Treatment of cells with alkaline borate buffer extends the capability of interphase FISH mapping.
Yokota, H; van den Engh, G; Mostert, M; Trask, B J
1995-01-20
Interphase fluorescence in situ hybridization (FISH) has been shown to be a means to map DNA sequences relative to each other in the 100 kb to 1-2 Mb genomic-separation range. At distances below 0.1 Mb, probe sites are infrequently resolved in interphase chromatin. In the 0.1- to 1-Mb range, interphase chromatin can be modeled as a freely flexible chain. The mean square interphase distance between two probes is proportional to the genomic separation between the probes on the linear DNA molecule. Above 1-2 Mb, the relationship between interphase distance and genomic separation changes abruptly and appears to level off. We have used alkaline-borate treatment to expand the capability of interphase FISH mapping. We show here that alkaline-borate treatment increases nuclear diameter, the interphase distance between probes on homologous chromosomes, and the distance between probes on the same chromosome. We also show that the mean square distance between hybridization sites in borate-treated nuclei is proportional to genomic separation up to 4 Mb. Thus, alkaline-borate treatment enhances the capability of interphase FISH mapping by increasing the absolute distance between probes and extending the range of the simple relationship between interphase distance and genomic separation.
Treatment of cells with alkaline borate buffer extends the capability of interphase FISH mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokota, H.; Van Den Engh, G.; Mostert, M.
1995-01-20
Interphase fluorescence in situ hybridization (FISH) has been shown to be a means to map DNA sequences relative to each other in the 100 kb to 1-2 Mb genomic-separation range. At distances below 0.1 Mb, probe sites are infrequently resolved in interphase chromatin. In the 0.1- to 1-Mb range, interphase chromatin can be modeled as a freely flexible chain. The mean square interphase distance between two probes is proportional to the genomic separation between the probes on the linear DNA molecule. Above 1-2 Mb, the relationship between interphase distance and genomic separation changes abruptly and appears to level off. Wemore » have used alkaline-borate treatment to expand the capability of interphase FISH mapping. We show here that alkaline-borate treatment increases nuclear diameter, the interphase distance between probes on homologous chromosomes, and the distance between probes on the same chromosome. We also show that the mean square distance between hybridization sites in borate-treated nuclei is proportional to genomic separation up to 4 Mb. Thus, alkaline-borate treatment enhances the capability of interphase FISH mapping by increasing the absolute distance between probes and extending the range of the simple relationship between interphase distance and genomic separation. 31 refs., 5 figs.« less
Study on the SPR responses of various DNA probe concentrations by parallel scan spectral SPR imaging
NASA Astrophysics Data System (ADS)
Ma, Suihua; Liu, Le; Lu, Weiping; Zhang, Yaou; He, Yonghong; Guo, Jihua
2008-12-01
SPR sensors have become a high sensitive and label free method for characterizing and quantifying chemical and biochemical interactions. However, the relations between the SPR refractive index response and the property (such as concentrations) of biochemical probes are still lacking. In this paper, an experimental study on the SPR responses of varies concentrations of Legionella pneumophila mip DNA probes is presented. We developed a novel two-dimensional SPR sensing technique-parallel scan spectral SPR imaging-to detect an array of mip gene probes. This technique offers quantitative refractive index information with a high sensing throughput. By detecting mip DNA probes with different concentrations, we obtained the relations between the SPR refractive index response and the concentrations of mip DNA probes. These results are valuable for design and developing SPR based mip gene biochips.
Estimating Genomic Distance from DNA Sequence Location in Cell Nuclei by a Random Walk Model
NASA Astrophysics Data System (ADS)
van den Engh, Ger; Sachs, Rainer; Trask, Barbara J.
1992-09-01
The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.
Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs
NASA Astrophysics Data System (ADS)
Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong
2018-05-01
A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.
Familial 18 centromere variant resulting in difficulties in interpreting prenatal interphase FISH.
Bourthoumieu, S; Esclaire, F; Terro, F; Brosset, P; Fiorenza, M; Aubard, V; Beguet, M; Yardin, C
2010-08-01
We report here on a familial case of centromeric heteromorphism of chromosome 18 detected by prenatal interphase fluorescence in situ hybridization (FISH) analysis transmitted by the mother to her fetus, and resulting in complete loss of one 18 signal. The prenatal diagnosis was performed by interphase FISH (AneuVysion probe set, and LSI DiGeorge 22q11.2 kit) because of the presence of an isolated fetal cardiac abnormality, and was first difficult to interpret: only one centromeric 18 signal was detectable on prenatal interphase nuclei, along with one signal for the Y and one for the X chromosome. The LSI DiGeorge 22q11.2 kit also showed the absence of one TUPLE 1 signal on all examined nuclei. In fact, the FISH performed on maternal buccal smear displayed the same absence of one chromosome 18 centromeric signal, combined with the presence of two TUPLE1 signals. All these results led to the diagnosis of an isolated 22q11.2 fetal microdeletion that was confirmed on metaphases spreads. This case illustrates once again that the locus specific (LSI) probes are more effective than the alpha centromeric probes for interphase analysis. The development of high-quality LSI probes for chromosomes 18, X and Y could avoid the misinterpretation of prenatal interphase FISH leading to numerous additional and expensive investigations. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong
2018-05-05
A magnetic fluorescent probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was prepared using CdTe QDs and Fe 3 O 4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe 3 O 4 @MIPs were spherical with average diameter around 53nm, and a core-shell structure was well-shaped with several Fe 3 O 4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe 3 O 4 @MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λ em 598nm. The fluorescence of CdTe QDs/nano-Fe 3 O 4 @MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5μmolL -1 . The detection limit was 0.014μmolL -1 . The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe 3 O 4 @MIPs could be used as a probe to the detection of trace MG in fish samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Yun, Bo; Azad, Mohammad A. K.; Nowell, Cameron J.; Nation, Roger L.; Thompson, Philip E.; Roberts, Kade D.
2015-01-01
Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. PMID:26392495
Yun, Bo; Azad, Mohammad A K; Nowell, Cameron J; Nation, Roger L; Thompson, Philip E; Roberts, Kade D; Velkov, Tony; Li, Jian
2015-12-01
Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Biological dosimetry by interphase chromosome painting
NASA Technical Reports Server (NTRS)
Durante, M.; George, K.; Yang, T. C.
1996-01-01
Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.
Biological dosimetry by interphase chromosome painting.
Durante, M; George, K; Yang, T C
1996-01-01
Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.
Molecular inversion probe assay for allelic quantitation
Ji, Hanlee; Welch, Katrina
2010-01-01
Molecular inversion probe (MIP) technology has been demonstrated to be a robust platform for large-scale dual genotyping and copy number analysis. Applications in human genomic and genetic studies include the possibility of running dual germline genotyping and combined copy number variation ascertainment. MIPs analyze large numbers of specific genetic target sequences in parallel, relying on interrogation of a barcode tag, rather than direct hybridization of genomic DNA to an array. The MIP approach does not replace, but is complementary to many of the copy number technologies being performed today. Some specific advantages of MIP technology include: Less DNA required (37 ng vs. 250 ng), DNA quality less important, more dynamic range (amplifications detected up to copy number 60), allele specific information “cleaner” (less SNP crosstalk/contamination), and quality of markers better (fewer individual MIPs versus SNPs needed to identify copy number changes). MIPs can be considered a candidate gene (targeted whole genome) approach and can find specific areas of interest that otherwise may be missed with other methods. PMID:19488872
NASA Astrophysics Data System (ADS)
Weier, Heinz-Ulli G.; Munne, S.; Lersch, Robert A.; Marquez, C.; Wu, J.; Pedersen, Roger A.; Fung, Jingly
1999-06-01
The chromatin organization of interphase cell nuclei, albeit an object of intense investigation, is only poorly understood. In the past, this has hampered the cytogenetic analysis of tissues derived from specimens where only few cells were actively proliferating or a significant number of metaphase cells could be obtained by induction of growth. Typical examples of such hard to analyze cell systems are solid tumors, germ cells and, to a certain extent, fetal cells such as amniocytes, blastomeres or cytotrophoblasts. Balanced reciprocal translocations that do not disrupt essential genes and thus do not led to disease symptoms exit in less than one percent of the general population. Since the presence of translocations interferes with homologue pairing in meiosis, many of these individuals experience problems in their reproduction, such as reduced fertility, infertility or a history of spontaneous abortions. The majority of translocation carriers enrolled in our in vitro fertilization (IVF) programs carry simple translocations involving only two autosomes. While most translocations are relatively easy to spot in metaphase cells, the majority of cells biopsied from embryos produced by IVF are in interphase and thus unsuitable for analysis by chromosome banding or FISH-painting. We therefore set out to analyze single interphase cells for presence or absence of specific translocations. Our assay, based on fluorescence in situ hybridization (FISH) of breakpoint-spanning DNA probes, detects translocations in interphase by visual microscopic inspection of hybridization domains. Probes are prepared so that they span a breakpoint and cover several hundred kb of DNA adjacent to the breakpoint. On normal chromosomes, such probes label a contiguous stretch of DNA and produce a single hybridization domain per chromosome in interphase cells. The translocation disrupts the hybridization domain and the resulting two fragments appear as physically separated hybridization domains in the nucleus. To facilitate the detection, DNA probes for breakpoints on different chromosomes are labeled in different colors, so the translocation event can be detected as a fusion of red and green hybridization domains. We applied this scheme successfully for the analysis of somatic and germ cells from more than 20 translocation patients, each with individual breakpoints, and provide summaries of our experience as well as strategies, cost and time frames to prepare case-specific translocation probes.
Molecular inversion probe assay.
Absalan, Farnaz; Ronaghi, Mostafa
2007-01-01
We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero, F.G.; Yen, Hung-Wei; Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006
2014-02-15
Interphase carbide precipitation due to austenite decomposition was investigated by high resolution transmission electron microscopy and atom probe tomography in tempered nanostructured bainitic steels. Results showed that cementite (θ) forms by a paraequilibrium transformation mechanism at the bainitic ferrite–austenite interface with a simultaneous three phase crystallographic orientation relationship. - Highlights: • Interphase carbide precipitation due to austenite decomposition • Tempered nanostructured bainitic steels • High resolution transmission electron microscopy and atom probe tomography • Paraequilibrium θ with three phase crystallographic orientation relationship.
Nöhrer, M; Zamberger, S; Primig, S; Leitner, H
2013-01-01
Atom probe tomography and transmission electron microscopy were used to examine the precipitation reaction in the austenite and ferrite phases in vanadium micro-alloyed steel after a thermo-mechanical process. It was observed that only in the ferrite phase precipitates could be found, whereupon two different types were detected. Thus, the aim was to reveal the difference between these two types. The first type was randomly distributed precipitates from V supersaturated ferrite and the second type V interphase precipitates. Not only the arrangement of the particles was different also the chemical composition. The randomly distributed precipitates consisted of V, C and N in contrast to that the interphase precipitates showed a composition of V, C and Mn. Furthermore the randomly distributed precipitates had maximum size of 20 nm and the interphase precipitates a maximum size of 15 nm. It was assumed that the reason for these differences is caused by the site in which they were formed. The randomly distributed precipitates were formed in a matrix consisting mainly of 0.05 at% C, 0.68 at% Si, 0.03 at% N, 0.145 at% V and 1.51 at% Mn. The interphase precipitates were formed in a region with a much higher C, Mn and V content. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chromatin Folding, Fragile Sites, and Chromosome Aberrations Induced by Low- and High- LET Radiation
NASA Technical Reports Server (NTRS)
Zhang, Ye; Cox, Bradley; Asaithamby, Aroumougame; Chen, David J.; Wu, Honglu
2013-01-01
We previously demonstrated non-random distributions of breaks involved in chromosome aberrations induced by low- and high-LET radiation. To investigate the factors contributing to the break point distribution in radiation-induced chromosome aberrations, human epithelial cells were fixed in G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome in separate colors. After the images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multimega base pair scale. Specific locations of the chromosome, in interphase, were also analyzed with bacterial artificial chromosome (BAC) probes. Both mBAND and BAC studies revealed non-random folding of chromatin in interphase, and suggested association of interphase chromatin folding to the radiation-induced chromosome aberration hotspots. We further investigated the distribution of genes, as well as the distribution of breaks found in tumor cells. Comparisons of these distributions to the radiation hotspots showed that some of the radiation hotspots coincide with the frequent breaks found in solid tumors and with the fragile sites for other environmental toxins. Our results suggest that multiple factors, including the chromatin structure and the gene distribution, can contribute to radiation-induced chromosome aberrations.
Allele quantification using molecular inversion probes (MIP)
Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Falkowski, Matthew; Chen, Chunnuan; Siddiqui, Farooq; Davis, Ronald W.; Willis, Thomas D.; Faham, Malek
2005-01-01
Detection of genomic copy number changes has been an important research area, especially in cancer. Several high-throughput technologies have been developed to detect these changes. Features that are important for the utility of technologies assessing copy number changes include the ability to interrogate regions of interest at the desired density as well as the ability to differentiate the two homologs. In addition, assessing formaldehyde fixed and paraffin embedded (FFPE) samples allows the utilization of the vast majority of cancer samples. To address these points we demonstrate the use of molecular inversion probe (MIP) technology to the study of copy number. MIP is a high-throughput genotyping technology capable of interrogating >20 000 single nucleotide polymorphisms in the same tube. We have shown the ability of MIP at this multiplex level to provide copy number measurements while obtaining the allele information. In addition we have demonstrated a proof of principle for copy number analysis in FFPE samples. PMID:16314297
Wang, Yuker; Carlton, Victoria EH; Karlin-Neumann, George; Sapolsky, Ronald; Zhang, Li; Moorhead, Martin; Wang, Zhigang C; Richardson, Andrea L; Warren, Robert; Walther, Axel; Bondy, Melissa; Sahin, Aysegul; Krahe, Ralf; Tuna, Musaffe; Thompson, Patricia A; Spellman, Paul T; Gray, Joe W; Mills, Gordon B; Faham, Malek
2009-01-01
Background A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small (~40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. Results Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. Conclusion MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples. PMID:19228381
Liu, Zeliang; Moore, John A.; Liu, Wing Kam
2016-05-03
Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zeliang; Moore, John A.; Liu, Wing Kam
Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less
Tang, Yiwei; Gao, Ziyuan; Wang, Shuo; Gao, Xue; Gao, Jingwen; Ma, Yong; Liu, Xiuying; Li, Jianrong
2015-09-15
A novel fluorescence probe based on upconversion particles, YF3:Yb(3+), Er(3+), coating with molecularly imprinted polymers (MIPs@UCPs) has been synthesized for selective recognition of the analyte clenbuterol (CLB), which was characterized by scan electron microscope and X-ray powder diffraction. The fluorescence of the MIPs@UCPs probe is quenched specifically by CLB, and the effect is much stronger than the NIPs@UCPs (non-imprinting polymers, NIPs). Good linear correlation was obtained for CLB over the concentration range of 5.0-100.0 μg L(-1) with a detection limit of 0.12 μg L(-1) (S/N=3). The developed method was also used in the determination of CLB in water and pork samples, and the recoveries ranged from 81.66% to 102.46% were obtained with relative standard deviation of 2.96-4.98% (n=3). The present study provides a new and general tactics to synthesize MIPs@UCPs fluorescence probe with highly selective recognition ability to the CLB and is desirable for application widely in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterization of Dielectric Nanocomposites with Electrostatic Force Microscopy
El Khoury, D.; Fedorenko, V.; Castellon, J.; Laurentie, J.-C.; Fréchette, M.; Ramonda, M.
2017-01-01
Nanocomposites physical properties unexplainable by general mixture laws are usually supposed to be related to interphases, highly present at the nanoscale. The intrinsic dielectric constant of the interphase and its volume need to be considered in the prediction of the effective permittivity of nanodielectrics, for example. The electrostatic force microscope (EFM) constitutes a promising technique to probe interphases locally. This work reports theoretical finite-elements simulations and experimental measurements to interpret EFM signals in front of nanocomposites with the aim of detecting and characterizing interphases. According to simulations, we designed and synthesized appropriate samples to verify experimentally the ability of EFM to characterize a nanoshell covering nanoparticles, for different shell thicknesses. This type of samples constitutes a simplified electrostatic model of a nanodielectric. Experiments were conducted using either DC or AC-EFM polarization, with force gradient detection method. A comparison between our numerical model and experimental results was performed in order to validate our predictions for general EFM-interphase interactions. PMID:29109811
NASA Astrophysics Data System (ADS)
Yang, Ji; Lin, Zheng-Zhong; Nur, A.-Zha; Lu, Yan; Wu, Ming-Hui; Zeng, Jun; Chen, Xiao-Mei; Huang, Zhi-Yong
2018-02-01
A novel fluorescence-based sensor combining synchronous fluorescence spectroscopy (SFS) with molecularly imprinted polymers (MIPs) was fabricated with reverse microemulsion method. Tetracycline (TC), (3-aminopropyl) triethoxysilane (APTES), tetraethyl orthosilicate (TEOS) and carbon quantum dots (CDs) were used as template, functional monomer, cross-linker and signal sources respectively in the probe preparation. A synchronous fluorescence emission (λem) at 355 nm was observed for the prepared MIP-coated CDs (MIP@CDs) particles when the wavelength interval (Δλ) was set as 70 nm, and the synchronous fluorescence intensity could be rapidly and efficiently quenched by TC based on inner filter effect (IFE). The quenching efficiencies of synchronous fluorescence intensity was linearly fitted with tetracycline (TC) concentrations ranging from 0.1 to 50 μmol L- 1 with a detection limit (DL) of 9 nmol L- 1 (3σ, n = 9). The MIP@CDs was used as a probe to detect TC in fish samples with the recoveries ranging from 98.4% to 103.1% and the relative standard deviation less than 6.0%. The results illustrated that the as-prepared MIP@CDs could be applied to the detection of trace TC in fish samples with rapidity, high sensitivity and accuracy.
Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).
Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E
2017-01-01
Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.
Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.
Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei
2018-04-09
Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.
Zheng, Yongping; Zhang, Tingwei; Wu, Songjie; Zhang, Jue; Fang, Jing
2018-01-01
Molecularly imprinted polymer (MIP) films prepared by bulk polymerization suffer from numerous deficiencies, including poor mass transfer ability and difficulty in controlling reaction rate and film thickness, which usually result in poor repeatability. However, polymer film synthesized by electropolymerization methods benefit from high reproducibility, simplicity and rapidity of preparation. In the present study, an Au film served as the refractive index-sensitive metal film to couple with the light leaked out from optical fiber core and the electrode for electropolymerizing MIP film simultaneously. The manufactured probe exhibited satisfactory sensitivity and specificity. Furthermore, the surface morphology and functional groups of the synthesized MIP film were characterized by Atomic Force Microscopy (AFM) and Fourier transform infrared microspectroscopy (FTIR) for further insights into the adsorption and desorption processes. Given the low cost, label-free test, simple preparation process and fast response, this method has a potential application to monitor substances in complicated real samples for out-of-lab test in the future. PMID:29522472
Quantitative MAS NMR characterization of the LiMn(1/2)Ni(1/2)O(2) electrode/electrolyte interphase.
Cuisinier, M; Martin, J F; Moreau, P; Epicier, T; Kanno, R; Guyomard, D; Dupré, N
2012-04-01
The conditions in which degradation processes at the positive electrode/electrolyte interface occur are still incompletely understood and traditional surface analytical techniques struggle to characterize and depict accurately interfacial films. In the present work, information on the growth and evolution of the interphases upon storage and cycling as well as their electrochemical consequences are gathered in the case of LiNi(1/2)Mn(1/2)O(2) with commonly used LiPF(6) (1M in EC/DMC) electrolyte. The use of (7)Li, (19)F and (31)P MAS NMR, made quantitative through the implementation of empirical calibration, is combined with transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) to probe the elements involved in surface species and to unravel the inhomogenous architecture of the interphase. At room temperature, contact with the electrolyte leads to a covering of the oxide surface first by LiF and lithiated organic species are found on the outer part of the interphase. At 55°C, not only the interphase proceeds in further covering of the surface but also thickens resulting in an increase of 240% of lithiated species and the presence of -POF(2) fluorophosphates. The composition gradient within the interphase depth is also strongly affected by the temperature. In agreement with the electrochemical performance, quantitative NMR surface analyses show that the use of LiBOB-modified electrolyte results in a Li-enriched interphase, intrinsically less resistive than the standard LiPF(6)-based interphase, comprised of a mixture of resistive LiF with non lithiated species. Copyright © 2011 Elsevier Inc. All rights reserved.
2016-07-06
1 Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes Christopher P...development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the...padlock and molecular inversion probes as upfront enrichment steps for use with NGS showed the specificity and multiplexability of these techniques
NASA Astrophysics Data System (ADS)
Pathak, Anisha; Parveen, Shama; Gupta, Banshi D.
2017-09-01
A facile approach is presented for the detection of bovine serum albumin (BSA), based on fiber optic surface plasmon resonance (FOSPR) combined with molecular imprinting (MI). The probe is fabricated by exploiting the plasmonic property of silver thin film and vinyl-functionalised carbon nanotube-based MIP platform. BSA template molecules are imprinted on the MIP layer coated over multi-walled carbon nanotubes to ensure high specificity of the probe in the interfering environments. In addition, FOSPR endorses the sensor capability of real-time and remote sensing along with very high sensitivity due to the use of nanostructured MI platform. The response of the probe is considered in terms of the absorbance spectrum recorded for various concentrations of BSA. The sensor shows a wide dynamic range of 0-350 ng l-1 with a considerably linear response up to 100 ng l-1 in the peak absorbance wavelength with BSA concentration. A highest sensitivity of 0.862 nm per ng l-1 is achieved for the lowest concentration of BSA and it decreases with the increase in BSA concentration. The performance of the present sensor is compared with those reported in the literature in terms of the limit of detection. It is found that the probe possesses a lowest LOD of 0.386 ng l-1 in addition to other advantages such as real-time online monitoring, high sensitivity, high specificity, and remote sensing.
Mok, Calvin A; Au, Vinci; Thompson, Owen A; Edgley, Mark L; Gevirtzman, Louis; Yochem, John; Lowry, Joshua; Memar, Nadin; Wallenfang, Matthew R; Rasoloson, Dominique; Bowerman, Bruce; Schnabel, Ralf; Seydoux, Geraldine; Moerman, Donald G; Waterston, Robert H
2017-10-01
Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C . elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2 We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures. Copyright © 2017 by the Genetics Society of America.
Mok, Calvin A.; Au, Vinci; Thompson, Owen A.; Edgley, Mark L.; Gevirtzman, Louis; Yochem, John; Lowry, Joshua; Memar, Nadin; Wallenfang, Matthew R.; Rasoloson, Dominique; Bowerman, Bruce; Schnabel, Ralf; Seydoux, Geraldine; Moerman, Donald G.; Waterston, Robert H.
2017-01-01
Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans. Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2. We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures. PMID:28827289
Ordered mapping of 3 alphoid DNA subsets on human chromosome 22
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonacci, R.; Baldini, A.; Archidiacono, N.
1994-09-01
Alpha satellite DNA consists of tandemly repeated monomers of 171 bp clustered in the centromeric region of primate chromosomes. Sequence divergence between subsets located in different human chromosomes is usually high enough to ensure chromosome-specific hybridization. Alphoid probes specific for almost every human chromosome have been reported. A single chromosome can carry different subsets of alphoid DNA and some alphoid subsets can be shared by different chromosomes. We report the physical order of three alphoid DNA subsets on human chromosome 22 determined by a combination of low and high resolution cytological mapping methods. Results visually demonstrate the presence of threemore » distinct alphoid DNA domains at the centromeric region of chromosome 22. We have measured the interphase distances between the three probes in three-color FISH experiments. Statistical analysis of the results indicated the order of the subsets. Two color experiments on prometaphase chromosomes established the order of the three domains relative to the arms of chromosome 22 and confirmed the results obtained using interphase mapping. This demonstrates the applicability of interphase mapping for alpha satellite DNA orderering. However, in our experiments, interphase mapping did not provide any information about the relationship between extremities of the repeat arrays. This information was gained from extended chromatin hybridization. The extremities of two of the repeat arrays were seen to be almost overlapping whereas the third repeat array was clearly separated from the other two. Our data show the value of extended chromatin hybridization as a complement of other cytological techniques for high resolution mapping of repetitive DNA sequences.« less
Alexiev, Borislav A; Zou, Ying S
2014-12-01
Chromosomal microarray analysis using novel Molecular Inversion Probe (MIP) technology demonstrated 2,570 kb copy neutral LOH of 10q11.22 in two clear cell papillary renal cell carcinomas. In addition, one of the tumors had a big 29,784 kb deletion of 13q11-q14.2. There were two variants of unknown significance, a 2,509 kb gain of Xp22.33 and a 257 kb homozygous deletion of 8p11.22. The somatic mutation panel containing 74 mutations in nine genes did not reveal any mutations. Besides identification of submicroscopic duplications or deletions, SNP microarrays can reveal abnormal allelic imbalances including LOH and copy neutral LOH, which cannot be recognized by chromosome, FISH, and non-SNP microarray arrays. To the best of our knowledge, this is the first study demonstrating copy neutral LOH of 10q11.22 in clear cell papillary renal cell carcinomas using the new MIP SNP OncoScan FFPE Assay Kit on formalin-fixed paraffin-embedded tumor samples. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Breuillard, H.; Henri, P.; Vallières, X.; Eriksson, A. I.; Odelstad, E.; Johansson, F. L.; Richter, I.; Goetz, C.; Wattieaux, G.; Tsurutani, B.; Hajra, R.; Le Contel, O.
2017-12-01
During two years, the groundbreaking ESA/Rosetta mission was able to escort comet 67P where previous cometary missions were only limited to flybys. This enabled for the first time to make in-situ measurements of the evolution of a comet's plasma environment. The density and temperature measured by Rosetta are derived from RPC-Mutual Impedance Probe (MIP) and RPC-Langmuir Probe (LAP). On one hand, low time resolution electron density are calculated using the plasma frequency extracted from the MIP mutual impedance spectra. On the other hand, high time resolution density fluctuations are estimated from the spacecraft potential measured by LAP. In this study, using a simple spacecraft charging model, we perform a cross-calibration of MIP plasma density and LAP spacecraft potential variations to obtain high time resolution measurements of the electron density. These results are also used to constrain the electron temperature. Then we make use of these new dataset, together with RPC-MAG magnetic field measurements, to investigate for the first time the compressibility and the correlations between plasma and magnetic field variations, for both singing comet waves and steepened waves observed, respectively during low and high cometary outgassing activity, in the plasma environment of comet 67P.
Sacci, Robert L.; Banuelos, Jose Leobardo; Veith, Gabriel M.; ...
2015-03-25
We report the first small-angle neutron scattering of a chemically formed solid-electrolyte interphase from LixC6 reacting with ethylene carbonate/dimethyl carbon solvent. This provides a different and perhaps simpler view of SEI formation than the usual electrochemically-driven reaction. We show that an organic layer coats the graphite particles filling in micro-pores and is polymeric in nature being 1-3 nm thick. We used inelastic neutron scattering to probe the chemistry, and we found that the SEI showed similar inelastic scattering to polyethylene oxide.
NASA Technical Reports Server (NTRS)
Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu
2015-01-01
Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.
Tamura, A; Miura, I; Iida, S; Yokota, S; Horiike, S; Nishida, K; Fujii, H; Nakamura, S; Seto, M; Ueda, R; Taniwaki, M
2001-08-01
To detect immunoglobulin heavy chain (IGH) gene translocations with specific oncogene loci, we established an interphase cytogenetic approach using double-color fluorescence in situ hybridization (DC-FISH), which we used to analyze 173 patients with B-cell lymphoma. DC-FISH using the IGH gene (14q32.3) in combination with c-MYC (8q24.1), BCL1 (11q13.3), BCL2 (18q21.3), BCL6 (3q27), and PAX-5 (9p13) gene probes detected IGH translocations in 70 (40.5%) of 173 patients. The partner genes involved in IGH translocations were identified in 56 (80%) of 70 patients, and fusion of the IGH gene with specific oncogenes was detected in 53 of 56 patients, particularly in interphase nuclei of 28 patients for whom cytogenetic analysis was not informative. The most common partner gene was BCL2 (19 patients; 27% of IGH translocation-positive patients), followed by BCL6 (16; 23%), BCL1 (11; 16%), c-MYC (7; 10%), and PAX-5 (2; 3%). These oncogenes were closely associated with subtypes of B-cell lymphoma. The other partners were 19q13 (BCL3), 6p25 (MUM1/IRF4), 1q36, and chromosome 8 identified in one patient each. Six of the nine patients with add(14)(q32) showed a BCL6/IGH translocation. Double translocations of the IGH gene were found in three patients; c-MYC+BCL1, c-MYC+BCL2, and c-MYC+BCL6 in each one. Interphase FISH using specific IGH-translocation probes is valuable for defining clinically meaningful subgroups of B-cell lymphoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bathke, K.; Liehr. T.; Ekici, A.
1994-09-01
We tested 20 CMT 1 patients characterized according to the criteria of the European CMT consortium by Southern hybridization of MspI restricted genomic DNA with probes pVAW409R1, pVAW412Hec and pEW401HE. In 11 of the 20 CMT 1 cases (55%), we observed a duplication in 17q11.2; one patient had a dinucleotide insertion in exon 6 of the PO-gene (5%). One HNPP case had a typical 17p11.2 deletion. Analysis of CA-repeats was performed with primers RM11GT and Mfd41; SSCP-analysis of the PO, PMP22 and Cx32-genes is in progress. FISH was carried out with probe pVAW409R1. 125 interphase nuclei were analyzed for eachmore » proband by counting the signals per nucleus. Normal cells show a characteristic distribution of signals: 1 signal in 5.9% of nuclei, 2 in 86.3% and 3 in 7.8%. A duplication is indicated by a shift to 3 signals in more than approximately 60% and 2 in less than 25% of the nuclei. In contrast, the 17p11.2 deletion of the HNPP patient shifts to 82.4% of nuclei with a single hybridization signal versus 14.4% with 2 signals. We detected one case with significantly abnormal distribution of interphase nuclei hybridization signals compared to cultures of normal cells and to those with 17p11.2 duplication or deletion: 3.2% nuclei revealed 1 signal, 48.0% two signals and 48.8% 3 signals, indicating a pathogenic but moderate dosis increase compared to the throughout duplicated cases. FISH with probe pVAW409R1 is a versatile tool to detect the HNPP deletion both in interphase nuclei and in metaphase chromosomes. In CMT 1 disease interphase nuclei are required for FISH analysis due to the small duplication of 1.5 Mbp. In contrast to Southern techniques, FISH is able to detect genetic mosaicism.« less
Ensafi, Ali A; Nasr-Esfahani, Parisa; Rezaei, B
2017-12-15
In this work, molecularly imprinted polymers (MIPs) were used on the surface of cadmium telluride quantum dots (CdTe QDs) for the simultaneous determination of folic acid (FA) and methotrexate (MTX). For this purpose, two different sizes of CdTe QDs with emission peaks in the yellow (QD Y ) and orange (QD O ) spectral regions were initially synthesized and capped with MIPs. FA and MTX were used as templates for the synthesis of the two composites and designated as QD Y -MIPs and QD O -MIPs, respectively. Fourier transform infrared spectroscopy, transmission electron microscopy, and fluorescence spectroscopy were employed to characterize the composites. QD Y -MIPs and QD O -MIPs were then mixed (to form QDs-MIPs) and excited at identical excitation wavelengths; they emitted two different emission wavelengths without any spectral overlap. The fluorescence signals of QD Y -MIPs and QD O -MIPs diminished in intensity with increasing concentration of the corresponding template molecules. Under optimal conditions, the dynamic range was 0.5-20 μmol L -1 for FA and MTX, and the detection limits for FA and MTX were 32.0 nmol L -1 and 34.0 nmol L -1 , respectively. The reproducibility of the method was checked for 12.5 μmol L -1 of FA and MTX to find RSD values of 4.2% and 6.3%, respectively. Finally, the applicability of the method was checked using human blood plasma samples. Results indicated the successful application of the method as a fluorescent probe for the rapid and simultaneous detection of FA and MTX in real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Durante, M.; George, K.; Yang, T. C.
1997-01-01
Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenger, S.L.; Chen, X.O.; Katz, A.J.
1994-09-01
A boy with severe combined immunodeficiency received a bone marrow transplant from his sister when he was approximately 3 years of age. His peripheral blood karyotype at age 3 and 4 years was 46,XX (20 cells analyzed). Because of a decline in antibody production at 19 years of age, the patient`s peripheral blood was analyzed again for suspected chimerism. His karyotype in phytohemagglutinin (PHA)-stimulated culture was 46,XX in 49 cells and 46,XY in one cell. Both metaphase and interphase cells were examined for sex chromosome constitution using X and Y dual-color alpha-satellite probes for fluorescence in situ hybridization (FISH). FISHmore » results for metaphase cells showed 1/50 XY cells, but 38% of interphase cells showed the presence of both X and Y centromere. Pokeweed mitogen (PWM)-stimulated cultures grew poorly and were therefore analyzed using FISH only: 81% of interphase cells were 46,XX. The discrepancy between metaphase and interphase in the PHA-stimulated cultures most likely represents a failure of this boy`s own XY T-cells to be stimulated.« less
Durante, M; George, K; Yang, T C
1997-11-01
Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.
Interphase cytogenetics of B-cell chronic lymphocytic leukemia by FISH-technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peddanna, N.; Gogineni, S.K.; Rosenthal, C.J.
Chronic lymphocytic leukemia [CLL] accounts for about 30% of all lymphoproliferative disorders. In over 95% of these cases, the leukemia is caused by B-cells, rarely T-cells. Fifty percent of B-CLL have chromosomal aberrations and of such cases, one-third have trisomy 12. Malignant B-cells have a very low mitotic index and those metaphases that can be analyzed usually represent the normal T-cell population. Retrospectively, we decided to identify the additional chromosome 12 (trisomy 12) directly at interphase by the FISH-technique using centrometric 12 specific alphoid probe (Oncor, Gaithersburg, MD). Preparations were made from 9 patients with B-CLL. All cultures except onemore » failed to produce metaphases for conventional karyotyping. Eighty percent of the cells have two dots (normal cells) over the interphase nuclei while the remaining 20% have three dots (trisomy 12). The clinical implication of trisomy 12 in the pathogenesis of CLL including age, staging and duration of disease, differentials and immunological markers are correlated with interphase cytogenetic data. The loss and/or gain of specific chromosomes in human neoplasia is common and rapid evaluation of such cases should be considered as a routine approach.« less
Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques
2014-10-01
A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette
2017-02-15
Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.
Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; ...
2015-02-23
The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquidmore » cell.« less
Quantification of differential gene expression by multiplexed targeted resequencing of cDNA
Arts, Peer; van der Raadt, Jori; van Gestel, Sebastianus H.C.; Steehouwer, Marloes; Shendure, Jay; Hoischen, Alexander; Albers, Cornelis A.
2017-01-01
Whole-transcriptome or RNA sequencing (RNA-Seq) is a powerful and versatile tool for functional analysis of different types of RNA molecules, but sample reagent and sequencing cost can be prohibitive for hypothesis-driven studies where the aim is to quantify differential expression of a limited number of genes. Here we present an approach for quantification of differential mRNA expression by targeted resequencing of complementary DNA using single-molecule molecular inversion probes (cDNA-smMIPs) that enable highly multiplexed resequencing of cDNA target regions of ∼100 nucleotides and counting of individual molecules. We show that accurate estimates of differential expression can be obtained from molecule counts for hundreds of smMIPs per reaction and that smMIPs are also suitable for quantification of relative gene expression and allele-specific expression. Compared with low-coverage RNA-Seq and a hybridization-based targeted RNA-Seq method, cDNA-smMIPs are a cost-effective high-throughput tool for hypothesis-driven expression analysis in large numbers of genes (10 to 500) and samples (hundreds to thousands). PMID:28474677
Identification of Luminous Infrared Galaxies at 1 <~ z <~ 2.51,2,3,4,
NASA Astrophysics Data System (ADS)
Le Floc'h, E.; Pérez-González, P. G.; Rieke, G. H.; Papovich, C.; Huang, J.-S.; Barmby, P.; Dole, H.; Egami, E.; Alonso-Herrero, A.; Wilson, G.; Miyazaki, S.; Rigby, J. R.; Bei, L.; Blaylock, M.; Engelbracht, C. W.; Fazio, G. G.; Frayer, D. T.; Gordon, K. D.; Hines, D. C.; Misselt, K. A.; Morrison, J. E.; Muzerolle, J.; Rieke, M. J.; Rigopoulou, D.; Su, K. Y. L.; Willner, S. P.; Young, E. T.
2004-09-01
We present preliminary results on 24 μm detections of luminous infrared galaxies at z>~1 with the Multiband Imaging Photometer for Spitzer (MIPS). Observations were performed in the Lockman Hole and the Extended Groth Strip (EGS) and were supplemented by data obtained with the Infrared Array Camera (IRAC) between 3 and 9 μm. The positional accuracy of <~2" for most MIPS/IRAC detections provides unambiguous identifications of their optical counterparts. Using spectroscopic redshifts from the Deep Extragalactic Evolutionary Probe survey, we identify 24 μm sources at z>~1 in the EGS, while the combination of the MIPS/IRAC observations with BVRIJHK ancillary data in the Lockman Hole also shows very clear cases of galaxies with photometric redshifts at 1<~z<~2.5. The observed 24 μm fluxes indicate infrared luminosities greater than 1011 Lsolar, while the data at shorter wavelengths reveal rather red and probably massive (M>~M*) galaxy counterparts. It is the first time that this population of luminous objects is detected up to z~2.5 in the infrared. Our work demonstrates the ability of the MIPS instrument to probe the dusty universe at very high redshift and illustrates how the forthcoming Spitzer deep surveys will offer a unique opportunity to illuminate a dark side of cosmic history not explored by previous infrared experiments. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, operated jointly by Max-Planck-Institut für Astronomie and Instituto de Astrofísica de Andalucia (CSIC). Based on observations made with the Isaac Newton Telescope, operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Particle-laden swirling free jets: Measurements and predictions
NASA Technical Reports Server (NTRS)
Bulzan, D. L.; Shuen, J.-S.; Faeth, G. M.
1987-01-01
A theoretical and experimental investigation of single-phase and particle-laden weakly swirling jets was conducted. The jets were injected vertically downward from a 19 mm diameter tube with swirl numbers ranging from 0 to 0.33. The particle-laden jets had a single loading ratio (0.2) with particles having a SMD of 39 microns. Mean and fluctuating properties of both phases were measured using nonintrusive laser based methods while particle mass flux was measured using an isokinetic sampling probe. The continuous phase was analyzed using both a baseline kappa-epsilon turbulence model and an extended version with modifications based on the flux Richardson number to account for effects of streamline curvature. To highlight effects of interphase transport rates and particle/turbulence interactions, effects of the particles were analyzed as follows: (1) locally homogeneous flow (LHF) analysis, where interphase transport rates are assumed to be infinitely fast; (2) deterministic separated flow (DSF) analysis, where finite interphase transport rates are considered but particle/turbulence interactions are ignored; and (3) stochastic separated flow (SSF) analysis, where both effects are considered using random-walk computations.
Sequence independent amplification of DNA
Bohlander, S.K.
1998-03-24
The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.
Sequence independent amplification of DNA
Bohlander, Stefan K.
1998-01-01
The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J.W.; Pinkel, D.; Trask, B.
1987-07-24
This paper discusses the application of analytical cytology to the detection of clinically important chromosome abnormalities in human tumors. Flow cytometric measurements of DNA distributions have revealed that many human tumors have abnormal (usually elevated) DNA contents and that the occurrence of DNA abnormality may be diagnostically or prognostically important. However, DNA indices (ratio of tumor DNA content to normal DNA content) provide little information about the specific chromosome(s) involved in the DNA content abnormality. Fluorescence in situ hybridization with chromosome specific probes is suggested as a technique to facilitate detection of specific chromosome aneuploidy in interphase and metaphase humanmore » tumor cells. Fluorescence hybridization to nuclei on slides allows enumeration of brightly fluorescent nuclear domains as an estimate of the number of copies of the chromosome type for which the hybridization probe is specific. Fluorescence hybridization can also be made to nuclei in suspension. The fluorescence intensity can then be measured flow cytometrically as an indication of the number of chromosomes in each nucleus carrying the DNA sequence homologous to the probe. In addition, quantitative image analysis may be used to explore the position of chromosomes in interphase nuclei and to look for changes in the order that may eventually permit detection of clinicaly important conditions. 55 refs., 8 figs., 1 tab.« less
Yamaguchi, U; Hasegawa, T; Morimoto, Y; Tateishi, U; Endo, M; Nakatani, F; Kawai, A; Chuman, H; Beppu, Y; Endo, M; Kurotaki, H; Furuta, K
2005-10-01
Over 90% of Ewing's sarcoma/primitive neuroectodermal tumour (ES/PNET) cases have the t(11;22) chromosomal rearrangement, which is also found in other small round cell tumours, including desmoplastic small round cell tumour (DSRCT) and clear cell sarcoma (CCS). Although this rearrangement can be analysed by fluorescence in situ hybridisation (FISH) using routinely formalin fixed, paraffin wax embedded (FFPE) tissues when fresh or frozen tissues are not available, a sensitive and convenient detection method is needed for routine clinical diagnosis. To investigate the usefulness of newly developed probes for detecting EWS rearrangement resulting from chromosomal translocations using FISH and FFPE tissue in the clinical diagnosis of ES/PNET, DSRCT, and CCS. Sixteen ES/PNETs, six DSRCTs, and six CCSs were studied. Three poorly differentiated synovial sarcomas, three alveolar rhabdomyosarcomas, and three neuroblastomas served as negative controls. Interphase FISH analysis was performed on FFPE tissue sections with a commercially available EWSR1 (22q12) dual colour, breakapart rearrangement probe. One fused signal and one split signal of orange and green, demonstrating rearrangement of the EWS gene, was detected in 14 of 16 ES/PNETs, all six DRSCTs, and five of six CCSs, but not in the negative controls. Interphase FISH using this newly developed probe is sensitive and specific for detecting the EWS gene on FFPE tissues and is of value in the routine clinical diagnosis of ES/PNET, DSRCT, and CCS.
Chromosome-specific physical localisation of expressed sequence tag loci in Corchorus olitorius L.
Joshi, A; Das, S K; Samanta, P; Paria, P; Sen, S K; Basu, A
2014-11-01
Jute (Corchorus spp.), as a natural fibre-producing species, ranks next only to cotton. Inadequate understanding of its genetic architecture is a major lacuna for genetic improvement of this crop in terms of yield and quality. Establishment of a physical map provides a genomic tool that helps in positional cloning of valuable genes. In this report, an attempt was initiated to study association and localisation of single copy expressed sequence tag (EST) loci in the genome of Corchorus olitorius. The chromosome-specific association of EST was determined based on the appearance of an extra signal for a single copy cDNA probe in mitotic interphase nuclei of specific trisomic(s) for fluorescence in situ hybridisation, and validated using a cDNA fragment of the 26S rRNA gene (600 bp) as molecular probe. The probe exhibited three signals in meiotic interphase nuclei of trisomic 5, instead of two as observed in diploids and other trisomics, indicating its association with chromosome 5. Subsequent hybridisation of the same probe on the pachytene chromosomes of diploids confirmed that 26S rRNA occupies the terminal end of the short arm of chromosome 5 in C. olitorius. Subsequently, chromosome-specific association of 63 single copy EST and their physical localisation were determined on chromosomes 2, 4, 5 and 7. The study describes chromosome-specific physical localisation of genes in jute. The approach used here could be a step towards construction of genome-wide physical maps for any recalcitrant plant species like jute. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Dupré, Nicolas; Cuisinier, Marine; Martin, Jean-Frederic; Guyomard, Dominique
2014-07-21
The present review reports the characterization and control of interfacial processes occurring on olivine LiFePO(4) and layered LiNi(1/2) Mn(1/2)O(2), standing here as model compounds, during storage and electrochemical cycling. The formation and evolution of the interphase created by decomposition of the electrolyte is investigated by using spectroscopic tools such as magic-angle-spinning nuclear magnetic resonance ((7)Li,(19)F and (31)P) and electron energy loss spectroscopy, in parallel to X-ray photoelectron spectroscopy, to quantitatively describe the interphase and unravel its architecture. The influence of the pristine surface chemistry of the active material is carefully examined. The importance of the chemical history of the surface of the electrode material before any electrochemical cycling and the strong correlation between interface phenomena, the formation/evolution of an interphase, and the electrochemical behavior appear clearly from the use of these combined characterization probes. This approach allows identifying interface aging and failure mechanisms. Different types of surface modifications are then investigated, such as intrinsic modifications upon aging in air or methods based on the use of additives in the electrolyte or carbon coatings on the surface of the active materials. In each case, the species detected on the surface of the materials during storage and cycling are correlated with the electrochemical performance of the modified positive electrodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lian, Wenjing; Liu, Shuang; Wang, Lei; Liu, Hongyun
2015-11-15
A new strategy for the sensitive detection of kanamycin (KA) and other antibiotics based on molecularly imprinted polymer (MIP) and bioelectrocatalysis was developed in the present study. The KA-polypyrrole MIP films were electropolymerized on the surface of pyrolytic graphite (PG) electrodes, with pyrrole (PY) serving as the monomer and KA as the template. Because KA is electro-inactive, electroactive K3[Fe(CN)6] was used as the probe in the cyclic voltammetric (CV) measurements. The difference of the CV reduction peaks of K3[Fe(CN)6] at electrodes between the MIP films after KA removal and KA-rebinding MIP films could thus be used to determine KA quantitatively. When horseradish peroxidase (HRP) and H2O2 were added into the testing solution, the detection sensitivity of the system was greatly amplified because the electrochemical reduction of H2O2 could be catalyzed by HRP and mediated by K3[Fe(CN)6]. With the bioelectrocatalysis amplification, the limit of detection (LOD) for KA fell as low as 28 nM, approximately two orders of magnitude lower than that for the MIP films in the absence of enzymatic catalysis. The strategy demonstrated the generality. Not only KA but also other antibiotics, such as oxytetracycline (OTC), could be determined by this method. More significantly, in addition to the K3[Fe(CN)6]-HRP-H2O2 system, other bioelectrocatalysis systems, such as Fc(COOH)2-GOD-glucose (Fc(COOH)2=ferrocenedicarboxylic acid, GOD=glucose oxidase), could also be used to amplify the CV signal and realize the sensitive detection of KA for the MIP film system, thereby illustrating the great potential and prospects of the strategy. Copyright © 2015 Elsevier B.V. All rights reserved.
Methods of staining target chromosomal DNA employing high complexity nucleic acid probes
Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru
2006-10-03
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Ten Broek, Roel W; Bekers, Elise M; de Leng, Wendy W J; Strengman, Eric; Tops, Bastiaan B J; Kutzner, Heinz; Leeuwis, Jan Willem; van Gorp, Joost M; Creytens, David H; Mentzel, Thomas; van Diest, Paul J; Eijkelenboom, Astrid; Flucke, Uta
2017-12-01
Spindle cell hemangioma (SCH) is a distinct vascular soft-tissue lesion characterized by cavernous blood vessels and a spindle cell component mainly occurring in the distal extremities of young adults. The majority of cases harbor heterozygous mutations in IDH1/2 sporadically or rarely in association with Maffucci syndrome. However, based on mosaicism and accordingly a low percentage of lesional cells harboring a mutant allele, detection can be challenging. We tested 19 sporadic SCHs by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), conventional next generation sequencing (NGS), and NGS using a single molecule molecular inversion probes (smMIP)-based library preparation to compare their diagnostic value. Out of 10 cases tested by Sanger sequencing and 2 analyzed using MLPA, 4 and 1, respectively, revealed a mutation in IDH1 (p.R132C). The 7 remaining negative cases and additional 6 cases were investigated using smMIP/NGS, showing hot spot mutations in IDH1 (p.R132C) (8 cases) and IDH2 (3 cases; twice p.R172S and once p.R172G, respectively). One case was negative. Owing to insufficient DNA quality and insufficient coverage, 2 cases were excluded. In total, in 16 out of 17 cases successfully tested, an IDH1/2 mutation was found. Given that IDH1/2 mutations were absent in 161 other vascular lesions tested by smMIP/NGS, the mutation can be considered as highly specific for SCH. © 2017 Wiley Periodicals, Inc.
Kim, Dong-Min; Moon, Jong-Min; Lee, Won-Chul; Yoon, Jang-Hee; Choi, Cheol Soo; Shim, Yoon-Bo
2017-05-15
A non-enzymatic potentiometric glucose sensor for the determination of glucose in the micomolar level in saliva was developed based on a molecularly imprinted polymer (MIP) binding on a conducting polymer layer. A MIP containing acrylamide, and aminophenyl boronic acid, as a host molecule to glucose, was immobilized on benzoic acid-functionalized poly(terthiophene) (pTBA) by the amide bond formation onto a gold nanoparticles deposited-screen printed carbon electrode (pTBA/AuNPs/SPCE). Aromatic boronic acid was incorporated into the MIP layer to stably capture glucose and create a potentiometric signal through the changed pKa value of polymer film by the formation of boronate anion-glucose complex with generation of H + ions by the cis-diol reaction. Reversible binding and extraction of glucose on the sensor surface was observed using a quartz crystal microbalance. Each layer of the sensor probe was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The potentiometric response at the optimized conditions exhibited a wide linear dynamic range of 3.2×10 -7 to 1.0×10 -3 M, with a detection limit of 1.9 (±0.15)×10 -7 M. The sensor probe revealed an excellent selectivity and sensitivity for glucose compared to other saccharides. In addition, the reliability of the proposed glucose sensor was evaluated in physiological fluid samples of saliva and finger prick blood. Copyright © 2016 Elsevier B.V. All rights reserved.
Cell and Tissue Imaging with Molecularly Imprinted Polymers.
Panagiotopoulou, Maria; Kunath, Stephanie; Haupt, Karsten; Tse Sum Bui, Bernadette
2017-01-01
Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.
Method of detecting genetic translocations identified with chromosomal abnormalities
Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas
2001-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Chromosome-specific staining to detect genetic rearrangements
Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas; Westbrook, Carol
2013-04-09
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Method of detecting genetic deletions identified with chromosomal abnormalities
Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas
2013-11-26
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.
Passamani, Paulo Z; Carvalho, Carlos R; Soares, Fernanda A F
2018-01-01
Chromosome-specific probes have been widely used in molecular cytogenetics, being obtained with different methods. In this study, a reproducible protocol for construction of chromosome-specific probes is proposed which associates in situ amplification (PRINS), micromanipulation and degenerate oligonucleotide-primed PCR (DOP-PCR). Human lymphocyte cultures were used to obtain metaphases from male and female individuals. The chromosomes were amplified via PRINS, and subcentromeric fragments of the X chromosome were microdissected using microneedles coupled to a phase contrast microscope. The fragments were amplified by DOP-PCR and labeled with tetramethyl-rhodamine-5-dUTP. The probes were used in fluorescent in situ hybridization (FISH) procedure to highlight these specific regions in the metaphases. The results show one fluorescent red spot in male and two in female X chromosomes and interphase nuclei.
High Resolution Analysis of Copy Number Mutation in Breast Cancer
2005-05-01
tissues and Epstein - Barr sentations and arrays of Hind III probes additional CNPs, as would an increase in the virus -immortalized lymphoblastoid cell...software and laboratory procedures for the design of inter-phase FISH primers. We have also made progress in developing database and data processing...Cancer progression often involves alterations in DNA copy number. Newly developed microarray technologies enable simultane- ous measurement of copy
Liu, Qiong; Xu, Wei; Qiu, Hai-rong; Wang, Rong; Yu, Hui; Fan, Lei; Miao, Kou-rong; Li, Jian-yong
2009-09-01
To explore the effect of CpG-oligodeoxynucleotides (ODN) in chromosome study of chronic lymphocytic leukemia (CLL). Blood or bone marrow cells of 70 CLL patients were cultured for 72 h with PHA, CpG-ODN and CpG-ODN combined with IL-2, respectively. Routine karyotype analysis with R banding technique and interphase fluorescence in situ hybridization (FISH) were performed. The metaphase number>or=20 was considered as successful stimulation, which in PHA, CpG-ODN and CpG-ODN combined IL-2 groups were 90.0%, 68.6% and 68.6%, respectively, and the detection rates of chromosome aberrations were 3.2%, 43.6% and 43.6%, respectively. The aberrations rates detected by interphase FISH with a panel of probes was 64.3%. CpG-ODN DSP30 can effectively raise the detection rate of chromosome aberrations in CLL patients.
Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru
2002-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nudeic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru
2008-09-09
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Gray, Joe W [San Francisco, CA; Pinkel, Daniel [Lafayette, CA; Kallioniemi, Olli-Pekka [Turku, FI; Kallioniemi, Anne [Tampere, FI; Sakamoto, Masaru [Tokyo, JP
2009-10-06
Methods and compositions for staining based upon nucleic acid sequence that employ .[.nudeic.]. .Iadd.nucleic .Iaddend.acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Gray; Joe W.; Pinkel; Daniel; Kallioniemi; Olli-Pekka; Kallioniemi; Anne; Sakamoto; Masaru
2002-02-05
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
NASA Astrophysics Data System (ADS)
Lethuillier, A.; Le Gall, A.; Hamelin, M.; Caujolle-Bert, S.; Schreiber, F.; Carrasco, N.; Cernogora, G.; Szopa, C.; Brouet, Y.; Simões, F.; Correia, J. J.; Ruffié, G.
2018-04-01
In 2005, the complex permittivity of the surface of Saturn's moon Titan was measured by the PWA-MIP/HASI (Permittivity Wave Altimetry-Mutual Impedance Probe/Huygens Atmospheric Structure Instrument) experiment on board the Huygens probe. The analysis of these measurements was recently refined but could not be interpreted in terms of composition due to the lack of knowledge on the low-frequency/low-temperature electrical properties of Titan's organic material, a likely key ingredient of the surface composition. In order to fill that gap, we developed a dedicated measurement bench and investigated the complex permittivity of analogs of Titan's organic aerosols called "tholins." These laboratory measurements, together with those performed in the microwave domain, are then used to derive constraints on the composition of Titan's first meter below the surface based on both the PWA-MIP/HASI and the Cassini Radar observations. Assuming a ternary mixture of water ice, tholin-like dust and pores (filled or not with liquid methane), we find that at least 10% of water ice and 15% of porosity are required to explain observations. On the other hand, there should be at most 50-60% of organic dust. PWA-MIP/HASI measurements also suggest the presence of a thin conductive superficial layer at the Huygens landing site. Using accurate numerical simulations, we put constraints on the electrical conductivity of this layer as a function of its thickness (e.g., in the range 7-40 nS/m for a 7-mm thick layer). Potential candidates for the composition of this layer are discussed.
Wu, Le; Lin, Zheng-Zhong; Zhong, Hui-Ping; Peng, Ai-Hong; Chen, Xiao-Mei; Huang, Zhi-Yong
2017-08-15
A sensitive fluorescence sensor for the detection of malachite green (MG) was fabricated by grafting molecularly imprinted polymers (MIPs) onto the surface of CdTe quantum dots (QDs). The MIP-coated QDs were synthesized via a reverse microemulsion method using (3-aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) as functional monomer and cross-linker, respectively. The optimum molar ratio of MG, functional monomer and cross-linker was 1:3:10. The MIP-coated QDs exhibited uniform spheres with diameter around 49nm and excellent fluorescence emission at λ ex 370nm. A linear relationship with two segments between the relative fluorescence intensities and the MG concentrations ranging from 0.08 to 20μmol·L -1 could be obtained with a detection limit of 12μg·kg -1 . The fluorescent probe was successfully applied to the determination of MG in fish samples with the spiked recoveries ranging from 94.3% to 109.5% which were in accordance with those of the measurement by HPLC-UV. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ballabio, Erica; Regan, Regina; Garimberti, Elisa; Harbott, Jochen; Bradtke, Jutta; Teigler-Schlegel, Andrea; Biondi, Andrea; Cazzaniga, Giovanni; Giudici, Giovanni; Wainscoat, James S.; Boultwood, Jacqueline; Bridger, Joanna M.; Knight, Samantha J. L.; Tosi, Sabrina
2011-01-01
Leukaemia is often associated with genetic alterations such as translocations, amplifications and deletions, and recurrent chromosome abnormalities are used as markers of diagnostic and prognostic relevance. However, a proportion of acute myeloid leukaemia (AML) cases have an apparently normal karyotype despite comprehensive cytogenetic analysis. Based on conventional cytogenetic analysis of banded chromosomes, we selected a series of 23 paediatric patients with acute myeloid leukaemia and performed whole genome array comparative genome hybridization (aCGH) using DNA samples derived from the same patients. Imbalances involving large chromosomal regions or entire chromosomes were detected by aCGH in seven of the patients studied. Results were validated by fluorescence in situ hybridization (FISH) to both interphase nuclei and metaphase chromosomes using appropriate bacterial artificial chromosome (BAC) probes. The majority of these copy number alterations (CNAs) were confirmed by FISH and found to localize to the interphase rather than metaphase nuclei. Furthermore, the proliferative states of the cells analyzed by FISH were tested by immunofluorescence using an antibody against the proliferation marker pKi67. Interestingly, these experiments showed that, in the vast majority of cases, the changes appeared to be confined to interphase nuclei in a non-proliferative status. PMID:21694761
NASA Astrophysics Data System (ADS)
Liu, Mingyue; Gao, Zhao; Yu, Yanjun; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin
2018-01-01
4-Nitrophenol (4-NP) is a priority pollutant in water and is both carcinogenic and genotoxic to humans and wildlife even at very low concentrations. Thus, we herein fabricated a novel molecularly imprinted core-shell nanohybrid as a ratiometric fluorescent sensor for the highly sensitive and selective detection of 4-NP. This sensor was functioned by the transfer of fluorescence resonance energy between photoluminescent carbon dots (CDs) and 4-NP. This sensor was synthesized by linking organosilane-functionalized CDs to silica-coated CdSe quantum dots (CdSe@SiO2) via Si-O bonds. The nanohybrids were further modified by anchoring a molecularly imprinted polymer (MIP) layer on the ratiometric fluorescent sensor through a facile sol-gel polymerization method. The morphology, chemical structure, and optical properties of the resulting molecularly imprinted dual-emission fluorescent probe were characterized by transmission electron microscopy and spectroscopic analysis. The probe was then applied in the detection of 4-NP and exhibited good linearity between 0.051 and 13.7 μg/mL, in addition to a low detection limit of 0.026 μg/mL. Furthermore, the simplicity, reliability, high selectivity, and high sensitivity of the developed sensor demonstrate that the combination of MIPs and ratiometric fluorescence allows the preparation of excellent fluorescent sensors for the detection of trace or ultra-trace analytes.
Imaging genes, chromosomes, and nuclear structures using laser-scanning confocal microscopy
NASA Astrophysics Data System (ADS)
Ballard, Stephen G.
1990-08-01
For 350 years, the optical microscope has had a powerful symbiotic relationship with biology. Until this century, optical microscopy was the only means of examining cellular structure; in return, biologists have contributed greatly to the evolution of microscope design and technique. Recent advances in the detection and processing of optical images, together with methods for labelling specific biological molecules, have brought about a resurgence in the application of optical microscopy to the biological sciences. One of the areas in which optical microscopy is breaking new ground is in elucidating the large scale organization of chromatin in chromosomes and cell nuclei. Nevertheless, imaging the contents of the cell nucleus is a difficult challenge for light microscopy, for two principal reasons. First, the dimensions of all but the largest nuclear structures (nucleoli, vacuoles) are close to or below the resolving power of far field optics. Second, the native optical contrast properties of many important chromatin structures (eg. chromosome domains, centromere regions) are very weak, or essentially zero. As an extreme example, individual genes probably have nothing to distinguish them other than their sequence of DNA bases, which cannot be directly visualized with any current form of microscopy. Similarly, the interphase nucleus shows no direct visible evidence of focal chromatin domains. Thus, imaging of such entities depends heavily on contrast enhancement methods. The most promising of these is labelling DNA in situ using sequence-specific probes that may be visualized using fluorescent dyes. We have applied this method to detecting individual genes in metaphase chromosomes and interphase nuclei, and to imaging a number of DNA-containing structures including chromosome domains, metaphase chromosomes and centromere regions. We have also demonstrated the applicability of in situ fluorescent labelling to detecting numerical and structural abnormalities both in condensed metaphase chromosomes and in interphase nuclei. The ability to image the loci of fluorescent-labelled gene probes hybridized to chromosomes and to interphase nuclei will play a major role in the mapping of the human genome. This presentation is an overview of our laboratory's efforts to use confocal imaging to address fundamental questions about the structure and organization of genes, chromosomes and cell nuclei, and to develop applications useful in clinical diagnosis of inherited diseases.
Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using
Weier, H.U.G.; Gray, J.W.
1995-06-27
A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.
Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using
Weier, Heinz-Ulrich G.; Gray, Joe W.
1995-01-01
A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.
Molecular cytogenetics using fluorescence in situ hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J.W.; Kuo, Wen-Lin; Lucas, J.
1990-12-07
Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences tomore » which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastmond, D.A.; Rupa, D.S.; Chen, H.W.
Chromosomal abnormalities are believed to contribute significantly to human reproductive failure, carcinogenesis and other pathophysiological conditions. For example, approximately 15% of recognized pregnancies terminate in spontaneous abortion, and of these approximately 30% have been shown to be chromosomally abnormal. The contribution of chromosomal abnormalities to early embryonic and fetal death appears to decrease with gestational age, suggesting that as many as 67% of the aborted embryos in early embryonic deaths are chromosomally abnormal. Furthermore, clinically significant chromosomal abnormalities can also be found to be present in approximately 0.58 to 0.67% of live births. These figures indicate that within a givenmore » year, hundreds of thousands of chromosomally abnormal babies will be born throughout the world and additional millions of chromosomally abnormal embryos will have been spontaneously aborted. For the past several years, our research has focused on utilizing new molecular cytogenetic techniques to develop assays for detecting aneuploidy-inducing agents in mammalian cells. One approach that we have sucessfully employed involves the use of fluorescence in situ hybridization with chromosome-specific DNA probes to determine the number of copies of a representative chromosome present within the nucleus following chemical exposure. DNA sequences (probes) which hybridize to blocks of repetitive centromeric DNA on specific chromosomes have been developed for most of the human chromosomes. In situ hybridization with these probes results in the staining of a compact chromosomal region which can be easily detected in interphase nuclei. The presence of 3 (or more) hybridization domains in an interphase nucleus indicates the presence of three centromeric regions and has been presumed to indicate that three copies of the entire chromosome were present in the nucleus.« less
NASA Astrophysics Data System (ADS)
Schmidt, Walter; Henri, Pierre; Lebreton, Jean Pierre; Vallières, Xavier; Grard, Réjean; Hamelin, Michel; Le Gall, Alice; Lethuillier, Anthony; Ciarletti, Valerie; Caujolle-Bert, Sylvain; Seidensticker, Klaus; Fischer, Hans-Herbert
2016-04-01
On November 12, 2014, the Rosetta landing module Philae approached the nucleus of 67P/Churyumov-Gerasimenko and eventually settled on the surface in a location named Abydos, though its exact coordinates are still unknown. The Permittivity Probe (PP) as part of the SESAME (Surface Electric Sounding and Acoustic Monitoring Experiment) instrument package [1] was designed to not only measure the electrical properties of the comet's surface material by actively injecting an alternating current at different frequencies into the material underneath the Lander but also to monitor potential variations between its two receivers and the electrical conductivity of the plasma environment while still in space. By sampling the potential difference at 40 kHz between the soles of two of the feet attached to Philae's landing gear, plasma waves between 20 and 20 000 Hz should be detectable if their amplitudes are large enough. The injection of low frequency currents into the plasma environment during Philae's descent gives indications for changes of the plasma density when approaching the comet. In this paper we present observations from the cross-calibration campaign with the Rosetta plasma package instrument MIP (Mutual Impedance Probe) [2] during the Pre-Delivery Calibration and Science (PDCS) operations on October 17, 2014, during the descent towards the comet surface on November 12, 2014, and from the First Science Sequence at Abydos on November 13. During the PDCS campaign most PP observation slots coincided with plasma waves dominantly in the 100 to 150 kHz range according to MIP measurements. Accordingly PP did not register any signals. Only in the afternoon of the 17th low frequency waves were recorded by MIP. At the same time the measured PP wave power signal was above the background for frequencies below 500 Hz in several subsequent measurements. During the descent [3] the injected current at 758 Hz dropped suddenly by about 5 % possibly indicating a decrease in the plasma density at an altitude of about 18.5 km above the comet surface. During the First Science Sequence PP was monitoring low frequency wave-like activities starting two hours after local sunset. References: [1] K. J. Seidensticker, H-H. Fischer, D. Medlener, S. Schieke, K. Thiel, A. Peter, W. Schmidt and R. Trautner, 2004: The Rosetta lander experiment sesame and the new target comet 67P/Churyumov-Gerasimenko. The New ROSETTA Targets - Observations, Simulations and Instrument Performances, Astrophys. Space Sci. 311, 297-307 [2] J. G. Trotignon et al., RPC-MIP: the Mutual Impedance Probe of the Rosetta Plasma Consortium, Space Science Reviews, February 2007, Volume 128, Issue 1, pp 713-728 [3] H.Krüger et al., Dust Impact Monitor (SESAME-DIM) Measurements at Comet 67P/Churyumov-Gerasimenko, Astronomy&Astrophysics, Volume 583, November 2015, DOI http://dx.doi.org/10.1051/0004-6361/201526400
Clinical utility of a DNA probe to 17p11.2 in screening of patients with a peripheral neuropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blancato, J.; Precht, K.; Meck, J.
1994-09-01
We assessed the usefulness of in situ hybridization with a DNA probe to the area of chromosome 17 at p11.2 as a diagnostic tool for screening for Charcot Marte Tooth 1A (CMT 1A). In situ hybridization with a probe to 17p11.2 was performed on fixed lymphocytes from the following groups of individuals: (1) normal controls; (2) patients evoking a strong clinical suspicion of CMT 1A; and (3) 3 families with an apparent autosomal dominant peripheral neuropathy of unknown diagnoses. Group 2 patients had evidence of demyelination as defined by nerve conduction of less that 50% of the normal mean ormore » terminal latency greater than 50% of the normal mean in conduction studies. Analysis of interphase cells hybridized with a cosmid DNA probe to 17p11.2 requires inclusion of a normal control with each trial and masked observer. Due to the size of the target DNA and the nature of the centromeric heterochromatin, the scoring of this probe is more subjective than centromere probes. For example, if the two 17 chromosomes are decondensed as in interphase, two tandem signals may be visualized as one. Results from duplication positive patients demonstrate a large proportion of cells with two closely aligned, but separate, signals with an additional single signal. Normal results demonstrate a majority of cells with two separate signals representing both normal homologues. None of the 3 families with questionable diagnosis revealed a duplication at the region, reinforcing our belief that a clinical diagnosis is the most discriminating tool available for diagnosis of CMT 1A. We concur with Boylan that molecular analysis for CMT 1A is useful for establishing a diagnosis of CMT 1A, but is not a primary differential diagnostic test. The yield in screening patients without physiologic evidence of demyelination is likely to be low. We further find that the use of in situ hybridization is a simple method of performing the duplication analysis.« less
Impact of periodontitis on chemokines in smokers.
Haytural, O; Yaman, D; Ural, E C; Kantarci, A; Demirel, Korkud
2015-06-01
The aim of this study was to investigate the chemokine expression profiles in gingival crevicular fluid (GCF) and serum in patients with advanced chronic periodontitis and to assess the impact of smoking on local and systemic levels of chemokines. Thirty patients with chronic periodontitis (CP; 20 smokers and 10 non-smokers) and 20 periodontally healthy subjects (10 smokers and 10 non-smokers) were recruited. Clinical parameters included the plaque index (PI), gingival index (GI), and bleeding on probing (BOP). Macrophage inflammatory protein-1 alpha (MIP-1α), macrophage inflammatory protein-1 beta (MIP-1β), monocyte chemoattractant protein-1 (MCP-1), and regulated on activation normal T cell expressed and secreted chemokine (RANTES) were measured in gingival crevicular fluid (GCF) and serum using a multiplex immunoassay. MIP-1α levels were significantly lower (10.15 ± 1.48; p = 0.039) while MIP-1β levels were significantly higher (42.05 ± 8.21; p = 0.005) in sera from non-smoker patients with CP compared to non-smoker healthy subjects. MCP-1 concentration in sera was significantly higher in smoker periodontitis patients (8.89 ± 1.65) compared to non-smoker patients with periodontitis (8.14 ± 0.97; p = 0.004). MIP-1α and RANTES were significantly higher in GCF of the patients with CP (p = 0.001) while there were no statistically significant correlations between the GCF levels of these analytes and the smoking status. Periodontal inflammation increases the chemokine concentrations in the GCF while smoking suppresses chemokine levels in serum suggesting that different local and systemic mechanisms are involved during the response to periodontitis in smokers. Understanding the local and systemic chemokine responses in smokers will enable the development of biologically-based treatment methods for chronic periodontitis.
Compound kinetochores of the Indian muntjac. Evolution by linear fusion of unit kinetochores.
Brinkley, B R; Valdivia, M M; Tousson, A; Brenner, S L
1984-01-01
The chromosomes of the Indian muntjac (Muntiacus muntjak vaginalis) are unique among mammals due to their low diploid number (2N = 6 female, 7 male) and large size. It has been proposed that the karyotype of this small Asiatic deer evolved from a related deer the Chinese muntjac (Muntiacus reevesi) with a diploid chromosome number of 2n = 46 consisting of small telocentric chromosomes. In this study we utilized a kinetochore-specific antiserum derived from human patients with the autoimmune disease scleroderma CREST as an immunofluorescent probe to examine kinetochores of the two muntjac species. Since CREST antiserum binds to kinetochores of mitotic chromosomes as well as prekinetochores in interphase nuclei, it was possible to identify and compare kinetochore morphology throughout the cell cycle. Our observations indicated that the kinetochores of the Indian muntjac are composed of a linear beadlike array of smaller subunits that become revealed during interphase. The kinetochores of the Chinese muntjac consisted of minute fluorescent dots located at the tips of the 46 telocentric chromosomes. During interphase, however, the kinetochores of the Chinese muntjac clustered into small aggregates reminiscent of the beadlike arrays seen in the Indian muntjac. Morphometric measurements of fluorescence indicated an equivalent amount of stained material in the two species. Our observations indicate that the kinetochores of the Indian muntjac are compound structures composed of linear arrays of smaller units the size of the individual kinetochores seen on metaphase chromosomes of the Chinese muntjac. Our study supports the notion that the kinetochores of the Indian muntjac evolved by linear fusion of unit kinetochores of the Chinese muntjac. Moreover, it is concluded that the evolution of compound kinetochores may have been facilitated by the non-random aggregation of interphase kinetochores in the nuclei of the ancestral species.
Dusty Lyman-alpha Emitters As Seen By Spitzer
NASA Astrophysics Data System (ADS)
Dolan, Kyle; Scarlata, C.; Colbert, J. W.; Teplitz, H. I.; Hayes, M.
2013-01-01
We have used the IRAC and MIPS Spitzer archive to derive the full mid-IR SED for the largest sample of local Lyman-alpha emitters, probing the internal activities of these sources as well as analyzing the role that dust properties play in the Lyman-alpha escape fraction. We utilized all available IRAC and MIPS data for a sample of about 100 local Lyman-alpha emitters at redshift 0.2≤z≤0.4 , originally discovered by Deharveng et al. (2008) and Cowie et al. (2011), to quantify the level of star formation (SF) and AGN activity in these sources, probing into dust-enshrouded regions that block UV and optical photons from escaping. In order to derive the total bolometric IR luminosity from 8μm to 1000μm, we fit the IR data to the template SEDs derived by Chary and Elbaz (2001). Using this information, we quantified the total star formation rate (SFR) of these galaxies and how much SF is missed by optical and UV surveys. We also identified any AGN activity and produced new estimates for AGN contamination within the population of Lyman-alpha emitters. This work has been supported by NASA's Astrophysics Data Analysis Program, Award # NNX11AH84G.
Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta
NASA Astrophysics Data System (ADS)
Heritier, K. L.; Henri, P.; Vallières, X.; Galand, M.; Odelstad, E.; Eriksson, A. I.; Johansson, F. L.; Altwegg, K.; Behar, E.; Beth, A.; Broiles, T. W.; Burch, J. L.; Carr, C. M.; Cupido, E.; Nilsson, H.; Rubin, M.; Vigren, E.
2017-07-01
The plasma environment has been measured for the first time near the surface of a comet. This unique data set has been acquired at 67P/Churyumov-Gerasimenko during ESA/Rosetta spacecraft's final descent on 2016 September 30. The heliocentric distance was 3.8 au and the comet was weakly outgassing. Electron density was continuously measured with Rosetta Plasma Consortium (RPC)-Mutual Impedance Probe (MIP) and RPC-LAngmuir Probe (LAP) during the descent from a cometocentric distance of 20 km down to the surface. Data set from both instruments have been cross-calibrated for redundancy and accuracy. To analyse this data set, we have developed a model driven by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-COmetary Pressure Sensor total neutral density. The two ionization sources considered are solar extreme ultraviolet radiation and energetic electrons. The latter are estimated from the RPC-Ion and Electron Sensor (IES) and corrected for the spacecraft potential probed by RPC-LAP. We have compared the results of the model to the electron densities measured by RPC-MIP and RPC-LAP at the location of the spacecraft. We find good agreement between observed and modelled electron densities. The energetic electrons have access to the surface of the nucleus and contribute as the main ionization source. As predicted, the measurements exhibit a peak in the ionospheric density close to the surface. The location and magnitude of the peak are estimated analytically. The measured ionospheric densities cannot be explained with a constant outflow velocity model. The use of a neutral model with an expanding outflow is critical to explain the plasma observations.
Stable CoT-1 repeat RNA is abundant and associated with euchromatic interphase chromosomes
Hall, Lisa L.; Carone, Dawn M.; Gomez, Alvin; Kolpa, Heather J.; Byron, Meg; Mehta, Nitish; Fackelmayer, Frank O.; Lawrence, Jeanne B.
2014-01-01
SUMMARY Recent studies recognize a vast diversity of non-coding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using CoT-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (“CoT-1 RNA”), including LINE-1. CoT-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis, and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The CoT-1 RNA territory resists mechanical disruption and fractionates with the non-chromatin scaffold, but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. CoT-1 RNA has several properties similar to XIST chromosomal RNA, but is excluded from chromatin condensed by XIST. These findings impact two “black boxes” of genome science: the poorly understood diversity of non-coding RNA and the unexplained abundance of repetitive elements. PMID:24581492
Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C
2015-05-27
The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.
Chantada-Vázquez, María Pilar; Sánchez-González, Juan; Peña-Vázquez, Elena; Tabernero, María Jesús; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2016-03-01
A new molecularly imprinted polymer (MIP)-based fluorescent artificial receptor has been prepared by anchoring a selective MIP for cocaine (COC) on the surface of polyethylene glycol (PEG) modified Mn-doped ZnS quantum dots (QDs). The prepared material combines the high selectivity attributed to MIPs and the sensitive fluorescent property of the Mn-doped ZnS QDs. Simple and low cost methods have therefore been optimized for assessing cocaine abuse in urine by monitoring the fluorescence quenching when the template (COC) and also metabolites from COC [benzoylecgonine (BZE) and ecgonine methyl ester (EME)] are present. Fluorescence quenching was not observed when performing experiments with other drugs of abuse (and their metabolites) or when using nonimprinted polymer (NIP)-coated QDs. Under optimized operating conditions (1.5 mL of 200 mg L(-1) MIP-coated QDs solution, pH 5.5, and 15 min before fluorescence scanning) two analytical methods were developed/validated. One of the procedures (direct method) consisted of urine sample 1:20 dilution before fluorescence measurements. The method has been found to be fast, precise, and accurate, but the standard addition technique for performing the analysis was required because of the existence of matrix effect. The second procedure performed a solid phase extraction (SPE) first, avoiding matrix effect and allowing external calibration. The limits of detection of the methods were 0.076 mg L(-1) (direct method) and 0.0042 mg L(-1) (SPE based method), which are lower than the cutoff values for confirmative conclusions regarding cocaine abuse.
NASA Technical Reports Server (NTRS)
Tsai, H. C.; Arocho, A. M.
1992-01-01
A simple one-dimensional fiber-matrix interphase model has been developed and analytical results obtained correlated well with available experimental data. It was found that by including the interphase between the fiber and matrix in the model, much better local stress results were obtained than with the model without the interphase. A more sophisticated two-dimensional micromechanical model, which included the interphase properties was also developed. Both one-dimensional and two-dimensional models were used to study the effect of the interphase properties on the local stresses at the fiber, interphase and matrix. From this study, it was found that interphase modulus and thickness have significant influence on the transverse tensile strength and mode of failure in fiber reinforced composites.
Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana.
Armstrong, Susan J; Jones, Gareth H
2003-01-01
This article reviews the historical development of cytology and cytogenetics in Arabidopsis, and summarizes recent developments in molecular cytogenetics, with special emphasis on meiotic studies. Despite the small genome and small chromosomes of Arabidopsis, considerable progress has been made in developing appropriate cytogenetical techniques for chromosome analysis. Fluorescence in situ hybridization (FISH) applied to extended meiotic pachytene chromosomes has resulted in a standardized karyotype (idiogram) for the species that has also been aligned with the genetical map. A better understanding of floral and meiotic development has been achieved by combining cytological studies, based on both sectioning and spreading techniques, with morphometric data and developmental landmarks. The meiotic interphase, preceding prophase I, has been investigated by marking the nuclei undergoing DNA replication with BrdU. This allowed the subclasses of meiotic interphase to be distinguished and also provided a means to time the duration of meiosis and its constituent phases. The FISH technique has been used to analyse in detail the meiotic organization of telomeres and centromeric regions. The results indicate that centromere regions do not play an active role in chromosome pairing and synapsis; however, telomeres pair homologously in advance of general chromosome synapsis. The FISH technique is currently being applied to analysing the pairing and synapsis of interstitial chromosome regions through interphase and prophase I. FISH probes also allow the five bivalents of Arabidopsis to be identified at metaphase I and this has permitted an analysis of chiasma frequencies in individual bivalents, both in wild-type Arabidopsis and in two meiotic mutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cremer, T.; Popp, S.; Emmerich, P.
1990-01-01
Chromosomal in situ suppression (CISS)-hybridization of biotinylated phage DNA-library inserts from sorted human chromosomes was used to decorate chromosomes 1 and 7 specifically from pter to qter and to detect structural aberrations of these chromosomes in irradiated human peripheral lymphocytes. In addition, probe pUC1.77 was used to mark the 1q12 subregion in normal and aberrant chromosomes 1. Low LET radiation (60Co-gamma-rays; 1.17 and 1.33 MeV) of lymphocyte cultures was performed with various doses (D = 0, 2, 4, 8 Gy) 5 h after stimulation with phytohaemagglutinin. Irradiated cells were cultivated for an additional 67 h before Colcemid arrested metaphase spreadsmore » were obtained. Aberrations of the specifically stained chromosomes, such as deletions, dicentrics, and rings, were readily scored after in situ hybridization with either the 1q12 specific probe or DNA-library inserts. By the latter approach, translocations of the specifically stained chromosomes could also be reliably assessed. A linear increase of the percentage of specifically stained aberrant chromosomes was observed when plotted as a function of the square of the dose D. A particular advantage of this new approach is provided by the possibility to delineate numerical and structural chromosome aberrations directly in interphase nuclei. These results indicate that cytogenetic monitoring of ionizing radiation may be considerably facilitated by CISS-hybridization.« less
Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L.; Vogler, Erwin A.
2010-01-01
The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square-or-hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square-or-hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. PMID:21035180
Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A
2011-02-01
The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Wu, Honglu; Mangala, Lingegowda; Asaithamby, Aroumougame; Chen, David
2012-07-01
CORRELATION BETWEEN INTERPHASE CHROMATIN STRUCTURE AND LOW- AND HIGH-LET RADIATION-INDUCED INTER- AND INTRA-CHROMOSOME EXCHANGE HOTSPOTS Ye Zhang1,2, Lingegowda S. Mangala1,3, Aroumougame Asaithamby4, David J. Chen4, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 3 University of Houston Clear Lake, Houston, Texas, USA 4 University of Texas, Southwestern Medical Center, Dallas, Texas, USA To investigate the relationship between chromosome aberrations induced by low- and high-LET radiation and chromatin folding, we reconstructed the three dimensional structure of chromosome 3 and measured the physical distances between different regions of this chromosome. Previously, we investigated the location of breaks involved in inter- and intrachromosomal type exchange events in chromosome 3 of human epithelial cells, using the multicolor banding in situ hybridization (mBAND) technique. After exposure to both low- and high-LET radiations in vitro, intra-chromosome exchanges occurred preferentially between a break in the 3p21 and one in the 3q11 regions, and the breaks involved in inter-chromosome exchanges occurred in two regions near the telomeres of the chromosome. In this study, human epithelial cells were fixed in G1 phase and interphase chromosomes hybridized with an mBAND probe for chromosome 3 were captured with a laser scanning confocal microscope. The 3-dimensional structure of interphase chromosome 3 with different colored regions was reconstructed, and the distance between different regions was measured. We show that, in most of the G1 cells, the regions containing 3p21 and 3q11 are colocalized in the center of the chromosome domain, whereas, the regions towards the telomeres of the chromosome are located in the peripherals of the chromosome domain. Our results demonstrate that the distribution of breaks involved in radiation-induced inter and intra-chromosome aberrations depends upon both the location of fragile sites and the folding of chromatins.
Comparison of interphase models for a crack in fiber reinforced composite
NASA Astrophysics Data System (ADS)
Kaw, A. K.; Selvarathinam, A. S.; Besterfield, G. H.
1992-07-01
The influence of a nonhomogeneous interphase on fracture mechanics of a fiber reinforced composite is studied. The stress intensity factor at the crack tips, maximum interfacial shear and normal stresses, maximum cleavage stress in the matrix and load diffusion along the length of the fiber are studied as a function of the fiber width, the interphase thickness, and the relative stiffness properties of the fiber, the matrix and the interphase. The normal stresses at the interface, which represents the possibility of debonding of the interface, is lowest for interphase thicknesses of the order of one-tenth of the fiber-diameter, when the crack is in the stiffer material. These normal stresses are highest at such interphase thicknesses if the crack is in the less stiffer material. The results obtained by using the nonhomogeneous interphase model are also compared with five other interphase models used in the literature for the interphase, namely the perfect, the homogeneous, the distributed uncoupled shear and normal springs, and the distributed shear springs. It is found that the trends of the above parameters as a function of interphase thickness are different for the spring and continuum models, if the crack is in a stiffer material.
Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru
2009-10-06
Methods and compositions for staining based upon nucleic acid sequence that employ nudeic nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, C. C.; Morel, M.
1991-01-01
A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.
Interphase layer optimization for metal matrix composites with fabrication considerations
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, C. C.
1991-01-01
A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.
Bagheri, Nafiseh; Khataee, Alireza; Habibi, Biuck; Hassanzadeh, Javad
2018-03-01
Here, Ag nanoparticle/flake-like Zn-based MOF nanocomposite (AgNPs@ZnMOF) with great peroxidase-like activity was applied as an efficient support for molecularly imprinted polymer (MIP) and successfully used for selective determination of patulin. AgNPs@ZnMOF was simply synthesized by creating Ag nanoparticles (Ag NPs) inside the nano-pores of flake-like (Zn)MOF. The high surface area of MOF remarkably improved the catalytic activity of Ag NPs which was assessed by fluorometric, colorimetric and electrochemical techniques. Furthermore, it was observed that patulin could strangely reduce the catalytic activity of AgNPs@ZnMOF, probably due to its electron capturing features. This outcome was the motivation to design an assay for patulin detection. In order to make a selective interaction with patulin molecules, MIP layer was created on the surface of AgNPs@ZnMOF by co-polymerization reaction of 3-aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) monomers wherein patulin was applied as template agent. Combination between the selective identifying feature of MIP and outstanding peroxidase-like activity of novel AgNPs@ZnMOF nanocomposite as well as the sensitive fluorescence detection system was led to the design of a reliable probe for patulin. The prepared MIP-capped AgNPs@ZnMOF catalyzed the H 2 O 2 -terephthalic acid reaction which produced a high florescent product. In the presence of patulin, the fluorescence intensity was decreased proportional to its concentration in the range of 0.1-10µmolL -1 with a detection limit of 0.06µmolL -1 . The proposed method was able to selectively measure patulin in a complex media without significant interfering effects from analogue compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Expression of Water Channel Proteins in Mesembryanthemum crystallinum1
Kirch, Hans-Hubert; Vera-Estrella, Rosario; Golldack, Dortje; Quigley, Francoise; Michalowski, Christine B.; Barkla, Bronwyn J.; Bohnert, Hans J.
2000-01-01
We have characterized transcripts for nine major intrinsic proteins (MIPs), some of which function as water channels (aquaporins), from the ice plant Mesembryanthemum crystallinum. To determine the cellular distribution and expression of these MIPs, oligopeptide-based antibodies were generated against MIP-A, MIP-B, MIP-C, or MIP-F, which, according to sequence and functional characteristics, are located in the plasma membrane (PM) and tonoplast, respectively. MIPs were most abundant in cells involved in bulk water flow and solute flux. The tonoplast MIP-F was found in all cells, while signature cell types identified different PM-MIPs: MIP-A predominantly in phloem-associated cells, MIP-B in xylem parenchyma, and MIP-C in the epidermis and endodermis of immature roots. Membrane protein analysis confirmed MIP-F as tonoplast located. MIP-A and MIP-B were found in tonoplast fractions and also in fractions distinct from either the tonoplast or PM. MIP-C was most abundant but not exclusive to PM fractions, where it is expected based on its sequence signature. We suggest that within the cell, MIPs are mobile, which is similar to aquaporins cycling through animal endosomes. MIP cycling and the differential regulation of these proteins observed under conditions of salt stress may be fundamental for the control of tissue water flux. PMID:10806230
Investigation of the fiber/matrix interphase under high loading rates
NASA Astrophysics Data System (ADS)
Tanoglu, Metin
2000-10-01
This research focuses on characterization of the interphases of various sized E-glass-fiber/epoxy-amine systems under high loading rates. The systems include unsized, epoxy-amine compatible, and epoxy-amine incompatible glass fibers. A new experimental technique (dynamic micro-debonding technique) was developed to directly characterize the fiber/matrix interphase properties under various loading rates. Displacement rates of up to 3000 mum/sec that induce high-strain-rate interphase loading were obtained using the rapid expansion capability of the piezoelectric actuators (PZT). A straightforward data reduction scheme, which does not require complex numerical solutions, was also developed by employing thin specimens. This method enables quantification of the strength and specific absorbed energies due to debonding and frictional sliding. Moreover, the technique offers the potential to obtain the shear stress/strain response of the interphases at various rates. A new methodology was also developed to independently investigate the properties of the fiber/matrix interphase. This methodology is based on the assumption that the portion of sizing bound to the glass fiber strongly affects the interphase formation. Conventional burnout and acetone extraction experiments in conjunction with nuclear magnetic spectroscopy were used to determine the composition of the bound sizing. Using the determined composition, model interphase compounds were made to replicate the actual interphase and tested utilizing dynamic mechanical analyzer (DMA) and differential scanning calorimeter (DSC) techniques. The rate-dependent behavior of the model interphase materials and the bulk epoxy matrix were characterized by constructing storage modulus master curves as a function of strain rate using the time-temperature superposition principle. The results of dynamic micro-debonding experiments showed that the values of interphase strength and specific absorbed energies vary dependent on the sizing and exhibited significant sensitivity to loading rates. The unsized fibers exhibit greater energy-absorbing capability that could provide better ballistic resistance while the compatible sized fibers show higher strength values that improve the structural integrity of the polymeric composites. The calculated interphase shear modulus values from micro-debonding experiments increase with the loading rate consistent with DMA results. In addition, significantly higher amounts of energy are absorbed within the frictional sliding regime compared to debonding. Characterization of model interphase compounds revealed that the interphase formed due to the presence of bound sizing has a Tg below room temperature, a modulus more compliant than that of the bulk matrix, and a thickness of about 10 nm. The results showed that the properties of the interphases are significantly affected by the interphase network structure.
NASA Astrophysics Data System (ADS)
Lamnawar, Khalid; Maazouz, Abderrahim
2008-07-01
Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances regarding the stability of compatible and incompatible polymers have, during the last decades, been made using a mechanical approach. However, few research efforts have been dedicated to the physicochemical affinity between the neighboring layers. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers. Polyamide (PA6)/polyethylene grafted with glycidyl methacrylate (PE-GMA) was used as a reactive system and PE/PA6 as a non reactive one. Two grades of polyamide (PA6) were used in order to change the viscosity and elasticity ratios between PE (or PE-GMA) and PA6. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to an interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations from previous work which the interphase effect can be probed, an experimental strategy was here formulated to optimize the process by listing the parameters that controlled the stability of the reactive multilayer flows. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters (viscosity, elasticity and layer ratios) and the physicochemical affinity at the polymer/polymer interface.
Fleet, C M; Yen, J Y; Hill, E A; Gillaspy, G E
2018-06-01
Co-suppressed MIPS2 transgenic lines allow bypass of the embryo lethal phenotype of the previously published triple knock-out and demonstrate the effects of MIPS on later stages of development. Regulation of inositol production is of interest broadly for its effects on plant growth and development. The enzyme L-myo-inositol 1-phosphate synthase (MIPS, also known as IPS) isomerizes D-glucose-6-P to D-inositol 3-P, and this is the rate-limiting step in inositol production. In Arabidopsis thaliana, the MIPS enzyme is encoded by three different genes, (AtMIPS1, AtMIPS2 and AtMIPS3), each of which has been shown to produce proteins with biochemically similar properties but differential expression patterns. Here, we report phenotypic and biochemical effects of MIPS co-suppression. We show that some plants engineered to overexpress MIPS2 in fact show reduced expression of AtMIPS1, AtMIPS2 and AtMIPS3, and show altered vegetative phenotype, reduced size and root length, and delayed flowering. Additionally, these plants show reduced inositol, increased glucose levels, and alteration of other metabolites. Our results suggest that the three AtMIPS genes work together to impact the overall synthesis of myo-inositol and overall inositol homeostasis.
MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES
NASA Technical Reports Server (NTRS)
Seidel, G. D.; Lagoudas, D. C.; Frankland, S. J. V.; Gates, T. S.
2006-01-01
A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident.
Luo, Yu; Qin, Genji; Zhang, Jun; Liang, Yuan; Song, Yingqi; Zhao, Meiping; Tsuge, Tomohiko; Aoyama, Takashi; Liu, Jingjing; Gu, Hongya; Qu, Li-Jia
2011-01-01
In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding d-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/− double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis. PMID:21505066
Liu, Yu; Hamon, Ann-Lenaig; Haghi-Ashtiani, Paul; Reiss, Thomas; Fan, Benhui; He, Delong; Bai, Jinbo
2016-12-14
A quantitative study of the interphase and interface of graphene nanoplatelets (GNPs)/epoxy and graphene oxide (GO)/epoxy was carried out by combining scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The interphase regions between GNPs and epoxy matrix were clearly identified by the discrepancy of the plasmon peak positions in the low energy-loss spectra due to different valence electron densities. The spectrum acquisitions were carried out along lines across the interface. An interphase thickness of 13 and 12.5 nm was measured for GNPs/epoxy and GO/epoxy, respectively. The density of the GNPs/epoxy interphase was 2.89% higher than that of the epoxy matrix. However, the density of the GO/epoxy interphase was 1.37% lower than that of the epoxy matrix. The interphase layer thickness measured in this work is in good agreement with the transition layer theory, which proposed an area with modulus linearly varying across a finite width. The results provide an insight into the interphase for carbon-based polymer composites that can help to design the functionalization of nanofillers to improve the composite properties.
Methods of biological dosimetry employing chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
2000-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.
Methods And Compositions For Chromosome-Specific Staining
Gray, Joe W.; Pinkel, Daniel
2003-08-19
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.
Compositions for chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
1998-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.
Compositions for chromosome-specific staining
Gray, J.W.; Pinkel, D.
1998-05-26
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. The methods produce staining patterns that can be tailored for specific cytogenetic analyses. The probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. The invention provides for automated means to detect and analyze chromosomal abnormalities. 17 figs.
NASA Astrophysics Data System (ADS)
Ellis, Keith
The aim of the project was to improve the transverse mechanical properties of unidirectional glass fibre reinforced plastics (G.R.P.)* In addition it was intended that the longitudinal mechanical properties should not be Significantly a result of the transverse improvement The scientific and commercial literature were consulted to determine the most feasible means of improving the transverse properties. Four possible methods were identified, the most promising of which was interfacial modification. Interfacial modification involves the introduction of a third material ("the interphase" ) at the interface between the fibre and the matrix. For this project the interphase material was selected to be compliant or rubbery in nature. The Kies model for predicting the magnification of strain in the resin between fibres was extended to include an interphase. The model was developed for two modes of applied stress. The first was pure tension acting transverse to the fibre axis. The second was shear in the plane transverse to the fibre axis. A novel apparatus was constructed to manufacture composites with a compliant interphase. The apparatus combined a self-regulating coating technique with filament winding to give a continuous production facility. A range of mechanical tests were performed on composites both with and without an interphase. Presence of an interphase improved the following properties: transverse flexural strength, interlaminar and intralaminar shear strength , and transverse fiexural fracture energy. No improvement was noted for pure transverse tension. These results indicated that the interphase acted beneficially only when the composite was stressed in a predominantly shear mode. Conclusions from mechanical test results were supported by S.E.M. fractography. Considerable deformation of the interphase was found in composite tested in shear. This deformation was absent in composite tested in tension. It was postulated that these differences between behaviour in tension and shear were the result of constraint of Poisson's ratio contraction in the compliant interphase. To confirm this, dynamic mechanical testing was used to measure tensile and shear moduli of the interphase material as a function of thickness. Constraint and support were provided by a thin steel substrate. The tensile modulus increased by orders of magnitude the thinner, and hence more constrained , the material became. Near to the interphase thickness used in practice the tensile modulus of the interphase was shown to approach that of the matrix. In summary, the use of a compliant interphase resulted in significant improvements in mechanical properties of the composite in shear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaga, Kaushik; Shkrob, Ilya A.; Haasch, Richard T.
In this study, Auger electron spectroscopy (AES) combined with ion sputtering profilometry, Xray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) have been used in a complementary fashion to examine chemical and microstructural changes in graphite (Gr) and silicon/graphite (Si/Gr) blends contained in the negative electrodes of lithium-ion cells. We demonstrate how AES can be used to characterize morphology of the solid-electrolyte interphase (SEI) deposits in such heterogeneous media, complementing well-established methods, such as XPS and SEM. In this way we demonstrate that the SEI does not consist of uniformly thick layers on the graphite and silicon; the thickness ofmore » the SEI layers in cycle-life aged electrodes follows an exponential distribution with a mean of ca. 13 nm for the graphite and ca. 20-25 nm for the silicon nanoparticles (with a crystalline core of 50-70 nm in diameter). Furthermore, a “sticky-sphere” model, in which Si nanoparticles are covered with a layer of polymer binder (that is replaced by the SEI during cycling) of variable thickness is introduced to account for the features observed.« less
Sacci, Robert L; Black, Jennifer M; Balke, Nina; Dudney, Nancy J; More, Karren L; Unocic, Raymond R
2015-03-11
The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase (SEI) formation and to track Li nucleation and growth mechanisms from a standard organic battery electrolyte (LiPF6 in EC:DMC), we used in situ electrochemical scanning transmission electron microscopy (ec-S/TEM) to perform controlled electrochemical potential sweep measurements while simultaneously imaging site-specific structures resulting from electrochemical reactions. A combined quantitative electrochemical measurement and STEM imaging approach is used to demonstrate that chemically sensitive annular dark field STEM imaging can be used to estimate the density of the evolving SEI and to identify Li-containing phases formed in the liquid cell. We report that the SEI is approximately twice as dense as the electrolyte as determined from imaging and electron scattering theory. We also observe site-specific locations where Li nucleates and grows on the surface and edge of the glassy carbon electrode. Lastly, this report demonstrates the investigative power of quantitative nanoscale imaging combined with electrochemical measurements for studying fluid-solid interfaces and their evolving chemistries.
Kalaga, Kaushik; Shkrob, Ilya A.; Haasch, Richard T.; ...
2017-10-05
In this study, Auger electron spectroscopy (AES) combined with ion sputtering profilometry, Xray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) have been used in a complementary fashion to examine chemical and microstructural changes in graphite (Gr) and silicon/graphite (Si/Gr) blends contained in the negative electrodes of lithium-ion cells. We demonstrate how AES can be used to characterize morphology of the solid-electrolyte interphase (SEI) deposits in such heterogeneous media, complementing well-established methods, such as XPS and SEM. In this way we demonstrate that the SEI does not consist of uniformly thick layers on the graphite and silicon; the thickness ofmore » the SEI layers in cycle-life aged electrodes follows an exponential distribution with a mean of ca. 13 nm for the graphite and ca. 20-25 nm for the silicon nanoparticles (with a crystalline core of 50-70 nm in diameter). Furthermore, a “sticky-sphere” model, in which Si nanoparticles are covered with a layer of polymer binder (that is replaced by the SEI during cycling) of variable thickness is introduced to account for the features observed.« less
MIPS: The good, the bad and the useful
NASA Technical Reports Server (NTRS)
Richardson, Jerry K.
1987-01-01
Many authors are critical of the use of MIPS (Millions of Instructions per Second) as a measure of computer power. Some feel that MIPS are meaningless. While there is justification for some of the criticism of MIPS, sometimes the criticism is carried too far. MIPS can be a useful number for planning and estimating purposes when used in a homogeneous computer environmnet. Comparisons between published MIPS ratings and benchmark results reveal that there does exist a high positive correlation between MIPS and tested performance, given a homogeneous computer environment. MIPS should be understood so as not to be misused. It is not correct that the use of MIPS is always inappropriate or inaccurate
Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes
Beliveau, Brian J.; Joyce, Eric F.; Apostolopoulos, Nicholas; Yilmaz, Feyza; Fonseka, Chamith Y.; McCole, Ruth B.; Chang, Yiming; Li, Jin Billy; Senaratne, Tharanga Niroshini; Williams, Benjamin R.; Rouillard, Jean-Marie; Wu, Chao-ting
2012-01-01
A host of observations demonstrating the relationship between nuclear architecture and processes such as gene expression have led to a number of new technologies for interrogating chromosome positioning. Whereas some of these technologies reconstruct intermolecular interactions, others have enhanced our ability to visualize chromosomes in situ. Here, we describe an oligonucleotide- and PCR-based strategy for fluorescence in situ hybridization (FISH) and a bioinformatic platform that enables this technology to be extended to any organism whose genome has been sequenced. The oligonucleotide probes are renewable, highly efficient, and able to robustly label chromosomes in cell culture, fixed tissues, and metaphase spreads. Our method gives researchers precise control over the sequences they target and allows for single and multicolor imaging of regions ranging from tens of kilobases to megabases with the same basic protocol. We anticipate this technology will lead to an enhanced ability to visualize interphase and metaphase chromosomes. PMID:23236188
Molecularly Imprinted Polymers Chitosan-Glutaraldehyde for Monosodium Glutamate
NASA Astrophysics Data System (ADS)
Mulyasuryani, Ani; Haryanto, Edi; Sulistyarti, Hermin; Rumhayati, Barlah
2018-01-01
Chitosan has been used as a functional monomer in the synthesis of molecularly imprinted polymers (MIP) for monosodium glutamate (MSG). MIP is made from a mixture of 5 g chitosan, 50 mg glutaraldehyde and 2 g MSG, MIP is formed as flakes and beads. MIPs are identified by the FTIR spectrum, SEM image and their adsorption capabilities. MIP flakes and beads have no structural differences if they are based on FTIR or SEM spectra, but MIP adsorption capacity of beads higher than flakes. Adsorption capacity of MIP flakes is 548 mg/g and MIP beads 627 mg/g.
Chen, Mingsheng; Yan, Qingguang; Sun, Jian; Jin, Gui; Qin, Mingxin
2017-09-11
In a prior study of intracerebral hemorrhage monitoring using magnetic induction phase shift (MIPS), we found that MIPS signal changes occurred prior to those seen with intracranial pressure. However, the characteristic MIPS alert is not yet fully explained. Combining the brain physiology and MIPS theory, we propose that cerebrospinal fluid (CSF) may be the primary factor that leads to hematoma expansion being alerted by MIPS earlier than with intracranial pressure monitoring. This paper investigates the relationship between CSF and MIPS in monitoring of rabbit intracerebral hemorrhage models, which is based on the MIPS measurements data, the quantified data on CSF from medical images and the amount of injected blood in the rabbit intracerebral hemorrhage model. In the investigated results, a R value of 0.792 with a significance of 0.019 is observed between the MIPS and CSF, which is closer than MIPS and injected blood. Before the reversal point of MIPS, CSF is the leading factor in MIPS signal changing in an early hematoma expansion stage. Under CSF compensation, CSF reduction compensates for hematoma expansion in the brain to keep intracranial pressure stable. MIPS decrease results from the reducing CSF volume. This enables MIPS to detect hematoma expansion earlier than intracranial pressure.
Nacu, Viorel; Charles, Julia F.; Henne, William M.; McMahon, Harvey T.; Nandi, Sayan; Ketchum, Halley; Harris, Renee; Nakamura, Mary C.
2012-01-01
Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)–dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis. PMID:22923495
Effect of interphase permittivity on the electric field distribution of epoxy nanocomposites
NASA Astrophysics Data System (ADS)
Pradeep, Lavanya; Nelson, Avinash; Preetha, P.
2018-05-01
Epoxy plays a vital role in high voltage insulation system due to its superior electrical and thermal properties. Literature reports the enhancement in these properties by the addition of nanofillers to epoxy and this enhancement is attributed to the effect of interphase. Characterization of polymer nanocomposites proves the importance of interphase formed between the polymer and nanoparticle in the composite. It was observed that the permittivity of the interphase is having a significant effect on the properties of these materials. In this work, a three dimensional Epoxy nanocomposite with 0.5 vol%, 1 vol% of alumina particles are modeled using unit cell approach in COMSOL Multiphysics. Simulation is done using several existing interphase permittivity models and field distribution is observed. Results shows the noticeable influence of interphase permittivity on the electric field distribution. A good correlation of electric field distribution with the AC breakdown strength is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Samuel, E-mail: S.J.Clark@warwick.ac.uk; Janik, Vit, E-mail: V.Janik@warwick.ac.uk; Rijkenberg, Arjan, E-mail: arjan.rijkenberg@tatasteel.com
In-situ characterization techniques have been applied to elucidate the influence of γ/α transformation upon the extent of interphase precipitation in a low-carbon, vanadium-HSLA steel. Electron Back-scattered diffraction analyses of the γ/α orientation relationship with continuous cooling at 2 and 10 K/s suggest that the proportion of ferrite likely to hold interphase precipitation varies little with cooling rate. However, TEM analyses show that the interphase precipitation refines with increasing cooling rate in this cooling range. With cooling rates in excess of 20 K/s, interphase precipitation is increasingly suppressed due to the increasingly diffusional-displacive nature of the Widmanstätten γ/α transformation that ismore » activated. The present study illustrates that the extent and dimensions of interphase precipitation can be controlled through controlled cooling. - Highlights: • In-situ characterization of γ/α transformation • EBSD characterization of γ/α transformation orientation relationship • Extent of interphase precipitation can be controlled through controlled cooling.« less
Wan, Ying-chun; Ma, Hui-ting; Lu, Bin
2015-01-01
When organic solvent-compatible molecularly imprinted polymers (MIPs) are used in aqueous environment, how to reduce nonspecific binding is a major challenge. By modifying the binding solvents and introducing appropriate washing and elution steps, even relatively hydrophobic MIPs can gain optimal rebinding selectivity in aqueous conditions. Furthermore, water-compatible MIPs that can be used to treat aqueous samples directly have been prepared. The use of hydrophilic co-monomers, the controlled surface modification through controlled radical polymerization, and the new interfacial molecular imprinting methods are different strategies to prepare water-compatible MIPs. By combining MIPs with other techniques, both organic solvent-compatible and water-compatible MIPs can display better functional performances in aqueous conditions. Intensive studies on MIPs in aqueous conditions can provide new MIPs with much-improved compatibilities that will lead to more interesting applications in biomedicine and biotechnology.
Towards water compatible MIPs for sensing in aqueous media.
Horemans, F; Weustenraed, A; Spivak, D; Cleij, T J
2012-06-01
When synthesizing molecularly imprinted polymers (MIPs), a few fundamental principles should be kept in mind. There is a strong correlation between porogen polarity, MIP microenvironment polarity and the imprinting effect itself. The combination of these parameters eventually determines the overall binding behavior of a MIP in a given solvent. In addition, it is shown that MIP binding is strongly influenced by the polarity of the rebinding solvent. Because the use of MIPs in biomedical environments is of considerable interest, it is important that these MIPs perform well in aqueous media. In this article, various approaches are explored towards a water compatible MIP for the target molecule l-nicotine. To this end, the imprinting effect together with the MIP matrix polarity is fine-tuned during MIP synthesis. The binding behavior of the resulting MIPs is evaluated by performing batch rebinding experiments that makes it possible to select the most suitable MIP/non-imprinted polymer couple for future application in aqueous environments. One method to achieve improved compatibility with water is referred to as porogen tuning, in which porogens of varying polarities are used. It is demonstrated that, especially when multiple porogens are mixed, this approach can lead to superior performance in aqueous environments. Another method involves the incorporation of polar or non-polar comonomers in the MIP matrix. It is shown that by carefully selecting these monomers, it is also possible to obtain MIPs, which can selectively bind their target in water. Copyright © 2012 John Wiley & Sons, Ltd.
Davare, Marco; Zénon, Alexandre; Desmurget, Michel; Olivier, Etienne
2015-01-01
To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the “reaching circuit” remains unknown. Here we used transcranial magnetic stimulation (TMS) in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS) or dorsal premotor cortex (PMd), in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; targets were either visible for the whole trial (Target-ON) or flashed for 200 ms (Target-OFF). Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks—two parameters typically used to probe the planned movement amplitude—irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160–100 ms before movement onset for mIPS and 100–40 ms for left PMd. TMS applied over right PMd had no significant effect. These results demonstrate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric organization. PMID:25999837
Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite
NASA Astrophysics Data System (ADS)
Jin, Enze; Du, Shiyu; Li, Mian; Liu, Chen; He, Shihong; He, Jian; He, Heming
2016-10-01
Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight into the mechanism of interphase evolution when SiC/SiC is applied as nuclear materials.
2010-12-29
1997), the 2 Micron All Sky Survey ( 2MASS ; Skrutskie et al. 2006), the Midcourse Space Experiment (MSX) catalogue, and the Infra- Red Astronomical...made for these sources with a search radius of 3.′′0 with DENIS and 2MASS , and 30.′′0 for identification with an MSX or IRAS counterpart. The... 2MASS and DENIS counterpart (depending on the field, between 3.1% and 6.7% of the sources), or (ii) a DENIS and 2MASS counterpart at a distance
Humbert, María Victoria; Christodoulides, Myron
2018-05-23
Neisseria meningitidis (Nm) and N. gonorrhoeae (Ng) express a Macrophage Infectivity Potentiator (MIP, NMB1567/NEIS1487) protein in their outer membrane (OM). In this study, we prepared independent batches of liposomes (n = 3) and liposomes + MonoPhosphoryl Lipid A (MPLA) (n = 3) containing recombinant truncated Nm-MIP protein encoded by Allele 2 (rT-Nm-MIP, amino acids 22-142), and used these to immunize mice. We tested the hypothesis that independent vaccine batches showed similar antigenicity, and that antisera could recognise both meningococcal and gonococcal MIP and induce cross-species bactericidal activity. The different batches of M2 rT-Nm-MIP-liposomes ± MPLA showed no significant (P > 0.05) batch-to-batch variation in antigenicity. Anti-rT-Nm-MIP sera reacted equally and specifically with Nm-MIP and Ng-MIP in OM and on live bacterial cell surfaces. Specificity was shown by no antiserum reactivity with Δmip bacteria. Using human complement/serum bactericidal assays, anti-M2 rT-Nm-MIP sera killed homologous meningococcal serogroup B (MenB) strains (median titres of 32-64 for anti-rT-Nm-MIP-liposome sera; 128-256 for anti-rT-Nm-MIP-liposome + MPLA sera) and heterologous M1 protein-expressing MenB strains (titres of 64 for anti rT-Nm-MIP-liposome sera; 128-256 for anti-rT-Nm-MIP-liposome + MPLA sera). Low-level killing (P < 0.05) was observed for a MenB isolate expressing M7 protein (titres 4-8), but MenB strains expressing M6 protein were not killed (titre < 4-8). Killing (P < 0.05) was observed against MenC and MenW bacteria expressing homologous M2 protein (titres of 8-16) but not against MenA or MenY bacteria (titres < 4-8). Antisera to M2 rT-Nm-MIP showed significant (P < 0.05) cross-bactericidal activity against gonococcal strain P9-17 (expressing M35 Ng-MIP, titres of 64-512) and strain 12CFX_T_003 (expressing M10 Ng-MIP, titres 8-16) but not against FA1090 (expressing M8 Ng-MIP). As an alternative to producing recombinant protein, we engineered successfully the Nm-OM to express M2 Truncated-Nm-MIP, but lipooligosaccharide-extraction with Na-DOC was contra-indicated. Our data suggest that a multi-component vaccine containing a select number of Nm- and Ng-MIP type proteins would be required to provide broad coverage of both pathogens. Copyright © 2018. Published by Elsevier Ltd.
Wang, Zhikun; Lv, Qiang; Chen, Shenghui; Li, Chunling; Sun, Shuangqing; Hu, Songqing
2016-03-23
Atomistic molecular dynamics simulations have been performed to explore the effect of interfacial bonding on the interphase properties of a nanocomposite system that consists of a silica nanoparticle and the highly cross-linked epoxy matrix. For the structural properties, results show that interfacial covalent bonding can broaden the interphase region by increasing the radial effect range of fluctuated mass density and oriented chains, as well as strengthen the interphase region by improving the thermal stability of interfacial van der Waals excluded volume and reducing the proportion of cis conformers of epoxy segments. The improved thermal stability of the interphase region in the covalently bonded model results in an increase of ∼21 K in the glass transition temperature (Tg) compared to that of the pure epoxy. It is also found that interfacial covalent bonding mainly restricts the volume thermal expansion of the model at temperatures near or larger than Tg. Furthermore, investigations from mean-square displacement and fraction of immobile atoms point out that interfacial covalent and noncovalent bonding induces lower and higher mobility of interphase atoms than that of the pure epoxy, respectively. The obtained critical interfacial bonding ratio when the interphase and matrix atoms have the same mobility is 5.8%. These results demonstrate that the glass transitions of the interphase and matrix will be asynchronous when the interfacial bonding ratio is not 5.8%. Specifically, the interphase region will trigger the glass transition of the matrix when the ratio is larger than 5.8%, whereas it restrains the glass transition of the matrix when the ratio is smaller than 5.8%.
Plasma density structures at comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Engelhardt, I. A. D.; Eriksson, A. I.; Stenberg Wieser, G.; Goetz, C.; Rubin, M.; Henri, P.; Nilsson, H.; Odelstad, E.; Hajra, R.; Vallières, X.
2018-06-01
We present a Rosetta Plasma Consortium (RPC) case study based on four events in 2015 autumn at various radial distances, phase angles and local times, just after the perihelion of comet 67P/Churyumov-Gerasimenko. Pulse-like (high-amplitude, up to minutes in time) signatures are seen with several RPC instruments in the plasma density (with the LAngmuir Probe, LAP and Mutual Impedance Probe, MIP), ion energy and flux (with the Ion Composition Analyzer, ICA) and the magnetic field intensity (with the magnetometer, MAG). Furthermore, the cometocentric distance relative to the electron exobase is seen to be a good organizing parameter for the measured plasma variations. The closer Rosetta is to this boundary, the more pulses are measured. This is consistent with the pulses being filaments of plasma originating from the diamagnetic cavity boundary, as predicted by simulations.
Combined micromechanical and fabrication process optimization for metal-matrix composites
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, C. C.
1991-01-01
A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, Christos C.
1990-01-01
A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.
Buster, Daniel W.; Daniel, Scott G.; Nguyen, Huy Q.; Windler, Sarah L.; Skwarek, Lara C.; Peterson, Maureen; Roberts, Meredith; Meserve, Joy H.; Hartl, Tom; Klebba, Joseph E.; Bilder, David; Bosco, Giovanni
2013-01-01
Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCFSlimb ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCFSlimb function reorganized interphase chromosomes into dense, compact domains and disrupted homologue pairing in both cultured Drosophila cells and in vivo, but these effects were rescued by condensin II inactivation. Furthermore, Cap-H2 stabilization distorted nuclear envelopes and dispersed Cid/CENP-A on interphase chromosomes. Therefore, SCFSlimb-mediated down-regulation of condensin II is required to maintain proper organization and morphology of the interphase nucleus. PMID:23530065
Micropapillary Structures in Colorectal Cancer: An Anoikis-resistant Subpopulation.
Patankar, Madhura; Väyrynen, Sara; Tuomisto, Anne; Mäkinen, Markus; Eskelinen, Sinikka; Karttunen, Tuomo J
2018-05-01
Micropapillary structures (MIPs) are focal piles of columnar cells without extracellular matrix contact, and common in serrated colorectal carcinoma (CRC). In order to characterize biology of MIPs in colorectal cancer (CRC), the proliferation and apoptosis rates, and survivin expression were compared between MIPs and other cancer epithelial cells of CRC (non-MIPs). We assessed 46 samples of normal colorectal mucosa, 62 carcinomas and 54 polyps for proliferation (Ki67), apoptosis (M30), and survivin expression by immunohistochemistry. MIPs in carcinoma showed lower rates of proliferation and apoptosis than non-MIPs. A low rate of apotosis in MIPs was associated with poor prognosis in local carcinoma. In normal crypts, nuclear-to-cytoplasmic transition of survivin indicated epithelial cell maturation. Cancer cases showed increased cytoplasmic expression of survivin than normal mucosa and polyps. However, MIPs showed lower nuclear and cytoplasmic survivin expression than non-MIPs. Our findings suggest that MIPs represent a biologically distinct subpopulation of carcinoma cells with features of anoikis resistance and possibly quiescence. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Bärlund, M; Nupponen, N N; Karhu, R; Tanner, M M; Paavola, P; Kallioniemi, O P; Kallioniemi, A
1998-01-01
Defining boundaries of chromosomal rearrangements at the molecular level would benefit from landmarks that link the cytogenetic map to physical, genetic, and transcript maps, as well as from large-insert FISH probes for such loci to detect numerical and structural rearrangements in metaphase or interphase cells. Here, we determined the locations of 24 genetically mapped CEPH-Mega YACs along the FLpter scale (fractional length from p-telomere) by quantitative fluorescence in situ hybridization analysis. This generated a set of cytogenetically mapped probes for chromosome 17 with an average spacing of about 5 cM. We then developed large-insert YAC, BAC, PAC, or P1 clones to the following 24 known genes, and determined refined map locations along the same FLpter scale: pter-TP53-TOP3-cen-TNFAIP1-ERBB2-TOP2A- BRCA1-TCF11-NME1-HLF-ZNF147/CL N80-BCL5/MPO/SFRS1-TBX2-PECAM1-DDX5/ PRKCA-ICAM2-GH1/PRKAR1A-GRB2-CDK3 /FKHL13-qter. Taken together, these 48 cytogenetically mapped large-insert probes provide tools for the molecular analysis of chromosome 17 rearrangements, such as mapping amplification, deletion, and translocation breakpoints in this chromosome, in cancer and other diseases.
NREL Research Overcomes Major Technical Obstacles in Magnesium-Metal
Chunmei Ban are co-authors of the Nature Chemistry white paper, "An Artificial Interphase Enables corresponding author of the paper, "An Artificial Interphase Enables Reversible Magnesium Chemistry in an artificial solid-electrolyte interphase from polyacrylonitrile and magnesium-ion salt that
Funaya, Noriko; Haginaka, Jun
2012-07-27
Matrine (MT)- and oxymatrine (OMT)-imprinted monodisperse polymers have been prepared by precipitation polymerization. The prepared molecularly imprinted polymers (MIPs) for MT and OMT, MIP(MT) and MIP(OMT), were monodispersed microspheres of 3.3 and 3.9 μm in diameter, respectively. Binding experiments and Scatchard analyses revealed that two classes of binding sites were formed on MIP(MT) and MIP(OMT). In addition to shape recognition, ionic and hydrophobic interactions seemed to affect the retention and recognition of MT and OMT on MIP(MT) and MIP(OMT), respectively, in low acetonitrile content, and ionic and hydrophilic interactions affected these properties in high acetonitrile content. MIP(MT) was used to selectively extract MT and sophocarpine (13,14-dehydromatrine) from Sophora flavescens root, while MIP(OMT) was used to extract OMT and oxysophocarpine (13,14-dehydrooxymatrine). Copyright © 2012 Elsevier B.V. All rights reserved.
Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)
2008-01-01
A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.
A Porous Ceramic Interphase for SiC/Si(sub 3)N(sub 4) Composites
NASA Technical Reports Server (NTRS)
Ogbuji, Linus U. J. T.
1995-01-01
A suitable interphase material for non-oxide ceramic-matrix composites must be resistant to oxidation. This means it must exhibit a slow rate of oxidation, and its oxidation product must be such as to ensure that the system survives oxidation when it does occur. Because the current benchmark interphase materials, carbon and boron nitride, lack these qualities, a porous fiber coating was developed to satisfy both the mechanical and oxidative requirements of an interphase for the SiC/SiC and SiC/Si2N4 composites that are of interest to NASA. This report presents the interphase microstructure achieved and the resulting characteristics of fiber push-out from a matrix of reaction-bonded silicon nitride (RBSN), both as-fabricated and after substantial annealing and oxidation treatments.
NASA Astrophysics Data System (ADS)
Yudov, Yu. V.
2018-03-01
A model is presented of the interphasic heat and mass transfer in the presence of noncondensable gases for the KORSAR/GP design code. This code was developed by FGUP NITI and the special design bureau OKB Gidropress. It was certified by Rostekhnadzor in 2009 for numerical substantiation of the safety of reactor installations with VVER reactors. The model is based on the assumption that there are three types of interphasic heat and mass transfer of the vapor component: vapor condensation or evaporation on the interphase under any thermodynamic conditions of the phases, pool boiling of the liquid superheated above the saturation temperature at the total pressure, and spontaneous condensation in the volume of gas phase supercooled below the saturation temperature at the vapor partial pressure. Condensation and evaporation on the interphase continuously occur in a two-phase flow and control the time response of the interphase heat and mass transfer. Boiling and spontaneous condensation take place only at the metastable condition of the phases and run at a quite high speed. The procedure used for calculating condensation and evaporation on the interphase accounts for the combined diffusion and thermal resistance of mass transfer in all regimes of the two-phase flow. The proposed approach accounts for, in a natural manner, a decrease in the rate of steam condensation (or generation) in the presence of noncondensing components in the gas phase due to a decrease (or increase) in the interphase temperature relative to the saturation temperature at the vapor partial pressure. The model of the interphase heat transfer also accounts for the processes of dissolution or release of noncondensing components in or from the liquid. The gas concentration at the interphase and on the saturation curve is calculated by the Henry law. The mass transfer coefficient in gas dissolution is based on the heat and mass transfer analogy. Results are presented of the verification of the interphase heat and mass transfer used in the KORSAR/GP code based on the data on film condensation of steam-air flows in vertical pipes. The proposed model was also tested by solving a problem of nitrogen release from a supersaturated water solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Jian, E-mail: Jian.Zhou@tudelft.n; Ye Guang, E-mail: g.ye@tudelft.n; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904 B-9052, Ghent
2010-07-15
Numerous mercury intrusion porosimetry (MIP) studies have been carried out to investigate the pore structure in cement-based materials. However, the standard MIP often results in an underestimation of large pores and an overestimation of small pores because of its intrinsic limitation. In this paper, an innovative MIP method is developed in order to provide a more accurate estimation of pore size distribution. The new MIP measurements are conducted following a unique mercury intrusion procedure, in which the applied pressure is increased from the minimum to the maximum by repeating pressurization-depressurization cycles instead of a continuous pressurization followed by a continuousmore » depressurization. Accordingly, this method is called pressurization-depressurization cycling MIP (PDC-MIP). By following the PDC-MIP testing sequence, the volumes of the throat pores and the corresponding ink-bottle pores can be determined at every pore size. These values are used to calculate pore size distribution by using the newly developed analysis method. This paper presents an application of PDC-MIP on the investigation of the pore size distribution in cement-based materials. The experimental results of PDC-MIP are compared with those measured by standard MIP. The PDC-MIP is further validated with the other experimental methods and numerical tool, including nitrogen sorption, backscanning electron (BSE) image analysis, Wood's metal intrusion porosimetry (WMIP) and the numerical simulation by the cement hydration model HYMOSTRUC3D.« less
Long, Xigui; Huang, Yanru; Tan, Hu; Li, Zhuo; Zhang, Rui; Linpeng, Siyuan; Lv, Weigang; Cao, Yingxi; Li, Haoxian; Liang, Desheng; Wu, Lingqian
2018-04-26
To detect the underlying pathogenesis of congenital cataract in a four-generation Chinese family. Whole-exome sequencing (WES) of family members (III:4, IV:4, and IV:6) was performed. Sanger sequencing and bioinformatics analysis were subsequently conducted. Full-length WT-MIP or K228fs-MIP fused to HA markers at the N-terminal was transfected into HeLa cells. Next, quantitative real-time PCR, western blotting and immunofluorescence confocal laser scanning were performed. The age of onset for nonsyndromic cataracts in male patients was by 1-year old, earlier than for female patients, who exhibited onset at adulthood. A novel c.682_683delAA (p.K228fs230X) mutation in main intrinsic protein (MIP) cosegregated with the cataract phenotype. The instability index and unfolded states for truncated MIP were predicted to increase by bioinformatics analysis. The mRNA transcription level of K228fs-MIP was reduced compared with that of WT-MIP, and K228fs-MIP protein expression was also lower than that of WT-MIP. Immunofluorescence images showed that WT-MIP principally localized to the plasma membrane, whereas the mutant protein was trapped in the cytoplasm. Our study generated genetic and primary functional evidence for a novel c.682_683delAA mutation in MIP that expands the variant spectrum of MIP and help us better understand the molecular basis of cataract.
A new subfamily LIP of the major intrinsic proteins.
Khabudaev, Kirill Vladimirovich; Petrova, Darya Petrovna; Grachev, Mikhail Aleksandrovich; Likhoshway, Yelena Valentinovna
2014-03-04
Proteins of the major intrinsic protein (MIP) family, or aquaporins, have been detected in almost all organisms. These proteins are important in cells and organisms because they allow for passive transmembrane transport of water and other small, uncharged polar molecules. We compared the predicted amino acid sequences of 20 MIPs from several algae species of the phylum Heterokontophyta (Kingdom Chromista) with the sequences of MIPs from other organisms. Multiple sequence alignments revealed motifs that were homologous to functionally important NPA motifs and the so-called ar/R-selective filter of glyceroporins and aquaporins. The MIP sequences of the studied chromists fell into several clusters that belonged to different groups of MIPs from a wide variety of organisms from different Kingdoms. Two of these proteins belong to Plasma membrane intrinsic proteins (PIPs), four of them belong to GlpF-like intrinsic proteins (GIPs), and one of them belongs to a specific MIPE subfamily from green algae. Three proteins belong to the unclassified MIPs, two of which are of bacterial origin. Eight of the studied MIPs contain an NPM-motif in place of the second conserved NPA-motif typical of the majority of MIPs. The MIPs of heterokonts within all detected clusters can differ from other MIPs in the same cluster regarding the structure of the ar/R-selective filter and other generally conserved motifs. We proposed placing nine MIPs from heterokonts into a new group, which we have named the LIPs (large intrinsic proteins). The possible substrate specificities of the studied MIPs are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, R.Y.; Troncoso, P.; El-Naggar, A.K.
1994-09-01
Identification of chromosomal aberrations that may be used for diagnostic or prognostic evaluation of prostatic adenocarcinoma has been the subject of great interest. In a previous study, we applied the fluorescence in situ hybridization (FISH) method on paraffin-embedded material to show that trisomy 7 was associated with the progression of human prostate cancer. In this study, we attempted to assess the utility of the FISH technique in detecting aneuploidy in fine needle aspirate (FNA) smears of prostatic tissues and to compare FISH results with that of DNA flow cytometry (FCM). Paired samples of normal and tumor FNA smears were obtainedmore » from 10 radical prostatectomy specimens. Dual-color chromosomes 7 and 9-specific centromeric DNA probes were used for FISH. FISH analysis demonstrated increased frequencies of trisomy 7 cells in all 10 tumors studied when compared with the paired normals. In contrast, 6 of 10 tumors were determined to be diploid by FCM. Our results show that FNA of radical prostatectomy specimens is a practical method for obtaining suitable material for both FISH and FCM analyses of prostate carcinoma. Thus, interphase FISH may be a practical screening tool to determine aneuploidy in FNA smears of prostatic carcinoma.« less
Spatial distribution of centromeres and telomeres at interphase varies among Brachypodium species
Idziak, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert
2015-01-01
In this study the 3-D distribution of centromeres and telomeres was analysed in the interphase nuclei of three Brachypodium species, i.e. B. distachyon (2n=10), B. stacei (2n=20) and B. hybridum (2n=30), which is presumably a hybrid between the first two species. Using fluorescence in situ hybridization (FISH) with centromeric and telomeric DNA probes, it was observed that the majority of B. distachyon nuclei in the root tip cells displayed the Rabl configuration while both B. stacei and B. hybridum mostly lacked the centromere–telomere polarization. In addition, differentiated leaf cells of B. distachyon did not display the Rabl pattern. In order to analyse the possible connection between the occurrence of the Rabl pattern and the phase of cell cycle or DNA content, FISH was combined with digital image cytometry. The results revealed that the frequency of nuclei with the Rabl configuration in the root tip nuclei was positively correlated with an increase in DNA content, which resulted from DNA replication. Also, the analysis of the influence of the nuclear shape on the nuclear architecture indicated that an increasing elongation of the nuclei negatively affected the occurrence of the Rabl pattern. Some possible explanations of these phenomena are discussed. PMID:26208647
NASA Technical Reports Server (NTRS)
George, Kerry; Durante, Marco; Willingham, Veronica; Wu, Honglu; Yang, Tracy C.; Cucinotta, Francis A.
2003-01-01
Chromosome aberrations were investigated in human lymphocytes after in vitro exposure to 1H-, 3He-, 12C-, 40Ar-, 28Si-, 56Fe-, or 197Au-ion beams, with LET ranging from approximately 0.4-1393 keV/microm in the dose range of 0.075-3 Gy. Dose-response curves for chromosome exchanges, measured at the first mitosis postirradiation using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosomal damage with respect to low- or high-dose-rate gamma rays. Estimates of RBEmax values for mitotic spreads, which ranged from near 0.7 to 11.1 for total exchanges, increased with LET, reaching a maximum at about 150 keV/microm, and decreased with further increase in LET. RBEs for complex aberrations are undefined due to the lack of an initial slope for gamma rays. Additionally, the effect of mitotic delay on RBE values was investigated by measuring chromosome aberrations in interphase after chemically induced premature chromosome condensation (PCC), and values were up to threefold higher than for metaphase analysis.
Maximal inspiratory pressure is influenced by intensity of the warm-up protocol.
Arend, Mati; Kivastik, Jana; Mäestu, Jarek
2016-08-01
The aim of the study was to compare the effect of inspiratory muscle warm-up protocols with different intensities and breathing repetitions on maximal inspiratory pressure (MIP). Ten healthy and recreationally active men (183.3±5.5cm, 83.7±7.8kg, 26.4±4.1years) completed four different inspiratory muscle (IM) warm-up protocols (2×30 inspirations at 40% MIP, 2×12 inspirations at 60% MIP, 2×6 inspirations at 80% MIP, 2×30 inspirations at 15% MIP) on separate, randomly assigned visits. Pre-post values of MIP using MicroRPM (Micro Medical, Kent, UK) showed a significant increase in the mean values after the IM warm-up (POWERbreathe(®) K1, Warwickshire, UK) with 40% MIP and 60% MIP warm-up protocols, when MIP increased by 7cm H2O (95% CI: 0.10…13.89) (p=0.047) and by 6.4cm H2O (95% CI: 2.98…13.83) (p=0.027), respectively. In conclusion, a higher intensity inspiratory muscle warm-up protocol (2×12 breaths at 60% of MIP) can increase IM strength. Copyright © 2016 Elsevier B.V. All rights reserved.
A 76-bp deletion in the Mip gene causes autosomal dominant cataract in Hfi mice.
Sidjanin, D J; Parker-Wilson, D M; Neuhäuser-Klaus, A; Pretsch, W; Favor, J; Deen, P M; Ohtaka-Maruyama, C; Lu, Y; Bragin, A; Skach, W R; Chepelinsky, A B; Grimes, P A; Stambolian, D E
2001-06-15
Hfi is a dominant cataract mutation where heterozygotes show hydropic lens fibers and homozygotes show total lens opacity. The Hfi locus was mapped to the distal part of mouse chromosome 10 close to the major intrinsic protein (Mip), which is expressed only in cell membranes of lens fibers. Molecular analysis of Mip revealed a 76-bp deletion that resulted in exon 2 skipping in Mip mRNA. In Hfi/Hfi this deletion resulted in a complete absence of the wildtype Mip. In contrast, Hfi/+ animals had the same amount of wildtype Mip as +/+. Results from pulse-chase expression studies excluded hetero-oligomerization of wildtype and mutant Mip as a possible mechanism for cataract formation in the Hfi/+. We propose that the cataract phenotype in the Hfi heterozygote mutant is due to a detrimental gain of function by the mutant Mip resulting in either cytotoxicity or disruption in processing of other proteins important for the lens. Cataract formation in the Hfi/Hfi mouse is probably a combined result of both the complete loss of wildtype Mip and a gain of function of the mutant Mip. Copyright 2001 Academic Press.
Kalujnaia, Svetlana; Hazon, Neil; Cramb, Gordon
2016-08-01
A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells. Copyright © 2016 the American Physiological Society.
Kalujnaia, Svetlana; Hazon, Neil
2016-01-01
A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells. PMID:27252471
Ashley, Jon; Shahbazi, Mohammad-Ali; Kant, Krishna; Chidambara, Vinayaka Aaydha; Wolff, Anders; Bang, Dang Duong; Sun, Yi
2017-05-15
Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high loading capacity. MIPs have been intensively employed in classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have been combined with magnetic bead extraction, which greatly simplifies sample handling procedures. Studies have consistently shown that MIPs can effectively minimize complex food matrix effects, and improve recoveries and detection limits. In addition to sample preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the inherent molecular recognition abilities and the high stability in harsh chemical and physical conditions. MIPs have been utilized as receptors in biosensing platforms such as electrochemical, optical and mass biosensors to detect various analytes in food. In this review, we will discuss the current state-of-the-art of MIP synthesis and applications in the context of food analysis. We will highlight the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given. Copyright © 2017 Elsevier B.V. All rights reserved.
Methanol Gas-Sensing Properties of SWCNT-MIP Composites
NASA Astrophysics Data System (ADS)
Zhang, Jin; Zhu, Qin; Zhang, Yumin; Zhu, Zhongqi; Liu, Qingju
2016-11-01
The single-walled carbon nanotube (SWCNT)-molecularly imprinted powder (MIP) composites in this paper were prepared by mixing SWCNTs with MIPs. The structure and micrograph of the as-prepared SWCNTs-MIPs samples were characterized by XRD and TEM. The gas-sensing properties were tested through indirect-heating sensors based on SWCNT-MIP composites fabricating on an alumina tube with Au electrodes and Pt wires. The results showed that the structure of SWCNTs-MIPs is of orthogonal perovskite and the average particle size of the SWCNTs-MIPs was in the range of 10-30 nm. SWCNTs-MIPs exhibit good methanol gas-sensitive properties. At 90 °C, the response to 1 ppm methanol is 19.7, and the response to the interferent is lower than 5 to the other interferent gases (ethanol, formaldehyde, toluene, acetone, ammonia, and gasoline). The response time and recovery time are 50 and 58 s, respectively.
Ning, Fangjian; Peng, Hailong; Dong, Liling; Zhang, Zhong; Li, Jinhua; Chen, Lingxin; Xiong, Hua
2014-11-19
Novel water-compatible superparamagnetic molecularly imprinted polymers (M-MIPs) were prepared by coating superparamagnetic Fe3O4 nanoparticles with MIPs in a methanol-water reaction system. The M-MIPs were used for the selective adsorption and separation of vanillin from aqueous solution. The M-MIPs were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM). Results indicated that a core-shell structure of M-MIPs was obtained by coating a layer of silica and MIPs on the surface of the Fe3O4 nanoparticles. The obtained M-MIPs possess a loose and porous structure and can be rapidly separated from the solution using a magnet. The adsorption experiments showed that the binding capacity of the M-MIPs was significantly higher than that of the superparamagnetic non-molecularly imprinted polymers (M-NIPs). Meanwhile, the adsorption of M-MIPs reached equilibrium within 100 min, and the apparent maximum adsorption quantity (Qmax) and dissociation constant (Kd) were 64.12 μmol g(-1) and 58.82 μmol L(-1), respectively. The Scatchard analysis showed that homogeneous binding sites were formed on the M-MIP surface. The recoveries of 83.39-95.58% were achieved when M-MIPs were used for the pre-concentration and selective separation of vanillin in spiked food samples. These results provided the possibility for the separation and enrichment of vanillin from complicated food matrices by M-MIPs.
2014-01-01
Background Aquaporins (AQPs) and aquaglyceroporins (AQGPs) belong to the superfamily of Major Intrinsic Proteins (MIPs) and are involved in the transport of water and neutral solutes across the membranes. MIP channels play significant role in plant-fungi symbiotic relationship and are believed to be important in host-pathogen interactions in human fungal diseases. In plants, at least five major MIP subfamilies have been identified. Fungal MIP subfamilies include orthodox aquaporins and five subgroups within aquaglyceroporins. XIP subfamily is common to both plants and fungi. In this study, we have investigated the extent of diversity in fungal MIPs and explored further evolutionary relationships with the plant MIP counterparts. Results We have extensively analyzed the available fungal genomes and examined nearly 400 fungal MIPs. Phylogenetic analysis and homology modeling exhibit the existence of a new MIP cluster distinct from any of the known fungal MIP subfamilies. All members of this cluster are found in microsporidia which are unicellular fungal parasites. Members of this family are small in size, charged and have hydrophobic residues in the aromatic/arginine selectivity filter and these features are shared by small and basic intrinsic proteins (SIPs), one of the plant MIP subfamilies. We have also found two new subfamilies (δ and γ2) within the AQGP group. Fungal AQGPs are the most diverse and possess the largest number of subgroups. We have also identified distinguishing features in loops E and D in the newly identified subfamilies indicating their possible role in channel transport and gating. Conclusions Fungal SIP-like MIP family is distinct from any of the known fungal MIP families including orthodox aquaporins and aquaglyceroporins. After XIPs, this is the second MIP subfamily from fungi that may have possible evolutionary link with a plant MIP subfamily. AQGPs in fungi are more diverse and possess the largest number of subgroups. The aromatic/arginine selectivity filter of SIP-like fungal MIPs and the δ AQGPs are unique, hydrophobic in nature and are likely to transport novel hydrophobic solutes. They can be attractive targets for developing anti-fungal drugs. The evolutionary pattern shared with their plant counterparts indicates possible involvement of new fungal MIPs in plant-fungi symbiosis and host-pathogen interactions. PMID:25112373
Improved BN Coatings on SiC Fibers in SiC Matrices
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Bhatt, Ramakrishna; Yun, Hee-Mann; DiCarlo, James A.
2004-01-01
Modifications of BN-based coatings that are used as interfacial layers between the fibers and matrices of SiCfiber/SiC-matrix composite materials have been investigated to improve the thermomechanical properties of these materials. Such interfacial coating layers, which are also known as interphases (not to be confused with interphase in the biological sense), contribute to strength and fracture toughness of a fiber/matrix composite material by providing for limited amounts of fiber/matrix debonding and sliding to absorb some of the energy that would otherwise contribute to the propagation of cracks. Heretofore, the debonding and sliding have been of a type called inside debonding because they have taken place predominantly on the inside surfaces of the BN layers that is, at the interfaces between the SiC fibers and the interphases. The modifications cause the debonding and sliding to include more of a type, called outside debonding, that takes place at the outside surfaces of the BN layers that is, at the interfaces between the interphases and the matrix (see figure). One of the expected advantages of outside debonding is that unlike in inside debonding, the interphases would remain on the crack-bridging fibers. The interphases thus remaining should afford additional protection against oxidation at high temperature and should delay undesired fiber/fiber fusion and embrittlement of the composite material. A secondary benefit of outside debonding is that the interphase/matrix interfaces could be made more compliant than are the fiber/interphase interfaces, which necessarily incorporate the roughness of the SiC fibers. By properly engineering BN interphase layers to favor outside debonding, it should be possible, not only to delay embrittlement at intermediate temperatures, but also to reduce the effective interfacial shear strength and increase the failure strain and toughness of the composite material. Two techniques have been proposed and partially experimentally verified as candidate means to promote outside debonding in state-of-the-art SiC/SiC composites.
Xenopus egg cytoplasm with intact actin.
Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J
2014-01-01
We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts. © 2014 Elsevier Inc. All rights reserved.
Nakamura, Yukari; Masumoto, Shizuka; Matsunaga, Hisami; Haginaka, Jun
2017-09-10
Molecularly imprinted polymers (MIP) particles for glutathione (GSH) with a narrow particle size distribution were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer, divinylbenzene as a crosslinker and water as a co-solvent. The particle diameters of the MIP and non-imprinted polymer (NIP) prepared under the optimum conditions were 3.81±0.95 (average±standard deviation) and 3.39±1.22μm, respectively. The retention and molecular-recognition properties of the prepared MIP were evaluated using a mixture of acetonitrile and water as a mobile phase in hydrophilic interaction chromatography. With an increase of acetonitrile content, the retention factor of GSH was increased on the MIP. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of GSH on the MIP. The MIP had a specific molecular-recognition ability for GSH, while glutathione disulfide, l-Glu, l-Cys, Gly-Gly and l-Cys-Gly could not be retained or recognized on the MIP. The effect of column temperature revealed that the separation of GSH on the MIP was entropically driven. Binding experiments and Scatchard analyses revealed that one binding sites were formed on both the MIP and NIP, while the MIP gave higher affinity and capacity for GSH than the NIP. Furthermore, the MIP was successfully applied for determination of GSH in the supplements. Copyright © 2016 Elsevier B.V. All rights reserved.
Molecularly imprinted nanopatterns for the recognition of biological warfare agent ricin.
Pradhan, Santwana; Boopathi, M; Kumar, Om; Baghel, Anuradha; Pandey, Pratibha; Mahato, T H; Singh, Beer; Vijayaraghavan, R
2009-11-15
Molecularly imprinted polymer (MIP) for biological warfare agent (BWA) ricin was synthesized using silanes in order to avoid harsh environments during the synthesis of MIP. The synthesized MIP was utilized for the recognition of ricin. The complete removal of ricin from polymer was confirmed by fluorescence spectrometer and SEM-EDAX. SEM and EDAX studies confirmed the attachment of silane polymer on the surface of silica gel matrix. SEM image of Ricin-MIP exhibited nanopatterns and it was found to be entirely different from the SEM image of non-imprinted polymer (NIP). BET surface area analysis revealed more surface area (227 m(2)/g) for Ricin-MIP than that of NIP (143 m(2)/g). In addition, surface area study also showed more pore volume (0.5010 cm(3)/g) for Ricin-MIP than that of NIP (0.2828 cm(3)/g) at 12 nm pore diameter confirming the presence of imprinted sites for ricin as the reported diameter of ricin is 12 nm. The recognition and rebinding ability of the Ricin-MIP was tested in aqueous solution. Ricin-MIP rebound more ricin when compared to the NIP. Chromatogram obtained with Ricin-MIP exhibited two peaks due to imprinting, however, chromatogram of NIP exhibited only one peak for free ricin. SDS-PAGE result confirmed the second peak observed in chromatogram of Ricin-MIP as ricin peak. Ricin-MIP exhibited an imprinting efficiency of 1.76 and it also showed 10% interference from the structurally similar protein abrin.
Fairhurst, Robert E; Chassaing, Christophe; Venn, Richard F; Mayes, Andrew G
2004-12-15
Spherical molecularly imprinted polymers (MIPs) specific to the beta-blocker propranolol have been synthesised using two different approaches and compared to traditional ground monolithic MIPs in HPLC and TFC applications. TFC is a LC technique used for rapid extraction of compounds directly from complex matrices. It can be easily coupled to HPLC and MS for automation of an extraction/analysis procedure. Spherical MIP beads were produced using a suspension polymerisation technique and silica/MIP composite beads by grafting MIP to spherical silica particles using a surface-bound initiator species. Synthesis of both beaded and silica-grafted MIPs was more practical than using the traditional grinding method and yields of spherical particles of the required size between 80 and 100% were routinely achieved. Under HPLC conditions, beaded and ground MIP materials showed a degree of chiral separation for all of the nine beta-blockers tested. The beaded MIP, however, showed much better flow properties and peak shape than the ground material. Silica-grafted MIP showed some separation in five of the drugs and a large improvement in peak shape and analysis times compared with both ground and beaded MIPs. The materials prepared were also used in extraction columns for Turbulent Flow Chromatography (TFC). Although no imprinting effect was observed under typical TFC conditions, beaded polymer materials showed promise for use as TFC extraction columns due to the good flow properties and clean extracts obtained.
MIPS: a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock.
Zhang, Xuan; Zhou, Huiyue; Zang, Xiaonan; Gong, Le; Sun, Hengyi; Zhang, Xuecheng
2014-08-01
To study the Ca(2+)/Calmodulin (CaM) signal transduction pathway of Gracilaria lemaneiformis under heat stress, myo-inositol-1-phosphate synthase (MIPS), a calmodulin-binding protein, was isolated using the yeast two-hybrid system. cDNA and DNA sequences of mips were cloned from G. lemaneiformis by using 5'RACE and genome walking procedures. The MIPS DNA sequence was 2,067 nucleotides long, containing an open reading frame (ORF) of 1,623 nucleotides with no intron. The mips ORF was predicted to encode 540 amino acids, which included the conserved MIPS domain and was 61-67 % similar to that of other species. After analyzing the amino acid sequence of MIPS, the CaM-Binding Domain (CaMBD) was inferred to be at a site spanning from amino acid 212 to amino acid 236. The yeast two-hybrid results proved that MIPS can interact with CaM and that MIPS is a type of calmodulin-binding protein. Next, the expression of CaM and MIPS in wild-type G. lemaneiformis and a heat-tolerant G. lemaneiformis cultivar, "981," were analyzed using real-time PCR under a heat shock of 32 °C. The expression level displayed a cyclical upward trend. Compared with wild type, the CaM expression levels of cultivar 981 were higher, which might directly relate to its resistance to high temperatures. This paper indicates that MIPS and CaM may play important roles in the high-temperature resistance of G. lemaneiformis.
The properties of the wood-polystyrene interphase determined by inverse gas chromatography
John Simonsen; Zhenqiu Hong; Timothy G. Rials
1997-01-01
The properties of the interphase in wood-polymer composites are important determinants of the properties of the final composite. This study used inverse gas chromatography (IGC) to measure interphasal properties of composites of polystyrene and two types of wood fiber fillers and an inoranic substrate (CW) with varying amounts of surface coverage of polystyrene. Glass...
Algal MIPs, high diversity and conserved motifs.
Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban
2011-04-21
Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.
He, Jinlei; Zhang, Junrong; He, Yanxia; Huang, Fan; Li, Jiao; Chen, Qiwei; Chen, Dali; Chen, Jianping
2016-02-01
Legionnaires' disease, a kind of systemic disease with pneumonia as the main manifestation, is caused by Legionella pneumophila (L. pneumophila). In order to prevent the disease, we optimized Mip and FlaA, the virulence factors of L. pneumophila, to design recombinant Mip-FlaA dominant epitope vaccine against the pathogen. Firstly, the coding sequences of mip and flaA were optimized by DNAStar software and Expasy protein analysis system, and then, the tertiary structure and function of recombinant Mip-FlaA were predicted by PHYRE2 Protein Fold Recognition Server. After that, the optimized mip, flaA and mip-flaA were cloned, expressed and purified, and the proteins were used as dominant epitope vaccines to immunize BABL/c mice. Moreover, the IgG titers, histological changes in lung and the level of TNF-α, IFN-γ, IL-6 and IL-1β were detected to reflect the immunogenicity and protective immunity of the vaccines. The results of SDS-PAGE and Western blot proved the recombinant Mip-FlaA was successfully expressed. ELISA results of IgG titers and these cytokines showed Mip-FlaA group was capable to induce the strongest immune response, compared to PBS, Mip and FlaA groups. In addition, histopathology analysis demonstrated the mice immunized with Mip-FlaA showed better immune protection. Therefore, the work indicated that the above-described biological tools were useful in optimization of epitope vaccine. Antigenic characterization and immune protection of recombinant Mip-FlaA would be of great value in understanding the immunopathogenesis of the disease and in developing possible vaccine against the pathogen.
Roman, Elaine; Wallon, Michelle; Brieger, William; Dickerson, Aimee; Rawlins, Barbara; Agarwal, Koki
2014-02-01
Pregnant women and infants are particularly vulnerable to malaria. National malaria in pregnancy (MIP) programs in Malawi, Senegal, and Zambia were reviewed to identify promising strategies that have helped these countries achieve relatively high coverage of MIP interventions as well as ongoing challenges that have inhibited further progress. We used a systematic case study methodology to assess health system strengths and challenges in the 3 countries, including desk reviews of available reports and literature and key informant interviews with national stakeholders. Data were collected between 2009 and 2011 and analyzed across 8 MIP health systems components: (1) integration of programs and services, (2) policy, (3) commodities, (4) quality assurance, (5) capacity building, (6) community involvement, (7) monitoring and evaluation, and (8) financing. Within each program area, we ranked degree of scale up across 4 stages and synthesized the findings in a MIP table of analysis to reveal common themes related to better practices, remaining bottlenecks, and opportunities to accelerate MIP coverage, strengthen MIP programs, and improve results. Each of the 3 countries has malaria policies in place that reflect current MIP guidance from the World Health Organization. The 3 countries successfully integrated MIP interventions into a platform of antenatal care services, but coordination at the national level was disjointed. All 3 countries recognized the importance of having a MIP focal person to ensure collaboration and planning at the national level, but only Malawi had appointed one. Commodity stockouts were frequent due to problems at all levels of the logistics system, from quantification to distribution. Lack of support for quality assurance and weak monitoring and evaluation mechanisms across all 3 countries affected optimal coverage. MIP programs should address all 8 interconnected MIP health systems areas holistically, in the context of a health systems approach to building successful programs. The MIP table of analysis can be a useful tool for other malaria-endemic countries to review their programs and improve MIP outcomes.
Cometary Plasma Probed by Rosetta
NASA Astrophysics Data System (ADS)
Galand, Marina; Vigren, Erik; Raghuram, Susarla; Schwartz, Steve; Eriksson, Anders; Edberg, Niklas; Lebreton, Jean-Pierre; Henri, Pierre; Burch, Jim; Fuselier, Stephen; Haessig, Myrtha; Mandt, Kathy; Altwegg, Kathrin; Tzou, Chia-You
2015-04-01
In Fall 2014, comet 67P/Churyumov-Gerasimenko, the main target of the Rosetta mission, was at 3 AU from the Sun. Its outgassing rate was only of the order of 5×1025 s-1 based on Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) / Cometary Pressure Sensor (COPS). Despite such a thin coma, a plasma of cometary origin has been detected by Rosetta Plasma Consortium (RPC) sensors and ROSINA/ Double Focusing Mass Spectrometer (DFMS). Close to the comet they have revealed the presence of a cometary ionosphere, with a hot electron population, consistent with the deposition of Extreme UltraViolet (EUV) solar radiation. We will present a comparison between RPC sensors and an energy deposition model in terms of suprathermal electron intensities [RPC/ Ion and Electron Sensor (IES)] and electron temperature and density [RPC/ LAngmuir Probe (LAP) and RPC/ Mutual Impedance Probe (MIP)]. We will also compare ion composition among the main species, between our ionospheric model and ROSINA/DFMS. We will discuss effects of the space environment on the cometary plasma. Finally, we will highlight any evolution in the cometary plasma as the comet is getting closer to perihelion.
NASA Technical Reports Server (NTRS)
Martinez-Fernandez, J.; Morscher, G. N.
2000-01-01
Single tow Hi-Nicalon(TM), C interphase, CVI SiC matrix minicomposites were tested in tension at room temperature, 700 C, 950 C, and 1200 C in air. Monotonic loading with modal acoustic emission monitoring was performed at room temperature in order to determine the dependence of matrix cracking on applied load. Modal acoustic emission was shown to correlate directly with the number of matrix cracks formed. Elevated temperature constant load stress-rupture and low-cycle fatigue experiments were performed on precracked specimens. The elevated temperature rupture behavior was dependent on the precrack stress, the lower precrack stress resulting in longer rupture life for a given stress. It was found that the rupture lives of C-interphase Hi-Nicalon(TM) minicomposites were superior to C-interphase Ceramic Grade Nicalon(TM) minicomposites and inferior to those of BN-interphase Hi-Nicalon(TM) minicomposites.
Application of molecularly imprinted polymers to selective removal of clofibric acid from water.
Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang
2013-01-01
A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52 ± 0.46 mg L(-1) and 114 ± 4.2 mg L(-1), respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance.
Application of Molecularly Imprinted Polymers to Selective Removal of Clofibric Acid from Water
Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang
2013-01-01
A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52±0.46 mg L−1 and 114±4.2 mg L−1, respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance. PMID:24205143
Ma, Luyao; Feng, Shaolong; de la Fuente-Nunez, Cesar; Hancock, Robert E W; Lu, Xiaonan
2018-05-16
Bacterial biofilms are responsible for most clinical infections and show increased antimicrobial resistance. In this study, molecularly imprinted polymers (MIPs) were developed to specifically capture prototypical quorum sensing autoinducers [i.e., N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12AHL)], interrupt quorum sensing, and subsequently inhibit biofilm formation of Pseudomonas aeruginosa, an important human nosocomial pathogen. The synthesis of MIPs was optimized by considering the amount and type of the functional monomers itaconic acid (IA) and 2-hydroxyethyl methacrylate (HEMA). IA-based MIPs showed high adsorption affinity towards 3-oxo-C12AHL with an imprinting factor of 1.68. Compared to IA-based MIPs, the adsorption capacity of HEMA-based MIPs was improved 5-fold. HEMA-based MIPs significantly reduced biofilm formation (by ~65%), while biofilm suppression by IA-based MIPs was neutralized due to increased bacterial attachment. The developed MIPs represent promising alternative biofilm intervention agents that can be applied to surfaces relevant to clinical settings and food processing equipment.
Schoofs, L; Veelaert, D; Broeck, J V; De Loof, A
1996-07-05
Locustamyoinhibiting peptide (Lom-MIP) is one of the 4 identified myoinhibiting neuropeptides, isolated from brain-corpora cardiaca-corpora allata-suboesophageal ganglion complexes of the locust, Locusta migratoria. An antiserum was raised against Lom-MIP for use in immunohistochemistry. Locustamyoinhibiting peptide-like immunoreactivity (Lom-MIP-LI) was visualized in the nervous system and peripheral organs of Locusta migratoria by means of the peroxidase-antiperoxidase method. A total of 12 specific immunoreactive neurons was found in the brain. Processes of these neurons innervate the protocerebral bridge the central body complex and distinct neuropil areas in the proto- and tritocerebrum but not in the deuterocerebrum nor in the optic lobes. The glandular cells of the corpora cardiaca, known to produce adipokinetic hormones, are contacted by Lom-MIP-LI fibers. The corpora allata were innervated by the nervus corporis allati I containing immunoreactive fibers. Lom-MIP-LI cell bodies were also found in the subesophageal ganglion, the metathoracic ganglion and the abdominal ganglia I-IV. In peripheral muscles, Lom-MIP-LI fibers innervate the heart, the oviduct, and the hindgut. In the salivary glands, Lom-MIP-LI was detected in the intracellular ductule of the parietal cells. Possible functions of Lom-MIP are discussed.
Zhi, Keke; Wang, Lulu; Zhang, Yagang; Zhang, Xuemin; Zhang, Letao; Liu, Li; Yao, Jun; Xiang, Wei
2018-03-01
Molecularly imprinted polymers (MIPs) were designed and prepared via bulk thermal polymerization with gossypol as the template molecule and dimethylaminoethyl methacrylate as the functional monomer. The morphology and microstructures of MIPs were characterized by scanning electron microscope and Brunauer-Emmett-Teller surface areas. Static adsorption tests were performed to evaluate adsorption behavior of gossypol by the MIPs. It was found that adsorption kinetics and adsorption isotherms data of MIPs for gossypol were fit well with the pseudo-second-order model and Freundlich model, respectively. Scatchard analysis showed that heterogeneous binding sites were formed in the MIPs, including lower-affinity binding sites with the maximum adsorption of 252 mg/g and higher-affinity binding sites with the maximum adsorption of 632 mg/g. Binding studies also revealed that MIPs had favorable selectivity towards gossypol compared with non-imprinted polymers. Furthermore, adsorption capacity of MIPs maintained above 90% after 5 regeneration cycles, indicating MIPs were recyclable and could be used multiple times. These results demonstrated that prepared MIPs could be a promising functional material for selective adsorption of gossypol. Copyright © 2017 John Wiley & Sons, Ltd.
Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.
Zhang, Zijie; Liu, Juewen
2016-03-01
Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.
NASA Astrophysics Data System (ADS)
Halim, Nurul Farhanah AB.; Musa, Nur Hazwani; Zakaria, Zulkhairi; Von Schleusingen, Mubaraq; Ahmad, Mohd Noor; Derman, Nazree; Shakaff, Ali Yeon Md.
2017-03-01
This works reports the electrical performance of reduced graphene oxide (RGO)/Molecular imprinted polymer (MIP)- organic thin film transistor (OTFT) for amino-acid detection, serine. These biomimetic sensors consider MIP as man-tailored biomimetic recognition sites that play an important role in signal transduction. MIP provides recognition sites compatible with serine molecules was developed by dispersing serine with methylacrylate acid (MAA) as functional monomer and Ethylene glycol dimethylacrylate (EGDMA) as cross-linker. The imprinted polymeric were mixed with reduced graphene oxide to produced sensing layer for the sensor. RGO-MIP layer was introduced between source and drain of OTFT via spin coating as a detecting layer for serine molecules. RGO was introduced into MIP, to allow a highly conductive sensing material thus enhanced selectivity and sensitivity of the sensor. By analyzing the electrical performance of the sensors, the performances of OTFT sensor enhanced with RGO/MIP interlayer and OTFT sensor with MIP interlayer when exposed to serine analyte were obtained. The results showed that there were remarkable shifts of drain current (ID) obtained from OTFT sensor with RGO/MIP interlayer after exposed to serine analyte. Moreover, the sensitivity of OTFT sensor with RGO/MIP interlayer was nearly higher than the OTFT sensor with MIP interlayer. Hence, it proved that RGO successfully enhanced the sensing performance of OTFT sensor.
Romero-Suarez, Sandra; Shen, Jinhua; Brotto, Leticia; Hall, Todd; Mo, Chenglin; Valdivia, Héctor H; Andresen, Jon; Wacker, Michael; Nosek, Thomas M; Qu, Cheng-Kui; Brotto, Marco
2010-08-01
We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia.
Magnetic molecularly imprinted polymer for aspirin recognition and controlled release
NASA Astrophysics Data System (ADS)
Kan, Xianwen; Geng, Zhirong; Zhao, Yao; Wang, Zhilin; Zhu, Jun-Jie
2009-04-01
Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe3O4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.
Nanoindentation of the interphase region of a wood-reinforced polypropylene composite
Joseph E. Jakes; John C. Hermanson; Donald S. Stone
2007-01-01
The interphase region of a wood-reinforced polypropylene (PP) composite was investigated with nanoindentation techniques capable of separating intrinsic properties of PP in the interphase region from the effect of elastic discontinuity caused by the nearby wood cell wall. From data collected in this experiment, no differences in hardness or Youngâs modulus for PP were...
Evolution of LiFePO4 thin films interphase with electrolyte
NASA Astrophysics Data System (ADS)
Dupré, N.; Cuisinier, M.; Zheng, Y.; Fernandez, V.; Hamon, J.; Hirayama, M.; Kanno, R.; Guyomard, D.
2018-04-01
Many parameters may control the growth and the characteristics of the interphase, such as surface structure and morphology, structural defects, grain boundaries, surface reactions, etc. However, polycrystalline surfaces contain these parameters simultaneously, resulting in a quite complicated system to study. Working with model electrode surfaces using crystallographically oriented crystalline thin films appears as a novel and unique approach to understand contributions of preferential orientation and rugosity of the surface. In order to rebuild the interphase architecture along electrochemical cycling, LiFePO4 epitaxial films offering ideal 2D (100) interfaces are here investigated through the use of non-destructive depth profiling by Angular Resolved X-ray Photoelectron Spectroscopy (ARXPS). The composition and structure of the interphase is then monitored upon cycling for samples stopped at the end of charge and discharge for various numbers of cycles, and discussed in the light of combined XPS and X-ray reflectivity (XRR) measurements. Such an approach allows describing the interphase evolution on a specific model LiFePO4 crystallographic orientation and helps understanding the nature and evolution of the LiFePO4/electrolyte interphase forming on the surface of LiFePO4 poly-crystalline powder.
Designing solid-liquid interphases for sodium batteries.
Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin; Gunceler, Deniz; Zachman, Michael J; Tu, Zhengyuan; Shin, Jung Hwan; Nath, Pooja; Agrawal, Akanksha; Kourkoutis, Lena F; Arias, Tomas A; Archer, Lynden A
2017-10-12
Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid-electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.The chemistry at the interface between electrolyte and electrode plays a critical role in determining battery performance. Here, the authors show that a NaBr enriched solid-electrolyte interphase can lower the surface diffusion barrier for sodium ions, enabling stable electrodeposition.
HerMES: Redshift Evolution of the Cosmic Infrared Background from Herschel/SPIRE
NASA Astrophysics Data System (ADS)
Vieira, Joaquin; HerMES
2013-01-01
We report on the redshift evolution of the cosmic infrared background (CIB) at wavelengths of 70-1100 microns. Using data from the Herschel Multi-tiered Extragalactic Survey (HerMES) of the GOODS-N field, we statistically correlate fluctuations in the CIB with external catalogs. We use a deep Spitzer-MIPS 24 micron flux-limited catalog complete with redshifts and stack on MIPS 70 and 160 micron, Herschel-SPIRE 250, 350, and 500 micron, and JCMT-AzTEC 1100 micron maps. We measure the co-moving infrared luminosity density at 0.1
NASA Technical Reports Server (NTRS)
Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.
2010-01-01
Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.
[Synthesis and Study on Adsorption Property of Congo Red Molecularly Imprinted Polymer Nanospheres].
Chang, Zi-qiang; Chen, Fu-bin; Zhang, Yu; Shi, Zuo-long; Yang, Chun-yan; Zhang, Zhu-jun
2015-07-01
Molecularly imprinted polymer nanospheres (MIP) were prepared with Congo red as the template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker, azodiisobutyronitrile (AIBN) as an initiator, and acetonitrile as the porogen by precipitation polymerization. The morphology of MIP was characterized by SEM and TEM which showed that the diameter of MIP was nanometer grade (90 nm) and the shape was homogeneous. The specific surface area and pore volumes of MIP and NIP were examined through Brunauer-Emett-Teller method of nitrogen adsorption experiments. Then, the adsorption and selective recognition ability of MIPs were evaluated using the equilibrium rebinding experiments. The results indicated that the prepared MIP showed a good selectivity recognition ability to its template. It concluded that MIP could be employed as an effective material for removing Congo red from waste water.
An influenza A virus agglutination test using antibody-like polymers.
Sukjee, Wannisa; Thitithanyanont, Arunee; Wiboon-Ut, Suwimon; Lieberzeit, Peter A; Paul Gleeson, M; Navakul, Krongkaew; Sangma, Chak
2017-10-01
Antibodies are commonly used in diagnostic routines to identify pathogens. The testing protocols are relatively simple, requiring a certain amount of a specific antibody to detect its corresponding pathogen. Antibody functionality can be mimicked by synthesizing molecularly imprinted polymers (MIPs), i.e. polymers that can selectively recognize a given template structure. Thus, MIPs are sometimes termed 'plastic antibody (PA)'. In this study, we have synthesized new granular MIPs using influenza A virus templates by precipitation polymerization. The selective binding of influenza A to the MIP particles was assessed and subsequently contrasted with other viruses. The affinities of influenza A virus towards the MIP was estimated based on an agglutination test by measuring the amount of influenza subtypes absorbed onto the MIPs. The MIPs produced using the H1N1 template showed specific reactivity to H1N1 while those produced using H5N1 and H3N2 templates showed cross-reactivity.
NASA Astrophysics Data System (ADS)
Li, Hui; Li, Yuzhuo; Li, Zhiping; Peng, Xiyang; Li, Yanan; Li, Gui; Tan, Xianzhou; Chen, Gongxi
2012-03-01
Preparation of berberine hydrochloride (B-Cl) imprinted polymers (MIPs) based on surface imprinting technique with silica gel as sacrificial support material was performed successfully by using B-Cl as template, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The prepared polymers were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption behavior of the MIPs for the template and its structural analogues was investigated. Sites distribution on the surface of MIPs was explored by using different isotherm adsorption models and thermodynamic parameters for the adsorption of B-Cl on the MIPs determined. Sample application and reusability for the MIPs was also evaluated. Results indicated the strong adsorption and high selectivity of the MIPs for B-Cl. Saturated adsorption capacity reached 27.2 μmol g-1 and the selectivity coefficient of the MIPs for B-Cl relative to jatrorrhizine hydrochloride (J-Cl) and palmatine palmatus hydrochloride (P-Cl) are 3.70 and 6.03, respectively. In addition, the MIPs were shown with good reusability and selectively retention ability in sample application.
Wu, Zhihui; Hou, Jiapeng; Wang, Yuyan; Chai, Miaolin; Xiong, Yan; Lu, Weiyue; Pan, Jun
2015-12-30
This paper reports studies on preparation and evaluation of amoxicillin loaded dual molecularly imprinted nanoparticles (Amo/Dual-MIPs) designed for anti-H. pylori therapy. Both MNQA and AmoNa were chosen as templates to prepare Dual-MIPs using inverse microemulsion polymerization method. NQA was modified with myristic acid (MNQA) to become amphiphilic and assist in leaving NQA cavities on the surface of Dual-MIPs for H. pylori adhesion. AmoNa was applied to produce imprinting sites in Dual-MIPs for rebinding AmoNa to exert its anti-H. pylori effect. Batch rebinding test demonstrated a preferential rebinding effect of NQA toward the Dual-MIPs. In vivofluorescence imaging showed the prolonged residence time of Dual-MIPs in H. pylori infected mice stomachs after intragastric administration of nanoparticles.In vivo H. pylori clearance tests indicated Amo/Dual-MIPs had a better aniti-H. pylori effect than amoxicillin powder did. In conclusion, Amo/Dual-MIPs may provide an alternative drug delivery strategy for anti-H. pylori therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, W; Fu, H L; Li, X Y; Zhang, H; Wang, N; Li, W; Zhang, X X
2016-01-01
In this work, a new and facile method was introduced to prepare molecularly imprinted polymers (MIPs) based on nano clay hectorite (Hec) for sinomenine hydrochloride (SM) analysis. Hec was firstly dissolved in distilled water in order to swell adequately, followed by a common precipitation polymerization with SM as the template, methacrylic acid as monomer, ethylene glycol dimethacrylate as a crosslinker and 2,2-azobisisobutyronitrile as an initiator. Hec@SM-MIPs were characterized by Fourier transform infrared spectrometer, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The maximum binding capacity of Hec@SM-MIPs, SM-MIPs and non-imprinted polymers (NIPs) (Hec@NIPs) was 57.4, 16.8 and 11.6 mg/g, respectively. The reason for this result may be that Hec@SM-MIPs have more binding sites and imprinted cavities for template molecule. Equilibrium data were described by the Langmuir and Freundlich isotherm models. The results showed that the Hec@SM-MIPs adsorption data correlated better with the Langmuir equation than the Freundlich equation under the studied concentration range. In vitro drug release experiment, Hec@SM-MIPs have a better ability to control SM release than SM-MIPs. Therefore, Hec@SM-MIPs were successfully applied to extraction of SM and used as the materials for drug delivery system.
Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.
Dhanashree, Surve; Priyanka, Mohite; Manisha, Karpe; Vilasrao, Kadam
2016-01-01
Molecularly imprinted polymers (MIP) are novel carriers synthesized by imprinting of a template over a polymer. This paper presents the recent application of MIP for diagnostic and therapeutic drug delivery. MIP owing to their 3D polymeric structures and due to bond formation with the template serves as a reservoir of active causing stimuli sensitive, enantioselective, targetted and/or controlled release. The review elaborates about key factors for optimization of MIP, controlled release by MIP for various administration routes various forms like patches, contact lenses, nanowires along with illustrations. To overcome the limitation of organic solvent usage causing increased cost, water compatible MIP and use of supercritical fluid technology for molecular imprinting were developed. Novel methods for developing water compatible MIP like pickering emulsion polymerization, co-precipitation method, cyclodextrin imprinting, surface grafting, controlled/living radical chain polymerization methods are described with illustration in this review. Various protein imprinting methods like bulk, epitope and surface imprinting are described along with illustrations. Further, application of MIP in microdevices as biomimetic sensing element for personalized therapy is elaborated. Although development and application of MIP in drug delivery is still at its infancy, constant efforts of researchers will lead to a novel intelligent drug delivery with commercial value. Efforts should be directed in developing solid oral dosage forms consisting of MIP for therapeutic protein and peptide delivery and targeted release of potent drugs addressing life threatening disease like cancer. Amalgamation of bio-engineering and pharmaceutical techniques can make these future prospects into reality.
Xie, Lianwu; Guo, Junfang; Zhang, Yuping; Hu, Yunchu; You, Qingping; Shi, Shuyun
2015-07-01
Improving sites accessibility can increase the binding efficiency of molecular imprinted polymers (MIPs). In this work, we firstly synthesized MIPs over magnetic mesoporous silica microspheres (Fe3O4@mSiO2@MIPs) for the selective recognition of protocatechuic acid (PCA). The resulting Fe3O4@mSiO2@MIPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR), thermo-gravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and vibration sample magnetometer (VSM), and evaluated by adsorption isotherms/kinetics and competitive adsorption. The maximum adsorption capacity of PCA on Fe3O4@mSiO2@MIPs was 17.2mg/g (2.3 times that on Fe3O4@SiO2@MIPs). In addition, Fe3O4@mSiO2@MIPs showed a short equilibrium time (140min), rapid magnetic separation (5s) and high stability (retained 94.4% after six cycles). Subsequently, Fe3O4@mSiO2@MIPs were successfully applied for the selective and efficient determination of PCA (29.3μg/g) from Syzygium aromaticum. Conclusively, we combined three advantages into Fe3O4@mSiO2@MIPs, namely, Fe3O4 core for quick separation, mSiO2 layer for enough accessible sites, and surface imprinting MIPs for fast binding and excellent selectivity, to extract PCA from complex systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sequential and combinatorial roles of maf family genes define proper lens development.
Reza, Hasan Mahmud; Urano, Atsuyo; Shimada, Naoko; Yasuda, Kunio
2007-01-16
Maf proteins have been shown to play pivotal roles in lens development in vertebrates. The developing chick lens expresses at least three large Maf proteins. However, the transcriptional relationship among the three large maf genes and their various roles in transactivating the downstream genes largely remain to be elucidated. Chick embryos were electroporated with wild-type L-maf, c-maf, and mafB by in ovo electroporation, and their effects on gene expression were determined by in situ hybridization using specific probes or by immunostaining. Endogenous gene expression was determined using nonelectroporated samples. A regulation mechanism exists among the members of maf family gene. An early-expressed member of this gene family typically stimulates the expression of later-expressed members. We also examined the regulation of various lens-expressing genes with a focus on the interaction between different Maf proteins. We found that the transcriptional ability of Maf proteins varies, even when the target is the same, in parallel with their discrete functions. L-Maf and c-Maf have no effect on E-cadherin expression, whereas MafB enhances its expression and thereby impedes lens vesicle formation. This study also revealed that Maf proteins can regulate the expression of gap junction genes, connexins, and their interacting partner, major intrinsic protein (MIP), during lens development. Misexpression of L-Maf and c-Maf induces ectopic expression of Cx43 and MIP; in contrast, MafB appears to have no effect on Cx43, but induces MIP significantly as evidenced from our gain-of-function experiments. Our results indicate that large Maf function is indispensable for chick lens initiation and development. In addition, L-Maf positively regulates most of the essential genes in this program and directs a series of molecular events leading to proper formation of the lens.
de Paula Santos Martins, Cristina; Pedrosa, Andresa Muniz; Du, Dongliang; Gonçalves, Luana Pereira; Yu, Qibin; Gmitter, Frederick G.; Costa, Marcio Gilberto Cardoso
2015-01-01
The family of aquaporins (AQPs), or major intrinsic proteins (MIPs), includes integral membrane proteins that function as transmembrane channels for water and other small molecules of physiological significance. MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs), tonoplast (TIPs), NOD26-like (NIPs), small basic (SIPs) and unclassified X (XIPs) intrinsic proteins. This study reports a genome-wide survey of MIP encoding genes in sweet orange (Citrus sinensis L. Osb.), the most widely cultivated Citrus spp. A total of 34 different genes encoding C. sinensis MIPs (CsMIPs) were identified and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs) based on sequence analysis and also on their phylogenetic relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment of the substrate specificity of each CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-intron organization that is highly conserved within each subfamily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a wide distribution of the gene family in the sweet orange genome. Investigation of their expression patterns in different tissues and upon drought and salt stress treatments, as well as with ‘Candidatus Liberibacter asiaticus’ infection, revealed a tissue-specific and coordinated regulation of the different CsMIP isoforms, consistent with the organization of the stress-responsive cis-acting regulatory elements observed in their promoter regions. A special role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt stress and the development of HLB disease. These results provide a valuable reference for further exploration of the CsMIPs functions and applications to the genetic improvement of both abiotic and biotic stress tolerance in citrus. PMID:26397813
Martins, Cristina de Paula Santos; Pedrosa, Andresa Muniz; Du, Dongliang; Gonçalves, Luana Pereira; Yu, Qibin; Gmitter, Frederick G; Costa, Marcio Gilberto Cardoso
2015-01-01
The family of aquaporins (AQPs), or major intrinsic proteins (MIPs), includes integral membrane proteins that function as transmembrane channels for water and other small molecules of physiological significance. MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs), tonoplast (TIPs), NOD26-like (NIPs), small basic (SIPs) and unclassified X (XIPs) intrinsic proteins. This study reports a genome-wide survey of MIP encoding genes in sweet orange (Citrus sinensis L. Osb.), the most widely cultivated Citrus spp. A total of 34 different genes encoding C. sinensis MIPs (CsMIPs) were identified and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs) based on sequence analysis and also on their phylogenetic relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment of the substrate specificity of each CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-intron organization that is highly conserved within each subfamily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a wide distribution of the gene family in the sweet orange genome. Investigation of their expression patterns in different tissues and upon drought and salt stress treatments, as well as with 'Candidatus Liberibacter asiaticus' infection, revealed a tissue-specific and coordinated regulation of the different CsMIP isoforms, consistent with the organization of the stress-responsive cis-acting regulatory elements observed in their promoter regions. A special role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt stress and the development of HLB disease. These results provide a valuable reference for further exploration of the CsMIPs functions and applications to the genetic improvement of both abiotic and biotic stress tolerance in citrus.
Zhi, Keke; Wang, Lulu; Zhang, Yagang; Jiang, Yingfang; Zhang, Letao; Yasin, Akram
2018-05-11
The influence of various silica gel supports with different shapes and sizes on the recognition properties of surface molecular imprinted polymers (MIPs) was investigated. MIPs for selective recognition and adsorption of gossypol were synthesized via the sol⁻gel process with a surface imprinting technique on silica gel substrates. 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were chosen as the functional monomer and the cross-linker. The morphology and structure of the gossypol-MIPs were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a standard Brunauer⁻Emett⁻Teller (BET) analysis. Results indicated that the surface imprinted polymer layer facilitated the removal and rebinding of the template, and thus, achieved fast binding kinetics. Compared with the MIPs prepared on irregularly shaped silica with a broad particle size distribution, the MIPs using regularly-shaped silica of uniform size showed higher imprinting factor (IF), and the MIP made with a relatively larger sized (60 μm) spherical silica, demonstrated higher adsorption capacity compared to the MIPs made with smaller sized, spherical silica. The MIP prepared with 60 μm spherically shaped silica, featured a fast adsorption kinetic of 10 min, and a saturated adsorption capacity of 204 mg·g −1 . The gossypol-MIP had higher selectivity (IF = 2.20) for gossypol over its structurally-similar analogs ellagic acid (IF = 1.13) and quercetin (IF = 1.20). The adsorption data of the MIP correlated well with the pseudo-second-order kinetic model and the Freundlich isotherm model, which implied that chemical adsorption dominated, and that multilayer adsorption occurred. Furthermore, the MIP exhibited an excellent regeneration performance, and the adsorption capacity of the MIP for gossypol only decreased by 6% after six reused cycles, indicating good application potential for selective adsorption of gossypol.
Algal MIPs, high diversity and conserved motifs
2011-01-01
Background Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs. PMID:21510875
Azad, Abul Kalam; Ahmed, Jahed; Alum, Md. Asraful; Hasan, Md. Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro; Katsuhara, Maki
2016-01-01
Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles and insight into comparative transport selectivity of plant MIPs, and provides tools for the development of transgenic plants. PMID:27327960
Zhu, Guifen; Gao, Xia; Wang, Xiaolong; Wang, Jianji; Fan, Jing
2018-01-12
To illuminate the influence mechanism of anionic structure of ionic liquids (ILs) on the adsorption performance of surface molecularly imprinted polymers (MIPs), in this work, six newly designed MIPs were prepared on the surface of amino-poly(styrene-divinylbenzene) particles by using imidazolium ILs with the same cation [C 4 mim] + but different anions (Cl, CH 3 SO 3 , PF 6 , BF 4 , C 4 F 7 O 2 , C 4 F 9 SO 3 ) as template molecules, methacrylic acid as functional monomer, and ethylene dimethacrylate as cross-linker. The resulting MIP materials were characterized by IR and SEM, and the influence of hydrogen bond accepting ability of anions on the adsorption performance of the MIPs for the ILs was investigated in acetonitrile. It was found that adsorption capacity of the MIPs towards the ILs decreased in the order MIP [C4mim][Cl] > MIP [C4mim][C4F7O2] ≥ MIP [C4mim][BF4] and MIP [C4mim][CH3SO3] > MIP [C4mim][C4F9SO3] > MIP [C4mim][PF6] , which is in good agreement with the ability of anions of the ILs to form hydrogen bonds. Ultraviolet, 1 H-NMR and 35 Cl-NMR spectroscopy was then used to study the interactions of anions of the ILs with the functional monomer. It was found that the hydrogen bond interaction between anions of the ILs and acidic proton of the functional monomer was the main driving force for the high adsorption selectivity of the imprinted polymers, and the stronger hydrogen bond interaction indicates higher binding capacity and higher selectivity of the polymers towards the ILs. It was also verified that the ILs with stronger hydrogen bond accepting ability of anions could be selectively extracted by the corresponding IL-MIPs. These results may provide new insight into the recognition mechanism of MIPs for ILs, and are also useful for the rational design of this new class of imprinting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of Maximum Intensity Projections (MIPs) for target outlining in 4DCT radiotherapy planning.
Muirhead, Rebecca; McNee, Stuart G; Featherstone, Carrie; Moore, Karen; Muscat, Sarah
2008-12-01
Four-dimensional computed tomography (4DCT) is currently being introduced to radiotherapy centers worldwide, for use in radical radiotherapy planning for non-small cell lung cancer (NSCLC). A significant drawback is the time required to delineate 10 individual CT scans for each patient. Every department will hence ask the question if the single Maximum Intensity Projection (MIP) scan can be used as an alternative. Although the problems regarding the use of the MIP in node-positive disease have been discussed in the literature, a comprehensive study assessing its use has not been published. We compared an internal target volume (ITV) created using the MIP to an ITV created from the composite volume of 10 clinical target volumes (CTVs) delineated on the 10 phases of the 4DCT. 4DCT data was collected from 14 patients with NSCLC. In each patient, the ITV was delineated on the MIP image (ITV_MIP) and a composite ITV created from the 10 CTVs delineated on each of the 10 scans in the dataset. The structures were compared by assessment of volumes of overlap and exclusion. There was a median of 19.0% (range, 5.5-35.4%) of the volume of ITV_10phase not enclosed by the ITV_MIP, demonstrating that the use of the MIP could result in under-treatment of disease. In contrast only a very small amount of the ITV_MIP was not enclosed by the ITV_10phase (median of 2.3%, range, 0.4-9.8%), indicating the ITV_10phase covers almost all of the tumor tissue as identified by MIP. Although there were only two Stage I patients, both demonstrated very similar ITV_10phase and ITV_MIP volumes. These findings suggest that Stage I NSCLC tumors could be outlined on the MIP alone. In Stage II and III tumors the ITV_10phase would be more reliable. To prevent under-treatment of disease, the MIP image can only be used for delineation in Stage I tumors.
Azad, Abul Kalam; Ahmed, Jahed; Alum, Md Asraful; Hasan, Md Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro; Katsuhara, Maki
2016-01-01
Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles and insight into comparative transport selectivity of plant MIPs, and provides tools for the development of transgenic plants.
Cleland, Dougal; McCluskey, Adam
2013-07-28
Traditional approaches to molecularly imprinted polymer (MIP) design and optimisation typically afford a template (T) : functional monomer (FM) : crosslinker (CL) ratio of 1 : 2 : 20 to 1 : 4 : 20. This approach for 1,2,3-trichlorobenzene (7) as template gave a styrene based MIP (MIP(STY)) with an imprinting factor (IF) = 1.3. An extreme vertices mixture design (EVMD) approach was applied, and in two design cycles, 15 total experimental points, the optimum composition for MIP(STY) was determined as 0.40 : 0.05 : 0.55 (T : FM : CL) with IF = 2.8. Refinements gave optimum T : FM : CL ratios for the functional monomers: 4-vinylpyridine (4VP, 0.40 : 0.02 : 0.58); 2,4,6-trimethylstyrene (TMS, 0.40 : 0.02 : 0.58) and 2,3,4,5,6-pentafluorostyrene (PFS, 0.30 : 0.12 : 0.58) with IF = 2.8, 2.8 and 3.7 respectively. These ratios deviated significantly from the traditional MIP synthesis ratio. The low levels of FM for all MIPs, except for MIP(PFS), suggest that imprinting was more consistent with T-CL, than FM-T, interactions. Analysis of the specific interactions and removal (SR) of 7 with these MIPs revealed that the SR with MIP(STY) increased from 36% at 0.02 STY to 48% at 0.13 STY; with MIP(TMS) SR increased from 38% at 0.02 TMS to 42% at 0.10 TMS; and with MIP(PFS) SR increased from 34% at 0.02 PFS to 56% at 0.14 PFS. MIP(4VP) saw a decline in SR with increasing FM, with the highest SR was 35% at 0.02 4VP. This is consistent with changes in the non-specific interactions between 7 and the MIPs. Increasing the proportion of PFS produced the largest increase in imprinting of 7 demonstrated by the highest SR (56%) and highest IF (3.7). The application of an EVMD approach resulted in the IF of MIP(STY) increased from 1.3 to 2.8. The highest IF achieved by this study was 3.7 for MIP(PFS) in proportions of 0.30 : 0.12 : 0.48 (T : FM : CL).
Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach.
El-Sharif, H F; Yapati, H; Kalluru, S; Reddy, S M
2015-12-01
We report the fabrication of metal-coded molecularly imprinted polymers (MIPs) using hydrogel-based protein imprinting techniques. A Co(II) complex was prepared using (E)-2-((2 hydrazide-(4-vinylbenzyl)hydrazono)methyl)phenol; along with iron(III) chloroprotoporphyrin (Hemin), vinylferrocene (VFc), zinc(II) protoporphyrin (ZnPP) and protoporphyrin (PP), these complexes were introduced into the MIPs as co-monomers for metal-coding of non-metalloprotein imprints. Results indicate a 66% enhancement for bovine serum albumin (BSA) protein binding capacities (Q, mg/g) via metal-ion/ligand exchange properties within the metal-coded MIPs. Specifically, Co(II)-complex-based MIPs exhibited 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/non-imprinted (NIP) control). The selectivity of our Co(II)-coded BSA MIPs were also tested using bovine haemoglobin (BHb), lysozyme (Lyz), and trypsin (Tryp). By evaluating imprinting factors (K), each of the latter proteins was found to have lower affinities in comparison to cognate BSA template. The hydrogels were further characterised by thermal analysis and differential scanning calorimetry (DSC) to assess optimum polymer composition. The development of hydrogel-based molecularly imprinted polymer (HydroMIPs) technology for the memory imprinting of proteins and for protein biosensor development presents many possibilities, including uses in bio-sample clean-up or selective extraction, replacement of biological antibodies in immunoassays and biosensors for medicine and the environment. Biosensors for proteins and viruses are currently expensive to develop because they require the use of expensive antibodies. Because of their biomimicry capabilities (and their potential to act as synthetic antibodies), HydroMIPs potentially offer a route to the development of new low-cost biosensors. Herein, a metal ion-mediated imprinting approach was employed to metal-code our hydrogel-based MIPs for the selective recognition of bovine serum albumin (BSA). Specifically, Co(II)-complex based MIPs exhibited a 66% enhancement (in comparison to our normal MIPs) exhibiting 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/ non-imprinted (NIP) control). The proposed metal-coded MIPs for protein recognition are intended to lead to unprecedented improvement in MIP selectivity and for future biosensor development that rely on an electrochemical redox processes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-01-01
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608
Designing solid-liquid interphases for sodium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin
Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport,more » comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.« less
Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function
Lerit, Dorothy A.; Jordan, Holly A.; Poulton, John S.; Fagerstrom, Carey J.; Galletta, Brian J.; Peifer, Mark
2015-01-01
Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability. PMID:26150390
Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function.
Lerit, Dorothy A; Jordan, Holly A; Poulton, John S; Fagerstrom, Carey J; Galletta, Brian J; Peifer, Mark; Rusan, Nasser M
2015-07-06
Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle-dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability.
Designing solid-liquid interphases for sodium batteries
Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin; ...
2017-10-12
Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport,more » comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.« less
NASA Astrophysics Data System (ADS)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-04-01
Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes.
Son, Seoung-Bum; Gao, Tao; Harvey, Steve P; Steirer, K Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei
2018-05-01
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg 2+ cannot penetrate such interphases. Here, we engineer an artificial Mg 2+ -conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V 2 O 5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.
Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II
Zheng, Yupeng; John, Sam; Pesavento, James J.; Schultz-Norton, Jennifer R.; Schiltz, R. Louis; Baek, Sonjoon; Nardulli, Ann M.; Hager, Gordon L.; Kelleher, Neil L.
2010-01-01
Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants. PMID:20439994
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes
NASA Astrophysics Data System (ADS)
Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.; Steirer, K. Xerxes; Stokes, Adam; Norman, Andrew; Wang, Chunsheng; Cresce, Arthur; Xu, Kang; Ban, Chunmei
2018-05-01
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.
Spatial distribution of centromeres and telomeres at interphase varies among Brachypodium species.
Idziak, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert
2015-11-01
In this study the 3-D distribution of centromeres and telomeres was analysed in the interphase nuclei of three Brachypodium species, i.e. B. distachyon (2n=10), B. stacei (2n=20) and B. hybridum (2n=30), which is presumably a hybrid between the first two species. Using fluorescence in situ hybridization (FISH) with centromeric and telomeric DNA probes, it was observed that the majority of B. distachyon nuclei in the root tip cells displayed the Rabl configuration while both B. stacei and B. hybridum mostly lacked the centromere-telomere polarization. In addition, differentiated leaf cells of B. distachyon did not display the Rabl pattern. In order to analyse the possible connection between the occurrence of the Rabl pattern and the phase of cell cycle or DNA content, FISH was combined with digital image cytometry. The results revealed that the frequency of nuclei with the Rabl configuration in the root tip nuclei was positively correlated with an increase in DNA content, which resulted from DNA replication. Also, the analysis of the influence of the nuclear shape on the nuclear architecture indicated that an increasing elongation of the nuclei negatively affected the occurrence of the Rabl pattern. Some possible explanations of these phenomena are discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan
2015-11-10
Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupledmore » with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.« less
NASA Astrophysics Data System (ADS)
Zhang, Ye; Uhlemeyer, Jimmy; Hada, Megumi; Asaithamby, A.; Chen, David J.; Wu, Honglu
2014-07-01
Previously, we reported that breaks involved in chromosome aberrations were clustered in several regions of chromosome 3 in human mammary epithelial cells after exposures to either low- or high-LET radiation. In particular, breaks in certain regions of the chromosome tended to rejoin with each other to form an intrachromosome exchange event. This study tests the hypothesis that proximity within a single chromosome in interphase cell nuclei contributes to the distribution of radiation-induced chromosome breaks. Chromosome 3 in G1 human mammary epithelial cells was hybridized with the multicolor banding in situ hybridization (mBAND) probes that distinguish the chromosome in six differently colored regions, and the location of these regions was measured with a laser confocal microscope. Results of the study indicated that, on a multi-mega base pair scale of the DNA, the arrangement of chromatin was non-random. Both telomere regions tended to be located towards the exterior of the chromosome domain, whereas the centromere region towards the interior. In addition, the interior of the chromosome domain was preferentially occupied by the p-arm of the chromatin, which is consistent with our previous finding of intrachromosome exchanges involving breaks on the p-arm and in the centromere region of chromosome 3. Other factors, such as the fragile sites in the 3p21 band and gene regulation, may also contribute to the breakpoint distribution in radiation-induced chromosome aberrations.
Higher Levels of Organization in the Interphase Nucleus of Cycling and Differentiated Cells
Leitch, Andrew R.
2000-01-01
The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized. PMID:10704477
Pardo, Antonelle; Josse, Thomas; Mespouille, Laetitia; Blankert, Bertrand; Dubois, Philippe; Duez, Pierre
2017-07-01
Molecularly imprinted polymers (MIPs) are composed of specific cavities able to selectively recognise a template molecule. Used as chromatographic sorbents, MIPs may not trap related structures due to the high rigidity of their cross-linking. To improve the capture of quercetin analogues by modulating the synthesis strategy for a quercetin-imprinted polymer (Qu MIP). An additional comonomer bearing a short oligoethylene glycol (OEG) unit was used to prepare a Qu MIP that was compared to a traditional one formulated in a similar fashion, but without the OEG-comonomer. The Qu MIPs were prepared in bead form through fluorocarbon suspension polymerisation. After solid phase extraction (SPE) assessment of their imprinted cavities, the MIPs were evaluated by HPLC for their recognition properties towards quercetin and other polyphenols, including flavonoids, phenolic acids and curcumin. The Qu MIPs were finally SPE-tested on a white onion extract. The incorporation of OEG units modulated the selectivity of the Qu MIP by improving the recognition of quercetin related structures (12-61% increase in the imprinting effect for distant analogues). It also allowed limiting or suppressing non-specific hydrophobic interactions (decrease of about 10% in the rate of quercetin retention on the non-imprinted polymer). The SPE application of the MIP to a white onion extract indicates its interest for the selective extraction of quercetin and its analogues. The OEG-modified Qu MIP appears to be an attractive tool to discover new drug candidates from natural sources by extracting, amongst interfering compounds, structural analogues of quercetin. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Application of minimally invasive pancreatic surgery: an Italian survey.
Capretti, Giovanni; Boggi, Ugo; Salvia, Roberto; Belli, Giulio; Coppola, Roberto; Falconi, Massimo; Valeri, Andrea; Zerbi, Alessandro
2018-05-16
The value of minimally invasive pancreatic surgery (MIPS) is still debated. To assess the diffusion of MIPS in Italy and identify the barriers preventing wider implementation, a questionnaire was developed under the auspices of three Scientific Societies (AISP, It-IHPBA, SICE) and was sent to the largest possible number of Italian surgeons also using the mailing list of the two main Italian Surgical Societies (SIC and ACOI). The questionnaire consisted of 25 questions assessing: centre characteristics, facilities and technologies, type of MIPS performed, surgical techniques employed and opinions on the present and future value of MIPS. Only one reply per unit was considered. Fifty-five units answered the questionnaire. While 54 units (98.2%) declared to perform MIPS, the majority of responders were not dedicated to pancreatic surgery. Twenty-five units (45.5%) performed < 20 pancreatic resections/year and 39 (70.9%) < 10 MIPS per year. Forty-nine units (89.1%) performed at least one minimally invasive (MI) distal pancreatectomy (DP), and 10 (18.2%) at least one MI pancreatoduodenectomy (PD). Robotic assistance was used in 18 units (31.7%) (14 DP, 7 PD). The major constraints limiting the diffusion of MIPS were the intrinsic difficulty of the technique and the lack of specific training. The overall value of MIPS was highly rated. Our survey illustrates the current diffusion of MIPS in Italy and underlines the great interest for this approach. Further diffusion of MIPS requires the implementation of standardized protocols of training. Creation of a prospective National Registry should also be considered.
Khurana, Neetika; Chauhan, Harsh; Khurana, Paramjit
2012-01-01
Molecular dissection and a deeper analysis of the heat stress response mechanism in wheat have been poorly understood so far. This study delves into the molecular basis of action of TaMIPS, a heat stress-inducible enzyme that was identified through PCR-select subtraction technology, which is named here as TaMIPS2. MIPS (L-Myo-inositol-phosphate synthase) is important for the normal growth and development in plants. Expression profiling showed that TaMIPS2 is expressed during different developing seed stages upon heat stress. Also, the transcript levels increase in unfertilized ovaries and significant amounts are present during the recovery period providing evidence that MIPS is crucial for its role in heat stress recovery and flower development. Alternatively spliced forms from rice and Arabidopsis were also identified and their expression analysis revealed that apart from heat stress, some of the spliced variants were also inducible by drought, NaCl, Cold, ABA, BR, SA and mannitol. In silico promoter analysis revealed various cis-elements that could contribute for the differential regulation of MIPS in different plant systems. Phylogenetic analysis indicated that MIPS are highly conserved among monocots and dicots and TaMIPS2 grouped specifically with monocots. Comparative analyses was undertaken by different experimental approaches, i.e., semi-quantitative RT-PCR, quantitative RT-PCR, Genevestigator as a reference expression tool and motif analysis to predict the possible function of TaMIPS2 in regulating the different aspects of plant development under abiotic stress in wheat.
Sun, Guangying; Liu, Yanfang; Ahat, Hasanjan; Shen, Aijin; Liang, Xinmiao; Xue, Xingya; Luo, Yuqin; Yang, Jian; Liu, Zhao-Sheng; Aisa, Haji Akber
2017-07-07
In this study, "two dimensional" molecularly imprinted solid-phase extraction (2D-MIP-SPE) of semi-preparative grade was constructed to fast purify ellagitannins in pomegranate husk extract with the help of crystallization and reverse-phase liquid chromatgoraphy (RPLC). Ellagic acid and punicalagin imprinted polymers were synthesized in batch mode and two semi-preparative MIP-SPE columns were individually packed. After investigaing "functional complementation", 2D-MIP-SPE was constructed using ellagic acid MIP and punicalagin MIP-SPE as the first and second dimension, respectively. Then, pomegranate husk extract was fast divided into four fractions individually enriching in ellagic acid, granatin A, punicalagin and ellagic acid glucoside by 2D-MIP-SPE. With the aid of crystallization and RPLC, ellagic acid (13.5mg) and punicalagin (53.4mg) were fast obtained in 30min. Ellagic acid glucoside was purified to the purity near 100% with a recovery of 86.1%. Granatin A (92%) was directly obtained by 2D-MIP-SPE with the recovery of 81.8%. All above indicated that 2D-MIP-SPE was highly efficient in natural product purification. The concept of "functional complementation" was expected to be a useful tool in the construction of 2D-MIP-SPE. Copyright © 2017 Elsevier B.V. All rights reserved.
Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.
Kamra, Tripta; Zhou, Tongchang; Montelius, Lars; Schnadt, Joachim; Ye, Lei
2015-01-01
Molecularly imprinted polymers (MIPs) have a predesigned molecular recognition capability that can be used to build robust chemical sensors. MIP-based chemical sensors allow label-free detection and are particularly interesting due to their simple operation. In this work we report the use of thiol-terminated MIP microspheres to construct surfaces for detection of a model organic analyte, nicotine, by surface enhanced Raman scattering (SERS). The nicotine-imprinted microspheres are synthesized by RAFT precipitation polymerization and converted into thiol-terminated microspheres through aminolysis. The thiol groups on the MIP surface allow the microspheres to be immobilized on a gold-coated substrate. Three different strategies are investigated to achieve surface enhanced Raman scattering in the vicinity of the imprinted sites: (1) direct sputtering of gold nanoparticles, (2) immobilization of gold colloids through the MIP's thiol groups, and (3) trapping of the MIP microspheres in a patterned SERS substrate. For the first time we show that large MIP microspheres can be turned into selective SERS surfaces through the three different approaches of assembly. The MIP-based sensing surfaces are used to detect nicotine to demonstrate the proof of concept. As synthesis and surface functionalization of MIP microspheres and nanoparticles are well established, the methods reported in this work are handy and efficient for constructing label-free chemical sensors, in particular for those based on SERS detection.
Li, Lulu; An, Meiling; Qu, Changfeng; Zheng, Zhou; Wang, Yibin; Liu, Fangming; He, Yingying; He, Xiaodong; Miao, Jinlai
2017-07-01
Major intrinsic proteins (MIPs) form channels facilitating the passive transport of water and other small polar molecules across membranes. In this study, the complete open reading frame (ORF) of CiMIP1 (GenBank ID KY316061) encoding one kind of MIPs in the Antarctic ice microalga Chlamydomonas sp. ICE-L is successfully cloned using RACE. In addition, the expression patterns of CiMIP1 gene under different conditions of temperature and salinity are determined by qRT-PCR. The ORF of CiMIP1 gene encodes 308 amino acids, and the deduced amino acid sequence shows 74% homology with Chlamydomonas reinhardtii CrMIP1 (GenBank number 159471952). Phylogenetic analysis reveals that algal MIPs are divided into seven groups, and it is speculated that CiMIP1 most likely belongs to the MIPD subfamily. In addition, we are surprised to find that a third NPA motif exists at the carboxy terminus of the target protein except for two highly conserved ones. Expression analysis shows that the transcriptional levels of CiMIP1 gene are upregulated under either lower temperature or higher temperature and high salinity. In summary, the results together have provide new insights into the newly discovered gene in green algae and lay the foundation for further studies on the adaptation mechanism of Chlamydomonas sp. ICE-L to abiotic stresses.
Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami; Haginaka, Jun
2013-11-01
Molecularly imprinted polymers (MIPs) for creatinine were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer and divinylbenzene as a crosslinker. The prepared MIPs were monodispersed with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high- and low-affinity sites, were formed on the MIPs. The retention and molecular-recognition properties of the MIPs were evaluated by hydrophilic interaction chromatography using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase. With an increase of acetonitrile content, the retention factor of creatinine was increased on the MIP. In addition to shape recognition, hydrophilic interactions seemed to enhance the recognition of creatinine on the MIP. The MIPs' molecular-recognition ability was specific for creatinine; the structurally related compounds such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine were not recognized. Furthermore, the creatinine concentrations in human serum and urine were successfully determined by direct injection of the deproteinized serum and diluted urine samples onto the MIP. Copyright © 2013 Elsevier B.V. All rights reserved.
Solution structure of the Legionella pneumophila Mip-rapamycin complex.
Ceymann, Andreas; Horstmann, Martin; Ehses, Philipp; Schweimer, Kristian; Paschke, Anne-Katrin; Steinert, Michael; Faber, Cornelius
2008-03-17
Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. We have solved the solution structure of free Mip77-213 and the Mip77-213-rapamycin complex by NMR spectroscopy. Mip77-213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors.
Solution structure of the Legionella pneumophila Mip-rapamycin complex
Ceymann, Andreas; Horstmann, Martin; Ehses, Philipp; Schweimer, Kristian; Paschke, Anne-Katrin; Steinert, Michael; Faber, Cornelius
2008-01-01
Background Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. Results We have solved the solution structure of free Mip77–213 and the Mip77–213-rapamycin complex by NMR spectroscopy. Mip77–213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. Conclusion The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors. PMID:18366641
Zaidi, Shabi Abbas; Lee, Seung Mi; Cheong, Won Jo
2011-03-04
Some open tubular (OT) molecule imprinted polymer (MIP) silica capillary columns have been prepared using atenolol, sulpiride, methyl benzylamine (MBA) and (1-naphthyl)-ethylamine (NEA) as templates by the pre-established generalized preparation protocol. The four MIP thin layers of different templates showed quite different morphologies. The racemic selectivity of each MIP column for the template enantiomers was optimized by changing eluent composition and pH. The template structural effects on chiral separation performance have been examined. This work verifies the versatility of the generalized preparation protocol for OT-MIP silica capillary columns by extending its boundary toward templates with basic functional group moieties. This study is the very first report to demonstrate a generalized MIP preparation protocol that is valid for both acidic and basic templates. The chiral separation performances of atenolol and sulpiride by the MIPs of this study were found better than or comparable to those of atenolol and sulpiride obtained by non-MIP separation techniques and those of some basic template enantiomers obtained by MIP based techniques. Copyright © 2011 Elsevier B.V. All rights reserved.
Ford, Sarah; Hall, Angela
2004-09-01
The Medical Interaction Process System (MIPS) was originally developed in order to create a reliable observation tool for analysing doctor-patient encounters in the oncology setting. This paper reports a series of analyses carried out to establish whether the behaviour categories of the MIPS can discriminate between skilled and less skilled communicators. This involved the use of MIPS coded cancer consultations to compare the MIPS indices of 10 clinicians evaluated by an independent professional as skilled communicators with 10 who were considered less skilled. Eleven out of the 15 MIPS variables tested were able to distinguish the skilled from the less skilled group. Although limitations to the study are discussed, the results indicate that the MIPS has satisfactory discriminatory power and the results provide validity data that meet key objectives for developing the system. There is an ever-increasing need for reliable methods of assessing doctors' communication skills and evaluating medical interview teaching programmes. Copyright 2004 Elsevier Ireland Ltd.
Selectivity of β-Sitosterol Imprinted Polymers as Adsorbent
NASA Astrophysics Data System (ADS)
Fauziah, St.; Hariani Soekamto, Nunuk; Taba, Paulina; Bachri Amran, Muh
2018-03-01
Molecularly Imprinted Polymers (MIPs) are smart materials that have been used as adsorbents in separation processes of compounds because they have a memorial effect to a certain compound. In this research, MIP synthesized was used as adsorbent for β-sitosterol. The objective of the research was to know the selectivity of MIP in adsorbing β-sitosterol. The concentrations of β-sitosterol after adsorption and desorption were analyzed by a UV-Vis spectrophotometer and the selectivity test was analyzed by HPLC. Result showed that the MIP had high adsorption ability ( qe ). The recovery of β-sitosterol from MIP for the adsorption-desorption process was 68.48%. The MIP was very selective to β-sitosterol compared to cholesterol because it can adsorb β-sitosterol as many as 100%, whereas the adsorption of cholesterol was only 30.27 %.
Phased models for evaluating the performability of computing systems
NASA Technical Reports Server (NTRS)
Wu, L. T.; Meyer, J. F.
1979-01-01
A phase-by-phase modelling technique is introduced to evaluate a fault tolerant system's ability to execute different sets of computational tasks during different phases of the control process. Intraphase processes are allowed to differ from phase to phase. The probabilities of interphase state transitions are specified by interphase transition matrices. Based on constraints imposed on the intraphase and interphase transition probabilities, various iterative solution methods are developed for calculating system performability.
Monodispersed molecularly imprinted polymer for creatinine by modified precipitation polymerization.
Haginaka, Jun; Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami
2012-01-01
A monodispersed molecularly imprinted polymer (MIP) for creatinine was prepared by modified precipitation polymerization. The retention and molecular-recognition properties of the prepared MIP were evaluated by the hydrophilic interaction chromatography mode using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase in liquid chromatography. The MIP had a specific recognition ability for creatinine, while other structurally related compounds, such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine, could not be recognized on the MIP. In addition to shape recognition, hydrophilic interactions could work for the recognition of creatinine on the MIP.
MIP sensors--the electrochemical approach.
Malitesta, Cosimino; Mazzotta, Elisabetta; Picca, Rosaria A; Poma, Alessandro; Chianella, Iva; Piletsky, Sergey A
2012-02-01
This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices. In recent years, growing interest in molecularly imprinted polymers (MIPs) in the preparation of recognition elements has led researchers to design novel formats for improvement of MIP sensors. Among possible approaches proposed in the literature on this topic, we will focus on the electrosynthesis of MIPs and on less common hybrid technology (e.g. based on electrochemistry and classical MIPs, or nanotechnology). Starting from the early work reported in this field, an overview of the most innovative and successful examples will be reviewed.
Rawlinson, Neil J.; West, William W.; Nelson, Marilu; Bridge, Julia A.
2008-01-01
Conventional cytogenetic analysis of an aggressive angiomyxoma of the rectal wall of a 72-year-old female revealed a translocation between the long arms of chromosomes 12 and 21 [46,XX,t(12;21)(q15;q21.1)]. Involvement of the HMGA2 gene locus (12q15) was confirmed by fluorescence in situ hybridization (FISH) using an HMGA2 breakpoint flanking probe set performed on metaphase and interphase cells from an in situ culture of fresh lesional tissue. Karyotypic rearrangements of 12q13-15 are considered recurrent in aggressive angiomyxoma, although reported in only five previous cases. Translocation partner chromosome 21 is novel to the current case. PMID:18295664
Large-scale magnetic topologies of mid M dwarfs
NASA Astrophysics Data System (ADS)
Morin, J.; Donati, J.-F.; Petit, P.; Delfosse, X.; Forveille, T.; Albert, L.; Aurière, M.; Cabanac, R.; Dintrans, B.; Fares, R.; Gastine, T.; Jardine, M. M.; Lignières, F.; Paletou, F.; Ramirez Velez, J. C.; Théado, S.
2008-10-01
We present in this paper, the first results of a spectropolarimetric analysis of a small sample (~20) of active stars ranging from spectral type M0 to M8, which are either fully convective or possess a very small radiative core. This study aims at providing new constraints on dynamo processes in fully convective stars. This paper focuses on five stars of spectral type ~M4, i.e. with masses close to the full convection threshold (~=0.35Msolar), and with short rotational periods. Tomographic imaging techniques allow us to reconstruct the surface magnetic topologies from the rotationally modulated time-series of circularly polarized profiles. We find that all stars host mainly axisymmetric large-scale poloidal fields. Three stars were observed at two different epochs separated by ~1 yr; we find the magnetic topologies to be globally stable on this time-scale. We also provide an accurate estimation of the rotational period of all stars, thus allowing us to start studying how rotation impacts the large-scale magnetic field. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) and the Télescope Bernard Lyot (TBL). CFHT is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (INSU/CNRS) and the University of Hawaii, while the TBL is operated by CNRS/INSU. E-mail: jmorin@ast.obs-mip.fr (JM); donati@ast.obs-mip.fr (J-FD); petit@ast.obs-mip.fr (PP); xavier.delfosse@obs.ujf-grenoble.fr (XD); thierry.forveille@obs.ujf-grenoble.fr (TF); albert@cfht.hawaii.edu (LA); auriere@ast.obs-mip.fr (MA); remi.cabanac@ast.obs-mip.fr (RC); dintrans@ast.obs-mip.fr (BD); rfares@ast.obs-mip.fr (RF); tgastine@ast.obs-mip.fr (TG); mmj@st-andrews.ac.uk (MMJ); ligniere@ast.obs-mip.fr (FL); fpaletou@ast.obs-mip.fr (FP); jramirez@mesiog.obspm.fr (JR); sylvie.theado@ast.obs-mip.fr (ST)
Doyle, H A; Murphy, J W
1997-02-01
Leukocyte infiltration into infected tissues is essential for the clearance of microorganisms. In animals with a cell-mediated immune (CMI) response to the infectious agent, as opposed to naive animals, leukocyte migration is greatly enhanced into sites of the organism or antigen. The role of the,chemotactic cytokine or chemokine, macrophage inflammatory protein-1 alpha (MIP-1 alpha), in the expression phase of the CMI response and in protection against Cryptococcus neoformans was assessed. With the use of a gelatin sponge model in mice as a means of detecting an anti-cryptococcal delayed-type hypersensitivity (DTH) reaction, we found that MIP-1 alpha levels in fluids from cryptococcal antigen (CneF)-injected sponges in immunized mice (DTH-reactive sponges) were significantly increased over levels of MIP-1 alpha in fluids from saline-injected control sponges at 12 and 24-30 h after injection. MIP-1 alpha levels peaked before increases in neutrophils and lymphocytes in the DTH-reactive sponges, suggesting that MIP-1 alpha was responsible, at least in part, for attracting these leukocyte types. Immunized mice treated with neutralizing antibody to MIP-1 alpha before sponge injection with CneF had reduced numbers of neutrophils and lymphocytes in the DTH-reactive sponges and showed reduced clearance of C. neoformans from the lungs, spleens, livers, and brains when compared with controls. Furthermore, injection of rmMIP-1 alpha into sponges in naive mice resulted in an increase in the influx of neutrophils and lymphocytes into the sponges compared with saline-injected sponges. Together our findings provide solid evidence that MIP-1 alpha is a component of the anticryptococcal DTH reaction. In addition, MIP-1 alpha influences neutrophil influx and attracts lymphocytes into the DTH reaction site. Finally, we showed that MIP-1 alpha plays a role in protection against C. neoformans.
Grant, Clive S; Thompson, Geoffrey; Farley, David; van Heerden, Jon
2005-05-01
Minimally invasive parathyroidectomy (MIP) for primary hyperparathyroidism (HPT) has equal cure and recurrence rates as standard cervical exploration. Changes in the management of primary HPT have occurred since introducing MIP including localization, anesthesia, intraoperative parathyroid hormone monitoring, and indications for parathyroidectomy. Cohort analysis of 1361 consecutive patients with primary HPT operated on at the Mayo Clinic, Rochester, Minn, from June 1998 through March 2004. Mean follow-up, 25 months. Tertiary referral center. One thousand three hundred sixty-one patients operated on for primary HPT, excluding 160 patients who were reoperated on. Standard cervical exploration MIP. Cure, recurrence, localization, anesthesia, hospitalization, intraoperative parathyroid hormone level monitoring, contraindications to MIP, surgical indications, assessment of osteoporosis and osteopenia, postoperative patient assessment of general patient health, and operative satisfaction. Cure of primary HPT for both conventional exploration and MIP was 97%; only 1 patient who underwent MIP had a potential recurrence. Imaging sensitivity and positive predictive values were as follows: sestamibi scintigraphy, 86% and 93%; ultrasonography, 61% and 87%, respectively. Usage of general vs local anesthesia with intravenous sedation was 46% and 49%, respectively, in patients w ho underwent MIP; 46% were dismissed as outpatients, 49% had single-night stays. The accuracy of intraoperative parathyroid hormone level monitoring was as follows: 98% (8% had true-negative results); the frequency of multiple gland disease was 13%. Accounting for causes precluding MIP, an estimated 60% to 70% of all patients would be eligible for MIP. By preoperative assessment, 79% had osteoporosis-osteopenia; 58% with postoperative bone mineral density measurements were improved. More than 85% were satisfied with the results of their operation. With high-quality localization and intraoperative parathyroid hormone level monitoring, MIP can be performed with equal cure rates as standard cervical exploration, with no present evidence of delayed recurrence.
Johanson, Urban; Karlsson, Maria; Johansson, Ingela; Gustavsson, Sofia; Sjövall, Sara; Fraysse, Laure; Weig, Alfons R.; Kjellbom, Per
2001-01-01
Major intrinsic proteins (MIPs) facilitate the passive transport of small polar molecules across membranes. MIPs constitute a very old family of proteins and different forms have been found in all kinds of living organisms, including bacteria, fungi, animals, and plants. In the genomic sequence of Arabidopsis, we have identified 35 different MIP-encoding genes. Based on sequence similarity, these 35 proteins are divided into four different subfamilies: plasma membrane intrinsic proteins, tonoplast intrinsic proteins, NOD26-like intrinsic proteins also called NOD26-like MIPs, and the recently discovered small basic intrinsic proteins. In Arabidopsis, there are 13 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, nine NOD26-like intrinsic proteins, and three small basic intrinsic proteins. The gene structure in general is conserved within each subfamily, although there is a tendency to lose introns. Based on phylogenetic comparisons of maize (Zea mays) and Arabidopsis MIPs (AtMIPs), it is argued that the general intron patterns in the subfamilies were formed before the split of monocotyledons and dicotyledons. Although the gene structure is unique for each subfamily, there is a common pattern in how transmembrane helices are encoded on the exons in three of the subfamilies. The nomenclature for plant MIPs varies widely between different species but also between subfamilies in the same species. Based on the phylogeny of all AtMIPs, a new and more consistent nomenclature is proposed. The complete set of AtMIPs, together with the new nomenclature, will facilitate the isolation, classification, and labeling of plant MIPs from other species. PMID:11500536
Fu, Najing; Li, Liteng; Liu, Xiao; Fu, Nian; Zhang, Chenchen; Hu, Liandong; Li, Donghao; Tang, Baokun; Zhu, Tao
2017-12-29
Typically, a target compound is selected as a template for a molecularly imprinted polymer (MIP); however, some target compounds are not suitable as templates because of their poor solubility. Using the tailoring properties of a deep eutectic solvent (DES), the insoluble target compound caffeic acid was transformed into a ternary choline chloride-caffeic acid-ethylene glycol (ChCl-CA-EG) DES, which was then employed as a template to prepare MIPs. The ternary DES-based MIPs were characterized by Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy, and atomic force microscopy. The effects of time, temperature, ionic strength, and pH on the recognition processes for four polyphenols (caffeic acid, protocatechuic acid, catechin, and epicatechin) by 13 ChCl-CA-EG ternary DES-based MIPs was investigated using high-performance liquid chromatography. The recognition specificity of the MIPs for CA was significantly better than that for the other polyphenols, and the MIPs exhibited obvious characteristics of chromatographic packing materials. In addition, the recognition processes mainly followed a second-order kinetics model and the Freundlich isotherm model, which together indicated that the MIPs mainly recognized the polyphenols by chemical interactions including ion exchange, electron exchange, and new bond formation. Furthermore, the specific recognition ability of the MIPs for polyphenols, which was better than those of C 18 , C 8 , or non-molecularly imprinted polymer adsorbents, was successfully applied to the recognition of polyphenols in a Radix asteris sample. The transformation of an insoluble target compound in a polymeric DES for MIP preparation and recognition is a novel and feasible strategy suitable for use in further MIP research developments. Copyright © 2017 Elsevier B.V. All rights reserved.
Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium
Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar
2013-01-01
SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Joonoh, E-mail: mjo99@kims.re.kr; Ha, Heon-Young; Lee, Tae-Ho
2013-08-15
The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasingmore » δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.« less
Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.
Kang, Eunju; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P; Schöler, Hans R; Mitalipov, Shoukhrat
2014-05-01
Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative applications, as donated or discarded embryos are more accessible than unfertilized MII oocytes.
Molecularly Imprinted Polymers for Ochratoxin A Extraction and Analysis
Yu, Jorn C. C.; Lai, Edward P. C.
2010-01-01
Molecularly imprinted polymers (MIPs) are considered as polymeric materials that mimic the functionality of antibodies. MIPs have been utilized for a wide variety of applications in chromatography, solid phase extraction, immunoassays, and sensor recognition. In this article, recent advances of MIPs for the extraction and analysis of ochratoxins are discussed. Selection of functional monomers to bind ochratoxin A (OTA) with high affinities, optimization of extraction procedures, and limitations of MIPs are compared from different reports. The most relevant examples in the literature are described to clearly show how useful these materials are. Strategies on MIP preparation and schemes of analytical methods are also reviewed in order to suggest the next step that would make better use of MIPs in the field of ochratoxin research. The review ends by outlining the remaining issues and impediments. PMID:22069649
Recombinant Mip-PilE-FlaA dominant epitopes vaccine candidate against Legionella pneumophila.
He, Jinlei; Huang, Fan; Chen, Han; Chen, Qiwei; Zhang, Junrong; Li, Jiao; Chen, Dali; Chen, Jianping
2017-06-01
Legionella pneumophila is the main causative agent of Legionnaires' disease, which is a severe multi-system disease with pneumonia as the primary manifestation. We designed a recombinant Mip-PilE-FlaA dominant epitopes vaccine against Legionella pneumophila to prevent the disease and evaluated its immunogenicity and protective immunity. The protein structures of Mip, PilE and FlaA were analyzed using a computer, and the gene sequences of the dominant epitopes of the three proteins were selected to construct and optimize the vaccine. The optimized mip, pilE, flaA and recombinant mip-pilE-flaA gene sequences were cloned, expressed and purified. The purified proteins were used as dominant epitopes vaccines to immunize BALB/c mice and determine the protective immunity and immunogenicity of these purified proteins. The identification confirmed that the recombinant mip-pilE-flaA was successfully cloned and expressed. ELISA revealed that the Mip-PilE-FlaA group produced the highest IgG response, and this protein may considerably improve the production of some cytokines in BALB/c mice. Histopathology analyses of lungs from mice immunized with Mip-PilE-FlaA revealed a certain protective effect. Our work demonstrated that the recombinant dominant epitopes of Mip-PilE-FlaA exhibited strong immunogenicity and immune protection, and this protein may be an efficient epitopes vaccine candidate against Legionella pneumophila. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Wang, Aixiang; Lu, Hongzhi; Xu, Shoufang
2016-06-22
Novel magnetic hollow molecularly imprinted polymers (M-H-MIPs) were proposed for highly selective recognition and fast enrichment of triazines in food samples. M-H-MIPs were prepared on the basis of multi-step swelling polymerization, followed by in situ growth of magnetic Fe3O4 nanoparticles on the surface of hollow molecularly imprinted polymers (H-MIPs). Transmission electron microscopy and scanning electron microscopy confirmed the successful immobilization of Fe3O4 nanoparticles on the surface of H-MIPs. M-H-MIPs could be separated simply using an external magnet. The binding adsorption results indicated that M-H-MIPs displayed high binding capacity and fast mass transfer property and class selective property for triazines. Langmuir isotherm and pseudo-second-order kinetic models fitted the best adsorption models for M-H-MIPs. M-H-MIPs were used to analyze atrazine, simazine, propazine, and terbuthylazine in corn, wheat, and soybean samples. Satisfactory recoveries were in the range of 80.62-101.69%, and relative standard deviation was lower than 5.2%. Limits of detection from 0.16 to 0.39 μg L(-1) were obtained. When the method was applied to test positive samples that were contaminated with triazines, the results agree well with those obtained from an accredited method. Thus, the M-H-MIP-based dispersive solid-phase extraction method proved to be a convenient and practical platform for detection of triazines in food samples.
Hatano, Y.; Kasama, T.; Iwabuchi, H.; Hanaoka, R.; Takeuchi, H.; Jing, L.; Mori, Y.; Kobayashi, K.; Negishi, M.; Ide, H.; Adachi, M.
1999-01-01
OBJECTIVE—To determine the contribution made by synovial fluid (SF) neutrophils to the augmented expression of macrophage inflammatory protein 1 α (MIP-1α) in rheumatoid arthritis (RA). METHODS—Neutrophils were isolated from samples of SF from RA patients and peripheral blood (PB) samples from RA patients and healthy controls. Cell associated MIP-1α was visualised immunohistochemically, and cell associated MIP-1α as well as MIP-1α secreted into the SF was assayed by ELISA. Steady state expression of MIP-1α mRNA was assessed by reverse transcription polymerase chain reaction (RT-PCR). RESULTS—Freshly isolated SF neutrophils contained significantly higher concentrations of both MIP-1α protein and its transcript than PB neutrophils from either RA patients or healthy controls; incubation in the absence or presence of tumour necrosis factor α for 24 hours resulted in a significant increase in MIP-1α secretion by RA SF neutrophils compared with neutrophils obtained from either normal PB or RA PB; and expression of MIP-1α by SF neutrophils was well correlated with both RA disease activity and SF mononuclear cell (MNC) counts. CONCLUSION—Expression and secretion of MIP-1α by SF neutrophils may be indicative of local and systemic inflammation in RA. Moreover, this C-C chemokine may contribute to the recruitment of MNCs from the bloodstream into synovial joints and tissues. PMID:10225815
A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection
2015-09-01
ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for...ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for Chemical...TITLE AND SUBTITLE A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER
Rational computational design for the development of andrographolide molecularly imprinted polymer
NASA Astrophysics Data System (ADS)
Krishnan, Hemavathi; Islam, K. M. Shafiqul; Hamzah, Zainab; Ahmad, Mohd Noor
2017-10-01
Andrographolide is a popular medicinal compound derived from Andrographis Paniculata (AP). Molecularly Imprint Polymer (MIP) is a "Lock and Key" approach, where MIP is the lock and Andrographolide is the key which fits to the MIP lock by both physically and chemically. MIP will be used as selective extraction tool to enrich Andrographolide bioactive compound. Pre-polymerization step is crucial to design MIP. This work investigates molecular interactions and the Gibbs free binding energies on the development of MIP. The structure of Andrographolide (template) and functional monomers were drawn in HyperChem 8.0.10. A hybrid quantum chemical model was used with a few functional monomers. Possible conformations of template and functional monomer as 1:n (n < 4) were designed and simulated to geometrically optimize the complex to the lowest energy in gas phase. The Gibbs free binding energies of each conformation were calculated using semi-empirical PM3 simulation method. Results proved that functional monomers that contain carboxylic group shows higher binding energy compared to those with amine functional group. Itaconic acid (IA) chosen as the best functional monomer at optimum ratio (1:3) of template: monomer to prepare andrographolide MIP. This study demonstrates the importance of studying intermolecular interaction among template, functional monomer and template-monomer ratio in developing MIP.
Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane.
Kamra, Tripta; Chaudhary, Shilpi; Xu, Changgang; Johansson, Niclas; Montelius, Lars; Schnadt, Joachim; Ye, Lei
2015-05-01
Molecularly imprinted polymers (MIPs) can be used as antibody mimics to develop robust chemical sensors. One challenging problem in using MIPs for sensor development is the lack of reliable conjugation chemistry that allows MIPs to be fixed on transducer surface. In this work, we study the use of epoxy silane to immobilize MIP nanoparticles on model transducer surfaces without impairing the function of the immobilized nanoparticles. The MIP nanoparticles with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model transducer surface is functionalized with a self-assembled monolayer of epoxy silane, which reacts with the core-shell MIP particles to enable straightforward immobilization. The whole process is characterized by studying the treated surfaces after each preparation step using atomic force microscopy, scanning electron microscopy, fluorescence microscopy, contact angle measurements and X-ray photoelectron spectroscopy. The microscopy results show that the MIP particles are immobilized uniformly on surface. The photoelectron spectroscopy results further confirm the action of each functionalization step. The molecular selectivity of the MIP-functionalized surface is verified by radioligand binding analysis. The particle immobilization approach described here has a general applicability for constructing selective chemical sensors in different formats. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A
2013-06-13
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.
2016-01-01
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870
Luo, Qiaohui; Yu, Neng; Shi, Chunfei; Wang, Xiaoping; Wu, Jianmin
2016-12-01
A surface plasmon resonance (SPR) sensor combined with nanoscale molecularly imprinted polymer (MIP) film as recognition element was developed for selective detection of the antibiotic ciprofloxacin (CIP). The MIP film on SPR sensor chip was prepared by in situ photo-initiated polymerization method which has the advantages of short polymerization time, controllable thickness and good uniformity. The surface wettability and thickness of MIP film on SPR sensor chip were characterized by static contact angle measurement and stylus profiler. The MIP-SPR sensor exhibited high selectivity, sensitivity and good stability for ciprofloxacin. The imprinting factors of the MIP-SPR sensor to ciprofloxacin and its structural analogue ofloxacin were 2.63 and 3.80, which is much higher than those to azithromycin, dopamine and penicillin. The SPR response had good linear relation with CIP concentration over the range 10 -11 -10 -7 molL -1 . The MIP-SPR sensor also showed good repeatability and stability during cyclic detections. On the basis of the photo-initiated polymerization method, a surface plasmon resonance imaging (SPRi) chip modified with three types of MIP sensing spots was fabricated. The MIPs-SPRi sensor shows different response patterns to ciprofloxacin and azithromycin, revealing the ability to recognize different antibiotic molecules. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...
2017-04-26
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
Atomistic modeling of interphases in spider silk fibers
NASA Astrophysics Data System (ADS)
Fossey, Stephen Andrew
The objective of this work is to create an atomistic model to account for the unusual physical properties of silk fibers. Silk fibers have exceptional mechanical toughness, which makes them of interest as high performance fibers. In order to explain the toughness, a model for the molecular structure based on simple geometric reasoning was formulated. The model consists of very small crystallites, on the order of 5 nm, connected by a noncrystalline interphase. The interphase is a region between the crystalline phase and the amorphous phase, which is defined by the geometry of the system. The interphase is modeled as a very thin (<5 nm) film of noncrystalline polymer constructed using a Monte Carlo, rotational isomeric states approach followed by simulated annealing in order to achieve equilibrium chain configurations and density. No additional assumptions are made about density, orientation, or packing. The mechanical properties of the interphase are calculated using the method of Theodoreau and Suter. Finally, observable properties such as wide angle X-ray scattering and methyl rotation rates are calculated and compared with experimental data available in the literature.
Zhang, Tao; Paulson, James R; Bakhrebah, Muhammed; Kim, Ji Hun; Nowell, Cameron; Kalitsis, Paul; Hudson, Damien F
2016-05-01
Condensin is an integral component of the mitotic chromosome condensation machinery, which ensures orderly segregation of chromosomes during cell division. In metazoans, condensin exists as two complexes, condensin I and II. It is not yet clear what roles these complexes may play outside mitosis, and so we have examined their behaviour both in normal interphase and in premature chromosome condensation (PCC). We find that a small fraction of condensin I is retained in interphase nuclei, and our data suggests that this interphase nuclear condensin I is active in both gene regulation and chromosome condensation. Furthermore, live cell imaging demonstrates condensin II dramatically increases on G1 nuclei following completion of mitosis. Our PCC studies show condensins I and II and topoisomerase II localise to the chromosome axis in G1-PCC and G2/M-PCC, while KIF4 binding is altered. Individually, condensins I and II are dispensable for PCC. However, when both are knocked out, G1-PCC chromatids are less well structured. Our results define new roles for the condensins during interphase and provide new information about the mechanism of PCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guoxing; Gao, Yue; He, Xin
Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g -1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% overmore » 400 cycles at a current density of 2mAcm -2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.« less
An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Seoung-Bum; Gao, Tao; Harvey, Steve P.
Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements formore » electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.« less
Li, Guoxing; Gao, Yue; He, Xin; ...
2017-10-11
Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g -1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% overmore » 400 cycles at a current density of 2mAcm -2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.« less
Liu, Qi; Zhang, Haili; Wang, Yan; Hong, Yiguo; Xiao, Fangming; Zhang, Ling; Shen, Qianhua; Liu, Yule
2013-01-01
Tm-22 is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV) by recognizing the viral movement protein (MP). Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s) associate with tobamovirus MP, Tm-22 and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-22-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-22. Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In addition, we found that SGT1 associates with Tm-22 and is required for Tm-22-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity. PMID:24098120
Compositions and methods for detecting gene rearrangements and translocations
Rowley, Janet D.; Diaz, Manuel O.
2000-01-01
Disclosed is a series of nucleic acid probes for use in diagnosing and monitoring certain types of leukemia using, e.g., Southern and Northern blot analyses and fluorescence in situ hybridization (FISH). These probes detect rearrangements, such as translocations involving chromosome band 11q23 with other chromosomes bands, including 4q21, 6q27, 9p22, 19p13.3, in both dividing leukemic cells and interphase nuclei. The breakpoints in all such translocations are clustered within an 8.3 kb BamHI genomic region of the MLL gene. A novel 0.7 kb BamH1 cDNA fragment derived from this gene detects rearrangements on Southern blot analysis with a single BamHI restriction digest in all patients with the common 11q23 translocations and in patients with other 11q23 anomalies. Northern blot analyses are presented demonstrating that the MLL gene has multiple transcripts and that transcript size differentiates leukemic cells from normal cells. Also disclosed are MLL fusion proteins, MLL protein domains and anti-MLL antibodies.
24 CFR 203.264 - Payment of periodic MIP.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Payment § 203.264 Payment of periodic MIP. The mortgagee shall pay each MIP in twelve equal monthly installments. Each monthly installment shall be due and payable to the Commissioner no later than the tenth day...
MIRATE: MIps RATional dEsign Science Gateway.
Busato, Mirko; Distefano, Rosario; Bates, Ferdia; Karim, Kal; Bossi, Alessandra Maria; López Vilariño, José Manuel; Piletsky, Sergey; Bombieri, Nicola; Giorgetti, Alejandro
2018-06-13
Molecularly imprinted polymers (MIPs) are high affinity robust synthetic receptors, which can be optimally synthesized and manufactured more economically than their biological equivalents (i.e. antibody). In MIPs production, rational design based on molecular modeling is a commonly employed technique. This mostly aids in (i) virtual screening of functional monomers (FMs), (ii) optimization of monomer-template ratio, and (iii) selectivity analysis. We present MIRATE, an integrated science gateway for the intelligent design of MIPs. By combining and adapting multiple state-of-the-art bioinformatics tools into automated and innovative pipelines, MIRATE guides the user through the entire process of MIPs' design. The platform allows the user to fully customize each stage involved in the MIPs' design, with the main goal to support the synthesis in the wet-laboratory. MIRATE is freely accessible with no login requirement at http://mirate.di.univr.it/. All major browsers are supported.
2005-03-01
size of the interphase [22-24]. Yang and Jeng [45], in a study of the titanium aluminides Ti-24-11 and Ti-25-10, and a metastable beta titanium Ti-15-3... Titanium Aluminide Matrix Composites," Workshop proceedings on Titanium Matrix Components, P.R. Smith and W.C. Revelos, eds., Wright-Patterson AFB...Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures Final Report
Rezaei, B; Lotfi-Forushani, H; Ensafi, A A
2014-04-01
A new, simple, and disposable molecularly imprinted electrochemical sensor for the determination of ranitidine was developed on pencil graphite electrode (PGE) via cyclic voltammetry (CV). The PGEs were coated with MWCNTs containing the carboxylic functional group (f-MWCNTs), imprinted with sol-gel and Au nanoparticle (AuNPs) layers (AuNP/MIP-sol-gel/f-MWCNT/PGE), respectively, to enhance the electrode's electrical transmission and sensitivity. The thin film of molecularly imprinted sol-gel polymers with specific binding sites for ranitidine was cast on modified PGE by electrochemical deposition. The AuNP/MIP-sol-gel/f-MWCNT/PGE thus developed was characterized by electrochemical impedance spectroscopy (EIS) and CV. The interaction between the imprinted sensor and the target molecule was also observed on the electrode by measuring the current response of 5.0mMK3[Fe(CN)6] solution as an electrochemical probe. The pick currents of ranitidine increased linearly with concentration in the ranges of 0.05 to 2.0μM, with a detection limit of (S/N=3) 0.02μM. Finally, the modified electrode was successfully employed to determine ranitidine in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Miura, Chitose; Matsunaga, Hisami; Haginaka, Jun
2016-08-05
Molecularly imprinted polymers (MIPs) for caffeic acid (CA) were prepared using 4-vinylpyridine and methacrylamide (MAM) as functional monomers, divinylbenzene as a crosslinker and acetonitrile-toluene (3:1, v/v) as a porogen by precipitation polymerization. The use of MAM as the co-monomer resulted in the formation of microsphere MIPs and non-imprinted polymers (NIPs) with ca. 3- and 5-μm particle diameters, respectively. Binding experiments and Scatchard analyses revealed that the binding capacity and affinity of the MIP to CA are higher than those of the NIP. The retention and molecular-recognition properties of the prepared MIPs were evaluated using water-acetonitrile and sodium phosphate buffer-acetonitrile as mobile phases in hydrophilic interaction chromatography (HILIC) and reversed-phase chromatography, respectively. In HILIC mode, the MIP showed higher molecular-recognition ability for CA than in reversed-phase mode. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of CA on the MIP in HILIC mode, while hydrogen bonding and hydrophobic interactions seem to work for the recognition of CA in reversed-phase mode. The MIP had a specific molecular-recognition ability for CA in HILIC mode, while other structurally related compounds, such as chlorogenic acid (CGA), gallic acid, protocatechuic acid and vanillic acid, could not be recognized by the MIP. Furthermore, the MIP was successfully applied for extraction of CA and CGA in the leaves of Eucommia ulmodies in HILIC mode. Copyright © 2015 Elsevier B.V. All rights reserved.
Malignant induction probability maps for radiotherapy using X-ray and proton beams.
Timlin, C; Houston, M; Jones, B
2011-12-01
The aim of this study was to display malignant induction probability (MIP) maps alongside dose distribution maps for radiotherapy using X-ray and charged particles such as protons. Dose distributions for X-rays and protons are used in an interactive MATLAB® program (MathWorks, Natick, MA). The MIP is calculated using a published linear quadratic model, which incorporates fractionation effects, cell killing and cancer induction as a function of dose, as well as relative biological effect. Two virtual situations are modelled: (a) a tumour placed centrally in a cubic volume of normal tissue and (b) the same tumour placed closer to the skin surface. The MIP is calculated for a variety of treatment field options. The results show that, for protons, the MIP increases with field numbers. In such cases, proton MIP can be higher than that for X-rays. Protons produce the lowest MIPs for superficial targets because of the lack of exit dose. The addition of a dose bath to all normal tissues increases the MIP by up to an order of magnitude. This exploratory study shows that it is possible to achieve three-dimensional displays of carcinogenesis risk. The importance of treatment geometry, including the length and volume of tissue traversed by each beam, can all influence MIP. Reducing the volume of tissue irradiated is advantageous, as reducing the number of cells at risk reduces the total MIP. This finding lends further support to the use of treatment gantries as well as the use of simpler field arrangements for particle therapy provided normal tissue tolerances are respected.
Shanmugam, A.; Wang, J.; Markand, S.; Perry, R.L.; Tawfik, A.; Zorrilla, E.; Ganapathy, V.; Smith, S.B.
2015-01-01
The high affinity Sigma Receptor 1 (σR1) ligand (+)-pentazocine ((+)-PTZ) affords profound retinal neuroprotection in vitro and in vivo by a yet-unknown mechanism. A common feature of retinal disease is Müller cell reactive gliosis, which includes cytokine release. Here we investigated whether LPS stimulates cytokine release by primary mouse Müller cells and whether (+)-PTZ alters release. Using a highly sensitive inflammatory antibody array we observed significant release of macrophage inflammatory proteins (MIP1γ, MIP2, MIP3α) and interleukin-12 (IL12 (p40/p70)) in LPS-treated cells compared to controls, and a significant decrease in secretion upon (+)-PTZ treatment. Müller cells from σR1 knockout mice demonstrated increased MIP1γ, MIP2, MIP3α and IL12 (p40/p70) secretion when exposed to LPS compared to LPS-stimulated WT cells. We investigated whether cytokine secretion was accompanied by cytosolic-to-nuclear NFκB translocation and whether endothelial cell adhesion/migration was altered by released cytokines. Cells exposed to LPS demonstrated increased NFκB nuclear location, which was reduced significantly in (+)-PTZ-treated cells. Media conditioned by LPS-stimulated-Müller cells induced leukocyte-endothelial cell adhesion and endothelial cell migration, which was attenuated by (+)-PTZ treatment. The findings suggest that release of certain inflammatory cytokines by Müller cells can be attenuated by σR1 ligands providing insights into the retinal neuroprotective role of this receptor. PMID:25439327
Takada, Masahiro; Takeuchi, Megumi; Suzuki, Eiji; Sato, Fumiaki; Matsumoto, Yoshiaki; Torii, Masae; Kawaguchi-Sakita, Nobuko; Nishino, Hiroto; Seo, Satoru; Hatano, Etsuro; Toi, Masakazu
2018-05-09
Inability to visualize indocyanine green fluorescence images in the surgical field limits the application of current near-infrared fluorescence imaging (NIR) systems for real-time navigation during sentinel lymph node (SLN) biopsy in breast cancer patients. The aim of this study was to evaluate the usefulness of the Medical Imaging Projection System (MIPS), which uses active projection mapping, for SLN biopsy. A total of 56 patients (59 procedures) underwent SLN biopsy using the MIPS between March 2016 and November 2017. After SLN biopsy using the MIPS, residual SLNs were removed using a conventional NIR camera and/or radioisotope method. The primary endpoint of this study was identification rate of SLNs using the MIPS. In all procedures, at least one SLN was detected by the MIPS, giving an SLN identification rate of 100% [95% confidence interval (CI) 94-100%]. SLN biopsy was successfully performed without operating lights in all procedures. In total, 3 positive SLNs were excised using MIPS, but were not included in the additional SLNs excised by other methods. The median number of SLNs excised using the MIPS was 3 (range 1-7). Of procedures performed after preoperative systemic therapy, the median number of SLNs excised using the MIPS was 3 (range 2-6). The MIPS is effective in detecting SLNs in patients with breast cancer, providing continuous and accurate projection of fluorescence signals in the surgical field, without need for operating lights, and could be useful in real-time navigation surgery for SLN biopsy.
Utilizing the Cross-Reactivity of MIPs.
Yilmaz, Ecevit; Billing, Johan; Nilsson, Carina; Boyd, Brian; Kecili, Rüstem; Nivhede, David; Axelsson, Sara; Rees, Anthony
2015-01-01
The crossreactivity of molecularly imprinted polymers (MIPs) and its practical implications are discussed. Screening of MIP libraries is presented as a fasttrack route to discovery of resins selective towards new targets, exploiting the fact that MIPs imprinted with one type of template molecule also show recognition to related and sometimes also to apparently unrelated molecules. Several examples from our own and others' studies are presented that illustrate this crossreactivity and the pattern of recognition is discussed for selected examples.
Development of molecularly imprinted polymer-based field effect transistor for sugar chain sensing
NASA Astrophysics Data System (ADS)
Nishitani, Shoichi; Kajisa, Taira; Sakata, Toshiya
2017-04-01
In this study, we developed a molecularly imprinted polymer-based field-effect transistor (MIP-gate FET) for selectively detecting sugar chains in aqueous media, focusing on 3‧-sialyllactose (3SLac) and 6‧-sialyllactose (6SLac). The FET biosensor enables the detection of small molecules as long as they have intrinsic charges. Additionally, the MIP gels include the template for the target molecule, which is selectively trapped without requiring enzyme-target molecule reaction. The MIP gels were synthesized on the gate surface of the FET device, including phenylboronic acid (PBA), which enables binding to sugar chains. Firstly, the 3SLac-MIP-gate FET quantitatively detected 3SLac at µM levels. This is because the FET device recognized the change in molecular charges on the basis of PBA-3SLac binding in the MIP gel. Moreover, 3SLac was selectively detected using the 3SLac- and 6SLac-MIP-gate FETs to some extent, where the detecting signal from the competent was suppressed by 40% at maximum. Therefore, a platform based on the MIP-coupled FET biosensor is suitable for a selective biosensing system in an enzyme-free manner, which can be applied widely in medical fields. However, we need to further improve the selectivity of MIP-gate FETs to discriminate more clearly between similar structures of sugar chains such as 3SLac and 6SLac.
Asman, Saliza; Mohamad, Sharifah; Muhamad Sarih, Norazilawati
2015-01-01
The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the –OH group of MAA and one of the primary –OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π–π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP. PMID:25667978
Effects of health information technology on malpractice insurance premiums.
Kim, Hye Yeong; Lee, Jinhyung
2015-04-01
The widespread adoption of health information technology (IT) will help contain health care costs by decreasing inefficiencies in healthcare delivery. Theoretically, health IT could lower hospitals' malpractice insurance premiums (MIPs) and improve the quality of care by reducing the number and size of malpractice. This study examines the relationship between health IT investment and MIP using California hospital data from 2006 to 2007. To examine the effect of hospital IT on malpractice insurance expense, a generalized estimating equation (GEE) was employed. It was found that health IT investment was not negatively associated with MIP. Health IT was reported to reduce medical error and improve efficiency. Thus, it may reduce malpractice claims from patients, which will reduce malpractice insurance expenses for hospitals. However, health IT adoption could lead to increases in MIPs. For example, we expect increases in MIPs of about 1.2% and 1.5%, respectively, when health IT and labor increase by 10%. This study examined the effect of health IT investment on MIPs controlling other hospital and market, and volume characteristics. Against our expectation, we found that health IT investment was not negatively associated with MIP. There may be some possible reasons that the real effect of health IT on MIPs was not observed; barriers including communication problems among health ITs, shorter sample period, lower IT investment, and lack of a quality of care measure as a moderating variable.
Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V
2013-04-03
An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.
MIPS: a database for protein sequences, homology data and yeast genome information.
Mewes, H W; Albermann, K; Heumann, K; Liebl, S; Pfeiffer, F
1997-01-01
The MIPS group (Martinsried Institute for Protein Sequences) at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, collects, processes and distributes protein sequence data within the framework of the tripartite association of the PIR-International Protein Sequence Database (,). MIPS contributes nearly 50% of the data input to the PIR-International Protein Sequence Database. The database is distributed on CD-ROM together with PATCHX, an exhaustive supplement of unique, unverified protein sequences from external sources compiled by MIPS. Through its WWW server (http://www.mips.biochem.mpg.de/ ) MIPS permits internet access to sequence databases, homology data and to yeast genome information. (i) Sequence similarity results from the FASTA program () are stored in the FASTA database for all proteins from PIR-International and PATCHX. The database is dynamically maintained and permits instant access to FASTA results. (ii) Starting with FASTA database queries, proteins have been classified into families and superfamilies (PROT-FAM). (iii) The HPT (hashed position tree) data structure () developed at MIPS is a new approach for rapid sequence and pattern searching. (iv) MIPS provides access to the sequence and annotation of the complete yeast genome (), the functional classification of yeast genes (FunCat) and its graphical display, the 'Genome Browser' (). A CD-ROM based on the JAVA programming language providing dynamic interactive access to the yeast genome and the related protein sequences has been compiled and is available on request. PMID:9016498
Immunodominant protein MIP_05962 from Mycobacterium indicus pranii displays chaperone activity.
Sharma, Ashish; Equbal, Md Javed; Pandey, Saurabh; Sheikh, Javaid A; Ehtesham, Nasreen Z; Hasnain, Seyed E; Chaudhuri, Tapan K
2017-05-01
Tuberculosis, a contagious disease of infectious origin is currently a major cause of deaths worldwide. Mycobacterium indicus pranii (MIP), a saprophytic nonpathogen and a potent immunomodulator is currently being investigated as an intervention against tuberculosis along with many other diseases with positive outcome. The apparent paradox of multiple chaperones in mycobacterial species and enigma about the cellular functions of the client proteins of these chaperones need to be explored. Chaperones are the known immunomodulators; thus, there is need to exploit the proteome of MIP for identification and characterization of putative chaperones. One of the immunogenic proteins, MIP_05962 is a member of heat shock protein (HSP) 20 family due to the presence of α-crystallin domain, and has amino acid similarity with Mycobacterium lepraeHSP18 protein. The diverse functions of M. lepraeHSP18 in stress conditions implicate MIP_05962 as an important protein that needs to be explored. Biophysical and biochemical characterization of the said protein proved it to be a chaperone. The observations of aggregation prevention and refolding of substrate proteins in the presence of MIP_05962 along with interaction with non-native proteins, surface hydrophobicity, formation of large oligomers, in-vivo thermal rescue of Escherichia coli expressing MIP_05962, enhancing solubility of insoluble protein maltodextrin glucosidase (MalZ) under in-vivo conditions, and thermal stability and reversibility confirmed MIP_05962 as a molecular chaperone. © 2017 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei, E-mail: wlu@umm.edu; Neuner, Geoffrey A.; George, Rohini
2014-01-01
Purpose: To investigate whether coaching patients' breathing would improve the match between ITV{sub MIP} (internal target volume generated by contouring in the maximum intensity projection scan) and ITV{sub 10} (generated by combining the gross tumor volumes contoured in 10 phases of a 4-dimensional CT [4DCT] scan). Methods and Materials: Eight patients with a thoracic tumor and 5 patients with an abdominal tumor were included in an institutional review board-approved prospective study. Patients underwent 3 4DCT scans with: (1) free breathing (FB); (2) coaching using audio-visual (AV) biofeedback via the Real-Time Position Management system; and (3) coaching via a spirometer systemmore » (Active Breathing Coordinator or ABC). One physician contoured all scans to generate the ITV{sub 10} and ITV{sub MIP}. The match between ITV{sub MIP} and ITV{sub 10} was quantitatively assessed with volume ratio, centroid distance, root mean squared distance, and overlap/Dice coefficient. We investigated whether coaching (AV or ABC) or uniform expansions (1, 2, 3, or 5 mm) of ITV{sub MIP} improved the match. Results: Although both AV and ABC coaching techniques improved frequency reproducibility and ABC improved displacement regularity, neither improved the match between ITV{sub MIP} and ITV{sub 10} over FB. On average, ITV{sub MIP} underestimated ITV{sub 10} by 19%, 19%, and 21%, with centroid distance of 1.9, 2.3, and 1.7 mm and Dice coefficient of 0.87, 0.86, and 0.88 for FB, AV, and ABC, respectively. Separate analyses indicated a better match for lung cancers or tumors not adjacent to high-intensity tissues. Uniform expansions of ITV{sub MIP} did not correct for the mismatch between ITV{sub MIP} and ITV{sub 10}. Conclusions: In this pilot study, audio-visual biofeedback did not improve the match between ITV{sub MIP} and ITV{sub 10}. In general, ITV{sub MIP} should be limited to lung cancers, and modification of ITV{sub MIP} in each phase of the 4DCT data set is recommended.« less
Pardo, Antonelle; Mespouille, Laetitia; Blankert, Bertrand; Trouillas, Patrick; Surin, Mathieu; Dubois, Philippe; Duez, Pierre
2014-10-17
Molecularly imprinted polymers (MIPs) based on quercetin and synthesized by either bulk, precipitation or suspension polymerization were characterized in terms of size and shape by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After a study of rebinding protocols, the optimal materials were evaluated as sorbents for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) to confirm the presence of imprinted cavities and to assess their selectivity. Besides quercetin, other structurally related natural compounds, naringenin, daidzein and curcumin, were employed for selectivity tests of MIPs. Although rebinding protocols previously described for such MIPs are typically based on binding, washing and eluting methanol-based solutions, we show that this highly polar solvent leads to weak specific interactions (imprinting factor<1) and poor sorbent properties, most probably because of hydrogen-bonding interferences between the MIP and MeOH. Similar experiments performed in tetrahydrofuran yield to much more improved properties (imprinting factor>2.4). This calls for reviewing most of previously published data on quercetin-MIPs; in proper binding conditions, published MIPs may prove more performing than initially assessed. As expected, tested MIPs exhibited the highest selective rebinding towards quercetin template (imprinting effect, quercetin, 3.41; naringenin, 1.54; daidzein, 1.38; curcumin, 1.67); the differences in selectivity between quercetin analogues were explained by the ligand geometries and H-bonding patterns obtained from quantum-chemical calculations. The evaluation of MIPs under identical analytical conditions allowed investigating the effect of the production method on chromatographic performances. The MIPs in bead materials (for quercetin, peak width, 0.69; number of theoretical plates, 143; symmetry factor, 2.22) provided a significant improvement in chromatographic efficiency over the bulk materials (for quercetin, peak width, 1.25; number of theoretical plates, 115; symmetry factor, 2.92). Using the quercetin-beaded MIP as SPE sorbent, quercetin was selectively extracted from Allium cepa L. extract. The MIP developed in this work therefore appears highly promising for the enrichment and determination of quercetin in natural products. Copyright © 2014 Elsevier B.V. All rights reserved.
Promoting universal financial protection: health insurance for the poor in Georgia--a case study.
Zoidze, Akaki; Rukhazde, Natia; Chkhatarashvili, Ketevan; Gotsadze, George
2013-11-15
The present study focuses on the program "Medical Insurance for the Poor (MIP)" in Georgia. Under this program, the government purchased coverage from private insurance companies for vulnerable households identified through a means testing system, targeting up to 23% of the total population. The benefit package included outpatient and inpatient services with no co-payments, but had only limited outpatient drug benefits. This paper presents the results of the study on the impact of MIP on access to health services and financial protection of the MIP-targeted and general population. With a holistic case study design, the study employed a range of quantitative and qualitative methods. The methods included document review and secondary analysis of the data obtained through the nationwide household health expenditure and utilisation surveys 2007-2010 using the difference-in-differences method. The study findings showed that MIP had a positive impact in terms of reduced expenditure for inpatient services and total household health care costs, and there was a higher probability of receiving free outpatient benefits among the MIP-insured. However, MIP insurance had almost no effect on health services utilisation and the households' expenditure on outpatient drugs, including for those with MIP insurance, due to limited drug benefits in the package and a low claims ratio. In summary, the extended MIP coverage and increased financial access provided by the program, most likely due to the exclusion of outpatient drug coverage from the benefit package and possibly due to improper utilisation management by private insurance companies, were not able to reverse adverse effects of economic slow-down and escalating health expenditure. MIP has only cushioned the negative impact for the poorest by decreasing the poor/rich gradient in the rates of catastrophic health expenditure. The recent governmental decision on major expansion of MIP coverage and inclusion of additional drug benefit will most likely significantly enhance the overall MIP impact and its potential as a viable policy instrument for achieving universal coverage. The Georgian experience presented in this paper may be useful for other low- and middle-income countries that are contemplating ways to ensure universal coverage for their populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyde, Derek E.; Habets, Damiaan F.; Fox, Allan J.
2007-07-15
Digital subtraction angiography is being supplanted by three-dimensional imaging techniques in many clinical applications, leading to extensive use of maximum intensity projection (MIP) images to depict volumetric vascular data. The MIP algorithm produces intensity profiles that are different than conventional angiograms, and can also increase the vessel-to-tissue contrast-to-noise ratio. We evaluated the effect of the MIP algorithm in a clinical application where quantitative vessel measurement is important: internal carotid artery stenosis grading. Three-dimensional computed rotational angiography (CRA) was performed on 26 consecutive symptomatic patients to verify an internal carotid artery stenosis originally found using duplex ultrasound. These volumes of datamore » were visualized using two different postprocessing projection techniques: MIP and digitally reconstructed radiographic (DRR) projection. A DRR is a radiographic image simulating a conventional digitally subtracted angiogram, but it is derived computationally from the same CRA dataset as the MIP. By visualizing a single volume with two different projection techniques, the postprocessing effect of the MIP algorithm is isolated. Vessel measurements were made, according to the NASCET guidelines, and percentage stenosis grades were calculated. The paired t-test was used to determine if the measurement difference between the two techniques was statistically significant. The CRA technique provided an isotropic voxel spacing of 0.38 mm. The MIPs and DRRs had a mean signal-difference-to-noise-ratio of 30:1 and 26:1, respectively. Vessel measurements from MIPs were, on average, 0.17 mm larger than those from DRRs (P<0.0001). The NASCET-type stenosis grades tended to be underestimated on average by 2.4% with the MIP algorithm, although this was not statistically significant (P=0.09). The mean interobserver variability (standard deviation) of both the MIP and DRR images was 0.35 mm. It was concluded that the MIP algorithm slightly increased the apparent dimensions of the arteries, when applied to these intra-arterial CRA images. This subpixel increase was smaller than both the voxel size and interobserver variability, and was therefore not clinically relevant.« less
Abreu, Emanuel F. M.; Aragão, Francisco J. L.
2007-01-01
Background and Aims Myo-inositol-1l-phosphate synthase (MIPS) catalyses the conversion of d-glucose 6-phosphate to 1-l-myo-inositol-1-phosphate, the first and rate-limiting step in the biosynthesis of all inositol-containing compounds. Inositol phospholipids play a vital role in membrane trafficking and signalling pathways, auxin storage and transport, phytic acid biosynthesis, cell wall biosynthesis and production of stress-related molecules. In the present study, an MIPS cDNA from developing Passiflora edulis f. flavicarpa seeds was characterized and an investigation made into its spatial and differential expression, as well as changes in its transcription during exposure of growing plants to cold and heat stresses. Methods The MIPS-encoding gene was isolated by polymerase chain reaction (PCR) methods, and transcript levels were examined using semi-quantitative reverse transcription–PCR (RT–PCR) during seed development and in response to heat and cold stress. In addition, the copy number of the cloned PeMIPS1 gene in the genome of Passiflora edulis, P. eichleriana, P. caerulea, P. nitida and P. coccinea was determined by Southern blot analyses. Key Results A full-length cDNA clone of the PeMIPS1 from P. edulis was isolated and characterized. Southern blot analyses indicated that the genomic DNA might have diverse sequences of MIPS-encoding genes and one copy of the cloned PeMIPS1 gene in the genomes of P. edulis, P. eichleriana, P. caerulea, P. nitida and P. coccinea. RT–PCR expression analyses revealed the presence of PeMIPS1 transcripts in ovules, pollen grains and leaves, and during the seed developmental stages, where it peaked at 9 d after pollination. The PeMIPS1 gene is differentially regulated under cold and heat stress, presenting a light-responsive transcription. Conclusions Experimental data suggest that PeMIPS1 transcription plays an important role in the establishment of developmental programmes and during the response of plants to environmental changes. The PeMIPS1 is differentially transcribed during cold and heat stress, presenting a light response pattern, suggesting that it is important for environmental stress response. PMID:17138579
Computer simulation of the matrix-inclusion interphase in bulk metallic glass based nanocomposites
NASA Astrophysics Data System (ADS)
Kokotin, V.; Hermann, H.; Eckert, J.
2011-10-01
Atomistic models for matrix-inclusion systems are generated. Analyses of the systems show that interphase layers of finite thickness appear interlinking the surface of the nanocrystalline inclusion and the embedding amorphous matrix. In a first approximation, the interphase is characterized as an amorphous structure with a density slightly reduced compared to that of the matrix. This result holds for both monatomic hard sphere systems and a Cu47.5Zr47.5Al5 alloy simulated by molecular dynamics (MD). The elastic shear and bulk modulus of the interphase are calculated by simulated deformation of the MD systems. Both moduli diminish with decreasing density but the shear modulus is more sensitive against density reduction by one order of magnitude. This result explains recent observations of shear band initiation at the amorphous-crystalline interface during plastic deformation.
Electrochemical MIP-Sensors for Drugs.
Yarman, Aysu; Kurbanoglu, Sevinc; Jetzschmann, Katharina J; Ozkan, Sibel A; Wollenberger, Ulla; Scheller, Frieder
2017-10-05
In order to replace bio-macromolecules by stable synthetic materials in separation techniques and bioanalysis biomimetic receptors and catalysts have been developed: Functional monomers are polymerized together with the target analyte and after template removal cavities are formed in the "molecularly imprinted polymer" (MIP) which resemble the active sites of antibodies and enzymes. Staring almost 80 years ago, around 1,100 papers on MIPs were published in 2016. Electropolymerization allows to deposit MIPs directly on voltammetric electrodes or chips for quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). For the readout of MIPs for drugs amperometry, differential pulse voltammetry (DPV) and impedance spectroscopy (EIS) offer higher sensitivity as compared with QCM or SPR. Application of simple electrochemical devices allows both the reproducible preparation of MIP sensors, but also the sensitive signal generation. Electrochemical MIP-sensors for the whole arsenal of drugs, e.g. the most frequently used analgesics, antibiotics and anticancer drugs have been presented in literature and tested under laboratory conditions. These biomimetic sensors typically have measuring ranges covering the lower nano- up to millimolar concentration range and they are stable under extreme pH and in organic solvents like non-aqueous extracts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Altered plasma levels of chemokines in autism and their association with social behaviors.
Shen, Yidong; Ou, JInajun; Liu, Mengmeng; Shi, Lijuan; Li, Yamin; Xiao, Lu; Dong, Huixi; Zhang, Fengyu; Xia, Kun; Zhao, Jingping
2016-10-30
Autism Spectrum Disorder (ASD) is a group of neurodevelopment disorders with an unclear etiology. Chemokines have been implicated in the etiology and pathogenesis of ASD. The current study investigated the plasma levels of seven chemokines (RANTES, Eotaxin, MIP-1 α, MIP-1 β, MCP-1, IP-10, and MIG) in 42 young autistic patients and 35 age-matched typically developing (TD) children. The study also tested the association between these chemokine levels and social behaviors, as measured by the Social Responsiveness Scale (SRS). Compared to the TD children, RANTES, MIP-1α, and MIP-1β were higher, while IP-10 and MIG were lower in the autistic patients, after correcting for multiple comparisons. Among these seven chemokines, MIP-1α, MIP-1β and IP-10 levels were found to be associated with social behaviors in all the participants. Moreover, MIP-1α and IP-10 were found to be independent predictors of social behaviors. The results of our study support the hypothesis that altered chemokine levels are involved in the pathophysiology of ASD and they indicate that chemokines plasma levels could be potential biomarkers for ASD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; ...
2015-10-27
We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less
In silico designed nanoMIP based optical sensor for endotoxins monitoring.
Abdin, M J; Altintas, Z; Tothill, I E
2015-05-15
Molecular modelling was used to select specific monomers suitable for the design of molecularly imprinted polymers (MIPs) with high affinity towards endotoxins. MIPs were synthesised using solid-phase photopolymerisation with endotoxins from Escherichia coli 0111:B4 as the template. This technique also allowed the endotoxin template to be reused successfully. Particle size of ~190-220 nm was achieved with low polydispersity index, which confirms the quality of the produced MIPs. For the development of the optical sensor, SPR-2 biosensor system was used by functionalising the gold sensor chip with the MIP nanoparticles using EDC/NHS coupling procedure. The affinity based-endotoxin assay can detect endotoxins in the concentration range of 15.6-500 ng mL(-1). MIP surfaces were regenerated showing stability of the method for subsequent analysis and dissociation constants were calculated as 3.24-5.24×10(-8) M. The developed SPR sensor with the novel endotoxins nanoMIP showed the potential of the technology for endotoxins capture, detection and risk management and also the importance of computational modelling to design the artificial affinity ligands. Copyright © 2014 Elsevier B.V. All rights reserved.
Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis
Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K.; Minc, Nicolas; Bellaïche, Yohanns
2017-01-01
The orientation of cell division along the interphase cell long-axis, the century old Hertwig’s rule, has profound roles in tissue proliferation, morphogenesis, architecture and mechanics1,2. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways3–12. At mitosis, epithelial cells usually round up to ensure faithful chromosome segregation and to promote morphogenesis1. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. We found that in Drosophila epithelia, tricellular junctions (TCJ) localize microtubule force generators, orienting cell division via the Dynein associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJ emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues. PMID:26886796
AgMIP 1.5°C Assessment: Mitigation and Adaptation at Coordinated Global and Regional Scales
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2016-12-01
The AgMIP 1.5°C Coordinated Global and Regional Integrated Assessments of Climate Change and Food Security (AgMIP 1.5 CGRA) is linking site-based crop and livestock models with similar models run on global grids, and then links these biophysical components with economics models and nutrition metrics at regional and global scales. The AgMIP 1.5 CGRA assessment brings together experts in climate, crop, livestock, economics, nutrition, and food security to define the 1.5°C Protocols and guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including socioeconomic development (Shared Socioeconomic Pathways), greenhouse gas concentrations (Representative Concentration Pathways), and specific pathways of agricultural sector development (Representative Agricultural Pathways). Shared Climate Policy Assumptions will be extended to provide additional agricultural detail on mitigation and adaptation strategies. The multi-model, multi-disciplinary, multi-scale integrated assessment framework is using scenarios of economic development, adaptation, mitigation, food policy, and food security. These coordinated assessments are grounded in the expertise of AgMIP partners around the world, leading to more consistent results and messages for stakeholders, policymakers, and the scientific community. The early inclusion of nutrition and food security experts has helped to ensure that assessment outputs include important metrics upon which investment and policy decisions may be based. The CGRA builds upon existing AgMIP research groups (e.g., the AgMIP Wheat Team and the AgMIP Global Gridded Crop Modeling Initiative; GGCMI) and regional programs (e.g., AgMIP Regional Teams in Sub-Saharan Africa and South Asia), with new protocols for cross-scale and cross-disciplinary linkages to ensure the propagation of expert judgment and consistent assumptions.
Zanetti, Stefano Paolo; Boeri, Luca; Gallioli, Andrea; Talso, Michele; Montanari, Emanuele
2017-01-01
Miniaturized percutaneous nephrolithotomy (mini-PCNL) has increased in popularity in recent years and is now widely used to overcome the therapeutic gap between conventional PCNL and less-invasive procedures such as shock wave lithotripsy (SWL) or flexible ureterorenoscopy (URS) for the treatment of renal stones. However, despite its minimally invasive nature, the superiority in terms of safety, as well as the similar efficacy of mini-PCNL compared to conventional procedures, is still under debate. The aim of this chapter is to present one of the most recent advancements in terms of mini-PCNL: the Karl Storz "minimally invasive PCNL" (MIP). A literature search for original and review articles either published or e-published up to December 2016 was performed using Google and the PubMed database. Keywords included: minimally invasive PCNL; MIP. The retrieved articles were gathered and examined. The complete MIP set is composed of different sized rigid metallic fiber-optic nephroscopes and different sized metallic operating sheaths, according to which the MIP is categorized into extra-small (XS), small (S), medium (M) and large (L). Dilation can be performed either in one-step or with a progressive technique, as needed. The reusable devices of the MIP and vacuum cleaner efect make PCNL with this set a cheap procedure. The possibility to shift from a small to a larger instrument within the same set (Matrioska technique) makes MIP a very versatile technique suitable for the treatment of almost any stone. Studies in the literature have shown that MIP is equally effective, with comparable rates of post-operative complications, as conventional PCNL, independently from stone size. MIP does not represent a new technique, but rather a combination of the last ten years of PCNL improvements in a single system that can transversally cover all available techniques in the panorama of percutaneous stone treatment.
Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.
2014-01-01
A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (−LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. PMID:25452551
MACRA, MIPS, and the New Medicare Quality Payment Program: An Update for Radiologists.
Rosenkrantz, Andrew B; Nicola, Gregory N; Allen, Bibb; Hughes, Danny R; Hirsch, Joshua A
2017-03-01
The Medicare Access and CHIP Reauthorization Act (MACRA) of 2015 advances the goal of tying Medicare payments to quality and value. In April 2016, CMS published an initial proposed rule for MACRA, renaming it the Quality Payment Program (QPP). Under QPP, clinicians receive payments through either advanced alternative payment models or the Merit-Based Incentive Payment System (MIPS), a consolidation of existing federal performance programs that applies positive or negative adjustments to fee-for-service payments. Most physicians will participate in MIPS. This review highlights implications of the QPP and MIPS for radiologists. Although MIPS incorporates radiology-specific quality measures, radiologists will also be required to participate in other practice improvement activities, including patient engagement. Recognizing physicians' unique practice patterns, MIPS will provide special considerations in performance evaluation for physicians with limited face-to-face patient interaction. Although such considerations will affect radiologists' likelihood of success under QPP, many practitioners will be ineligible for the considerations under currently proposed criteria. Reporting using qualified clinical data registries will benefit radiologists' performance by allowing expanded arrays of MIPS and non-MIPS specialty-specific measures. A group practice reporting option will substantially reduce administrative burden but introduce new challenges by requiring uniform determination of patient-facing status and performance measurement for all of the group's physicians (diagnostic radiologists, interventional radiologists, and nonradiologists) under the same taxpayer identification number. Given that the initial MIPS performance period begins in 2017, radiologists must begin preparing for QPP and taking actions to ensure their future success under this new quality-based payment system. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Zheng, Penglei; Luo, Zhimin; Chang, Ruimiao; Ge, Yanhui; Du, Wei; Chang, Chun; Fu, Qiang
2015-09-01
On account of the specificity and reproducibility for the determination of penicilloic acid in penicillin, this study aims to prepare penicilloic acid imprinted polymers (PEOA-MIPs) by surface polymerization method at the surface of modified silica particles by using penicilloic acid (PEOA) as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate ( EGDMA) as the cross linker, and methanol/acetonitrile as the solvents. The synthesis conditions were optimized, and PEOA-MIPs had the best adsorption capacity when the molar ratio of template molecule/functional monomer was 1 :4, cross linking degree was 85% and the solvent ratio of methanol/acetonitrile was 1 :1 (v/v). The adsorption properties were evaluated by adsorption experiments, including the adsorption isotherms, kinetics and selectivity. The adsorption process between PEOA-MIPs and PEOA fitted the Langmuir adsorption isotherm with the maximum adsorption capacity of 122. 78 mg/g and the pseudo-second-order reaction kinetics with fast adsorption kinetics (the equilibrium time of 45 min). The as-synthesized PEOA-MIPs were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The results indicated that the MIPs layer has been successfully grafted on the surface of SiO2 microparticles and the PEOA-MIPs had the excellent thermal stability. The PEOA-MIPs showed the highest selective recognition for PEOA. The PEOA-MIPs possess a high adsorption capacity, rapid mass-transfer rate and high selectivity to PEOA when compared with non-imprinted polymers (PEOA-NIPs). The PEOA-MIPs was expected to be used as the solid phase extraction medium and this study provides the potential applications for fast recognition and analysis of the penicilloic acid in penicillin.
Respiratory muscle strength in relation to sarcopenia in elderly cardiac patients.
Izawa, Kazuhiro P; Watanabe, Satoshi; Oka, Koichiro; Kasahara, Yusuke; Morio, Yuji; Hiraki, Koji; Hirano, Yasuyuki; Omori, Yutaka; Suzuki, Norio; Kida, Keisuke; Suzuki, Kengo; Akashi, Yoshihiro J
2016-12-01
Little information exists on the relation between respiratory muscle strength such as maximum inspiratory muscle pressure (MIP) and sarcopenia in elderly cardiac patients. The present study aimed to determine the differences in MIP, and cutoff values for MIP according to sarcopenia in elderly cardiac patients. We enrolled 63 consecutive elderly male patients aged ≥65 years with cardiac disease in this cross-sectional study. Sarcopenia was defined based on the European Working Group on Sarcopenia in Older People algorithm, and, accordingly, the patients were divided into two groups: the sarcopenia group (n = 24) and non-sarcopenia group (n = 39). The prevalence of sarcopenia in cardiac patients and MIP in the patients with and without sarcopenia were assessed to determine cutoff values of MIP. After adjustment for body mass index, the MIP in the sarcopenia group was significantly lower than that in the non-sarcopenia group (54.7 ± 36.8 cmH 2 O; 95 % CI 42.5-72.6 vs. 80.7 ± 34.7 cmH 2 O; 95 % CI 69.5-92.0; F = 4.89, p = 0.029). A receiver-operating characteristic curve analysis of patients with and without sarcopenia identified a cutoff value for MIP of 55.6 cmH 2 O, with a sensitivity of 0.76, 1-specificity of 0.37, and AUC of 0.70 (95 % CI 0.56-0.83; p = 0.01) in the study patients. Compared with elderly cardiac patients without sarcopenia, MIP in those with sarcopenia may be negatively affected. The MIP cutoff value reported here may be a useful minimum target value for identifying elderly male cardiac patients with sarcopenia.
NASA Astrophysics Data System (ADS)
Yanti; Nurhayati, T.; Royani, I.; Widayani; Khairurrijal
2016-08-01
In this study, molecularly-imprinted polymer (MIP) was prepared by using a D-glucose template and a methacrylic acid (MAA) functional monomer. The obtained MIP was characterized using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques to study the template imprinting results. For comparison, similar characterizations were also carried out for the respective non imprinted polymer (NIP). It was found that the polymer has semicrystalline structure, with crystallinity degree of the unleached- polymer, the NIP, and the MIP is 62.40%, 62.97%, and 63.47%, respectively. XRD patterns showed that the intensity peaks increases as D-glucose content decreases. The FTIR spectra of the MIP indicate the detail interaction of template and functional monomer.
Advances in the manufacture of MIP nanoparticles.
Poma, Alessandro; Turner, Anthony P F; Piletsky, Sergey A
2010-12-01
Molecularly imprinted polymers (MIPs) are prepared by creating a three-dimensional polymeric matrix around a template molecule. After the matrix is removed, complementary cavities with respect to shape and functional groups remain. MIPs have been produced for applications in in vitro diagnostics, therapeutics and separations. However, this promising technology still lacks widespread application because of issues related to large-scale production and optimization of the synthesis. Recent developments in the area of MIP nanoparticles might offer solutions to several problems associated with performance and application. This review discusses various approaches used in the preparation of MIP nanoparticles, focusing in particular on the issues associated with large-scale manufacture and implications for the performance of synthesized nanomaterials. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhang, Ye; Uhlemeyer, Jimmy; Hada, Megumi; Asaithamby, A.; Chen, David J.; Wu, Honglu
2015-01-01
Previously, we reported that breaks involved in chromosome aberrations were clustered in several regions of chromosome3 in human mammary epithelial cells after exposures to either low-or high-LET radiation. In particular, breaks in certain regions of the chromosome tended to rejoin with each other to form an intrachromosome exchange event. This study tests the hypothesis that proximity within a single chromosome in interphase cell nuclei contributes to the distribution of radiation-induced chromosome breaks. Chromosome 3 in G1 human mammary epithelial cells was hybridized with the multicolor banding in situ hybridization (mBAND) probes that distinguish the chromosome in six differently colored regions, and the location of these regions was measured with a laser confocal microscope. Results of the study indicated that, on a multi-mega base pair scale of the DNA, the arrangement of chromatin was non-random. Both telomere regions tended to be located towards the exterior of the chromosome domain, whereas the centromere region towards the interior. In addition, the interior of the chromosome domain was preferentially occupied by the p-arm of the chromatin, which is consistent with our previous finding of intrachromosome exchanges involving breaks on the p-arm and in the centromere region of chromosome3. Other factors, such as the fragile sites in the 3p21 band and gene regulation, may also contribute to the breakpoint distribution in radiation-induced chromosome aberrations. Further investigations suggest that the 3D chromosome folding is cell type and culture condition dependent.
Cobb, Zoe; Sellergren, Börje; Andersson, Lars I
2007-12-01
Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.
Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides
Granados, Diana Paola; Sriranganadane, Dev; Daouda, Tariq; Zieger, Antoine; Laumont, Céline M.; Caron-Lizotte, Olivier; Boucher, Geneviève; Hardy, Marie-Pierre; Gendron, Patrick; Côté, Caroline; Lemieux, Sébastien; Thibault, Pierre; Perreault, Claude
2014-01-01
For decades, the global impact of genomic polymorphisms on the repertoire of peptides presented by major histocompatibility complex (MHC) has remained a matter of speculation. Here we present a novel approach that enables high-throughput discovery of polymorphic MHC class I-associated peptides (MIPs), which play a major role in allorecognition. On the basis of comprehensive analyses of the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings, we show that 0.5% of non-synonymous single nucleotide variations are represented in the MIP repertoire. The 34 polymorphic MIPs found in our subjects are encoded by bi-allelic loci with dominant and recessive alleles. Our analyses show that, at the population level, 12% of the MIP-coding exome is polymorphic. Our method provides fundamental insights into the relationship between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens). PMID:24714562
Li, Ya; Fu, Qiang; Liu, Meng; Jiao, Yuan-Yuan; Du, Wei; Yu, Chong; Liu, Jing; Chang, Chun; Lu, Jian
2012-01-01
In order to prepare a high capacity packing material for solid-phase extraction with specific recognition ability of trace ractopamine in biological samples, uniformly-sized, molecularly imprinted polymers (MIPs) were prepared by a multi-step swelling and polymerization method using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and toluene as a porogen respectively. Scanning electron microscope and specific surface area were employed to identify the characteristics of MIPs. Ultraviolet spectroscopy, Fourier transform infrared spectroscopy, Scatchard analysis and kinetic study were performed to interpret the specific recognition ability and the binding process of MIPs. The results showed that, compared with other reports, MIPs synthetized in this study showed high adsorption capacity besides specific recognition ability. The adsorption capacity of MIPs was 0.063 mmol/g at 1 mmol/L ractopamine concentration with the distribution coefficient 1.70. The resulting MIPs could be used as solid-phase extraction materials for separation and enrichment of trace ractopamine in biological samples. PMID:29403774
Chromatin Structure and the Cell Cycle
Pederson, Thoru
1972-01-01
Pancreatic DNase I is used to probe the structure of chromatin isolated from synchronized HeLa cells. The degree to which DNA in chromatin is protected from DNase attack varies during the G1, S, and G2 phases of the cell cycle. In addition, the DNase sensitivity of chromatin from contact-inhibited African green monkey kidney cells differs from that of actively dividing, subconfluent cultures. These cell cycle-dependent chromatin changes were observed consistently at all enzyme concentrations (5000-fold range) and incubation times (15 min-2 hr) tested. The results indicate that the degree of complexing between DNA and chromosomal proteins changes during interphase, and they suggest that the chromosome coiling cycle of visible mitosis may extend in more subtle form over the entire cell cycle. PMID:4626402
Deletion of the SHOX gene in patients with short stature of unknown cause.
Morizio, E; Stuppia, L; Gatta, V; Fantasia, D; Guanciali Franchi, P; Rinaldi, M M; Scarano, G; Concolino, D; Giannotti, A; Verrotti, A; Chiarelli, F; Calabrese, G; Palka, G
2003-06-15
A fluorescence in situ hybridization (FISH) study was performed in 56 patients with short stature of unknown cause in order to establish the role of deletion of the SHOX gene in this population. FISH analysis was carried out on metaphase spreads and interphase lymphocytes from blood smears using a probe specific for the SHOX gene. Deletion of SHOX was found in four patients (7.1%). No skeletal abnormalities were detected in these patients either at the physical examination or at X-rays of the upper and lower limbs. Present results indicate that SHOX plays an important role also in short stature of unknown cause, and FISH analysis appears as an easy, appropriate, and inexpensive method for the detection of SHOX deletion. Copyright 2003 Wiley-Liss, Inc.
Interphase boundary misorientation in mantle rocks
NASA Astrophysics Data System (ADS)
Morales, L. F.; Mainprice, D.; Boudier, F. I.
2017-12-01
Interphase boundaries are planar defects that separate two different phases, which may have different compositions and/or crystalline structures. Depending on the degree of atomic structure matching between the two adjacent phases, the interphase boundaries can be classified in coherent, semicoherent and incoherent phase boundaries. Here we present the recent developments of interphase misorientation boundary analyses calculated from EBSD data in an olivine-antigorite schist from the Val Malenco (Italy) and a spinel lherzolite from the Horoman peridotite complex (Japan). The antigorite schist is strongly foliated and contains about 78% antigorite and 22% olivine, with minor amounts (<1%) of magnetite and chlorite. The antigorite CPO is characterized by a point maxima of poles to (100) parallel to lineation and poles to (001) to the foliation normal. Phase transformation relationships between olivine and antigorite are evident in phase boundary misorientation analysis, (100)ol||(001)atg being more frequent than [001]ol||[010]atg. From the interphase misorientation analyses, we have described two new phase transformation relationships between olivine and antigorite. The studied lherzolite contain 70% olivine, 15% enstatite, 13% diopside and 2% spinel. It has a porphyroclastic texture materialized by enstatite and olivine in a matrix of olivine. Both enstatite, diopside and spinel occur along discontinuous bands parallel to the foliation of the sample. Olivine bulk CPO can be described as a fibre-[100], while both enstatite and diopside show a (001) fibre texture. Interphase misorientation angle distribution between olivine-enstatite and olivine-diopside follow approximately the distribution expected for uniform texture, with some minor (but important) differences at high angle phase boundaries, particularly for olivine-diopside. The pair angle-misorientation axes for the olivine-enstatite show a relatively uniform distribution for different misorientation angle intervals. On the other hand there is a clear concentration of misorientation axes parallel to [010] of olivine in the case of olivine-diopside phase boundaries, possibly related to melt percolation. These differences demonstrate the potential use of interphase misorientation for the study of material processes in rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehrschuetz, M., E-mail: martin.wehrschuetz@klinikum-graz.at; Aschauer, M.; Portugaller, H.
The purpose of this study was to assess interobserver variability and accuracy in the evaluation of renal artery stenosis (RAS) with gadolinium-enhanced MR angiography (MRA) and digital subtraction angiography (DSA) in patients with hypertension. The authors found that source images are more accurate than maximum intensity projection (MIP) for depicting renal artery stenosis. Two independent radiologists reviewed MRA and DSA from 38 patients with hypertension. Studies were postprocessed to display images in MIP and source images. DSA was the standard for comparison in each patient. For each main renal artery, percentage stenosis was estimated for any stenosis detected by themore » two radiologists. To calculate sensitivity, specificity and accuracy, MRA studies and stenoses were categorized as normal, mild (1-39%), moderate (40-69%) or severe ({>=}70%), or occluded. DSA stenosis estimates of 70% or greater were considered hemodynamically significant. Analysis of variance demonstrated that MIP estimates of stenosis were greater than source image estimates for both readers. Differences in estimates for MIP versus DSA reached significance in one reader. The interobserver variance for MIP, source images and DSA was excellent (0.80< {kappa}{<=} 0.90). The specificity of source images was high (97%) but less for MIP (87%); average accuracy was 92% for MIP and 98% for source images. In this study, source images are significantly more accurate than MIP images in one reader with a similar trend was observed in the second reader. The interobserver variability was excellent. When renal artery stenosis is a consideration, high accuracy can only be obtained when source images are examined.« less
Jo, Se-Hee; Lee, See-Young; Park, Kyeong-Mok; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong
2010-11-05
In this study, a three-zone carousel process based on a proper molecular imprinted polymer (MIP) resin was developed for continuous separation of Cu(2+) from Mn(2+) and Co(2+). For this task, the Cu (II)-imprinted polymer (Cu-MIP) resin was synthesized first and used to pack the chromatographic columns of a three-zone carousel process. Prior to the experiment of the carousel process based on the Cu-MIP resin (MIP-carousel process), a series of single-column experiments were performed to estimate the intrinsic parameters of the three heavy metal ions and to find out the appropriate conditions of regeneration and re-equilibration. The results from these single-column experiments and the additional computer simulations were then used for determination of the operating parameters of the MIP-carousel process under consideration. Based on the determined operating parameters, the MIP-carousel experiments were carried out. It was confirmed from the experimental results that the proposed MIP-carousel process was markedly effective in separating Cu(2+) from Mn(2+) and Co(2+) in a continuous mode with high purity and a relatively small loss. Thus, the MIP-carousel process developed in this study deserves sufficient attention in materials processing industries or metal-related industries, where the selective separation of heavy metal ions with the same charge has been a major concern. Copyright © 2010 Elsevier B.V. All rights reserved.
Lim, Yeon-Mi; Moon, Seong-Joon; An, Su-Sun; Lee, Soo-Jin; Kim, Seo-Young; Chang, Ih-Seop; Park, Kui-Lea; Kim, Hyoung-Ah; Heo, Yong
2008-04-01
Worldwide restrictions in animal use for research have driven efforts to develop alternative methods. The study aimed to test the efficacy of the macrophage inflammatory protein-1beta (MIP-1beta) assay for testing chemicals' skin-sensitizing capacity. The assay was performed using 9 chemicals judged to be sensitizing and 7 non-sensitizing by the standard in vivo assays. THP-1 cells were cultured in the presence or absence of 4 doses, 0.01x, 0.1x, 0.5x, or 1x IC(50) (50% inhibitory concentration for THP-1 cell proliferation) of these chemicals for 24 hr, and the MIP-1beta level in the supernatants was determined. Skin sensitization by the test chemicals was determined by MIP-1beta production rates. The MIP-1beta production rate was expressed as the relative increase in MIP-1beta production in response to chemical treatment compared with vehicle treatment. When the threshold MIP-1beta production rate used was 100% or 105% of dimethyl sulfoxide, all the sensitizing chemicals tested (dinitrochlorobenzene, hexyl cinnamic aldehyde, eugenol, hydroquinone, dinitrofluorobenzene, benzocaine, nickel, chromium, and 5-chloro-2-methyl-4-isothiazolin-3-one) were positive, and all the non-sensitizing chemicals (methyl salicylate, benzalkonium chloride, lactic acid, isopropanol, and salicylic acid), with the exception of sodium lauryl sulfate, were negative for MIP-1beta production. These results indicate that MIP-1beta could be a biomarker for classification of chemicals as sensitizers or non-sensitizers.
42 CFR § 414.1320 - MIPS performance period.
Code of Federal Regulations, 2010 CFR
2017-10-01
... (CONTINUED) MEDICARE PROGRAM (CONTINUED) PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Merit-Based Incentive Payment System and Alternative Payment Model Incentive § 414.1320 MIPS performance period. (a) For purposes of the 2019 MIPS payment year, the performance period for all performance categories and...
NASA Technical Reports Server (NTRS)
Conrad, A. H.; Jaffredo, T.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)
1995-01-01
Two principal isoforms of cytoplasmic myosin II, A and B (CMIIA and CMIIB), are present in different proportions in different tissues. Isoform-specific monoclonal and polyclonal antibodies to avian CMIIA and CMIIB reveal the cellular distributions of these isoforms in interphase and dividing embryonic avian cardiac, intestinal epithelial, spleen, and dorsal root ganglia cells in primary cell culture. Embryonic cardiomyocytes react with antibodies to CMIIB but not to CMIIA, localize CMIIB in stress-fiber-like-structures during interphase, and markedly concentrate CMIIB in networks in the cleavage furrow during cytokinesis. In contrast, cardiac fibroblasts localize both CMIIA and CMIIB in stress fibers and networks during interphase, and demonstrate slight and independently regulated concentration of CMIIA and CMIIB in networks in their cleavage furrows. V-myc-immortalized cardiomyocytes, an established cell line, have regained the ability to express CMIIA, as well as CMIIB, and localize both CMIIA and CMIIB in stress fibers and networks in interphase cells and in cleavage furrows in dividing cells. Conversely, some intestinal epithelial, spleen, and dorsal root ganglia interphase cells express only CMIIA, organized primarily in networks. Of these, intestinal epithelial cells express both CMIIA and CMIIB when they divide, whereas some dividing cells from both spleen and dorsal root ganglia express only CMIIA and concentrate it in their cleavage furrows. These results suggest that within a given tissue, different cell types express different isoforms of CMII, and that cells expressing either CMIIA or CMIIB alone, or simultaneously, can form a cleavage furrow and divide.
24 CFR 203.260 - Amount of mortgage insurance premium (periodic MIP).
Code of Federal Regulations, 2010 CFR
2010-04-01
... Mortgage Insurance Premiums-Periodic Payment § 203.260 Amount of mortgage insurance premium (periodic MIP... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Amount of mortgage insurance premium (periodic MIP). 203.260 Section 203.260 Housing and Urban Development Regulations Relating to...
24 CFR 203.260 - Amount of mortgage insurance premium (periodic MIP).
Code of Federal Regulations, 2011 CFR
2011-04-01
... Mortgage Insurance Premiums-Periodic Payment § 203.260 Amount of mortgage insurance premium (periodic MIP... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Amount of mortgage insurance premium (periodic MIP). 203.260 Section 203.260 Housing and Urban Development Regulations Relating to...
MIPS - The Multiband Imaging Photometer for SIRTF. [Multiband Imaging Photometer for SIRTF
NASA Technical Reports Server (NTRS)
Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Arens, J.; Beichman, C.; Gautier, T. N.; Werner, M.
1986-01-01
The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 micron spectral region. It will use high performance photoconductive detectors from 3 to 200 micron with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.
MIPS - The Multiband Imaging Photometer for SIRTF
NASA Technical Reports Server (NTRS)
Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Beichman, C.; Gautier, T. N.; Mould, J.; Werner, M.
1986-01-01
The Multiband Imaging Photometer System (MIPS) for SIRTF is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 microns spectral region. It will use high performance photoconductive detectors from 3 to 200 microns with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.
Dai, Chao-meng; Zhang, Juan; Zhang, Ya-lei; Zhou, Xue-fei; Duan, Yan-ping; Liu, Shu-guang
2013-08-01
A novel double templates-molecularly imprinted polymer (MIP) was prepared by precipitation polymerization using carbamazepine (CBZ) and clofibric acid (CA) as the double templates molecular and 2-vinylpyridine as functional monomer. The equilibrium data of MIP was well described by the Freundlich isotherm model. Two kinetic models were adopted to describe the experimental data, and the pseudo second-order model well-described adsorption of CBZ and CA on the MIP. Adsorption experimental results showed that the MIP had good selectivity and adsorption capacity for CBZ and CA in the presence of competitive compounds compared with non-imprinted polymer, commercial powdered activated carbon, and C18 adsorbents. The feasibility of removing CBZ and CA from water by the MIP was demonstrated using tap water, lake water, and river water.
Kitabatake, Tomoko; Tabo, Hiromi; Matsunaga, Hisami; Haginaka, Jun
2013-08-01
A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3 ± 0.09 and 3.5 ± 0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.
Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping
2014-01-01
Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high-and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively. PMID:24398982
Capacitive sensing of N-formylamphetamine based on immobilized molecular imprinted polymers.
Graniczkowska, Kinga; Pütz, Michael; Hauser, Frank M; De Saeger, Sarah; Beloglazova, Natalia V
2017-06-15
A highly sensitive, capacitive biosensor was developed to monitor trace amounts of an amphetamine precursor in aqueous samples. The sensing element is a gold electrode with molecular imprinted polymers (MIPs) immobilized on its surface. A continuous-flow system with timed injections was used to simulate flowing waterways, such as sewers, springs, rivers, etc., ensuring wide applicability of the developed product. MIPs, implemented as a recognition element due to their stability under harsh environmental conditions, were synthesized using thermo- and UV-initiated polymerization techniques. The obtained particles were compared against commercially available MIPs according to specificity and selectivity metrics; commercial MIPs were characterized by quite broad cross-reactivity to other structurally related amphetamine-type stimulants. After the best batch of MIPs was chosen, different strategies for immobilizing them on the gold electrode's surface were evaluated, and their stability was also verified. The complete, developed system was validated through analysis of spiked samples. The limit of detection (LOD) for N-formyl amphetamine was determined to be 10μM in this capacitive biosensor system. The obtained results indicate future possible applications of this MIPs-based capacitive biosensor for environmental and forensic analysis. To the best of our knowledge there are no existing MIPs-based sensors toward amphetamine-type stimulants (ATS). Copyright © 2016 Elsevier B.V. All rights reserved.
Karasová, Gabriela; Lehotay, Jozef; Sádecká, Jana; Skacáni, Ivan; Lachová, Miroslava
2005-12-01
Selective SPE of derivates of p-hydroxybenzoic acid (pHBA) from plant extract of Melissa officinalis is presented using a molecularly imprinted polymer (MIP) made with protocatechuic acid (PA) as template molecule. MIP was prepared with acrylamide as functional monomer, ethylene glycol dimethacrylate as crosslinking monomer and ACN as porogen. MIP was evaluated towards six phenolic acids: PA, gallic acid, pHBA, vanillic acid (VA), gentisic acid (GeA) and syringic acid (SyrA), and then steps of molecularly imprinted SPE (MISPE) procedure were optimized. The best specific binding capacity of MIP was obtained for PA in ACN (34.7 microg/g of MIP). Other tested acids were also bound on MIP if they were dissolved in this solvent. ACN was chosen as solvent for sample application. M. officinalis was extracted into methanol/water (4:1, v/v), the extract was then evaporated to dryness and dissolved in ACN before application on MIP. Water and ACN were used as washing solvents and elution of benzoic acids was performed by means of a mixture methanol/acetic acid (9:1, v/v). pHBA, GA, PA and VA were extracted with recoveries of 56.3-82.1% using this MISPE method. GeA was not determined in plant extract.
NASA Astrophysics Data System (ADS)
Rosy, Noked, Malachi
2018-04-01
Realization of rechargeable batteries with alkali metal anodes is challenged by their high reactivity and dendritic growth. Now, an alloy-based, artificial solid electrolyte interphase is shown to allow smooth metal deposition, enhance interfacial charge transfer, protect against parasitic reactions and offer extra energy storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng
By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation ofmore » methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.« less
ZHANG, XIAOPENG; MENG, AIHONG; WANG, HUIEN; YAN, XIXIN
2014-01-01
The present study sought to characterize the role of macrophage inflammatory protein-3α (MIP-3α) in non-small cell lung cancer (NSCLC) patients with early recurrence or metastasis after primary pulmonary resection. Follow-up examinations were conducted for 203 NSCLC patients with primary pulmonary resection for two years post-operatively, and data was also collected for 20 healthy subjects. Serum MIP-3α levels were determined prior to surgery and at post-operative days (PODs) 30, 90 and 180, and the relevant clinical and operative variables were collected. Serum MIP-3α was measured using a commercially available enzyme-linked immunosorbent assay. There were no significant differences in age, gender and histological type among all groups (P>0.05). Serum MIP-3α levels on POD 180 were significantly higher in the recurrence group than in the non-recurrence group and healthy subjects (P=0.001). There was no significant difference in the serum MIP-3α level at PODs 90 and 180 in the patients with or without adjuvant chemotherapy (P>0.05). The recurrence rate in the high serum MIP-3α level group was 41.67%, much higher than the 23.53% observed in the low level group (P=0.006). The patients with high serum levels of MIP-3α had a significantly shorter overall recurrence-free time compared with those with low levels (P=0.004). Multivariate Cox’s regression analyses showed that only serum MIP-3α level was significant, with a hazard ratio of 1.061, a 95% confidence interval of 1.044–1.078 and a P-value of 0.001. The serum MIP-3α level in the patients with liver and bone metastases were remarkably higher than those with recurrence at other sites. The high post-operative serum MIP-3α levels were associated with an increased risk of post-operative early recurrence or metastasis in the lung cancer patients, specifically in those with bone or liver metastases. PMID:25013520
Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.
Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A
2018-04-11
The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.
de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira
2016-02-01
In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.
Lopez, David; Chaar, Hatem; Khouaja, Ali; Pujade-Renaud, Valérie; Fumanal, Boris; Gousset-Dupont, Aurélie; Bronner, Gisèle; Label, Philippe; Julien, Jean-Louis; Triki, Mohamed Ali; Auguin, Daniel
2018-01-01
Major intrinsic proteins (MIP) are characterized by a transmembrane pore-type architecture that facilitates transport across biomembranes of water and a variety of low molecular weight solutes. They are found in all parts of life, with remarkable protein diversity. Very little is known about MIP from fungi. And yet, it can legitimately be stated that MIP are pivotal molecular components in the privileged relationships fungi enjoy with plants or soil fauna in various environments. To date, MIP have never been studied in a mycoparasitism situation. In this study, the diversity, expression and functional prediction of MIP from the genus Trichoderma were investigated. Trichoderma spp. genomes have at least seven aquaporin genes. Based on a phylogenetic analysis of the translated sequences, members were assigned to the AQP, AQGP and XIP subfamilies. In in vitro and in planta assays with T. harzianum strain Ths97, expression analyses showed that four genes were constitutively expressed. In a mycoparasitic context with Fusarium solani, the causative agent of fusarium dieback on olive tree roots, these genes were up-regulated. This response is of particular interest in analyzing the MIP promoter cis-regulatory motifs, most of which are involved in various carbon and nitrogen metabolisms. Structural analyses provide new insights into the possible role of structural checkpoints by which these members transport water, H2O2, glycerol and, more generally, linear polyols across the membranes. Taken together, these results provide the first evidence that MIP may play a key role in Trichoderma mycoparasitism lifestyle. PMID:29543834
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2011-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Recent progress and the current status of AgMIP will be presented, highlighting three areas of activity: preliminary results from crop pilot studies, outcomes from regional workshops, and emerging scientific challenges. AgMIP crop modeling efforts are being led by pilot studies, which have been established for wheat, maize, rice, and sugarcane. These crop-specific initiatives have proven instrumental in testing and contributing to AgMIP protocols, as well as creating preliminary results for aggregation and input to agricultural trade models. Regional workshops are being held to encourage collaborations and set research activities in motion for key agricultural areas. The first of these workshops was hosted by Embrapa and UNICAMP and held in Campinas, Brazil. Outcomes from this meeting have informed crop modeling research activities within South America, AgMIP protocols, and future regional workshops. Several scientific challenges have emerged and are currently being addressed by AgMIP researchers. Areas of particular interest include geospatial weather generation, ensemble methods for climate scenarios and crop models, spatial aggregation of field-scale yields to regional and global production, and characterization of future changes in climate variability.
ERIC Educational Resources Information Center
Bockris, J. O'M.
1983-01-01
Suggests various methods for teaching the double layer in electrochemistry courses. Topics addressed include measuring change in absolute potential difference (PD) at interphase, conventional electrode potential scale, analyzing absolute PD, metal-metal and overlap electron PDs, accumulation of material at interphase, thermodynamics of electrified…
Stable Boron Nitride Interphases for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
1999-01-01
Ceramic matrix composites (CMC's) require strong fibers for good toughness and weak interphases so that cracks which are formed in the matrix debond and deflect around the fibers. If the fibers are strongly bonded to the matrix, CMC's behave like monolithic ceramics (e.g., a ceramic coffee cup), and when subjected to mechanical loads that induce cracking, such CMC's fail catastrophically. Since CMC's are being developed for high temperature corrosive environments such as the combustor liner for advanced High Speed Civil Transport aircraft, the interphases need to be able to withstand the environment when the matrix cracks.
Mousa, Mohanad; Dong, Yu
2018-06-19
Mechanical properties of polymer nanocomposites depend primarily on nanointerphases as transitional zones between nanoparticles and surrounding matrices. Due to the difficulty in the quantitative characterisation of nanointerphases, previous literatures generally deemed such interphases as one-dimensional uniform zones around nanoparticles by assumption for analytical or theoretical modelling. We hereby have demonstrated for the first time direct three-dimensional topography and physical measurement of nanophase mechanical properties between nanodimeter bamboo charcoals (NBCs) and poly (vinyl alcohol) (PVA) in polymer nanocomposites. Topographical features, nanomechanical properties and dimensions of nanointerphases were systematically determined via peak force quantitative nanomechanical tapping mode (PFQNM). Significantly different mechanical properties of nanointerphases were revealed as opposed to those of individual NBCs and PVA matrices. Non-uniform irregular three-dimensional structures and shapes of nanointerphases are manifested around individual NBCs, which can be greatly influenced by nanoparticle size and roughness, and nanoparticle dispersion and distribution. Elastic moduli of nanointerphases were experimentally determined in range from 25.32 ±3.4 to 66.3±3.2 GPa. Additionally, it is clearly shown that the interphase modulus strongly depends on interphase surface area SAInterphase and interphase volume VInterphase. Different NBC distribution patterns from fully to partially embedded nanoparticles are proven to yield a remarkable reduction in elastic moduli of nanointerphases. © 2018 IOP Publishing Ltd.
Akamatsu, Matthew; Lin, Yu; Bewersdorf, Joerg; Pollard, Thomas D.
2017-01-01
We used quantitative confocal microscopy and FPALM superresolution microscopy of live fission yeast to investigate the structures and assembly of two types of interphase nodes—multiprotein complexes associated with the plasma membrane that merge together and mature into the precursors of the cytokinetic contractile ring. During the long G2 phase of the cell cycle, seven different interphase node proteins maintain constant concentrations as they accumulate in proportion to cell volume. During mitosis, the total numbers of type 1 node proteins (cell cycle kinases Cdr1p, Cdr2p, Wee1p, and anillin Mid1p) are constant even when the nodes disassemble. Quantitative measurements provide strong evidence that both types of nodes have defined sizes and numbers of constituent proteins, as observed for cytokinesis nodes. Type 1 nodes assemble in two phases—a burst at the end of mitosis, followed by steady increase during interphase to double the initial number. Type 2 nodes containing Blt1p, Rho-GEF Gef2p, and kinesin Klp8p remain intact throughout the cell cycle and are constituents of the contractile ring. They are released from the contractile ring as it disassembles and then associate with type 1 nodes around the equator of the cell during interphase. PMID:28539404
Growth Kinetics of Magnesio-Aluminate Spinel in Al/Mg Lamellar Composite Interface
NASA Astrophysics Data System (ADS)
Fouad, Yasser; Rabeeh, Bakr Mohamed
The synthesis of Mg-Al2O3 double layered interface is introduced via the application of hot isostatic pressing, HIPing, in Al-Mg foils. Polycrystalline spinel layers are grown experimentally at the interfacial contacts between Al-Mg foils. The growth behavior of the spinel layers along with the kinetic parameters characterizing interface motion and long-range diffusion is established. Low melting depressant (LMD), Zn, and alloying element segregation tends to form micro laminated and/or Nano structure interphase in a lamellar composite solid state processing. Nano composite ceramic interphase materials offer interesting mechanical properties not achievable in other materials, such as superplastic flow and metal-like machinability. Microstructural characterization, mechanical characterization is also established via optical microscopy scanning electron microscopy, energy dispersive X-ray spectroscopy and tensile testing. Chemical and mechanical bonding via inter diffusion processing with alloy segregation are dominant for interphase kinetics. Mechanical characterization with interfacial shear strength is also introduced. HIPing processing is successfully applied on 6082 Al-alloy and AZ31 magnesium alloy for either particulate or micro-laminated interfacial composite processing. The interphase kinetic established through localized micro plasticity, metal flow, alloy segregation and delocalized Al oxide and Mg oxide. The kinetic of interface/interphase induce new nontraditional crack mitigation a long with new bridging and toughening mechanisms.
Cell-fusion method to visualize interphase nuclear pore formation.
Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko
2014-01-01
In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods. Copyright © 2014 Elsevier Inc. All rights reserved.
High Temperature Tolerant Ceramic Composites Having Porous Interphases
Kriven, Waltraud M.; Lee, Sang-Jin
2005-05-03
In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.
Derenzini, M.; Pession, A.; Farabegoli, F.; Trerè, D.; Badiali, M.; Dehan, P.
1989-01-01
The relationship between the quantity of silver-stained interphasic nucleolar organizer regions (NORs) and nuclear synthetic activity, caryotype, and growth rate was studied in two established neuroblastoma cell lines (CHP 212 and HTB 10). Statistical analysis of silver-stained NORs revealed four times as many in CHP 212 cells compared with HTB 10 cells. No difference was observed in the ribosomal RNA synthesis between the two cell lines. The caryotype index was 1.2 for CHP 212 and 1.0 for HTB 10 cells. The number of chromosomes carrying NORs and the quantity of ribosomal genes was found to be the same for the two cell lines. Doubling time of CHP 212 cells was 20 hours compared with 54 hours for HTB 10 cells. In CHP 212 cells bindering of cell duplication by serum deprivation induced a progressive lowering (calculated at 48, 72, and 96 hours) of the quantity of silver-stained interphasic NORs. Recovery of duplication by new serum addition induced, after 24 hours, an increase of the quantity of silver-stained interphasic NORs up to control levels. In the light of available data, these results indicate that the quantity of interphasic NORs is strictly correlated only to the growth rate of the cell. Images Figure 2 Figure 3 Figure 4 PMID:2705511
24 CFR 235.204 - Amount of annual MIP.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Obligations-Homes for Lower Income Families § 235.204 Amount of annual MIP. (a) With respect to... an annual MIP shall be paid in an amount equal to one-half percent of the average outstanding... be paid in an amount equal to seven-tenths of one percent of the average outstanding principal...
24 CFR 235.204 - Amount of annual MIP.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and Obligations-Homes for Lower Income Families § 235.204 Amount of annual MIP. (a) With respect to... an annual MIP shall be paid in an amount equal to one-half percent of the average outstanding... be paid in an amount equal to seven-tenths of one percent of the average outstanding principal...
Aswini, K K; Vinu Mohan, A M; Biju, V M
2014-04-01
A methacrylic acid (MAA) based molecularly imprinted polymer (MIP) modified carbon paste electrode (CPE) was developed for electrochemical detection of L-cysteine (Cys). Characterisation of MIP was done with FTIR and the modified electrode with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). CV, DPV and impedance analysis demonstrated that the modified electrode is responsive towards the target molecule. The optimum percentage composition of MIP for MIP/CPE and the effect of pH towards the electrode response for Cys were studied. The detection of Cys in the range of 2×10(-8) to 18×10(-8)M at MIP/CPE was monitored by DPV with a limit of detection of 9.6nM and R(2) of 0.9974. Also, various physiological interferents such as ascorbic acid, L-tryptophan, D-glucose, D-cysteine and L-cysteine were found to have little effect on DPV response at MIP/CPE. The utility of the electrode was proved by the effective detection of Cys from tap water and human blood plasma samples with reproducible results. Copyright © 2014 Elsevier B.V. All rights reserved.
Khodadadian, Mehdi; Ahmadi, Farhad
2010-06-15
Molecularly imprinted polymers (MIPs) were computationally designed and synthesized for the selective extraction of a carbonic anhydrase inhibitor, i.e. acetazolamide (ACZ), from human plasma. Density functional theory (DFT) calculations were performed to study the intermolecular interactions in the pre-polymerization mixture and to find a suitable functional monomer in MIP preparation. The interaction energies were corrected for the basis set superposition error (BSSE) using the counterpoise (CP) correction. The polymerization solvent was simulated by means of polarizable continuum model (PCM). It was found that acrylamide (AAM) is the best candidate to prepare MIPs. To confirm the results of theoretical calculations, three MIPs were synthesized with different functional monomers and evaluated using Langmuir-Freundlich (LF) isotherm. The results indicated that the most homogeneous MIP with the highest number of binding sites is the MIP prepared by AAM. This polymer was then used as a selective adsorbent to develop a molecularly imprinted solid-phase extraction procedure followed by differential pulse voltammetry (MISPE-DPV) for clean-up and determination of ACZ in human plasma.
Hassanzadeh, Marjan; Ghaemy, Mousa; Ahmadi, Shamseddin
2016-10-01
Chitosan-based molecular imprinted polymer (CS-MIP) nanogel is prepared in the presence of morphine template, fully characterized and used as a new vehicle to extend duration of morphine analgesic effect in Naval Medical Research Institute mice. The CS-MIP nanogel with ≈25 nm size range exhibits 98% loading efficiency, and in vitro release studies show an initial burst followed by an extended slow release of morphine. In order to study the feasibility of CS-MIP nanogel as morphine carrier, 20 mice are divided into two groups randomly and received subcutaneous injection of morphine-loaded CS-MIP and morphine (10 mg kg -1 ) dissolved in physiologic saline. Those received injection of morphine-loaded CS-MIP show slower and long lasting release of morphine with 193 min effective time of 50% (ET50) analgesia compared to 120 min ET50 in mice received morphine dissolved in physiologic saline. These results suggest that CS-MIP nanogel can be a possible strategy as morphine carrier for controlled release and extension of its analgesic efficacy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of the CCR-5/MIP-1 α Axis in the Pathogenesis of Rocio Virus Encephalitis in a Mouse Model
Chávez, Juliana H.; França, Rafael F. O.; Oliveira, Carlo J. F.; de Aquino, Maria T. P.; Farias, Kleber J. S.; Machado, Paula R. L.; de Oliveira, Thelma F. M.; Yokosawa, Jonny; Soares, Edson G.; da Silva, João S.; da Fonseca, Benedito A. L.; Figueiredo, Luiz T. M.
2013-01-01
Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection. PMID:24080631
Rotenberg, Ken J; Taylor, Daniel; Davis, Ron
2004-04-01
The study evaluated the effects of mood induction procedures on body image. Eighty female undergraduates participated in combinations of two valences (negative vs. positive) and two types (self-referent vs. other-referent) of mood induction procedures (MIPs). A measure of subjective mood and seven measures of body image were administered before and after the MIPs. Individuals in the self-referent MIP who had high negative body image at the pretest demonstrated increases in negative body image after exposure to the negative valence MIP (a disparagement effect) and decreases in negative body image after exposure to the positive valence MIP (an enhancement effect). This pattern was not evident in the other-referent MIP. Also, changes in negative body image were not appreciably associated with changes in subjective mood. The findings yielded support for the cognitive priming hypothesis but not for the subjective mood hypothesis. Further means of examining the cognitive priming hypothesis were outlined. Copyright 2004 by Wiley Periodicals, Inc. Int J Eat Disord 35: 317-332, 2004.
Zhong, Shian; Zhou, Chengyun; Zhang, Xiaona; Zhou, Hui; Li, Hui; Zhu, Xiaohong; Wang, Yan
2014-07-15
A new type of magnetic halloysite nanotubes molecularly imprinted polymer (MHNTs@MIP) based on halloysite nanotubes (HNTs) with embedded magnetic nanoparticles was introduced in this study. MHNTs@MIP was prepared through surface imprinting technology, using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template, 4-vinylpyridine as the monomer, divinylbenzene as cross-linking agents, and 2,2-azodiisobutyronitrile as initiator. MHNTs@MIP was characterized by Fourier Transform Infrared Spectrometer, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometer. MHNTs@MIP exhibited rapid and reliable analysis with supermagnetic properties, as well as repeated use and template-specific recognition. The adsorption capacity of magnetic halloysite nanotubes non-imprinted polymer (MHNTs@NIP) and MHNTs@MIP was 10.3mg/g and 35.2mg/g, respectively. In the detailed discussion on specific selectivity, MHNTs@MIP can be applied as an adsorbent for sample pretreatment extraction and obtain high recoveries of about 85-94%. After extraction, high-performance liquid chromatography was used to detect 2,4-D residue in water. Copyright © 2014 Elsevier B.V. All rights reserved.
Standardized volume-rendering of contrast-enhanced renal magnetic resonance angiography.
Smedby, O; Oberg, R; Asberg, B; Stenström, H; Eriksson, P
2005-08-01
To propose a technique for standardizing volume-rendering technique (VRT) protocols and to compare this with maximum intensity projection (MIP) in regard to image quality and diagnostic confidence in stenosis diagnosis with magnetic resonance angiography (MRA). Twenty patients were examined with MRA under suspicion of renal artery stenosis. Using the histogram function in the volume-rendering software, the 95th and 99th percentiles of the 3D data set were identified and used to define the VRT transfer function. Two radiologists assessed the stenosis pathology and image quality from rotational sequences of MIP and VRT images. Good overall agreement (mean kappa=0.72) was found between MIP and VRT diagnoses. The agreement between MIP and VRT was considerably better than that between observers (mean kappa=0.43). One of the observers judged VRT images as having higher image quality than MIP images. Presenting renal MRA images with VRT gave results in good agreement with MIP. With VRT protocols defined from the histogram of the image, the lack of an absolute gray scale in MRI need not be a major problem.
Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; ...
2013-04-08
Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements ofmore » diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are D Li = 1.5 × 10 -22 m 2.s -1 and D H = 6.8 × 10 -23 m 2.s -1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution-precipitation models for silicate minerals.« less
Pereira, Igor; Rodrigues, Marcella Ferreira; Chaves, Andréa Rodrigues; Vaz, Boniek Gontijo
2018-02-01
Paper spray ionization (PSI) has some limitations such as low sensitivity and ionization suppression when complex samples are analyzed. The use of sample preparation devices directly coupled to MS can avoid these restrictions. Molecularly imprinted polymers (MIPs) are materials widely used as adsorbent in sample preparation methods such as solid-phase extraction and solid-phase microextraction, and they can provide specifics cavities with affinity to a target molecule. Here, we introduce a new MIP membrane spray ionization method combining MIP and PSI. MIP was synthesized directly on a cellulose membrane. Monuron and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used as template molecules in MIP synthesis for diuron and 2,4-D (2,4-dichlorophenoxyacetic acid) analyte sequesters, respectively. Apple, banana and grape methanolic extracts were used as matrices. The MIP membrane spray showed signal intensities of diuron and 2,4-D that were much higher compared to those obtained by non-imprinted polymers(NIP). Calibration curves exhibited R 2 > 0.99 for diuron and 2,4-D in all fruit extracts analyzed. LODs were found less than 0.60µgL -1 and LLOQs were found less than 2.00µgL -1 . The coefficients of variation and relative errors were less than 15% for almost all analyses. The apparent recovery test results ranged between 92,5% and 116.9%. Finally, the MIP membrane spray method was employed for the quantification of diuron and 2,4-D in real samples. Diuron contents were only found in three bananas (4.0, 6.5, and 9.9µgL -1 ). The proposed MIP membrane spray ionization method was straightforward, fast to carry out and provided satisfactory results for analyses of diuron and 2,4-D in apple, banana and grape samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Pell, Christopher; Straus, Lianne; Andrew, Erin V W; Meñaca, Arantza; Pool, Robert
2011-01-01
Malaria during pregnancy (MiP) results in adverse birth outcomes and poor maternal health. MiP-related morbidity and mortality is most pronounced in sub-Saharan Africa, where recommended MiP interventions include intermittent preventive treatment, insecticide-treated bednets and appropriate case management. Besides their clinical efficacy, the effectiveness of these interventions depends on the attitudes and behaviours of pregnant women and the wider community, which are shaped by social and cultural factors. Although these factors have been studied largely using quantitative methods, qualitative research also offers important insights. This article provides a comprehensive overview of qualitative research on social and cultural factors relevant to uptake of MiP interventions in sub-Saharan Africa. A systematic search strategy was employed: literature searches were undertaken in several databases (OVID SP, IS Web of Knowledge, MiP Consortium library). MiP-related original research, on social/cultural factors relevant to MiP interventions, in Africa, with findings derived from qualitative methods was included. Non-English language articles were excluded. A meta-ethnographic approach was taken to analysing and synthesizing findings. Thirty-seven studies were identified. Fourteen concentrated on MiP. Others focused on malaria treatment and prevention, antenatal care (ANC), anaemia during pregnancy or reproductive loss. Themes identified included concepts of malaria and risk in pregnancy, attitudes towards interventions, structural factors affecting delivery and uptake, and perceptions of ANC. Although malaria risk is associated with pregnancy, women's vulnerability is often considered less disease-specific and MiP interpreted in locally defined categories. Furthermore, local discourses and health workers' ideas and comments influence concerns about MiP interventions. Understandings of ANC, health worker-client interactions, household decision-making, gender relations, cost and distance to health facilities affect pregnant women's access to MiP interventions and lack of healthcare infrastructure limits provision of interventions. Further qualitative research is however required: many studies were principally descriptive and an in-depth comparative approach is recommended.
NASA Astrophysics Data System (ADS)
Shameoni Niaei, M.; Kilic, Y.; Yildiran, B. E.; Yüzlükoglu, F.; Yesilyaprak, C.
2016-12-01
We have described a new software (MIPS) about the analysis and image processing of the meteorological satellite (Meteosat) data for an astronomical observatory. This software will be able to help to make some atmospherical forecast (cloud, humidity, rain) using meteosat data for robotic telescopes. MIPS uses a python library for Eumetsat data that aims to be completely open-source and licenced under GNU/General Public Licence (GPL). MIPS is a platform independent and uses h5py, numpy, and PIL with the general-purpose and high-level programming language Python and the QT framework.
Appendix 2. Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows, Version 2.3
NASA Technical Reports Server (NTRS)
Hudson, Nicholas; Ruane, Alexander Clark
2013-01-01
This Guide explains how to create climate series and climate change scenarios by using the AgMip Climate team's methodology as outlined in the AgMIP Guide for Regional Assessment: Handbook of Methods and Procedures. It details how to: install R and the required packages to run the AgMIP Climate Scenario Generation scripts, and create climate scenarios from CMIP5 GCMs using a 30-year baseline daily weather dataset. The Guide also outlines a workflow that can be modified for application to your own climate data.
Jagim, Andrew R; Jones, Margaret T; Wright, Glenn A; St Antoine, Carly; Kovacs, Attila; Oliver, Jonathan M
2016-01-01
Multi-ingredient pre-workout supplements (MIPS) are popular among resistance trained individuals. Previous research has indicated that acute MIPS ingestion may increase muscular endurance when using a hypertrophy-based protocol but less is known in regard to their effects on strength performance and high intensity running capacity. Therefore, the purpose was to determine if short-term, MIPS ingestion influences strength performance and anaerobic running capacity. In a double-blind, randomized, placebo controlled, crossover design; 12 males (19 ± 1 yrs.; 180 ± 12 cm; 89.3 ± 11 kg; 13.6 ± 4.9 %BF) had their body composition assessed followed by 5-repetition maximum (5RM) determination of back squat (BS; 119.3 ± 17.7 kg) and bench press (BP; 92.1 ± 17.8 kg) exercises. On two separate occasions subjects ingested a MIPS or a placebo (P) 30-minutes prior to performing a counter movement vertical jump test, 5 sets of 5 repetitions at 85 % of 5RM of BS and BP, followed by a single set to failure, and an anaerobic capacity sprint test to assess peak and mean power. Subjective markers of energy levels and fatigue were also assessed. Subjects returned one week later for a second testing session using counter treatment. MIPS resulted in a greater number of repetitions performed in the final set to failure in the BP (MIPS, 9.8 ± 1.7 repetitions; P, 9.1 ± 2; p = 0.03, d = 0.38), which led to a greater total volume load (set x repetitions x load) in the MIPS (753 ± 211 kg) compared to P (710 ± 226 kg; p =0.03, d = .20). MIPS ingestion improved subjective markers of fatigue (p = 0.01, d = 3.78) and alertness (p = 0.048, d = 2.72) following a bout of resistance training. An increase in mean power was observed in the MIPS condition (p = 0.03, d = 0.25) during the anaerobic sprint test. Results suggest that acute ingestion of a MIPS study may increase upper body muscular endurance. In addition, acute MIPS ingestion improved mean power output during an anaerobic capacity sprint test. However, the practical significance of these performance related outcomes may be minimal due to the small effect sizes observed. MIPS ingestion does appear to positively influence subjective markers of fatigue and alertness during high-intensity exercise.
Lim, Guat Wei; Lim, Jit Kang; Ahmad, Abdul Latif; Chan, Derek Juinn Chieh
2016-03-01
The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications.
Prasad, Bhim Bali; Madhuri, Rashmi; Tiwari, Mahavir Prasad; Sharma, Piyush Sindhu
2010-05-15
Molecularly imprinted polymers (MIPs) are often electrically insulating materials. Due to the presence of diffusion barrier(s) in between such MIP coating and electrode surface and the absence of a direct path for the conduction of electrons from the binding sites to the electrode, the development of electrochemical sensor is significantly restricted. The direct use of MIPs those possess intrinsic electron-transport properties, is highly limited. These problems are resolved by the design of an original, substrate-selective MIP-fiber sensor that combines conventional insulating MIP and conducting carbon powder in consolidated phase. A layer of conducting carbon particles, arranged orderly as 'carbon strip', is inducted in the polymer for direct electronic conduction. MIP-carbon composite (monolithic fiber) in this work is prepared via in situ free radical polymerization of a new monomer (2,4,6-trisacrylamido-1,3,5-triazine, TAT) and subsequent cross-linkage with ethylene glycol dimethacrylate, in the presence of carbon powder and template (folic acid), at 55 degrees C in a glass capillary. The detection of folic acid with the MIP-fiber sensor was found to be specific and quantitative (detection limit 0.20 ng mL(-1), RSD=1.3%, S/N=3), in aqueous, blood serum and pharmaceutical samples, without any problem of non-specific false-positive contribution and cross-reactivity. 2010 Elsevier B.V. All rights reserved.
Wang, Yi; Wang, Yan; Ma, Aijing; Li, Dongxun; Luo, Lijuan; Liu, Dongxin; Hu, Shoukui; Jin, Dong; Liu, Kai; Ye, Changyun
2015-12-03
Here, a novel model of loop-mediated isothermal amplification (LAMP), termed multiple inner primers-LAMP (MIP-LAMP), was devised and successfully applied to detect Listeria monocytogenes. A set of 10 specific MIP-LAMP primers, which recognized 14 different regions of target gene, was designed to target a sequence in the hlyA gene. The MIP-LAMP assay efficiently amplified the target element within 35 min at 63 °C and was evaluated for sensitivity and specificity. The templates were specially amplified in the presence of the genomic DNA from L. monocytogenes. The limit of detection (LoD) of MIP-LAMP assay was 62.5 fg/reaction using purified L. monocytogenes DNA. The LoD for DNA isolated from serial dilutions of L. monocytogenes cells in buffer and in milk corresponded to 2.4 CFU and 24 CFU, respectively. The amplified products were analyzed by real-time monitoring of changes in turbidity, and visualized by adding Loop Fluorescent Detection Reagent (FD), or as a ladder-like banding pattern on gel electrophoresis. A total of 48 pork samples were investigated for L. monocytogenes by the novel MIP-LAMP method, and the diagnostic accuracy was shown to be 100% when compared to the culture-biotechnical method. In conclusion, the MIP-LAMP methodology was demonstrated to be a reliable, sensitive and specific tool for rapid detection of L. monocytogenes strains.
Ashley, Jon; Shukor, Yunus; Tothill, Ibtisam E
2016-11-14
The development of molecularly imprinted polymer nanoparticles (MIP-NPs), which specifically bind biomolecules, is of great interest in the area of biosensors, sample purification, therapeutic agents and biotechnology. Polymerisation techniques such as precipitation polymerisation, solid phase synthesis and core shell surface imprinting have allowed for significant improvements to be made in developing MIP-NPs which specifically recognise proteins. However, the development of MIP-NPs for protein templates (targets) still require lengthy optimisation and characterisation using different ratios of monomers in order to control their size, binding affinity and specificity. In this work we successfully demonstrated that differential scanning fluorimetry (DSF) can be used to rapidly determine the optimum imprinting conditions and monomer composition required for MIP-NP design and polymerisation. This is based on the stability of the protein template and shift in apparent melting points (Tm) upon interaction with different functional acrylic monomers. The method allows for the characterisation of molecularly imprinted nanoparticles (MIP-NPs) due to the observed differences in melting point profiles between, protein-MIP-NPs complexes, pre-polymerisation mixtures and non-imprinted nanoparticles (NIP-NPs) without the need for prior purification. The technique is simple, rapid and can be carried out on most quantitative polymerase chain reaction (qPCR) thermal cyclers which have the required filters for SYPRO © orange and could lead to the rapid development of MIPs nanoparticles for proteins.
Saadaoui, Asma; Sanglar, Corinne; Medimagh, Raouf; Bonhomme, Anne; Baudot, Robert; Chatti, Saber; Marque, Sylvain; Prim, Damien; Zina, Mongia Saïd; Casabianca, Herve
2017-04-01
New biosourced chiral cross-linkers were reported for the first time in the synthesis of methyltestosterone (MT) chiral molecularly imprinted polymers (cMIPs). Isosorbide and isomannide, known as 1,4:3,6-dianhydrohexitols, were selected as starting diols. The cMIPs were synthesized following a noncovalent approach via thermal radical polymerization and monitored by Raman spectroscopy. These cross-linkers were fully characterized by 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. The cross-polarization magic angle spinning 13 C NMR, Fourier transform infrared spectroscopy, scanning electron microscopy, and specific surface areas following the Brunauer-Emmett-Teller (BET) method were used to characterize the cMIPs. The effect of stereochemistry of cross-linkers on the reactivity of polymerization, morphology, and adsorption-recognition properties of the MIP was evaluated. The results showed that the cMIP exhibited an obvious improvement in terms of rebinding capacity for MT as compared with the nonimprinted polymer (NIP). The highest binding capacity was observed for cMIP-Is (27.298 mg g -1 ) for high concentrations (500 mg L -1 ). However, the isomannide homologue cMIP-Im showed higher recovery-up to 65% and capacity for low concentrations (15 mg L -1 ). The experimental data were properly fitted by the Freundlich adsorption isothermal model. Copyright © 2016 John Wiley & Sons, Ltd.
Phosphorylation Regulates myo-Inositol-3-phosphate Synthase
Deranieh, Rania M.; He, Quan; Caruso, Joseph A.; Greenberg, Miriam L.
2013-01-01
myo-Inositol-3-phosphate synthase (MIPS) plays a crucial role in inositol homeostasis. Transcription of the coding gene INO1 is highly regulated. However, regulation of the enzyme is not well defined. We previously showed that MIPS is indirectly inhibited by valproate, suggesting that the enzyme is post-translationally regulated. Using 32Pi labeling and phosphoamino acid analysis, we show that yeast MIPS is a phosphoprotein. Mass spectrometry analysis identified five phosphosites, three of which are conserved in the human MIPS. Analysis of phosphorylation-deficient and phosphomimetic site mutants indicated that the three conserved sites in yeast (Ser-184, Ser-296, and Ser-374) and humans (Ser-177, Ser-279, and Ser-357) affect MIPS activity. Both S296A and S296D yeast mutants and S177A and S177D human mutants exhibited decreased enzymatic activity, suggesting that a serine residue is critical at that location. The phosphomimetic mutations S184D (human S279D) and S374D (human S357D) but not the phosphodeficient mutations decreased activity, suggesting that phosphorylation of these two sites is inhibitory. The double mutation S184A/S374A caused an increase in MIPS activity, conferred a growth advantage, and partially rescued sensitivity to valproate. Our findings identify a novel mechanism of regulation of inositol synthesis by phosphorylation of MIPS. PMID:23902760
Li, Gen; Ma, Ke; Sun, Jian; Jin, Gui; Qin, Mingxin; Feng, Hua
2017-01-01
Cerebral edema is a common disease, secondary to craniocerebral injury, and real-time continuous monitoring of cerebral edema is crucial for treating patients after traumatic brain injury. This work established a noninvasive and noncontact system by monitoring the magnetic induction phase shift (MIPS) which is associated with brain tissue conductivity. Sixteen rabbits (experimental group n = 10, control group, n = 6) were used to perform a 24 h MIPS and intracranial pressure (ICP) simultaneously monitored experimental study. For the experimental group, after the establishment of epidural freeze-induced cerebral edema models, the MIPS presented a downward trend within 24 h, with a change magnitude of −13.1121 ± 2.3953°; the ICP presented an upward trend within 24 h, with a change magnitude of 12–41 mmHg. The ICP was negatively correlated with the MIPS. In the control group, the MIPS change amplitude was −0.87795 ± 1.5146 without obvious changes; the ICP fluctuated only slightly at the initial value of 12 mmHg. MIPS had a more sensitive performance than ICP in the early stage of cerebral edema. These results showed that this system is basically capable of monitoring gradual increases in the cerebral edema solution volume. To some extent, the MIPS has the potential to reflect the ICP changes. PMID:28282851
High Temperature Si-doped BN Interphases for Woven SiC/SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Hurwitz, Frances; Yun, Hee Mann; Gray, Hugh R. (Technical Monitor)
2002-01-01
The hydrolytic stability of high-temperature deposited Si-doped BN has been shown in the past to be superior in comparison to "pure" BN processed at similar or even higher temperatures. This type of material would be very desirable as a SiC/SiC composite interphase that is formed by chemical infiltration into multi-ply woven preform. However, due to rapid deposition on the preform outer surface at the high processing temperature, this has proven very difficult. To overcome this issue, single plies of woven fabric were infiltrated with Si-doped BN. Three composite panels of different SiC fiber types were fabricated with Si-doped BN interphases including Sylramic, Hi-Nicalon Type S and Sylramic-iBN fiber-types. The latter fiber-type possesses a thin in-situ grown BN layer on the fiber surface. High Si contents (approx. 7 to 10 a/o) and low oxygen contents (less than 1 a/o) were achieved. All three composite systems demonstrated reasonable debonding and sliding properties. The coated Sylramic fabric and composites were weak due to fiber degradation apparently caused during interphase processing by the formation of TiN crystals on the fiber surface. The Hi-Nicalon Type S composites with Si-doped BN interphase were only slightly weaker than Hi-Nicalon Type S composites with conventional BN when the strength on the load-bearing fibers at failure was compared. On the other hand, the Sylramic-iBN fabric and composites with Si-doped BN showed excellent composite and intermediate temperature stress-rupture properties. Most impressive was the lack of any significant interphase oxidation on the fracture surface of stress-ruptured specimens tested well above matrix cracking at 815C.
A targeted resequencing gene panel for focal epilepsy.
Hildebrand, Michael S; Myers, Candace T; Carvill, Gemma L; Regan, Brigid M; Damiano, John A; Mullen, Saul A; Newton, Mark R; Nair, Umesh; Gazina, Elena V; Milligan, Carol J; Reid, Christopher A; Petrou, Steven; Scheffer, Ingrid E; Berkovic, Samuel F; Mefford, Heather C
2016-04-26
We report development of a targeted resequencing gene panel for focal epilepsy, the most prevalent phenotypic group of the epilepsies. The targeted resequencing gene panel was designed using molecular inversion probe (MIP) capture technology and sequenced using massively parallel Illumina sequencing. We demonstrated proof of principle that mutations can be detected in 4 previously genotyped focal epilepsy cases. We searched for both germline and somatic mutations in 251 patients with unsolved sporadic or familial focal epilepsy and identified 11 novel or very rare missense variants in 5 different genes: CHRNA4, GRIN2B, KCNT1, PCDH19, and SCN1A. Of these, 2 were predicted to be pathogenic or likely pathogenic, explaining ∼0.8% of the cohort, and 8 were of uncertain significance based on available data. We have developed and validated a targeted resequencing panel for focal epilepsies, the most important clinical class of epilepsies, accounting for about 60% of all cases. Our application of MIP technology is an innovative approach that will be advantageous in the clinical setting because it is highly sensitive, efficient, and cost-effective for screening large patient cohorts. Our findings indicate that mutations in known genes likely explain only a small proportion of focal epilepsy cases. This is not surprising given the established clinical and genetic heterogeneity of these disorders and underscores the importance of further gene discovery studies in this complex syndrome. © 2016 American Academy of Neurology.
Large-scale magnetic topologies of early M dwarfs
NASA Astrophysics Data System (ADS)
Donati, J.-F.; Morin, J.; Petit, P.; Delfosse, X.; Forveille, T.; Aurière, M.; Cabanac, R.; Dintrans, B.; Fares, R.; Gastine, T.; Jardine, M. M.; Lignières, F.; Paletou, F.; Ramirez Velez, J. C.; Théado, S.
2008-10-01
We present here additional results of a spectropolarimetric survey of a small sample of stars ranging from spectral type M0 to M8 aimed at investigating observationally how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4). The present paper focuses on early M stars (M0-M3), that is above the full convection threshold. Applying tomographic imaging techniques to time series of rotationally modulated circularly polarized profiles collected with the NARVAL spectropolarimeter, we determine the rotation period and reconstruct the large-scale magnetic topologies of six early M dwarfs. We find that early-M stars preferentially host large-scale fields with dominantly toroidal and non-axisymmetric poloidal configurations, along with significant differential rotation (and long-term variability); only the lowest-mass star of our subsample is found to host an almost fully poloidal, mainly axisymmetric large-scale field resembling those found in mid-M dwarfs. This abrupt change in the large-scale magnetic topologies of M dwarfs (occurring at spectral type M3) has no related signature on X-ray luminosities (measuring the total amount of magnetic flux); it thus suggests that underlying dynamo processes become more efficient at producing large-scale fields (despite producing the same flux) at spectral types later than M3. We suspect that this change relates to the rapid decrease in the radiative cores of low-mass stars and to the simultaneous sharp increase of the convective turnover times (with decreasing stellar mass) that models predict to occur at M3; it may also be (at least partly) responsible for the reduced magnetic braking reported for fully convective stars. Based on observations obtained at the Télescope Bernard Lyot (TBL), operated by the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France. E-mail: donati@ast.obs-mip.fr (J-FD); jmorin@ast.obs-mip.fr (JM); petit@ast.obs-mip.fr (PP); xavier.delfosse@obs.ujf-grenoble.fr (XD); thierry.forveille@obs.ujf-grenoble.fr (TF); auriere@ast.obs-mip.fr (MA); remi.cabanac@ast.obs-mip.fr (RC); dintrans@ast.obs-mip.fr (BD); rfares@ast.obs-mip.fr (RF); tgastine@ast.obs-mip.fr (TG); mmj@st-and.ac.uk (MMJ); lignieres@ast.obs-mip.fr (FL); fpaletou@ast.obs-mip.fr (FP); julio.ramirez@obspm.fr (JCRV); sylvie.theado@ast.obs-mip.fr (ST)
Tripathi, Trivendra; Smith, Ashley Dawn; Abdi, Mahshid; Alizadeh, Hassan
2012-01-01
Purpose. We have shown that Acanthamoeba interacts with a mannosylated protein on corneal epithelial cells and stimulates trophozoites to secrete a mannose-induced 133 kDa protease (MIP-133), which facilitates corneal invasion and induces apoptosis. The mechanism of MIP-133–induced apoptosis is unknown. The aim of this study was to determine if MIP-133 induces apoptosis and proinflammatory cytokines/chemokines in human corneal epithelial (HCE) cells via the cytosolic phospholipase A2α (cPLA2α) pathway. Methods. HCE cells were incubated with or without MIP-133 at doses of 7.5, 15, and 50 μg/mL for 6, 12, and 24 hours. The effects of cPLA2α inhibitors on cPLA2α, arachidonic acid (AA) release, and apoptosis were tested in vitro. Inhibition of cPLA2α involved preincubating HCE cells for 1 hour with cPLA2α inhibitors (10 μM methyl-arachidonyl fluorophosphonate [MAFP] or 20 μM arachidonyl trifluoromethyl ketone [AACOCF3]) with or without MIP-133 for 24 hours. Expression of cPLA2α mRNA and enzyme was examined by RT-PCR and cPLA2 activity assays, respectively. Apoptosis of corneal epithelial cells was determined by caspase-3 and DNA fragmentation assays. Expression of IL-8, IL-6, IL-1β, and IFN-γ was examined by RT-PCR and ELISA. Results. MIP-133 induced significant cPLA2α (approximately two to four times) and AA release (approximately six times) from corneal cells while cPLA2α inhibitors significantly reduced cPLA2α (approximately two to four times) and AA release (approximately three times) (P < 0.05). cPLA2α inhibitors significantly inhibited MIP-133–induced DNA fragmentation approximately 7 to 12 times in HCE cells (P < 0.05). MIP-133 specifically activates cPLA2α enzyme activity in HCE cells, which is blocked by preincubation with anti–MIP-133 antibody. In addition, MIP-133 induced significant IL-8, IL-6, IL-1β, and IFN-γ production, approximately two to three times (P < 0.05). Conclusions. MIP-133 interacts with phospholipids on plasma membrane of HCE cells and activates cPLA2α. cPLA2α is involved in apoptosis, AA release, and activation of proinflammatory cytokines/chemokines from HCE cells. cPLA2α inhibitors may be a therapeutic target in Acanthamoeba keratitis. PMID:23132804
Microscale Alloy Type Lithium Ion Battery Anodes
2015-09-01
hexamethyldisilazane Li lithium Ni nickel NMP n-methyl-2-pyrolidone RMS root mean square SEI solid electrolyte interphase SEM scanning electron microscopy...process also leads to an unstable solid electrolyte interphase (SEI) and further capacity loss. An extraordinary amount of work has been done in an...
Müller, Michael Thomas; Pötzsch, Hendrik Florian; Gohs, Uwe; Heinrich, Gert
2018-06-25
An electromechanical response behavior is realized by nanostructuring the glass fiber interphase with different highly electrically conductive carbon allotropes like carbon nanotubes (CNT), graphene nanoplatelets (GNP), or conductive carbon black (CB). The operational capability of these multifunctional glass fibers for an online structural-health monitoring is demonstrated in endless glass fiber-reinforced polypropylene. The electromechanical response behavior, during a static or dynamic three-point bending test of various carbon modifications, shows qualitative differences in the signal quality and sensitivity due to the different aspect ratios of the nanoparticles and the associated electrically conductive network densities in the interphase. Depending on the embedding position within the glass fiber-reinforced composite compression, shear and tension loadings of the fibers can be distinguished by different characteristics of the corresponding electrical signal. The occurrence of irreversible signal changes during the dynamic loading can be attributed to filler reorientation processes caused by polymer creeping or by destruction of electrically conductive paths by cracks in the glass fiber interphase.
Gravity-induced anomalies in interphase spacing reported for binary eutectics.
Smith, Reginald W
2002-10-01
It has been reasoned that desirable microstructural refinement in binary eutectics could result from freezing in reduced-gravity. It is recognized that the interphase spacing in a binary eutectic is controlled by solute transport and that, on Earth, buoyancy-driven convection may enhance this. Hence, it has been presumed that the interphase spacing ought to decrease when a eutectic alloy is frozen under conditions of much-reduced gravity, where such buoyancy effects would be largely absent. The result of such speculation has been that many workers have frozen various eutectics under reduced gravity and have reported that, although some eutectics became finer, others showed no change, and some even became coarser. This reported varied behavior will be reviewed in the light of long term studies by the author at Queen's University, including recent microgravity studies in which samples of two eutectic alloy systems, MnBi-Bi and MnSb-Sb, were frozen under very stable conditions and showed no change in interphase spacing.
Sigoillot, Frederic D; Huckins, Jeremy F; Li, Fuhai; Zhou, Xiaobo; Wong, Stephen T C; King, Randall W
2011-01-01
Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments. Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment. This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.
NASA Astrophysics Data System (ADS)
Pawlik, Marzena; Lu, Yiling
2018-05-01
Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.
Fast formation cycling for lithium ion batteries
An, Seong Jin; Li, Jianlin; Du, Zhijia; ...
2017-01-09
The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li +) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li +. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fastmore » and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF 6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Finally, results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.« less
Synthesis and Study of Guest-Rebinding of MIP Based on MAA Prepared using Theophylline Template
NASA Astrophysics Data System (ADS)
Nurhayati, T.; Yanti; Royani, I.; Widayani; Khairurrijal
2016-08-01
A molecularly imprinted polymer (MIP) based on methacrylic acid (MAA) monomer and theophylline template has been synthesized using a modified bulk polymerization method. Theophylline was employed as a template and it formed a complex with MAA through hydrogen bonding. Self-assembly of template-monomer was followed by cross-linking process using ethylene glycol dimethacrylate (EGDMA) cross-linker. The polymerization process was initiated by thermal decomposition of benzoyl peroxide (BPO) as the initiator at 60oC after cooling treatment at -5oC. After 7 hours, a rigid polymer was obtained and followed by grinding the polymer and removing the template. As a reference, a nonimprinted polymer (NIP) has also been synthesized using similar procedure by excluding the template. FTIR study was carried out to investigate the presence of theophylline in the as- prepared polymer, MIP, and NIP. The spectra indicated that theophylline was successfully incorporated in the as-prepared polymer. This result was also confirmed by EDS analysis showing that N atoms of the as-prepared polymer were derived from amino group of theophylline. Furthermore, the polymer particles of MIP were irregular in shape and size as shown by its SEM image. The capability of guest-rebinding of the MIP was analyzed through Batchwise guest-binding experiment. The results showed that for initial concentration of theophylline in methanol/chloroform (1/1, v/v) of 0.333 mM, the binding capacity of the MIP was 23.22 /mol/g. Compared to the MIP, the adsorption capacity of the NIP was only 3.73 /mol/g. This result shows that MIP has higher affinity than NIP.
Manchikanti, Laxmaiah; Helm Ii, Standiford; Benyamin, Ramsin M; Hirsch, Joshua A
2016-01-01
The Merit-based Incentive Payment System (MIPS) was created by the Medicare Access and CHIP Reauthorization Act of 2015 (MACRA) to improve the health of all Americans by providing incentives and policies to improve patient health outcomes. MIPS combines 3 existing programs, Meaningful Use (MU), now called Advancing Care Information (ACI), contributing 25% of the composite score; Physician Quality Reporting System (PQRS), changed to Quality, contributing 50% of the composite score; and Value-based Payment (VBP) system to Resource Use or cost, contributing 10% of the composite score. Additionally, Clinical Practice Improvement Activities (CPIA), contributing 15% of the composite score, create multiple strategic goals to design incentives that drive movement toward delivery system reform principles with inclusion of Advanced Alternative Payment Models (APMs). Under the present proposal, the Centers for Medicare and Medicaid Services (CMS) has estimated approximately 30,000 to 90,000 providers from a total of over 761,000 providers will be exempt from MIPS. About 87% of solo practitioners and 70% of practitioners in groups of less than 10 will be subjected to negative payments or penalties ranging from 4% to 9%. In addition, MIPS also will affect a provider's reputation by making performance measures accessible to consumers and third-party physician rating Web sites.The MIPS composite performance scoring method, at least in theory, utilizes weights for each performance category, exceptional performance factors to earn bonuses, and incorporates the special circumstances of small practices.In conclusion, MIPS has the potential to affect practitioners negatively. Interventional Pain Medicine practitioners must understand the various MIPS measures and how they might participate in order to secure a brighter future. Medicare Access and CHIP Reauthorization Act of 2015, merit-based incentive payment system, quality performance measures, resource use, clinical practice improvement activities, advancing care information performance category.
da Rosa, George Jung; Schivinski, Camila Isabel S.
2014-01-01
OBJECTIVE: To assess and compare the respiratory muscle strength among eutrophic, overweight and obese school children, as well as to identify anthropometric and respiratory variables related to the results. METHODS: Cross-sectional survey with healthy schoolchildren aged 7-9 years old, divided into three groups: Normal weight, Overweight and Obese. The International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire was applied. The body mass index (BMI) was evaluated, as well as the forced expiratory volume in one second (FEV1) with a portable digital device. The maximal inspiratory and expiratory pressures (MIP and MEP) were measured by a digital manometer. Comparisons between the groups were made by Kruskal-Wallis test. Spearman's correlation coefficient was used to analyze the correlations among the variables. RESULTS: MIP of eutrophic school children was higher than MIP found in overweight (p=0.043) and obese (p=0.013) children. MIP was correlated with BMI percentile and weight classification (r=-0.214 and r=-0.256) and MEP was correlated with height (r=0.328). Both pressures showed strong correlation with each other in all analyses (r≥0.773), and less correlation with FEV1 (MIP - r=0.362 and MEP - r=0.494). FEV1 correlated with MEP in all groups (r: 0.429 - 0.569) and with MIP in Obese Group (r=0.565). Age was correlated with FEV1 (r=0.578), MIP (r=0.281) and MEP (r=0.328). CONCLUSIONS: Overweight and obese children showed lower MIP values, compared to eutrophic ones. The findings point to the influence of anthropometric variables on respiratory muscle strength in children. PMID:25119758
Andrew, Erin V W; Pell, Christopher; Angwin, Angeline; Auwun, Alma; Daniels, Job; Mueller, Ivo; Phuanukoonnon, Suparat; Pool, Robert
2015-01-01
Malaria is the leading cause of illness and death in Papua New Guinea (PNG). Infection during pregnancy with falciparum or vivax malaria, as occurs in PNG, has health implications for mother and child, causing complications such as maternal anemia, low birth weight and miscarriage. This article explores knowledge, attitudes and practices concerning malaria during pregnancy and it's prevention in Madang, PNG, a high prevalence area. As part of a qualitative study in Madang, exploring MiP, participatory techniques (free-listing and sorting) were conducted along with focus group discussions, in-depth interviews (with pregnant women, health staff and other community members) and observations in the local community and health facilities. The main themes explored were attitudes towards and knowledge of MiP, its risks, and prevention. Although there was a general awareness of the term "malaria", it was often conflated with general sickness or with pregnancy-related symptoms. Moreover, many preventive methods for MiP were related to practices of general healthy living. Indeed, varied messages from health staff about the risks of MiP were observed. In addition to ideas about the seriousness and risk of MiP, other factors influenced the uptake of interventions: availability and perceived comfort of sleeping under insecticide-treated mosquito nets were important determinants of usage, and women's heavy workload influenced Chloroquine adherence. The non-specific symptoms of MiP and its resultant conflation with symptoms of pregnancy that are perceived as normal have implications for MiP prevention and control. However, in Madang, PNG, this was compounded by the inadequacy of health staff's message about MiP.
NASA Astrophysics Data System (ADS)
Yang, Xin; He, Zhen-yu; Jiang, Xiao-bo; Lin, Mao-sheng; Zhong, Ning-shan; Hu, Jiang; Qi, Zhen-yu; Bao, Yong; Li, Qiao-qiao; Li, Bao-yue; Hu, Lian-ying; Lin, Cheng-guang; Gao, Yuan-hong; Liu, Hui; Huang, Xiao-yan; Deng, Xiao-wu; Xia, Yun-fei; Liu, Meng-zhong; Sun, Ying
2017-03-01
To meet the special demands in China and the particular needs for the radiotherapy department, a MOSAIQ Integration Platform CHN (MIP) based on the workflow of radiation therapy (RT) has been developed, as a supplement system to the Elekta MOSAIQ. The MIP adopts C/S (client-server) structure mode, and its database is based on the Treatment Planning System (TPS) and MOSAIQ SQL Server 2008, running on the hospital local network. Five network servers, as a core hardware, supply data storage and network service based on the cloud services. The core software, using C# programming language, is developed based on Microsoft Visual Studio Platform. The MIP server could offer network service, including entry, query, statistics and print information for about 200 workstations at the same time. The MIP was implemented in the past one and a half years, and some practical patient-oriented functions were developed. And now the MIP is almost covering the whole workflow of radiation therapy. There are 15 function modules, such as: Notice, Appointment, Billing, Document Management (application/execution), System Management, and so on. By June of 2016, recorded data in the MIP are as following: 13546 patients, 13533 plan application, 15475 RT records, 14656 RT summaries, 567048 billing records and 506612 workload records, etc. The MIP based on the RT workflow has been successfully developed and clinically implemented with real-time performance, data security, stable operation. And it is demonstrated to be user-friendly and is proven to significantly improve the efficiency of the department. It is a key to facilitate the information sharing and department management. More functions can be added or modified for further enhancement its potentials in research and clinical practice.
Ultrasensitive detection of endotoxins using computationally designed nanoMIPs.
Altintas, Zeynep; Abdin, Mohammed J; Tothill, Alexander M; Karim, Kal; Tothill, Ibtisam E
2016-09-07
Novel molecularly imprinted polymer nanoparticles (nanoMIPs) were designed for endotoxin from Escherichia coli 0111:B4, using computational modeling. The screening process based on binding energy between endotoxin and each monomer was performed with 21 commonly used monomers, resulting in the selection of itaconic acid, methacrylic acid and acrylamide as functional monomers due to their strong binding interaction with the endotoxin template. The nanoMIPs were successfully synthesized with functional groups on the outer surface to aid in the immobilization onto sensor surface. The solid phase photopolymerization approach used for the synthesis of nanoMIPs ranging from 200 to 235 nm in diameter. The limit of detection and KD were significantly improved when endotoxin samples were prepared using a novel triethylamine method. This improved the efficiency of gold nanoparticle functionalization by targeting the subunits of the endotoxin. Compared to the vancomycin MIP control, the endotoxin MIPs displayed outstanding affinity and selectivity towards the endotoxin with KD values in the range of 4.4-5.3 × 10(-10) M, with limits of detection of 0.44 ± 0.02 ng mL(-1) as determined by surface plasmon resonance (SPR) sensor when itaconic acid was used as the functional monomer. The MIP surface can be regenerated >30 times without significant loss of binding activity making this approach highly cost effective for expensive analyte templates. The combination of molecular modeling and solid phase synthesis enabled the successful synthesis of nanoMIPs capable of recognition and ultrasensitive detection of endotoxins using the highly sensitive SPR biosensor with triethylamine method. Copyright © 2016 Elsevier B.V. All rights reserved.
Adsorption of β-sitosterol on molecularly imprinted polymer
NASA Astrophysics Data System (ADS)
Soekamto, N. H.; Fauziah, St.; Taba, P.; Amran, M. B.
2017-04-01
Molecularly Imprinted Polymer (MIP) has been synthesized using methacrylate acid (MAA) as a monomer with hydroxyl and carbonyl functional groups that can react with ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, and β-sitosterol as a template molecule. After the template was removed from the polymer, MIP_TFMAA was obtained. The MIP was used to adsorb β-sitosterol. The amount of β-sitosterol in solution after the adsorption was determined by HPLC. The results showed that the MIP was able to adsorb well the β-sitosterol at a pH 7 and the contact time of 90 min. The kinetic adsorption data obtained for β-sitosterol followed the pseudo-second-order model and consistent with the model of Feundlich isothermal with the adsorption capacity of 1.05 mg/g. The MIP was selective on β-sitosterol because it was able to adsorb β-sitosterol better than cholesterol.
Taoist Tai Chi® and Memory Intervention for Individuals with Mild Cognitive Impairment.
Fogarty, Jennifer N; Murphy, Kelly J; McFarlane, Bruce; Montero-Odasso, Manuel; Wells, Jennie; Troyer, Angela K; Trinh, Daniel; Gutmanis, Iris; Hansen, Kevin T
2016-04-01
It was hypothesized that a combined Taoist Tai Chi (TTC) and a memory intervention program (MIP) would be superior to a MIP alone in improving everyday memory behaviors in individuals with amnestic mild cognitive impairment (aMCI). A secondary hypothesis was that TTC would improve cognition, self-reported health status, gait, and balance. A total of 48 individuals were randomly assigned to take part in MIP + TTC or MIP alone. The TTC intervention consisted of twenty 90 min sessions. Outcome measures were given at baseline, and after 10 and 22 weeks. Both groups significantly increased their memory strategy knowledge and use, ratings of physical health, processing speed, everyday memory, and visual attention. No preferential benefit was found for individuals in the MIP + TTC group on cognition, gait, or balance measures. Contrary to expectations, TTC exercise did not specifically improve cognition or physical mobility. Explanations for null findings are explored.
Mendoza, Michelle; Gelinas, Deborah F; Moore, Dan H; Miller, Robert G
2007-04-01
Using a retrospective analysis of 161 patients with amyotrophic lateral sclerosis (ALS) from the Western ALS study group (WALS) database, the sensitivity of maximal inspiratory pressure (MIP)< -60 cm H(2)O and forced vital capacity (FVC)< 50% as US Medicare thresholds for initiating non-invasive ventilation (NIV) were compared. Sixty-five per cent of patients at enrollment met the MIP criterion, compared with only 8% of patients who met the FVC criterion. There were no cases in which FVC< 50% antedated MIP< -60 cm H(2)O. The longitudinal data showed that patients reached the MIP criterion 4 to 6.5 months earlier than the FVC criterion. For patients with clinical signs and symptoms needing treatment with NIV, a MIP< -60 cm H(2)O allows US clinicians to obtain non-invasive ventilatory support for patients earlier than if using the FVC criterion alone.
MIPS bacterial genomes functional annotation benchmark dataset.
Tetko, Igor V; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Fobo, Gisela; Ruepp, Andreas; Antonov, Alexey V; Surmeli, Dimitrij; Mewes, Hans-Wernen
2005-05-15
Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. BFAB is available at http://mips.gsf.de/proj/bfab
Yamanaka, Toshiro; Nakagawa, Hiroe; Tsubouchi, Shigetaka; Domi, Yasuhiro; Doi, Takayuki; Abe, Takeshi; Ogumi, Zempachi
2017-03-09
Lithium-ion batteries have attracted considerable attention due to their high power density. The change in concentration of salt in the electrolyte solution in lithium-ion batteries during operation causes serious degradation of battery performance. Herein, a new method of in situ Raman spectroscopy with ultrafine multifiber probes was developed to simultaneously study the concentrations of ions at several different positions in the electrolyte solution in deep narrow spaces between the electrodes in batteries. The total amount of ions in the electrolyte solution clearly changed during operation due to the low permeability of the solid-electrolyte interphase (SEI) at the anode for Li + permeation. The permeability, which is a key factor to achieve high battery performance, was improved (enhanced) by adding film-forming additives to the electrolyte solution to modify the properties of the SEI. The results provide important information for understanding and predicting phenomena occurring in a battery and for designing a superior battery. The present method is useful for analysis in deep narrow spaces in other electrochemical devices, such as capacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Golczyk, Hieronim; Hasterok, Robert; Joachimiak, Andrzej J
2005-02-01
Fluorescence in situ hybridization (FISH) using 25S rDNA, 5S rDNA, and telomere sequences as probes was carried out in the complex permanent heterozygote Rhoeo spathacea. Telomere sites were exclusively terminal. All 10 25S rDNA loci were located distally and appeared transcriptionally active after silver staining. Six distal and 2 interstitial 5S rDNA sites were detected; 2 of the distal sites strictly colocalized with 25S rDNA loci. The 2 intercalary 5S rDNA loci occurred in short arms of 2 chromosomes that conjoined at meiosis. Chromosomes differed as to the amount of AT-rich centric heterochromatin, suggesting involvement of pericentromeric regions in translocations. The possibility of Robertsonian-like rearrangements was discussed. Double target FISH with ribosomal probes along with DAPI fluorescence gave the basis for full chromosome identification in mitosis. The 2 Renner complexes are structurally balanced, both having 5 25S and 4 5S rDNA sites. Centromere clustering, telomere association, a high number of NOR sites, and a strong tendency for formation of joint nucleoli contribute to the preservation of highly polarized Rabl arrangement at interphase. These findings were discussed in relation to meiotic catenation in Rhoeo.
Effect of Adventitious Carbon on the Environmental Degradation of SiC/BN/SiC Composites
NASA Technical Reports Server (NTRS)
Ogbuji, L. U. J. T.; Yun, H. M.; DiCarlo, J.
2002-01-01
Pesting remains a major obstacle to the application of SiC/SiC composites in engine service and selective degradation of the boron nitride interphase at intermediate temperatures is of primary concern. However, significant progress has been made on interphase improvement recently and we now know more about the phenomenon and ways to suppress it. By screening SiC/BN/SiC materials through characterization of strength and microstructures after exposure in a burner rig, some factors that control pesting in these composites have been determined. A key precaution is careful control of elemental carbon presence in the interphase region.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey
We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, "ready for use" MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours.
Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey
2015-01-01
We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, “ready for use” MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours. PMID:26722622
The Agricultural Model Intercomparison and Improvement Project (AgMIP) Town Hall
NASA Technical Reports Server (NTRS)
Ruane, Alex; Rosenzweig, Cynthia; Kyle, Page; Basso, Bruno; Winter, Jonathan; Asseng, Senthold
2015-01-01
AgMIP (www.agmip.org) is an international community of climate, crop, livestock, economics, and IT experts working to further the development and application of multi-model, multi-scale, multi-disciplinary agricultural models that can inform policy and decision makers around the world. This meeting will engage the AGU community by providing a brief overview of AgMIP, in particular its new plans for a Coordinated Global and Regional Assessment of climate change impacts on agriculture and food security for AR6. This Town Hall will help identify opportunities for participants to become involved in AgMIP and its 30+ activities.
Holthoff, Ellen L.; Stratis-Cullum, Dimitra N.; Hankus, Mikella E.
2011-01-01
We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3) × 10−5 M for TNT and a 3 μM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest. PMID:22163761
Managing complex processing of medical image sequences by program supervision techniques
NASA Astrophysics Data System (ADS)
Crubezy, Monica; Aubry, Florent; Moisan, Sabine; Chameroy, Virginie; Thonnat, Monique; Di Paola, Robert
1997-05-01
Our objective is to offer clinicians wider access to evolving medical image processing (MIP) techniques, crucial to improve assessment and quantification of physiological processes, but difficult to handle for non-specialists in MIP. Based on artificial intelligence techniques, our approach consists in the development of a knowledge-based program supervision system, automating the management of MIP libraries. It comprises a library of programs, a knowledge base capturing the expertise about programs and data and a supervision engine. It selects, organizes and executes the appropriate MIP programs given a goal to achieve and a data set, with dynamic feedback based on the results obtained. It also advises users in the development of new procedures chaining MIP programs.. We have experimented the approach for an application of factor analysis of medical image sequences as a means of predicting the response of osteosarcoma to chemotherapy, with both MRI and NM dynamic image sequences. As a result our program supervision system frees clinical end-users from performing tasks outside their competence, permitting them to concentrate on clinical issues. Therefore our approach enables a better exploitation of possibilities offered by MIP and higher quality results, both in terms of robustness and reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.
2010-01-01
In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, andmore » enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.« less
Cocaine abuse determination by ion mobility spectrometry using molecular imprinting.
Sorribes-Soriano, A; Esteve-Turrillas, F A; Armenta, S; de la Guardia, M; Herrero-Martínez, J M
2017-01-20
A cocaine-based molecular imprinted polymer (MIP) has been produced by bulk polymerization and employed as selective solid-phase extraction support for the determination of cocaine in saliva samples by ion mobility spectrometry (IMS). The most appropriate conditions for washing and elution of cocaine from MIPs were studied and MIPs were characterized in terms of analyte binding capacity, reusability in water and saliva analysis, imprinting factor and selectivity were established and compared with non-imprinted polymers. The proposed MIP-IMS method provided a LOD of 18μgL -1 and quantitative recoveries for blank saliva samples spiked from 75 to 500μgL -1 cocaine. Oral fluid samples were collected from cocaine consumers and analysed by the proposed MIP-IMS methodology. Results, ranging from below the LOD to 51±2mgL -1 , were statistically comparable to those obtained by a confirmatory gas chromatography-mass spectrometry method. Moreover, results were compared to a qualitative lateral flow immunoassay procedure providing similar classification of the samples. Thus, MIP-IMS can be considered an useful alternative that provided fast, selective and sensitive results with a cost affordable instrumentation that does not require skilled operators. Copyright © 2016 Elsevier B.V. All rights reserved.
AgMIP Training in Multiple Crop Models and Tools
NASA Technical Reports Server (NTRS)
Boote, Kenneth J.; Porter, Cheryl H.; Hargreaves, John; Hoogenboom, Gerrit; Thornburn, Peter; Mutter, Carolyn
2015-01-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has the goal of using multiple crop models to evaluate climate impacts on agricultural production and food security in developed and developing countries. There are several major limitations that must be overcome to achieve this goal, including the need to train AgMIP regional research team (RRT) crop modelers to use models other than the ones they are currently familiar with, plus the need to harmonize and interconvert the disparate input file formats used for the various models. Two activities were followed to address these shortcomings among AgMIP RRTs to enable them to use multiple models to evaluate climate impacts on crop production and food security. We designed and conducted courses in which participants trained on two different sets of crop models, with emphasis on the model of least experience. In a second activity, the AgMIP IT group created templates for inputting data on soils, management, weather, and crops into AgMIP harmonized databases, and developed translation tools for converting the harmonized data into files that are ready for multiple crop model simulations. The strategies for creating and conducting the multi-model course and developing entry and translation tools are reviewed in this chapter.
Chianella, Iva; Guerreiro, Antonio; Moczko, Ewa; Caygill, J. Sarah; Piletska, Elena V.; Perez De Vargas Sansalvador, Isabel M.; Whitcombe, Michael J.; Piletsky, Sergey A.
2016-01-01
A simple and straightforward technique for coating microplate wells with molecularly imprinted polymer nanoparticles (nanoMIPs) to develop ELISA type assays is presented here for the first time. NanoMIPs were synthesized by a solid phase approach with immobilized vancomycin (template) and characterized using Biacore 3000, dynamic light scattering and electron microscopy. Immobilization, blocking and washing conditions were optimized in microplate format. The detection of vancomycin was achieved in competitive binding experiments with a HRP-vancomycin conjugate. The assay was capable of measuring vancomycin in buffer and in blood plasma within the range 0.001-70 nM with a detection limit of 0.0025 nM (2.5 pM). The sensitivity of the assay was three orders of magnitude better than a previously described ELISA based on antibodies. In these experiments nanoMIPs have shown high affinity and minimal interference from blood plasma components. Immobilized nanoMIPs were stored for 1 month at room temperature without any detrimental effects to their binding properties. The high affinity of nanoMIPs and the lack of a requirement for cold chain logistics make them an attractive alternative to traditional antibodies used in ELISA. PMID:23947402
Sheng, Le; Jin, Yulong; He, Yonghuan; Huang, Yanyan; Yan, Liushui; Zhao, Rui
2017-11-01
Superparamagnetic core-shell molecularly imprinted polymer nanoparticles (MIPs) were prepared via surface initiated reversible-addition fragmentation chain transfer (si-RAFT) polymerization for the selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) in real samples. The construction of uniform core-shell structure with a 50nm MIP layer was successfully accomplished, which favored mass transfer and resulted in fast recognition kinetics. The static equilibrium experiments revealed the satisfied adsorption capacity and imprinting efficiency of Fe 3 O 4 @MIP. Moreover, the Fe 3 O 4 @MIP exhibited high selectivity and affinity towards 2,4-D over structural analogues. The prepared Fe 3 O 4 @MIP nanoparticles were used for the selective enrichment of 2,4-D in tap water and Chinese cabbage samples. Combined with RP-HPLC, the recoveries of 2,4-D were calculated from 93.1% to 103.3% with RSD of 1.7-5.4% (n = 3) in Chinese cabbage samples. This work provides a versatile approach for fabricating well-constructed core-shell MIP nanoparticles for rapid enrichment and highly selective separation of target molecules in real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Das, Shibali; Chowdhury, Bidisha Paul; Goswami, Avranil; Parveen, Shabina; Jawed, Junaid; Pal, Nishith; Majumdar, Subrata
2016-12-01
Mycobacterium tuberculosis infection inflicts the disease Tuberculosis (TB), which is fatal if left untreated. During M. tuberculosis infection, the pathogen modulates TLR-4 receptor down-stream signaling, indicating the possible involvement of TLR-4 in the regulation of the host immune response. Mycobacterium indicus pranii (MIP) possesses immuno-modulatory properties which induces the pro-inflammatory responses via induction of TLR-4-mediated signaling. Here, we observed the immunomodulatory properties of MIP against tuberculosis infection. We have studied the detailed signaling mechanisms employed by MIP in order to restore the host immune response against the in vitro tuberculosis infection. We observed that in infected macrophages MIP treatment significantly increased the TLR-4 expression as well as activation of its downstream signaling, facilitating the activation of P38 MAP kinase. MIP treatment was able to activate NF-κB via involvement of TLR-4 signaling leading to the enhanced pro-inflammatory cytokine and NO generation in the infected macrophages and generation of protective immune response. Therefore, we may suggest that, TLR4 may represent a novel therapeutic target for the activation of the innate immune response during Tuberculosis infection. Copyright © 2016. Published by Elsevier Ltd.
Buschmann, H; Green, P; Sambade, A; Doonan, J H; Lloyd, C W
2011-04-01
Transient transformation with Agrobacterium is a widespread tool allowing rapid expression analyses in plants. However, the available methods generate expression in interphase and do not allow the routine analysis of dividing cells. Here, we present a transient transformation method (termed 'TAMBY2') to enable cell biological studies in interphase and cell division. Agrobacterium-mediated transient gene expression in tobacco BY-2 was analysed by Western blotting and quantitative fluorescence microscopy. Time-lapse microscopy of cytoskeletal markers was employed to monitor cell division. Double-labelling in interphase and mitosis enabled localization studies. We found that the transient transformation efficiency was highest when BY-2/Agrobacterium co-cultivation was performed on solid medium. Transformants produced in this way divided at high frequency. We demonstrated the utility of the method by defining the behaviour of a previously uncharacterized microtubule motor, KinG, throughout the cell cycle. Our analyses demonstrated that TAMBY2 provides a flexible tool for the transient transformation of BY-2 with Agrobacterium. Fluorescence double-labelling showed that KinG localizes to microtubules and to F-actin. In interphase, KinG accumulates on microtubule lagging ends, suggesting a minus-end-directed function in vivo. Time-lapse studies of cell division showed that GFP-KinG strongly labels preprophase band and phragmoplast, but not the metaphase spindle. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.
Epigenetic Characteristics of the Mitotic Chromosome in 1D and 3D
Oomen, Marlies E.; Dekker, Job
2017-01-01
While chromatin characteristics in interphase are widely studied, characteristics of mitotic chromatin and their inheritance through mitosis are still poorly understood. During mitosis chromatin undergoes dramatic changes: Transcription stalls, chromatin binding factors leave the chromatin, histone modifications change and chromatin becomes highly condensed. Many key insights into mitotic chromosome state and conformation have come from extensive microscopy studies over the last century. Over the last decade the development of 3C-based techniques has enabled the study of higher order chromosome organization during mitosis in a genome-wide manner. During mitosis chromosomes lose their cell type specific and locus-dependent chromatin organization that characterizes interphase chromatin and fold into randomly positioned loop arrays. Upon exit of mitosis cells are capable of quickly rearranging the chromosome conformation to form the cell type specific interphase organization again. The information that enables this rearrangement after mitotic exit is thought to be encoded at least in part in mitotic bookmarks, e.g. histone modifications and variants, histone remodelers, chromatin factors and non-coding RNA. Here we give an overview of the chromosomal organization and epigenetic characteristics of the interphase and mitotic chromatin in vertebrates. Second, we describe different ways in which mitotic bookmarking enables epigenetic memory of the features of the interphase chromatin through mitosis. And third, we explore the role of epigenetic modifications and mitotic bookmarking in cell differentiation. PMID:28228067
Precipitation Behavior of Nanometer-Sized Carbides in a Nb-Ti-Bearing Low-Carbon Steel
NASA Astrophysics Data System (ADS)
Xiaolin, Li; Zhaodong, Wang; Xiangtao, Deng; Yong, Yang; Dan, Song; Guodong, Wang
The microstructure, mechanical property and precipitation behavior in a low carbon Nb-Ti micro-alloyed steel were investigated using dilatometer, optical microscopy and transmission electron microscope. The results show that the microstructure of the experimental steel treated by isothermal quenching process mainly consists of ferrite and martensite. The volume fraction of ferrite increases with a decrease in the isothermal temperature. It is found that both of interphase precipitation and supersaturated precipitation would appear in the samples treated by isothermal quenching process. Along with the isothermal temperature decreasing, the precipitation state changes from interphase precipitation to supersaturated precipitation. The interphase precipitation of these carbides with different row spacing and different orientation in ferrite grains, is related to the mobility of interfaces during γ/α transformation based on ledge mechanism. In addition to {110}α plane suggested by the ledge mechanism, the planar sheets of interphase precipitation are also found to be parallel with{035}a planes. Moreover, the interphase precipitation carbides were identified to have a NaCl-type crystal structure with a lattice parameter of 0.432 nm and obey the Baker-Nutting (B-N) orientation relationship with respect to ferrite matrix. The contribution of the precipitation hardening to the yield strength of the experiment steel has been estimated to be 337 MPa at 620 °C, based on Orowan mechanism.
Ekomo, Vitalys Mba; Branger, Catherine; Bikanga, Raphaël; Florea, Ana-Mihaela; Istamboulie, Georges; Calas-Blanchard, Carole; Noguer, Thierry; Sarbu, Andrei; Brisset, Hugues
2018-07-30
Electrochemical molecularly imprinted polymers (e-MIPs) were for the first time introduced in screen-printed carbon electrodes (SPCE) as the sensing element for the detection of an organic pollutant. To play this sensing role, a redox tracer was incorporated inside the binding cavities of a cross-linked MIP, as a functional monomer during the synthesis step. Ferrocenylmethyl methacrylate was used for this purpose. It was associated with 4-vinylpyridine as a co-functional monomer and ethylene glycol dimethacrylate as cross-linker for the recognition of the endocrine disruptor, Bisphenol A (BPA), as a target. Microbeads of e-MIP and e-NIP (corresponding non-imprinted polymer) were obtained via precipitation polymerization in acetonitrile. The presence of ferrocene inside the polymers was assessed via FTIR and elemental analysis and the polymers microstructure was characterized by SEM and nitrogen adsorption/desorption experiments. Binding isotherms and batch selectivity experiments evidenced the presence of binding cavities inside the e-MIP and its high affinity for BPA compared to carbamazepine and ketoprofen. e-MIP (and e-NIP) microbeads were then incorporated in a graphite-hydroxyethylcellulose composite paste to prepare SPCE. Electrochemical properties of e-MIP-SPCE revealed a high sensitivity in the presence of BPA in aqueous medium compared to e-NIP-SPCE with a limit of detection (LOD) of 0.06 nM. Selectivity towards carbamazepine and ketoprofen was also observed with the e-MIP-SPCE. Copyright © 2018 Elsevier B.V. All rights reserved.
Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai
2013-10-01
Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan
2013-01-01
The aim of this study is to determine if the mannose-induced protein (MIP-133) from Acanthamoeba castellanii trophozoites induces apoptosis of corneal epithelial cells through a cytosolic phospholipase A2α (cPLA2α)-mediated pathway. The efficacy of cPLA2α inhibitors to provide protection against Acanthamoeba keratitis was examined in vivo. Chinese hamster corneal epithelial (HCORN) cells were incubated with or without MIP-133. MIP-133 induces significant increase in cPLA2α and macrophage inflammatory protein-2 (MIP-2/CXCL2) levels from corneal cells. Moreover, cPLA2α inhibitors, MAFP (Methyl-arachidonyl fluorophosphonate) and AACOCF3 (Arachidonyl trifluoromethyl ketone), significantly reduce cPLA2α and CXCL2 from these cells (P< 0.05). Additionally, cPLA2α inhibitors significantly inhibit MIP-133-induced apoptosis in HCORN cells (P< 0.05). Subconjunctival injection of purified MIP-133 in Chinese hamster eyes induced cytopathic effects resulting in corneal ulceration. Animals infected with A. castellanii-laden contact lenses and treated with AACOCF3 and CAY10650, showed significantly less severe keratitis as compared with control animals. Collectively, the results indicate that cPLA2α is involved in MIP-133 induced apoptosis of corneal epithelial cells, polymorphonuclear neutrophil infiltration, and production of CXCL2. Moreover, cPLA2α inhibitors can be used as a therapeutic target in Acanthamoeba keratitis. PMID:23792108
Liu, Weilu; Li, Haifeng; Yu, Shangmin; Zhang, Jiaxing; Zheng, Weihua; Niu, Liting; Li, Gengen
2018-05-01
In this work, we reported the synthesis of 3, 6-diamino-9-ethylcarbazole and its application as a new monomer for preparation of molecularly imprinted polymer (MIP) electrochemical sensor. The as prepared MIP sensor exhibited ultrahigh sensitivity and selectivity for the detection of 17-β-estradiol in attomolar levels (1 × 10 -18 molL -1 ). The sensor works by detecting the change of the interfacial impedance that is derived from recognition of 17-β-estradiol on the MIP layer. The MIP sensor based on 3, 6-diamino-9-ethylcarbazole monomer revealed better performance than that of unmodified carbazole monomer. The monomer/template ratio, electropolymerization scanning cycles, and the incubation pH values were optimised in order to obtain the best detection efficiency. Under the optimised condition, the MIP sensor exhibits a wide linear range from 1aM to 10μM (1 × 10 -18 ̶ 1 × 10 -5 molL -1 ). A low detection limit of 0.36aM (3.6 × 10 -19 molL -1 ) and a good selectivity towards structurally similar compounds were obtained. The proposed MIP sensor also exhibits long-term stability and applicability in human serum samples. These advantages enabled this MIP sensor to be a promising alternative of electrochemical sensor and may be extended to detection of other endogenous compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Yu, Ya-Qiong; Li, Xiao-Lin; Qiu, Li-Hong; Guo, Jia-Jie; Yang, Di; Guo, Yan
2017-06-01
To investigate the effects of lipopolysaccharides(LPS) extracted from Porphyromonas endodontalis(P.e) on the expression of macrophageinflammatoryprotein-1α (MIP-1α) mRNA and protein levels in MC3T3-E1 cells and the influence of curcumin in the process. MC3T3-E1 cells were treated with 20 mg/L P.e-LPS for different times (0-48 h). The expression of MIP-1α mRNA and protein was detected by real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) and enzyme linked immunosorbent assay(ELISA). MC3T3-E1 cells were pretreated with inhibitor of (curcumin) for 1 h, and then treated with 20 mg/L P.e-LPS. The expression of MIP-1α was also detected by real-time RT-PCR and ELISA.Statistical analysis was performed using one-way ANOVA and Dunnett's t test with SPSS 13.0 software package. In the observation time (0-48 h), the impact of 20 P.e-LPS mg/L on induction of MIP-1α in MC3T3-El cells exhibited a time-dependent manner. The expression of MIP-1α mRNA and protein decreased significantly after pretreatment with 10 μmol/L curcumin for 1 h. The results suggest that P.e-LPS may mediate MIP-1α expression in MC3T3-E1 cells, and curcumin has a significant inhibitory effect on this process.
Shao, W; Fernandez, E; Sachpatzidis, A; Wilken, J; Thompson, D A; Schweitzer, B I; Lolis, E
2001-05-01
Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.
Formiga, Magno F; Roach, Kathryn E; Vital, Isabel; Urdaneta, Gisel; Balestrini, Kira; Calderon-Candelario, Rafael A; Campos, Michael A; Cahalin, Lawrence P
2018-01-01
The Test of Incremental Respiratory Endurance (TIRE) provides a comprehensive assessment of inspiratory muscle performance by measuring maximal inspiratory pressure (MIP) over time. The integration of MIP over inspiratory duration (ID) provides the sustained maximal inspiratory pressure (SMIP). Evidence on the reliability and validity of these measurements in COPD is not currently available. Therefore, we assessed the reliability, responsiveness and construct validity of the TIRE measures of inspiratory muscle performance in subjects with COPD. Test-retest reliability, known-groups and convergent validity assessments were implemented simultaneously in 81 male subjects with mild to very severe COPD. TIRE measures were obtained using the portable PrO2 device, following standard guidelines. All TIRE measures were found to be highly reliable, with SMIP demonstrating the strongest test-retest reliability with a nearly perfect intraclass correlation coefficient (ICC) of 0.99, while MIP and ID clustered closely together behind SMIP with ICC values of about 0.97. Our findings also demonstrated known-groups validity of all TIRE measures, with SMIP and ID yielding larger effect sizes when compared to MIP in distinguishing between subjects of different COPD status. Finally, our analyses confirmed convergent validity for both SMIP and ID, but not MIP. The TIRE measures of MIP, SMIP and ID have excellent test-retest reliability and demonstrated known-groups validity in subjects with COPD. SMIP and ID also demonstrated evidence of moderate convergent validity and appear to be more stable measures in this patient population than the traditional MIP.
Obs4MIPS: Satellite Observations for Model Evaluation
NASA Astrophysics Data System (ADS)
Ferraro, R.; Waliser, D. E.; Gleckler, P. J.
2017-12-01
This poster will review the current status of the obs4MIPs project, whose purpose is to provide a limited collection of well-established and documented datasets for comparison with Earth system models (https://www.earthsystemcog.org/projects/obs4mips/). These datasets have been reformatted to correspond with the CMIP5 model output requirements, and include technical documentation specifically targeted for their use in model output evaluation. The project holdings now exceed 120 datasets with observations that directly correspond to CMIP5 model output variables, with new additions in response to the CMIP6 experiments. With the growth in climate model output data volume, it is increasing more difficult to bring the model output and the observations together to do evaluations. The positioning of the obs4MIPs datasets within the Earth System Grid Federation (ESGF) allows for the use of currently available and planned online tools within the ESGF to perform analysis using model output and observational datasets without necessarily downloading everything to a local workstation. This past year, obs4MIPs has updated its submission guidelines to closely align with changes in the CMIP6 experiments, and is implementing additional indicators and ancillary data to allow users to more easily determine the efficacy of an obs4MIPs dataset for specific evaluation purposes. This poster will present the new guidelines and indicators, and update the list of current obs4MIPs holdings and their connection to the ESGF evaluation and analysis tools currently available, and being developed for the CMIP6 experiments.
Liu, Yongliang; He, Yonghuan; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui
2014-01-03
Porous polymers have aroused extensive attention due to their controllable porous structure in favor of mass transfer and binding capacity. In this work, the novel macroporous core-shell molecularly imprinted polymers (MIP) for selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared by surface initiated atom transfer radical polymerization (si-ATRP). By using one-step swelling and polymerization method, the monodispersed macroporous poly(glycidyl methacrylate) (PGMA) particles were synthesized and used as supporting matrix for preparing surface MIP particles (PGMA@MIP). Thanks to the inner and outer surface-located binding cavities and the macroporous structure, the PGMA@MIPs revealed desirable efficiency for template removal and mass transfer, and thus excellent accessibility and affinity toward template 2,4-D. Moreover, PGMA@MIPs exhibited much higher selectivity toward 2,4-D than PGMA@NIPs. PGMA@MIP particles were directly used to selectively enrich 2,4-D from tap water and the recoveries of 2,4-D were obtained as 90.0-93.4% with relative standard division of 3.1-3.4% (n=3). The macroporous PGMA@MIPs also possessed steady and excellent reusable performance for 2,4-D in four extraction/stripping cycles. This novel macroporous core-shell imprinted material may become a powerful tool for rapid and efficient enrichment and separation of target compounds from the complicated samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Garcia, Deiene; Gomez-Caballero, Alberto; Guerreiro, Antonio; Goicolea, M Aranzazu; Barrio, Ramon J
2015-09-04
A molecularly imprinted polymer (MIP) based methodology is described here for the determination of compounds that belong to the 4-ethylphenol (4EP) metabolic pathway in red wines. To this end, two MIP materials have been developed: a 4EP MIP as a class-selective material to extract phenols that belong to the 4EP metabolic pathway and a coumaric acid (CA) imprinted polymer as a MIP-based stationary phase capable of selectively separating these phenols on HPLC analysis, obtaining clean chromatograms. 4-vinyl pyridine and ethylene glycol dimethacrylate were respectively used as functional monomer and cross-linker for both MIPs. Once polymer compositions were optimised, the 4EP MIP was packed into SPE cartridges for wine sample clean-up and CA MIP was packed into HPLC columns to chromatographically separate the compounds present in the eluates obtained after SPE extraction. The accuracy of the proposed method was tested spiking wine samples with known concentrations of target compounds and subsequently, analytes were quantified by the standard addition method. Registered mean recoveries ranged from 95.2 to 109.2% and RSD values were below 10% in most cases. The described methodology was found to be suitable for the selective extraction and quantification of the compounds that belong to the 4EP metabolic pathway in red wines with minimal matrix effects and could be undoubtedly exploited to monitor 4EP and its precursors in wines. Copyright © 2015 Elsevier B.V. All rights reserved.
Haferlach, C; Dicker, F; Schnittger, S; Kern, W; Haferlach, T
2007-12-01
In CLL data from chromosome banding analysis (CBA) have been scarce due to the low proliferative activity of CLL cells in vitro. We improved the cultivation technique using an immunostimulatory CpG-oligonucleotide DSP30 and IL-2. A total of 506 CLL samples were analysed with CBA and interphase FISH using probes for the detection of trisomy 12, IgH rearrangements and deletions of 6q21, 11q22.3 (ATM), 13q14 (D13S25 and D13S319) and 17p13 (TP53). A total of 500 of 506 (98.8%) cases were successfully stimulated for metaphase generation and are subject to this study. Aberrations were detected in 415 of 500 (83.0%) cases by CBA and in 392 of 500 (78.4%) cases by FISH. CBA detected 832 abnormalities and FISH only 502. Therefore, CBA offers important information in addition to FISH. (1) CLL is characterized mainly by genomic imbalances and reciprocal translocations are rare. (2) A subgroup with complex aberrant karyotype (16.4%) is identified which is associated with an unmutated IgV(H) status and CD38 expression (P=0.034 and 0.02, respectively). (3) Additional abnormalities are detectable providing new biological insights into different CLL subclasses revealing a much more heterogeneous pattern of cytogenetic abnormalities as assumed so far based on FISH data only. Therefore, prospective clinical trials should evaluate the prognostic impact of newly available CBA data.
Zhang, Yuan; Wang, Xiaobei; Ma, Ling; Wang, Zehua; Hu, Lihua
2009-06-01
This study evaluated the clinical significance of hTERC gene amplification detection by fluorescence in situ hybridization (FISH) in the screening of cervical lesions. Cervical specimens of 50 high risk patients were detected by thin liquid-based cytology. The patients whose cytological results were classified as ASCUS or above were subjected to the subsequent colposcopic biopsies. Slides prepared from these 50 cervical specimens were analyzed for hTERC gene amplification using interphase FISH with the two-color hTERC probe. The results of the cytological analysis and those of subsequent biopsies, when available, were compared with the FISH-detected hTERC abnormalities. It was found that the positive rates of hTERC gene amplification in NILM, ASCUS, LSIL, HSIL, and SCC groups were 0.00, 28.57%, 57.14%, 100%, and 100%, respectively. The positive rates of hTERC gene amplification in HSIL and SCC groups were significantly higher than those in NILM, ASCUS and LSIL groups (all P<0.05). The mean percentages of cells with hTERC gene amplification in NILM, ASCUS, LSIL, HSIL, and SCC groups were 0.00, 10.50%, 36.00%, 79.00%, and 96.50%, respectively. Patients with HSIL or SCC cytological diagnoses had significantly higher mean percentages of cells with hTERC gene amplification than did patients with NILM, ASCUS or LSIL cytological diagnoses (all P<0.05). It was concluded that two-color interphase FISH could detect hTERC gene amplification to accurately distinguish HSIL and ISIL of cervical cells. It may be an adjunct to cytology screening, especially high-risk patients.
Controlled diesel exposures: Inter-phasing human and animal studies and their use in the risk assessment process.
Michael C. Madden, US EPA.
Particulate matter (PM) has been reported to be associated with health effects (e.g., premature deaths, hospitalizations, lung ...
Protein Adsorption in Three Dimensions
Vogler, Erwin A.
2011-01-01
Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and initially-adsorbed protein. Interphase protein concentration CI increases as VI decreases, resulting in slow reduction in interfacial energetics. Steady-state is governed by a net partition coefficient P=(/CBCI). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This “adsorption-dehydration” step is the significant free-energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent-surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, protein adsorption monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ → 65°. Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ < 65° . For adsorbents bearing strong Lewis acid/base chemistry such as ion-exchange resins, protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔGadso is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein adsorption to any surface by competing with adsorbing protein molecules. This Leading Opinion ends by proposing several changes to the protein-adsorption paradigm that might advance answers to the three core questions that frame the “protein-adsorption problem” that is so fundamental to biomaterials surface science. PMID:22088888
MIP- MULTIMISSION INTERACTIVE PICTURE PLANNING PROGRAM
NASA Technical Reports Server (NTRS)
Callahan, J. D.
1994-01-01
The Multimission Interactive Picture Planner, MIP, is a scientifically accurate and fast, 3D animation program for deep space. MIP is also versatile, reasonably comprehensive, portable, and will run on microcomputers. New techniques were developed to rapidly perform the calculations and transformations necessary to animate scientifically accurate 3D space. At the same time, portability is maintained, as the transformations and clipping have been written in FORTRAN 77 code. MIP was primarily designed to handle Voyager, Galileo, and the Space Telescope. It can, however, be adapted to handle other missions. The space simulation consists of a rotating body (usually a planet), any natural satellites, a spacecraft, the sun, stars, descriptive labelling, and field of view boxes. The central body and natural satellites are tri-axial wireframe representations with terminators, limbs, and landmarks. Hidden lines are removed for the central body and natural satellites, but not for the scene as a whole so that bodies may be seen behind one another. The program has considerable flexibility in its step time, observer position, viewed object, field of view, etc. Most parameters may be changed from the keyboard while the simulation is running. When MIP is executed it will ask the user for a control file, which should be prepared before execution. The control file identifies which mission MIP should simulate, the star catalog files, the ephemerides files to be used, the central body, planets, asteroids, and comets, and solar system landmarks and constants such as planets, asteroids, and comets. The control file also describes the fields of view. Control files are included to simulate the Voyager 1 encounter at Jupiter and the Giotto spacecraft's flyby of Halley's comet. Data is included for Voyager 1 and 2 (all 6 planetary encounters) and Giotto. MIP was written for an IBM PC or compatibles. It requires 512K of RAM, a CGA or compatible graphics adapter, and DOS 2.0 or higher. Users must supply their own graphics primitives to clear the screen, change the color, and connect 2D points with straight lines. Also, the users must tie in the graphics primitives along with their ephemeris readers. (MIP does everything else including clipping.) MIP was developed in 1988.
Fan, Wenying; He, Man; You, Linna; Zhu, Xuewei; Chen, Beibei; Hu, Bin
2016-04-22
Due to the high selectivity and stability, molecularly imprinted polymers (MIPs) have been successfully applied in stir bar sorptive extraction (SBSE) as a special coating to improve the selective extraction capability for target analytes. However, traditional MIPs usually suffer from incompatibility in aqueous media and low adsorption capacity, which limit the application of MIP coated stir bar in aqueous samples. To solve these problems, a water-compatible graphene oxides (GO)/MIP composite coated stir bar was prepared in this work by in situ polymerization. The prepared water-compatible GO/MIP coated stir bar presented good mechanical strength and chemical stability, and its recognition ability in aqueous samples was improved due to the polymerization of MIP in water environment, the adsorption capacity for target analytes was also increased by the addition of GO in MIP pre-polymer solution. Based on it, a method of water-compatible GO/MIP coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detector (HPLV-UV) was proposed for the analysis of propranolol (PRO) in aqueous solution. The influencing factors of SBSE, such as sample pH, salt effect, stirring rate, extraction time, desorption solvent and desorption time, were optimized, and the analytical performance of the developed SBSE-HPLC-UV method was evaluated under the optimized conditions. The limit of detection (LOD) of the proposed method for PRO was about 0.37 μg L(-1), and the enrichment factor (EF) was 59.7-fold (theoretical EF was 100-fold). The reproducibility was also investigated at concentrations of 5 μg L(-1) and the relative standard deviation (RSD) was found to be 7.3% (n=7). The proposed method of GO/MIP coating-SBSE-HPLC-UV was successfully applied for the assay of the interested PRO drug in urine samples, and further extended to the investigation of the excretion of the drugs by monitoring the variation of the concentration of PRO in urine within 10h after drug-taking. Copyright © 2016 Elsevier B.V. All rights reserved.
Kong, Xuan; Gao, Ruixia; He, Xiwen; Chen, Langxing; Zhang, Yukui
2012-07-06
In this study, we present a general method to prepare the core-shell magnetic molecularly imprinted polymers (MIPs) nanoparticles (NPs) for sulfamethazine (SMZ). The resulting Fe₃O₄@MIPs NPs possess a highly improved imprinting effect, fast adsorption kinetics and high adsorption capacity, and can be applied to extract sulfonamide in the poultry feed. In this protocol, the magnetite NPs were synthesized by co-precipitating Fe²⁺ and Fe³⁺ in an ammonia solution first. Silica was then coated on the Fe₃O₄ NPs using a sol-gel method to obtain silica shell magnetic NPs. Subsequently, the vinyl groups were grated onto silica-modified Fe₃O₄ surface by 3-methacryloyloxypropyltrimethoxysilane. Finally, the MIPs films were formed on the surface of Fe₃O₄@SiO₂ by the copolymerization of vinyl end groups with functional monomer, methacrylic acid, cross-linking agent, ethylene glycol dimethacrylate, the initiator azo-bis-isobutyronitrile and template molecule, sulfamethazine. The morphology, magnetic, adsorption and recognition properties of Fe₃O₄@MIPs NPs were characterized using transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectrometer, vibrating sample magnetometer (VSM) and re-binding experiments. The results showed that the binding sites of Fe₃O₄@MIPs were good accessibility, fast adsorption rate and the maximum adsorption capacity of Fe₃O₄@MIPs to SMZ was 344.8 μg g⁻¹. The selectivity of the obtained Fe₃O₄@MIPs NPs were elucidated by the different rebinding capability of SMZ and structural related sulfonamides in the mixed solution. The results indicated that the Fe₃O₄@MIPs had high imprinting factor 9.5 and significant selectivity. A method was developed for enrichment and determination of SMZ in the poultry feed samples with recoveries of duck and chicken feed ranging from 63.3 to 76.5% and 68.7 to 74.7%, respectively and the relative standard deviations (RSD) (<6.7%). Copyright © 2012 Elsevier B.V. All rights reserved.
Pell, Christopher; Straus, Lianne; Andrew, Erin V. W.; Meñaca, Arantza; Pool, Robert
2011-01-01
Background Malaria during pregnancy (MiP) results in adverse birth outcomes and poor maternal health. MiP-related morbidity and mortality is most pronounced in sub-Saharan Africa, where recommended MiP interventions include intermittent preventive treatment, insecticide-treated bednets and appropriate case management. Besides their clinical efficacy, the effectiveness of these interventions depends on the attitudes and behaviours of pregnant women and the wider community, which are shaped by social and cultural factors. Although these factors have been studied largely using quantitative methods, qualitative research also offers important insights. This article provides a comprehensive overview of qualitative research on social and cultural factors relevant to uptake of MiP interventions in sub-Saharan Africa. Methods and Findings A systematic search strategy was employed: literature searches were undertaken in several databases (OVID SP, IS Web of Knowledge, MiP Consortium library). MiP-related original research, on social/cultural factors relevant to MiP interventions, in Africa, with findings derived from qualitative methods was included. Non-English language articles were excluded. A meta-ethnographic approach was taken to analysing and synthesizing findings. Thirty-seven studies were identified. Fourteen concentrated on MiP. Others focused on malaria treatment and prevention, antenatal care (ANC), anaemia during pregnancy or reproductive loss. Themes identified included concepts of malaria and risk in pregnancy, attitudes towards interventions, structural factors affecting delivery and uptake, and perceptions of ANC. Conclusions Although malaria risk is associated with pregnancy, women's vulnerability is often considered less disease-specific and MiP interpreted in locally defined categories. Furthermore, local discourses and health workers' ideas and comments influence concerns about MiP interventions. Understandings of ANC, health worker-client interactions, household decision-making, gender relations, cost and distance to health facilities affect pregnant women's access to MiP interventions and lack of healthcare infrastructure limits provision of interventions. Further qualitative research is however required: many studies were principally descriptive and an in-depth comparative approach is recommended. PMID:21799859
NASA Astrophysics Data System (ADS)
Gan, Zhaofeng
Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/Li xGe core/shell NW. The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V+/-0.2V and 55+/-3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7+/-0.6V and 46+/-2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations. The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0+/-0.3V and 0.5+/-0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n --p junction transition region and possible surface charge, were also systematically studied using simulations. Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4+/-0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations. The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li content. A model was proposed to explain the lower measured Ge potential, and the trapped electron density in Ge core was calculated to be 3x1018 electrons/cm3. The Li amount during lithiation was also calculated using MIP and volume ratio, indicating that it was lower than the fully lithiated phase.
CENTROSOMES AND MICROTUBULES DURING MEIOSIS IN THE MUSHROOM BOLETUS RUBINELLUS
McLaughlin, David J.
1971-01-01
The double centrosome in the basidium of Boletus rubinellus has been observed in three planes with the electron microscope at interphase preceding nuclear fusion, at prophase I, and at interphase I. It is composed of two components connected by a band-shaped middle part. At anaphase I a single, enlarged centrosome is found at the spindle pole, which is attached to the cell membrane. Microtubules mainly oriented parallel to the longitudinal axis of the basidium are present at prefusion, prophase I and interphase I. Cytoplasmic microtubules are absent when the spindle is present. The relationship of the centrosome in B. rubinellus to that in other organisms and the role of the cytoplasmic microtubules are discussed. PMID:4329156
SCHIP: Statistics for Chromosome Interphase Positioning Based on Interchange Data
NASA Technical Reports Server (NTRS)
Vives, Sergi; Loucas, Bradford; Vazquez, Mariel; Brenner, David J.; Sachs, Rainer K.; Hlatky, Lynn; Cornforth, Michael; Arsuaga, Javier
2005-01-01
he position of chromosomes in the interphase nucleus is believed to be associated with a number of biological processes. Here, we present a web-based application that helps analyze the relative position of chromosomes during interphase in human cells, based on observed radiogenic chromosome aberrations. The inputs of the program are a table of yields of pairwise chromosome interchanges and a proposed chromosome geometric cluster. Each can either be uploaded or selected from provided datasets. The main outputs are P-values for the proposed chromosome clusters. SCHIP is designed to be used by a number of scientific communities interested in nuclear architecture, including cancer and cell biologists, radiation biologists and mathematical/computational biologists.
Fast scaffolding with small independent mixed integer programs
Salmela, Leena; Mäkinen, Veli; Välimäki, Niko; Ylinen, Johannes; Ukkonen, Esko
2011-01-01
Motivation: Assembling genomes from short read data has become increasingly popular, but the problem remains computationally challenging especially for larger genomes. We study the scaffolding phase of sequence assembly where preassembled contigs are ordered based on mate pair data. Results: We present MIP Scaffolder that divides the scaffolding problem into smaller subproblems and solves these with mixed integer programming. The scaffolding problem can be represented as a graph and the biconnected components of this graph can be solved independently. We present a technique for restricting the size of these subproblems so that they can be solved accurately with mixed integer programming. We compare MIP Scaffolder to two state of the art methods, SOPRA and SSPACE. MIP Scaffolder is fast and produces better or as good scaffolds as its competitors on large genomes. Availability: The source code of MIP Scaffolder is freely available at http://www.cs.helsinki.fi/u/lmsalmel/mip-scaffolder/. Contact: leena.salmela@cs.helsinki.fi PMID:21998153
Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.
Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada
2016-01-01
This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dizdar, Omer; Kalyoncu, Umut; Karadag, Omer; Akdogan, Ali; Kiraz, Sedat; Ertenli, Ihsan; Barista, Ibrahim; Calguneri, Meral
2007-01-01
The aim of this study is to investigate the relationship between chemokines and the inflammation in Familial Mediterranean Fever (FMF). Forty-nine patients with FMF (41 in remission and 8 in acute attack period) and 20 healthy controls were included in the study. Serum levels of macrophage inflammatory protein-1alpha (MIP-1alpha) were assessed in the patients and the controls, along with other parameters of disease activity, i.e., fibrinogen, C-reactive protein and erythrocyte sedimentation rate. Serum MIP-1alpha levels of the patients with FMF in acute attack period were significantly higher than the patients in remission and healthy controls (p=0.02 and p=0.038, respectively). MIP-1alpha levels were weakly correlated with CRP (r=0.32, p=0.032) levels. MIP-1alpha may have a role in the pathogenesis of FMF attacks. MIP-1alpha and other chemokines may constitute a link between the innate immune system and FMF.
The Mars In-Situ-Propellant-Production Precursor (MIP) Flight Demonstration
NASA Technical Reports Server (NTRS)
Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.
1999-01-01
Strategic planning for human missions of exploration to Mars has conclusively identified insitu propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Glenn Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware that are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to (1) uncertainties in our knowledge of the Mars environment, and (2) conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.
NASA Astrophysics Data System (ADS)
Qiu, Huamin; Xi, Yulei; Lu, Fuguang; Fan, Lulu; Luo, Chuannan
2012-02-01
A novel molecular imprinting-chemiluminescence (MIP-CL) sensor for the determination of L-phenylalanine (Phe) using molecularly imprinted polymer (MIP) as recognition element is reported. The Phe-MIP was synthesized using acrylamide (AM) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, 2,2-azobisisobutyronitrile (AIBN) as initiator and the polymers' properties were characterized. Then the synthesized MIP was employed as recognition element by packing into flow cell to establish a novel flow injection CL sensor. The CL intensity responded linearly to the concentration of Phe in the range 1.3 × 10 -6 to 5.44 × 10 -4 mol/L with a detection limit of 6.23 × 10 -7 mol/L (3 σ), which is lower than that of conventional methods. The sensor is reusable and has a great improvement in sensitivity and selectivity for CL analysis. As a result, the new MIP-CL sensor had been successfully applied to the determination of Phe in samples.
Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.
2014-04-01
The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less
Subramaniam, Menaga; Liew, Su Ki; In, Lionel LA; Awang, Khalijah; Ahmed, Niyaz; Nagoor, Noor Hasima
2018-01-01
Drug combination therapy to treat cancer is a strategic approach to increase successful treatment rate. Optimizing combination regimens is vital to increase therapeutic efficacy with minimal side effects. In the present study, we evaluated the in vitro cytotoxicity of double and triple combinations consisting of 1'S-1'-acetoxychavicol acetate (ACA), Mycobacterium indicus pranii (MIP) and cisplatin (CDDP) against 14 various human cancer cell lines to address the need for more effective therapy. Our data show synergistic effects in MCF-7 cells treated with MIP:ACA, MIP:CDDP and MIP:ACA:CDDP combinations. The type of interaction between MIP, ACA and CDDP was evaluated based on combination index being <0.8 for synergistic effect. Identifying the mechanism of cell death based on previous studies involved intrinsic apoptosis and nuclear factor kappa B (NF-κB) and tested in Western blot analysis. Inactivation of NF-κB was confirmed by p65 and IκBα, while intrinsic apoptosis pathway activation was confirmed by caspase-9 and Apaf-1 expression. All combinations confirmed intrinsic apoptosis activation and NF-κB inactivation. Double and triple combination regimens that target induction of the same death mechanism with reduced dosage of each drug could potentially be clinically beneficial in reducing dose-related toxicities.
Lorenzo, Rosa A.; Carro, Antonia M.; Alvarez-Lorenzo, Carmen; Concheiro, Angel
2011-01-01
Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods. PMID:21845081
Jones, Harrison N; Crisp, Kelly D; Moss, Tronda; Strollo, Katherine; Robey, Randy; Sank, Jeffrey; Canfield, Michelle; Case, Laura E; Mahler, Leslie; Kravitz, Richard M; Kishnani, Priya S
2014-01-01
Respiratory muscle weakness is a primary therapeutic challenge for patients with infantile Pompe disease. We previously described the clinical implementation of a respiratory muscle training (RMT) regimen in two adults with late-onset Pompe disease; both demonstrated marked increases in inspiratory and expiratory muscle strength in response to RMT. However, the use of RMT in pediatric survivors of infantile Pompe disease has not been previously reported. We report the effects of an intensive RMT program on maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP) using A-B-A (baseline-treatment-posttest) single subject experimental design in two pediatric survivors of infantile Pompe disease. Both subjects had persistent respiratory muscle weakness despite long-term treatment with alglucosidase alfa. Subject 1 demonstrated negligible to modest increases in MIP/MEP (6% increase in MIP, d=0.25; 19% increase in MEP, d=0.87), while Subject 2 demonstrated very large increases in MIP/MEP (45% increase in MIP, d=2.38; 81% increase in MEP, d=4.31). Following three-month RMT withdrawal, both subjects maintained these strength increases and demonstrated maximal MIP and MEP values at follow-up. Intensive RMT may be a beneficial treatment for respiratory muscle weakness in pediatric survivors of infantile Pompe disease.
Hu, Xiaogang; Hu, Yuling; Li, Gongke
2007-04-13
A novel molecularly imprinted polymer (MIP) coated solid-phase microextraction (SPME) fiber that could be coupled directly to high-performance liquid chromatography (HPLC) was prepared with prometryn as the template molecule. The characteristics and application of this fiber were investigated. Electron microscope photographs indicated that the MIP coating with average thickness of 25.0 microm was homogeneous and porous. The extraction yield of prometryn with the MIP-coated fibers was 10 times as much as that with the non-imprinted polymer (NIP) coated fibers. And special selectivity to other triazines which have similar structure to prometryn was discovered with the MIP-coated fibers. A method for the determination of triazines by the MIP-coated SPME coupled with HPLC was developed. The optimized extraction conditions were studied. Detection limits for the triazines studied were within the range of 0.012-0.090 microg/L. The method was applied to five triazines determination in the spiked soybean, corn, lettuce, and soil samples with the recoveries of 78.0-103.5%, 82.4-113.4%, 75.5-83.4%, and 81.0-106.1%, respectively. The MIP-coated fibers are suitable for the selective extraction of trace triazines in complicated samples.
Saini, Vikram; Raghuvanshi, Saurabh; Khurana, Jitendra P.; Ahmed, Niyaz; Hasnain, Seyed E.; Tyagi, Akhilesh K.; Tyagi, Anil K.
2012-01-01
Understanding the evolutionary and genomic mechanisms responsible for turning the soil-derived saprophytic mycobacteria into lethal intracellular pathogens is a critical step towards the development of strategies for the control of mycobacterial diseases. In this context, Mycobacterium indicus pranii (MIP) is of specific interest because of its unique immunological and evolutionary significance. Evolutionarily, it is the progenitor of opportunistic pathogens belonging to M. avium complex and is endowed with features that place it between saprophytic and pathogenic species. Herein, we have sequenced the complete MIP genome to understand its unique life style, basis of immunomodulation and habitat diversification in mycobacteria. As a case of massive gene acquisitions, 50.5% of MIP open reading frames (ORFs) are laterally acquired. We show, for the first time for Mycobacterium, that MIP genome has mosaic architecture. These gene acquisitions have led to the enrichment of selected gene families critical to MIP physiology. Comparative genomic analysis indicates a higher antigenic potential of MIP imparting it a unique ability for immunomodulation. Besides, it also suggests an important role of genomic fluidity in habitat diversification within mycobacteria and provides a unique view of evolutionary divergence and putative bottlenecks that might have eventually led to intracellular survival and pathogenic attributes in mycobacteria. PMID:22965120
Lorenzo, Rosa A; Carro, Antonia M; Alvarez-Lorenzo, Carmen; Concheiro, Angel
2011-01-01
Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods.
Demonstrating the Effect of Interphase Mass Transfer in a Transparent Fluidized Bed Reactor
ERIC Educational Resources Information Center
Saayman, Jean; Nicol, Willie
2011-01-01
A demonstration experiment is described that employs the ozone decomposition reaction at ambient conditions on Fe2O3 impregnated Fluidized Catalytic Cracking (FCC) catalyst. Using a two-dimensional see-through column the importance of interphase mass transfer is clearly illustrated by the significant difference in ozone conversion between the…
FANCA safeguards interphase and mitosis during hematopoiesis in vivo
Abdul-Sater, Zahi; Cerabona, Donna; Sierra Potchanant, Elizabeth; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W. Scott; Nalepa, Grzegorz
2015-01-01
Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in non-hematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material (PCM) to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA cross-linking and antimitotic chemotherapeutics in primary FANCA−/− cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that the FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers. PMID:26366677
Ito, Sayuri; Gotoh, Eisuke; Ozawa, Shigeru; Yanagi, Kazuo
2002-10-01
Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA-1), which binds to both the EBV origin of replication (oriP) and metaphase chromosomes, is essential for the replication/retention and segregation/partition of oriP-containing plasmids. Here the chromosomal localization of EBNA-1 fused to green fluorescent protein (GFP-EBNA-1) is examined by confocal microscopy combined with a 'premature chromosome condensation' (PCC) procedure. Analyses show that GFP-EBNA-1 expressed in living cells that lack oriP plasmids is associated with cellular chromatin that has been condensed rapidly by the PCC procedure into identifiable forms that are unique to each phase of interphase as well as metaphase chromosomes. Studies of cellular chromosomal DNAs labelled with BrdU or Cy3-dUTP indicate that GFP-EBNA-1 colocalizes highly with the labelled, newly replicated regions of interphase chromatin in cells. These results suggest that EBNA-1 is associated not only with cellular metaphase chromosomes but also with condensing chromatin/chromosomes and probably with interphase chromatin, especially with its newly replicated regions.
Zare, Yasser; Rhim, Sungsoo; Garmabi, Hamid; Rhee, Kyong Yop
2018-04-01
The networks of nanoparticles in nanocomposites cause solid-like behavior demonstrating a constant storage modulus at low frequencies. This study examines the storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes (CNT) nanocomposites. The experimental data of the storage modulus in the plateau regions are obtained by a frequency sweep test. In addition, a simple model is developed to predict the constant storage modulus assuming the properties of the interphase regions and the CNT networks. The model calculations are compared with the experimental results, and the parametric analyses are applied to validate the predictability of the developed model. The calculations properly agree with the experimental data at all polymer and CNT concentrations. Moreover, all parameters acceptably modulate the constant storage modulus. The percentage of the networked CNT, the modulus of networks, and the thickness and modulus of the interphase regions directly govern the storage modulus of nanocomposites. The outputs reveal the important roles of the interphase properties in the storage modulus. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lai, Cui; Wang, Man-Man; Zeng, Guang-Ming; Liu, Yun-Guo; Huang, Dan-Lian; Zhang, Chen; Wang, Rong-Zhong; Xu, Piao; Cheng, Min; Huang, Chao; Wu, Hai-Peng; Qin, Lei
2016-12-01
The molecular imprinted TiO2/graphene photocatalyst (MIP-TiO2/GR) was successfully prepared with bisphenol A (BPA) as the template molecule (target pollutant) and o-phenylenediamine (OPDA) as functional monomers by the surface molecular imprinting method. The combination between BPA and OPDA led to the formation of the precursor, and the subsequent polymerization of OPDA initiated by ultraviolet radiation can ensure the realization of MIP-TiO2/GR. The samples were characterized by SEM, EDS, XRD, BET, UV-vis DRS and Zeta potential. In addition, adsorption capacities, adsorption selectivity and visible light photocatalytic performances of MIP-TiO2/GR and non-imprinted TiO2/graphene (NIP-TiO2/GR) were evaluated. Moreover, the effects of pH and initial BPA concentration on removal efficiency of BPA were also investigated. The results showed that MIP-TiO2/GR exhibited better adsorption capacity and adsorption selectivity towards the template molecule compared to NIP-TiO2/GR due to the imprinted cavities on the surface of MIP-TiO2/GR. Moreover, the photocatalytic activity of MIP-TiO2/GR toward the target molecules was stronger than that of NIP-TiO2/GR as a result of large adsorption capacity to target molecules and narrow band gap energy on MIP-TiO2/GR. Therefore, modifying the photocatalyst by the surface molecular imprinting is a promising method to improve the molecule recognition and photocatalytic efficiency of photocatalyst for target pollutant.
Yang, Fang-Fang; Li, Zai-Xuan; Xu, Yu-Jing; Huang, Yan-Ping; Liu, Zhao-Sheng
2018-06-07
The dendritic effect of nano mesoporous molecular sieve was first used to enhance molecular recognition of molecularly imprinted polymers (MIPs)-based polyhedral oligomeric silsesquioxanes (POSS). In this study, the MIPs were made using S-naproxen (S-NAP) as template molecule, 4-vinylpyridine (4-VP) as functional monomer, ethylene glycol dimethacrylate as cross-linker, 1-butyl-3-methylimidazoliumtetrafluoroborate ([BMIM]BF 4 )/DMSO as binary porogens, 1-propylmethacrylate-heptaisobutyl substituted as POSS monomer, and mesoporous molecular sieve (Mobil composition of matter No. 41, MCM-41) as dendritic scaffold. The influence of synthesis parameters on the imprinting effect, including the content of POSS monomer and derivatized MCM-41-MPS, the ratio of template to monomer, and the ratio of binary porogens were also investigated, respectively. The morphology of the polymers was characterized by scanning electron microscopy, nitrogen adsorption, and X-ray powder diffraction. The results showed that POSS&MCM-41-MPS MIP had a stronger imprinting effect with an imprinting factor 6.86, which is approximately 2.4, 2.3, and 3 times than that of POSS MIP, MCM-41-MPS MIP, and conventional MIP, respectively. The increase of affinity might be attributed to impediment of the chain motion of polymer due to improved POSS aggregation and the dipole interaction between the POSS units by introduce of MCM-41-MPS as scaffolds. The resulting POSS&MCM-41-MPS MIP was used as adsorbent for the enrichment of S-NAP in solid-phase extraction with a high recovery of 97.65% and the value of RSD was 0.94%.
Motor Imagery Practice for Enhancing Elevé Performance Among Professional Dancers: A Pilot Study.
Abraham, Amit; Dunsky, Ayelet; Dickstein, Ruth
2016-09-01
Elevé is a core dance movement requiring the greatest ankle plantarflexion (PF) range of motion (ROM). One possible way to enhance elevé performance is by using motor imagery practice (MIP). The aims of this pilot study were to investigate: 1) functional ankle PF maximal angles and ROM while performing elevé among professional dancers, 2) the effect of MIP on enhancing elevé performance, and 3) participants' views on the MIP intervention and its feasibility in a professional dance company setting. Five professional dancers, mean age 31 yrs (SD 1.87), participated in a 2-week MIP intervention. Data on ankle PF maximal angles and ROM were collected pre- and post-intervention using 3-dimensional motion capture while performing repeat (10 repetitions) and static (10 sec) elevé. At baseline, ankle PF maximal angles were 169.20° (SD 2.81°) and 168.36° (2.23°) and ankle PF ROM were 40.21° (3.35°) and 35.94° (3.95°) for the repeat and static tasks, respectively. After the MIP intervention, ankle PF maximal angles were 170.28° (4.26°) and 170.74° (3.77°) and ankle PF ROM were 41.53° (2.33°) and 39.30° (2.30°) for the repeat and static tasks, respectively. Feasibility of MIP was established with 100% compliance and positive views were expressed by participants. The results suggest MIP holds potential as an adjunct training method for enhancing elevé performance among professional dancers.
Zhang, Lijun; Wang, Guiheng; Wu, Di; Xiong, Can; Zheng, Lei; Ding, Yunsheng; Lu, Hongbo; Zhang, Guobing; Qiu, Longzhen
2018-02-15
In this study, an organic electrochemical transistor sensor (OECT) with a molecularly imprinted polymer (MIP)-modified gate electrode was prepared for the detection of ascorbic acid (AA). The combination of the amplification function of an OECT and the selective specificity of MIPs afforded a highly sensitive, selective OECT sensor. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were carried out to monitor the stepwise fabrication of the modified electrodes and the adsorption capacity of the MIP/Au electrodes. Atomic force microscopy was employed for examining the surface morphology of the electrodes. Important detection parameters, pH and detection temperature were optimized. With the change in the relative concentration of AA from 1μM to 100μM, the MIP-OECT sensor exhibited a low detection limit of 10nM (S/N > 3) and a sensitivity of 75.3μA channel current change per decade under optimal conditions. In addition, the MIP-OECT sensor exhibited excellent specific recognition ability to AA, which prevented the interference from other structurally similar compounds (e.g., aspartic acid, glucose, uric acid, glycine, glutathione, H 2 O 2 ), and common metal ions (K + , Na + , Ca 2+ , Mg 2+ , and Fe 2+ ). In addition, a series of vitamin C beverages were analyzed to demonstrate the feasibility of the MIP-OECT sensor. Using the proposed principle, several other sensors with improved performance can be constructed via the modification of organic electrochemical transistors with appropriate MIP films. Copyright © 2017 Elsevier B.V. All rights reserved.
Song, Han; Wang, Yuli; Zhang, Lu; Tian, Liping; Luo, Jun; Zhao, Na; Han, Yajie; Zhao, Feilang; Ying, Xue; Li, Yingchun
2017-11-01
A highly sensitive and selective electrochemical sensor based on carbon paste electrode (CPE) modified with molecularly imprinted polymers (MIPs) has been developed for the determination of estrone 3-sulfate sodium salt (ESS). MIPs were prepared in polar medium via bulk polymerization and characterized by scanning electron microscopy and infrared spectroscopy. Cyclic voltammetry was performed to the study preparation process and binding behavior of the MIP-modified CPE (MIP/CPE) toward ESS. The conditions for preparing MIPs and MIP/CPE as well as ESS detection were optimized. Under the optimal experimental conditions, the detection linear range for ESS is 4 × 10 -12 to 6 × 10 -9 M with a limit of detection of 1.18 × 10 -12 M (S/N = 3). In addition, the sensor exhibits high binding affinity toward ESS over its structural analogues with excellent repeatability and stability. The fabricated MIP/CPE was then successfully employed to detect ESS in pregnant mare urine (PMU) without any pretreatment, and the average recoveries were from 99.6 to 104.9% with relative standard deviation less than 3.0%. High-performance liquid chromatography was adopted as a reference to validate the established approach in detecting ESS and their results showed good agreement. The as-prepared sensor has high potential to be a decent tool for on-site determination of ESS in PMU in a fast and convenient manner. Graphical Abstract ᅟ.
Formiga, Magno F; Roach, Kathryn E; Vital, Isabel; Urdaneta, Gisel; Balestrini, Kira; Calderon-Candelario, Rafael A
2018-01-01
Purpose The Test of Incremental Respiratory Endurance (TIRE) provides a comprehensive assessment of inspiratory muscle performance by measuring maximal inspiratory pressure (MIP) over time. The integration of MIP over inspiratory duration (ID) provides the sustained maximal inspiratory pressure (SMIP). Evidence on the reliability and validity of these measurements in COPD is not currently available. Therefore, we assessed the reliability, responsiveness and construct validity of the TIRE measures of inspiratory muscle performance in subjects with COPD. Patients and methods Test–retest reliability, known-groups and convergent validity assessments were implemented simultaneously in 81 male subjects with mild to very severe COPD. TIRE measures were obtained using the portable PrO2 device, following standard guidelines. Results All TIRE measures were found to be highly reliable, with SMIP demonstrating the strongest test–retest reliability with a nearly perfect intraclass correlation coefficient (ICC) of 0.99, while MIP and ID clustered closely together behind SMIP with ICC values of about 0.97. Our findings also demonstrated known-groups validity of all TIRE measures, with SMIP and ID yielding larger effect sizes when compared to MIP in distinguishing between subjects of different COPD status. Finally, our analyses confirmed convergent validity for both SMIP and ID, but not MIP. Conclusion The TIRE measures of MIP, SMIP and ID have excellent test–retest reliability and demonstrated known-groups validity in subjects with COPD. SMIP and ID also demonstrated evidence of moderate convergent validity and appear to be more stable measures in this patient population than the traditional MIP. PMID:29805255
Neelon, Kelly; Roberts, Mary F; Stec, Boguslaw
2011-12-07
1-L-myo-inositol-phosphate synthase (mIPS) catalyzes the first step of the unique, de novo pathway of inositol biosynthesis. However, details about the complex mIPS catalytic mechanism, which requires oxidation, enolization, intramolecular aldol cyclization, and reduction, are not fully known. To gain further insight into this mechanism, we determined the crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 Å, as well as the crystal structures of three active-site mutants. Additionally, we obtained the structure of mIPS with a trapped 5-keto-glucose-6-phosphate intermediate at 2 Å resolution by a novel (to our knowledge) process of activating the crystal at high temperature. A comparison of all of the crystal structures of mIPS described in this work suggests a novel type of catalytic mechanism that relies on the forced atomic proximity of functional groups. The lysine cluster is contained in a small volume in the active site, where random motions of these side chains are responsible for the progress of the complex multistep reaction as well as for the low rate of catalysis. The mechanism requires that functional groups of Lys-274, Lys-278, Lys-306, and Lys-367 assume differential roles in the protonation/deprotonation steps that must occur during the mIPS reaction. This mechanism is supported by the complete loss of activity of the enzyme caused by the Leu-257 mutation to Ala that releases the lysine containment. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Xiong, Xiaolu; Meng, Yanfen; Wang, Xile; Qi, Yong; Li, Jiaming; Duan, Changsong; Wen, Bohai
2012-11-06
The recombinant membrane-associated proteins of Coxiella burnetii, Com1, Mip and GroEL, were used in vitro to stimulate BALB/c mouse bone marrow-derived dendritic cells (BMDCs). The antigen-activated BMDCs were transferred into naïve BALB/c mice. Seven days after challenge of C. burnetii, the bacterial loads of mice receiving BMDCs activated with Com1 or Mip, but not GroEL, were significantly lower than that of mice receiving BMDCs pulsed with TrxA (Esherichia coli thioredoxin) in a quantitative polymerase chain reaction assay. After in vitro interaction with cognate antigen-pulsed BMDCs, the percentages of CD69-positive cells and TNF-α-positive cells in CD4(+) and CD8(+) T cells isolated from the spleens of mice receiving Com1-, Mip-, or GroEL-pulsed BMDCs were significantly higher than that of mice receiving mock-pulsed BMDCs in flow cytometric analysis. The percentages of IFN-γ-positive cells in CD4(+) and CD8(+) T cells from mice receiving Com1- or Mip-pulsed BMDCs were significantly greater than that of mice receiving GroEL-pulsed BMDCs. However, the percentage of IL-4-positive cells in CD4(+) T cells of mice receiving GroEL-pulsed BMDCs was obviously higher than that of mice receiving Com1- or Mip-pulsed BMDCs. Our results demonstrate that Com1 and Mip are protective antigens and strongly indicate that they favor to induce IFN-γ-producing Th1 and Tc1 cells, whereas the non-protective antigen GroEL is biased to induce a Th2 response. Therefore, Com1 and Mip are key antigens to induce a protective immune response against C. burnetii infection. Copyright © 2012 Elsevier Ltd. All rights reserved.
Molecular imprinting of caffeine on cellulose/silica composite and its characterization
NASA Astrophysics Data System (ADS)
Gill, Rajinder Singh
This dissertation presents a study to prepare molecularly imprinted inorganic/organic hybrid composite which not only confirm the higher binding capabilities for the target molecule (template) but also discriminate its structural analogs. Molecularly imprinted Cellulose/Silica composite (MIP) was prepared by using caffeine as the template. Silica derived from TEOS by using sol-gel techniques was deposited on cheap, abundant organic matrix such as cellulose, which can provide a filtering medium while coffee brewing. Removal of the template from the precursor was verified by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Remarkably reduced intensity of -NH2 scissor like mode of caffeine and the presence of traces of "N" by elemental analysis, confirmed the complete removal of caffeine on washing with ethanol. Cellulose to TEOS mass ratio of 2:1 was found to be close to optimal during our analysis. Energy dispersive spectroscopy results leads to an important fact that the deposition of silica was stable even at 373 K. Focus was on the adsorption affinities of caffeine by MIP and was tested by performing relative adsorption of caffeine by MIP and blank (standard) using demountable path length cell in IR. It was observed that MIP showed almost 3-folds higher adsorption capabilities as compared to blank. The initial rate of adsorption of caffeine by MIP is much higher than blank which is one of the desirable feature according the its intended use. The higher adsorption of caffeine by MIP not only depends on the amount of silica deposited but also the available binding sites present on its surface. Selectivity of MIP was also verified by the competitive adsorption of caffeine and its structure analogs such as theophylline. Clearly, MIP showed greater and more rapid binding capabilities for caffeine than theophylline. At short contact times, the binding capability for caffeine is almost 1.8 times greater than the binding capabilities for theophylline.
Olsnes, Carla; Stavang, Helen; Brokstad, Karl; Olofsson, Jan; Aarstad, Hans J
2009-01-01
Background OK-432, penicillin-killed Streptococcus pyogenes, is used in treating lymphangiomas and carcinomas. We have studied in vitro the role of mononuclear phagocytes (MNPs), including purified monocytes (MOs), in the immune response to OK-432. MIP-1α/β and MCP-1 secretions were assessed in whole blood (WB), peripheral blood mononuclear cells (PBMCs) and purified MOs, after in vitro stimulation with OK-432 with or without adherence for 24 hours. Results OK-432 stimulated MNPs to secrete MCP-1 and MIP-1α/β in healthy individuals and in head and neck squamous cell carcinoma (HNSCC) patients, except for OK-432 stimulation of WB giving a minimal MIP-1α/β response. Upon culture on low-attachment wells, a spontaneous chemokine secretion was observed, with an unchanged secretion following OK-432 stimulation. Inhibition of Syk kinase and/or PI-3 kinase did not significantly change the chemokine response to OK-432, except for MIP-1α production being increased upon Syk inhibitor addition and an increased MCP-1 response upon addition of both inhibitors. Adhesion may possibly involve β1 and/or β3 integrins, not β2, whereas β1–3 integrins may act as co-stimulatory receptors for OK-432. Based on direct blockage of CD36 or CD18 by antibodies, MCP-1 production may be mediated by CD18 while MIP-1β and MCP-1 production may occur upon binding to CD36. Conclusion Adherent human MOs produce MCP-1 and MIP-1α/β upon stimulation with OK-432. CD36 modulates MIP-1β and MCP-1 response. Thus, to some extent OK-432 acts as a substance whereby only MOs adhered to surfaces secrete MCP-1 and MIP-1α/β, in part explaining why OK-432 is suited as a biological response modifying drug. PMID:19175917
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Weigang; Graff, Pierre; Boettger, Thomas
2011-04-15
Purpose: To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Methods: Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generatedmore » based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. Results: The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference >3% or {<=}3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. Conclusions: A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.« less
Cáceres, C; Canfarotta, F; Chianella, I; Pereira, E; Moczko, E; Esen, C; Guerreiro, A; Piletska, E; Whitcombe, M J; Piletsky, S A
2016-02-21
The aim of this work is to evaluate whether the size of the analyte used as template for the synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) can affect their performance in pseudo-enzyme linked immunosorbent assays (pseudo-ELISAs). Successful demonstration of a nanoMIPs-based pseudo-ELISA for vancomycin (1449.3 g mol(-1)) was demonstrated earlier. In the present investigation, the following analytes were selected: horseradish peroxidase (HRP, 44 kDa), cytochrome C (Cyt C, 12 kDa) biotin (244.31 g mol(-1)) and melamine (126.12 g mol(-1)). NanoMIPs with a similar composition for all analytes were synthesised by persulfate-initiated polymerisation in water. In addition, core-shell nanoMIPs coated with polyethylene glycol (PEG) and imprinted for melamine were produced in organics and tested. The polymerisation of the nanoparticles was done using a solid-phase approach with the correspondent template immobilised on glass beads. The performance of the nanoMIPs used as replacement for antibodies in direct pseudo-ELISA (for the enzymes) and competitive pseudo-ELISA for the smaller analytes was investigated. For the competitive mode we rely on competition for the binding to the nanoparticles between free analyte and corresponding analyte-HRP conjugate. The results revealed that the best performances were obtained for nanoMIPs synthesised in aqueous media for the larger analytes. In addition, this approach was successful for biotin but completely failed for the smallest template melamine. This problem was solved using nanoMIP prepared by UV polymerisation in an organic media with a PEG shell. This study demonstrates that the preparation of nanoMIP by solid-phase approach can produce material with high affinity and potential to replace antibodies in ELISA tests for both large and small analytes. This makes this technology versatile and applicable to practically any target analyte and diagnostic field.
Jiang, Wenting; Liu, Liang; Chen, Yun
2018-03-06
Abnormal expression of C-terminal p53 isoforms α, β, and γ can cause the development of cancers including breast cancer. To date, much evidence has demonstrated that these isoforms can differentially regulate target genes and modulate their expression. Thus, quantification of individual isoforms may help to link clinical outcome to p53 status and to improve cancer patient treatment. However, there are few studies on accurate determination of p53 isoforms, probably due to sequence homology of these isoforms and also their low abundance. In this study, a targeted proteomics assay combining molecularly imprinted polymers (MIPs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous quantification of C-terminal p53 isoforms. Isoform-specific surrogate peptides (i.e., KPLDGEYFTLQIR (peptide-α) for isoform α, KPLDGEYFTLQDQTSFQK (peptide-β) for isoform β, and KPLDGEYFTLQMLLDLR (peptide-γ) for isoform γ) were first selected and used in both MIPs enrichment and mass spectrometric detection. The common sequence KPLDGEYFTLQ of these three surrogate peptides was used as single template in MIPs. In addition to optimization of imprinting conditions and characterization of the prepared MIPs, binding affinity and cross-reactivity of the MIPs for each surrogate peptide were also evaluated. As a result, a LOQ of 5 nM was achieved, which was >15-fold more sensitive than that without MIPs. Finally, the assay was validated and applied to simultaneous quantitative analysis of C-terminal p53 isoforms α, β, and γ in several human breast cell lines (i.e., MCF-10A normal cells, MCF-7 and MDA-MB-231 cancer cells, and drug-resistant MCF-7/ADR cancer cells). This study is among the first to employ single template MIPs and cross-reactivity phenomenon to select isoform-specific surrogate peptides and enable simultaneous quantification of protein isoforms in LC-MS/MS-based targeted proteomics.
Godara, A; Raabe, D; Green, S
2007-03-01
The effect of sterilization on the structural integrity of the thermoplastic matrix composite polyetheretherketone (PEEK) reinforced with carbon fibers (CF) is investigated by nanoindentation and nanoscratch tests. The use of the material as a medical implant grade requires a detailed understanding of the micromechanical properties which primarily define its in vivo behavior. Sterilization is a mandatory process for such materials used in medical applications like bone implants. The steam and gamma radiation sterilization processes employed in this study are at sufficient levels to affect the micromechanical properties of some polymer materials, particularly in the interphase region between the polymer matrix and the reinforcing fibers. Nanoindentation and nanoscratch tests are used in this work to reveal local gradients in the hardness and the elastic properties of the interphase regions. Both methods help to explore microscopic changes in the hardness, reduced stiffness and scratch resistance in the interphase region and in the bulk polymer matrix due to the different sterilization processes employed. The results reveal that neither steam nor gamma radiation sterilization entails significant changes of the reduced elastic modulus, hardness or coefficient of friction in the bulk polymer matrix. However, minor material changes of the PEEK matrix were observed in the interphase region. Of the two sterilization methods used, the steam treatment has a more significant influence on these small changes in this region and appears to increase slightly the thickness of the interphase zone.
Annular inhomogeneities with eigenstrain and interphase modeling
NASA Astrophysics Data System (ADS)
Markenscoff, Xanthippi; Dundurs, John
2014-03-01
Two and three-dimensional analytical solutions for an inhomogeneity annulus/ring (of arbitrary thickness) with eigenstrain are presented. The stresses in the core may become tensile (for dilatational eigenstrain in the annulus) depending on the relative shear moduli. For shear eigenstrain, an “interface rotation” and rotation jumps at the interphase also occur, consistent with the Frank-Bilby interface model. A Taylor series expansion for small thickness of the annulus is obtained to the second-order as to model thin interphases, with the limit agreeing with the Gurtin-Murdoch surface membrane, but also accounting for curvature effects.. The Eshelby “driving forces” on a boundary with eigenstrain are calculated, and for small, but finite, interphase thicknesses they account for the interaction of the two interfaces of the layer, and the next order term may induce instabilities, for some bimaterial combinations, if it becomes large enough to render the driving force zero. It is also proven that for 2-D inhomogeneities with eigenstrain the stresses have reduced material dependence for any geometry of the inhomogeneity. The case when the outer boundary of the inhomogeneity annulus with eigenstrain is a free surface is also analyzed and agrees with classical surface tension results in the limit, but, moreover, the thick free surface terms (next order in the expansion depending on the radius) are also obtained and may induce instabilities depending on the bimaterial combinations. Applications of inhomogeneity annuluses with eigenstrain are wide and include interphases in thermal barrier coatings and coated particles in electrically/thermally conductive adhesives.
Equilibrium composition of interphase boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wynblatt, P.
1990-01-01
Two modeling approaches have been used to investigate segregation effects at interphase boundaries. The first approach is based on the nearest neighbor bond model, used in conjunction with the regular solution approximation, and is an extension of an earlier framework developed to address segregation phenomena at free surfaces. In order to model a semicoherent interphase boundary, we have employed a second modeling approach, based on Monte Carol simulation, in conjunction with the embedded atom method (EAM). The EAM is a powerful new method for describing interatomic interactions in metallic systems. It includes certain many-body interactions that depend on the localmore » environment of an atom. The Monte Carol approach has been applied to semicoherent interphase boundaries in Cu-Ag-Au alloys dilute in Au. These alloys consist of coexisting Cu-rich and Ag-rich phases, which differ in lattice constant by about 12%, such that good matching across in interface occurs when nine structural units of the Cu-rich phase are opposed to eight structural units of the Ag-rich phase. Thus far, interfaces with two different orientations have been studied: {l brace}001{r brace}-Cu//{l brace}001{r brace}-Ag, {l angle}110{r angle}-Cu//{l angle}110{r angle}-Ag; and {l brace}111{r brace}-Cu//{l brace}111{r brace}-Ag, {l angle}110{r angle}-Cu//{l angle}110{r angle}-Ag. These two interfaces will be referred to as the (001) and (111) interphase boundaries, for short. 18 refs.« less
Pauciullo, Alfredo; Perucatti, Angela; Cosenza, Gianfranco; Iannuzzi, Alessandra; Incarnato, Domenico; Genualdo, Viviana; Di Berardino, Dino; Iannuzzi, Leopoldo
2014-01-01
The main goal of this study was to develop a comparative multi-colour Zoo-FISH on domestic ruminants metaphases using a combination of whole chromosome and sub-chromosomal painting probes obtained from the river buffalo species (Bubalus bubalis, 2n = 50,XY). A total of 13 DNA probes were obtained through chromosome microdissection and DOP-PCR amplification, labelled with two fluorochromes and sequentially hybridized on river buffalo, cattle (Bos taurus, 2n = 60,XY), sheep (Ovis aries, 2n = 54,XY) and goat (Capra hircus, 2n = 60,XY) metaphases. The same set of paintings were then hybridized on bovine secondary oocytes to test their potential use for aneuploidy detection during in vitro maturation. FISH showed excellent specificity on metaphases and interphase nuclei of all the investigated species. Eight pairs of chromosomes were simultaneously identified in buffalo, whereas the same set of probes covered 13 out 30 chromosome pairs in the bovine and goat karyotypes and 40% of the sheep karyotype (11 out of 27 chromosome pairs). This result allowed development of the first comparative M-FISH karyotype within the domestic ruminants. The molecular resolution of complex karyotypes by FISH is particularly useful for the small chromosomes, whose similarity in the banding patterns makes their identification very difficult. The M-FISH karyotype also represents a practical tool for structural and numerical chromosome abnormalities diagnosis. In this regard, the successful hybridization on bovine secondary oocytes confirmed the potential use of this set of probes for the simultaneous identification on the same germ cell of 12 chromosome aneuploidies. This is a fundamental result for monitoring the reproductive health of the domestic animals in relation to management errors and/or environmental hazards. PMID:25330006
Rapid mapping of chromosomal breakpoints: from blood to BAC in 20 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chun-Mei; Kwan, Johnson; Weier, Jingly F.
2009-02-25
Structural chromosome aberrations and associated segmental or chromosomal aneusomies are major causes of reproductive failure in humans. Despite the fact that carriers of reciprocal balanced translocation often have no other clinical symptoms or disease, impaired chromosome homologue pairing in meiosis and karyokinesis errors lead to over-representation of translocations carriers in the infertile population and in recurrent pregnancy loss patients. At present, clinicians have no means to select healthy germ cells or balanced zygotes in vivo, but in vitro fertilization (IVF) followed by preimplantation genetic diagnosis (PGD) offers translocation carriers a chance to select balanced or normal embryos for transfer. Althoughmore » a combination of telomeric and centromeric probes can differentiate embryos that are unbalanced from normal or unbalanced ones, a seemingly random position of breakpoints in these IVF-patients poses a serious obstacle to differentiating between normal and balanced embryos, which for most translocation couples, is desirable. Using a carrier with reciprocal translocation t(4;13) as an example, we describe our state-of-the-art approach to the preparation of patient-specific DNA probes that span or 'extent' the breakpoints. With the techniques and resources described here, most breakpoints can be accurately mapped in a matter of days using carrier lymphocytes, and a few extra days are allowed for PGD-probe optimization. The optimized probes will then be suitable for interphase cell analysis, a prerequisite for PGD since blastomeres are biopsied from normally growing day 3 - embryos regardless of their position in the mitotic cell cycle. Furthermore, routine application of these rapid methods should make PGD even more affordable for translocation carriers enrolled in IVF programs.« less
Pliocene Model Intercomparison (PlioMIP) Phase 2: Scientific Objectives and Experimental Design
NASA Technical Reports Server (NTRS)
Haywood, A. M.; Dowsett, H. J.; Dolan, A. M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M. A.; Hunter, S. J.; Lunt, D. J.; Pound, M.;
2015-01-01
The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. This paper provides a thorough model intercomparison project description, and documents the experimental design in a detailed way. Specifically, this paper describes the experimental design and boundary conditions that will be utilized for the experiments in Phase 2 of PlioMIP.
NASA Technical Reports Server (NTRS)
Hall, Laverne
1995-01-01
Modeling of the Multi-mission Image Processing System (MIPS) will be described as an example of the use of a modeling tool to design a distributed system that supports multiple application scenarios. This paper examines: (a) modeling tool selection, capabilities, and operation (namely NETWORK 2.5 by CACl), (b) pointers for building or constructing a model and how the MIPS model was developed, (c) the importance of benchmarking or testing the performance of equipment/subsystems being considered for incorporation the design/architecture, (d) the essential step of model validation and/or calibration using the benchmark results, (e) sample simulation results from the MIPS model, and (f) how modeling and simulation analysis affected the MIPS design process by having a supportive and informative impact.
NASA Technical Reports Server (NTRS)
Antle, John M.; Valdivia, Roberto O.; Boote, Kenneth J.; Janssen, Sander; Jones, James W.; Porter, Cheryl H.; Rosenzweig, Cynthia; Ruane, Alexander C.; Thorburn, Peter J.
2015-01-01
This chapter describes methods developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) to implement a transdisciplinary, systems-based approach for regional-scale (local to national) integrated assessment of agricultural systems under future climate, biophysical, and socio-economic conditions. These methods were used by the AgMIP regional research teams in Sub-Saharan Africa and South Asia to implement the analyses reported in their respective chapters of this book. Additional technical details are provided in Appendix 1.The principal goal that motivates AgMIP's regional integrated assessment (RIA) methodology is to provide scientifically rigorous information needed to support improved decision-making by various stakeholders, ranging from local to national and international non-governmental and governmental organizations.
Ly-Sunnaram, Beatrice; Henry, Catherine; Gandemer, Virginie; Mee, Franseza Le; Burtin, Florence; Blayau, Martine; Cayuela, Jean-Michel; Oster, Magalie; Clech, Philippe; Rambeau, Marc; Marie, Celine; Pampin, Cecilia; Edan, Christine; Gall, Edouard Le; Goasguen, Jean E
2005-09-01
We describe here a late extramedullary ovarian relapse in an 18-year-old female who was diagnosed with hypotetraploid cell acute lymphoblastic leukaemia (cALL) at the age of 6. At both occurrences of the disease cells were analyzed by morphology, immunophenotyping, cytogenetics and molecular methods. TEL/AML1 was detected by RT-PCR and FISH analysis in both events. We demonstrated, using detection of IGH/TCR rearrangements and TEL/AML1 breakpoints sequencing that the cells were clonally related. Moreover, interphasic FISH using TEL and AML1 probes showed the loss of a second TEL at the time of relapse. This observation confirms that TEL/AML1 alone is not sufficient to trigger ALL and that TEL deletion is a secondary event in leukemogenesis. To our knowledge, it is the first complete description of extramedullary ALL relapse combining all methodologies.
Loss of the SHOX gene associated with Leri-Weill dyschondrosteosis in a 45,X male
Stuppia, L; Calabrese, G; Borrelli, P; Gatta, V; Morizio, E; Mingarelli, R; Di, G; Crino, A; Giannotti, A; Rappold, G; Palka, G
1999-01-01
A male patient is reported with a 45,X karyotype and Leri-Weill dyschondrosteosis (LWD). FISH analysis with SHOX and SRY gene probes was carried out. One copy of both SHOX and SRY was detected in interphase nuclei, clarifying the origin of LWD and the male phenotype. Molecular results suggested that the 45,X karyotype arose through two independent events. The first occurred at paternal meiosis leading to an unequal crossing over between the short arms of the X and Y chromosomes. As a consequence, the SRY gene was translocated onto Xp, thereby explaining the male phenotype of the patient. The second event probably occurred at maternal meiosis or at the early stages of the zygote resulting in the loss of the maternal X chromosome. Keywords: 45,X karyotype; Leri-Weill syndrome; SHOX gene PMID:10507731
Cytogenetic study of a pulmonary sclerosing hemangioma.
Pareja, María J; Vargas, María T; Sánchez, Ana; Ibáñez, José; González-Cámpora, Ricardo
2009-11-01
Pulmonary sclerosing hemangioma (PSH) is an uncommon benign tumor that presents as a solitary asymptomatic and slow-growing nodule. It occurs in both young and old persons; peak incidence is in the fifth decade. Both sexes are affected by this tumor, but women more frequently than men. On histological examination, PSH shows prominent sclerotization and vascularization of the tissue. Recent studies conclude that PSH derives from type II pneumocytes, but the potential for progression and histogenesis remains controversial. We report a case of pulmonary sclerosing hemangioma in a 61-year-old woman with a neoplastic node 1 cm in diameter. The karyotype was 46,XX,t(8;18),der(14;15),+14 in all the cells analyzed. PTEN (10q23) and IgH (14q32) probes were analyzed in interphase nuclei and paraffin-embedded tissues of tumor cells. These chromosome abnormalities could provide information about the relationship of genetic changes to the biological properties of sclerosing hemangioma tumors.
Montijn, M B; ten Hoopen, R; Fransz, P F; Oud, J L; Nanninga, N
1998-05-01
The cell cycle-dependent spatial position, morphology and activity of the four nucleolar organising regions (NORs) of the Petunia hybrida cultivar Mitchell and the inbred line V26 have been analysed. Application of the silver staining technique and fluorescence in situ hybridisation on fixed root-tip material revealed that these interspecific hybrids possess four NORs of which only those of chromosome 2 are active during interphase, which implies that the NOR activity is not of parental origin. However, at the end of mitosis, activity of all NOR regions could be detected, suggesting that the high demand for ribosomes at this stage of the cell cycle requires temporal activity of all NORs. Using actin DNA probes as markers in fluorescence in situ hybridisation experiments enabled the identification of the individual petunia chromosomes.
Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, Jason, E-mail: jason.callahan@petermac.org; Kron, Tomas; Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne
2013-07-15
Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom whilemore » moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently underestimates ITV when compared with 4D PET/CT for a lesion affected by respiration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan
2011-11-15
Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosismore » in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP-2 or CXCL12 prevented dendritic regression and apoptosis in vitro. Black-Right-Pointing-Pointer Neuroprotection through activation of Akt, ERK1/2 and maintenance of ADAM17. Black-Right-Pointing-Pointer Neuroprotection of hippocampal pyramidal neurons in vivo by MIP-2 or CXCL12. Black-Right-Pointing-Pointer MIP-2 or CXCL12 prevent elevation of F2-Isoprostanes against A{beta} treatment.« less
Yuphintharakun, Naphat; Nurerk, Piyaluk; Chullasat, Kochaporn; Kanatharana, Proespichaya; Davis, Frank; Sooksawat, Dhassida; Bunkoed, Opas
2018-08-05
A nanocomposite optosensor consisting of carboxylic acid functionalized multiwall carbon nanotubes and CdTe quantum dots embedded inside a molecularly imprinted polymer (COOH@MWCNT-MIP-QDs) was developed for trace ciprofloxacin detection. The COOH@MWCNT-MIP-QDs were synthesized through a facile sol-gel process using ciprofloxacin as a template molecule, 3-aminopropylethoxysilane as a functional monomer and tetraethoxysilane as a cross-linker at a molar ratio of 1:8:20. The synthesized nanocomposite optosensor had high sensitivity, excellent specificity and high binding affinity to ciprofloxacin. Under optimal conditions, the fluorescence intensity of the optosensor decreased in a linear fashion with the concentration of ciprofloxacin and two linear dynamic ranges were obtained, 0.10-1.0 μg L -1 and 1.0-100.0 μg L -1 with a very low limit of detection of 0.066 μg L -1 . The imprinting factors of the two linear range were 17.67 and 4.28, respectively. The developed nanocomposite fluorescence probe was applied towards the determination of ciprofloxacin levels in chicken muscle and milk samples with satisfactory recoveries being obtained in the range of 82.6 to 98.4%. The results were also in good agreement with a HPLC method which indicates that the optosensor can be used as a sensitive, selective and rapid method to detect ciprofloxacin in chicken and milk samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Iskierko, Zofia; Sosnowska, Marta; Sharma, Piyush Sindhu; Benincori, Tiziana; D'Souza, Francis; Kaminska, Izabela; Fronc, Krzysztof; Noworyta, Krzysztof
2015-12-15
A novel recognition unit of chemical sensor for selective determination of the inosine, renal disfunction biomarker, was devised and prepared. For that purpose, inosine-templated molecularly imprinted polymer (MIP) film was deposited on an extended-gate field-effect transistor (EG-FET) signal transducing unit. The MIP film was prepared by electrochemical polymerization of bis(bithiophene) derivatives bearing cytosine and boronic acid substituents, in the presence of the inosine template and a thiophene cross-linker. After MIP film deposition, the template was removed, and was confirmed by UV-visible spectroscopy. Subsequently, the film composition was characterized by spectroscopic techniques, and its morphology and thickness were determined by AFM. The finally MIP film-coated extended-gate field-effect transistor (EG-FET) was used for signal transduction. This combination is not widely studied in the literature, despite the fact that it allows for facile integration of electrodeposited MIP film with FET transducer. The linear dynamic concentration range of the chemosensor was 0.5-50 μM with inosine detectability of 0.62 μM. The obtained detectability compares well to the levels of the inosine in body fluids which are in the range 0-2.9 µM for patients with diagnosed diabetic nephropathy, gout or hyperuricemia, and can reach 25 µM in certain cases. The imprinting factor for inosine, determined from piezomicrogravimetric experiments with use of the MIP film-coated quartz crystal resonator, was found to be 5.5. Higher selectivity for inosine with respect to common interferents was also achieved with the present molecularly engineered sensing element. The obtained analytical parameters of the devised chemosensor allow for its use for practical sample measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers.
Bunte, Gudrun; Hürttlen, Jürgen; Pontius, Heike; Hartlieb, Kerstin; Krause, Horst
2007-05-15
Fast, reliable and inexpensive analytical techniques for trace detection of explosive components are in high demand. Our approach is to develop specific sensor coating materials based on molecularly imprinted polymers (MIPs). Despite the known inhibition of radical polymerisations by nitro groups and the known shrinkage of the polymer lattice during/after drying we were able to synthesize particulate MIPs by suspension polymerisation as well as thin MIP coatings by direct surface polymerisation on quartz crystal microbalances (QCM). The best method to purify the porous beads was Soxhlet extraction followed by supercritical carbon dioxide extraction (SFE with sc-CO2) at mild conditions (150 bar, 50 degrees C). At least a removal of >99.7% of the template was achieved. Performance tests of TNT imprinted polymer beads showed that acrylamide (AA) and more pronounced also methacrylic acid (MAA) possessed an enhanced adsorption tendency for gaseous TNT. An adsorption of 2,4-DNT, dinitrotoluene, by these MIPs was not detected. Using 2,4-DNT as template and methacrylamide, MAAM, a positive imprint effect for gaseous 2,4-DNT was achieved with no measurable cross-sensitivity for 2,4,6-TNT. The thin MIP coatings directly synthesized on the QCMs showed thicknesses of 20 to up to 500 nm. Preliminary screening experiments were performed for five different monomers and three different solvents (acetonitrile, chloroform and dimethylformamide). Best adsorption properties for TNT vapour until now showed a PAA-MIP synthesized with chloroform. Direct measurements of the mass attachment, respectively frequency decrease of the coated QCMs during vapour treatment showed a TNT-uptake of about 150 pg per microg MIP per hour. Results look worthy for further studies.
Oriented immobilized anti-hIgG via F(c) fragment-imprinted PHEMA cryogel for IgG purification.
Bereli, Nilay; Ertürk, Gizem; Tümer, M Aşkin; Say, Ridvan; Denizli, Adil
2013-05-01
Antibodies are used in many applications, especially as diagnostic and therapeutic agents. Among the various techniques used for the purification of antibodies, immunoaffinity chromatography is by far the most common. For this purpose, oriented immobilization of antibodies is an important step for the efficiency of purification step. In this study, F(c) fragment-imprinted poly(hydroxyethyl methacrylate) cryogel (MIP) was prepared for the oriented immobilization of anti-hIgG for IgG purification from human plasma. Non-imprinted poly(hydroxyethyl methacrylate) cryogel (NIP) was also prepared for random immobilization of anti-hIgG to compare the adsorption capacities of oriented (MIP/anti-hIgG) and random (NIP/anti-hIgG) cryogel columns. The amount of immobilized anti-hIgG was 19.8 mg/g for the NIP column and 23.7 mg/g for the MIP column. Although the amount of immobilized anti-hIgG was almost the same for the NIP and MIP columns, IgG adsorption capacity was found to be three times higher than the NIP/anti-hIgG column (29.7 mg/g) for the MIP/anti-hIgG column (86.9 mg/g). Higher IgG adsorption capacity was observed from human plasma (up to 106.4 mg/g) with the MIP/anti-hIgG cryogel column. Adsorbed IgG was eluted using 1.0 M NaCl with a purity of 96.7%. The results obtained here are very encouraging and showed the usability of MIP/anti-hIgG cryogel prepared via imprinting of Fc fragments as an alternative to conventional immunoaffinity techniques for IgG purification. Copyright © 2012 John Wiley & Sons, Ltd.
Luvizutto, Gustavo José; Dos Santos, Maria Regina Lopes; Sartor, Lorena Cristina Alvarez; da Silva Rodrigues, Josiela Cristina; da Costa, Rafael Dalle Molle; Braga, Gabriel Pereira; de Oliveira Antunes, Letícia Cláudia; Souza, Juli Thomaz; de Carvalho Nunes, Hélio Rubens; Bazan, Silméia Garcia Zanati; Bazan, Rodrigo
2017-10-01
During hospitalization, stroke patients are bedridden due to neurologic impairment, leading to loss of muscle mass, weakness, and functional limitation. There have been few studies examining respiratory muscle strength (RMS) in the acute phase of stroke. This study aimed to evaluate the RMS of patients with acute stroke compared with predicted values and to relate this to anthropometric variables, risk factors, and neurologic severity. This is a cross-sectional study in the acute phase of stroke. After admission, RMS was evaluated by maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP); anthropometric data were collected; and neurologic severity was evaluated by the National Institutes of Health Stroke Scale. The analysis of MIP and MEP with predicted values was performed by chi-square test, and the relationship between anthropometric variables, risk factors, and neurologic severity was determined through multiple linear regression followed by residue analysis by the Shapiro-Wilk test; P < .05 was considered statistically significant. In the 32 patients studied, MIP and MEP were reduced when compared with the predicted values. MIP declined significantly by 4.39 points for each 1 kg/m 2 increase in body mass index (BMI), and MEP declined significantly by an average of 3.89 points for each 1 kg/m 2 increase in BMI. There was no statistically significant relationship between MIP or MEP and risk factors, and between MIP or MIP and neurologic severity in acute phase of stroke. There is a reduction of RMS in the acute phase of stroke, and RMS was lower in individuals with increased age and BMI. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Martínez, H R; Escamilla-Ocañas, C E; Camara-Lemarroy, C R; González-Garza, M T; Moreno-Cuevas, J; García Sarreón, M A
2017-10-10
Neuroinflammation has recently been described in amyotrophic lateral sclerosis (ALS). However, the precise role of such proinflammatory cytokines as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in ALS has not yet been determined. In this study, we determined cerebrospinal fluid (CSF) MCP-1 and MIP-1β levels and assessed their association with the duration and severity of ALS. Concentrations of MCP-1 and MIP-1β were determined in the CSF of 77 patients diagnosed with ALS and 13 controls. Cytokine levels were analysed in relation to ALS duration (<12months vs. >12months) and severity (<30points vs. >30points on the ALS Functional Rating Scale administered at hospital admission). Higher CSF MIP-1β (10.68pg/mL vs. 4.69pg/mL, P<.0001) and MCP-1 (234.89pg/mL vs. 160.95pg/mL, P=.011) levels were found in the 77 patients with ALS compared to controls. There were no differences in levels of either cytokine in relation to disease duration or severity. However, we did observe a significant positive correlation between MIP-1β and MCP-1 in patients with ALS. The increase in MIP-1β and MCP-1 levels suggests that these cytokines may have a synergistic effect on ALS pathogenesis. However, in our cohort, no association was found with either the duration or the clinical severity of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Zhang, Wei; Xiong, Huiwen; Chen, Miaomiao; Zhang, Xiuhua; Wang, Shengfu
2017-10-15
A novel molecularly imprinted electrochemiluminescence (MIP-ECL) sensor based on Ru(bpy) 3 2+ -doped silica nanoparticles (Ru@SiO 2 NPs) is developed for highly sensitive detection of fumonisin B 1 (FB 1 ). Gold-nanoparticles (AuNPs), Ru@SiO 2 NPs with chitosan (CS) composites and a molecularly imprinted polymer (MIP) are assembled on a glassy carbon electrode (GCE) to fabricate an ECL platform step by step. AuNPs could greatly promote the ECL intensity and improve the analytical sensitivity according to the localized surface plasmon resonance (LSPR) and the electrochemical effect. In this surface-enhanced electrochemiluminescence (SEECL) system, AuNPs work as the LSPR source to improve the ECL intensity and Ru@SiO 2 NPs are used as ECL luminophores. In the phosphate buffer solution (PBS), the evident anodic ECL of Ru@SiO 2 on the above working electrode is observed in the presence of the template molecule fumonisin B 1 (FB 1 ), which could act as the coreactant of Ru@SiO 2 NPs due to the amino group of FB 1 . When the template molecules were eluted from the MIP, little coreactant was left, resulting in an apparent decrease of ECL signal. After the MIP-ECL sensor was incubated in FB 1 solution, the template molecules rebound to the MIP surface, leading to the enhancement of ECL signal again. On the basis of these results, a facile MIP-ECL sensor has been successfully fabricated, which exhibited a linear range from 0.001 to 100ngmL -1 with a detection limit of 0.35pgmL -1 for FB 1 . Moreover, the proposed MIP-ECL sensor displayed an excellent application in real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Wei; She, Xuhui; Wang, Liping; Fan, Huajun; Zhou, Qing; Huang, Xiaowen; Tang, James Z.
2017-01-01
A novel molecular imprinting polymer (MIP) was prepared by bulk polymerization using sulpiride as the template molecule, itaconic acid (ITA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the crosslinker. The formation of the MIP was determined as the molar ratio of sulpiride-ITA-EGDMA of 1:4:15 by single-factor experiments. The MIP showed good adsorption property with imprinting factor α of 5.36 and maximum adsorption capacity of 61.13 μmol/g, and was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and surface area analysis. With the structural analogs (amisulpride, tiapride, lidocaine and cisapride) and small molecules containing a mono-functional group (p-toluenesulfonamide, formamide and 1-methylpyrrolidine) as substrates, static adsorption, kinetic adsorption, and rebinding experiments were also performed to investigate the selective adsorption ability, kinetic characteristic, and recognition mechanism of the MIP. A serial study suggested that the highly selective recognition ability of the MIP mainly depended on binding sites provided by N-functional groups of amide and amine. Moreover, the MIP as solid-phase extractant was successfully applied to extraction of sulpiride from the mixed solution (consisted of p-toluenesulfonamide, sulfamethoxazole, sulfanilamide, p-nitroaniline, acetanilide and trimethoprim) and serum sample, and extraction recoveries ranged from 81.57% to 86.63%. The tentative tests of drug release in stimulated intestinal fluid (pH 6.8) demonstrated that the tablet with the MIP–sulpiride could obviously inhibit sulpiride release rate. Thus, ITA-based MIP is an efficient and promising alternative to solid-phase adsorbent for extraction of sulpiride and removal of interferences in biosample analysis, and could be used as a potential carrier for controlled drug release. PMID:28772831
NASA Astrophysics Data System (ADS)
Griffies, Stephen M.; Danabasoglu, Gokhan; Durack, Paul J.; Adcroft, Alistair J.; Balaji, V.; Böning, Claus W.; Chassignet, Eric P.; Curchitser, Enrique; Deshayes, Julie; Drange, Helge; Fox-Kemper, Baylor; Gleckler, Peter J.; Gregory, Jonathan M.; Haak, Helmuth; Hallberg, Robert W.; Heimbach, Patrick; Hewitt, Helene T.; Holland, David M.; Ilyina, Tatiana; Jungclaus, Johann H.; Komuro, Yoshiki; Krasting, John P.; Large, William G.; Marsland, Simon J.; Masina, Simona; McDougall, Trevor J.; Nurser, A. J. George; Orr, James C.; Pirani, Anna; Qiao, Fangli; Stouffer, Ronald J.; Taylor, Karl E.; Treguier, Anne Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valdivieso, Maria; Wang, Qiang; Winton, Michael; Yeager, Stephen G.
2016-09-01
The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs.OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.
Assessment of occlusion after placement of stainless steel crowns in children - a pilot study.
Gallagher, S; O'Connell, B C; O'Connell, A C
2014-10-01
Many stainless steel crowns (SSCs) disrupt the occlusion in children, but stabilisation appears to occur within a short period post-placement. The extent and mechanism of these short-term occlusal changes in children are unknown. This study sought to determine whether placement of a SSC changes the maximum intercuspation position (MIP) in children, whether the MIP returns to normal within 4 weeks and whether local anaesthesia had an effect on the child's ability to achieve MIP. The T-Scan(®) III was used for the measurement of occlusal contacts. Reliability and reproducibility of the system was determined using a calibration exercise where MIP recordings were taken of eleven children not undergoing any dental treatment. For the main study, the percentage of total occlusal force on each tooth was recorded in 20 children preoperatively, after local anaesthesia, after SSC placement and 4 weeks postoperatively. There was no significant difference in MIP (P = 0·435) preoperatively and post-administration of local anaesthesia. There was a significant difference between the preoperative force on a tooth and the reading after crown placement (P = 0·0013, Wilcoxon test). By 4 weeks, there was no significant difference overall between post-SSC placement and the preoperative value for the tooth (P = 0·3). Administration of local anaesthesia did not affect the ability of a child to attain MIP. Maximum intercuspation position was disturbed by the placement of a SSC in seven of 20 cases. When MIP was disturbed, in most cases, it returned to preoperative status within 4 weeks of crown placement. © 2014 John Wiley & Sons Ltd.
Bueno-Silva, Bruno; Franchin, Marcelo; Alves, Claudiney de Freitas; Denny, Carina; Colón, David Fernando; Cunha, Thiago Mattar; Alencar, Severino Matias; Napimoga, Marcelo Henrique; Rosalen, Pedro Luiz
2016-12-01
Brazilian propolis is popularly used as treatment for different diseases including the ones with inflammatory origin. Brazilian red propolis chemical profile and its anti-inflammatory properties were recently described however, its mechanism of action has not been investigated yet. Elucidate Brazilian red propolis major pathways of action on the modulation of neutrophil migration during the inflammatory process. The ethanolic extract of propolis (EEP) activity was investigated for neutrophil migration into the peritoneal cavity, intravital microscopy (rolling and adhesion of leukocytes), quantification of cytokines TNF-α, IL-1β and chemokines CXCL1/KC, CXCL2/MIP-2, neutrophil chemotaxis induced by CXCL2/MIP-2, calcium influx and CXCR2 expression on neutrophils. EEP at 10mg/kg prevented neutrophil migration into peritoneal cavity (p < 0.05), reduced leukocyte rolling and adhesion on the mesenteric microcirculation (p < 0.05) and inhibited the release TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 (p < 0.05). EEP at 0.01, 0.1 and 1µg/ml reduced the CXCL2/MIP-2-induced neutrophils chemotaxis (p < 0.05) without affect cell viability (p > 0.05).EEP at 1µg/ml decreased the calcium influx induced by CXCL2/MIP-2 (p<0.05). On the other hand, none of EEP concentrations tested altered CXCR2 expression by neutrophils (p>0.05). Brazilian red propolis appears as a promising anti-inflammatory natural product which mechanism seems to be by reducing leukocyte rolling and adhesion; TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 release; CXCL2/MIP-2-induced chemotaxis and calcium influx. Copyright © 2016 Elsevier GmbH. All rights reserved.
Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.
2015-01-01
Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383
Pysz, Marybeth A; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K
2012-09-01
To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts.
MACRA 2.0: are you ready for MIPS?
Hirsch, Joshua A; Rosenkrantz, Andrew B; Ansari, Sameer A; Manchikanti, Laxmaiah; Nicola, Gregory N
2017-07-01
The annual cost of healthcare delivery in the USA now exceeds US$3 trillion. Fee for service methodology is often implicated as a cause of this exceedingly high figure. The Affordable Care Act created the Center for Medicare and Medicaid Innovation (CMMI) to pilot test value based alternative payments for reimbursing physician services. In 2015, the Medicare Access and CHIP Reauthorization Act (MACRA) was passed into law. MACRA has dramatic implications for all US based healthcare providers. MACRA permanently repealed the Medicare Sustainable Growth Rate so as to stabilize physician part B Medicare payments, consolidated pre-existing federal performance programs into the Merit based Incentive Payments System (MIPS), and legislatively mandated new approaches to paying clinicians. Neurointerventionalists will predominantly participate in MIPS. MIPS unifies, updates, and streamlines previously existing federal performance programs, thereby reducing onerous redundancies and overall administrative burden, while consolidating performance based payment adjustments. While MIPS may be perceived as a straightforward continuation of fee for service methodology with performance modifiers, MIPS is better viewed as a stepping stone toward eventually adopting alternative payment models in later years. In October 2016, the Centers for Medicare and Medicaid Services (CMS) released a final rule for MACRA implementation, providing greater clarity regarding 2017 requirements. The final rule provides a range of options for easing MIPS reporting requirements in the first performance year. Nonetheless, taking the newly offered 'minimum possible' approach toward meeting the requirements will still have negative consequences for providers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Kim, Inwha; Kim, Dae Jung; Kim, Kyoung Ah; Yoon, Sang Wook; Lee, Jong Tae
2014-01-01
To investigate the feasibility and accuracy of multidetector computed tomography (MDCT) angiography for assessment of subsegmental tumor-feeding vessels in transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC). A total of 23 patients with 36 HCCs who underwent TACE during a 14-month period were enrolled. All patients underwent 3-phase dynamic MDCT within a month before TACE. Arterial phase MDCT images were retrospectively reformatted and analyzed for determination of single subsegmental tumor-feeding vessel using maximum intensity projection (MIP) and volume-rendering technique (VRT). Two radiologists independently assessed and scored the MIP and VRT images using 4-grade visual scores (grade 1, no depiction of tumor-feeding vessel; grade 2, indeterminate tumor-feeding vessel; grade 3, probable tumor-feeding vessel; and grade 4, good depiction of tumor-feeding vessel). The weighted kappa test was used to determine interobserver variability, and Wilcoxon signed rank test was used to differentiate visual scores of each technique. Results of digital subtraction angiography were defined as the criterion standard; therefore, assessment of subsegmental tumor-feeding vessel using MIP or VRT was compared with digital subtraction angiography, and the accuracy of each technique was calculated. Interobserver agreement (weighted kappa, 0.746 on VRT and 0.806 on MIP) was substantial to almost perfect. The visual scores for MIP (mean, 3.64 for reviewer 1 and 3.5 for reviewer 2) were higher than those for VRT (mean, 2.11 for reviewer 1 and 2.22 for reviewer 2; P = 0.000). The accuracy for assessing subsegmental tumor-feeding vessel was 22.2% for VRT and 77.8% for MIP. Multidetector CT angiography using MIP showed good imaging quality and high accuracy for determination of subsegmental tumor-feeding vessels.
Yu, Wenxi; Daniel, Joshua; Mehta, Dhara; Maddipati, Krishna Rao
2017-01-01
Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS), which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA), which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA—inositol depletion and GSK3 inhibition. PMID:28817575
NASA Astrophysics Data System (ADS)
Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan
2016-01-01
A sensitive chemiluminescence (CL) sensor based on chemiluminescence resonance energy transfer (CRET) in CdTe quantum dots@luminol (CdTe QDs@luminol) nanomaterials combined with chitosan/graphene oxide-magnetite-molecularly imprinted polymer (Cs/GM-MIP) for sensing chrysoidine was developed. CdTe QDs@luminol was designed to not only amplify the signal of CL but also reduce luminol consumption in the detection of chrysoidine. On the basis of the abundant hydroxy and amino, Cs and graphene oxide were introduced into the GM-MIP to improve the adsorption ability. The adsorption capacities of chrysoidine by both Cs/GM-MIP and non-imprinted polymer (Cs/GM-NIP) were investigated, and the CdTe QDs@luminol and Cs/GM-MIP were characterized by UV-vis, FTIR, SEM and TEM. The proposed sensor can detect chrysoidine within a linear range of 1.0 × 10- 7 - 1.0 × 10- 5 mol/L with a detection limit of 3.2 × 10- 8 mol/L (3δ) due to considerable chemiluminescence signal enhancement of the CdTe quantum dots@luminol detector and the high selectivity of the Cs/GM-MIP system. Under the optimal conditions of CL, the CdTe QDs@luminol-Cs/GM-MIP-CL sensor was used for chrysoidine determination in samples with satisfactory recoveries in the range of 90-107%.
NASA Astrophysics Data System (ADS)
Ang, Qian Yee; Zolkeflay, Muhammad Helmi; Low, Siew Chun
2016-04-01
In this study, sol-gel processing was proposed to prepare a creatinine (Cre)-imprinted molecularly imprinted polymer (MIP). The intermolecular interaction constituted by the cross-linkers, i.e., 2-acrylamido-2-methylpropane-sulfonic acid (AMPS) and aluminium ion (Al3+), was studied and compared in order to form a confined matrix that promises the effectiveness of molecular imprinting. In view of the shape recognition, the hydrogen bonded Cre-AMPS did not demonstrate good recognition of Cre, with Cre binding found only at 5.70 ± 0.15 mg g-1 of MIP. Whilst, MIP cross-linked using Al3+ was able to attain an excellent Cre adsorption capacity of 19.48 ± 0.64 mg g-1 of MIP via the stronger ionic interaction of Cre-Al3+. Based on the Scatchard analysis, a higher Cre concentration in testing solution required greater driving force to resolve the binding resistance of Cre molecules, so as to have a precise Cre binding with shape factor. The molecular recognition ability of Cre-MIP in present work was shape-specific for Cre as compared to its structural analogue, 2-pyrrolidinone (2-pyr), by an ideal selectivity coefficient of 6.57 ± 0.10. In overall, this study has come up with a practical approach on the preparation of MIP for the detection of renal dysfunction by point-of-care Cre testing.
Lin, Zian; Yang, Fan; He, Xiwen; Zhao, Xiaomiao; Zhang, Yukui
2009-12-04
A novel type of macroporous molecularly imprinted hybrid silica monolithic column was first developed for recognition of proteins. The macroporous silica-based monolithic skeleton was synthesized in a 4.6mm i.d. stainless steel column by a mild sol-gel process with methyltrimethoxysilane (MTMS) as a sole precursor, and then vinyl groups were introduced onto the surface of the silica skeleton by chemical modification of gamma-methacryloxypropyltrimethoxysilane (gamma-MAPS). Subsequently, the molecularly imprinted polymer (MIP) coating was copolymerized and anchored onto the surface of the silica monolith. Bovine serum albumin (BSA) and lysozyme (Lyz), which differ greatly in molecular size, isoelectric point, and charge, were representatively selected for imprinted templates to evaluate recognition property of the hybrid silica-based MIP monolith. Some important factors, such as template-monomer molar ratio, total monomer concentration and crosslinking density, were systematically investigated. Under the optimum conditions, the obtained hybrid silica-based MIP monolith showed higher binding affinity for template than its corresponding non-imprinted (NIP) monolith. The imprinted factor (IF) for BSA and Lyz reached 9.07 and 6.52, respectively. Moreover, the hybrid silica-based MIP monolith displayed favorable binding characteristics for template over competitive protein. Compared with the imprinted silica beads for stationary phase and in situ organic polymer-based hydrogel MIP monolith, the hybrid silica MIP monolith exhibited higher recognition, stability and lifetime.
Pessoa, Isabela M B S; Houri Neto, Miguel; Montemezzo, Dayane; Silva, Luisa A M; Andrade, Armèle Dornelas De; Parreira, Verônica F
2014-01-01
The maximum static respiratory pressures, namely the maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP), reflect the strength of the respiratory muscles. These measures are simple, non-invasive, and have established diagnostic and prognostic value. This study is the first to examine the maximum respiratory pressures within the Brazilian population according to the recommendations proposed by the American Thoracic Society and European Respiratory Society (ATS/ERS) and the Brazilian Thoracic Association (SBPT). To establish reference equations, mean values, and lower limits of normality for MIP and MEP for each age group and sex, as recommended by the ATS/ERS and SBPT. We recruited 134 Brazilians living in Belo Horizonte, MG, Brazil, aged 20-89 years, with a normal pulmonary function test and a body mass index within the normal range. We used a digital manometer that operationalized the variable maximum average pressure (MIP/MEP). At least five tests were performed for both MIP and MEP to take into account a possible learning effect. We evaluated 74 women and 60 men. The equations were as follows: MIP=63.27-0.55 (age)+17.96 (gender)+0.58 (weight), r(2) of 34% and MEP= - 61.41+2.29 (age) - 0.03(age(2))+33.72 (gender)+1.40 (waist), r(2) of 49%. In clinical practice, these equations could be used to calculate the predicted values of MIP and MEP for the Brazilian population.
Saqib, Mohd; Khatri, Rahul; Singh, Bindu; Gupta, Ananya; Kumar, Arvind; Bhaskar, Sangeeta
2016-12-01
BCG, the only approved vaccine protects against severe form of childhood tuberculosis but its protective efficacy wanes in adolescence. BCG has reduced the incidence of infant TB considerably in endemic areas; therefore prime-boost strategy is the most realistic measure for control of tuberculosis in near future. Mycobacterium indicus pranii (MIP) shares significant antigenic repertoire with Mtb and BCG and has been shown to impart significant protection in animal models of tuberculosis. In this study, MIP was given as a booster to BCG vaccine which enhanced the BCG mediated immune response, resulting in higher protection. MIP booster via aerosol route was found to be more effective in protection than subcutaneous route of booster immunization. Pro-inflammatory cytokines like IFN-γ, IL-12 and IL-17 were induced at higher level in infected lungs of 'BCG-MIP' group both at mRNA expression level and in secretory form when compared with 'only BCG' group. BCG-MIP groups had increased frequency of multifunctional T cells with high MFI for IFN-γ and TNF-α in Mtb infected mice. Our data demonstrate for the first time, potential application of MIP as a booster to BCG vaccine for efficient protection against tuberculosis. This could be very cost effective strategy for efficient control of tuberculosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
c-mip impairs podocyte proximal signaling and induces heavy proteinuria
Zhang, Shao-Yu; Kamal, Maud; Dahan, Karine; Pawlak, André; Ory, Virginie; Desvaux, Dominique; Audard, Vincent; Candelier, Marina; Mohamed, Fatima Ben; Matignon, Marie; Christov, Christo; Decrouy, Xavier; Bernard, Veronique; Mangiapan, Gilles; Lang, Philippe; Guellaën, Georges; Ronco, Pierre; Sahali, Djillali
2010-01-01
Idiopathic nephrotic syndrome comprises several podocyte diseases of unknown origin, affecting the glomerular podocyte, which plays a key role in controlling the permeability of the kidney filter to proteins. It is characterized by the daily loss of more than 3 g of protein in urine, with no inflammatory lesions or cell infiltration. Nephrotic syndrome may be associated with serious complications, including sodium retention, hyperlipidemia, infectious diseases and thromboembolic events. The molecular mechanisms underlying non genetic nephrotic syndromes are unknown. We report here that the abundance of c-mip (c-maf inducing protein) increases in the podocytes of patients with acquired idiopathic nephrotic syndromes, including minimal change nephrotic syndrome (MCNS), a subset of focal and segmental glomerulosclerosis (FSGS) and membranous nephropathy (MN), in which the podocyte is the main target of injury. Transgenic mice overproducing c-mip in podocytes developed proteinuria without morphological alterations, inflammatory lesions or cell infiltration. We found that c-mip turned off podocyte signaling by preventing the interaction of nephrin with the tyrosine kinase Fyn, thereby decreasing nephrin phosphorylation in vitro and in vivo. Moreover, c-mip inhibited interactions between Fyn and N-WASP and between Nck and nephrin, potentially accounting for cytoskeletal disorganization and the effacement of foot processes. The intravenous injection of a small interfering RNA (siRNA) targeting c-mip prevented lipopolysaccharide-induced proteinuria in mice. These results provide new insights into the molecular mechanism of acquired podocyte diseases. PMID:20484117
Wang, Xian-Hua; Xie, Li-Fu; Dong, Qian; Liu, Hao-Long; Huang, Yan-Ping; Liu, Zhao-Sheng
2015-12-15
Through precipitation polymerization, three monodisperse molecularly imprinted polymers (MIPs) containing imprints of 2,4-diamino-6-methyl-1,3,5-triazine (DM), cyromazine (CY) or trimethoprim (TM), were synthesized using methacrylic acid as functional monomer, divinylbenzene as cross-linker, and a mixture of acetonitrile-toluene (90/10, v/v) as porogen. The morphology and selectivity of the MIPs were characterized and compared systematically. The MIPs had the best specific binding in pure acetonitrile, and the data of adsorption experiment were fitted well with Langmuir and Freundlich model. In addition, DM-MIPs showed the excellent binding and multi-recognition capability for CY, melamine (ME), triamterene (TA) and TM, and the binding capacity were 7.18, 7.56, 5.66 and 5.45μmol/g, respectively. Due to the pseudo template and the ability of multi-recognition, DM-MIPs as sorbent material could avoid the effect of template leakage on quantitative analysis. Therefore, DM-MIPs were used as a solid-phase extraction material to enrich ME, CY, TA and TM from different bio-matrix samples for high performance liquid chromatography analysis. Under the optimized conditions, the recoveries of three spiked levels in different bio-matrix samples were ranged from 80.9% to 91.5% with RSD≤4.2 (n=3). Copyright © 2015 Elsevier B.V. All rights reserved.
Gryshchenko, Andriy O; Bottaro, Christina S
2014-01-20
Molecularly imprinted polymers (MIPs) were fabricated on glass slides with a "sandwich" technique giving ~20 µm thick films. Methanol/water as a solvent, and polyethyleneglycol and polyvinylacetate as solvent modifiers, were used to give a porous morphology, which was studied with scanning electron microscopy and gravimetric analysis. Various MIPs were synthesized through non-covalent imprinting with phenol as the template; itaconic acid, 4-vinylpyridine, and styrene as monomers; ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and pentaerythritol triacrylate (PETA) as cross-linkers. Binding and imprinting properties of the MIPs were evaluated based on phenol adsorption isotherms. Since phenol has only one weakly acidic hydroxyl group and lacks unique structural characteristics necessary for binding specificity, the preparation of selective MIPs was challenging. The recognition of phenol via hydrogen bonding is suppressed in water, while hydrophobic interactions, though promoted, are not specific enough for highly-selective phenol recognition. Nevertheless, the styrene-PETA MIP gave modest imprinting effects, which were higher at lower concentrations (Imprinting Factor (IF) = 1.16 at 0.5 mg·L(-1)). The isotherm was of a Freundlich type over 0.1-40 mg·L(-1) and there was broad cross-reactivity towards other structurally similar phenols. This shows that phenol MIPs or simple adsorbents can be developed based on styrene for hydrophobic binding, and PETA to form a tighter, hydrophilic network.
Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle
Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio
2015-01-01
Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398
Yu, Wenxi; Daniel, Joshua; Mehta, Dhara; Maddipati, Krishna Rao; Greenberg, Miriam L
2017-01-01
Myo-inositol, the precursor of all inositol compounds, is essential for the viability of eukaryotes. Identifying the factors that regulate inositol homeostasis is of obvious importance to understanding cell function and the pathologies underlying neurological and metabolic resulting from perturbation of inositol metabolism. The current study identifies Mck1, a GSK3 homolog, as a novel positive regulator of inositol de novo synthesis in yeast. Mck1 was required for normal activity of myo-inositol phosphate synthase (MIPS), which catalyzes the rate-limiting step of inositol synthesis. mck1Δ cells exhibited a 50% decrease in MIPS activity and a decreased rate of incorporation of [13C6]glucose into [13C6]-inositol-3-phosphate and [13C6]-inositol compared to WT cells. mck1Δ cells also exhibited decreased growth in the presence of the inositol depleting drug valproate (VPA), which was rescued by supplementation of inositol. However, in contrast to wild type cells, which exhibited more than a 40% decrease in MIPS activity in the presence of VPA, the drug did not significantly decrease MIPS activity in mck1Δ cells. These findings indicate that VPA-induced MIPS inhibition is Mck1-dependent, and suggest a model that unifies two current hypotheses of the mechanism of action of VPA-inositol depletion and GSK3 inhibition.
Huang, Xinyi; Hernick, Marcy
2015-10-01
Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.
Marcondes, M.F.M.; Alves, F.M.; Assis, D.M.; Hirata, I.Y.; Juliano, L.; Oliveira, V.; Juliano, M.A.
2015-01-01
The substrate specificity of recombinant human mitochondrial intermediate peptidase (hMIP) using a synthetic support-bound FRET peptide library is presented. The collected fluorescent beads, which contained the hydrolysed peptides generated by hMIP, were sequenced by Edman degradation. The results showed that this peptidase presents a remarkable preference for polar uncharged residues at P1 and P1′ substrate positions: Ser = Gln > Thr at P1 and Ser > Thr at P1′. Non-polar residues were frequent at the substrate P3, P2, P2′ and P3′ positions. Analysis of the predicted MIP processing sites in imported mitochondrial matrix proteins shows these cleavages indeed occur between polar uncharged residues. Previous analysis of these processing sites indicated the importance of positions far from the MIP cleavage site, namely the presence of a hydrophobic residue (Phe or Leu) at P8 and a polar uncharged residue (Ser or Thr) at P5. To evaluate this, additional kinetic analyses were carried out, using fluorogenic substrates synthesized based on the processing sites attributed to MIP. The results described here underscore the importance of the P1 and P1′ substrate positions for the hydrolytic activity of hMIP. The information presented in this work will help in the design of new substrate-based inhibitors for this peptidase. PMID:26082885
Induction of carcinoembryonic antigen expression in a three-dimensional culture system
NASA Technical Reports Server (NTRS)
Jessup, J. M.; Brown, D.; Fitzgerald, W.; Ford, R. D.; Nachman, A.; Goodwin, T. J.; Spaulding, G.
1994-01-01
MIP-101 is a poorly differentiated human colon carcinoma cell line established from ascites that produces minimal amounts of carcinoembryonic antigen (CEA), a 180 kDa glycoprotein tumor marker, and nonspecific cross-reacting antigen (NCA), a related protein that has 50 and 90 kDa isoforms, in vitro in monolayer culture. MIP-101 produces CEA when implanted into the peritoneum of nude mice but not when implanted into subcutaneous tissue. We tested whether MIP-101 cells may be induced to express CEA when cultured on microcarrier beads in three-dimensional cultures, either in static cultures as non-adherent aggregates or under dynamic conditions in a NASA-designed low shear stress bioreactor. MIP- 101 cells proliferated well under all three conditions and increased CEA and NCA production 3 - 4 fold when grown in three-dimensional cultures compared to MIP-101 cells growing logarithmically in monolayers. These results suggest that three-dimensional growth in vitro simulates tumor function in vivo and that three-dimensional growth by itself may enhance production of molecules that are associated with the metastatic process.
Molecularly Imprinted Polymers: Present and Future Prospective
Vasapollo, Giuseppe; Sole, Roberta Del; Mergola, Lucia; Lazzoi, Maria Rosaria; Scardino, Anna; Scorrano, Sonia; Mele, Giuseppe
2011-01-01
Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented. PMID:22016636
Preparation of diclofenac-imprinted polymer beads for selective molecular separation in water.
Zhou, Tongchang; Kamra, Tripta; Ye, Lei
2018-03-01
Molecular imprinting technique is an attractive strategy to prepare materials for target recognition and rapid separation. In this work, a new type of diclofenac (DFC)-imprinted polymer beads was synthesized by Pickering emulsion polymerization using 2-(dimethylamino)ethyl methacrylate as the functional monomer. The selectivity and capacity of the molecularly imprinted polymers (MIPs) were investigated in aqueous solution. Equilibrium binding results show that the MIPs have a high selectivity to bind DFC in a wide range of pH values. Moreover, in liquid chromatography experiment, the imprinted polymer beads were packed into column to investigate the binding selectivity under nonequilibrium conditions. The retention time of DFC on the MIP column is significantly longer than its structural analogues. Also, retention of DFC on the MIP column was significantly longer than on the nonimprinted polymer column under aqueous condition. As the new MIP beads can be used to achieve direct separation of DFC from water, the synthetic method and the affinity beads developed in this work opened new possibilities for removing toxic chemicals from environmental and drinking water. Copyright © 2017 John Wiley & Sons, Ltd.
Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview
NASA Technical Reports Server (NTRS)
Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.;
1999-01-01
Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.
Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview
NASA Technical Reports Server (NTRS)
Kaplan, D. I.; Ratliff, J. E.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Barona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.
1999-01-01
Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP Precursors (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.
Hajizadeh, Solmaz; Xu, Changgang; Kirsebom, Harald; Ye, Lei; Mattiasson, Bo
2013-01-25
In this work, a new macroporous molecularly imprinted cryogel (MIP composite cryogel) was synthesized by glutaraldehyde cross-linking reaction of poly(vinyl alcohol) (PVA) particles and amino-modified molecularly imprinted core-shell nanoparticles. The MIP core-shell nanoparticles were prepared using propranolol as a template by one-pot precipitation polymerization with sequential monomer addition. The characteristics of the MIP composite cryogel were studied by scanning electron microscopy (SEM) and texture analyzer. The macroporous structure of the composite (with the pore size varying from a few micrometers to 100 μm) enabled high mass transfer of particulate-containing fluids. In a solid phase extraction (SPE) process, the efficiency and selectivity of the MIP composite cryogel were investigated, where the cryogel was used as an affinity matrix to remove propranolol from aqueous solution as well as from complex plasma sample without prior protein precipitation. The MIP composite cryogel maintained high selectivity and stability and could be used repeatedly after regeneration. Copyright © 2012 Elsevier B.V. All rights reserved.
Molecularly imprinted composite cryogel for albumin depletion from human serum.
Andaç, Müge; Baydemir, Gözde; Yavuz, Handan; Denizli, Adil
2012-11-01
A new composite protein-imprinted macroporous cryogel was prepared for depletion of albumin from human serum prior to use in proteom applications. Polyhydroxyethyl-methacylate-based molecularly imprinted polymer (MIP) composite cryogel was prepared with high gel fraction yields up to 83%, and its morphology and porosity were characterized by Fourier transform infrared, scanning electron microscopy, swelling studies, flow dynamics, and surface area measurements. Selective binding experiments were performed in the presence of competitive proteins human transferrin (HTR) and myoglobin (MYB). MIP composite cryogel exhibited a high binding capacity and selectivity for human serum albumin (HSA) in the presence of HTR and MYB. The competitive adsorption amount for HSA in MIP composite cryogel is 722.1 mg/dL in the presence of competitive proteins (HTR and MYB). MIP composite cryogel column was successfully applied in the fast protein liquid chromatography system for selective depletion of albumin in human serum. The depletion ratio was highly increased by embedding beads into cryogel (85%). Finally, MIP composite cryogel can be reused many times with no apparent decrease in HSA adsorption capacity. Copyright © 2012 John Wiley & Sons, Ltd.
Gao, Ruixia; Su, Xiaoqian; He, Xiwen; Chen, Langxing; Zhang, Yukui
2011-01-15
This paper reports the preparation of carbon nanotubes (CNTs) functionalized with molecularly imprinted polymers (MIPs) for advanced removal of estrone. CNTs@Est-MIPs nanocomposites with a well-defined core-shell structure were obtained using a semi-covalent imprinting strategy, which employed a thermally reversible covalent bond at the surface of silica-coated CNTs for a large-scale production. The morphology and structure of the products were characterised by transmission electron microscopy and Fourier transform infrared spectroscopy. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results demonstrate that the imprinted nanocomposites possess favourable selectivity, high capacity and fast kinetics for template molecule uptake, yielding an adsorption capacity of 113.5 μmol/g. The synthetic process is quite simple, and the different batches of synthesized CNTs@Est-MIPs nanocomposites showed good reproducibility in template binding. The feasibility of removing estrogenic compounds from environmental water using the CNTs@Est-MIPs nanocomposites was demonstrated using water samples spiked with estrone. Copyright © 2010 Elsevier B.V. All rights reserved.
Zhang, Can; Cui, Hanyu; Han, Yufeng; Yu, Fangfang; Shi, Xiaoman
2018-02-01
A biomimetic enzyme-linked immunosorbent assay (BELISA) which was based on molecularly imprinted polymers on paper (MIPs-paper) with specific recognition was developed. As a detector, the surface of paper was modified with γ-MAPS by hydrolytic action and anchored the MIP layer on γ-MAPS modified-paper by copolymerization to construct the artificial antibody Through a series of experimentation and verification, we successful got the MIPs-paper and established BELISA for the detection of carbaryl. The development of MIPs-paper based on BELISA was applied to detect carbaryl in real samples and validated by an enzyme-linked immunosorbent assay (ELISA) based on anti-carbaryl biological antibody. The results of these two methods (BELISA and ELISA) were well correlated (R 2 =0.944). The established method of MIPs-paper BELISA exhibits the advantages of low cost, higher stability and being re-generable, which can be applied as a convenient tool for the fast and efficient detection of carbaryl. Copyright © 2017. Published by Elsevier Ltd.
Grallert, Agnes; Beuter, Christoph; Craven, Rachel A.; Bagley, Steve; Wilks, Deepti; Fleig, Ursula; Hagan, Iain M.
2006-01-01
The Schizosaccharomyces pombe CLIP170-associated protein (CLASP) Peg1 was identified in a screen for mutants with spindle formation defects and a screen for molecules that antagonized EB1 function. The conditional peg1.1 mutant enabled us to identify key features of Peg1 function. First, Peg1 was required to form a spindle and astral microtubules, yet destabilized interphase microtubules. Second, Peg1 was required to slow the polymerization rate of interphase microtubules that establish end-on contact with the cortex at cell tips. Third, Peg1 antagonized the action of S. pombe CLIP170 (Tip1) and EB1 (Mal3). Fourth, although Peg1 resembled higher eukaryotic CLASPs by physically associating with both Mal3 and Tip1, neither Tip1 nor Mal3 was required for Peg1 to destabilize interphase microtubules or for it to associate with microtubules. Conversely, neither Mal3 nor Tip1 required Peg1 to associate with microtubules or cell tips. Consistently, while mal3.Δ and tip1.Δ disrupted linear growth, corrupting peg1 + did not. Fifth, peg1.1 phenotypes resembled those arising from deletion of the single heavy or both light chains of fission yeast dynein. Furthermore, all interphase phenotypes arising from peg1 + manipulation relied on dynein function. Thus, the impact of S. pombe CLASP on interphase microtubule behavior is more closely aligned to dynein than EB1 or CLIP170. PMID:16951255
Kawaura, Hiroyuki; Harada, Masashi; Kondo, Yasuhito; Kondo, Hiroki; Suganuma, Yoshitake; Takahashi, Naoko; Sugiyama, Jun; Seno, Yoshiki; Yamada, Norifumi L
2016-04-20
We report the first operando measurement of solid electrolyte interphase (SEI) formation at an electrode using in situ neutron reflectometry. The results revealed the growth of the SEI and intercalation of ions during the charge reaction. Furthermore, we propose a way of evaluating the charge used for the SEI formation.
Lin, Shu-Kun
2011-01-01
Our publishing company MDPI AG has its headquarters in Basel, Switzerland where there are thousands of scientists working in the laboratories of pharmaceutical companies and institutes including Novartis [1], F. Hoffmann-La Roche [2] and institutes affiliated with University of Basel [3]. In 1996, the first annual microplate conference MipTec was held in Basel, and the MipTec 2011 was held a few days ago in Basel [4]. I published a paper on microplate standardization presented at MipTec 1996 in MDPI’s longest-running journal Molecules [5-7]. [....] PMID:27605331
Lin, Shu-Kun
2011-10-14
Our publishing company MDPI AG has its headquarters in Basel, Switzerland where there are thousands of scientists working in the laboratories of pharmaceutical companies and institutes including Novartis [1], F. Hoffmann-La Roche [2] and institutes affiliated with University of Basel [3]. In 1996, the first annual microplate conference MipTec was held in Basel, and the MipTec 2011 was held a few days ago in Basel [4]. I published a paper on microplate standardization presented at MipTec 1996 in MDPI's longest-running journal Molecules [5-7]. [....].
Siracusa, L D; Chapman, V M; Bennett, K L; Hastie, N D; Pietras, D F; Rossant, J
1983-02-01
Mammalian chimaeras have proved useful for investigating early steps in embryonic development. However, a complete clonal analysis of cell lineages has been limited by the lack of a marker which is ubiquitous and can distinguish parental cell types in situ. We have developed a cell marker system which fulfils these criteria. Chimaeric mice were successfully produced from two mouse species which possess sufficient genetic differences to allow unequivocal identification of parental cell types. DNA-DNA in situ hybridization with cloned, species-specific sequences was performed to distinguish the parental cell types. We have identified a cloned, Mus musculus satellite DNA sequence which shows hybridization differences between Mus musculus and Mus caroli DNA. This clone was used a a probe in in situ hybridizations to bone marrow chromosomes from Mus musculus, Mus caroli, and an interspecific F1 hybrid. The clone could qualitatively distinguish Mus musculus from Mus caroli chromosomes after in situ hybridization, even when they were derived from the same F1 hybrid cell. Quantitation of this hybridization to interphase nuclei from bone marrow spreads indicates that the probe can successfully distinguish Mus musculus from Mus caroli cells and can determine the percentage contribution of Mus musculus in mixtures of bone marrow cells of these species and in chimaeric bone marrow cell preparations.
Structure and dynamics of the umagnetized plasma around comet 67P/CG
NASA Astrophysics Data System (ADS)
Henri, P.; Vallières, X.; Gilet, N.; Hajra, R.; Moré, J.; Goetz, C.; Richter, I.; Glassmeier, K. H.; Galand, M. F.; Heritier, K. L.; Eriksson, A. I.; Nemeth, Z.; Tsurutani, B.; Rubin, M.; Altwegg, K.
2016-12-01
At distances close enough to the Sun, when comets are characterised by a significant outgassing, the cometary neutral density may become large enough for both the cometary plasma and the cometary gas to be coupled, through ion-neutral and electron-neutral collisions. This coupling enables the formation of an unmagnetised expanding cometary ionosphere around the comet nucleus, also called diamagnetic cavity, within which the solar wind magnetic field cannot penetrate. The instruments of the Rosetta Plasma Consortium (RPC), onboard the Rosetta Orbiter, enable us to better constrain the structure, dynamics and stability of the plasma around comet 67P/CG. Recently, magnetic field measurements (RPC-MAG) have shown the existence of such a diamagnetic region around comet 67P/CG [Götz et al., 2016]. Contrary to a single, large scale, diamagnetic cavity such as what was observed around comet Halley, Rosetta have crossed several diamagnetic structures along its trajectory around comet 67P/CG. Using electron density measurements from the Mutual Impedance Probe (RPC-MIP) during the different diamagnetic cavity crossings, identified by the flux gate magnetometer (RPC-MAG), we map the unmagnetised plasma density around comet 67P/CG. Our aims is to better constrain the structure, dynamics and stability of this inner cometary plasma layer characterised by cold electrons (as witnessed by the Langmuir Probes RPC-LAP). The ionisation ratio in these unmagnetised region(s) is computed from the measured electron (RPC-MIP) and neutral gas (ROSINA/COPS) densities. In order to assess the importance of solar EUV radiation as a source of ionisation, the observed electron density will be compared to a the density expected from an ionospheric model taking into account solar radiation absorption. The crossings of diamagnetic region(s) by Rosetta show that the unmagnetised cometary plasma is particularly homogeneous, compared to the highly dynamical magnetised plasma observed in adjacent magnetised regions. Moreover, during the crossings of multiple, successive diamagnetic region(s) over time scales of tens of minutes or hours, the plasma density is almost identical in the different unmagnetised regions, suggesting that these unmagnetised regions may be a single diamagnetic structure crossed several times by Rosetta.
Guo, Qingqing; Zheng, Kang; Fan, Danping; Zhao, Yukun; Li, Li; Bian, Yanqin; Qiu, Xuemei; Liu, Xue; Zhang, Ge; Ma, Chaoying; He, Xiaojuan; Lu, Aiping
2017-01-01
Purpose: This study aimed to explore underlying action mechanism of Wu-Tou decoction (WTD) in rheumatoid arthritis (RA) through network pharmacology prediction and experimental verification. Methods: Chemical compounds and human target proteins of WTD as well as RA-related human genes were obtained from TCM Database @ Taiwan, PubChem and GenBank, respectively. Subsequently, molecular networks and canonical pathways presumably involved in the treatment of WTD on RA were generated by ingenuity pathway analysis (IPA) software. Furthermore, experimental validation was carried out with MIP-1β-induced U937 cell model and collagen induced arthritis (CIA) rat model. Results: CCR5 signaling pathway in macrophages was shown to be the top one shared signaling pathway associated with both cell immune response and cytokine signaling. In addition, protein kinase C (PKC) δ and p38 in this pathway were treated as target proteins of WTD in RA. In vitro experiments indicated that WTD inhibited MIP-1β-induced production of TNF-α, MIP-1α, and RANTES as well as phosphorylation of CCR5, PKC δ, and p38 in U937 cells. WTD treatment maintained the inhibitory effects on production of TNF-α and RANTES in MIP-1β-induced U937 cells after CCR5 knockdown. In vivo experiments demonstrated that WTD ameliorated symptoms in CIA rats, decreased the levels of IL-1β, IL-2, IL-6, TNF-α, MIP-1α, MIP-2, RANTES, and IP-10 in serum of CIA rats, as well as mRNA levels of MIP-1α, MIP-2, RANTES, and IP-10 in ankle joints of CIA rats. Furthermore, WTD also lowered the phosphorylation levels of CCR5, PKC δ and p38 in both ankle joints and macrophages in ankle joints from CIA rats. Conclusion: It was demonstrated in this research that WTD played a role in inhibiting inflammatory response in RA which was closely connected with the modulation effect of WTD on CCR5 signaling pathway in macrophages. PMID:28515692
Major intrinsic proteins in biomimetic membranes.
Nielsen, Claus Hélix
2010-01-01
Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the biomimetic matrix must be encapsulated in order to protect it and make it sufficiently stable in a final application. Here, I specifically discuss the feasibility of developing osmotic biomimetic MIP membranes, but the technical issues are of general concern in the design ofbiomimetic membranes capable of supporting selective transmembrane fluxes.
Composite impact strength improvement through a fiber/matrix interphase
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Winters, W. E.
1975-01-01
Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.
NASA Astrophysics Data System (ADS)
Vigren, E.; Altwegg, K.; Edberg, N. J. T.; Eriksson, A. I.; Galand, M.; Henri, P.; Johansson, F.; Odelstad, E.; Tzou, C.-Y.; Valliéres, X.
2016-09-01
During 2015 January 9-11, at a heliocentric distance of ˜2.58-2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of ˜28 km from the nucleus of comet 67P/Churyumov-Gerasimenko, sweeping the terminator at northern latitudes of 43°N-58°N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS) provided neutral number densities. We have computed modeled electron number densities using the neutral number densities as input into a Field Free Chemistry Free model, assuming H2O dominance and ion-electron pair formation by photoionization only. A good agreement (typically within 25%) is found between the modeled electron number densities and those observed from measurements by the Mutual Impedance Probe (RPC/MIP) and the Langmuir Probe (RPC/LAP), both being subsystems of the Rosetta Plasma Consortium. This indicates that ions along the nucleus-spacecraft line were strongly coupled to the neutrals, moving radially outward with about the same speed. Such a statement, we propose, can be further tested by observations of H3O+/H2O+ number density ratios and associated comparisons with model results.
Adhesion and Interphase Properties of Reinforced Polymeric Composites
NASA Astrophysics Data System (ADS)
Caldwell, Kyle Bernd
Reinforced polymeric composites are an increasingly utilized material with a wide range of applications. Fiber reinforced polymeric composites, in particular, possess impressive mechanical properties at a fraction of the weight of many other building materials. There will always, however, be a demand for producing lighter, stiffer, and stronger materials. Understanding the mechanism of adhesion and ways to engineer the reinforcement-matrix interphase can lead to the development of new materials with improved mechanical properties, and even impart additional functionality such as electrical conductivity. The performance of reinforced polymeric composites is critically dependent upon the adhesion between the reinforcement and the surrounding polymer. The relative adhesion between a filler and a thermoplastic matrix can be predicted using calculable thermodynamic quantities such as the Gibbs free energy of mixing. A recent model, COSMO-SAC, is capable of predicting the adhesion between organo-silane treated glass surfaces and several thermoplastic materials. COSMO-SAC uses information based on the charge distribution of a molecule's surface to calculate many thermodynamic properties. Density functional theory calculations, which are relative inexpensive computations, generate the information necessary to perform the COSMO-SAC analysis and can be performed on any given molecule. The flexibility of the COSMO-SAC model is one of the main advantages it possesses over other methods for calculating thermodynamic quantities. In many cases the adhesion between a reinforcing fiber and the surrounding matrix may be improved by incorporating interphase modifiers in the vicinity of the fiber surface. The modifiers can improve the fracture toughness and modulus of the interphase, which may improve the stress transfer from the matrix to the fiber. In addition, the interphase modifiers may improve the mechanical interlock between the fiber surface and the bulk polymer, leading to improved adhesion. In recent years, the use of so called "migrating agents" have been used to self-assemble nanoparticle reinforced fiber-matrix interphases in thermosetting resin systems. The inclusion of a modest amount of thermoplastic migrating agent can lead to the formation of a self-assembled interphase, without causing aggregation of nanoparticles in the bulk phase. Formulations containing excess migrating agent, however, can induce aggregation in the bulk of increasing severity with increasing migrating agent concentration. Several techniques were used to study the mechanism by which the migrating agents operate including, scanning electron microscopy, and in situ fluorescence microscopy. The self-assembly mechanism by which migrating agents operate is described well by depletion forces, which are depend on the geometry of the approaching objects, as well as the migrating agent molecular weight and concentration.
Synthesis and Adsorption Study of BSA Surface Imprinted Polymer on CdS Quantum Dots
NASA Astrophysics Data System (ADS)
Tang, Ping-ping; Cai, Ji-bao; Su, Qing-de
2010-04-01
A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical appearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step. The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.
Zhang, Yanyan; Gao, Baojiao; An, Fuqiang; Xu, Zeqing; Zhang, Tingting
2014-09-12
In this paper, on the basis of surface-initiated graft polymerization, a new surface molecular imprinting technique is established by molecular design. And molecularly imprinted polymer MIP-PMAA/SiO2 is successfully prepared with genistein as template. The adsorption and recognition characteristics of MIP-PMAA/SiO2 for genistein are studied in depth by using static method, dynamic method and competitive adsorption experiment. The experimental results show that MIP-PMAA/SiO2 possesses very strong adsorption affinity and specific recognition for genistein. The saturated adsorption capacity could reach to 0.36mmolg(-1). The selectivity coefficients relative to quercetin and rutin are 5.4 and 11.8, respectively. Besides, MIP-PMAA/SiO2 is regenerated easily and exhibits excellent reusability. Copyright © 2014 Elsevier B.V. All rights reserved.
Selective removal of 17β-estradiol with molecularly imprinted particle-embedded cryogel systems.
Koç, İlker; Baydemir, Gözde; Bayram, Engin; Yavuz, Handan; Denizli, Adil
2011-09-15
The selective removal of 17β-estradiol (E2) was investigated by using molecularly E2 imprinted (MIP) particle embedded poly(hydroxyethyl methacrylate) (PHEMA) cryogel. PHEMA/MIP composite cryogel was characterized by FTIR, SEM, swelling studies, and surface area measurements. E2 adsorption studies were performed by using aqueous solutions which contain various amounts of E2. The specificity of PHEMA/MIP cryogel to recognition of E2 was performed by using cholesterol and stigmasterol. PHEMA/MIP cryogel exhibited a high binding capacity (5.32 mg/gpolymer) and high selectivity for E2 in the presence of competitive molecules, cholesterol (k(E2/cholesterol) = 7.6) and stigmasterol (k(E2/Stigmasterol) = 85.8). There is no significant decrease in adsorption capacity after several adsorption-desorption cycles. Copyright © 2011 Elsevier B.V. All rights reserved.
Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs.
He, Hao; Zhou, Lianqun; Wang, Yi; Li, Chuanyu; Yao, Jia; Zhang, Wei; Zhang, Qingwen; Li, Mingyu; Li, Haiwen; Dong, Wen-fei
2015-01-01
A 20 MHz quartz crystal microbalance (QCM) sensor coated with in situ self-assembled molecularly imprinted polymers (MIPs) was presented for the detection of trace microcystin-LR (MC-LR) in drinking water. The sensor performance obtained using the in situ self-assembled MIPs was compared with traditionally synthesized MIPs on 20 MHz and normal 10 MHz QCM chip. The results show that the response increases by more than 60% when using the in situ self-assembly method compared using the traditionally method while the 20 MHz QCM chip provides four-fold higher response than the 10 MHz one. Therefore, the in situ self-assembled MIPs coated on a high frequency QCM chip was used in the sensor performance test to detect MC-LR in tap water. It showed a limit of detection (LOD) of 0.04 nM which is lower than the safety guideline level (1 nM MC-LR) of drinking water in China. The low sensor response to other analogs indicated the high specificity of the sensor to MC-LR. The sensor showed high stability and low signal variation less than 2.58% after regeneration. The lake water sample analysis shows the sensor is possible for practical use. The combination of the higher frequency QCM with the in situ self-assembled MIPs provides a good candidate for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.