/SiO2/Si heterostructure. By varying the thickness of SiO2 layer sandwiched between two Si layers, we determine the Kapitza resistance for the Si/SiO2 interface from both wave packet dynamics and a direct, non-equilibrium molecular dynamics approach. The good agreement between the two methods indicates that they have each captured the anharmonic phonon scatterings at the interface. Moreover, detailed analysis provides insights as to how individual phonon mode scatters at the interface and their contribution to the Kapitza resistance.

  1. Time-frequency representation of autoionization dynamics in helium

    NASA Astrophysics Data System (ADS)

    Busto, D.; Barreau, L.; Isinger, M.; Turconi, M.; Alexandridi, C.; Harth, A.; Zhong, S.; Squibb, R. J.; Kroon, D.; Plogmaker, S.; Miranda, M.; Jiménez-Galán, Á.; Argenti, L.; Arnold, C. L.; Feifel, R.; Martín, F.; Gisselbrecht, M.; L'Huillier, A.; Salières, P.

    2018-02-01

    Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in light-matter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3+ resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various time-frequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels.

  2. Rethinking Mobile Telephony with the IMP

    DTIC Science & Technology

    2011-01-01

    in the telephony industry, and portions of it such as SS7 or SCTP signaling are packet-switched, deployed mobile telephony access infrastructure is...deployment of wireless LAN technology raises the question of how a mobile telephony system might instead be architected to use wireless LAN access ...and wireless access points has made universal Internet access increasingly convenient. There are clearly barriers to this vision of accessing a

  3. Windrum: a program for monitoring seismic signals in real time

    NASA Astrophysics Data System (ADS)

    Giudicepietro, Flora

    2017-04-01

    Windrum is a program devote to monitor seismic signals arriving from remote stations in real time. Since 2000, the Osservatorio Vesuviano (INGV) uses the first version of Windrum to monitor the seismic activity of Mt. Vesuvius, Campi Flegrei, Ischia and Stromboli volcano. The program has been also used at the Observatory of Bukittinggi (Indonesia), at the offices of the Italian National Civil Protection, at the COA in Stromboli and at the Civil Protection Center of the municipality of Pozzuoli (Napoli, Italy). In addition, the Osservatorio Vesuviano regularly uses Windrum in educational events such as the Festival of Science in Genova (Italy), FuturoRemoto and other events organized by Città della Scienza in Naples (Italy). The program displays the seismic trace of one station on a monitor, using short packet of data (typically 1 or 2 seconds) received through UTC Internet protocol. The data packets are in Trace_buffer format, a native protocol of Earthworm seismic system that is widely used for the data transmission on Internet. Windrum allows the user to visualize 24 hours of signals, to zoom selected windows of data, in order to estimate the duration Magnitude (Md) of an earthquake, in an intercative way, and to generate graphic images for the web. Moreover, Windrum can exchange Internet messages with other copies of the same program to synchronize actions, such as to zoom the same window of data or mark the beginning of an earthquake on all active monitors simultaneously. Originally, in 2000, Windrum was developed in VB6. I have now developed a new version in VB.net, which goes beyond the obsolescence problems that were appearing. The new version supports the decoding of binary packets received by soket in a more flexible way, allowing the generation of graphic images in different formats. In addition, the new version allows a more flexible layout configuration, suitable for use on large screens with high resolution. Over the past 17 years the use of Windrum for visual analysis of the seismic signals of Vesuvius, Campi Flegrei, Ischia and Stromboli has reduced the detection threshold of the events, allowing a detailed analysis of the seismogram in near real time.

  4. A preliminary architecture for building communication software from traffic captures

    NASA Astrophysics Data System (ADS)

    Acosta, Jaime C.; Estrada, Pedro

    2017-05-01

    Security analysts are tasked with identifying and mitigating network service vulnerabilities. A common problem associated with in-depth testing of network protocols is the availability of software that communicates across disparate protocols. Many times, the software required to communicate with these services is not publicly available. Developing this software is a time-consuming undertaking that requires expertise and understanding of the protocol specification. The work described in this paper aims at developing a software package that is capable of automatically creating communication clients by using packet capture (pcap) and TShark dissectors. Currently, our focus is on simple protocols with fixed fields. The methodologies developed as part of this work will extend to other complex protocols such as the Gateway Load Balancing Protocol (GLBP), Port Aggregation Protocol (PAgP), and Open Shortest Path First (OSPF). Thus far, we have architected a modular pipeline for an automatic traffic-based software generator. We start the transformation of captured network traffic by employing TShark to convert packets into a Packet Details Markup Language (PDML) file. The PDML file contains a parsed, textual, representation of the packet data. Then, we extract field data, types, along with inter and intra-packet dependencies. This information is then utilized to construct an XML file that encompasses the protocol state machine and field vocabulary. Finally, this XML is converted into executable code. Using our methodology, and as a starting point, we have succeeded in automatically generating software that communicates with other hosts using an automatically generated Internet Control Message Protocol (ICMP) client program.

  5. Charge transport calculations by a wave-packet dynamical approach using maximally localized Wannier functions based on density functional theory: Application to high-mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2017-01-01

    We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions based on density functional theory including van der Waals interactions. We apply it to the transport properties of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally activated behaviors as a function of the magnitude of external static disorder. We compare the results with those obtained by the conventional band and hopping models and experiments.

  6. CoAP-Based Mobility Management for the Internet of Things

    PubMed Central

    Chun, Seung-Man; Kim, Hyun-Su; Park, Jong-Tae

    2015-01-01

    Most of the current mobility management protocols such as Mobile IP and its variants standardized by the IETF may not be suitable to support mobility management for Web-based applications in an Internet of Things (IoT) environment. This is because the sensor nodes have limited power capacity, usually operating in sleep/wakeup mode in a constrained wireless network. In addition, sometimes the sensor nodes may act as the server using the CoAP protocol in an IoT environment. This makes it difficult for Web clients to properly retrieve the sensing data from the mobile sensor nodes in an IoT environment. In this article, we propose a mobility management protocol, named CoMP, which can effectively retrieve the sensing data of sensor nodes while they are moving. The salient feature of CoMP is that it makes use of the IETF CoAP protocol for mobility management, instead of using Mobile IP. Thus CoMP can eliminates the additional signaling overhead of Mobile IP, provides reliable mobility management, and prevents the packet loss. CoMP employs a separate location management server to keep track of the location of the mobile sensor nodes. In order to prevent the loss of important sensing data during movement, a holding mode of operation has been introduced. All the signaling procedures including discovery, registration, binding and holding have been designed by extending the IETF CoAP protocol. The numerical analysis and simulation have been done for performance evaluation in terms of the handover latency and packet loss. The results show that the proposed CoMP is superior to previous mobility management protocols, i.e., Mobile IPv4/v6 (MIPv4/v6), Hierarchical Mobile IPv4/v6 (HMIPv4/v6), in terms of the handover latency and packet loss. PMID:26151214

  7. Flexible-rate optical packet generation/detection and label swapping for optical label switching networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi

    2017-03-01

    In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.

  8. Limited static and dynamic delivering capacity allocations in scale-free networks

    NASA Astrophysics Data System (ADS)

    Haddou, N. Ben; Ez-Zahraouy, H.; Rachadi, A.

    In traffic networks, it is quite important to assign proper packet delivering capacities to the routers with minimum cost. In this respect, many allocation models based on static and dynamic properties have been proposed. In this paper, we are interested in the impact of limiting the packet delivering capacities already allocated to the routers; each node is assigned a packet delivering capacity limited by the maximal capacity Cmax of the routers. To study the limitation effect, we use two basic delivering capacity allocation models; static delivering capacity allocation (SDCA) and dynamic delivering capacity allocation (DDCA). In the SDCA, the capacity allocated is proportional to the node degree, and for DDCA, it is proportional to its queue length. We have studied and compared the limitation of both allocation models under the shortest path (SP) routing strategy as well as the efficient path (EP) routing protocol. In the SP case, we noted a similarity in the results; the network capacity increases with increasing Cmax. For the EP scheme, the network capacity stops increasing for relatively small packet delivering capability limit Cmax for both allocation strategies. However, it reaches high values under the limited DDCA before the saturation. We also find that in the DDCA case, the network capacity remains constant when the traffic information available to each router was updated after long period times τ.

  9. Geometrical aspects in optical wave-packet dynamics.

    PubMed

    Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto

    2006-12-01

    We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.

  10. Performance of TCP variants over LTE network

    NASA Astrophysics Data System (ADS)

    Nor, Shahrudin Awang; Maulana, Ade Novia

    2016-08-01

    One of the implementation of a wireless network is based on mobile broadband technology Long Term Evolution (LTE). LTE offers a variety of advantages, especially in terms of access speed, capacity, architectural simplicity and ease of implementation, as well as the breadth of choice of the type of user equipment (UE) that can establish the access. The majority of the Internet connections in the world happen using the TCP (Transmission Control Protocol) due to the TCP's reliability in transmitting packets in the network. TCP reliability lies in the ability to control the congestion. TCP was originally designed for wired media, but LTE connected through a wireless medium that is not stable in comparison to wired media. A wide variety of TCP has been made to produce a better performance than its predecessor. In this study, we simulate the performance provided by the TCP NewReno and TCP Vegas based on simulation using network simulator version 2 (ns2). The TCP performance is analyzed in terms of throughput, packet loss and end-to-end delay. In comparing the performance of TCP NewReno and TCP Vegas, the simulation result shows that the throughput of TCP NewReno is slightly higher than TCP Vegas, while TCP Vegas gives significantly better end-to-end delay and packet loss. The analysis of throughput, packet loss and end-to-end delay are made to evaluate the simulation.

  11. Automated Synthesis of Long Communication Delays for Testing

    NASA Technical Reports Server (NTRS)

    Seibert, Marc; McKim, James

    2005-01-01

    Planetary-Ohio Network Emulator (p- ONE) is a computer program for local laboratory testing of high bandwidth data-communication systems subject to long delays in propagation over interplanetary distances. p-ONE is installed on a personal computer connected to two bidirectional Ethernet interfaces, denoted A and B, that represent local-area networks at opposite ends of a long propagation path. Traffic that is to be passed between A and B is encapsulated in IP (Internet Protocol) packets (e.g., User Data Protocol, UDP). Intercepting this traffic between A and B in both directions, p-ONE time-tags each packet and stores it in memory or on the hard disk of the computer for a user-specified interval that equals the propagation delay to be synthesized. At the expiration of its storage time, each such packet is sent to its destination (that is, if it was received from A, it is sent to B, or vice versa). The accuracy of the p-ONE software is very high, with zero packet loss through the system and negligible latency. Optionally, p-ONE can be configured to delay all network traffic to and from all network addresses on each Ethernet interface or to selectively delay traffic between specific addresses or traffic of specific types. p-ONE works well with Linux and is also designed to be compatible with other operating systems.

  12. Enhancing the Quality of Service for Real Time Traffic over Optical Burst Switching (OBS) Networks with Ensuring the Fairness for Other Traffics.

    PubMed

    Al-Shargabi, Mohammed A; Shaikh, Asadullah; Ismail, Abdulsamad S

    2016-01-01

    Optical burst switching (OBS) networks have been attracting much consideration as a promising approach to build the next generation optical Internet. A solution for enhancing the Quality of Service (QoS) for high priority real time traffic over OBS with the fairness among the traffic types is absent in current OBS' QoS schemes. In this paper we present a novel Real Time Quality of Service with Fairness Ratio (RT-QoSFR) scheme that can adapt the burst assembly parameters according to the traffic QoS needs in order to enhance the real time traffic QoS requirements and to ensure the fairness for other traffic. The results show that RT-QoSFR scheme is able to fulfill the real time traffic requirements (end to end delay, and loss rate) ensuring the fairness for other traffics under various conditions such as the type of real time traffic and traffic load. RT-QoSFR can guarantee that the delay of the real time traffic packets does not exceed the maximum packets transfer delay value. Furthermore, it can reduce the real time traffic packets loss, at the same time guarantee the fairness for non real time traffic packets by determining the ratio of real time traffic inside the burst to be 50-60%, 30-40%, and 10-20% for high, normal, and low traffic loads respectively.

  13. Teleeducation and telepathology for open and distance education.

    PubMed

    Szymas, J

    2000-01-01

    Our experience in creating and using telepathology system and multimedia database for education is described. This program packet currently works in the Department of Pathology of University Medical School in Poznan. It is used for self-education, tests, services and for the examinations in pathology, i.e., for dental students and for medical students in terms of self-education and individual examination services. The system is implemented on microcomputers compatible with IBM PC and works in the network system Netware 5.1. Some modules are available through the Internet. The program packet described here accomplishes the TELEMIC system for telepathology, ASSISTANT, which is the administrator for the databases, and EXAMINATOR, which is the executive program. The realization of multi-user module allows students to work on several working areas, on random be chosen different sets of problems contemporary. The possibility to work in the exercise mode will image files and questions is an attractive way for self-education. The standard format of the notation files enables to elaborate the results by commercial statistic packets in order to estimate the scale of answers and to find correlation between the obtained results. The method of multi-criterion grading excludes unlimited mutual compensation of the criteria, differentiates the importance of particular courses and introduces the quality criteria. The packet is part of the integrated management information system of the department of pathology. Applications for other telepathological systems are presented.

  14. A report on FY06 IPv6 deployment activities and issues at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang

    2006-06-01

    Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. IPv6 deployment in government network backbones has been mandated to occur by 2008. This paper explores the readiness of the Sandia National Laboratories' network backbone to support IPv6, the issues that must be addressed before a deploymentmore » begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint, work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution and Network System Design & Implementation Departments.« less

  15. Selective randomized load balancing and mesh networks with changing demands

    NASA Astrophysics Data System (ADS)

    Shepherd, F. B.; Winzer, P. J.

    2006-05-01

    We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.

  16. Persistent nuclear wave packet oscillation coexistent with incoherent vibrational population at excited F centers in KI.

    PubMed

    Koyama, Takeshi; Takahashi, Youtarou; Nakajima, Makoto; Suemoto, Tohru

    2006-06-14

    We investigated nuclear wave packet dynamics in the excited state of KI F centers at 10 K using time-resolved luminescence spectroscopy. Observed transient spectrum is divided into oscillatory and non-oscillatory components. The former lasts over 11 ps without appreciable damping and is attributed to the oscillation of the wave packet consisting mainly of the A(1g) mode around the center. The non-oscillatory part rises quickly after photo-excitation exhibiting a cooling of incoherent vibrational population. This behavior suggests the fast energy dissipation due to the dephasing of the bulk phonon modes.

  17. Single photon at a configurable quantum-memory-based beam splitter

    NASA Astrophysics Data System (ADS)

    Guo, Xianxin; Mei, Yefeng; Du, Shengwang

    2018-06-01

    We report the demonstration of a configurable coherent quantum-memory-based beam splitter (BS) for a single-photon wave packet making use of laser-cooled 85Rb atoms and electromagnetically induced transparency. The single-photon wave packet is converted (stored) into a collective atomic spin state and later retrieved (split) into two nearly opposing directions. The storage time, beam-splitting ratio, and relative phase are configurable and can be dynamically controlled. We experimentally confirm that such a BS preserves the quantum particle nature of the single photon and the coherence between the two split wave packets of the single photon.

  18. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    NASA Astrophysics Data System (ADS)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  19. End-to-end performance measurement of Internet based medical applications.

    PubMed

    Dev, P; Harris, D; Gutierrez, D; Shah, A; Senger, S

    2002-01-01

    We present a method to obtain an end-to-end characterization of the performance of an application over a network. This method is not dependent on any specific application or type of network. The method requires characterization of network parameters, such as latency and packet loss, between the expected server or client endpoints, as well as characterization of the application's constraints on these parameters. A subjective metric is presented that integrates these characterizations and that operates over a wide range of applications and networks. We believe that this method may be of wide applicability as research and educational applications increasingly make use of computation and data servers that are distributed over the Internet.

  20. Analysis of interference performance of tactical radio network

    NASA Astrophysics Data System (ADS)

    Nie, Hao; Cai, Xiaoxia; Chen, Hong

    2017-08-01

    Mobile Ad hoc network has a strong military background for its development as the core technology of the backbone network of US tactical Internet. And which tactical radio network, is the war in today's tactical use of the Internet more mature form of networking, mainly used in brigade and brigade following forces. This paper analyzes the typical protocol AODV in the tactical radio network, and then carries on the networking. By adding the interference device to the whole network, the battlefield environment is simulated, and then the throughput, delay and packet loss rate are analyzed, and the performance of the whole network and the single node before and after the interference is obtained.

  1. Laser control of electronic transitions of wave packet by using quadratically chirped pulses.

    PubMed

    Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki

    2005-02-22

    An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H(2)O) as examples.

  2. Laser control of electronic transitions of wave packet by using quadratically chirped pulses

    NASA Astrophysics Data System (ADS)

    Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki

    2005-02-01

    An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H2O) as examples.

  3. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    PubMed

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  4. Exploring a QoS Driven Scheduling Approach for Peer-to-Peer Live Streaming Systems with Network Coding

    PubMed Central

    Cui, Laizhong; Lu, Nan; Chen, Fu

    2014-01-01

    Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968

  5. Hybrid Packet-Pheromone-Based Probabilistic Routing for Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Kashkouli Nejad, Keyvan; Shawish, Ahmed; Jiang, Xiaohong; Horiguchi, Susumu

    Ad-Hoc networks are collections of mobile nodes communicating using wireless media without any fixed infrastructure. Minimal configuration and quick deployment make Ad-Hoc networks suitable for emergency situations like natural disasters or military conflicts. The current Ad-Hoc networks can only support either high mobility or high transmission rate at a time because they employ static approaches in their routing schemes. However, due to the continuous expansion of the Ad-Hoc network size, node-mobility and transmission rate, the development of new adaptive and dynamic routing schemes has become crucial. In this paper we propose a new routing scheme to support high transmission rates and high node-mobility simultaneously in a big Ad-Hoc network, by combining a new proposed packet-pheromone-based approach with the Hint Based Probabilistic Protocol (HBPP) for congestion avoidance with dynamic path selection in packet forwarding process. Because of using the available feedback information, the proposed algorithm does not introduce any additional overhead. The extensive simulation-based analysis conducted in this paper indicates that the proposed algorithm offers small packet-latency and achieves a significantly higher delivery probability in comparison with the available Hint-Based Probabilistic Protocol (HBPP).

  6. Self-Learning Power Control in Wireless Sensor Networks.

    PubMed

    Chincoli, Michele; Liotta, Antonio

    2018-01-27

    Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay.

  7. Self-Learning Power Control in Wireless Sensor Networks

    PubMed Central

    Liotta, Antonio

    2018-01-01

    Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay. PMID:29382072

  8. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    PubMed

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  9. Control of chemical dynamics by lasers: theoretical considerations.

    PubMed

    Kondorskiy, Alexey; Nanbu, Shinkoh; Teranishi, Yoshiaki; Nakamura, Hiroki

    2010-06-03

    Theoretical ideas are proposed for laser control of chemical dynamics. There are the following three elementary processes in chemical dynamics: (i) motion of the wave packet on a single adiabatic potential energy surface, (ii) excitation/de-excitation or pump/dump of wave packet, and (iii) nonadiabatic transitions at conical intersections of potential energy surfaces. A variety of chemical dynamics can be controlled, if we can control these three elementary processes as we desire. For (i) we have formulated the semiclassical guided optimal control theory, which can be applied to multidimensional real systems. The quadratic or periodic frequency chirping method can achieve process (ii) with high efficiency close to 100%. Concerning process (iii) mentioned above, the directed momentum method, in which a predetermined momentum vector is given to the initial wave packet, makes it possible to enhance the desired transitions at conical intersections. In addition to these three processes, the intriguing phenomenon of complete reflection in the nonadiabatic-tunneling-type of potential curve crossing can also be used to control a certain class of chemical dynamics. The basic ideas and theoretical formulations are provided for the above-mentioned processes. To demonstrate the effectiveness of these controlling methods, numerical examples are shown by taking the following processes: (a) vibrational photoisomerization of HCN, (b) selective and complete excitation of the fine structure levels of K and Cs atoms, (c) photoconversion of cyclohexadiene to hexatriene, and (d) photodissociation of OHCl to O + HCl.

  10. Proposed imaging of the ultrafast electronic motion in samples using x-ray phase contrast.

    PubMed

    Dixit, Gopal; Slowik, Jan Malte; Santra, Robin

    2013-03-29

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.

  11. Proposed Imaging of the Ultrafast Electronic Motion in Samples using X-Ray Phase Contrast

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Slowik, Jan Malte; Santra, Robin

    2013-03-01

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11 636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the Laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.

  12. SDN architecture for optical packet and circuit integrated networks

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  13. Expansion of a quantum wave packet in a one-dimensional disordered potential in the presence of a uniform bias force

    NASA Astrophysics Data System (ADS)

    Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.

    2018-01-01

    We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.

  14. A Technique for Presenting a Deceptive Dynamic Network Topology

    DTIC Science & Technology

    2013-03-01

    Comment RIP Routing Information Protocol SNOS Systemic Network Obfuscation System SSH Secure Shell TCP Transmission Control Protocol TTL time to live...because it sacrifices elements available in Transmission Control Protocol ( TCP ) such as ordered delivery of packets, delivery confirmation and duplication...avoidance [4]. Of note, some traceroute implementations use TCP packets since they are able to pass through firewalls which are typically configured

  15. Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Torner, Lluis

    2016-12-01

    The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.

  16. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    PubMed

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  17. Inertial Motion Tracking for Inserting Humans into a Networked Synthetic Environment

    DTIC Science & Technology

    2007-08-31

    tracking methods. One method requires markers on the tracked buman body, and other method does not use nmkers. OPTOTRAK from Northem Digital Inc. is a...of using multicasting protocols. Unfortunately, most routers on the Internet are not configured for multicasting. A technique called tunneling is...used to overcome this problem. Tunneling is a software solution that m s on the end point routerslcomputers and allows multicast packets to traverse

  18. Cyber Situational Awareness through Operational Streaming Analysis

    DTIC Science & Technology

    2011-04-07

    Our system makes use of two specific data sources from network traffic: raw packet data and NetFlow connection summary records (de- scribed below...implemented an operational prototype system using the following two data feeds. a) NetFlow Data: Our system processes the NetFlow records of all...Internet gateway traffic for a large enterprise network. It uses the standard Cisco NetFlow version 5 proto- col, which defines a flow as a

  19. On Maximizing the Throughput of Packet Transmission under Energy Constraints.

    PubMed

    Wu, Weiwei; Dai, Guangli; Li, Yan; Shan, Feng

    2018-06-23

    More and more Internet of Things (IoT) wireless devices have been providing ubiquitous services over the recent years. Since most of these devices are powered by batteries, a fundamental trade-off to be addressed is the depleted energy and the achieved data throughput in wireless data transmission. By exploiting the rate-adaptive capacities of wireless devices, most existing works on energy-efficient data transmission try to design rate-adaptive transmission policies to maximize the amount of transmitted data bits under the energy constraints of devices. Such solutions, however, cannot apply to scenarios where data packets have respective deadlines and only integrally transmitted data packets contribute. Thus, this paper introduces a notion of weighted throughput, which measures how much total value of data packets are successfully and integrally transmitted before their own deadlines. By designing efficient rate-adaptive transmission policies, this paper aims to make the best use of the energy and maximize the weighted throughput. What is more challenging but with practical significance, we consider the fading effect of wireless channels in both offline and online scenarios. In the offline scenario, we develop an optimal algorithm that computes the optimal solution in pseudo-polynomial time, which is the best possible solution as the problem undertaken is NP-hard. In the online scenario, we propose an efficient heuristic algorithm based on optimal properties derived for the optimal offline solution. Simulation results validate the efficiency of the proposed algorithm.

  20. Enhancing the Quality of Service for Real Time Traffic over Optical Burst Switching (OBS) Networks with Ensuring the Fairness for Other Traffics

    PubMed Central

    Al-Shargabi, Mohammed A.; Ismail, Abdulsamad S.

    2016-01-01

    Optical burst switching (OBS) networks have been attracting much consideration as a promising approach to build the next generation optical Internet. A solution for enhancing the Quality of Service (QoS) for high priority real time traffic over OBS with the fairness among the traffic types is absent in current OBS’ QoS schemes. In this paper we present a novel Real Time Quality of Service with Fairness Ratio (RT-QoSFR) scheme that can adapt the burst assembly parameters according to the traffic QoS needs in order to enhance the real time traffic QoS requirements and to ensure the fairness for other traffic. The results show that RT-QoSFR scheme is able to fulfill the real time traffic requirements (end to end delay, and loss rate) ensuring the fairness for other traffics under various conditions such as the type of real time traffic and traffic load. RT-QoSFR can guarantee that the delay of the real time traffic packets does not exceed the maximum packets transfer delay value. Furthermore, it can reduce the real time traffic packets loss, at the same time guarantee the fairness for non real time traffic packets by determining the ratio of real time traffic inside the burst to be 50–60%, 30–40%, and 10–20% for high, normal, and low traffic loads respectively. PMID:27583557

  1. Empirical evaluation of H.265/HEVC-based dynamic adaptive video streaming over HTTP (HEVC-DASH)

    NASA Astrophysics Data System (ADS)

    Irondi, Iheanyi; Wang, Qi; Grecos, Christos

    2014-05-01

    Real-time HTTP streaming has gained global popularity for delivering video content over Internet. In particular, the recent MPEG-DASH (Dynamic Adaptive Streaming over HTTP) standard enables on-demand, live, and adaptive Internet streaming in response to network bandwidth fluctuations. Meanwhile, emerging is the new-generation video coding standard, H.265/HEVC (High Efficiency Video Coding) promises to reduce the bandwidth requirement by 50% at the same video quality when compared with the current H.264/AVC standard. However, little existing work has addressed the integration of the DASH and HEVC standards, let alone empirical performance evaluation of such systems. This paper presents an experimental HEVC-DASH system, which is a pull-based adaptive streaming solution that delivers HEVC-coded video content through conventional HTTP servers where the client switches to its desired quality, resolution or bitrate based on the available network bandwidth. Previous studies in DASH have focused on H.264/AVC, whereas we present an empirical evaluation of the HEVC-DASH system by implementing a real-world test bed, which consists of an Apache HTTP Server with GPAC, an MP4Client (GPAC) with open HEVC-based DASH client and a NETEM box in the middle emulating different network conditions. We investigate and analyze the performance of HEVC-DASH by exploring the impact of various network conditions such as packet loss, bandwidth and delay on video quality. Furthermore, we compare the Intra and Random Access profiles of HEVC coding with the Intra profile of H.264/AVC when the correspondingly encoded video is streamed with DASH. Finally, we explore the correlation among the quality metrics and network conditions, and empirically establish under which conditions the different codecs can provide satisfactory performance.

  2. Optimal control of multiphoton ionization dynamics of small alkali aggregates

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger

    2003-11-01

    We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.

  3. A report on IPv6 deployment activities and issues at Sandia National Laboratories:FY2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang

    2007-06-01

    Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. As the emerging Internet network protocol, SNL needs to prepare for its eventual deployment in international, national, customer, and local networks. Additionally, the United States Office of Management and Budget has mandated that IPv6 deployment in governmentmore » network backbones occurs by 2008. This paper explores the readiness of the Sandia National Laboratories network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution, the Communication & Network Systems, and Network System Design & Implementation Departments.« less

  4. Mobile Router Developed and Tested

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2002-01-01

    The NASA Glenn Research Center, under a NASA Space Act Agreement with Cisco Systems, has been performing joint networking research to apply Internet-based technologies and protocols to space-based communications. As a result of this research, NASA performed stringent performance testing of the mobile router, including the interaction of routing and the transport-level protocol. In addition, Cisco Systems developed the mobile router for both commercial and Government markets. The code has become part of the Cisco Systems Internetworking Operating System (IOS) as of release 12.2 (4) T--which will make this capability available to the community at large. The mobile router is software code that resides in a network router and enables entire networks to roam while maintaining connectivity to the Internet. This router code is pertinent to a myriad of applications for both Government and commercial sectors, including the "wireless battlefield." NASA and the Department of Defense will utilize this technology for near-planetary observation and sensing spacecraft. It is also a key enabling technology for aviation-based information applications. Mobile routing will make it possible for information such as weather, air traffic control, voice, and video to be transmitted to aircraft using Internet-based protocols. This technology shows great promise in reducing congested airways and mitigating aviation disasters due to bad weather. The mobile router can also be incorporated into emergency vehicles (such as ambulances and life-flight aircraft) to provide real-time connectivity back to the hospital and health-care experts, enabling the timely application of emergency care. Commercial applications include entertainment services, Internet protocol (IP) telephone, and Internet connectivity for cruise ships, commercial shipping, tour buses, aircraft, and eventually cars. A mobile router, which is based on mobile IP, allows hosts (mobile nodes) to seamlessly "roam" among various IP subnetworks. This is essential in many wireless networks. A mobile router, unlike a mobile IP node, allows entire networks to roam. Hence, a device connected to the mobile router does not need to be a mobile node because the mobile router provides the roaming capabilities. There are three basic elements in the mobile IP: the home agent, the foreign agent, and the mobile node. The home agent is a router on a mobile node's home network that tunnels datagrams for delivery to the mobile node when it is away from home. The foreign agent is a router on a remote network that provides routing services to a registered mobile node. The mobile node is a host or router that changes its point of attachment from one network or subnetwork to another. In mobile routing, virtual communications are maintained by the home agent, which forwards all packets for the mobile networks to the foreign agent. The foreign agent passes the packets to the mobile router, which then forwards the packets to the devices on its networks. As the mobile router moves, it will register with its home agent on its whereabouts via the foreign agent to assure continuous connectivity.

  5. High-Performance CCSDS Encapsulation Service Implementation in FPGA

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Encapsulation Service is a convergence layer between lower-layer space data link framing protocols, such as CCSDS Advanced Orbiting System (AOS), and higher-layer networking protocols, such as CFDP (CCSDS File Delivery Protocol) and Internet Protocol Extension (IPE). CCSDS Encapsulation Service is considered part of the data link layer. The CCSDS AOS implementation is described in the preceding article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS Encapsulation Service needs to be optimized to both reduce energy consumption and operate at a high rate. CCSDS Encapsulation Service has been implemented as an intellectual property core so that the aforementioned problems are solved by way of operating the CCSDS Encapsulation Service inside an FPGA. The CCSDS En capsula tion Service in FPGA implementation consists of both packetizing and de-packetizing features

  6. Hack-proof Synchronization Protocol for Multi-player Online Games

    NASA Astrophysics Data System (ADS)

    Fung, Yeung Siu; Lui, John C. S.

    Modern multi-player online games are popular and attractive because they provide a sense of virtual world experience to users: players can interact with each other on the Internet but perceive a local area network responsiveness. To make this possible, most modern multi-player online games use similar networking architecture that aims to hide the effects of network latency, packet loss, and high variance of delay from players. Because real-time interactivity is a crucial feature from a player's point of view, any delay perceived by a player can affect his/her performance [16]. Therefore, the game client must be able to run and accept new user commands continuously regardless of the condition of the underlying communication channel, and that it will not stop responding because of waiting for update packets from other players. To make this possible, multi-player online games typically use protocols based on "dead-reckoning" [5, 6, 9] which allows loose synchronization between players.

  7. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    NASA Astrophysics Data System (ADS)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  8. FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks

    PubMed Central

    Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A.; Zulkarnain, Zuriati A.

    2016-01-01

    Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol’s semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery. PMID:27338411

  9. FuGeF: A Resource Bound Secure Forwarding Protocol for Wireless Sensor Networks.

    PubMed

    Umar, Idris Abubakar; Mohd Hanapi, Zurina; Sali, A; Zulkarnain, Zuriati A

    2016-06-22

    Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.

  10. Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje

    We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.

  11. Airy Wave Packets Accelerating in Space-Time

    NASA Astrophysics Data System (ADS)

    Kondakci, H. Esat; Abouraddy, Ayman F.

    2018-04-01

    Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.

  12. Implementation of the Algorithm for Congestion control in the Dynamic Circuit Network (DCN)

    NASA Astrophysics Data System (ADS)

    Nalamwar, H. S.; Ivanov, M. A.; Buddhawar, G. U.

    2017-01-01

    Transport Control Protocol (TCP) incast congestion happens when a number of senders work in parallel with the same server where the high bandwidth and low latency network problem occurs. For many data center network applications such as a search engine, heavy traffic is present on such a server. Incast congestion degrades the entire performance as packets are lost at a server side due to buffer overflow, and as a result, the response time becomes longer. In this work, we focus on TCP throughput, round-trip time (RTT), receive window and retransmission. Our method is based on the proactive adjust of the TCP receive window before the packet loss occurs. We aim to avoid the wastage of the bandwidth by adjusting its size as per the number of packets. To avoid the packet loss, the ICTCP algorithm has been implemented in the data center network (ToR).

  13. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    PubMed

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  14. High-order-harmonic generation from solids: The contributions of the Bloch wave packets moving at the group and phase velocities

    NASA Astrophysics Data System (ADS)

    Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin

    2018-01-01

    We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.

  15. Control of propagation of spatially localized polariton wave packets in a Bragg mirror with embedded quantum wells

    NASA Astrophysics Data System (ADS)

    Sedova, I. E.; Chestnov, I. Yu.; Arakelian, S. M.; Kavokin, A. V.; Sedov, E. S.

    2018-01-01

    We considered the nonlinear dynamics of Bragg polaritons in a specially designed stratified semiconductor structure with embedded quantum wells, which possesses a convex dispersion. The model for the ensemble of single periodically arranged quantum wells coupled with the Bragg photon fields has been developed. In particular, the generalized Gross-Pitaevskii equation with the non-parabolic dispersion has been obtained for the Bragg polariton wave function. We revealed a number of dynamical regimes for polariton wave packets resulting from competition of the convex dispersion and the repulsive nonlinearity effects. Among the regimes are spreading, breathing and soliton propagation. When the control parameters including the exciton-photon detuning, the matter-field coupling and the nonlinearity are manipulated, the dynamical regimes switch between themselves.

  16. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for themore » Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.« less

  17. Control of photodissociation and photoionization of the NaI molecule by dynamic Stark effect.

    PubMed

    Han, Yong-Chang; Yuan, Kai-Jun; Hu, Wen-Hui; Cong, Shu-Lin

    2009-01-28

    The diabatic photodissociation and photoionization processes of the NaI molecule are studied theoretically using the quantum wave packet method. A pump laser pulse is used to prepare a dissociation wave packet that propagates through both the ionic channel (NaI-->Na(+)+I(-)) and the covalent channel (NaI-->Na+I). A Stark pulse is used to control the diabatic dissociation dynamics and a probe pulse is employed to ionize the products from the two channels. Based on the first order nonresonant nonperturbative dynamic Stark effect, the dissociation probabilities and the branching ratio of the products from the two channels can be controlled. Moreover the final photoelectron kinetic energy distribution can also be affected by the Stark pulse. The influences of the delay time, intensity, frequency, and carrier-envelope phase of the Stark pulse on the dissociation and ionization dynamics of the NaI molecule are discussed in detail.

  18. Information hiding technique

    NASA Astrophysics Data System (ADS)

    Younger, Michael; Budulas, Peter P.; Young, Stuart H.

    2002-08-01

    Spread spectrum communication techniques have been recognized as a viable method to gain an advantage in interference environments. Many military-oriented systems have been initiated, and some civil systems have been attempted. Spread spectrum allows the ability to hide the signal of interest below or in the noise floor, so as not to be detected. A spread spectrum system is one in which the transmitted signal is spread over a wide frequency band, much wider, in fact, than the minimum bandwidth required to transmit the information being sent. We at Army Research Lab (ARL) are proposing using the same technique on the Internet with port hopping. The information would be transmitted in data packets over multiple ports. The port used would vary per packet or per session basis. This port hopping gives you and the recipients the ability to take datagram's and spread them out over a multitude of ports. This will hide information among the Internet noise. This will allow trusted communications between the transmitter and receiver because of the port coding sequence. There are 64K possible ports to span datagram. Jamming of transmission would be limiting the ability of the sniffer/listener. Also, the listener will find it difficult to use a man in the middle attach, since the data will be spread over multiple ports and only the receiver and transmitter will know the specific port sequencing for the datagram.

  19. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Feng

    2018-03-01

    Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

  20. Ultrafast Chemical Dynamics of Reactions in Beams

    DTIC Science & Technology

    1994-04-14

    Wave Packet Motion in Dissociative Reactions: Up to 40 Picoseconds. P. Cong, A. Mokhtari , and A. H. Zewail Chem. Phys. Lett., 172.109 (1990) 3. Direct...Femtosecond Mapping of the Trajectories in a Chemical Reaction. A. Mokhtari , P. Cong, J. L. Herek, and A. H. Zewail Nature, 348 225 (1990) 4...to 40 Picoseconds. P. Cong. A. Mokhtari , and A. H. Zewail Chem. Phys. Left., 172. 109 (1990) 8 4. Femtosecond Selective Control of Wave Packet

  1. Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model

    NASA Astrophysics Data System (ADS)

    Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira

    2018-02-01

    We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.

  2. Future optical communication networks beyond 160 Gbit/s based on OTDM

    NASA Astrophysics Data System (ADS)

    Prati, Giancarlo; Bogoni, Antonella; Poti, Luca

    2005-01-01

    The virtually unlimited bandwidth of optical fibers has caused a great increase in data transmission speed over the past decade and, hence, stimulated high-demand multimedia services such as distance learning, video-conferencing and peer to peer applications. For this reason data traffic is exceeding telephony traffic, and this trend is driving the convergence of telecommunications and computer communications. In this scenario Internet Protocol (IP) is becoming the dominant protocol for any traffic, shifting the attention of the network designers from a circuit switching approach to a packet switching approach. A role of paramount importance in packet switching networks is played by the router that must implement the functionalities to set up and maintain the inter-nodal communications. The main functionalities a router must implement are routing, forwarding, switching, synchronization, contention resolution, and buffering. Nowadays, opto-electronic conversion is still required at each network node to process the incoming signal before routing that to the right output port. However, when the single channel bit rate increases beyond electronic speed limit, Optical Time Division Multiplexing (OTDM) becomes a forced choice, and all-optical processing must be performed to extract the information from the incoming packet. In this paper enabling techniques for ultra-fast all-optical network will be addressed. First a 160 Gbit/s complete transmission system will be considered. As enabling technique, an overview for all-optical logics will be discussed and experimental results will be presented using a particular reconfigurable NOLM based on Self-Phase-Modulation (SPM) or Cross-Phase-Modulation (XPM). Finally, a rough experiment on label extraction, all-optical switching and packet forwarding is shown.

  3. Time-dependent wave-packet quantum dynamics study of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction: including the coriolis coupling.

    PubMed

    Yao, Cui-Xia; Zhang, Pei-Yu

    2014-07-10

    The dynamics of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction has been investigated in detail by using an accurate time-dependent wave-packet method on the ground 1(2)A' potential energy surface. Comparisons between the Coriolis coupling results and the centrifugal-sudden ones reveal that Coriolis coupling effect can influence reaction dynamics of the NeD2(+) system. Integral cross sections have been evaluated for the Ne + D2(+) reaction and its isotopic variant Ne + H2(+), and a considerable intermolecular isotopic effect has been found. Also obvious is the great enhancement of the reactivity due to the reagent vibrational excitation. Besides, a comparison with previous theoretical results is also presented and discussed.

  4. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

  5. Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from themore » Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.« less

  6. SATNET development and operation. Pluribus satellite IMP development. Remote site maintenance. Internet operations and maintenance. Mobile access terminal network. TCP for the HP3000. TCP-TAC. TCP for VAX-UNIX. Combined quarterly technical report

    NASA Astrophysics Data System (ADS)

    Bressler, R. D.

    1981-11-01

    This quarterly technical report describes work on the development of and experimentation with packet broadcast by satellite; on development of Pluribus Satellite IMPs; on a study of the technology of Remote Site Maintenance; on Internetwork monitoring; on shipboard satellite communications; and on the development of Transmission Control Protocols for the HP3000, TAC, and VAX-UNIX.

  7. Understanding Route Aggregation

    DTIC Science & Technology

    2010-03-09

    routing anomalies, and is fingered to be the cause of many reported loops and blackholes . In this paper, we posit that the problem arises from a lack of...Route aggre- gation can also result in blackholes [18], which are surprisingly prevalent in the Internet [11]. We illustrate these known anomalies with...advertisement Forwarding paths A B C 10.1.30.0/24 10.1.16.0/22 10.1.16.0/2010.1.16.0/20 Figure 4: Illustration of a blackhole . forwards the packet to Y

  8. Network Analysis with SiLK

    DTIC Science & Technology

    2015-01-06

    Carnegie Mellon University rwcut Default Display By default • sIP , sPort • dIP, dPort • protocol • packets, bytes • flags • sTime, eTime, duration...TCP/IP SOCKET IP address: 10.0.0.1 L4 protocol : TCP High-numbered ephemeral port # TCP/IP SOCKET IP address: 203.0.113.1 L4 protocol : TCP Low-numbered...Fields found to be useful in analysis: • source address, destination address • source port, destination port (Internet Control Message Protocol

  9. Subjective Audio Quality over a Secure IEEE 802.11n Draft 2.0 Wireless Local Area Network

    DTIC Science & Technology

    2009-03-01

    hereafter referred to as 802.11) provide users with mobile connectivity without the need for expensive and inflexible wiring. The 802.11n extension, for...through another protocol, such as Secure / Multipurpose Internet Mail Extensions ( S /MIME). SDPS is, therefore, not a complete solution for secure key...number of packets per second (“Pkts/ s ”) are visible. Audio recordings are taken at AFIT within range of several other 802.11g APs as shown in Figure

  10. SAVAH: Source Address Validation with Host Identity Protocol

    NASA Astrophysics Data System (ADS)

    Kuptsov, Dmitriy; Gurtov, Andrei

    Explosive growth of the Internet and lack of mechanisms that validate the authenticity of a packet source produced serious security and accounting issues. In this paper, we propose validating source addresses in LAN using Host Identity Protocol (HIP) deployed in a first-hop router. Compared to alternative solutions such as CGA, our approach is suitable both for IPv4 and IPv6. We have implemented SAVAH in Wi-Fi access points and evaluated its overhead for clients and the first-hop router.

  11. Exact wave packet dynamics of singlet fission in unsubstituted and substituted polyene chains within long-range interacting models

    NASA Astrophysics Data System (ADS)

    Prodhan, Suryoday; Ramasesha, S.

    2017-08-01

    Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.

  12. Dynamic Hop Service Differentiation Model for End-to-End QoS Provisioning in Multi-Hop Wireless Networks

    NASA Astrophysics Data System (ADS)

    Youn, Joo-Sang; Seok, Seung-Joon; Kang, Chul-Hee

    This paper presents a new QoS model for end-to-end service provisioning in multi-hop wireless networks. In legacy IEEE 802.11e based multi-hop wireless networks, the fixed assignment of service classes according to flow's priority at every node causes priority inversion problem when performing end-to-end service differentiation. Thus, this paper proposes a new QoS provisioning model called Dynamic Hop Service Differentiation (DHSD) to alleviate the problem and support effective service differentiation between end-to-end nodes. Many previous works for QoS model through the 802.11e based service differentiation focus on packet scheduling on several service queues with different service rate and service priority. Our model, however, concentrates on a dynamic class selection scheme, called Per Hop Class Assignment (PHCA), in the node's MAC layer, which selects a proper service class for each packet, in accordance with queue states and service requirement, in every node along the end-to-end route of the packet. The proposed QoS solution is evaluated using the OPNET simulator. The simulation results show that the proposed model outperforms both best-effort and 802.11e based strict priority service models in mobile ad hoc environments.

  13. Attosecond vacuum UV coherent control of molecular dynamics

    PubMed Central

    Ranitovic, Predrag; Hogle, Craig W.; Rivière, Paula; Palacios, Alicia; Tong, Xiao-Ming; Toshima, Nobuyuki; González-Castrillo, Alberto; Martin, Leigh; Martín, Fernando; Murnane, Margaret M.; Kapteyn, Henry

    2014-01-01

    High harmonic light sources make it possible to access attosecond timescales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized; this is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep UV, which have not yet been synthesized. Here, we present a unique approach using attosecond vacuum UV pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born–Oppenheimer regime. By controlling the interfering pathways of electron wave packets in the excited neutral and singly ionized molecule, we unambiguously show that we can switch the excited electronic state on attosecond timescales, coherently guide the nuclear wave packets to dictate the way a neutral molecule vibrates, and steer and manipulate the ionization and dissociation channels. Furthermore, through advanced theory, we succeed in rigorously modeling multiscale electron and nuclear quantum control in a molecule. The observed richness and complexity of the dynamics, even in this very simplest of molecules, is both remarkable and daunting, and presents intriguing new possibilities for bridging the gap between attosecond physics and attochemistry. PMID:24395768

  14. Packetized video on MAGNET

    NASA Astrophysics Data System (ADS)

    Lazar, Aurel A.; White, John S.

    1986-11-01

    Theoretical analysis of an ILAN model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up by video and voice calls during periods of little movement in the images and silence periods in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamically controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real time multimedia workstation EDDY that integrates video, voice and data traffic flows. Protocols supporting variable bandwidth, constant quality packetized video transport are descibed in detail.

  15. Bidirectional QoS support for novelty detection applications based on hierarchical wireless sensor network model

    NASA Astrophysics Data System (ADS)

    Edwards, Mark; Hu, Fei; Kumar, Sunil

    2004-10-01

    The research on the Novelty Detection System (NDS) (called as VENUS) at the authors' universities has generated exciting results. For example, we can detect an abnormal behavior (such as cars thefts from the parking lot) from a series of video frames based on the cognitively motivated theory of habituation. In this paper, we would like to describe the implementation strategies of lower layer protocols for using large-scale Wireless Sensor Networks (WSN) to NDS with Quality-of-Service (QoS) support. Wireless data collection framework, consisting of small and low-power sensor nodes, provides an alternative mechanism to observe the physical world, by using various types of sensing capabilities that include images (and even videos using Panoptos), sound and basic physical measurements such as temperature. We do not want to lose any 'data query command' packets (in the downstream direction: sink-to-sensors) or have any bit-errors in them since they are so important to the whole sensor network. In the upstream direction (sensors-to-sink), we may tolerate the loss of some sensing data packets. But the 'interested' sensing flow should be assigned a higher priority in terms of multi-hop path choice, network bandwidth allocation, and sensing data packet generation frequency (we hope to generate more sensing data packet for that novel event in the specified network area). The focus of this paper is to investigate MAC-level Quality of Service (QoS) issue in Wireless Sensor Networks (WSN) for Novelty Detection applications. Although QoS has been widely studied in other types of networks including wired Internet, general ad hoc networks and mobile cellular networks, we argue that QoS in WSN has its own characteristics. In wired Internet, the main QoS parameters include delay, jitter and bandwidth. In mobile cellular networks, two most common QoS metrics are: handoff call dropping probability and new call blocking probability. Since the main task of WSN is to detect and report events, the most important QoS parameters should include sensing data packet transmission reliability, lifetime extension degree from sensor sleeping control, event detection latency, congestion reduction level through removal of redundant sensing data. In this paper, we will focus on the following bi-directional QoS topics: (1) Downstream (sink-to-sensor) QoS: Reliable data query command forwarding to particular sensor(s). In other words, we do not want to lose the query command packets; (2) Upstream (sensor-to-sink) QoS: transmission of sensed data with priority control. The more interested data that can help in novelty detection should be transmitted on an optimal path with higher reliability. We propose the use of Differentiated Data Collection. Due to the large-scale nature and resource constraints of typical wireless sensor networks, such as limited energy, small memory (typically RAM < 4K bytes) and short communication range, the above problems become even more challenging. Besides QoS support issue, we will also describe our low-energy Sensing Data Transmission network Architecture. Our research results show the scalability and energy-efficiency of our proposed WSN QoS schemes.

  16. Prioritized packet video transmission over time-varying wireless channel using proactive FEC

    NASA Astrophysics Data System (ADS)

    Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay

    2000-12-01

    Quality of video transmitted over time-varying wireless channels relies heavily on the coordinated effort to cope with both channel and source variations dynamically. Given the priority of each source packet and the estimated channel condition, an adaptive protection scheme based on joint source-channel criteria is investigated via proactive forward error correction (FEC). With proactive FEC in Reed Solomon (RS)/Rate-compatible punctured convolutional (RCPC) codes, we study a practical algorithm to match the relative priority of source packets and instantaneous channel conditions. The channel condition is estimated to capture the long-term fading effect in terms of the averaged SNR over a preset window. Proactive protection is performed for each packet based on the joint source-channel criteria with special attention to the accuracy, time-scale match, and feedback delay of channel status estimation. The overall gain of the proposed protection mechanism is demonstrated in terms of the end-to-end wireless video performance.

  17. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    PubMed

    Paul, Rimi; Sengupta, Anindita

    2017-11-01

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Kavulich, M. J.; Szunyogh, I.; Gyarmati, G.; Wilson, R.

    2010-12-01

    In this presentation, the spatio-temporal evolution of baroclinic waves in the GFDL Mars GCM is investigated. The study employs diagnostic techniques that were developed to analyze the life cycles of baroclinic waves in the terrestrial atmosphere. These techniques include a Hilbert-transform-based method to extract the packets of Rossby wave envelopes at the jet level, the eddy kinetic energy equation for the full atmospheric column, and ensemble-based diagnostics. The results show that, similar to the terrestrial atmosphere, coherent westward-propagating wave packets can be detected in the Martian atmosphere. These wave packets are composed of waves of wavenumber 2 through 5, in contrast to the wavenumber 4 through 9 waves that contribute the upper-tropospheric wave packets of the terrestrial atmosphere. Additionally, as in the terrestrial atmosphere, the dominant part of the eddy kinetic energy is generated in regions of baroclinic energy conversion, which are strongly localized in both space and time. Implications of the results for predictability of the state of the Martian atmosphere are also discussed.

  19. Point-to-Point Multicast Communications Protocol

    NASA Technical Reports Server (NTRS)

    Byrd, Gregory T.; Nakano, Russell; Delagi, Bruce A.

    1987-01-01

    This paper describes a protocol to support point-to-point interprocessor communications with multicast. Dynamic, cut-through routing with local flow control is used to provide a high-throughput, low-latency communications path between processors. In addition multicast transmissions are available, in which copies of a packet are sent to multiple destinations using common resources as much as possible. Special packet terminators and selective buffering are introduced to avoid a deadlock during multicasts. A simulated implementation of the protocol is also described.

  20. Theory of the Motion of Ball Lightning

    NASA Astrophysics Data System (ADS)

    Handel, Peter

    2008-04-01

    The Maser-Soliton Theory of BL predicts the dynamics of each of the harmonic waves in the wave packet that feeds and in fact defines the Langmuir plasma soliton that is observed as BL. The frequencies in the wave packet are in a narrow window f that corresponds in the case of open air BL to the diameter of the area in which the damage caused by the final explosion of the BL is observed. This is usually of the order of δx=30 m roughly, in rms. The corresponding wave vector interval is δk=(1/2)(1/30m)=0.017/m in rms. At the same time, k is of the order of 6/m, yielding k/δk=360. This pronounced line-narrowing is obtained due to the large gain of the atmospheric maser when it generates the Kapitsa standing wave. Phase differences between the waves that make up the electromagnetic field that couples with the electrostatic field of the soliton are determined by the frequency dependence of gain and dissipation. They are influenced less by the motion of the air, than by the maser dynamics and by the boundary conditions shaping the electromagnetic field, i.e. the individual photonic wave-packet. The paper presents the equations that determine the phase dynamics and therefore also the observed motion of BL. A similar phase dynamics is expected to be applicable to the special case of UFO motions.

  1. An energy-efficient MAC protocol using dynamic queue management for delay-tolerant mobile sensor networks.

    PubMed

    Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua

    2011-01-01

    Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.

  2. An Energy-Efficient MAC Protocol Using Dynamic Queue Management for Delay-Tolerant Mobile Sensor Networks

    PubMed Central

    Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua

    2011-01-01

    Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay. PMID:22319385

  3. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyeon-Deuk, Kim, E-mail: kim@kuchem.kyoto-u.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computationalmore » cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.« less

  4. Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT.

    PubMed

    Lavassani, Mehrzad; Forsström, Stefan; Jennehag, Ulf; Zhang, Tingting

    2018-05-12

    Digitalization is a global trend becoming ever more important to our connected and sustainable society. This trend also affects industry where the Industrial Internet of Things is an important part, and there is a need to conserve spectrum as well as energy when communicating data to a fog or cloud back-end system. In this paper we investigate the benefits of fog computing by proposing a novel distributed learning model on the sensor device and simulating the data stream in the fog, instead of transmitting all raw sensor values to the cloud back-end. To save energy and to communicate as few packets as possible, the updated parameters of the learned model at the sensor device are communicated in longer time intervals to a fog computing system. The proposed framework is implemented and tested in a real world testbed in order to make quantitative measurements and evaluate the system. Our results show that the proposed model can achieve a 98% decrease in the number of packets sent over the wireless link, and the fog node can still simulate the data stream with an acceptable accuracy of 97%. We also observe an end-to-end delay of 180 ms in our proposed three-layer framework. Hence, the framework shows that a combination of fog and cloud computing with a distributed data modeling at the sensor device for wireless sensor networks can be beneficial for Industrial Internet of Things applications.

  5. Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT

    PubMed Central

    Lavassani, Mehrzad; Jennehag, Ulf; Zhang, Tingting

    2018-01-01

    Digitalization is a global trend becoming ever more important to our connected and sustainable society. This trend also affects industry where the Industrial Internet of Things is an important part, and there is a need to conserve spectrum as well as energy when communicating data to a fog or cloud back-end system. In this paper we investigate the benefits of fog computing by proposing a novel distributed learning model on the sensor device and simulating the data stream in the fog, instead of transmitting all raw sensor values to the cloud back-end. To save energy and to communicate as few packets as possible, the updated parameters of the learned model at the sensor device are communicated in longer time intervals to a fog computing system. The proposed framework is implemented and tested in a real world testbed in order to make quantitative measurements and evaluate the system. Our results show that the proposed model can achieve a 98% decrease in the number of packets sent over the wireless link, and the fog node can still simulate the data stream with an acceptable accuracy of 97%. We also observe an end-to-end delay of 180 ms in our proposed three-layer framework. Hence, the framework shows that a combination of fog and cloud computing with a distributed data modeling at the sensor device for wireless sensor networks can be beneficial for Industrial Internet of Things applications. PMID:29757227

  6. Quality of Service for Real-Time Applications Over Next Generation Data Networks

    NASA Technical Reports Server (NTRS)

    Ivancic, William; Atiquzzaman, Mohammed; Bai, Haowei; Su, Hongjun; Jain, Raj; Duresi, Arjan; Goyal, Mukyl; Bharani, Venkata; Liu, Chunlei; Kota, Sastri

    2001-01-01

    This project, which started on January 1, 2000, was funded by NASA Glenn Research Center for duration of one year. The deliverables of the project included the following tasks: Study of QoS mapping between the edge and core networks envisioned in the Next Generation networks will provide us with the QoS guarantees that can be obtained from next generation networks. Buffer management techniques to provide strict guarantees to real-time end-to-end applications through preferential treatment to packets belonging to real-time applications. In particular, use of ECN to help reduce the loss on high bandwidth-delay product satellite networks needs to be studied. Effect of Prioritized Packet Discard to increase goodput of the network and reduce the buffering requirements in the ATM switches. Provision of new IP circuit emulation services over Satellite IP backbones using MPLS will be studied. Determine the architecture and requirements for internetworking ATN and the Next Generation Internet for real-time applications.

  7. A network monitor for HTTPS protocol based on proxy

    NASA Astrophysics Data System (ADS)

    Liu, Yangxin; Zhang, Lingcui; Zhou, Shuguang; Li, Fenghua

    2016-10-01

    With the explosive growth of harmful Internet information such as pornography, violence, and hate messages, network monitoring is essential. Traditional network monitors is based mainly on bypass monitoring. However, we can't filter network traffic using bypass monitoring. Meanwhile, only few studies focus on the network monitoring for HTTPS protocol. That is because HTTPS data is in the encrypted traffic, which makes it difficult to monitor. This paper proposes a network monitor for HTTPS protocol based on proxy. We adopt OpenSSL to establish TLS secure tunes between clients and servers. Epoll is used to handle a large number of concurrent client connections. We also adopt Knuth- Morris-Pratt string searching algorithm (or KMP algorithm) to speed up the search process. Besides, we modify request packets to reduce the risk of errors and modify response packets to improve security. Experiments show that our proxy can monitor the content of all tested HTTPS websites efficiently with little loss of network performance.

  8. Intelligent Sensing and Classification in DSR-Based Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Dempsey, Tae; Sahin, Gokhan; Morton, Yu T. (Jade

    Wireless ad hoc networks have fundamentally altered today's battlefield, with applications ranging from unmanned air vehicles to randomly deployed sensor networks. Security and vulnerabilities in wireless ad hoc networks have been considered at different layers, and many attack strategies have been proposed, including denial of service (DoS) through the intelligent jamming of the most critical packet types of flows in a network. This paper investigates the effectiveness of intelligent jamming in wireless ad hoc networks using the Dynamic Source Routing (DSR) and TCP protocols and introduces an intelligent classifier to facilitate the jamming of such networks. Assuming encrypted packet headers and contents, our classifier is based solely on the observable characteristics of size, inter-arrival timing, and direction and classifies packets with up to 99.4% accuracy in our experiments.

  9. Passive and Active Analysis in DSR-Based Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Dempsey, Tae; Sahin, Gokhan; Morton, Y. T. (Jade)

    Security and vulnerabilities in wireless ad hoc networks have been considered at different layers, and many attack strategies have been proposed, including denial of service (DoS) through the intelligent jamming of the most critical packet types of flows in a network. This paper investigates the effectiveness of intelligent jamming in wireless ad hoc networks using the Dynamic Source Routing (DSR) and TCP protocols and introduces an intelligent classifier to facilitate the jamming of such networks. Assuming encrypted packet headers and contents, our classifier is based solely on the observable characteristics of size, inter-arrival timing, and direction and classifies packets with up to 99.4% accuracy in our experiments. Furthermore, we investigate active analysis, which is the combination of a classifier and intelligent jammer to invoke specific responses from a victim network.

  10. Spectral dimension and dynamics for Harper's equation

    NASA Astrophysics Data System (ADS)

    Wilkinson, Michael; Austin, Elizabeth J.

    1994-07-01

    The spectrum of Harper's equation (a model for Bloch electrons in a magnetic field) is a fractal Cantor set if the ratio β of the area of a unit cell to that of a flux quantum is not a rational number. It has been conjectured that the second moment of an initially localized wave packet has a power-law growth of the form ~t2D0, where D0 is the box-counting dimension of the spectrum, and that D0=1/2. We present numerical results on the dimension of the spectrum and the spread of a wave packet indicating that these relationships are at best approximate. We also present heuristic arguments suggesting that there should be no general relationships between the dimension and the spread of a wave packet.

  11. Performance analysis for wireless networks: an analytical approach by multifarious Sym Teredo.

    PubMed

    Punithavathani, D Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol.

  12. Performance Analysis for Wireless Networks: An Analytical Approach by Multifarious Sym Teredo

    PubMed Central

    Punithavathani, D. Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol. PMID:25506611

  13. Implementation of Multipattern String Matching Accelerated with GPU for Intrusion Detection System

    NASA Astrophysics Data System (ADS)

    Nehemia, Rangga; Lim, Charles; Galinium, Maulahikmah; Rinaldi Widianto, Ahmad

    2017-04-01

    As Internet-related security threats continue to increase in terms of volume and sophistication, existing Intrusion Detection System is also being challenged to cope with the current Internet development. Multi Pattern String Matching algorithm accelerated with Graphical Processing Unit is being utilized to improve the packet scanning performance of the IDS. This paper implements a Multi Pattern String Matching algorithm, also called Parallel Failureless Aho Corasick accelerated with GPU to improve the performance of IDS. OpenCL library is used to allow the IDS to support various GPU, including popular GPU such as NVIDIA and AMD, used in our research. The experiment result shows that the application of Multi Pattern String Matching using GPU accelerated platform provides a speed up, by up to 141% in term of throughput compared to the previous research.

  14. A comparative signaling cost analysis of Macro Mobility scheme in NEMO (MM-NEMO) with mobility management protocol

    NASA Astrophysics Data System (ADS)

    Islam, Shayla; Abdalla, Aisha H.; Habaebi, Mohamed H.; Latif, Suhaimi A.; Hassan, Wan H.; Hasan, Mohammad K.; Ramli, H. A. M.; Khalifa, Othman O.

    2013-12-01

    NEMO BSP is an upgraded addition to Mobile IPv6 (MIPv6). As MIPv6 and its enhancements (i.e. HMIPv6) possess some limitations like higher handoff latency, packet loss, NEMO BSP also faces all these shortcomings by inheritance. Network Mobility (NEMO) is involved to handle the movement of Mobile Router (MR) and it's Mobile Network Nodes (MNNs) during handoff. Hence it is essential to upgrade the performance of mobility management protocol to obtain continuous session connectivity with lower delay and packet loss in NEMO environment. The completion of handoff process in NEMO BSP usually takes longer period since MR needs to register its single primary care of address (CoA) with home network that may cause performance degradation of the applications running on Mobile Network Nodes. Moreover, when a change in point of attachment of the mobile network is accompanied by a sudden burst of signaling messages, "Signaling Storm" occurs which eventually results in temporary congestion, packet delays or even packet loss. This effect is particularly significant for wireless environment where a wireless link is not as steady as a wired link since bandwidth is relatively limited in wireless link. Hence, providing continuous Internet connection without any interruption through applying multihoming technique and route optimization mechanism in NEMO are becoming the center of attention to the current researchers. In this paper, we propose a handoff cost model to compare the signaling cost of MM-NEMO with NEMO Basic Support Protocol (NEMO BSP) and HMIPv6.The numerical results shows that the signaling cost for the MM-NEMO scheme is about 69.6 % less than the NEMO-BSP and HMIPv6.

  15. Quantum optimal control of isomerization dynamics of a one-dimensional reaction-path model dominated by a competing dissociation channel

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel

    2009-07-01

    Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.

  16. Study of diffusion of wave packets in a square lattice under external fields along the discrete nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    de Brito, P. E.; Nazareno, H. N.

    2012-09-01

    The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.

  17. Stochastic Packet Loss Model to Evaluate QoE Impairments

    NASA Astrophysics Data System (ADS)

    Hohlfeld, Oliver

    With provisioning of broadband access for mass market—even in wireless and mobile networks—multimedia content, especially real-time streaming of high-quality audio and video, is extensively viewed and exchanged over the Internet. Quality of Experience (QoE) aspects, describing the service quality perceived by the user, is a vital factor in ensuring customer satisfaction in today's communication networks. Frameworks for accessing quality degradations in streamed video currently are investigated as a complex multi-layered research topic, involving network traffic load, codec functions and measures of user perception of video quality.

  18. Internet-Based System for Voice Communication With the ISS

    NASA Technical Reports Server (NTRS)

    Chamberlain, James; Myers, Gerry; Clem, David; Speir, Terri

    2005-01-01

    The Internet Voice Distribution System (IVoDS) is a voice-communication system that comprises mainly computer hardware and software. The IVoDS was developed to supplement and eventually replace the Enhanced Voice Distribution System (EVoDS), which, heretofore, has constituted the terrestrial subsystem of a system for voice communications among crewmembers of the International Space Station (ISS), workers at the Payloads Operations Center at Marshall Space Flight Center, principal investigators at diverse locations who are responsible for specific payloads, and others. The IVoDS utilizes a communication infrastructure of NASA and NASArelated intranets in addition to, as its name suggests, the Internet. Whereas the EVoDS utilizes traditional circuitswitched telephony, the IVoDS is a packet-data system that utilizes a voice over Internet protocol (VOIP). Relative to the EVoDS, the IVoDS offers advantages of greater flexibility and lower cost for expansion and reconfiguration. The IVoDS is an extended version of a commercial Internet-based voice conferencing system that enables each user to participate in only one conference at a time. In the IVoDS, a user can receive audio from as many as eight conferences simultaneously while sending audio to one of them. The IVoDS also incorporates administrative controls, beyond those of the commercial system, that provide greater security and control of the capabilities and authorizations for talking and listening afforded to each user.

  19. SDN-enabled hybrid emergency message transmission architecture in internet-of-vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Wanting; Gao, Deyun; Zhao, Weicheng; Zhang, Hongke; Chiang, Hua-Pei

    2018-04-01

    With the increasing number of vehicles connected to the Internet-of-Things (IoT), Internet-of-Vehicles (IoV) is becoming a hot research topic. It can improve traffic safety and efficiency and promote the development of the intelligent transportation that is a very important element in Smart Cities. As an important part of the safety application in IoV, the emergency message transmission is designed to inform all the vehicles in the relevant area timely of the accident information through the multi-hop broadcast communication. In this paper, we propose a hybrid emergency message transmission (HEMT), which introduces the SDN technology into the vehicular network environment and utilizes the flexibility of inter-vehicle communication. By deploying SDN-enabled central controller and RSU switches, we can obtain reliable and fast emergency message dissemination. Moreover, considering the space between the coverages of RSUs caused by the sparse deployment, we also use inter-vehicle multi-hop broadcast communication to improve the message coverage ratio by adding the packet modification module on the RSU switch. Simulation results show the feasibility and effectiveness of our proposed scheme.

  20. Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.

    PubMed

    Krafft, C; Volokitin, A

    2013-05-01

    Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.

  1. Energy and Information Transfer Via Coherent Exciton Wave Packets

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning

    Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria which were then evaluated using first-principles, excited state analyses. It was found that efficient exciton transfer is indeed possible. When coupled to the previous quantum dot functionalizations, the notion that quantum dot materials could support partially coherent exciton wave packets was determined to be quite reasonable.

  2. Coherent Nuclear Wave Packets in Q States by Ultrafast Internal Conversions in Free Base Tetraphenylporphyrin.

    PubMed

    Kim, So Young; Joo, Taiha

    2015-08-06

    Persistence of vibrational coherence in electronic transition has been noted especially in biochemical systems. Here, we report the dynamics between electronic excited states in free base tetraphenylporphyrin (H2TPP) by time-resolved fluorescence with high time resolution. Following the photoexcitation of the B state, ultrafast internal conversion occurs to the Qx state directly as well as via the Qy state. Unique and distinct coherent nuclear wave packet motions in the Qx and Qy states are observed through the modulation of the fluorescence intensity in time. The instant, serial internal conversions from the B to the Qy and Qx states generate the coherent wave packets. Theory and experiment show that the observed vibrational modes involve the out-of-plane vibrations of the porphyrin ring that are strongly coupled to the internal conversion of H2TPP.

  3. [Making a low cost IPSec router on Linux and the assessment for practical use].

    PubMed

    Amiki, M; Horio, M

    2001-09-01

    We installed Linux and FreeS/WAN on a PC/AT compatible machine to make an IPSec router. We measured the time of ping/ftp, only in the university, between the university and the external network. Between the university and the external network (the Internet), there were no differences. Therefore, we concluded that CPU load was not remarkable at low speed networks, because packets exchanged via the Internet are small, or compressions of VPN are more effective than encoding and decoding. On the other hand, in the university, the IPSec router performed down about 20-30% compared with normal IP communication, but this is not a serious problem for practical use. Recently, VPN machines are becoming cheaper, but they do not function sufficiently to create a fundamental VPN environment. Therefore, if one wants a fundamental VPN environment at a low cost, we believe you should select a VPN router on Linux.

  4. Influence of Security Mechanisms on the Quality of Service of VoIP

    NASA Astrophysics Data System (ADS)

    Backs, Peter; Pohlmann, Norbert

    While Voice over IP (VoIP) is advancing rapidly in the telecommunications market, the interest to protect the data transmitted by this new service is also rising. However, in contrast to other internet services such as email or HTTP, VoIP is real-time media, and therefore must meet a special requirement referred to as Quality-of-Service to provide a comfortable flow of speech. Speech quality is worsened when transmitted over the network due to delays in transmission or loss of packets. Often, voice quality is at a level that even prevents comprehensive dialog. Therefore, an administrator who is to setup a VoIP infrastructure might consider avoiding additional decreases in voice quality resulting from security mechanisms, and might leave internet telephony unprotected as a result. The inspiration for this paper is to illustrate that security mechanisms have negligible impact on speech quality and should in fact be encouraged.

  5. Enhancing the transmission efficiency by edge deletion in scale-free networks

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Qing; Wang, Di; Li, Guo-Jie

    2007-07-01

    How to improve the transmission efficiency of Internet-like packet switching networks is one of the most important problems in complex networks as well as for the Internet research community. In this paper we propose a convenient method to enhance the transmission efficiency of scale-free networks dramatically by kicking out the edges linking to nodes with large betweenness, which we called the “black sheep.” The advantages of our method are of facility and practical importance. Since the black sheep edges are very costly due to their large bandwidth, our method could decrease the cost as well as gain higher throughput of networks. Moreover, we analyze the curve of the largest betweenness on deleting more and more black sheep edges and find that there is a sharp transition at the critical point where the average degree of the nodes ⟨k⟩→2 .

  6. Voice over internet protocol with prepaid calling card solutions

    NASA Astrophysics Data System (ADS)

    Gunadi, Tri

    2001-07-01

    The VoIP technology is growing up rapidly, it has big network impact on PT Telkom Indonesia, the bigger telecommunication operator in Indonesia. Telkom has adopted VoIP and one other technology, Intelligent Network (IN). We develop those technologies together in one service product, called Internet Prepaid Calling Card (IPCC). IPCC is becoming new breakthrough for the Indonesia telecommunication services especially on VoIP and Prepaid Calling Card solutions. Network architecture of Indonesia telecommunication consists of three layer, Local, Tandem and Trunck Exchange layer. Network development researches for IPCC architecture are focus on network overlay hierarchy, Internet and PSTN. With this design hierarchy the goal of Interworking PSTN, VoIP and IN calling card, become reality. Overlay design for IPCC is not on Trunck Exchange, this is the new architecture, these overlay on Tandem and Local Exchange, to make the faster call processing. The nodes added: Gateway (GW) and Card Management Center (CMC) The GW do interfacing between PSTN and Internet Network used ISDN-PRA and Ethernet. The other functions are making bridge on circuit (PSTN) with packet (VoIP) based and real time billing process. The CMC used for data storage, pin validation, report activation, tariff system, directory number and all the administration transaction. With two nodes added the IPCC service offered to the market.

  7. Vibrational wave packet dynamics in NaK: The A 1Σ+ state

    NASA Astrophysics Data System (ADS)

    Andersson, L. Mauritz; Karlsson, Hans O.; Goscinski, Osvaldo; Berg, Lars-Erik; Beutter, Matthias; Hansson, Tony

    1999-02-01

    A combined experimental and theoretical study of the vibrational wave packet dynamics for the NaK molecule in the A 1Σ+ state is presented. The experiment utilises a 790 nm one-colour femtosecond pump-probe scheme with detection of a previously not reported dissociation pathway of the 3 1Π+ state, leading to the Na(3p)+K(4s) product channel. The dissociation is suggested to proceed via either collisionally mediated processes or a molecular cascading process via the 4 1Σ+ state, which crosses several states correlating to the Na(3p)+K(4s) limit. Time-dependent quantum mechanical calculations are used for studying the dynamics in detail. Simulations are performed both for 790 nm and for 766 nm, to relate also to earlier studies. The previous interpretations of the probe processes are revised. Inclusion of vibrational and rotational temperature effects are shown to be crucial for explaining the shape of the signal and the vibrational period, and leads to excellent agreement with the experiments.

  8. Accelerated and Airy-Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2016-09-01

    A quantum particle subjected to a constant force undergoes an accelerated motion following a parabolic path, which differs from the classical motion just because of wave packet spreading (quantum diffusion). However, when a periodic potential is added (such as in a crystal) the particle undergoes Bragg scattering and an oscillatory (rather than accelerated) motion is found, corresponding to the famous Bloch oscillations (BOs). Here, we introduce an exactly-solvable quantum Hamiltonian model, corresponding to a generalized Wannier-Stark Hamiltonian Ĥ, in which a quantum particle shows an intermediate dynamical behavior, namely an oscillatory motion superimposed to an accelerated one. Such a novel dynamical behavior is referred to as accelerated BOs. Analytical expressions of the spectrum, improper eigenfunctions and propagator of the generalized Wannier-Stark Hamiltonian Ĥ are derived. Finally, it is shown that acceleration and quantum diffusion in the generalized Wannier-Stark Hamiltonian are prevented for Airy wave packets, which undergo a periodic breathing dynamics that can be referred to as Airy-Bloch oscillations.

  9. Entanglement contour perspective for "strong area-law violation" in a disordered long-range hopping model

    NASA Astrophysics Data System (ADS)

    Roy, Nilanjan; Sharma, Auditya

    2018-03-01

    We numerically investigate the link between the delocalization-localization transition and entanglement in a disordered long-range hopping model of spinless fermions by studying various static and dynamical quantities. This includes the inverse participation ratio, level statistics, entanglement entropy, and number fluctuations in the subsystem along with quench and wave-packet dynamics. Finite systems show delocalized, quasilocalized, and localized phases. The delocalized phase shows strong area-law violation, whereas the (quasi)localized phase adheres to (for large subsystems) the strict area law. The idea of "entanglement contour" nicely explains the violation of area law and its relationship with "fluctuation contour" reveals a signature at the transition point. The relationship between entanglement entropy and number fluctuations in the subsystem also carries signatures for the transition in the model. Results from the Aubry-Andre-Harper model are compared in this context. The propagation of charge and entanglement are contrasted by studying quench and wave-packet dynamics at the single-particle and many-particle levels.

  10. Coherent control of alkali cluster fragmentation dynamics

    NASA Astrophysics Data System (ADS)

    Lindinger, Albrecht; Lupulescu, Cosmin; Bartelt, Andreas; Vajda, Štefan; Wöste, Ludger

    2003-06-01

    Metal clusters exhibit extraordinary chemical and catalytic properties, which sensitively depend upon their size. This behavior makes them interesting candidates for the real-time analysis of ultrafast photo-induced processes—ultimately leading to coherent control scenarii. We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters, like its phase, amplitude and duration; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photochemical process. We present first the vibrational dynamics of bound, dissociated, and pre-dissociated electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced fragmentation experiments on bifurcating reaction channels were carried out. In these experiments different branching ionization and fragmentation pathways of electronically excited Na 2K were investigated. By employing an evolutionary algorithm for optimizing the phase and amplitude of the applied laser field, the yield of the resulting parent or fragment ions could significantly be influenced and interesting features could be concluded from the obtained optimum pulse shapes revealing the characteristic molecular oscillation period. Moreover, the influence on the optimal pulse shape due to fragmentation from larger clusters into NaK is obtained. The substructure of the optimal pulse shape thereby offers new insight into the fragmentation channel during the control process. Characteristic motions of the involved wave packets are proposed, in order to explain the optimized dynamic dissociation pathways.

  11. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.

    PubMed

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations.

  12. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain

    PubMed Central

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L.; Aziz, Tipu Z.; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations. PMID:29695951

  13. Technical support for digital systems technology development. Task order 1: ISP contention analysis and control

    NASA Technical Reports Server (NTRS)

    Stehle, Roy H.; Ogier, Richard G.

    1993-01-01

    Alternatives for realizing a packet-based network switch for use on a frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary communication satellite were investigated. Each of the eight downlink beams supports eight directed dwells. The design needed to accommodate multicast packets with very low probability of loss due to contention. Three switch architectures were designed and analyzed. An output-queued, shared bus system yielded a functionally simple system, utilizing a first-in, first-out (FIFO) memory per downlink dwell, but at the expense of a large total memory requirement. A shared memory architecture offered the most efficiency in memory requirements, requiring about half the memory of the shared bus design. The processing requirement for the shared-memory system adds system complexity that may offset the benefits of the smaller memory. An alternative design using a shared memory buffer per downlink beam decreases circuit complexity through a distributed design, and requires at most 1000 packets of memory more than the completely shared memory design. Modifications to the basic packet switch designs were proposed to accommodate circuit-switched traffic, which must be served on a periodic basis with minimal delay. Methods for dynamically controlling the downlink dwell lengths were developed and analyzed. These methods adapt quickly to changing traffic demands, and do not add significant complexity or cost to the satellite and ground station designs. Methods for reducing the memory requirement by not requiring the satellite to store full packets were also proposed and analyzed. In addition, optimal packet and dwell lengths were computed as functions of memory size for the three switch architectures.

  14. Full-dimensional quantum dynamics study on the mode-specific unimolecular dissociation reaction of HFCO

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takeshi; Kato, Shigeki

    2000-05-01

    The mode specificity of the unimolecular reaction of HFCO is studied by six-dimensional quantum dynamics calculations. The energy and mode dependency of the dissociation rate is examined by propagating a number of wave packets with a small energy dispersion representing highly excited states with respect to a specific vibrational mode. The wave packets are generated by applying a set of filter operators onto a source vibrational state. All the information necessary for propagating the wave packets is obtained from a single propagation of the source state, thus allowing a significant decrease of computational effort. The relevant spectral peaks are assigned using the three-dimensional CH chromophore Hamiltonian. The resulting dissociation rate of the CH stretching excited state is in agreement with that obtained from a statistical theory, while the rates of the out-of-plane bending excited states are about one order of magnitude smaller than the statistical rates. A local-mode analysis also shows that the relaxation of the out-of-plane excitation proceeds very slowly within 3 ps. These results clearly indicate weak couplings of the out-of-plane bending excited states with other in-plane vibrational states, which is in qualitative agreement with experimental findings. From a computational point of view, a parallel supercomputer is utilized efficiently to handle an ultra large basis set of an order of 108, and 200 Gflops rate on average is achieved in the dynamics calculations.

  15. When Reputation Enforces Evolutionary Cooperation in Unreliable MANETs.

    PubMed

    Tang, Changbing; Li, Ang; Li, Xiang

    2015-10-01

    In self-organized mobile ad hoc networks (MANETs), network functions rely on cooperation of self-interested nodes, where a challenge is to enforce their mutual cooperation. In this paper, we study cooperative packet forwarding in a one-hop unreliable channel which results from loss of packets and noisy observation of transmissions. We propose an indirect reciprocity framework based on evolutionary game theory, and enforce cooperation of packet forwarding strategies in both structured and unstructured MANETs. Furthermore, we analyze the evolutionary dynamics of cooperative strategies and derive the threshold of benefit-to-cost ratio to guarantee the convergence of cooperation. The numerical simulations verify that the proposed evolutionary game theoretic solution enforces cooperation when the benefit-to-cost ratio of the altruistic exceeds the critical condition. In addition, the network throughput performance of our proposed strategy in structured MANETs is measured, which is in close agreement with that of the full cooperative strategy.

  16. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.

    PubMed

    Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren

    2018-04-16

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

  17. Complex-valued derivative propagation method with approximate Bohmian trajectories: Application to electronic nonadiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Chou, Chia-Chun

    2018-05-01

    The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.

  18. Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.

    2017-01-01

    We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.

  19. Enhanced Communication Network Solution for Positive Train Control Implementation

    NASA Technical Reports Server (NTRS)

    Fatehi, M. T.; Simon, J.; Chang, W.; Chow, E. T.; Burleigh, S. C.

    2011-01-01

    The commuter and freight railroad industry is required to implement Positive Train Control (PTC) by 2015 (2012 for Metrolink), a challenging network communications problem. This paper will discuss present technologies developed by the National Aeronautics and Space Administration (NASA) to overcome comparable communication challenges encountered in deep space mission operations. PTC will be based on a new cellular wireless packet Internet Protocol (IP) network. However, ensuring reliability in such a network is difficult due to the "dead zones" and transient disruptions we commonly experience when we lose calls in commercial cellular networks. These disruptions make it difficult to meet PTC s stringent reliability (99.999%) and safety requirements, deployment deadlines, and budget. This paper proposes innovative solutions based on space-proven technologies that would help meet these challenges: (1) Delay Tolerant Networking (DTN) technology, designed for use in resource-constrained, embedded systems and currently in use on the International Space Station, enables reliable communication over networks in which timely data acknowledgments might not be possible due to transient link outages. (2) Policy-Based Management (PBM) provides dynamic management capabilities, allowing vital data to be exchanged selectively (with priority) by utilizing alternative communication resources. The resulting network may help railroads implement PTC faster, cheaper, and more reliably.

  20. Launch Support Video Site

    NASA Technical Reports Server (NTRS)

    OFarrell, Zachary L.

    2013-01-01

    The goal of this project is to create a website that displays video, countdown clock, and event times to customers during launches, without needing to be connected to the internal operations network. The requirements of this project are to also minimize the delay in the clock and events to be less than two seconds. The two parts of this are the webpage, which will display the data and videos to the user, and a server to send clock and event data to the webpage. The webpage is written in HTML with CSS and JavaScript. The JavaScript is responsible for connecting to the server, receiving new clock data, and updating the webpage. JavaScript is used for this because it can send custom HTTP requests from the webpage, and provides the ability to update parts of the webpage without having to refresh the entire page. The server application will act as a relay between the operations network, and the open internet. On the operations network side, the application receives multicast packets that contain countdown clock and events data. It will then parse the data into current countdown times and events, and create a packet with that information that can be sent to webpages. The other part will accept HTTP requests from the webpage, and respond to them with current data. The server is written in C# with some C++ files used to define the structure of data packets. The videos for the webpage will be shown in an embedded player from UStream.

  1. Quantum dynamics of the Einstein-Rosen wormhole throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2011-02-15

    We consider the polymer quantization of the Einstein wormhole throat theory for an eternal Schwarzschild black hole. We numerically solve the difference equation describing the quantum evolution of an initially Gaussian, semiclassical wave packet. As expected from previous work on loop quantum cosmology, the wave packet remains semiclassical until it nears the classical singularity at which point it enters a quantum regime in which the fluctuations become large. The expectation value of the radius reaches a minimum as the wave packet is reflected from the origin and emerges to form a near-Gaussian but asymmetrical semiclassical state at late times. Themore » value of the minimum depends in a nontrivial way on the initial mass/energy of the pulse, its width, and the polymerization scale. For wave packets that are sufficiently narrow near the bounce, the semiclassical bounce radius is obtained. Although the numerics become difficult to control in this limit, we argue that for pulses of finite width the bounce persists as the polymerization scale goes to zero, suggesting that in this model the loop quantum gravity effects mimicked by polymer quantization do not play a crucial role in the quantum bounce.« less

  2. Space-Based Telemetry and Range Safety (STARS) Study

    NASA Technical Reports Server (NTRS)

    Hogie, Keith; Crisuolo, Ed; Parise, Ron

    2004-01-01

    This presentation will describe the design, development, and testing of a system to collect telemetry, format it into UDP/IP packets, and deliver it to a ground test range using standard IP technologies over a TDRSS link. This presentation will discuss the goal of the STARS IP Formatter along with the overall design. It will also present performance results of the current version of the IP formatter. Finally, it will discuss key issues for supporting constant rate telemetry data delivery when using standard components such as PCI/104 processors, the Linux operating system, Internet Protocols, and synchronous serial interfaces.

  3. Digital Multicasting of Multiple Audio Streams

    NASA Technical Reports Server (NTRS)

    Macha, Mitchell; Bullock, John

    2007-01-01

    The Mission Control Center Voice Over Internet Protocol (MCC VOIP) system (see figure) comprises hardware and software that effect simultaneous, nearly real-time transmission of as many as 14 different audio streams to authorized listeners via the MCC intranet and/or the Internet. The original version of the MCC VOIP system was conceived to enable flight-support personnel located in offices outside a spacecraft mission control center to monitor audio loops within the mission control center. Different versions of the MCC VOIP system could be used for a variety of public and commercial purposes - for example, to enable members of the general public to monitor one or more NASA audio streams through their home computers, to enable air-traffic supervisors to monitor communication between airline pilots and air-traffic controllers in training, and to monitor conferences among brokers in a stock exchange. At the transmitting end, the audio-distribution process begins with feeding the audio signals to analog-to-digital converters. The resulting digital streams are sent through the MCC intranet, using a user datagram protocol (UDP), to a server that converts them to encrypted data packets. The encrypted data packets are then routed to the personal computers of authorized users by use of multicasting techniques. The total data-processing load on the portion of the system upstream of and including the encryption server is the total load imposed by all of the audio streams being encoded, regardless of the number of the listeners or the number of streams being monitored concurrently by the listeners. The personal computer of a user authorized to listen is equipped with special- purpose MCC audio-player software. When the user launches the program, the user is prompted to provide identification and a password. In one of two access- control provisions, the program is hard-coded to validate the user s identity and password against a list maintained on a domain-controller computer at the MCC. In the other access-control provision, the program verifies that the user is authorized to have access to the audio streams. Once both access-control checks are completed, the audio software presents a graphical display that includes audiostream-selection buttons and volume-control sliders. The user can select all or any subset of the available audio streams and can adjust the volume of each stream independently of that of the other streams. The audio-player program spawns a "read" process for the selected stream(s). The spawned process sends, to the router(s), a "multicast-join" request for the selected streams. The router(s) responds to the request by sending the encrypted multicast packets to the spawned process. The spawned process receives the encrypted multicast packets and sends a decryption packet to audio-driver software. As the volume or muting features are changed by the user, interrupts are sent to the spawned process to change the corresponding attributes sent to the audio-driver software. The total latency of this system - that is, the total time from the origination of the audio signals to generation of sound at a listener s computer - lies between four and six seconds.

  4. Simulation of wave packet tunneling of interacting identical particles

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Filinov, A. V.; Arkhipov, A. S.

    2003-02-01

    We demonstrate a different method of simulation of nonstationary quantum processes, considering the tunneling of two interacting identical particles, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.

  5. An upstream burst-mode equalization scheme for 40 Gb/s TWDM PON based on optimized SOA cascade

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Chang, Qingjiang; Gao, Zhensen; Ye, Chenhui; Xiao, Simiao; Huang, Xiaoan; Hu, Xiaofeng; Zhang, Kaibin

    2016-02-01

    We present a novel upstream burst-mode equalization scheme based on optimized SOA cascade for 40 Gb/s TWDMPON. The power equalizer is placed at the OLT which consists of two SOAs, two circulators, an optical NOT gate, and a variable optical attenuator. The first SOA operates in the linear region which acts as a pre-amplifier to let the second SOA operate in the saturation region. The upstream burst signals are equalized through the second SOA via nonlinear amplification. From theoretical analysis, this scheme gives sufficient dynamic range suppression up to 16.7 dB without any dynamic control or signal degradation. In addition, a total power budget extension of 9.3 dB for loud packets and 26 dB for soft packets has been achieved to allow longer transmission distance and increased splitting ratio.

  6. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  7. Optimal control of a rabies epidemic model with a birth pulse.

    PubMed

    Clayton, Tim; Duke-Sylvester, Scott; Gross, Louis J; Lenhart, Suzanne; Real, Leslie A

    2010-01-01

    A system of ordinary differential equations describes the population dynamics of a rabies epidemic in raccoons. The model accounts for the dynamics of a vaccine, including loss of vaccine due to animal consumption and loss from factors other than racoon uptake. A control method to reduce the spread of disease is introduced through temporal distribution of vaccine packets. This work incorporates the effect of the seasonal birth pulse in the racoon population and the attendant increase in new-borns which are susceptible to the diseases, analysing the impact of the timing and length of this pulse on the optimal distribution of vaccine packets. The optimization criterion is to minimize the number of infected raccoons while minimizing the cost of distributing the vaccine. Using an optimal control setting, numerical results illustrate strategies for distributing the vaccine depending on the timing of the infection outbreak with respect to the birth pulse.

  8. Optimal Control of a Rabies Epidemic Model with a Birth Pulse

    PubMed Central

    Clayton, Tim; Duke-Sylvester, Scott; Gross, Louis J.; Lenhart, Suzanne; Real, Leslie A.

    2011-01-01

    A system of ordinary differential equations describes the populuation dynamics of a rabies epidemic in raccoons. The model accounts for the dynamics of vaccine, including loss of vaccine due to animal consumption and loss from factors other than racoon uptake. A control method to reduce the spread of disease is introduced through temporal distribution of vaccine packets. This work incorporates the effect of the seasonal birth pulse in the racoon population and the attendant increase in new-borns which are susceptible to the diseases, analysing the impact of the timing and length of this pulse on the optimal distribution of vaccine packets. The optimization criterion is to minimize the number of infected raccoons while minimizing the cost of distributing the vaccine. Using an optimal control setting, numerical results illustrate strategies for distributing vaccine depending on the timing of the infection outbreak with respect to the birth pulse. PMID:21423822

  9. Dynamically Alterable Arrays of Polymorphic Data Types

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    An application library package was developed that represents data packets for Deep Space Network (DSN) message packets as dynamically alterable arrays composed of arbitrary polymorphic data types. The software was to address a limitation of the present state of the practice for having an array directly composed of a single monomorphic data type. This is a severe limitation when one is dealing with science data in that the types of objects one is dealing with are typically not known in advance and, therefore, are dynamic in nature. The unique feature of this approach is that it enables one to define at run-time the dynamic shape of the matrix with the ability to store polymorphic data types in each of its indices. Existing languages such as C and C++ have the restriction that the shape of the array must be known in advance and each of its elements be a monomorphic data type that is strictly defined at compile-time. This program can be executed on a variety of platforms. It can be distributed in either source code or binary code form. It must be run in conjunction with any one of a number of Lisp compilers that are available commercially or as shareware.

  10. A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities

    PubMed Central

    Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro

    2017-01-01

    The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds. PMID:29099745

  11. A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities.

    PubMed

    Bellavista, Paolo; Giannelli, Carlo; Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro

    2017-11-03

    The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds.

  12. Defending networks against denial-of-service attacks

    NASA Astrophysics Data System (ADS)

    Gelenbe, Erol; Gellman, Michael; Loukas, George

    2004-11-01

    Denial of service attacks, viruses and worms are common tools for malicious adversarial behavior in networks. Experience shows that over the last few years several of these techniques have probably been used by governments to impair the Internet communications of various entities, and we can expect that these and other information warfare tools will be used increasingly as part of hostile behavior either independently, or in conjunction with other forms of attack in conventional or asymmetric warfare, as well as in other forms of malicious behavior. In this paper we concentrate on Distributed Denial of Service Attacks (DDoS) where one or more attackers generate flooding traffic and direct it from multiple sources towards a set of selected nodes or IP addresses in the Internet. We first briefly survey the literature on the subject, and discuss some examples of DDoS incidents. We then present a technique that can be used for DDoS protection based on creating islands of protection around a critical information infrastructure. This technique, that we call the CPN-DoS-DT (Cognitive Packet Networks DoS Defence Technique), creates a self-monitoring sub-network surrounding each critical infrastructure node. CPN-DoS-DT is triggered by a DDoS detection scheme, and generates control traffic from the objects of the DDoS attack to the islands of protection where DDOS packet flows are destroyed before they reach the critical infrastructure. We use mathematical modelling, simulation and experiments on our test-bed to show the positive and negative outcomes that may result from both the attack, and the CPN-DoS-DT protection mechanism, due to imperfect detection and false alarms.

  13. Dynamique et interférence de paquets d'ondes dans les atomes et dimères d'alcalins

    NASA Astrophysics Data System (ADS)

    Bouchene, M. A.

    2002-11-01

    Wave packet dynamics and interference experiments in alkaline atoms and dimers This work deals with time resolved experimental study of the dynamics of atomic and molecular processes occurring on a femtosecond time scale. The first part concerns with wave packet dynamics in alkaline atoms and dimers (K, K2) studied by pump-probe methods. In the case of potassium atoms, the wave packet is a superposition of fine structure states of 4p level and represents an electronic spin wave packet. We study the temporal dynamics of this wave packet and we show that it corresponds to a spin flip. We show that the bright state-dark state formalism is appropriate to describe the dynamics in this case and we present an original method that utilises this spin flip to produce spin-polarized electrons on the femtosecond scale. In the case of molecules, the wave packet created is a superposition of vibrational states. We present the results of the study of the vibrational wave packet dynamics in states A^1Σ^+_u et 2^1Pi_g. The pump-probe signal depends on the competition between the various wave packets dynamics in the two electronic states. The second part deals with wave packets interference experiments in similar systems (K, Cs, Cs2). This technique, complementary with the first one, is based on the interaction of two identical pulses with an atomic or molecular system. This gives rise to the interference of two wave packets created by the two laser pulses. This interference allows us to control coherently the excitation probability. In the case of atoms, we present the results of experiments obtained when exciting one photon transition 4s 4p in potassium and two-photon transition 6s 7d in cesium. Two kinds of interference are identified: the optical interference regime that occurs when the two pulses overlap in time and the regime of quantum interference that occurs when the two pulses are well separated. We investigate the behaviour of these interference in many new situations (saturation regime, chirped pulse, ...) that allow us to determine the advantages and limits of this technique. In the case of molecules, the interaction of the two-pulse sequence leads to the interference of vibrational wave packets. We analyse and discuss in this case the effects of a thermal distribution of initial states on the temporal coherent control signal. Ce travail porte sur l'étude expérimentale résolue en temps de la dynamique atomique et moléculaire prenant place sur une échelle de temps femtoseconde. Il présente deux orientations distinctes et complémentaires. La première concerne l'étude de la dynamique de paquets d'ondes dans des atomes et dimères d'alcalins (K, K2) par des méthodes pompe-sonde. Dans le cas du potassium atomique le paquet d'ondes est une superposition des états de structure fine de l'état 4p et représente un paquet de spin électronique. Nous observons la dynamique de ce paquet d'ondes au cours du temps et montrons que celle-ci correspond à une inversion du sens d'orientation du spin. Le formalisme théorique des états brillants et noirs est particulièrement adapté à la description de ce type de dynamique. Nous présentons alors une méthode originale qui, tirant avantage du mouvement d'inversion du spin, permet de produire des électrons polarisés en spin à l'échelle femtoseconde. Dans le cas des molécules, le paquet d'ondes créé est une superposition d'états vibrationnels. Nous présentons les résultats d'une étude systématique de la dynamique de paquet d'ondes vibrationnel dans les états électroniques A^1Σ^+_u et 2^1Pi_g. Le signal pompe-sonde dépend alors de la compétition entre les dynamiques associées aux paquets d'ondes créés dans les deux états électroniques. La deuxième partie traite d'expériences d'interférences de paquets d'ondes dans des systèmes similaires (K, Cs, Cs2). Cette technique, complémentaire de la première, consiste à faire interagir une séquence de deux impulsions identiques avec un système atomique ou moléculaire. Cette interaction résulte de l'interférence des deux paquets d'ondes créés par les deux impulsions laser. Ces interférences permettent de réaliser le contrôle cohérent de la probabilité d'excitation. Dans le cas des atomes, nous présentons les résultats des expériences réalisés sur la transition à un photon 4s 4p du potassium et à deux photons 6s 7d du césium. Deux régimes d'interférences sont mis en évidence : le régime d'interférences optiques qui se produit quand les deux impulsions se chevauchent dans le temps et le régime d'interférences quantiques qui se produit quand les deux impulsons sont séparés dans le temps. Nous explorons le comportement de ces deux types d'interférences dans un grand nombre de situations originales (régime saturé, cas d'impulsions à dérive de fréquence, etc.) qui nous permettent de mieux comprendre les avantages et les limites de cette technique. Dans le cas des molécules, l'interaction de la séquence des deux impulsions conduit à l'interférence des paquets d'ondes vibrationnels. Nous analysons et discutons dans ce cas-là des effets d'une distribution thermique dans l'état initial sur le signal de contrôle cohérent.

  14. The role of internal dynamics in the coherent evolution of indirect excitons

    NASA Astrophysics Data System (ADS)

    Grasselli, Federico; Bertoni, Andrea; Goldoni, Guido

    2017-08-01

    We study the time-dependent quantum scattering of a spatially indirect exciton by an external potential, taking fully into account the relative quantum dynamics of the electron-hole (e-h) pair. Exact calculations for an e-h wave packet show that transfer of energy between centre-of-mass (c.m.) and relative degrees of freedom may result in a genuine correction to the evolution during the scattering and eventually at asymptotic times. We show in experimentally relevant regimes and device configurations, that transmission resonances, tunnelling probabilities, diffraction patterns and wave packet fragmentation of indirect excitons are largely determined by the internal dynamics, and could not be reproduced by point-like dipole models or mean-field calculations. We show that a properly-designed local self-energy potential to be added to the c.m. Hamiltonian embeds the effects of the c.m.-internal motion correlation at a small fraction of the computation load needed for full-propagation calculations. The explicit form of this self-energy emphasises the dominant role of internal virtual transitions in determining scattering coefficients of indirect excitons.

  15. Influence of light-induced conical intersection on the photodissociation dynamics of D2(+) starting from individual vibrational levels.

    PubMed

    Halász, Gábor J; Csehi, András; Vibók, Ágnes; Cederbaum, Lorenz S

    2014-12-26

    Previous works have shown that dressing of diatomic molecules by standing or by running laser waves gives rise to the appearance of so-called light-induced conical intersections (LICIs). Because of the strong nonadiabatic couplings, the existence of such LICIs may significantly change the dynamical properties of a molecular system. In our former paper (J. Phys. Chem. A 2013, 117, 8528), the photodissociation dynamics of the D(2)(+) molecule were studied in the LICI framework starting the initial vibrational nuclear wave packet from the superposition of all the vibrational states initially produced by ionizing D(2). The present work complements our previous investigation by letting the initial nuclear wave packets start from different individual vibrational levels of D(2)(+), in particular, above the energy of the LICI. The kinetic energy release spectra, the total dissociation probabilities, and the angular distributions of the photofragments are calculated and discussed. An interesting phenomenon has been found in the spectra of the photofragments. Applying the light-induced adiabatic picture supported by LICI, explanations are given for the unexpected structure of the spectra.

  16. Doubly differential star-16-QAM for fast wavelength switching coherent optical packet transceiver.

    PubMed

    Liu, Fan; Lin, Yi; Walsh, Anthony J; Yu, Yonglin; Barry, Liam P

    2018-04-02

    A coherent optical packet transceiver based on doubly differential star 16-ary quadrature amplitude modulation (DD-star-16-QAM) is presented for spectrally and energy efficient reconfigurable networks. The coding and decoding processes for this new modulation format are presented, simulations and experiments are then performed to investigate the performance of the DD-star-16-QAM in static and dynamic scenarios. The static results show that the influence of frequency offset (FO) can be cancelled out by doubly differential (DD) coding and the correction range is only limited by the electronic bandwidth of the receivers. In the dynamic scenario with a time-varying FO and linewidth, the DD-star-16-QAM can overcome the time-varying FO, and the switching time of around 70 ns is determined by the time it takes the dynamic linewidth to reach the requisite level. This format can thus achieve a shorter waiting time after switching tunable lasers than the commonly used square-16-QAM, in which the transmission performance is limited by the frequency transients after the wavelength switch.

  17. Stabilization and Structure of wave packets in Rydberg atoms ionized by a strong light field.

    PubMed

    Fedorov, M; Fedorov, S

    1998-09-28

    New features of the phenomenon of interference stabilization of Rydberg atoms are found to exist. The main of them are: (i) dynamical stabilization, which means that in case of pulses with a smooth envelope the time-dependent residual probability for an atom to survive in bound states remains almost constant in the middle part of a pulse (at the strongest fields); (ii) existence of the strong-field stabilization of the after-pulse residual probability in case of pulses longer than the classical Kepler period; and (iii) pulsation of the time-dependent Rydberg wave packet formed in the process of photoionization.

  18. Revivals of electron currents and topological-band insulator transitions in 2D gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Romera, E.; Bolívar, J. C.; Roldán, J. B.; de los Santos, F.

    2016-07-01

    We have studied the time evolution of electron wave packets in silicene under perpendicular magnetic and electric fields to characterize topological-band insulator transitions. We have found that at the charge neutrality points, the periodicities exhibited by the wave packet dynamics (classical and revival times) reach maximum values, and that the electron currents reflect the transition from a topological insulator to a band insulator. This provides a signature of topological phase transition in silicene that can be extended to other 2D Dirac materials isostructural to graphene and with a buckled structure and a significant spin-orbit coupling.

  19. Internet end-to-end performance monitoring for the High Energy Nuclear and Particle Physics community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, W.

    2000-02-22

    Modern High Energy Nuclear and Particle Physics (HENP) experiments at Laboratories around the world present a significant challenge to wide area networks. Petabytes (1015) or exabytes (1018) of data will be generated during the lifetime of the experiment. Much of this data will be distributed via the Internet to the experiment's collaborators at Universities and Institutes throughout the world for analysis. In order to assess the feasibility of the computing goals of these and future experiments, the HENP networking community is actively monitoring performance across a large part of the Internet used by its collaborators. Since 1995, the pingER projectmore » has been collecting data on ping packet loss and round trip times. In January 2000, there are 28 monitoring sites in 15 countries gathering data on over 2,000 end-to-end pairs. HENP labs such as SLAC, Fermi Lab and CERN are using Advanced Network's Surveyor project and monitoring performance from one-way delay of UDP packets. More recently several HENP sites have become involved with NLANR's active measurement program (AMP). In addition SLAC and CERN are part of the RIPE test-traffic project and SLAC is home for a NIMI machine. The large End-to-end performance monitoring infrastructure allows the HENP networking community to chart long term trends and closely examine short term glitches across a wide range of networks and connections. The different methodologies provide opportunities to compare results based on different protocols and statistical samples. Understanding agreement and discrepancies between results provides particular insight into the nature of the network. This paper will highlight the practical side of monitoring by reviewing the special needs of High Energy Nuclear and Particle Physics experiments and provide an overview of the experience of measuring performance across a large number of interconnected networks throughout the world with various methodologies. In particular, results from each project will be compared and disagreement will be analyzed. The goal is to address issues for improving understanding for gathering and analysis of accurate monitoring data, but the outlook for the computing goals of HENP will also be examined.« less

  20. Internal Gravity Waves Forced by an Isolated Mountain

    NASA Astrophysics Data System (ADS)

    Nikitina, L.; Campbell, L.

    2009-12-01

    Density-stratified fluid flow over topography such as mountains, hills and ridges may give rise to internal gravity waves which transport and distribute energy away from their source and have profound effects on the general circulation of the atmosphere and ocean. Much of our knowledge of internal gravity wave dynamics has been acquired from theoretical studies involving mathematical analyses of simplified forms of the governing equations, as well as numerical simulations at varying levels of approximation. In this study, both analytical and numerical methods are used to examine the nonlinear dynamics of gravity waves forced by an isolated mountain. The topography is represented by a lower boundary condition on a two-dimensional rectangular domain and the waves are represented as a perturbation to the background shear flow, thus allowing the use of weakly-nonlinear and multiple-scale asymptotic analyzes. The waves take the form of a packet, localized in the horizontal direction and comprising a continuous spectrum of horizontal wavenumbers centered at zero. For horizontally-localized wave packets, such as those forced by a mountain range with multiple peaks, there are generally two horizontal scales, the fast (short) scale which is defined by the oscillations within the packet and the slow (large) scale which is defined by the horizontal extent of the packet. In the case of an isolated mountain that we examine here, the multiple-scaling procedure is simplified by the absence of a fast spatial scale. The problem is governed by two small parameters that define the height and width of the mountain and approximate solutions are derived in terms of these parameters. Numerical solutions are also carried out to simulate nonlinear critical-level interactions such as the transfer of energy to the background flow by the wave packet, wave reflection and static instability and, eventually, wave breaking leading to turbulence. It is found that for waves forced by an isolated mountain the time frame within which these nonlinear effects become significant depends on both the mountain height and width and that they begin to occur at least an order of magnitude later and the configuration thus remains stable longer than in the case of waves forced by a mountain range of equivalent height.

  1. Stationary phase method and delay times for relativistic and non-relativistic tunneling particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardini, A.E.

    2009-06-15

    The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for somemore » specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.« less

  2. Laser control of reactions of photoswitching functional molecules.

    PubMed

    Tamura, Hiroyuki; Nanbu, Shinkoh; Ishida, Toshimasa; Nakamura, Hiroki

    2006-07-21

    Laser control schemes of reactions of photoswitching functional molecules are proposed based on the quantum mechanical wave-packet dynamics and the design of laser parameters. The appropriately designed quadratically chirped laser pulses can achieve nearly complete transitions of wave packet among electronic states. The laser parameters can be optimized by using the Zhu-Nakamura theory of nonadiabatic transition. This method is effective not only for the initial photoexcitation process but also for the pump and dump scheme in the middle of the overall photoswitching process. The effects of momentum of the wave packet crossing a conical intersection on the branching ratio of products have also been clarified. These control schemes mentioned above are successfully applied to the cyclohexadiene/hexatriene photoisomerization (ring-opening) process which is the reaction center of practical photoswitching molecules such as diarylethenes. The overall efficiency of the ring opening can be appreciably increased by using the appropriately designed laser pulses compared to that of the natural photoisomerization without any control schemes.

  3. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE PAGES

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman; ...

    2018-04-13

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  4. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yiwen; Hattink, Maarten; Samadi, Payman

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less

  5. OSLG: A new granting scheme in WDM Ethernet passive optical networks

    NASA Astrophysics Data System (ADS)

    Razmkhah, Ali; Rahbar, Akbar Ghaffarpour

    2011-12-01

    Several granting schemes have been proposed to grant transmission window and dynamic bandwidth allocation (DBA) in passive optical networks (PON). Generally, granting schemes suffer from bandwidth wastage of granted windows. Here, we propose a new granting scheme for WDM Ethernet PONs, called optical network unit (ONU) Side Limited Granting (OSLG) that conserves upstream bandwidth, thus resulting in decreasing queuing delay and packet drop ratio. In OSLG instead of optical line terminal (OLT), each ONU determines its transmission window. Two OSLG algorithms are proposed in this paper: the OSLG_GA algorithm that determines the size of its transmission window in such a way that the bandwidth wastage problem is relieved, and the OSLG_SC algorithm that saves unused bandwidth for more bandwidth utilization later on. The OSLG can be used as granting scheme of any DBA to provide better performance in the terms of packet drop ratio and queuing delay. Our performance evaluations show the effectiveness of OSLG in reducing packet drop ratio and queuing delay under different DBA techniques.

  6. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruban, V. P., E-mail: ruban@itp.ac.ru

    2015-05-15

    The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less

  7. Impact of packet losses in scalable 3D holoscopic video coding

    NASA Astrophysics Data System (ADS)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2014-05-01

    Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.

  8. Experimental energy consumption of Frame Slotted ALOHA and Distributed Queuing for data collection scenarios.

    PubMed

    Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis; Vilajosana, Xavier

    2014-07-24

    Data collection is a key scenario for the Internet of Things because it enables gathering sensor data from distributed nodes that use low-power and long-range wireless technologies to communicate in a single-hop approach. In this kind of scenario, the network is composed of one coordinator that covers a particular area and a large number of nodes, typically hundreds or thousands, that transmit data to the coordinator upon request. Considering this scenario, in this paper we experimentally validate the energy consumption of two Medium Access Control (MAC) protocols, Frame Slotted ALOHA (FSA) and Distributed Queuing (DQ). We model both protocols as a state machine and conduct experiments to measure the average energy consumption in each state and the average number of times that a node has to be in each state in order to transmit a data packet to the coordinator. The results show that FSA is more energy efficient than DQ if the number of nodes is known a priori because the number of slots per frame can be adjusted accordingly. However, in such scenarios the number of nodes cannot be easily anticipated, leading to additional packet collisions and a higher energy consumption due to retransmissions. Contrarily, DQ does not require to know the number of nodes in advance because it is able to efficiently construct an ad hoc network schedule for each collection round. This kind of a schedule ensures that there are no packet collisions during data transmission, thus leading to an energy consumption reduction above 10% compared to FSA.

  9. Drift effect and "negative" mass transport in an inhomogeneous medium: limiting case of a two-component lattice gas.

    PubMed

    Lukyanets, Sergei P; Kliushnychenko, Oleksandr V

    2010-11-01

    The mass transport in an inhomogeneous medium is modeled as the limiting case of a two-component lattice gas with excluded volume constraint and one of the components fixed. In the long-wavelength approximation, the density relaxation of mobile particles is governed by diffusion and interaction with a medium inhomogeneity represented by the static component distribution. It is shown that the density relaxation can be locally accompanied by density distribution compression, i.e., the local mass transport directed from low-to high-density regions. The origin of such a "negative" mass transport is shown to be associated with the presence of a stationary drift flow defined by the medium inhomogeneity. In the quasi-one-dimensional case, the compression dynamics manifests itself in the hoppinglike motion of packet front position of diffusing substance due to staged passing through inhomogeneity barriers, and it leads to fragmentation of the packet and retardation of its spreading. The root-mean-square displacement reflects only the averaged packet front dynamics and becomes inappropriate as the transport characteristic in this regime. In the stationary case, the mass transport throughout the whole system may be directed from the boundary with lower concentration towards the boundary with higher concentration. Implications of the excluded volume constraint and particle distinguishability for these effects are discussed.

  10. The role of momentum transfer during incoherent neutron scattering is explained by the energy landscape model

    PubMed Central

    Frauenfelder, Hans; Young, Robert D.; Fenimore, Paul W.

    2017-01-01

    We recently introduced a model of incoherent quasielastic neutron scattering (QENS) that treats the neutrons as wave packets of finite length and the protein as a random walker in the free energy landscape. We call the model ELM for “energy landscape model.” In ELM, the interaction of the wave packet with a proton in a protein provides the dynamic information. During the scattering event, the momentum Q(t) is transferred by the wave packet to the struck proton and its moiety, exerting the force F(t)=dQ(t)/dt. The resultant energy E⋆ is stored elastically and returned to the neutron as it exits. The energy is given by E⋆=kB(T0+χQ), where T0 is the ambient temperature and χ (≈ 91 K Å) is a new elastobaric coefficient. Experiments yield the scattering intensity (dynamic structure factor) S(Q;T) as a function of Q and T. To test our model, we use published data on proteins where only thermal vibrations are active. ELM competes with the currently accepted theory, here called the spatial motion model (SMM), which explains S(Q,T) by motions in real space. ELM is superior to SMM: It can explain the experimental angular and temperature dependence, whereas SMM cannot do so. PMID:28461503

  11. Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondorskiy, Alexey D., E-mail: kondor@sci.lebedev.ru; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp

    2015-09-21

    We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaborationmore » of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully’s models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio “on-the-fly” simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.« less

  12. Wavelet-based Encoding Scheme for Controlling Size of Compressed ECG Segments in Telecardiology Systems.

    PubMed

    Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben

    2017-09-12

    One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.

  13. Research on realization scheme of interactive voice response (IVR) system

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Zhu, Guangxi

    2003-12-01

    In this paper, a novel interactive voice response (IVR) system is proposed, which is apparently different from the traditional. Using software operation and network control, the IVR system is presented which only depends on software in the server in which the system lies and the hardware in network terminals on user side, such as gateway (GW), personal gateway (PG), PC and so on. The system transmits the audio using real time protocol (RTP) protocol via internet to the network terminals and controls flow using finite state machine (FSM) stimulated by H.245 massages sent from user side and the system control factors. Being compared with other existing schemes, this IVR system results in several advantages, such as greatly saving the system cost, fully utilizing the existing network resources and enhancing the flexibility. The system is capable to be put in any service server anywhere in the Internet and even fits for the wireless applications based on packet switched communication. The IVR system has been put into reality and passed the system test.

  14. Within a Stone's Throw: Proximal Geolocation of Internet Users via Covert Wireless Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Nathanael R; Shue, Craig; Taylor, Curtis

    While Internet users may often believe they have anonymity online, a culmination of technologies and recent research may allow an adversary to precisely locate an online user s geophysical location. In many cases, such as peer-to-peer applications, an adversary can easily use a target s IP address to quickly obtain the general geographical location of the target. Recent research has scoped this general area to a 690m (0.43 mile) radius circle. In this work, we show how an adversary can exploit Internet communication for geophysical location by embedding covert signals in communication with a target on a remote wireless localmore » area network. We evaluated the approach in two common real-world settings: a residential neighborhood and an apartment building. In the neighborhood case, we used a single-blind trial in which an observer located a target network to within three houses in less than 40 minutes. Directional antennas may have allowed even more precise geolocation. This approach had only a 0.38% false positive rate, despite 24,000 observed unrelated packets and many unrelated networks. This low rate allowed the observer to exclude false locations and continue searching for the target. Our results enable law enforcement or copyright holders to quickly locate online Internet users without requiring time-consuming subpoenas to Internet Service Providers. Other privacy use cases include rapidly locating individuals based on their online speech or interests. We hope to raise awareness of these issues and to spur discussion on privacy and geolocating techniques.« less

  15. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  16. On the fly quantum dynamics of electronic and nuclear wave packets

    NASA Astrophysics Data System (ADS)

    Komarova, Ksenia G.; Remacle, F.; Levine, R. D.

    2018-05-01

    Multielectronic states quantum dynamics on a grid is described in a manner motivated by on the fly classical trajectory computations. Non stationary electronic states are prepared by a few cycle laser pulse. The nuclei respond and begin moving. We solve the time dependent Schrödinger equation for the electronic and nuclear dynamics for excitation from the ground electronic state. A satisfactory accuracy is possible using a localized description on a discrete grid. This enables computing on the fly for both the nuclear and electronic dynamics including non-adiabatic couplings. Attosecond dynamics in LiH is used as an example.

  17. Robust state preparation in quantum simulations of Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Deng, Fu-Guo; Lamata, Lucas; Muga, J. G.

    2017-02-01

    A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable, but the coupling between momentum and internal levels poses some difficulties to manipulate the internal states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of inverse-engineering techniques to improve the performance of quantum simulation protocols.

  18. Study on acceleration processes of the radiation belt electrons through interaction with sub-packet chorus waves in parallel propagation

    NASA Astrophysics Data System (ADS)

    Hiraga, R.; Omura, Y.

    2017-12-01

    By recent observations, chorus waves include fine structures such as amplitude fluctuations (i.e. sub-packet structure), and it has not been verified in detail yet how energetic electrons are efficiently accelerated under the wave features. In this study, we firstly focus on the acceleration process of a single electron: how it experiences the efficient energy increase by interaction with sub-packet chorus waves in parallel propagation along the Earth's magnetic field. In order to reproduce the chorus waves as seen by the latest observations by Van Allen Probes (Foster et al. 2017), the wave model amplitude in our simulation is structured such that when the wave amplitude nonlinearly grows to reach the optimum amplitude, it starts decreasing until crossing the threshold. Once it crosses the threshold, the wave dissipates and a new wave rises to repeat the nonlinear growth and damping in the same manner. The multiple occurrence of this growth-damping cycle forms a saw tooth-like amplitude variation called sub-packet. This amplitude variation also affects the wave frequency behavior which is derived by the chorus wave equations as a function of the wave amplitude (Omura et al. 2009). It is also reasonable to assume that when a wave packet diminishes and the next wave rises, it has a random phase independent of the previous wave. This randomness (discontinuity) in phase variation is included in the simulation. Through interaction with such waves, dynamics of energetic electrons were tracked. As a result, some electrons underwent an efficient acceleration process defined as successive entrapping, in which an electron successfully continues to surf the trapping potential generated by consecutive wave packets. When successive entrapping occurs, an electron trapped and de-trapped (escape the trapping potential) by a single wave packet falls into another trapping potential generated by the next wave sub-packet and continuously accelerated. The occurrence of successive entrapping is influenced by some factors such as the magnitude of wave amplitude or inhomogeneity of the Earth's dipole magnetic field. In addition, an energy range of electrons is also a major factor. In this way, it has been examined in detail how and under which conditions electrons are efficiently accelerated in the formation process of the radiation belts.

  19. Molecular isomerization induced by ultrashort infrared pulses. II. Pump-dump isomerization using pairs of time-delayed half-cycle pulses.

    PubMed

    Uiberacker, Christoph; Jakubetz, Werner

    2004-06-22

    We investigate population transfer across the barrier in a double-well potential, induced by a pair of time-delayed single-lobe half-cycle pulses. We apply this setup both to a one-dimensional (1D) quartic model potential and to a three-dimensional potential representing HCN-->HNC isomerization. Overall the results for the two systems are similar, although in the 3D system some additional features appear not seen in the 1D case. The generic mechanism of population transfer is the preparation by the pump pulse of a wave packet involving delocalized states above the barrier, followed by the essentially 1D motion of the delocalized part of wave packet across the barrier, and the eventual de-excitation by the dump pulse to localized states in the other well. The correct timing is given by the well-to-well passage time of the wave packet and its recurrence properties, and by the signs of the field lobes which determine the direction and acceleration or deceleration of the wave packet motion. In the 3D system an additional pump-pump-dump mechanism linked to wave packet motion in the reagent well can mediate isomerization. Since the transfer time and the pulse durations are of the same order of magnitude, there is also a marked dependence of the dynamics and the transfer yield on the pulse duration. Our analysis also sheds light on the pronounced carrier envelope phase dependence previously observed for isomerization and molecular dissociation with one-cycle and sub-one-cycle pulses. (c) 2004 American Institute of Physics.

  20. Smart Collaborative Caching for Information-Centric IoT in Fog Computing.

    PubMed

    Song, Fei; Ai, Zheng-Yang; Li, Jun-Jie; Pau, Giovanni; Collotta, Mario; You, Ilsun; Zhang, Hong-Ke

    2017-11-01

    The significant changes enabled by the fog computing had demonstrated that Internet of Things (IoT) urgently needs more evolutional reforms. Limited by the inflexible design philosophy; the traditional structure of a network is hard to meet the latest demands. However, Information-Centric Networking (ICN) is a promising option to bridge and cover these enormous gaps. In this paper, a Smart Collaborative Caching (SCC) scheme is established by leveraging high-level ICN principles for IoT within fog computing paradigm. The proposed solution is supposed to be utilized in resource pooling, content storing, node locating and other related situations. By investigating the available characteristics of ICN, some challenges of such combination are reviewed in depth. The details of building SCC, including basic model and advanced algorithms, are presented based on theoretical analysis and simplified examples. The validation focuses on two typical scenarios: simple status inquiry and complex content sharing. The number of clusters, packet loss probability and other parameters are also considered. The analytical results demonstrate that the performance of our scheme, regarding total packet number and average transmission latency, can outperform that of the original ones. We expect that the SCC will contribute an efficient solution to the related studies.

  1. Smart Collaborative Caching for Information-Centric IoT in Fog Computing

    PubMed Central

    Song, Fei; Ai, Zheng-Yang; Li, Jun-Jie; Zhang, Hong-Ke

    2017-01-01

    The significant changes enabled by the fog computing had demonstrated that Internet of Things (IoT) urgently needs more evolutional reforms. Limited by the inflexible design philosophy; the traditional structure of a network is hard to meet the latest demands. However, Information-Centric Networking (ICN) is a promising option to bridge and cover these enormous gaps. In this paper, a Smart Collaborative Caching (SCC) scheme is established by leveraging high-level ICN principles for IoT within fog computing paradigm. The proposed solution is supposed to be utilized in resource pooling, content storing, node locating and other related situations. By investigating the available characteristics of ICN, some challenges of such combination are reviewed in depth. The details of building SCC, including basic model and advanced algorithms, are presented based on theoretical analysis and simplified examples. The validation focuses on two typical scenarios: simple status inquiry and complex content sharing. The number of clusters, packet loss probability and other parameters are also considered. The analytical results demonstrate that the performance of our scheme, regarding total packet number and average transmission latency, can outperform that of the original ones. We expect that the SCC will contribute an efficient solution to the related studies. PMID:29104219

  2. Pricing the Services in Dynamic Environment: Agent Pricing Model

    NASA Astrophysics Data System (ADS)

    Žagar, Drago; Rupčić, Slavko; Rimac-Drlje, Snježana

    New Internet applications and services as well as new user demands open many new issues concerning dynamic management of quality of service and price for received service, respectively. The main goals of Internet service providers are to maximize profit and maintain a negotiated quality of service. From the users' perspective the main goal is to maximize ratio of received QoS and costs of service. However, achieving these objectives could become very complex if we know that Internet service users might during the session become highly dynamic and proactive. This connotes changes in user profile or network provider/s profile caused by high level of user mobility or variable level of user demands. This paper proposes a new agent based pricing architecture for serving the highly dynamic customers in context of dynamic user/network environment. The proposed architecture comprises main aspects and basic parameters that will enable objective and transparent assessment of the costs for the service those Internet users receive while dynamically change QoS demands and cost profile.

  3. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks.

    PubMed

    Tang, Jiawei; Liu, Anfeng; Zhang, Jian; Xiong, Neal N; Zeng, Zhiwen; Wang, Tian

    2018-03-01

    The Internet of things (IoT) is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR) scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs). The main contributions of a TBSR are (a) the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b) Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of battery remaining is high enough, nodes then send the notification which was logged before to the sink. Compared with past solutions, our results indicate that the performance of the TBSR scheme has been improved comprehensively; it can effectively increase the quantity of notification received by the sink by 20%, increase energy efficiency by 11%, reduce the maximum storage capacity needed by nodes by 33.3% and improve the success rate of routing by approximately 16.30%.

  4. Congestion control and routing over satellite networks

    NASA Astrophysics Data System (ADS)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE) method and then develop a novel on-demand routing system named Cross Entropy Accelerated Ant Routing System (CEAARS) for regular constellation LEO satellite networks. By implementing simulations on an Iridium-like satellite network, we compare the proposed CEAARS algorithm with the two approaches to adaptive routing protocols on the Internet: distance-vector (DV) and link-state (LS), as well as with the original Cross Entropy Ant Routing System (CEARS). DV algorithms are based on distributed Bellman Ford algorithm, and LS algorithms are implementation of Dijkstras single source shortest path. The results show that CEAARS not only remarkably improves the convergence speed of achieving optimal or suboptimal paths, but also reduces the number of overhead ants (management packets).

  5. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks

    PubMed Central

    Tang, Jiawei; Zhang, Jian; Zeng, Zhiwen; Wang, Tian

    2018-01-01

    The Internet of things (IoT) is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR) scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs). The main contributions of a TBSR are (a) the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b) Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of battery remaining is high enough, nodes then send the notification which was logged before to the sink. Compared with past solutions, our results indicate that the performance of the TBSR scheme has been improved comprehensively; it can effectively increase the quantity of notification received by the sink by 20%, increase energy efficiency by 11%, reduce the maximum storage capacity needed by nodes by 33.3% and improve the success rate of routing by approximately 16.30%. PMID:29494561

  6. Simulation for Dynamic Situation Awareness and Prediction III

    DTIC Science & Technology

    2010-03-01

    source Java ™ library for capturing and sending network packets; 4) Groovy – an open source, Java -based scripting language (version 1.6 or newer). Open...DMOTH Analyzer application. Groovy is an open source dynamic scripting language for the Java Virtual Machine. It is consistent with Java syntax...between temperature, pressure, wind and relative humidity, and 3) a precipitation editing algorithm. The Editor can be used to prepare scripted changes

  7. Quantum and classical dissipation of charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less

  8. Electronic transport in disordered chains with saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    dos Santos, J. L. L.; Nguyen, Ba Phi; de Moura, F. A. B. F.

    2015-10-01

    In this work we study numerically the dynamics of an initially localized wave packet in one-dimensional disordered chains with saturable nonlinearity. By using the generalized discrete nonlinear Schrödinger equation, we calculate two different physical quantities as a function of time, which are the participation number and the mean square displacement from the excitation site. From detailed numerical analysis, we find that the saturable nonlinearity can promote a sub-diffusive spreading of the wave packet even in the presence of diagonal disorder for a long time. In addition, we also investigate the effect of the saturated nonlinearity for initial times of the electronic evolution thus showing the possibility of mobile breather-like modes.

  9. Coherent electronic wave packet motion in C(60) controlled by the waveform and polarization of few-cycle laser fields.

    PubMed

    Li, H; Mignolet, B; Wachter, G; Skruszewicz, S; Zherebtsov, S; Süssmann, F; Kessel, A; Trushin, S A; Kling, Nora G; Kübel, M; Ahn, B; Kim, D; Ben-Itzhak, I; Cocke, C L; Fennel, T; Tiggesbäumker, J; Meiwes-Broer, K-H; Lemell, C; Burgdörfer, J; Levine, R D; Remacle, F; Kling, M F

    2015-03-27

    Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.

  10. Elastic scattering losses from colliding Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zin Pawel; Chwedenczuk, Jan; Trippenbach, Marek

    2006-03-15

    Bragg diffraction divides a Bose-Einstein condensate into two overlapping components, moving with respect to each other with high momentum. Elastic collisions between atoms from distinct wave packets can significantly deplete the condensate. Recently, Zin et al. [Phys. Rev. Lett. 94, 200401 (2005)] introduced a model of two counterpropagating atomic Gaussian wave packets incorporating the dynamics of the incoherent scattering processes. Here we study the properties of this model in detail, including the nature of the transition from spontaneous to stimulated scattering. Within the first-order approximation, we derive analytical expressions for the density matrix and anomalous density that provide excellent insightmore » into correlation properties of scattered atoms.« less

  11. Ramsey method for Auger-electron interference induced by an attosecond twin pulse

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Schafer, Kenneth J.

    2015-02-01

    We examine the archetype of an interference experiment for Auger electrons: two electron wave packets are launched by inner-shell ionizing a krypton atom using two attosecond light pulses with a variable time delay. This setting is an attosecond realization of the Ramsey method of separated oscillatory fields. Interference of the two ejected Auger-electron wave packets is predicted, indicating that the coherence between the two pulses is passed to the Auger electrons. For the detection of the interference pattern an accurate coincidence measurement of photo- and Auger electrons is necessary. The method allows one to control inner-shell electron dynamics on an attosecond timescale and represents a sensitive indicator for decoherence.

  12. Coriolis-coupled wave packet dynamics of H + HLi reaction.

    PubMed

    Padmanaban, R; Mahapatra, S

    2006-05-11

    We investigated the effect of Coriolis coupling (CC) on the initial state-selected dynamics of H+HLi reaction by a time-dependent wave packet (WP) approach. Exact quantum scattering calculations were obtained by a WP propagation method based on the Chebyshev polynomial scheme and ab initio potential energy surface of the reacting system. Partial wave contributions up to the total angular momentum J=30 were found to be necessary for the scattering of HLi in its vibrational and rotational ground state up to a collision energy approximately 0.75 eV. For each J value, the projection quantum number K was varied from 0 to min (J, K(max)), with K(max)=8 until J=20 and K(max)=4 for further higher J values. This is because further higher values of K do not have much effect on the dynamics and also because one wishes to maintain the large computational overhead for each calculation within the affordable limit. The initial state-selected integral reaction cross sections and thermal rate constants were calculated by summing up the contributions from all partial waves. These were compared with our previous results on the title system, obtained within the centrifugal sudden and J-shifting approximations, to demonstrate the impact of CC on the dynamics of this system.

  13. Anomalous diffusion in a dynamical optical lattice

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Cooper, Nigel R.

    2018-02-01

    Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.

  14. Autosophy: an alternative vision for satellite communication, compression, and archiving

    NASA Astrophysics Data System (ADS)

    Holtz, Klaus; Holtz, Eric; Kalienky, Diana

    2006-08-01

    Satellite communication and archiving systems are now designed according to an outdated Shannon information theory where all data is transmitted in meaningless bit streams. Video bit rates, for example, are determined by screen size, color resolution, and scanning rates. The video "content" is irrelevant so that totally random images require the same bit rates as blank images. An alternative system design, based on the newer Autosophy information theory, is now evolving, which transmits data "contend" or "meaning" in a universally compatible 64bit format. This would allow mixing all multimedia transmissions in the Internet's packet stream. The new systems design uses self-assembling data structures, which grow like data crystals or data trees in electronic memories, for both communication and archiving. The advantages for satellite communication and archiving may include: very high lossless image and video compression, unbreakable encryption, resistance to transmission errors, universally compatible data formats, self-organizing error-proof mass memories, immunity to the Internet's Quality of Service problems, and error-proof secure communication protocols. Legacy data transmission formats can be converted by simple software patches or integrated chipsets to be forwarded through any media - satellites, radio, Internet, cable - without needing to be reformatted. This may result in orders of magnitude improvements for all communication and archiving systems.

  15. Role of wave packet width in quantum molecular dynamics in fusion reactions near barrier

    NASA Astrophysics Data System (ADS)

    Cao, X. G.; Ma, Y. G.; Zhang, G. Q.; Wang, H. W.; Anastasi, A.; Curciarello, F.; De Leo, V.

    2014-05-01

    The dynamical fusion process of 48Ca + 144Sm with different impact parameters near barrier is studied by an extended quantum molecular dynamics (EQMD) model, where width of wavepacket is dynamically treated based on variational principle. The time evolution of different energy components such as potential energy, kinetic energy, Coulomb energy and Pauli potential are analyzed when dynamical or fixed width is assumed in calculation. It is found that the dynamical wavepacket width can enhance the dissipation of incident energy and the fluctuations, which are important to form compound nuclei. Moreover, we compare the fusion barrier dependence on the incident energy when it is determined by both dynamical and fixed wavepacket width.

  16. You Be the Chemist [Multimedia Kit].

    ERIC Educational Resources Information Center

    National Association of Chemical Distributors, Arlington, VA. Educational Foundation.

    This multimedia kit includes a teacher's manual, video, and activity packet. The unique interactive course uses safe, controlled dynamic experiments to teach kids about chemistry, the proper handling of chemicals, and responsible product stewardship. Students are asked to hypothesize about chemical substances, collect and analyze data, and share…

  17. Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements

    NASA Astrophysics Data System (ADS)

    Zander, C.; Plastino, A. R.; Díaz-Alonso, J.

    2015-11-01

    We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.

  18. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-11-21

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phasemore » from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.« less

  19. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    PubMed

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  20. Optimal control theory with continuously distributed target states: An application to NaK

    NASA Astrophysics Data System (ADS)

    Kaiser, Andreas; May, Volkhard

    2006-01-01

    Laser pulse control of molecular dynamics is studied theoretically by using optimal control theory. The control theory is extended to target states which are distributed in time as well as in a space of parameters which are responsible for a change of individual molecular properties. This generalized treatment of a control task is first applied to wave packet formation in randomly oriented diatomic systems. Concentrating on an ensemble of NaK molecules which are not aligned the control yield decreases drastically when compared with an aligned ensemble. Second, we demonstrate for NaK the maximization of the probe pulse transient absorption in a pump-probe scheme with an optimized pump pulse. These computations suggest an overall optical control scheme, whereby a flexible technique is suggested to form particular wave packets in the excited state potential energy surface. In particular, it is shown that considerable wave packet localization at the turning points of the first-excited Σ-state potential energy surfaces of NaK may be achieved. The dependency of the control yield on the probe pulse parameters is also discussed.

  1. Femtosecond Electron Wave Packet Propagation and Diffraction: Towards Making the ``Molecular Movie"

    NASA Astrophysics Data System (ADS)

    Miller, R. J. Dwayne

    2003-03-01

    Time-resolved electron diffraction harbors great promise for achieving atomic resolution of the fastest chemical processes. The generation of sufficiently short electron pulses to achieve this real time view of a chemical reaction has been limited by problems in maintaining short electron pulses with realistic electron densities to the sample. The propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. This analyis shows that the redistribution of electrons inside the packet, arising from space-charge and dispersion contributions, changes the pulse envelope and leads to the development of a spatially linear axial velocity distribution. These results have been used in the design of femtosecond photoelectron guns with higher time resolution and novel electron-optical methods of pulse characterization that are approaching 100 fs timescales. Time-resolved diffraction studies with electron pulses of approximately 500 femtoseconds have focused on solid-liquid phase transitions under far from equilibrium conditions. This work gives a microscopic description of the melting process and illustrates the promise of atomically resolving transition state processes.

  2. Dynamic baseline detection method for power data network service

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2017-08-01

    This paper proposes a dynamic baseline Traffic detection Method which is based on the historical traffic data for the Power data network. The method uses Cisco's NetFlow acquisition tool to collect the original historical traffic data from network element at fixed intervals. This method uses three dimensions information including the communication port, time, traffic (number of bytes or number of packets) t. By filtering, removing the deviation value, calculating the dynamic baseline value, comparing the actual value with the baseline value, the method can detect whether the current network traffic is abnormal.

  3. Ad Hoc Selection of Voice over Internet Streams

    NASA Technical Reports Server (NTRS)

    Macha, Mitchell G. (Inventor); Bullock, John T. (Inventor)

    2014-01-01

    A method and apparatus for a communication system technique involving ad hoc selection of at least two audio streams is provided. Each of the at least two audio streams is a packetized version of an audio source. A data connection exists between a server and a client where a transport protocol actively propagates the at least two audio streams from the server to the client. Furthermore, software instructions executable on the client indicate a presence of the at least two audio streams, allow selection of at least one of the at least two audio streams, and direct the selected at least one of the at least two audio streams for audio playback.

  4. Ad Hoc Selection of Voice over Internet Streams

    NASA Technical Reports Server (NTRS)

    Macha, Mitchell G. (Inventor); Bullock, John T. (Inventor)

    2008-01-01

    A method and apparatus for a communication system technique involving ad hoc selection of at least two audio streams is provided. Each of the at least two audio streams is a packetized version of an audio source. A data connection exists between a server and a client where a transport protocol actively propagates the at least two audio streams from the server to the client. Furthermore, software instructions executable on the client indicate a presence of the at least two audio streams, allow selection of at least one of the at least two audio streams, and direct the selected at least one of the at least two audio streams for audio playback.

  5. An adaptive density-based routing protocol for flying Ad Hoc networks

    NASA Astrophysics Data System (ADS)

    Zheng, Xueli; Qi, Qian; Wang, Qingwen; Li, Yongqiang

    2017-10-01

    An Adaptive Density-based Routing Protocol (ADRP) for Flying Ad Hoc Networks (FANETs) is proposed in this paper. The main objective is to calculate forwarding probability adaptively in order to increase the efficiency of forwarding in FANETs. ADRP dynamically fine-tunes the rebroadcasting probability of a node for routing request packets according to the number of neighbour nodes. Indeed, it is more interesting to privilege the retransmission by nodes with little neighbour nodes. We describe the protocol, implement it and evaluate its performance using NS-2 network simulator. Simulation results reveal that ADRP achieves better performance in terms of the packet delivery fraction, average end-to-end delay, normalized routing load, normalized MAC load and throughput, which is respectively compared with AODV.

  6. Optimized scalable network switch

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2007-12-04

    In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

  7. Optimized scalable network switch

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.

    2010-02-23

    In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

  8. Recovery time in quantum dynamics of wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strekalov, M. L., E-mail: strekalov@kinetics.nsc.ru

    2017-01-15

    A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of themore » system is established. The recovery time is the longest for the maximal excitation level.« less

  9. Packet Fragmentation and Reassembly in Molecular Communication.

    PubMed

    Furubayashi, Taro; Nakano, Tadashi; Eckford, Andrew; Okaie, Yutaka; Yomo, Tetsuya

    2016-04-01

    This paper describes packet fragmentation and reassembly to achieve reliable molecular communication among bionanomachines. In the molecular communication described in this paper, a sender bionanomachine performs packet fragmentation, dividing a large molecular message into smaller pieces and embedding into smaller molecular packets, so that molecular packets have higher diffusivity to reach the receiver bionanomachine. The receiver bionanomachine then performs packet reassembly to retrieve the original molecular message from a set of molecular packets that it receives. To examine the effect of packet fragmentation and reassembly, we develop analytical models and conduct numerical experiments. Numerical results show that packet fragmentation and reassembly can improve the message delivery performance. Numerical results also indicate that packet fragmentation and reassembly may degrade the performance in the presence of drift in the environment.

  10. A novel lost packets recovery scheme based on visual secret sharing

    NASA Astrophysics Data System (ADS)

    Lu, Kun; Shan, Hong; Li, Zhi; Niu, Zhao

    2017-08-01

    In this paper, a novel lost packets recovery scheme which encrypts the effective parts of an original packet into two shadow packets based on (2, 2)-threshold XOR-based visual Secret Sharing (VSS) is proposed. The two shadow packets used as watermarks would be embedded into two normal data packets with digital watermarking embedding technology and then sent from one sensor node to another. Each shadow packet would reveal no information of the original packet, which can improve the security of original packet delivery greatly. The two shadow packets which can be extracted from the received two normal data packets delivered from a sensor node can recover the original packet lossless based on XOR-based VSS. The Performance analysis present that the proposed scheme provides essential services as long as possible in the presence of selective forwarding attack. The proposed scheme would not increase the amount of additional traffic, namely, lower energy consumption, which is suitable for Wireless Sensor Network (WSN).

  11. Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).

  12. Extensible packet processing architecture

    DOEpatents

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  13. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet.more » The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.« less

  14. Bindings and RESTlets: A Novel Set of CoAP-Based Application Enablers to Build IoT Applications.

    PubMed

    Teklemariam, Girum Ketema; Van Den Abeele, Floris; Moerman, Ingrid; Demeester, Piet; Hoebeke, Jeroen

    2016-08-02

    Sensors and actuators are becoming important components of Internet of Things (IoT) applications. Today, several approaches exist to facilitate communication of sensors and actuators in IoT applications. Most communications go through often proprietary gateways requiring availability of the gateway for each and every interaction between sensors and actuators. Sometimes, the gateway does some processing of the sensor data before triggering actuators. Other approaches put this processing logic further in the cloud. These approaches introduce significant latencies and increased number of packets. In this paper, we introduce a CoAP-based mechanism for direct binding of sensors and actuators. This flexible binding solution is utilized further to build IoT applications through RESTlets. RESTlets are defined to accept inputs and produce outputs after performing some processing tasks. Sensors and actuators could be associated with RESTlets (which can be hosted on any device) through the flexible binding mechanism we introduced. This approach facilitates decentralized IoT application development by placing all or part of the processing logic in Low power and Lossy Networks (LLNs). We run several tests to compare the performance of our solution with existing solutions and found out that our solution reduces communication delay and number of packets in the LLN.

  15. Prediction-Based Energy Saving Mechanism in 3GPP NB-IoT Networks.

    PubMed

    Lee, Jinseong; Lee, Jaiyong

    2017-09-01

    The current expansion of the Internet of things (IoT) demands improved communication platforms that support a wide area with low energy consumption. The 3rd Generation Partnership Project introduced narrowband IoT (NB-IoT) as IoT communication solutions. NB-IoT devices should be available for over 10 years without requiring a battery replacement. Thus, a low energy consumption is essential for the successful deployment of this technology. Given that a high amount of energy is consumed for radio transmission by the power amplifier, reducing the uplink transmission time is key to ensure a long lifespan of an IoT device. In this paper, we propose a prediction-based energy saving mechanism (PBESM) that is focused on enhanced uplink transmission. The mechanism consists of two parts: first, the network architecture that predicts the uplink packet occurrence through a deep packet inspection; second, an algorithm that predicts the processing delay and pre-assigns radio resources to enhance the scheduling request procedure. In this way, our mechanism reduces the number of random accesses and the energy consumed by radio transmission. Simulation results showed that the energy consumption using the proposed PBESM is reduced by up to 34% in comparison with that in the conventional NB-IoT method.

  16. Bindings and RESTlets: A Novel Set of CoAP-Based Application Enablers to Build IoT Applications

    PubMed Central

    Teklemariam, Girum Ketema; Van Den Abeele, Floris; Moerman, Ingrid; Demeester, Piet; Hoebeke, Jeroen

    2016-01-01

    Sensors and actuators are becoming important components of Internet of Things (IoT) applications. Today, several approaches exist to facilitate communication of sensors and actuators in IoT applications. Most communications go through often proprietary gateways requiring availability of the gateway for each and every interaction between sensors and actuators. Sometimes, the gateway does some processing of the sensor data before triggering actuators. Other approaches put this processing logic further in the cloud. These approaches introduce significant latencies and increased number of packets. In this paper, we introduce a CoAP-based mechanism for direct binding of sensors and actuators. This flexible binding solution is utilized further to build IoT applications through RESTlets. RESTlets are defined to accept inputs and produce outputs after performing some processing tasks. Sensors and actuators could be associated with RESTlets (which can be hosted on any device) through the flexible binding mechanism we introduced. This approach facilitates decentralized IoT application development by placing all or part of the processing logic in Low power and Lossy Networks (LLNs). We run several tests to compare the performance of our solution with existing solutions and found out that our solution reduces communication delay and number of packets in the LLN. PMID:27490554

  17. Quality of Service for Real-Time Applications Over Next Generation Data Networks

    NASA Technical Reports Server (NTRS)

    Atiquzzaman, Mohammed; Jain, Raj

    2001-01-01

    This project, which started on January 1, 2000, was funded by the NASA Glenn Research Center for duration of one year. The deliverables of the project included the following tasks: (1) Study of QoS mapping between the edge and core networks envisioned in the Next Generation networks will provide us with the QoS guarantees that can be obtained from next generation networks; (2) Buffer management techniques to provide strict guarantees to real-time end-to-end applications through preferential treatment to packets belonging to real-time applications. In particular, use of ECN to help reduce the loss on high bandwidth-delay product satellite networks needs to be studied; (3) Effect of Prioritized Packet Discard to increase goodput of the network and reduce the buffering requirements in the ATM switches; (4) Provision of new IP circuit emulation services over Satellite IP backbones using MPLS will be studied; and (5) Determine the architecture and requirements for internetworking ATN and the Next Generation Internet for real-time applications. The project has been completed on time. All the objectives and deliverables of the project have been completed. Research results obtained from this project have been published in a number of papers in journals, conferences, and technical reports, included in this document.

  18. A novel interacting multiple model based network intrusion detection scheme

    NASA Astrophysics Data System (ADS)

    Xin, Ruichi; Venkatasubramanian, Vijay; Leung, Henry

    2006-04-01

    In today's information age, information and network security are of primary importance to any organization. Network intrusion is a serious threat to security of computers and data networks. In internet protocol (IP) based network, intrusions originate in different kinds of packets/messages contained in the open system interconnection (OSI) layer 3 or higher layers. Network intrusion detection and prevention systems observe the layer 3 packets (or layer 4 to 7 messages) to screen for intrusions and security threats. Signature based methods use a pre-existing database that document intrusion patterns as perceived in the layer 3 to 7 protocol traffics and match the incoming traffic for potential intrusion attacks. Alternately, network traffic data can be modeled and any huge anomaly from the established traffic pattern can be detected as network intrusion. The latter method, also known as anomaly based detection is gaining popularity for its versatility in learning new patterns and discovering new attacks. It is apparent that for a reliable performance, an accurate model of the network data needs to be established. In this paper, we illustrate using collected data that network traffic is seldom stationary. We propose the use of multiple models to accurately represent the traffic data. The improvement in reliability of the proposed model is verified by measuring the detection and false alarm rates on several datasets.

  19. Enhanced International Space Station Ku-Band Telemetry Service

    NASA Technical Reports Server (NTRS)

    Cecil, Andrew J.; Pitts, R. Lee; Welch, Steven J.; Bryan, Jason D.

    2014-01-01

    The International Space Station (ISS) is in an operational configuration. To fully utilize the ISS and take advantage of the modern protocols and updated Ku-band access, the Huntsville Operations Support Center (HOSC) has designed an approach to extend the Kuband forward link access for payload investigators to their on-orbit payloads. This dramatically increases the ground to ISS communications for those users. This access also enables the ISS flight controllers operating in the Payload Operations and Integration Center to have more direct control over the systems they are responsible for managing and operating. To extend the Ku-band forward link to the payload user community the development of a new command server is necessary. The HOSC subsystems were updated to process the Internet Protocol Encapsulated packets, enable users to use the service based on their approved services, and perform network address translation to insure that the packets are forwarded from the user to the correct payload repeating that process in reverse from ISS to the payload user. This paper presents the architecture, implementation, and lessons learned. This will include the integration of COTS hardware and software as well as how the device is incorporated into the operational mission of the ISS. Thus, this paper also discusses how this technology can be applicable to payload users of the ISS.

  20. Development and Technical Validation of the Mobile Based Assistive Listening System: A Smartphone-Based Remote Microphone.

    PubMed

    Lopez, Esteban Alejandro; Costa, Orozimbo Alves; Ferrari, Deborah Viviane

    2016-10-01

    The purpose of this research note is to describe the development and technical validation of the Mobile Based Assistive Listening System (MoBALS), a free-of-charge smartphone-based remote microphone application. MoBALS Version 1.0 was developed for Android (Version 2.1 or higher) and was coded with Java using Eclipse Indigo with the Android Software Development Kit. A Wi-Fi router with background traffic and 2 affordable smartphones were used for debugging and technical validation comprising, among other things, multicasting capability, data packet loss, and battery consumption. MoBALS requires at least 2 smartphones connected to the same Wi-Fi router for signal transmission and reception. Subscriber identity module cards or Internet connections are not needed. MoBALS can be used alone or connected to a hearing aid or cochlear implant via direct audio input. Maximum data packet loss was 99.28%, and minimum battery life was 5 hr. Other relevant design specifications and their implementation are described. MoBALS performed as a remote microphone with enhanced accessibility features and avoids overhead expenses by using already-available and affordable technology. The further development and technical revalidation of MoBALS will be followed by clinical evaluation with persons with hearing impairment.

  1. Compact Modbus TCP/IP protocol for data acquisition systems based on limited hardware resources

    NASA Astrophysics Data System (ADS)

    Bai, Q.; Jin, B.; Wang, D.; Wang, Y.; Liu, X.

    2018-04-01

    The Modbus TCP/IP has been a standard industry communication protocol and widely utilized for establishing sensor-cloud platforms on the Internet. However, numerous existing data acquisition systems built on traditional single-chip microcontrollers without sufficient resources cannot support it, because the complete Modbus TCP/IP protocol always works dependent on a full operating system which occupies abundant hardware resources. Hence, a compact Modbus TCP/IP protocol is proposed in this work to make it run efficiently and stably even on a resource-limited hardware platform. Firstly, the Modbus TCP/IP protocol stack is analyzed and the refined protocol suite is rebuilt by streamlining the typical TCP/IP suite. Then, specific implementation of every hierarchical layer is respectively presented in detail according to the protocol structure. Besides, the compact protocol is implemented in a traditional microprocessor to validate the feasibility of the scheme. Finally, the performance of the proposed scenario is assessed. The experimental results demonstrate that message packets match the frame format of Modbus TCP/IP protocol and the average bandwidth reaches to 1.15 Mbps. The compact protocol operates stably even based on a traditional microcontroller with only 4-kB RAM and 12-MHz system clock, and no communication congestion or frequent packet loss occurs.

  2. Prediction-Based Energy Saving Mechanism in 3GPP NB-IoT Networks

    PubMed Central

    2017-01-01

    The current expansion of the Internet of things (IoT) demands improved communication platforms that support a wide area with low energy consumption. The 3rd Generation Partnership Project introduced narrowband IoT (NB-IoT) as IoT communication solutions. NB-IoT devices should be available for over 10 years without requiring a battery replacement. Thus, a low energy consumption is essential for the successful deployment of this technology. Given that a high amount of energy is consumed for radio transmission by the power amplifier, reducing the uplink transmission time is key to ensure a long lifespan of an IoT device. In this paper, we propose a prediction-based energy saving mechanism (PBESM) that is focused on enhanced uplink transmission. The mechanism consists of two parts: first, the network architecture that predicts the uplink packet occurrence through a deep packet inspection; second, an algorithm that predicts the processing delay and pre-assigns radio resources to enhance the scheduling request procedure. In this way, our mechanism reduces the number of random accesses and the energy consumed by radio transmission. Simulation results showed that the energy consumption using the proposed PBESM is reduced by up to 34% in comparison with that in the conventional NB-IoT method. PMID:28862675

  3. Method and Apparatus for Processing UDP Data Packets

    NASA Technical Reports Server (NTRS)

    Murphy, Brandon M. (Inventor)

    2017-01-01

    A method and apparatus for processing a plurality of data packets. A data packet is received. A determination is made as to whether a portion of the data packet follows a selected digital recorder standard protocol based on a header of the data packet. Raw data in the data packet is converted into human-readable information in response to a determination that the portion of the data packet follows the selected digital recorder standard protocol.

  4. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  5. Advances in Quantum Trajectory Approaches to Dynamics

    NASA Astrophysics Data System (ADS)

    Askar, Attila

    2001-03-01

    The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)

  6. I/O routing in a multidimensional torus network

    DOEpatents

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip

    2017-02-07

    A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.

  7. I/O routing in a multidimensional torus network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip

    A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destinationmore » address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.« less

  8. Estimating TCP Packet Loss Ratio from Sampled ACK Packets

    NASA Astrophysics Data System (ADS)

    Yamasaki, Yasuhiro; Shimonishi, Hideyuki; Murase, Tutomu

    The advent of various quality-sensitive applications has greatly changed the requirements for IP network management and made the monitoring of individual traffic flows more important. Since the processing costs of per-flow quality monitoring are high, especially in high-speed backbone links, packet sampling techniques have been attracting considerable attention. Existing sampling techniques, such as those used in Sampled NetFlow and sFlow, however, focus on the monitoring of traffic volume, and there has been little discussion of the monitoring of such quality indexes as packet loss ratio. In this paper we propose a method for estimating, from sampled packets, packet loss ratios in individual TCP sessions. It detects packet loss events by monitoring duplicate ACK events raised by each TCP receiver. Because sampling reveals only a portion of the actual packet loss, the actual packet loss ratio is estimated statistically. Simulation results show that the proposed method can estimate the TCP packet loss ratio accurately from a 10% sampling of packets.

  9. Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime

    NASA Astrophysics Data System (ADS)

    Maurer, J.; Willenberg, B.; Daněk, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Keller, U.

    2018-01-01

    We explore ionization and rescattering in strong mid-infrared laser fields in the nondipole regime over the full range of polarization ellipticity. In three-dimensional photoelectron momentum distributions (3D PMDs) measured with velocity map imaging spectroscopy, we observe the appearance of a sharp ridge structure along the major polarization axis. Within a certain range of ellipticity, the electrons in this ridge are clearly separated from the two lobes that commonly appear in the PMD with elliptically polarized laser fields. In contrast to the well-known lobes of direct electrons, the sharp ridge is created by Coulomb focusing of the softly recolliding electrons. These ridge electrons are directly related to a counterintuitive shift of the PMD peak opposite to the laser beam propagation direction when the dipole approximation breaks down. The ellipticity-dependent 3D PMDs give access to different ionization and recollision dynamics with appropriate filters in the momentum space. For example, we can extract information about the spread of the initial wave packet and the Coulomb momentum transfer of the rescattering electrons.

  10. Evaluation of multicast schemes in optical burst-switched networks: the case with dynamic sessions

    NASA Astrophysics Data System (ADS)

    Jeong, Myoungki; Qiao, Chunming; Xiong, Yijun; Vandenhoute, Marc

    2000-10-01

    In this paper, we evaluate the performance of several multicast schemes in optical burst-switched WDM networks taking into accounts the overheads due to control packets and guard bands (Gbs) of bursts on separate channels (wavelengths). A straightforward scheme is called Separate Multicasting (S-MCAST) where each source node constructs separate bursts for its multicast (per each multicast session) and unicast traffic. To reduce the overhead due to Gbs (and control packets), one may piggyback the multicast traffic in bursts containing unicast traffic using a scheme called Multiple Unicasting (M-UCAST). The third scheme is called Tree-Shared Multicasting (TS-MCAST) wehreby multicast traffic belonging to multiple multicast sesions can be mixed together in a burst, which is delivered via a shared multicast tree. In [1], we have evaluated several multicast schemes with static sessions at the flow level. In this paper, we perform a simple analysis for the multicast schemes and evaluate the performance of three multicast schemes, focusing on the case with dynamic sessions in terms of the link utilization, bandwidth consumption, blocking (loss) probability, goodput and the processing loads.

  11. Dynamical signatures of bound states in waveguide QED

    NASA Astrophysics Data System (ADS)

    Sánchez-Burillo, E.; Zueco, D.; Martín-Moreno, L.; García-Ripoll, J. J.

    2017-08-01

    We study the spontaneous decay of an impurity coupled to a linear array of bosonic cavities forming a single-band photonic waveguide. The average frequency of the emitted photon is different from the frequency for single-photon resonant scattering, which perfectly matches the bare frequency of the excited state of the impurity. We study how the energy of the excited state of the impurity influences the spatial profile of the emitted photon. The farther the energy is from the middle of the photonic band, the farther the wave packet is from the causal limit. In particular, if the energy lies in the middle of the band, the wave packet is localized around the causal limit. Besides, the occupation of the excited state of the impurity presents a rich dynamics: it shows an exponential decay up to intermediate times, this is followed by a power-law tail in the long-time regime, and it finally reaches an oscillatory stationary regime. Finally, we show that this phenomenology is robust under the presence of losses, both in the impurity and in the cavities.

  12. Stochastic sampled-data control for synchronization of complex dynamical networks with control packet loss and additive time-varying delays.

    PubMed

    Rakkiyappan, R; Sakthivel, N; Cao, Jinde

    2015-06-01

    This study examines the exponential synchronization of complex dynamical networks with control packet loss and additive time-varying delays. Additionally, sampled-data controller with time-varying sampling period is considered and is assumed to switch between m different values in a random way with given probability. Then, a novel Lyapunov-Krasovskii functional (LKF) with triple integral terms is constructed and by using Jensen's inequality and reciprocally convex approach, sufficient conditions under which the dynamical network is exponentially mean-square stable are derived. When applying Jensen's inequality to partition double integral terms in the derivation of linear matrix inequality (LMI) conditions, a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters appears. In order to handle such a combination, an effective method is introduced by extending the lower bound lemma. To design the sampled-data controller, the synchronization error system is represented as a switched system. Based on the derived LMI conditions and average dwell-time method, sufficient conditions for the synchronization of switched error system are derived in terms of LMIs. Finally, numerical example is employed to show the effectiveness of the proposed methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mapping and controlling ultrafast dynamics of highly excited H 2 molecules by VUV-IR pump-probe schemes

    DOE PAGES

    Sturm, F. P.; Tong, X. M.; Palacios, A.; ...

    2017-01-09

    Here, we used ultrashort femtosecond vacuum ultraviolet (VUV) and infrared (IR) pulses in a pump-probe scheme to map the dynamics and nonequilibrium dissociation channels of excited neutral H 2 molecules. A nuclear wave packet is created in the B 1Σmore » $$+\\atop{u}$$ state of the neutral H 2 molecule by absorption of the ninth harmonic of the driving infrared laser field. Due to the large stretching amplitude of the molecule excited in the B 1Σ$$+\\atop{u}$$ electronic state, the effective H 2 + ionization potential changes significantly as the nuclear wave packet vibrates in the bound, highly electronically and vibrationally excited B potential-energy curve. We probed such dynamics by ionizing the excited neutral molecule using time-delayed VUV-or-IR radiation. We identified the nonequilibrium dissociation channels by utilizing three-dimensional momentum imaging of the ion fragments. We also found that different dissociation channels can be controlled, to some extent, by changing the IR laser intensity and by choosing the wavelength of the probe laser light. Furthermore, we concluded that even in a benchmark molecular system such as H 2*, the interpretation of the nonequilibrium multiphoton and multicolor ionization processes is still a challenging task, requiring intricate theoretical analysis.« less

  14. Creating Rydberg electron wave packets using terahertz pulses

    NASA Astrophysics Data System (ADS)

    Bromage, Jake

    1999-10-01

    In this thesis I present experiments in which we excited classical-limit states of an atom using terahertz pulses. In a classical-limit state, an atom's outer electron is confined to a wave packet that orbits the core along a classical trajectory. Researchers have excited states with classical traits, but wave packets localized in all three dimensions have proved elusive. Theoretical studies have shown such states can be created using terahertz pulses. Using these techniques, we created a linear-orbit wave packet (LOWP), that is three-dimensionally localized and orbits along a line on one side of the atom's core. Terahertz pulses are sub-picosecond bursts of far- infrared radiation. Unlike ultrashort optical pulses, the electric field of terahertz pulses barely completes a single cycle. Our simulations of the atom-pulse interaction show that this electric field profile is critical in determining the quality of the wave packet. To characterize our terahertz pulses, we invented dithered-edge sampling which time- resolves the electric field using a photoconductive receiver and a triggered attenuator. We also studied how pulses are distorted after propagating through metallic structures, and used our findings to design our atomic experiments. We excited wave packets in atomic sodium using a two-step process. First, we used tunable, nanosecond dye lasers to excite an extreme Stark state. Next, we used a terahertz pump pulse to coherently redistribute population among extreme Stark states in neighboring manifolds. Interference between the final states produces a localized, dynamic LOWP. To analyze the LOWP, we ionized it with a stronger terahertz probe pulse, varying the pump-probe delay to map out its motion. We observed two strong LOWP signatures. Changing the static electric field produced small changes (2%) in the orbital period that agreed with our theoretical predictions. Secondly, because the LOWP scatters off the core, the pump-probe signal depended on the direction of the kick the LOWP received from the robe pulse. These observations, combined with our detailed simulations that used sodium parameters and the actual shape of the terahertz pulse, lead us to conclude that we excited a LOWP.

  15. Optical burst switching for the next generation Optical Internet

    NASA Astrophysics Data System (ADS)

    Yoo, Myungsik

    2000-11-01

    In recent years, Internet Protocol (IP) over Wavelength Division Multiplexing (WDM) networks for the next generation Internet (or the so-called Optical Internet) have received enormous attention. There are two main drivers for an Optical Internet. One is the explosion of Internet traffic, which seems to keep growing exponentially. The other driver is the rapid advance in the WDM optical networking technology. In this study, key issues in the optical (WDM) layer will be investigated. As a novel switching paradigm for Optical Internet, Optical Burst Switching (OBS) is discussed. By leveraging the attractive properties of optical communications and at the same time, taking into account its limitations, OBS can combine the best of optical circuit-switching and packet/cell switching. The general concept of JET-based OBS protocol is described, including offset time and delayed reservation. In the next generation Optical Internet, one must address how to support Quality of Service (QoS) at the WDM layer since current IP provides only best effort services. The offset-time- based QoS scheme is proposed as a way of supporting QoS at the WDM layer. Unlike existing QoS schemes, offset- time-based QoS scheme does not mandate the use of buffer to differentiate services. For the bufferless WDM switch, the performance of offset- time-based QoS scheme is evaluated in term of blocking probability. In addition, the extra offset time required for class isolation is quantified and the theoretical bounds on blocking probability are analyzed. The offset-time-based scheme is applied to WDM switch with limited fiber delay line (FDL) buffer. We evaluate the effect of having a FDL buffer on the QoS performance of the offset-time-based scheme in terms of the loss probability and queuing delay of bursts. Finally, in order to dimension the network resources in Optical Internet backbone networks, the performance of the offset-time-based QoS scheme is evaluated for the multi-hop case. In particular, we consider very high performance Backbone Network Service (vBNS) backbone network. Various policies such as drop, retransmission, deflection routing and buffering are considered for performance evaluation. The performance results obtained under these policies are compared to decide the most efficient policy for the WDM backbone network.

  16. Random access with adaptive packet aggregation in LTE/LTE-A.

    PubMed

    Zhou, Kaijie; Nikaein, Navid

    While random access presents a promising solution for efficient uplink channel access, the preamble collision rate can significantly increase when massive number of devices simultaneously access the channel. To address this issue and improve the reliability of the random access, an adaptive packet aggregation method is proposed. With the proposed method, a device does not trigger a random access for every single packet. Instead, it starts a random access when the number of aggregated packets reaches a given threshold. This method reduces the packet collision rate at the expense of an extra latency, which is used to accumulate multiple packets into a single transmission unit. Therefore, the tradeoff between packet loss rate and channel access latency has to be carefully selected. We use semi-Markov model to derive the packet loss rate and channel access latency as functions of packet aggregation number. Hence, the optimal amount of aggregated packets can be found, which keeps the loss rate below the desired value while minimizing the access latency. We also apply for the idea of packet aggregation for power saving, where a device aggregates as many packets as possible until the latency constraint is reached. Simulations are carried out to evaluate our methods. We find that the packet loss rate and/or power consumption are significantly reduced with the proposed method.

  17. Packet telemetry and packet telecommand - The new generation of spacecraft data handling techniques

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1983-01-01

    Because of rising costs and reduced reliability of spacecraft and ground network hardware and software customization, standardization Packet Telemetry and Packet Telecommand concepts are emerging as viable alternatives. Autonomous packets of data, within each concept, which are created within ground and space application processes through the use of formatting techniques, are switched end-to-end through the space data network to their destination application processes through the use of standard transfer protocols. This process may result in facilitating a high degree of automation and interoperability because of completely mission-independent-designed intermediate data networks. The adoption of an international guideline for future space telemetry formatting of the Packet Telemetry concept, and the advancement of the NASA-ESA Working Group's Packet Telecommand concept to a level of maturity parallel to the of Packet Telemetry are the goals of the Consultative Committee for Space Data Systems. Both the Packet Telemetry and Packet Telecommand concepts are reviewed.

  18. Error recovery to enable error-free message transfer between nodes of a computer network

    DOEpatents

    Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd; Steinmacher-Burow, Burkhard; Vranas, Pavlos M.

    2016-01-26

    An error-recovery method to enable error-free message transfer between nodes of a computer network. A first node of the network sends a packet to a second node of the network over a link between the nodes, and the first node keeps a copy of the packet on a sending end of the link until the first node receives acknowledgment from the second node that the packet was received without error. The second node tests the packet to determine if the packet is error free. If the packet is not error free, the second node sets a flag to mark the packet as corrupt. The second node returns acknowledgement to the first node specifying whether the packet was received with or without error. When the packet is received with error, the link is returned to a known state and the packet is sent again to the second node.

  19. Thermal responses in a coronal loop maintained by wave heating mechanisms

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma

    2018-05-01

    A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.

  20. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.

    PubMed

    Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F

    2011-04-01

    Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.

  1. Decoherence and surface hopping: When can averaging over initial conditions help capture the effects of wave packet separation?

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph E.; Shenvi, Neil

    2011-06-01

    Fewest-switches surface hopping (FSSH) is a popular nonadiabatic dynamics method which treats nuclei with classical mechanics and electrons with quantum mechanics. In order to simulate the motion of a wave packet as accurately as possible, standard FSSH requires a stochastic sampling of the trajectories over a distribution of initial conditions corresponding, e.g., to the Wigner distribution of the initial quantum wave packet. Although it is well-known that FSSH does not properly account for decoherence effects, there is some confusion in the literature about whether or not this averaging over a distribution of initial conditions can approximate some of the effects of decoherence. In this paper, we not only show that averaging over initial conditions does not generally account for decoherence, but also why it fails to do so. We also show how an apparent improvement in accuracy can be obtained for a fortuitous choice of model problems, even though this improvement is not possible, in general. For a basic set of one-dimensional and two-dimensional examples, we find significantly improved results using our recently introduced augmented FSSH algorithm.

  2. In-Service Teachers' Internet Self-Efficacy: A Re-Examination of Gender Differences

    ERIC Educational Resources Information Center

    Kahraman, Sakip; Yilmaz, Zeynel Abidin

    2018-01-01

    Teachers' Internet self-efficacy plays a critical role in their web-based professional development and on their students' learning outcomes in Internet-based learning environments. It is therefore important to periodically measure and evaluate teachers' self-efficacy regarding the Internet, which is a dynamic technology, using an instrument that…

  3. DIstributed VIRtual System (DIVIRS) Project

    NASA Technical Reports Server (NTRS)

    Schorr, Herbert; Neuman, B. Clifford; Gaines, Stockton R.; Mizell, David

    1996-01-01

    The development of Prospero moved from the University of Washington to ISI and several new versions of the software were released from ISI during the contract period. Changes in the first release from ISI included bug fixes and extensions to support the needs of specific users. Among these changes was a new option to directory queries that allows attributes to be returned for all files in a directory together with the directory listing. This change greatly improves the performance of their server and reduces the number of packets sent across their trans-pacific connection to the rest of the internet. Several new access method were added to the Prospero file method. The Prospero Data Access Protocol was designed, to support secure retrieval of data from systems running Prospero.

  4. Subjective evaluation of H.265/HEVC based dynamic adaptive video streaming over HTTP (HEVC-DASH)

    NASA Astrophysics Data System (ADS)

    Irondi, Iheanyi; Wang, Qi; Grecos, Christos

    2015-02-01

    The Dynamic Adaptive Streaming over HTTP (DASH) standard is becoming increasingly popular for real-time adaptive HTTP streaming of internet video in response to unstable network conditions. Integration of DASH streaming techniques with the new H.265/HEVC video coding standard is a promising area of research. The performance of HEVC-DASH systems has been previously evaluated by a few researchers using objective metrics, however subjective evaluation would provide a better measure of the user's Quality of Experience (QoE) and overall performance of the system. This paper presents a subjective evaluation of an HEVC-DASH system implemented in a hardware testbed. Previous studies in this area have focused on using the current H.264/AVC (Advanced Video Coding) or H.264/SVC (Scalable Video Coding) codecs and moreover, there has been no established standard test procedure for the subjective evaluation of DASH adaptive streaming. In this paper, we define a test plan for HEVC-DASH with a carefully justified data set employing longer video sequences that would be sufficient to demonstrate the bitrate switching operations in response to various network condition patterns. We evaluate the end user's real-time QoE online by investigating the perceived impact of delay, different packet loss rates, fluctuating bandwidth, and the perceived quality of using different DASH video stream segment sizes on a video streaming session using different video sequences. The Mean Opinion Score (MOS) results give an insight into the performance of the system and expectation of the users. The results from this study show the impact of different network impairments and different video segments on users' QoE and further analysis and study may help in optimizing system performance.

  5. California Community College Family and Consumer Sciences in the 21st Century.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    Prepared as a companion to a 1996 California Community College plan for family and consumer sciences (FCS), this resource packet provides materials to help faculty, administrators, counselors, and other educators understand the elements of the plan, sharpen their focus on the dynamics of FCS programs, and increase support for programs at their…

  6. A multi-ring optical packet and circuit integrated network with optical buffering.

    PubMed

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  7. XNsim: Internet-Enabled Collaborative Distributed Simulation via an Extensible Network

    NASA Technical Reports Server (NTRS)

    Novotny, John; Karpov, Igor; Zhang, Chendi; Bedrossian, Nazareth S.

    2007-01-01

    In this paper, the XNsim approach to achieve Internet-enabled, dynamically scalable collaborative distributed simulation capabilities is presented. With this approach, a complete simulation can be assembled from shared component subsystems written in different formats, that run on different computing platforms, with different sampling rates, in different geographic locations, and over singlelmultiple networks. The subsystems interact securely with each other via the Internet. Furthermore, the simulation topology can be dynamically modified. The distributed simulation uses a combination of hub-and-spoke and peer-topeer network topology. A proof-of-concept demonstrator is also presented. The XNsim demonstrator can be accessed at http://www.jsc.draver.corn/xn that hosts various examples of Internet enabled simulations.

  8. Threatened and Endangered Species: Tour Packet.

    ERIC Educational Resources Information Center

    Coats, Victoria; Samia, Cory

    This resource unit contains a teacher information packet and a middle school student activity packet to be used in creating a threatened and endangered species unit. The packet of student activities is designed to help maximize a field trip to the zoo and build on students' zoo experience in the classroom. The teacher information packet covers the…

  9. Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.

    PubMed

    Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen

    In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.

  10. Controlled Quantum Packets

    NASA Technical Reports Server (NTRS)

    DeMartino, Salvatore; DeSiena, Silvio

    1996-01-01

    We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.

  11. Photonic integrated circuit optical buffer for packet-switched networks.

    PubMed

    Burmeister, Emily F; Mack, John P; Poulsen, Henrik N; Masanović, Milan L; Stamenić, Biljana; Blumenthal, Daniel J; Bowers, John E

    2009-04-13

    A chip-scale optical buffer performs autonomous contention resolution for 40-byte packets with 99% packet recovery. The buffer consists of a fast, InP-based 2 x 2 optical switch and a silica-on-silicon low loss delay loop. The buffer is demonstrated in recirculating operation, but may be reconfigured in feed-forward operation for longer packet lengths. The recirculating buffer provides packet storage in integer multiples of the delay length of 12.86 ns up to 64.3 ns with 98% packet recovery. The buffer is used to resolve contention between two 40 Gb/s packet streams using multiple photonic chip optical buffers.

  12. Efficient priority queueing routing strategy on networks of mobile agents

    NASA Astrophysics Data System (ADS)

    Wu, Gan-Hua; Yang, Hui-Jie; Pan, Jia-Hui

    2018-03-01

    As a consequence of their practical implications for communications networks, traffic dynamics on complex networks have recently captivated researchers. Previous routing strategies for improving transport efficiency have paid little attention to the orders in which the packets should be forwarded, just simply used first-in-first-out queue discipline. Here, we apply a priority queuing discipline and propose a shortest-distance-first routing strategy on networks of mobile agents. Numerical experiments reveal that the proposed scheme remarkably improves both the network throughput and the packet arrival rate and reduces both the average traveling time and the rate of waiting time to traveling time. Moreover, we find that the network capacity increases with an increase in both the communication radius and the number of agents. Our work may be helpful for the design of routing strategies on networks of mobile agents.

  13. Real-time dynamics of Auger wave packets and decays in ultrafast charge migration processes

    NASA Astrophysics Data System (ADS)

    Covito, F.; Perfetto, E.; Rubio, A.; Stefanucci, G.

    2018-06-01

    The Auger decay is a relevant recombination channel during the first few femtoseconds of molecular targets impinged by attosecond XUV or soft x-ray pulses. Including this mechanism in time-dependent simulations of charge-migration processes is a difficult task, and Auger scatterings are often ignored altogether. In this work we present an advance of the current state-of-the-art by putting forward a real-time approach based on nonequilibrium Green's functions suitable for first-principles calculations of molecules with tens of active electrons. To demonstrate the accuracy of the method we report comparisons against accurate grid simulations of one-dimensional systems. We also predict a highly asymmetric profile of the Auger wave packet, with a long tail exhibiting ripples temporally spaced by the inverse of the Auger energy.

  14. Integrated Model for Performance Analysis of All-Optical Multihop Packet Switches

    NASA Astrophysics Data System (ADS)

    Jeong, Han-You; Seo, Seung-Woo

    2000-09-01

    The overall performance of an all-optical packet switching system is usually determined by two criteria, i.e., switching latency and packet loss rate. In some real-time applications, however, in which packets arriving later than a timeout period are discarded as loss, the packet loss rate becomes the most dominant criterion for system performance. Here we focus on evaluating the performance of all-optical packet switches in terms of the packet loss rate, which normally arises from the insufficient hardware or the degradation of an optical signal. Considering both aspects, we propose what we believe is a new analysis model for the packet loss rate that reflects the complicated interactions between physical impairments and system-level parameters. On the basis of the estimation model for signal quality degradation in a multihop path we construct an equivalent analysis model of a switching network for evaluating an average bit error rate. With the model constructed we then propose an integrated model for estimating the packet loss rate in three architectural examples of multihop packet switches, each of which is based on a different switching concept. We also derive the bounds on the packet loss rate induced by bit errors. Finally, it is verified through simulation studies that our analysis model accurately predicts system performance.

  15. Quantum optimal control pathways of ozone isomerization dynamics subject to competing dissociation: A two-state one-dimensional model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosaki, Yuzuru, E-mail: kurosaki.yuzuru@jaea.go.jp; Ho, Tak-San, E-mail: tsho@Princeton.EDU; Rabitz, Herschel, E-mail: hrabitz@Princeton.EDU

    We construct a two-state one-dimensional reaction-path model for ozone open → cyclic isomerization dynamics. The model is based on the intrinsic reaction coordinate connecting the cyclic and open isomers with the O{sub 2} + O asymptote on the ground-state {sup 1}A{sup ′} potential energy surface obtained with the high-level ab initio method. Using this two-state model time-dependent wave packet optimal control simulations are carried out. Two possible pathways are identified along with their respective band-limited optimal control fields; for pathway 1 the wave packet initially associated with the open isomer is first pumped into a shallow well on the excitedmore » electronic state potential curve and then driven back to the ground electronic state to form the cyclic isomer, whereas for pathway 2 the corresponding wave packet is excited directly to the primary well of the excited state potential curve. The simulations reveal that the optimal field for pathway 1 produces a final yield of nearly 100% with substantially smaller intensity than that obtained in a previous study [Y. Kurosaki, M. Artamonov, T.-S. Ho, and H. Rabitz, J. Chem. Phys. 131, 044306 (2009)] using a single-state one-dimensional model. Pathway 2, due to its strong coupling to the dissociation channel, is less effective than pathway 1. The simulations also show that nonlinear field effects due to molecular polarizability and hyperpolarizability are small for pathway 1 but could become significant for pathway 2 because much higher field intensity is involved in the latter. The results suggest that a practical control may be feasible with the aid of a few lowly excited electronic states for ozone isomerization.« less

  16. Integrated SeismoGeodetic Systsem with High-Resolution, Real-Time GNSS and Accelerometer Observation For Earthquake Early Warning Application.

    NASA Astrophysics Data System (ADS)

    Passmore, P. R.; Jackson, M.; Zimakov, L. G.; Raczka, J.; Davidson, P.

    2014-12-01

    The key requirements for Earthquake Early Warning and other Rapid Event Notification Systems are: Quick delivery of digital data from a field station to the acquisition and processing center; Data integrity for real-time earthquake notification in order to provide warning prior to significant ground shaking in the given target area. These two requirements are met in the recently developed Trimble SG160-09 SeismoGeodetic System, which integrates both GNSS and acceleration measurements using the Kalman filter algorithm to create a new high-rate (200 sps), real-time displacement with sufficient accuracy and very low latency for rapid delivery of the acquired data to a processing center. The data acquisition algorithm in the SG160-09 System provides output of both acceleration and displacement digital data with 0.2 sec delay. This is a significant reduction in the time interval required for real-time transmission compared to data delivery algorithms available in digitizers currently used in other Earthquake Early Warning networks. Both acceleration and displacement data are recorded and transmitted to the processing site in a specially developed Multiplexed Recording Format (MRF) that minimizes the bandwidth required for real-time data transmission. In addition, a built in algorithm calculates the τc and Pd once the event is declared. The SG160-09 System keeps track of what data has not been acknowledged and re-transmits the data giving priority to current data. Modified REF TEK Protocol Daemon (RTPD) receives the digital data and acknowledges data received without error. It forwards this "good" data to processing clients of various real-time data processing software including Earthworm and SeisComP3. The processing clients cache packets when a data gap occurs due to a dropped packet or network outage. The cache packet time is settable, but should not exceed 0.5 sec in the Earthquake Early Warning network configuration. The rapid data transmission algorithm was tested with different communication media, including Internet, DSL, Wi-Fi, GPRS, etc. The test results show that the data latency via most communication media do not exceed 0.5 sec nominal from a first sample in the data packet. Detailed acquisition algorithm and results of data transmission via different communication media are presented.

  17. Influence of Telecommunication Modality, Internet Transmission Quality, and Accessories on Speech Perception in Cochlear Implant Users.

    PubMed

    Mantokoudis, Georgios; Koller, Roger; Guignard, Jérémie; Caversaccio, Marco; Kompis, Martin; Senn, Pascal

    2017-04-24

    Telecommunication is limited or even impossible for more than one-thirds of all cochlear implant (CI) users. We sought therefore to study the impact of voice quality on speech perception with voice over Internet protocol (VoIP) under real and adverse network conditions. Telephone speech perception was assessed in 19 CI users (15-69 years, average 42 years), using the German HSM (Hochmair-Schulz-Moser) sentence test comparing Skype and conventional telephone (public switched telephone networks, PSTN) transmission using a personal computer (PC) and a digital enhanced cordless telecommunications (DECT) telephone dual device. Five different Internet transmission quality modes and four accessories (PC speakers, headphones, 3.5 mm jack audio cable, and induction loop) were compared. As a secondary outcome, the subjective perceived voice quality was assessed using the mean opinion score (MOS). Speech telephone perception was significantly better (median 91.6%, P<.001) with Skype compared with PSTN (median 42.5%) under optimal conditions. Skype calls under adverse network conditions (data packet loss > 15%) were not superior to conventional telephony. In addition, there were no significant differences between the tested accessories (P>.05) using a PC. Coupling a Skype DECT phone device with an audio cable to the CI, however, resulted in higher speech perception (median 65%) and subjective MOS scores (3.2) than using PSTN (median 7.5%, P<.001). Skype calls significantly improve speech perception for CI users compared with conventional telephony under real network conditions. Listening accessories do not further improve listening experience. Current Skype DECT telephone devices do not fully offer technical advantages in voice quality. ©Georgios Mantokoudis, Roger Koller, Jérémie Guignard, Marco Caversaccio, Martin Kompis, Pascal Senn. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 24.04.2017.

  18. SpaceWire Protocol ID: What Does It Mean To You?

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn; Schnurr, Richard; Gilley, Daniel; Parks, Steve

    2006-01-01

    Spacewire is becoming a popular solution for satellite high-speed data buses because it is a simple standard that provides great flexibility for a wide range of system requirements. It is simple in packet format and protocol, allowing users to easily tailor their implementation for their specific application. Some of the attractive aspects of Spacewire that make it easy to implement also make it hard for future reuse. Protocol reuse is difficult because Spacewire does not have a defined mechanism to communicate with the higher layers of the protocol stack. This has forced users of Spacewire to define unique packet formats and define how these packets are to be processed. Each mission writes their own Interface Control Document (ICD) and tailors Spacewire for their specific requirements making reuse difficult. Part of the reason for this habit may be because engineers typically optimize designs for their own requirements in the absence of a standard. This is an inefficient use of project resources and costs more to develop missions. A new packet format for Spacewire has been defined as a solution for this problem. This new packet format is a compliment to the Spacewire standard that will support protocol development upon Spacewire. The new packet definition does not replace the current packet structure, i.e., does not make the standard obsolete, but merely extends the standard for those who want to develop protocols over Spacewire. The Spacewire packet is defined with the first part being the Destination Address, which may be one or more bytes. This is followed by the packet cargo, which is user defined. The cargo is truncated with an End-Of-Packet (EOP) marker. This packet structure offers low packet overhead and allows the user to define how the contents are to be formatted. It also provides for many different addressing schemes, which provide flexibility in the system. This packet flexibility is typically an attractive part of the Spacewire. The new extended packet format adds one new field to the packet that greatly enhances the capability of Spacewire. This new field called the Protocol Identifier (ID) is used to identify the packet contents and the associated processing for the packet. This feature along with the restriction in the packet format that uses the Protocol ID, allows a deterministic method of decoding packets that was not before possible. The first part of the packet is still the Destination Address, which still conforms to the original standard but with one restriction. The restriction is that the first byte seen at the destination by the user needs to be a logical address, independent of the addressing scheme used. The second field is defined as the Protocol ID, which is usually one byte in length. The packet cargo (user defined) follows the Protocol ID. After the packet cargo is the EOP, which defines the end of packet. The value of the Protocol ID is assigned by the Spacewire working group and the protocol description published for others to use. The development of Protocols for Spacewire is currently the area of greatest activity by the Spacewire working group. The first protocol definition by the working group has been completed and is now in the process of formal standardization. There are many other protocols in development for missions that have not yet received formal Protocol ID assignment, but even if the protocols are not formally assigned a value, this effort will provide synergism for future developments.

  19. Wireless Avionics Packet to Support Fault Tolerance for Flight Applications

    NASA Technical Reports Server (NTRS)

    Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad

    2009-01-01

    In this protocol and packet format, data traffic is monitored by all network interfaces to determine the health of transmitter and subsystems. When failures are detected, the network inter face applies its recover y policies to provide continued service despite the presence of faults. The protocol, packet format, and inter face are independent of the data link technology used. The current demonstration system supports both commercial off-the-shelf wireless connections and wired Ethernet connections. Other technologies such as 1553 or serial data links can be used for the network backbone. The Wireless Avionics packet is divided into three parts: a header, a data payload, and a checksum. The header has the following components: magic number, version, quality of service, time to live, sending transceiver, function code, payload length, source Application Data Interface (ADI) address, destination ADI address, sending node address, target node address, and a sequence number. The magic number is used to identify WAV packets, and allows the packet format to be updated in the future. The quality of service field allows routing decisions to be made based on this value and can be used to route critical management data over a dedicated channel. The time to live value is used to discard misrouted packets while the source transceiver is updated at each hop. This information is used to monitor the health of each transceiver in the network. To identify the packet type, the function code is used. Besides having a regular data packet, the system supports diagnostic packets for fault detection and isolation. The payload length specifies the number of data bytes in the payload, and this supports variable-length packets in the network. The source ADI is the address of the originating interface. This can be used by the destination application to identify the originating source of the packet where the address consists of a subnet, subsystem class within the subnet, a subsystem unit, and the local ADI number. The destination ADI is used to route the packet to its ultimate destination. At each hop, the sending interface uses the destination address to determine the next node for the data. The sending node is the node address of the interface that is broadcasting the packet. This field is used to determine the health of the subsystem that is sending the packet. In the case of a packet that traverses several intermediate nodes, it may be the node address of the intermediate node. The target node is the node address of the next hop for the packet. It may be an intermediate node, or the final destination for the packet. The sequence number is used to identify duplicate packets. Because each interface has multiple transceivers, the same packet will appear at both receivers. The sequence number allows the interface to correlate the reception and forward a single, unique packet for additional processing. The subnet field allows data traffic to be partitioned into segregated local networks to support large networks while keeping each subnet at a manageable size. This also keeps the routing table small enough so routing can be done by a simple table lookup in an FPGA device. The subsystem class identifies members of a set of redundant subsystems, and, in a hot standby configuration, all members of the subsystem class will receive the data packets. Only the active subsystem will generate data traffic. Specific units in a class of redundant units can be identified and, if the hot standby configuration is not used, packets will be directed to a specific subsystem unit.

  20. Phonon thermal transport through tilt grain boundaries in strontium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng

    2014-08-21

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance.more » To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.« less

  1. Quantum dynamics of a particle with a spin-dependent velocity

    NASA Astrophysics Data System (ADS)

    Aslangul, Claude

    2005-01-01

    We study the dynamics of a particle in continuous time and space, the displacement of which is governed by an internal degree of freedom (spin). In one definite limit, the so-called quantum random walk is recovered but, although quite simple, the model possesses a rich variety of dynamics and goes far beyond this problem. Generally speaking, our framework can describe the motion of an electron in a magnetic sea near the Fermi level when linearization of the dispersion law is possible, coupled to a transverse magnetic field. Quite unexpected behaviours are obtained. In particular, we find that when the initial wave packet is fully localized in space, the Jz angular momentum component is frozen; this is an interesting example of an observable which, although it is not a constant of motion, has a constant expectation value. For a non-completely localized wave packet, the effect still occurs although less pronounced, and the spin keeps for ever memory of its initial state. Generally speaking, as time goes on, the spatial density profile looks rather complex, as a consequence of the competition between drift and precession, and displays various shapes according to the ratio between the Larmor period and the characteristic time of flight. The density profile gradually changes from a multimodal quickly moving distribution when the scattering rate is small, to a unimodal standing but flattening distribution in the opposite case.

  2. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  3. A wave-mechanical model of incoherent quasielastic scattering in complex systems.

    PubMed

    Frauenfelder, Hans; Fenimore, Paul W; Young, Robert D

    2014-09-02

    Quasielastic incoherent neutron scattering (QENS) is an important tool for the exploration of the dynamics of complex systems such as biomolecules, liquids, and glasses. The dynamics is reflected in the energy spectra of the scattered neutrons. Conventionally these spectra are decomposed into a narrow elastic line and a broad quasielastic band. The band is interpreted as being caused by Doppler broadening due to spatial motion of the target molecules. We propose a quantum-mechanical model in which there is no separate elastic line. The quasielastic band is composed of sharp lines with twice the natural line width, shifted from the center by a random walk of the protein in the free-energy landscape of the target molecule. The walk is driven by vibrations and by external fluctuations. We first explore the model with the Mössbauer effect. In the subsequent application to QENS we treat the incoming neutron as a de Broglie wave packet. While the wave packet passes the protons in the protein and the hydration shell it exchanges energy with the protein during the passage time of about 100 ns. The energy exchange broadens the ensemble spectrum. Because the exchange involves the free-energy landscape of the protein, the QENS not only provides insight into the protein dynamics, but it may also illuminate the free-energy landscape of the protein-solvent system.

  4. Assessment of the suitability of public mobile data networks for aircraft telemetry and control purposes

    NASA Astrophysics Data System (ADS)

    Gonzalez, F.; Walker, R.; Rutherford, N.; Turner, C.

    2011-04-01

    This paper provides a review of the state of the art of relevant work on the use of public mobile data networks for aircraft telemetry and control proposes. Moreover, it describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500 ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70 km from a single cell station. The paper also describes possible limitations and utility of using such communications architecture for both manned and unmanned aircraft systems.

  5. Event-driven charge-coupled device design and applications therefor

    NASA Technical Reports Server (NTRS)

    Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)

    2005-01-01

    An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.

  6. Nonconservative Forces via Quantum Reservoir Engineering

    NASA Astrophysics Data System (ADS)

    Vuglar, Shanon L.; Zhdanov, Dmitry V.; Cabrera, Renan; Seideman, Tamar; Jarzynski, Christopher; Bondar, Denys I.

    2018-06-01

    A systematic approach is given for engineering dissipative environments that steer quantum wave packets along desired trajectories. The methodology is demonstrated with several illustrative examples: environment-assisted tunneling, trapping, effective mass assignment, and pseudorelativistic behavior. Nonconservative stochastic forces do not inevitably lead to decoherence—we show that purity can be well preserved. These findings highlight the flexibility offered by nonequilibrium open quantum dynamics.

  7. Architecture and Protocol of a Semantic System Designed for Video Tagging with Sensor Data in Mobile Devices

    PubMed Central

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper. PMID:22438753

  8. Architecture and protocol of a semantic system designed for video tagging with sensor data in mobile devices.

    PubMed

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper.

  9. From Sensor Networks to Internet of Things. Bluetooth Low Energy, a Standard for This Evolution

    PubMed Central

    Hortelano, Diego; Olivares, Teresa; Ruiz, M. Carmen; Garrido-Hidalgo, Celia; López, Vicente

    2017-01-01

    Current sensor networks need to be improved and updated to satisfy new essential requirements of the Internet of Things, where cutting-edge applications will appear. These requirements are: total coverage, zero fails (high performance), scalability and sustainability (hardware and software). We are going to evaluate Bluetooth Low Energy as wireless transmission technology and as the ideal candidate for these improvements, due to its low power consumption, its low cost radio chips and its ability to communicate with users directly, using their smartphones or smartbands. However, this technology is relatively recent, and standard network topologies are not able to fulfil its new requirements. To address these shortcomings, the implementation of other more flexible topologies (as the mesh topology) will be very interesting. After studying it in depth, we have identified certain weaknesses, for example, specific devices are needed to provide network scalability, and the need to choose between high performance or sustainability. In this paper, after presenting the studies carried out on these new technologies, we propose a new packet format and a new BLE mesh topology, with two different configurations: Individual Mesh and Collaborative Mesh. Our results show how this topology improves the scalability, sustainability, coverage and performance. PMID:28216560

  10. From Sensor Networks to Internet of Things. Bluetooth Low Energy, a Standard for This Evolution.

    PubMed

    Hortelano, Diego; Olivares, Teresa; Ruiz, M Carmen; Garrido-Hidalgo, Celia; López, Vicente

    2017-02-14

    Current sensor networks need to be improved and updated to satisfy new essential requirements of the Internet of Things, where cutting-edge applications will appear. These requirements are: total coverage, zero fails (high performance), scalability and sustainability (hardware and software). We are going to evaluate Bluetooth Low Energy as wireless transmission technology and as the ideal candidate for these improvements, due to its low power consumption, its low cost radio chips and its ability to communicate with users directly, using their smartphones or smartbands. However, this technology is relatively recent, and standard network topologies are not able to fulfil its new requirements. To address these shortcomings, the implementation of other more flexible topologies (as the mesh topology) will be very interesting. After studying it in depth, we have identified certain weaknesses, for example, specific devices are needed to provide network scalability, and the need to choose between high performance or sustainability. In this paper, after presenting the studies carried out on these new technologies, we propose a new packet format and a new BLE mesh topology, with two different configurations: Individual Mesh and Collaborative Mesh . Our results show how this topology improves the scalability, sustainability, coverage and performance.

  11. Medical Signal-Conditioning and Data-Interface System

    NASA Technical Reports Server (NTRS)

    Braun, Jeffrey; Jacobus, charles; Booth, Scott; Suarez, Michael; Smith, Derek; Hartnagle, Jeffrey; LePrell, Glenn

    2006-01-01

    A general-purpose portable, wearable electronic signal-conditioning and data-interface system is being developed for medical applications. The system can acquire multiple physiological signals (e.g., electrocardiographic, electroencephalographic, and electromyographic signals) from sensors on the wearer s body, digitize those signals that are received in analog form, preprocess the resulting data, and transmit the data to one or more remote location(s) via a radiocommunication link and/or the Internet. The system includes a computer running data-object-oriented software that can be programmed to configure the system to accept almost any analog or digital input signals from medical devices. The computing hardware and software implement a general-purpose data-routing-and-encapsulation architecture that supports tagging of input data and routing the data in a standardized way through the Internet and other modern packet-switching networks to one or more computer(s) for review by physicians. The architecture supports multiple-site buffering of data for redundancy and reliability, and supports both real-time and slower-than-real-time collection, routing, and viewing of signal data. Routing and viewing stations support insertion of automated analysis routines to aid in encoding, analysis, viewing, and diagnosis.

  12. Evaluation of Anomaly Detection Method Based on Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Fontugne, Romain; Himura, Yosuke; Fukuda, Kensuke

    The number of threats on the Internet is rapidly increasing, and anomaly detection has become of increasing importance. High-speed backbone traffic is particularly degraded, but their analysis is a complicated task due to the amount of data, the lack of payload data, the asymmetric routing and the use of sampling techniques. Most anomaly detection schemes focus on the statistical properties of network traffic and highlight anomalous traffic through their singularities. In this paper, we concentrate on unusual traffic distributions, which are easily identifiable in temporal-spatial space (e.g., time/address or port). We present an anomaly detection method that uses a pattern recognition technique to identify anomalies in pictures representing traffic. The main advantage of this method is its ability to detect attacks involving mice flows. We evaluate the parameter set and the effectiveness of this approach by analyzing six years of Internet traffic collected from a trans-Pacific link. We show several examples of detected anomalies and compare our results with those of two other methods. The comparison indicates that the only anomalies detected by the pattern-recognition-based method are mainly malicious traffic with a few packets.

  13. Mastering the broadband challenge: next-generation SONET in a packet world

    NASA Astrophysics Data System (ADS)

    Farhi, Eyal

    2001-10-01

    The continuing liberalization of the world's telecommunications markets and the progressive convergence of voice, data, video and Internet communication are prompting telecommunication service providers to both expand and enhance their service capabilities. As bandwidth-hungry applications proliferate, and the demand for data and data services grows, the requirement for broadband communications appears to be insatiable. To provide the expected level of service in this environment of rapidly increasing demand, telcos and service providers must invest in an expanded network. However, to remain competitive and profitable, they must also continue to leverage their existing infrastructure investment. This paper will examine the current challenges network operators are facing today with the deployment of broadband technologies as they strive to maintain existing infrastructure investments while providing new services to their customers and developing added value network operations. This paper will explore various broadband technologies (optical/wireless) that operate on the primary SDH/SONET standards, their topologies and inherent benefits, which provide operators with solutions to the broadband challenge. New customer demands, such as high-speed Data transmissions (increased Internet use), coupled with operators' continuous need for network optimization, have thrown a wrench into daily operations. Therefore, the need to modernize existing networks has become paramount.

  14. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    PubMed

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  15. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    PubMed Central

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  16. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    DOE PAGES

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; ...

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, F. P.; Tong, X. M.; Palacios, A.

    Here, we used ultrashort femtosecond vacuum ultraviolet (VUV) and infrared (IR) pulses in a pump-probe scheme to map the dynamics and nonequilibrium dissociation channels of excited neutral H 2 molecules. A nuclear wave packet is created in the B 1Σmore » $$+\\atop{u}$$ state of the neutral H 2 molecule by absorption of the ninth harmonic of the driving infrared laser field. Due to the large stretching amplitude of the molecule excited in the B 1Σ$$+\\atop{u}$$ electronic state, the effective H 2 + ionization potential changes significantly as the nuclear wave packet vibrates in the bound, highly electronically and vibrationally excited B potential-energy curve. We probed such dynamics by ionizing the excited neutral molecule using time-delayed VUV-or-IR radiation. We identified the nonequilibrium dissociation channels by utilizing three-dimensional momentum imaging of the ion fragments. We also found that different dissociation channels can be controlled, to some extent, by changing the IR laser intensity and by choosing the wavelength of the probe laser light. Furthermore, we concluded that even in a benchmark molecular system such as H 2*, the interpretation of the nonequilibrium multiphoton and multicolor ionization processes is still a challenging task, requiring intricate theoretical analysis.« less

  18. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  19. Priority arbitration mechanism

    DOEpatents

    Garmire, Derrick L [Kingston, NY; Herring, Jay R [Poughkeepsie, NY; Stunkel, Craig B [Bethel, CT

    2007-03-06

    A method is provided for selecting a data source for transmission on one of several logical (virtual) lanes embodied in a single physical connection. Lanes are assigned to either a high priority class or to a low priority class. One of six conditions is employed to determine when re-arbitration of lane priorities is desired. When this occurs a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent after a lower priority transmission has been interrupted. Alternatively, a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent while a lower priority packet is waiting. If initialized correctly, the arbiter keeps all of the packets of a high priority packet contiguous, while allowing lower priority packets to be interrupted by the higher priority packets, but not to the point of starvation of the lower priority packets.

  20. Minimal position-velocity uncertainty wave packets in relativistic and non-relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, M. H.; Wiese, U.-J.

    2009-12-01

    We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v=∂pE. The position-velocity uncertainty relation ΔxΔv⩾12|<∂p2E>| is saturated by minimal uncertainty wave packets Φ(p)=Aexp(-αE(p)+βp). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p2/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma2 as well as for the relativistic dispersion relation E(p)=p2+m2. The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.

  1. Experimental investigation of all-optical packet-level time slot assignment using two optical buffers cascaded.

    PubMed

    Sheng, Xinzhi; Feng, Zhen; Li, Bing

    2013-04-20

    We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10 Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N-1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA's control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.

  2. Interconnecting network for switching data packets and method for switching data packets

    DOEpatents

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian

    2010-05-25

    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).

  3. A Practical Application Combining Wireless Sensor Networks and Internet of Things: Safety Management System for Tower Crane Groups

    PubMed Central

    Zhong, Dexing; Lv, Hongqiang; Han, Jiuqiang; Wei, Quanrui

    2014-01-01

    The so-called Internet of Things (IoT) has attracted increasing attention in the field of computer and information science. In this paper, a specific application of IoT, named Safety Management System for Tower Crane Groups (SMS-TC), is proposed for use in the construction industry field. The operating status of each tower crane was detected by a set of customized sensors, including horizontal and vertical position sensors for the trolley, angle sensors for the jib and load, tilt and wind speed sensors for the tower body. The sensor data is collected and processed by the Tower Crane Safety Terminal Equipment (TC-STE) installed in the driver's operating room. Wireless communication between each TC-STE and the Local Monitoring Terminal (LMT) at the ground worksite were fulfilled through a Zigbee wireless network. LMT can share the status information of the whole group with each TC-STE, while the LMT records the real-time data and reports it to the Remote Supervision Platform (RSP) through General Packet Radio Service (GPRS). Based on the global status data of the whole group, an anti-collision algorithm was executed in each TC-STE to ensure the safety of each tower crane during construction. Remote supervision can be fulfilled using our client software installed on a personal computer (PC) or smartphone. SMS-TC could be considered as a promising practical application that combines a Wireless Sensor Network with the Internet of Things. PMID:25196106

  4. A practical application combining wireless sensor networks and Internet of Things: Safety Management System for Tower Crane Groups.

    PubMed

    Zhong, Dexing; Lv, Hongqiang; Han, Jiuqiang; Wei, Quanrui

    2014-07-30

    The so-called Internet of Things (IoT) has attracted increasing attention in the field of computer and information science. In this paper, a specific application of IoT, named Safety Management System for Tower Crane Groups (SMS-TC), is proposed for use in the construction industry field. The operating status of each tower crane was detected by a set of customized sensors, including horizontal and vertical position sensors for the trolley, angle sensors for the jib and load, tilt and wind speed sensors for the tower body. The sensor data is collected and processed by the Tower Crane Safety Terminal Equipment (TC-STE) installed in the driver's operating room. Wireless communication between each TC-STE and the Local Monitoring Terminal (LMT) at the ground worksite were fulfilled through a Zigbee wireless network. LMT can share the status information of the whole group with each TC-STE, while the LMT records the real-time data and reports it to the Remote Supervision Platform (RSP) through General Packet Radio Service (GPRS). Based on the global status data of the whole group, an anti-collision algorithm was executed in each TC-STE to ensure the safety of each tower crane during construction. Remote supervision can be fulfilled using our client software installed on a personal computer (PC) or smartphone. SMS-TC could be considered as a promising practical application that combines a Wireless Sensor Network with the Internet of Things.

  5. Interplay between Rashba interaction and electromagnetic field in the edge states of a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Dolcini, Fabrizio

    2017-02-01

    The effects of Rashba interaction and electromagnetic field on the edge states of a two-dimensional topological insulator are investigated in a nonperturbative way. We show that the electron dynamics is equivalent to a problem of massless Dirac fermions propagating with an inhomogeneous velocity, enhanced by the Rashba profile with respect to the bare Fermi value vF. Despite the inelastic and time-reversal breaking processes induced by the electromagnetic field, no backscattering occurs without interaction. The photoexcited electron densities are explicitly obtained in terms of the electric field and the Rashba interaction, and are shown to fulfill generalized chiral anomaly equations. The case of a Gaussian electromagnetic pulse is analyzed in detail. When the photoexcitation occurs far from the Rashba region, the latter effectively acts as a "superluminal gate" boosting the photoexcited wave packet outside the light-cone determined by vF. In contrast, for an electric pulse overlapping the Rashba region, the emerging wave packets are squeezed in a manner that depends on the overlap area. The electron-electron interaction effects are also discussed, for both intraspin and interspin density-density coupling. The results suggest that Rashba interaction, often considered as an unwanted disorder effect, may be exploited to tailor the shape and the propagation time of photoexcited spin-polarized wave packets.

  6. Code Samples Used for Complexity and Control

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents

  7. Estimation of network path segment delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Kathleen Marie

    A method for estimation of a network path segment delay includes determining a scaled time stamp for each packet of a plurality of packets by scaling a time stamp for each respective packet to minimize a difference of at least one of a frequency and a frequency drift between a transport protocol clock of a host and a monitoring point. The time stamp for each packet is provided by the transport protocol clock of the host. A corrected time stamp for each packet is determined by removing from the scaled time stamp for each respective packet, a temporal offset betweenmore » the transport protocol clock and the monitoring clock by minimizing a temporal delay variation of the plurality of packets traversing a segment between the host and the monitoring point.« less

  8. On-board B-ISDN fast packet switching architectures. Phase 1: Study

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Lee, Fred; Paul, Dilip; Shyy, Dong-Jye

    1993-01-01

    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs.

  9. Network architecture in a converged optical + IP network

    NASA Astrophysics Data System (ADS)

    Wakim, Walid; Zottmann, Harald

    2012-01-01

    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  10. Attosecond-resolved photoionization of chiral molecules.

    PubMed

    Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y

    2017-12-08

    Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Physics of Electronic Materials

    NASA Astrophysics Data System (ADS)

    Rammer, Jørgen

    2017-03-01

    1. Quantum mechanics; 2. Quantum tunneling; 3. Standard metal model; 4. Standard conductor model; 5. Electric circuit theory; 6. Quantum wells; 7. Particle in a periodic potential; 8. Bloch currents; 9. Crystalline solids; 10. Semiconductor doping; 11. Transistors; 12. Heterostructures; 13. Mesoscopic physics; 14. Arithmetic, logic and machines; Appendix A. Principles of quantum mechanics; Appendix B. Dirac's delta function; Appendix C. Fourier analysis; Appendix D. Classical mechanics; Appendix E. Wave function properties; Appendix F. Transfer matrix properties; Appendix G. Momentum; Appendix H. Confined particles; Appendix I. Spin and quantum statistics; Appendix J. Statistical mechanics; Appendix K. The Fermi-Dirac distribution; Appendix L. Thermal current fluctuations; Appendix M. Gaussian wave packets; Appendix N. Wave packet dynamics; Appendix O. Screening by symmetry method; Appendix P. Commutation and common eigenfunctions; Appendix Q. Interband coupling; Appendix R. Common crystal structures; Appendix S. Effective mass approximation; Appendix T. Integral doubling formula; Bibliography; Index.

  12. DTN routing in body sensor networks with dynamic postural partitioning.

    PubMed

    Quwaider, Muhannad; Biswas, Subir

    2010-11-01

    This paper presents novel store-and-forward packet routing algorithms for Wireless Body Area Networks ( WBAN ) with frequent postural partitioning. A prototype WBAN has been constructed for experimentally characterizing on-body topology disconnections in the presence of ultra short range radio links, unpredictable RF attenuation, and human postural mobility. On-body DTN routing protocols are then developed using a stochastic link cost formulation, capturing multi-scale topological localities in human postural movements. Performance of the proposed protocols are evaluated experimentally and via simulation, and are compared with a number of existing single-copy DTN routing protocols and an on-body packet flooding mechanism that serves as a performance benchmark with delay lower-bound. It is shown that via multi-scale modeling of the spatio-temporal locality of on-body link disconnection patterns, the proposed algorithms can provide better routing performance compared to a number of existing probabilistic, opportunistic, and utility-based DTN routing protocols in the literature.

  13. Noise enhances information transfer in hierarchical networks.

    PubMed

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  14. Noise enhances information transfer in hierarchical networks

    PubMed Central

    Czaplicka, Agnieszka; Holyst, Janusz A.; Sloot, Peter M. A.

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor. PMID:23390574

  15. Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure

    NASA Astrophysics Data System (ADS)

    Brockt, C.; Jeckelmann, E.

    2017-02-01

    We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.

  16. Fokker-Planck electron diffusion caused by an obliquely propagating electromagnetic wave packet of narrow bandwidth

    NASA Technical Reports Server (NTRS)

    Hizanidis, Kyriakos

    1989-01-01

    The relativistic motion of electrons in an intense electromagnetic wave packet propagating obliquely to a uniform magnetic field is analytically studied on the basis of the Fokker-Planck-Kolmogorov (FPK) approach. The wavepacket consists of circularly polarized electron-cyclotron waves. The dynamical system in question is shown to be reducible to one with three degrees of freedom. Within the framework of the Hamiltonian analysis the nonlinear diffusion tensor is derived, and it is shown that this tensor can be separated into zeroth-, first-, and second-order parts with respect to the relative bandwidth. The zeroth-order part describes diffusive acceleration along lines of constant unperturbed Hamiltonian. The second-order part, which corresponds to the longest time scale, describes diffusion across those lines. A possible transport theory is outlined on the basis of this separation of the time scales.

  17. Interface Supports Lightweight Subsystem Routing for Flight Applications

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Block, Gary L.; Ahmad, Mohammad; Whitaker, William D.; Dillon, James W.

    2010-01-01

    A wireless avionics interface exploits the constrained nature of data networks in flight systems to use a lightweight routing method. This simplified routing means that a processor is not required, and the logic can be implemented as an intellectual property (IP) core in a field-programmable gate array (FPGA). The FPGA can be shared with the flight subsystem application. In addition, the router is aware of redundant subsystems, and can be configured to provide hot standby support as part of the interface. This simplifies implementation of flight applications requiring hot stand - by support. When a valid inbound packet is received from the network, the destination node address is inspected to determine whether the packet is to be processed by this node. Each node has routing tables for the next neighbor node to guide the packet to the destination node. If it is to be processed, the final packet destination is inspected to determine whether the packet is to be forwarded to another node, or routed locally. If the packet is local, it is sent to an Applications Data Interface (ADI), which is attached to a local flight application. Under this scheme, an interface can support many applications in a subsystem supporting a high level of subsystem integration. If the packet is to be forwarded to another node, it is sent to the outbound packet router. The outbound packet router receives packets from an ADI or a packet to be forwarded. It then uses a lookup table to determine the next destination for the packet. Upon detecting a remote subsystem failure, the routing table can be updated to autonomously bypass the failed subsystem.

  18. 106-17 Telemetry Standards Recorder Data Packet Format Standard Chapter 11

    DTIC Science & Technology

    2017-07-01

    11.2.2 PCM Data Packets ..................................................................................... 11-11 11.2.3 Time Data Packets...11-95 11.2.15 Ethernet Data Packets ................................................................................ 11-97 11.2.16 Time Space...4 Time ............................................................ 11-10 Figure 11-5. Secondary Header IEEE 1588 Time

  19. 78 FR 63228 - Determination That Potassium Citrate, 10 Milliequivalents/Packet and 20 Milliequivalents/Packet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... approved. ANDA applicants do not have to repeat the extensive clinical testing otherwise necessary to gain... mEq/packet and 20 mEq/packet, is the subject of NDA 19-647, held by Nova-K LLC, and initially...

  20. Packet loss mitigation for biomedical signals in healthcare telemetry.

    PubMed

    Garudadri, Harinath; Baheti, Pawan K

    2009-01-01

    In this work, we propose an effective application layer solution for packet loss mitigation in the context of Body Sensor Networks (BSN) and healthcare telemetry. Packet losses occur due to many reasons including excessive path loss, interference from other wireless systems, handoffs, congestion, system loading, etc. A call for action is in order, as packet losses can have extremely adverse impact on many healthcare applications relying on BAN and WAN technologies. Our approach for packet loss mitigation is based on Compressed Sensing (CS), an emerging signal processing concept, wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. We present simulation results demonstrating graceful degradation of performance with increasing packet loss rate. We also compare the proposed approach with retransmissions. The CS based packet loss mitigation approach was found to maintain up to 99% beat-detection accuracy at packet loss rates of 20%, with a constant latency of less than 2.5 seconds.

  1. Dolphin "packet" use during long-range echolocation tasks.

    PubMed

    Finneran, James J

    2013-03-01

    When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude.

  2. Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission

    PubMed Central

    Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin

    2015-01-01

    In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the “front” of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region. PMID:25631746

  3. Multiwavelet packet entropy and its application in transmission line fault recognition and classification.

    PubMed

    Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge

    2014-11-01

    Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.

  4. Aeroacoustic directivity via wave-packet analysis of mean or base flows

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Cattafesta, Louis

    2017-11-01

    Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.

  5. Security in Active Networks

    DTIC Science & Technology

    1999-01-01

    Some means currently under investigation include domain-speci c languages which are easy to check (e.g., PLAN), proof-carrying code [NL96, Nec97...domain-speci c language coupled to an extension system with heavyweight checks. In this way, the frequent (per- packet) dynamic checks are inexpensive...to CISC architectures remains problematic. Typed assembly language [MWCG98] propagates type safety information to the assembly language level, so

  6. Network Speech Systems Technology Program.

    DTIC Science & Technology

    1980-09-30

    ognized that the lumped-speaker approximation could be extended even more generally to include cases of combined circuit-switched speech and packet...based on these tables. The first function is an im- portant element of the more general task of system control for a switched network, which in...programs are in preparation, as described below, for both steady-state evaluation and dynamic performance simulation of the algorithm in general

  7. Research in Network Management Techniques for Tactical Data Communications Network.

    DTIC Science & Technology

    1982-09-01

    the control period. Research areas include Packet Network modelling, adaptive network routing, network design algorithms, network design techniques...contro!lers are designed to perform their limited tasks optimally. For the dynamic routing problem considered here, the local controllers are node...feedback to finding in optimum stead-o-state routing (static strategies) under non - control which can be easily implemented in real time. congested

  8. High-Speed Optical Wide-Area Data-Communication Network

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P.

    1994-01-01

    Proposed fiber-optic wide-area network (WAN) for digital communication balances input and output flows of data with its internal capacity by routing traffic via dynamically interconnected routing planes. Data transmitted optically through network by wavelength-division multiplexing in synchronous or asynchronous packets. WAN implemented with currently available technology. Network is multiple-ring cyclic shuffle exchange network ensuring traffic reaches its destination with minimum number of hops.

  9. Receiver Statistics for Cognitive Radios in Dynamic Spectrum Access Networks

    DTIC Science & Technology

    2012-02-28

    SNR) are employed by many protocols and processes in direct-sequence ( DS ) spread-spectrum packet radio networks, including soft-decision decoding...adaptive modulation protocols, and power adjustment protocols. For DS spread spectrum, we have introduced and evaluated SNR estimators that employ...obtained during demodulation in a binary CDMA receiver. We investigated several methods to apply the proposed metric to the demodulator’s soft-decision

  10. Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igal; Pe'er, Avi

    2016-02-01

    Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.

  11. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-07

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion ismore » treated on the same footing.« less

  12. Effect of Coriolis coupling in chemical reaction dynamics.

    PubMed

    Chu, Tian-Shu; Han, Ke-Li

    2008-05-14

    It is essential to evaluate the role of Coriolis coupling effect in molecular reaction dynamics. Here we consider Coriolis coupling effect in quantum reactive scattering calculations in the context of both adiabaticity and nonadiabaticity, with particular emphasis on examining the role of Coriolis coupling effect in reaction dynamics of triatomic molecular systems. We present the results of our own calculations by the time-dependent quantum wave packet approach for H + D2 and F(2P3/2,2P1/2) + H2 as well as for the ion-molecule collisions of He + H2 +, D(-) + H2, H(-) + D2, and D+ + H2, after reviewing in detail other related research efforts on this issue.

  13. Coriolis coupling and nonadiabaticity in chemical reaction dynamics.

    PubMed

    Wu, Emilia L

    2010-12-01

    The nonadiabatic quantum dynamics and Coriolis coupling effect in chemical reaction have been reviewed, with emphasis on recent progress in using the time-dependent wave packet approach to study the Coriolis coupling and nonadiabatic effects, which was done by K. L. Han and his group. Several typical chemical reactions, for example, H+D(2), F+H(2)/D(2)/HD, D(+)+H(2), O+H(2), and He+H(2)(+), have been discussed. One can find that there is a significant role of Coriolis coupling in reaction dynamics for the ion-molecule collisions of D(+)+H(2), Ne+H(2)(+), and He+H(2)(+) in both adiabatic and nonadiabatic context. © 2010 Wiley Periodicals, Inc.

  14. Pheromone Static Routing Strategy for Complex Networks

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui

    2012-12-01

    We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.

  15. State-to-state quantum dynamics of the F + HCl (vi = 0, ji = 0) → HF(vf, jf) + Cl reaction on the ground state potential energy surface.

    PubMed

    Li, Anyang; Guo, Hua; Sun, Zhigang; Kłos, Jacek; Alexander, Millard H

    2013-10-07

    The state-to-state reaction dynamics of the title reaction is investigated on the ground electronic state potential energy surface using two quantum dynamical methods. The results obtained using the Chebyshev real wave packet method are in excellent agreement with those obtained using the time-independent method, except at low translational energies. It is shown that this exothermic hydrogen abstraction reaction is direct, resulting in a strong back-scattered bias in the product angular distribution. The HF product is highly excited internally. Agreement with available experimental data is only qualitative. We discuss several possible causes of disagreement with experiment.

  16. Deadlock-free class routes for collective communications embedded in a multi-dimensional torus network

    DOEpatents

    Chen, Dong; Eisley, Noel A.; Steinmacher-Burow, Burkhard; Heidelberger, Philip

    2013-01-29

    A computer implemented method and a system for routing data packets in a multi-dimensional computer network. The method comprises routing a data packet among nodes along one dimension towards a root node, each node having input and output communication links, said root node not having any outgoing uplinks, and determining at each node if the data packet has reached a predefined coordinate for the dimension or an edge of the subrectangle for the dimension, and if the data packet has reached the predefined coordinate for the dimension or the edge of the subrectangle for the dimension, determining if the data packet has reached the root node, and if the data packet has not reached the root node, routing the data packet among nodes along another dimension towards the root node.

  17. The Duality of Information Policy Debates: The Case of the Internet Governance Forum

    ERIC Educational Resources Information Center

    Epstein, Dmitry

    2012-01-01

    This project focuses on the dynamics of the Internet Governance Forum (IGF) as a non-binding multistakeholder debate about information policymaking. Using the theory of structuration and critical discourse analysis, I explore how the nation-state-centric and the internet-community-centric perceptions of authority and approaches to decision-making…

  18. The Internet as Potential Equalizer: New Leverage for Confronting Social Irresponsibility.

    ERIC Educational Resources Information Center

    Coombs, W. Timothy

    1998-01-01

    Contends activists have a new weapon (the Internet) which can change the organization-stakeholder dynamic. Uses recent development in stakeholder theory to explain how the Internet, when used effectively, can allow activist groups to become more powerful and to command the attention of organizations. Illustrates the theoretical points presented…

  19. Deep Packet/Flow Analysis using GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Qian; Wu, Wenji; DeMar, Phil

    Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Sincemore » the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.« less

  20. Trade Related Reading Packets for Disabled Readers.

    ERIC Educational Resources Information Center

    Davis, Beverly; Woodruff, Nancy S.

    Six trade-related reading packets for disabled readers are provided for these trades: assemblers, baking, building maintenance, data entry, interior landscaping, and warehousing. Each packet stresses from 9 to 14 skills. Those skills common to most packets include context clues, fact or opinion, details, following directions, main idea,…

  1. Standard services for the capture, processing, and distribution of packetized telemetry data

    NASA Technical Reports Server (NTRS)

    Stallings, William H.

    1989-01-01

    Standard functional services for the capture, processing, and distribution of packetized data are discussed with particular reference to the future implementation of packet processing systems, such as those for the Space Station Freedom. The major functions are listed under the following major categories: input processing, packet processing, and output processing. A functional block diagram of a packet data processing facility is presented, showing the distribution of the various processing functions as well as the primary data flow through the facility.

  2. Multifluxon dynamics in driven Josephson junctions

    NASA Astrophysics Data System (ADS)

    Lawrence, Albert; Kim, Nung Soo; McDaniel, James; Jack, Michael

    1985-06-01

    The dynamics of fluxons in a long Josephson junction driven by time-varying nonuniform bias currents are described by a generalization of the sine-Gordon equation. This equation has solitary wave solutions which correspond to current vortices or quantized packets of magnetic flux in the junction. As with the sine-Gordon equation, multifluxon solutions may be demonstrated for the long Josephson junction. Our numerical calculations show that several fluxons may be launched or annihilated at the end of a junction. We also show multiple steady state conditions which correspond to one or more flux quanta trapped in the junction.

  3. Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions.

    PubMed

    Fu, Bina; Zhang, Dong H

    2018-05-08

    There has been great progress in the development of potential energy surfaces (PESs) and quantum dynamics calculations in the gas phase. The establishment of a fitting procedure for highly accurate PESs and new developments in quantum reactive scattering on reliable PESs allow accurate characterization of reaction dynamics beyond triatomic systems. This review will give the recent development in our group in constructing ab initio PESs based on neural networks and the time-dependent wave packet calculations for bimolecular reactions beyond three atoms. Bimolecular reactions of current interest to the community, namely, OH + H 2 , H + H 2 O, OH + CO, H + CH 4 , and Cl + CH 4 , are focused on. Quantum mechanical characterization of these reactions uncovers interesting dynamical phenomena with an unprecedented level of sophistication and has greatly advanced our understanding of polyatomic reaction dynamics.

  4. Implementation of a data packet generator using pattern matching for wearable ECG monitoring systems.

    PubMed

    Noh, Yun Hong; Jeong, Do Un

    2014-07-15

    In this paper, a packet generator using a pattern matching algorithm for real-time abnormal heartbeat detection is proposed. The packet generator creates a very small data packet which conveys sufficient crucial information for health condition analysis. The data packet envelopes real time ECG signals and transmits them to a smartphone via Bluetooth. An Android application was developed specifically to decode the packet and extract ECG information for health condition analysis. Several graphical presentations are displayed and shown on the smartphone. We evaluate the performance of abnormal heartbeat detection accuracy using the MIT/BIH Arrhythmia Database and real time experiments. The experimental result confirm our finding that abnormal heart beat detection is practically possible. We also performed data compression ratio and signal restoration performance evaluations to establish the usefulness of the proposed packet generator and the results were excellent.

  5. Retrieval of charge mobility from apparent charge packet movements in LDPE thin films

    NASA Astrophysics Data System (ADS)

    Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian

    2017-03-01

    The charge packet phenomenon observed in polyethylene materials has been reported extensively during the last decades. To explain its movement, Negative Differential Mobility (NDM) theory is a competitive model among several proposed mechanisms. However, as a key concept of this theory, a sufficiently acute relationship between charge mobility and electric field has never been reported until now, which makes it hard to precisely describe the migration of charge packets with this theory. Based on the substantial negative-charge packet observations with a sufficiently by wide electric field range from 15 kV/mm to 50 kV/mm, the present contribution successfully retrieved the negative-charge mobility from the apparent charge packet movements, which reveals a much closer relationship between the NDM theory and charge packet migrations. Back simulations of charge packets with the retrieved charge mobility offer a good agreement with the experimental data.

  6. Evaluation of a realtime, remote monitoring telemedicine system using the Bluetooth protocol and a mobile phone network.

    PubMed

    Jasemian, Yousef; Arendt-Nielsen, Lars

    2005-01-01

    A generic, realtime wireless telemedicine system has been developed that uses the Bluetooth protocol and the general packet radio service for mobile phones. The system was tested on 10 healthy volunteers, by continuous monitoring of their electrocardiograms (ECGs). Under realistic conditions, the system had 96.5% uptime, a data throughput of 3.3 kbit/s, a mean packet error rate of 8.5x10(-3) packet/s and a mean packet loss rate of 8.2x10(-3) packet/s. During 24 h testing, the total average downtime was 66 min and 90% of the periods of downtime were of only 1-3 min duration. Less than 10% of the ECGs were of unacceptable quality. Thus, the generic telemedicine system showed high reliability and performance, and the design may provide a foundation for realtime monitoring in clinical practice, for example in cardiology.

  7. Multi-function all optical packet switch by periodic wavelength arrangement in an arrayed waveguide grating and wideband optical filters.

    PubMed

    Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang

    2012-01-16

    By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.

  8. Greedy data transportation scheme with hard packet deadlines for wireless ad hoc networks.

    PubMed

    Lee, HyungJune

    2014-01-01

    We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services.

  9. Greedy Data Transportation Scheme with Hard Packet Deadlines for Wireless Ad Hoc Networks

    PubMed Central

    Lee, HyungJune

    2014-01-01

    We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services. PMID:25258736

  10. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1993-10-05

    An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.

  11. Experimental evaluation of the impact of packet capturing tools for web services.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Yung Ryn; Mohapatra, Prasant; Chuah, Chen-Nee

    Network measurement is a discipline that provides the techniques to collect data that are fundamental to many branches of computer science. While many capturing tools and comparisons have made available in the literature and elsewhere, the impact of these packet capturing tools on existing processes have not been thoroughly studied. While not a concern for collection methods in which dedicated servers are used, many usage scenarios of packet capturing now requires the packet capturing tool to run concurrently with operational processes. In this work we perform experimental evaluations of the performance impact that packet capturing process have on web-based services;more » in particular, we observe the impact on web servers. We find that packet capturing processes indeed impact the performance of web servers, but on a multi-core system the impact varies depending on whether the packet capturing and web hosting processes are co-located or not. In addition, the architecture and behavior of the web server and process scheduling is coupled with the behavior of the packet capturing process, which in turn also affect the web server's performance.« less

  12. Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams

    NASA Astrophysics Data System (ADS)

    Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng

    2006-12-01

    This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).

  13. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1993-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.

  14. APC-PC Combined Scheme in Gilbert Two State Model: Proposal and Study

    NASA Astrophysics Data System (ADS)

    Bulo, Yaka; Saring, Yang; Bhunia, Chandan Tilak

    2017-04-01

    In an automatic repeat request (ARQ) scheme, a packet is retransmitted if it gets corrupted due to transmission errors caused by the channel. However, an erroneous packet may contain both erroneous bits and correct bits and hence it may still contain useful information. The receiver may be able to combine this information from multiple erroneous copies to recover the correct packet. Packet combining (PC) is a simple and elegant scheme of error correction in transmitted packet, in which two received copies are XORed to obtain the bit location of erroneous bits. Thereafter, the packet is corrected by bit inversion of bit located as erroneous. Aggressive packet combining (APC) is a logic extension of PC primarily designed for wireless communication with objective of correcting error with low latency. PC offers higher throughput than APC, but PC does not correct double bit errors if occur in same bit location of erroneous copies of the packet. A hybrid technique is proposed to utilize the advantages of both APC and PC while attempting to remove the limitation of both. In the proposed technique, applications of APC-PC on Gilbert two state model has been studied. The simulation results show that the proposed technique offers better throughput than the conventional APC and lesser packet error rate than PC scheme.

  15. An open-source framework for analyzing N-electron dynamics. II. Hybrid density functional theory/configuration interaction methodology.

    PubMed

    Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe

    2017-10-30

    In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Spatiotemporal interference of photoelectron wave packets and the time scale of nonadiabatic transitions in the high-frequency regime

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai

    2016-10-01

    The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. 17, 073005 (2015), 10.1088/1367-2630/17/7/073005] is applied to further study a detachment dynamics of a model negative ion in one dimension in the high-frequency regime. This method is based on the Floquet approach, but the time dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photon absorption or emission, but also a nonadiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schrödinger equation, and the underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we explore two more aspects of the detachment dynamics, which were not considered in our previous work. First, we determine the features of both a spatial and temporal interference of photoelectron wave packets in a photon-absorption process. We conclude that both of the interference mechanisms are universal in ionization dynamics in the high-frequency regime. Second, we extract a pulse duration which maximizes a yield of the nonadiabatic transition as a function of a pulse duration. It is shown that it becomes maximum when the pulse duration is comparable to a time scale of an electron.

  17. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations

    NASA Astrophysics Data System (ADS)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.

  18. Directly calculated electrical conductivity of hot dense hydrogen from molecular dynamics simulation beyond Kubo-Greenwood formula

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Kang, Dongdong; Zhao, Zengxiu; Dai, Jiayu

    2018-01-01

    Electrical conductivity of hot dense hydrogen is directly calculated by molecular dynamics simulation with a reduced electron force field method, in which the electrons are represented as Gaussian wave packets with fixed sizes. Here, the temperature is higher than electron Fermi temperature ( T > 300 eV , ρ = 40 g / cc ). The present method can avoid the Coulomb catastrophe and give the limit of electrical conductivity based on the Coulomb interaction. We investigate the effect of ion-electron coupled movements, which is lost in the static method such as density functional theory based Kubo-Greenwood framework. It is found that the ionic dynamics, which contributes to the dynamical electrical microfield and electron-ion collisions, will reduce the conductivity significantly compared with the fixed ion configuration calculations.

  19. Universal model for collective access patterns in the Internet traffic dynamics: A superstatistical approach

    NASA Astrophysics Data System (ADS)

    Tamazian, A.; Nguyen, V. D.; Markelov, O. A.; Bogachev, M. I.

    2016-07-01

    We suggest a universal phenomenological description for the collective access patterns in the Internet traffic dynamics both at local and wide area network levels that takes into account erratic fluctuations imposed by cooperative user behaviour. Our description is based on the superstatistical approach and leads to the q-exponential inter-session time and session size distributions that are also in perfect agreement with empirical observations. The validity of the proposed description is confirmed explicitly by the analysis of complete 10-day traffic traces from the WIDE backbone link and from the local campus area network downlink from the Internet Service Provider. Remarkably, the same functional forms have been observed in the historic access patterns from single WWW servers. The suggested approach effectively accounts for the complex interplay of both “calm” and “bursty” user access patterns within a single-model setting. It also provides average sojourn time estimates with reasonable accuracy, as indicated by the queuing system performance simulation, this way largely overcoming the failure of Poisson modelling of the Internet traffic dynamics.

  20. Places to Go: YouTube

    ERIC Educational Resources Information Center

    Downes, Stephen

    2008-01-01

    Founded in 2005 by three former PayPal employees, YouTube has revolutionized the Internet, marking a change from the static Internet to the dynamic Internet. In this edition of Places to Go, Stephen Downes discusses how the rise of a ubiquitous media format--Flash video--has made YouTube's success possible and argues that Flash video has important…

  1. Children's Literature with a Science Emphasis: Twenty Teacher-Developed K-8 Activity Packets.

    ERIC Educational Resources Information Center

    Butler, Malcolm B.

    This document features 10 science activity packets developed for elementary students by science teachers in a graduate seminar. The activity packets were designed to cover existing commercial children's books on specific content areas. The 10 activity packets are: (1) "Bringing the Rain to Kapiti Plain," which explains the water cycle;…

  2. [KIND Worksheet Packet: Wild Animals (Junior).

    ERIC Educational Resources Information Center

    National Association for Humane and Environmental Education, East Haddam, CT.

    This packet is the junior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…

  3. [KIND Worksheet Packet: Wild Animals (Senior).

    ERIC Educational Resources Information Center

    National Association for Humane and Environmental Education, East Haddam, CT.

    This packet is the senior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…

  4. Accounting Clerk Guide, Exercise and Worksheet Packet--Part I.

    ERIC Educational Resources Information Center

    Foster, Brian; And Others

    The exercise and worksheet packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The exercise and worksheet packet contains a copy of every worksheet in the learner packet for lessons 1 through 11 so that the instructor can…

  5. Radiology/Imaging. Clinical Rotation. Instructor's Packet and Student Study Packet.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Extension Instruction and Materials Center.

    The instructor's packet, the first of two packets, is one of a series of materials designed to help students who are investigating the activities within a radiology department or considering any of the imaging technologies as a career. The material is designed to relate training experience to information studied in the classroom. This packet…

  6. The Effect of Background Traffic Packet Size to VoIP Speech Quality

    NASA Astrophysics Data System (ADS)

    Triyason, Tuul; Kanthamanon, Prasert; Warasup, Kittipong; Yamsaengsung, Siam; Supattatham, Montri

    VoIP is gaining acceptance into the corporate world especially, in small and medium sized business that want to save cost for gaining advantage over their competitors. The good voice quality is one of challenging task in deployment plan because VoIP voice quality was affected by packet loss and jitter delay. In this paper, we study the effect of background traffic packet size to voice quality. The background traffic was generated by Bricks software and the speech quality was assessed by MOS. The obtained result shows an interesting relationship between the voice quality and the number of TCP packets and their size. With the same amount of data smaller packets affect the voice's quality more than the larger packet.

  7. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Hans, E-mail: hans@ciencias.unam.mx; Schuch, Dieter; Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx

    2015-09-15

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  8. Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Vinutha, C. B.; Nalini, N.; Nagaraja, M.

    2017-06-01

    This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.

  9. Predictive functional control for active queue management in congested TCP/IP networks.

    PubMed

    Bigdeli, N; Haeri, M

    2009-01-01

    Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based on a small signal linearized fluid-flow model of the TCP/AQM networks. Then, closed-loop transfer function representation of the system is derived to analyze the robustness with respect to the network and controller parameters. The analytical as well as the packet-level ns-2 simulation results show the out-performance of the developed controller for both queue regulation and resource utilization. Fast response, low queue fluctuations (and consequently low delay jitter), high link utilization, good disturbance rejection, scalability, and low packet marking probability are other features of the developed method with respect to other well-known AQM methods such as RED, PI, and REM which are also simulated for comparison.

  10. Authentication, Time-Stamping and Digital Signatures

    NASA Technical Reports Server (NTRS)

    Levine, Judah

    1996-01-01

    Time and frequency data are often transmitted over public packet-switched networks, and the use of this mode of distribution is likely to increase in the near future as high-speed logical circuits transmitted via networks replace point-to-point physical circuits. ALthough these networks have many technical advantages, they are susceptible to evesdropping, spoofing, and the alteration of messages enroute using techniques that are relatively simple to implement and quite difficult to detect. I will discuss a number of solutions to these problems, including the authentication mechanism used in the Network Time Protocol (NTP) and the more general technique of signing time-stamps using public key cryptography. This public key method can also be used to implement the digital analog of a Notary Public, and I will discuss how such a system could be realized on a public network such as the Internet.

  11. Achieving quality of service in IP networks

    NASA Astrophysics Data System (ADS)

    Hays, Tim

    2001-07-01

    The Internet Protocol (IP) has served global networks well, providing a standardized method to transmit data among many disparate systems. But IP is designed for simplicity, and only enables a `best effort' service that can be subject to delays and loss of data. For data networks, this is an acceptable trade-off. In the emerging world of convergence, driven by new applications such as video streaming and IP telephony, minimizing latency and packet loss as well as jitter can be critical. Simply increasing the size of the IP network `pipe' to meet those demands is not always sufficient. In this environment, vendors and standards bodies are endeavoring to create technologies and techniques to enable IP to improve the quality of service it can provide, while retaining the characteristics that has enabled it to become the dominant networking protocol.

  12. Potential performance bottleneck in Linux TCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenji; Crawford, Matt; /Fermilab

    2006-12-01

    TCP is the most widely used transport protocol on the Internet today. Over the years, especially recently, due to requirements of high bandwidth transmission, various approaches have been proposed to improve TCP performance. The Linux 2.6 kernel is now preemptible. It can be interrupted mid-task, making the system more responsive and interactive. However, we have noticed that Linux kernel preemption can interact badly with the performance of the networking subsystem. In this paper we investigate the performance bottleneck in Linux TCP. We systematically describe the trip of a TCP packet from its ingress into a Linux network end system tomore » its final delivery to the application; we study the performance bottleneck in Linux TCP through mathematical modeling and practical experiments; finally we propose and test one possible solution to resolve this performance bottleneck in Linux TCP.« less

  13. Pattern recognition of electronic bit-sequences using a semiconductor mode-locked laser and spatial light modulators

    NASA Astrophysics Data System (ADS)

    Bhooplapur, Sharad; Akbulut, Mehmetkan; Quinlan, Franklyn; Delfyett, Peter J.

    2010-04-01

    A novel scheme for recognition of electronic bit-sequences is demonstrated. Two electronic bit-sequences that are to be compared are each mapped to a unique code from a set of Walsh-Hadamard codes. The codes are then encoded in parallel on the spectral phase of the frequency comb lines from a frequency-stabilized mode-locked semiconductor laser. Phase encoding is achieved by using two independent spatial light modulators based on liquid crystal arrays. Encoded pulses are compared using interferometric pulse detection and differential balanced photodetection. Orthogonal codes eight bits long are compared, and matched codes are successfully distinguished from mismatched codes with very low error rates, of around 10-18. This technique has potential for high-speed, high accuracy recognition of bit-sequences, with applications in keyword searches and internet protocol packet routing.

  14. High performance interconnection between high data rate networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.

    1992-01-01

    The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.

  15. Reconfigurable routing protocol for free space optical sensor networks.

    PubMed

    Xie, Rong; Yang, Won-Hyuk; Kim, Young-Chon

    2012-01-01

    Recently, free space optical sensor networks (FSOSNs), which are based on free space optics (FSO) instead of radio frequency (RF), have gained increasing visibility over traditional wireless sensor networks (WSNs) due to their advantages such as larger capacity, higher security, and lower cost. However, the performance of FSOSNs is restricted to the requirement of a direct line-of-sight (LOS) path between a sender and a receiver pair. Once a node dies of energy depletion, the network would probably suffer from a dramatic decrease of connectivity, resulting in a huge loss of data packets. Thus, this paper proposes a reconfigurable routing protocol (RRP) to overcome this problem by dynamically reconfiguring the network virtual topology. The RRP works in three phases: (1) virtual topology construction, (2) routing establishment, and (3) reconfigurable routing. When data transmission begins, the data packets are first routed through the shortest hop paths. Then a reconfiguration is initiated by the node whose residual energy falls below a threshold. Nodes affected by this dying node are classified into two types, namely maintenance nodes and adjustment nodes, and they are reconfigured according to the types. An energy model is designed to evaluate the performance of RRP through OPNET simulation. Our simulation results indicate that the RRP achieves better performance compared with the simple-link protocol and a direct reconfiguration scheme in terms of connectivity, network lifetime, packet delivery ratio and the number of living nodes.

  16. Adjustable Trajectory Design Based on Node Density for Mobile Sink in WSNs

    PubMed Central

    Yang, Guisong; Liu, Shuai; He, Xingyu; Xiong, Naixue; Wu, Chunxue

    2016-01-01

    The design of movement trajectories for mobile sink plays an important role in data gathering for Wireless Sensor Networks (WSNs), as it affects the network coverage, and packet delivery ratio, as well as the network lifetime. In some scenarios, the whole network can be divided into subareas where the nodes are randomly deployed. The node densities of these subareas are quite different, which may result in a decreased packet delivery ratio and network lifetime if the movement trajectory of the mobile sink cannot adapt to these differences. To address these problems, we propose an adjustable trajectory design method based on node density for mobile sink in WSNs. The movement trajectory of the mobile sink in each subarea follows the Hilbert space-filling curve. Firstly, the trajectory is constructed based on network size. Secondly, the adjustable trajectory is established based on node density in specific subareas. Finally, the trajectories in each subarea are combined to acquire the whole network’s movement trajectory for the mobile sink. In addition, an adaptable power control scheme is designed to adjust nodes’ transmitting range dynamically according to the movement trajectory of the mobile sink in each subarea. The simulation results demonstrate that the proposed trajectories can adapt to network changes flexibly, thus outperform both in packet delivery ratio and in energy consumption the trajectories designed only based on the network size and the whole network node density. PMID:27941662

  17. Packet based serial link realized in FPGA dedicated for high resolution infrared image transmission

    NASA Astrophysics Data System (ADS)

    Bieszczad, Grzegorz

    2015-05-01

    In article the external digital interface specially designed for thermographic camera built in Military University of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera especially related to infrared data processing and transmission. Article explains main requirements for interface to transfer Infra-Red or Video digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme. Elaborated link for image transmission is built using FPGA integrated circuit with built-in high speed serial transceivers achieving up to 2500Gbps throughput. Image transmission is realized using proprietary packet protocol. Transmission protocol engine was described in VHDL language and tested in FPGA hardware. The link is able to transmit 1280x1024@60Hz 24bit video data using one signal pair. Link was tested to transmit thermal-vision camera picture to remote monitor. Construction of dedicated video link allows to reduce power consumption compared to solutions with ASIC based encoders and decoders realizing video links like DVI or packed based Display Port, with simultaneous reduction of wires needed to establish link to one pair. Article describes functions of modules integrated in FPGA design realizing several functions like: synchronization to video source, video stream packeting, interfacing transceiver module and dynamic clock generation for video standard conversion.

  18. Ultrafast time-resolved pump-probe spectroscopy of PYP by a sub-8 fs pulse laser at 400 nm.

    PubMed

    Liu, Jun; Yabushita, Atsushi; Taniguchi, Seiji; Chosrowjan, Haik; Imamoto, Yasushi; Sueda, Keiichi; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2013-05-02

    Impulsive excitation of molecular vibration is known to induce wave packets in both the ground state and excited state. Here, the ultrafast dynamics of PYP was studied by pump-probe spectroscopy using a sub-8 fs pulse laser at 400 nm. The broadband spectrum of the UV pulse allowed us to detect the pump-probe signal covering 360-440 nm. The dependence of the vibrational phase of the vibrational mode around 1155 cm(-1) on the probe photon energy was observed for the first time to our knowledge. The vibrational mode coupled to the electronic transition observed in the probe spectral ranges of 2.95-3.05 and 3.15-3.35 eV was attributed to the wave packets in the ground state and the excited state, respectively. The frequencies in the ground state and excited state were determined to be 1155 ± 1 and 1149 ± 1 cm(-1), respectively. The frequency difference is due to change after photoexcitation. This means a reduction of the bond strength associated with π-π* excitation, which is related to the molecular structure change associated with the primary isomerization process in the photocycle in PYP. Real-time vibrational modes at low frequency around 138, 179, 203, 260, and 317 cm(-1) were also observed and compared with the Raman spectrum for the assignment of the vibrational wave packet.

  19. Experience with the EURECA Packet Telemetry and Packet Telecommand system

    NASA Technical Reports Server (NTRS)

    Sorensen, Erik Mose; Ferri, Paolo

    1994-01-01

    The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.

  20. The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Le Contel, O.; Chust, T.; Berthomier, M.; Retino, A.; Turner, D. L.; Nakamura, R.; Baumjohann, W.; Cozzani, G.; Catapano, F.; Alexandrova, A.; Mirioni, L.; Graham, D. B.; Argall, M. R.; Fischer, D.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Ahmadi, N.; Burch, J. L.; Torbert, R. B.; Needell, G.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.

    2018-01-01

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ˜100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

Top