The source of the electric field in the nightside magnetosphere
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.
NASA Astrophysics Data System (ADS)
Schooley, A. K.; Kahler, S.; Lepri, S. T.; Liemohn, M. W.
2017-12-01
Gradual solar energetic particle events (SEPs) are produced in the solar corona and as these particle events propagate through the inner heliosphere and interplanetary space they might encounter intervening magnetic obstacles such as the heliospheric current sheet. These encounters may impact SEP acceleration or production. We investigate the extent to which propagation through these intervening structures might be affecting later in-situ SEP measurements at 1 AU. By analyzing large gradual SEP rise phases in a multi-year survey, we investigate the impact crossing a current sheet or other interplanetary magnetic structure has on in-situ SEP time-intensity profiles. Simultaneous Advanced Composition Explorer (ACE) magnetometer observations and measurements of suprathermal electron pitch angle distributions from ACE's Solar Wind Electron, Proton & Alpha Monitor (SWEPAM) are considered to indicate changes in magnetic polarity and magnetic topology. Potential field source surface models of the heliospheric current sheet are used to validate potential current sheet crossing times. We discuss those magnetic obstacles identified that SEPs likely encountered. We discuss the frequency of such encounters, their possible structure and their impact on the SEP time-intensity profiles. Preliminary results indicate that possible intervening interplanetary magnetic structures should be considered when analyzing in-situ SEP observations.
A test of source-surface model predictions of heliospheric current sheet inclination
NASA Technical Reports Server (NTRS)
Burton, M. E.; Crooker, N. U.; Siscoe, G. L.; Smith, E. J.
1994-01-01
The orientation of the heliospheric current sheet predicted from a source surface model is compared with the orientation determined from minimum-variance analysis of International Sun-Earth Explorer (ISEE) 3 magnetic field data at 1 AU near solar maximum. Of the 37 cases analyzed, 28 have minimum variance normals that lie orthogonal to the predicted Parker spiral direction. For these cases, the correlation coefficient between the predicted and measured inclinations is 0.6. However, for the subset of 14 cases for which transient signatures (either interplanetary shocks or bidirectional electrons) are absent, the agreement in inclinations improves dramatically, with a correlation coefficient of 0.96. These results validate not only the use of the source surface model as a predictor but also the previously questioned usefulness of minimum variance analysis across complex sector boundaries. In addition, the results imply that interplanetary dynamics have little effect on current sheet inclination at 1 AU. The dependence of the correlation on transient occurrence suggests that the leading edge of a coronal mass ejection (CME), where transient signatures are detected, disrupts the heliospheric current sheet but that the sheet re-forms between the trailing legs of the CME. In this way the global structure of the heliosphere, reflected both in the source surface maps and in the interplanetary sector structure, can be maintained even when the CME occurrence rate is high.
Solar Energetic Particle Transport Near a Heliospheric Current Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battarbee, Markus; Dalla, Silvia; Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk
2017-02-10
Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibitmore » multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.« less
Penetration of the Interplanetary Magnetic Field B(sub y) into Earth's Plasma Sheet
NASA Technical Reports Server (NTRS)
Hau, L.-N.; Erickson, G. M.
1995-01-01
There has been considerable recent interest in the relationship between the cross-tail magnetic field component B(sub y) and tail dynamics. The purpose of this paper is to give an overall description of the penetration of the interplanetary magnetic field (IMF) B(sub y) into the near-Earth plasma sheet. We show that plasma sheet B(sub y) may be generated by the differential shear motion of field lines and enhanced by flux tube compression. The latter mechanism leads to a B(sub y) analogue of the pressure-balance inconsistency as flux tubes move from the far tail toward the Earth. The growth of B(sub y), however, may be limited by the dawn-dusk asymmetry in the shear velocity as a result of plasma sheet tilting. B(sub y) penetration into the plasma sheet implies field-aligned currents flowing between hemispheres. These currents together with the IMF B(sub y) related mantle field-aligned currents effectively shield the lobe from the IMF B(sub y).
Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hoeksema, J. T.
1984-01-01
Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.
NASA Technical Reports Server (NTRS)
Alania, M. V.; Aslamazashvili, R. G.; Bochorishvili, T.; Djapiashvili, T. V.; Tkemaladze, V. S.
1985-01-01
Results of the numerical solution of the anistoropic diffusion equation are presented. The modulation depth of galactic cosmic rays is defined by the degree of curvature of the neutral current sheet in the heliosphere. The effect of the regular interplanetary magnetic field (IMF) on cosmic ray anisotropy in the period of solar activity minimum (in 1976) is analyzed by the data of the neutron super-monitors of the world network, and the heliolatitudinal gradient and cosmic ray diffusion coefficient are defined.
A new Method for Determining the Interplanetary Current-Sheet Local Orientation
NASA Astrophysics Data System (ADS)
Blanco, J. J.; Rodríguez-pacheco, J.; Sequeiros, J.
2003-03-01
In this work we have developed a new method for determining the interplanetary current sheet local parameters. The method, called `HYTARO' (from Hyperbolic Tangent Rotation), is based on a modified Harris magnetic field. This method has been applied to a pool of 57 events, all of them recorded during solar minimum conditions. The model performance has been tested by comparing both, its outputs and noise response, with these of the `classic MVM' (from Minimum Variance Method). The results suggest that, despite the fact that in many cases they behave in a similar way, there are specific crossing conditions that produce an erroneous MVM response. Moreover, our method shows a lower noise level sensitivity than that of MVM.
Radial deformation of the solar current sheet as a cause of geomagnetic storms
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1979-01-01
It is suggested that the solar current sheet, extending from a coronal streamer, develops a large-scale radial deformation, at times with a very steep gradient at the earth's distance. The associated magnetic field lines (namely, the interplanetary magnetic field (IMF) lines) are expected to have also a large gradient in the vicinity of the current sheet. It is also suggested that some of the major geomagnetic storms occur when the earth is located in the region where IMF field lines have a large dip angle with respect to the ecliptic plane for an extended period (6-48 h), as a result of a steep radial deformation of the current sheet.
NASA Astrophysics Data System (ADS)
Muñoz, P. R.; Chian, A. C.
2013-12-01
We implement a method to detect coherent magnetic structures using the Haar discrete wavelet transform (Salem et al., ApJ 702, 537, 2009), and apply it to an event detected by Cluster at the turbulent boundary layer of an interplanetary magnetic flux rope. The wavelet method is able to detect magnetic coherent structures and extract main features of solar wind intermittent turbulence, such as the power spectral density and the scaling exponent of structure functions. Chian and Muñoz (ApJL 733, L34, 2011) investigated the relation between current sheets, turbulence, and magnetic reconnections at the leading edge of an interplanetary coronal mass ejection measured by Cluster upstream of the Earth's bow shock on 2005 January 21. We found observational evidence of two magnetically reconnected current sheets in the vicinity of a front magnetic cloud boundary layer, where the scaling exponent of structure functions of magnetic fluctuations exhibits multifractal behavior. Using the wavelet technique, we show that the current sheets associated to magnetic reconnection are part of the set of magnetic coherent structures responsible for multifractality. By removing them using a filtering criteria, it is possible to recover a self-similar scaling exponent predicted for homogeneous turbulence. Finally, we discuss an extension of the wavelet technique to study coherent structures in two-dimensional solar magnetograms.
Genesis of Interplanetary Intermittent Turbulence: a Case Study of Rope-Rope Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Chian, Abraham C.- L.; Feng, Heng Q.; Hu, Qiang; Loew, Murray H.; Miranda, Rodrigo A.; Munoz, Pablo R.; Sibeck, David G.; Wu, De J.
2016-01-01
In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.
The interplanetary electric field, cleft currents and plasma convection in the polar caps
NASA Technical Reports Server (NTRS)
Banks, P. M.; Clauer, C. R.; Araki, T.; St. Maurice, J. P.; Foster, J. C.
1984-01-01
The relationship between the pattern of plasma convection in the polar cleft and the dynamics of the interplanetary electric field (IEF) is examined theoretically. It is shown that owing to the geometrical properties of the magnetosphere, the East-West component of the IEF will drive field-aligned currents which connect to the ionosphere at points lying on either side of noon, while currents associated with the North-South component of the IEF will connect the two polar caps as sheet currents, also centered at 12 MLT. In order to describe the consequences of the Interplanetary Magnetic Field (IMF) effects upon high-latitude electric fields and convection patterns, a series of numerical simulations was carried out. The simulations were based on a solution to the steady-state equation of current continuity in a height-integrated ionospheric current. The simulations demonstrate that a simple hydrodynamical model can account for the narrow 'throats' of strong dayside antisunward convection observed during periods of southward interplanetary IMF drift, as well as the sunward convection observed during periods of strongly northward IMF drift.
A comparison of coronal and interplanetary current sheet inclinations
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Burlaga, L. F.; Hundhausen, A. J.
1983-01-01
The HAO white light K-coronameter observations show that the inclination of the heliospheric current sheet at the base of the corona can be both large (nearly vertical with respect to the solar equator) or small during Cararington rotations 1660 - 1666 and even on a single solar rotation. Voyager 1 and 2 magnetic field observations of crossing of the heliospheric current sheet at distances from the Sun of 1.4 and 2.8 AU. Two cases are considered, one in which the corresponding coronameter data indicate a nearly vertical (north-south) current sheet and another in which a nearly horizontal, near equatorial current sheet is indicated. For the crossings of the vertical current sheet, a variance analysis based on hour averages of the magnetic field data gave a minimum variance direction consistent with a steep inclination. The horizontal current sheet was observed by Voyager as a region of mixed polarity and low speeds lasting several days, consistent with multiple crossings of a horizontal but irregular and fluctuating current sheet at 1.4 AU. However, variance analysis of individual current sheet crossings in this interval using 1.92 see averages did not give minimum variance directions consistent with a horizontal current sheet.
GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chian, Abraham C.-L.; Loew, Murray H.; Feng, Heng Q.
In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event.more » The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.« less
Ring Current Response to Different Storm Drivers. Van Allen Probes and Cluster Observations.
NASA Astrophysics Data System (ADS)
Bingham, S.; Mouikis, C.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.
2015-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. However, it is not clear how these convecting particles affect the storm time ring current pressure development. We use Van Allen Probes and Cluster observations together with the Volland-Stern and dipole magnetic field models to determine the contribution in the ring current pressure of the plasma sheet particles convecting from the night side that are on open drift paths, during the storm evolution. We compare storms that are related to different interplanetary drivers, CME and CIR, as observed at different local times.
Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet
NASA Astrophysics Data System (ADS)
Liemohn, Michael W.; Xu, Shaosui; Dong, Chuanfei; Bougher, Stephen W.; Johnson, Blake C.; Ilie, Raluca; De Zeeuw, Darren L.
2017-06-01
This study investigates the role of solar EUV intensity at controlling the location of the Mars magnetotail current sheet and the structure of the lobes. Four simulation results are examined from a multifluid magnetohydrodynamic model. The solar wind and interplanetary magnetic field (IMF) conditions are held constant, and the Mars crustal field sources are omitted from the simulation configuration. This isolates the influence of solar EUV. It is found that solar maximum conditions, regardless of season, result in a Venus-like tail configuration with the current sheet shifted to the -Y (dawnside) direction. Solar minimum conditions result in a flipped tail configuration with the current sheet shifted to the +Y (duskside) direction. The lobes follow this pattern, with the current sheet shifting away from the larger lobe with the higher magnetic field magnitude. The physical process responsible for this solar EUV control of the magnetotail is the magnetization of the dayside ionosphere. During solar maximum, the ionosphere is relatively strong and the draped IMF field lines quickly slip past Mars. At solar minimum, the weaker ionosphere allows the draped IMF to move closer to the planet. These lower altitudes of the closest approach of the field line to Mars greatly hinder the day-to-night flow of magnetic flux. This results in a buildup of magnetic flux in the dawnside lobe as the S-shaped topology on that side of the magnetosheath extends farther downtail. The study demonstrates that the Mars dayside ionosphere exerts significant control over the nightside induced magnetosphere of that planet.
Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987
NASA Technical Reports Server (NTRS)
Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.
1990-01-01
Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.
NASA Technical Reports Server (NTRS)
Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.
1986-01-01
The interaction between the solar wind and the earth's magnetosphere has been studied by using a time-dependent three-dimensional MHD model in which the IMF pointed in several directions between dawnward and southward. When the IMF is dawnward, the dayside cusp and the tail lobes shift toward the morningside in the northern magnetosphere. The plasma sheet rotates toward the north on the dawnside of the tail and toward the south on the duskside. For an increasing southward IMF component, the plasma sheet becomes thinner and subsequently wavy because of patchy or localized tail reconnection. At the same time, the tail field-aligned currents have a filamentary layered structure. When projected onto the northern polar cap, the filamentary field-aligned currents are located in the same area as the region 1 currents, with a pattern similar to that associated with auroral surges. Magnetic reconnection also occurs on the dayside magnetopause for southward IMF.
Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries
NASA Astrophysics Data System (ADS)
Fan, Quan-Lin; Wei, Feng-Si; Feng, Xue-Shang
2003-08-01
The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet. The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc. The project supported by National Natural Science Foundation of China under Grant Nos. 40104006, 49925412, and 49990450
Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet
NASA Astrophysics Data System (ADS)
Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.
2018-02-01
Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.
Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012
NASA Astrophysics Data System (ADS)
Wang, Y.-M.; Young, P. R.; Muglach, K.
2014-01-01
During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard "ballerina skirt" picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180° a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.
Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012
NASA Technical Reports Server (NTRS)
Wang, Y.-M.; Young, P. R.; Muglach, K.
2013-01-01
During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard 'ballerina skirt' picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180 deg; a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.
New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby
NASA Technical Reports Server (NTRS)
Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje;
2008-01-01
Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X.; Gan, W.; Liu, S.
We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics.more » Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.« less
The Ambient and Perturbed Solar Wind: From the Sun to 1 AU
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1997-01-01
The overall objective of the proposed research was to use numerical solutions of the magnetohydrodynamic (MHD) equations along with comparisons of the computed results with observations to study the following topics: (1) ambient solar wind solutions that extend from the solar surface to 1 astronomical unit (AU), contain closed magnetic structures near the Sun, and are consistent with observed values; (2) magnetic and plasma structures in coronal mass ejections (CMES) as they propagate to the interplanetary medium; (3) relation of MHD shocks to CMEs in the interplanetary medium; (4) interaction of MHD shocks with structures (such as other shocks, corotating interaction regions, current sheets) in the interplanetary plasma; and (5) simulations of observed interplanetary structures. A planned close collaboration with data analysts served to make the model more relevant to the data. The outcome of this research program is an improved understanding of the physical processes occurring in solar-generated disturbances in the interplanetary medium between the Sun and 1 AU.
Electric currents and voltage drops along auroral field lines
NASA Technical Reports Server (NTRS)
Stern, D. P.
1983-01-01
An assessment is presented of the current state of knowledge concerning Birkeland currents and the parallel electric field, with discussions focusing on the Birkeland primary region 1 sheets, the region 2 sheets which parallel them and appear to close in the partial ring current, the cusp currents (which may be correlated with the interplanetary B(y) component), and the Harang filament. The energy required by the parallel electric field and the associated particle acceleration processes appears to be derived from the Birkeland currents, for which evidence is adduced from particles, inverted V spectra, rising ion beams and expanded loss cones. Conics may on the other hand signify acceleration by electrostatic ion cyclotron waves associated with beams accelerated by the parallel electric field.
Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes
NASA Technical Reports Server (NTRS)
Otto, A.
1995-01-01
During periods of southward interplanetary magnetic field (IMF) orientation the magnetic field geometry at the dayside magnetopause is susceptible to magnetic reconnection. It has been suggested that reconnection may occur in a localized manner at several patches on the magnetopause. A major problem with this picture is the interaction of magnetic flux ropes which are generated by different reconnection processes. An individual flux rope is bent elbowlike where it intersects the magnetopause and the magnetic field changes from magnetospheric to interplanetary magnetic field orientation. Multiple patches of reconnection can lead to the formation of interlinked magnetic flux tubes. Although the corresponding flux is connected to the IMF the northward and southward connected branches are hooked into each other and cannot develop independently. We have studied this problem in the framework of three-dimensional magnetohydrodynamic simulations. The results indicate that a singular current sheet forms at the interface of two interlinked flux tubes if no resistivity is present in the simulation. This current sheet is strongly tilted compared to the original current sheet. In the presence of resistivity the interaction of the two flux tubes forces a fast reconnection process which generates helically twisted closed magnetospheric flux. This linkage induced reconnection generates a boundary layer with layers of open and closed magnetospheric flux and may account for the brightening of auroral arcs poleward of the boundary between open and closed magnetic flux.
Fine-scale characteristics of interplanetary sector
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Neubauer, F. M.; Barnstoff, H.
1980-01-01
The structure of the interplanetary sector boundaries observed by Helios 1 within sector transition regions was studied. Such regions consist of intermediate (nonspiral) average field orientations in some cases, as well as a number of large angle directional discontinuities (DD's) on the fine scale (time scales 1 hour). Such DD's are found to be more similar to tangential than rotational discontinuities, to be oriented on average more nearly perpendicular than parallel to the ecliptic plane to be accompanied usually by a large dip ( 80%) in B and, with a most probable thickness of 3 x 10 to the 4th power km, significantly thicker previously studied. It is hypothesized that the observed structures represent multiple traversals of the global heliospheric current sheet due to local fluctuations in the position of the sheet. There is evidence that such fluctuations are sometimes produced by wavelike motions or surface corrugations of scale length 0.05 - 0.1 AU superimposed on the large scale structure.
The generation of magnetic fields and electric currents in cometary plasma tails
NASA Technical Reports Server (NTRS)
Ip, W.-H.; Mendis, D. A.
1976-01-01
Due to the folding of the interplanetary magnetic field into the tail as a comet sweeps through the interplanetary medium, the magnetic field in the tail can be built up to the order of 100 gammas at a heliocentric distance of about 1 AU. This folding of magnetic flux tubes also results in a cross-tail electric current passing through a neutral sheet. When streams of enhanced plasma density merge with the main tail, cross-tail currents as large as 1 billion A may result. A condition could arise which causes a significant fraction of this current to be discharged through the inner coma, resulting in rapid ionization. The typical time scale for such outbursts of ionization is estimated to be of the order of 10,000 sec, which is in reasonable agreement with observation.
The Inner Magnetosphere Plasma Response to Interplanetary Shocks: Van Allen Probes HOPE Observations
NASA Astrophysics Data System (ADS)
Winter, L. M.; Denton, M.; Ferradas, C.; Henderson, M. G.; Larsen, B.; Reeves, G.; Skoug, R. M.; Thomsen, M. F.
2017-12-01
The Van Allen Probes' Helium, Oxygen, Proton, and Electron (HOPE) sensors measure ion and electron populations in the plasmasphere, plasma sheet, and lower-energy ring current, providing unique observations at low energies (0.001-50 keV) and low L-shell (down to 1.5 RE). We use the capabilities of these two spacecraft to probe changes in the low energy particles in response to interplanetary (IP) shocks. We focus on changes in the plasma energies, composition, and pitch angle distributions following IP shocks and storm sudden commencements from 2012-2017 through a comparison of HOPE observations preceding and post shock.
Analysis of Magnetic Flux Rope Chains Embedded in Martian Current Sheets Using MAVEN Data
NASA Astrophysics Data System (ADS)
Bowers, C. F.; DiBraccio, G. A.; Brain, D.; Hara, T.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; Halekas, J. S.
2017-12-01
The magnetotail of Mars is formed as the interplanetary magnetic field (IMF) drapes around the planet's conducting ionosphere and localized crustal magnetic fields. In this scenario, a cross-tail current sheet separates the sunward and anti-sunward tail lobes. This tail current sheet is a highly dynamic region where magnetic reconnection is able to occur between the oppositely oriented fields. Magnetic flux ropes, a by-product of magnetic reconnection in the tail or in the ionosphere characterized by their helical outer wraps and strong axial core field, are commonly observed in the Martian magnetotail. An initial study using Mars Global Surveyor measurements reported a chain of flux ropes in the tail. During this event, 3 flux ropes were observed during a single traversal of the tail current sheet with a duration of 4 minutes. Here, we perform a statistical survey of these chain-of-flux-rope events to characterize their occurrence in the tail current sheet using Mars Atmosphere and Volatile EvolutioN (MAVEN) data. We implement the well-established technique of Minimum Variance Analysis to confirm the helical structure of the flux ropes and also determine local current sheet orientation. Thorough visual examination of more than 1600 orbits has resulted in the identification of 784 tail current sheet traversals. We determine the current sheet thickness to be on the order of 100-1000 km. From these current sheet observations, a subset of 30 events include embedded chain of flux ropes within the current sheet structure. We find that 87% of these flux rope chain events are identified in the southern latitude regions of Mars, associated with crustal fields. Their location suggests that magnetic reconnection occurring near crustal fields may be the source of these flux ropes. These statistical measurements of both current sheets and associated flux rope chains provide information about the complex magnetospheric dynamics at Mars, and how these dynamics affect atmospheric loss to space.
NASA Astrophysics Data System (ADS)
Mouikis, C.; Bingham, S.; Kistler, L. M.; Farrugia, C. J.; Spence, H. E.; Gkioulidou, M.
2016-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes observations to determine the ring current pressure contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. We compare storms that are related to different interplanetary drivers, CMEs and CIRs, as observed at different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers.
Long-term variation of radar-auroral backscatter and the interplanetary sector structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeoman, T.K.; Burrage, M.D.; Lester, M.
Recurrent variation of geomagnetic activity at the {approximately}27-day solar rotation period and higher harmonics is a well-documented phenomenon. Auroral radar backscatter data from the Sweden and Britain Radar-Auroral Experiment (SABRE) radar provide a continuous time series from 1981 to the present which is a highly sensitive monitor of geomagnetic activity. In this study, Maximum Entropy Method (MEM) dynamic power spectra of SABRE backscatter data from 1981 to 1989, concurrent interplanetary magnetic field (IMF) and solar wind parameters from 1981 to 1987, and the Kp index since 1932 are examined. Data since 1977 are compared with previously published heliospheric current sheetmore » measurements mapped out from the solar photosphere. Stong periodic behavior is observed in the radar backscatter during the declining phase of solar cycle 21, but this periodicity disappears at the start of solar cycle 22. Similar behavior is observed in earlier solar cycles in the Kp spectra. Details of the radar backscatter, IMF, and solar wind spectra indicate that the solar wind momentum density is the dominant parameter in determining the backscatter periodicity. The temporal evolution of two- and four-sector structures, as predicted by SABRE backscatter spectra, throughout solar cycle 21 generally still agree well with heliospheric current sheet measurements. For one interval, however, there is evidence that evolution of the current sheet has occurred between the photospheric source surface and the Earth.« less
Large-Scale Survey of the Structure of the Dayside Magnetopause by MMS
NASA Astrophysics Data System (ADS)
Paschmann, G.; Haaland, S. E.; Phan, T. D.; Sonnerup, B. U. Ö.; Burch, J. L.; Torbert, R. B.; Gershman, D. J.; Dorelli, J. C.; Giles, B. L.; Pollock, C.; Saito, Y.; Lavraud, B.; Russell, C. T.; Strangeway, R. J.; Baumjohann, W.; Fuselier, S. A.
2018-03-01
This paper describes the generation and initial utilization of a database containing 80 vector and scalar quantities, for a total of 8,670 magnetopause and magnetosheath current sheet crossings by MMS1, using plasma and magnetic field data from the Fast Plasma Investigation, Fluxgate Magnetometer, and Hot Plasma Composition Analyzer instruments, augmented by solar wind and interplanetary magnetic field data from CDAWeb. Based on a determination of the current sheet width, measured and calculated vector and scalar quantities are stored for the two sides of the current sheet and for selected times within the current sheet. The only manual operations were the classification of the current sheets according to the type of boundary, the character of the magnetic field transition, and the quality of the current sheet fit. To characterize the database, histograms of selected key quantities are presented. We then give the statistics for the duration, motion, and thicknesses of the magnetopause current sheet, using single-spacecraft techniques for the determination of the normal velocities, obtaining median results of 12.9 s, 38.5 km/s, and 705.4 km, respectively. When scaled to the ion inertial length, the median thickness became 12.6; there were no thicknesses less than one. Next, we apply the Walén relation to find crossings that are rotational discontinuities and thus may indicate ongoing magnetic reconnection. For crossings where the velocities in the outflow region exceed the velocity on the magnetosheath side by at least 250 km/s, 47% meet our rotational discontinuity criteria. If we require the outflow to exceed 250 km/s along the L direction, then the percentage rises to 68%.
Global Magnetohydrodynamic Modeling of the Solar Corona
NASA Technical Reports Server (NTRS)
Linker, Jon A.
1998-01-01
The coronal magnetic field defines the structure of the solar corona, the position of the heliospheric current sheet, the regions of fast and slow solar wind, and the most likely sites of coronal mass ejections. There are few measurements of the magnetic fields in the corona, but the line-of-sight component of the global magnetic fields in the photosphere have been routinely measured for many years (for example, at Stanford's Wilcox Solar Observatory, and at the National Solar Observatory at Kitt Peak). The SOI/MDI instrument is now providing high-resolution full-disk magnetograms several times a day. Understanding the large-scale structure of the solar corona and inner heliosphere requires accurately mapping the measured photospheric magnetic field into the corona and outward. Ideally, a model should not only extrapolate the magnetic field, but should self-consistently reconstruct both the plasma and magnetic fields in the corona and solar wind. Support from our NASA SR&T contract has allowed us to develop three-dimensional magnetohydrodynamic (MHD) computations of the solar corona that incorporate observed photospheric magnetic fields into the boundary conditions. These calculations not only describe the magnetic field in the corona and interplanetary spice, but also predict the plasma properties as well. Our computations thus far have been successful in reproducing many aspects of both coronal and interplanetary data, including the structure of the streamer belt, the location of coronal hole boundaries, and the position and shape of the heliospheric current sheet. The most widely used technique for extrapolating the photospheric magnetic field into the corona and heliosphere are potential field models, such as the potential field source-surface model (PFSS),and the potential field current-sheet (PFCS) model
Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model
NASA Astrophysics Data System (ADS)
Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.
2017-12-01
The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric escape from Mars.
NASA Technical Reports Server (NTRS)
Slavin, James A.; Boardsen, S. A.; Sarantos, M.; Acuna, M. H.; Anderson, B. J.; Barabash, S.; Benna, M.; Fraenz, M.; Gloeckler, G.; Gold, R. E.;
2008-01-01
At 23:08 UT on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude (338 km) during its second flyby of Venus en route to its 2011 orbit insertion at Mercury. Whereas no measurements were collected during MESSENGER'S first Venus flyby in October 2006, the Magnetometer (MAG) and the Energetic Particle and Plasma Spectrometer (EPPS) operated successfully throughout this second encounter. Venus provides the solar system's best example to date of a solar wind - ionosphere planetary interaction. We present MESSENGER observations of the near-tail of Venus with emphasis on determining the time scales for magnetic flux transport, the structure of the cross-tail current sheet at very low altitudes (approx. 300 to 1000 km), and the nature and origin of a magnetic flux rope observed in the current sheet. The availability of the simultaneous Venus Express upstream measurements provides a unique opportunity to examine the influence of solar wind plasma and interplanetary magnetic field conditions on this planet's solar wind interaction at solar minimum.
Four large-scale field-aligned current systmes in the dayside high-latitude region
NASA Technical Reports Server (NTRS)
Ohtani, S.; Potemra, T. A.; Newell, P.T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Blomberg, L. G.; Elphinstone, R. D.; Murphree, J. S.; Yamauchi, M.
1995-01-01
A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for-current sheet structure is common in a certain prenoon localtime sector during strongly negative IMF B(sub Y).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania K
Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bz
A Detection of the Same Hot Plasma in the Corona: During a CME and Later at Ulysses
NASA Technical Reports Server (NTRS)
Suess, S. T.; Poletto, G.
2004-01-01
We show direct evidence for the same very hot plasma being detected remotely from SOHO in the corona and subsequently, at Ulysses in the solar wind. This is, to our knowledge, the first time that such an unambiguous identification has been made in the case of hot plasma. This detection complements studies correlating other plasma and field properties observed to the properties measured at the source in the corona. This observation takes advantage of a SOHO-Sun-Ulysses quadrature, during which the Sun-Ulysses included angle is $90^\\circ$ and it is possible to observe with Ulysses instruments the same plasma that has previously been remotely observed with SOHO instruments in the corona on the limb of the Sun. The identification builds on an existing base of separate SOHO and interplanetary detections of hot plasma. SOHO/UVCS has found evidence for very hot coronal plasma in current sheets in the aftermath of CMEs in the [Fe XVIII] $\\lambda$ \\AA\\ line, implying a temperature on the order of $6\\times 10(exp 6)$ K. This temperature is unusually high even for active regions, but is compatible with the high temperature predicted in current sheets. In the solar wind, ACE data from early 1998 to middle 2000 revealed high frozen-in Fe charge state in many cases to be present in interplanetary plasma.
Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times
NASA Technical Reports Server (NTRS)
Cattell, C. A.; Mozer, F. S.
1982-01-01
An understanding of the physical processes occurring in the magnetotail and plasmasheet during different interplanetary magnetic field orientations and differing levels of ground magnetic activity is crucial for the development of a theory of energy transfer from the solar wind to the particles which produce auroral arcs. In the present investigation, the first observations of electric fields during neutral sheet crossings are presented, taking into account the statistical correlations of the interplanetary magnetic field direction and ground activity with the character of the electric field. The electric field data used in the study were obtained from a double probe experiment on the ISEE-1 satellite. The observations suggest that turbulent electric and magnetic fields are intimately related to plasma acceleration in the neutral sheet and to the processes which create auroral particles.
Plasma circulation in Jupiter's magnetosphere
NASA Astrophysics Data System (ADS)
Chané, E.
2017-12-01
We are using our three-dimensional global MHD model of Jupiter's magnetosphere to study the plasma circulation in the magnetodisk. We show that the Iogenic plasma does not travel outward axisymmetrically but rather forms a long spiral arm of high density corotating with the planet. This leads to periodic phenomena in the magnetodisk: for instance, every rotation period, a region of high density is rapidly moving outward on the pre-noon sector. This leads to shearing motions that generate field aligned currents and periodically affect the main oval in this sector.We will also show how the interplanetary magnetic field influences the position of the magnetodisk in our simulations, displacing the current sheet above and below the equatorial plan. We will discuss how this is affecting the depleted flux-tubes returning from the night-side after unloading most of their plasma in the magnetotail (Vasyliunas cycle) and see how they can then move above or below the magnetodisk when arriving at dawn and then reconnect with the interplanetary magnetic field on the day-side.
Lessons Learned from 10 Years of STEREO Solar Wind Observations
NASA Astrophysics Data System (ADS)
Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.
2017-12-01
We have conducted long-term observations of large-scale solar wind structures since the launch of STEREO spacecraft, specifically interplanetary CMEs (ICMEs), slow-to-fast stream interaction regions (SIRs), and interplanetary shocks. In combination with our previous observations of the same solar wind structures in 1995-2009 using Wind/ACE data and the same identification criteria, we have first studied the solar cycle variations of these structures, especially for the same phases of solar cycles 23 and 24. Attributing the shocks to the interplanetary drivers, we have statistically compared the shocks driven by ICMEs and SIRs, and explained the shocks without a clear local driver. In addition, using the longitudinal and latitudinal separations between the twin spacecraft, we have investigated the recurrence and variability of ICMEs and SIRs, and gained the critical implications for the proposed L5 mission. At last, we have associated the heliospheric current sheet (HCS) crossings with the ICMEs and SIRs, and compared the properties of SIRs with and without HCS crossings, which correspond to the helmet streamers and pseudostreamers, respectively. The findings are important constraints on the theories of slow wind origin.
Interplanetary magnetic field over two solar cycles and out to 20 AU
NASA Technical Reports Server (NTRS)
Smith, J. E.
1989-01-01
Interplanetary field measurements are now available from Pioneer and Voyager at large distances and from various spacecraft in the inner solar system. These multiple observations at different locations have proven indispensable in separating temporal from spatial dependences. The data set has revealed a number of characteristic solar cycle variations including changes in field strength and the inclination of the heliospheric current sheet responsible for magnetic sectors. Spatial gradients in the field parameters out to 20 AU have been compared with the Parker Model including the spiral angle, the north-south field component and the magnitude. As a result of planetary encounters, Pioneer and the Voyagers are traveling outward at significantly different latitudes making it possible to investigate latitudinal, as well as radial, dependences. Effects associated with the pick-up of interstellar ions are being sought.
The effect of the solar field reversal on the modulation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Thomas, B. T.; Goldstein, B. E.
1983-01-01
There is now a growing awareness that solar cycle related changes in the large-scale structure of the interplanetary magnetic field (IMF) may play an important role in the modulation of galactic cosmic rays. To date, attention focussed on two aspects of the magnetic field structure: large scale compression regions produced by fast solar wind streams and solar flares, both of which are known to vary in intensity and number over the solar cycle, and the variable warp of the heliospheric current sheet. It is suggested that another feature of the solar cycle is worthy of consideration: the field reversal itself. If the Sun reverses its polarity by simply overturning the heliospheric current sheet (northern fields migrating southward and vice-versa) then there may well be an effect on cosmic ray intensity. However, such a simple picture of solar reversal seems improbable. Observations of the solar corona suggest the existence of not one but several current sheets in the heliosphere at solar maximum. The results of a simple calculation to demonstrate that the variation in cosmic ray intensities that will result can be as large as is actually observed over the solar cycle are given.
Following the geomagnetic activity: events on September and October (1999)
NASA Astrophysics Data System (ADS)
Blanco, J. J.; Hidalgo, M. A.; Rodríguez-Pacheco, J.; Medina, J.; Sequeiros, J.; Nieves-Chinchilla, T.
2006-12-01
On 21-22 October 1999 a very intense geomagnetic storm (DST index: -237 nT) was detected. This event was associated with a High Speed Stream (HSS) and an interplanetary coronal mass ejection. Before and after this event, the interplanetary magnetic field showed an inversion probably associated with Heliospheric Current Sheet (HCS) crossings. One month before (21-22 September) a strong geomagnetic storm (DST index: -164 nT) was detected and the solar wind conditions were similar to those observed in October, i. e. magnetic cloud, HSS and HCS crossings. Nevertheless, the October event was stronger than the September one. We have compared both events trying to clarify what caused the difference between them. This work has been supported by the Spanish Comisión Internacional de Ciencia y Tecnología (CICYT), grant ESP2005-07290-C02-01 and ESP2006-08459 and Madrid Autonomous Community / University of Alcala grant CAM-UAH 2005/007.
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1974-01-01
Review of recent progress in magnetospheric physics, in particular, in understanding the magnetospheric substorm. It is shown that a number of magnetospheric phenomena can now be understood by viewing the solar wind-magnetosphere interaction as an MHD dynamo; auroral phenomena are powered by the dynamo. Also, magnetospheric responses to variations of the north-south and east-west components of the interplanetary magnetic field have been identified. The magnetospheric substorm is entirely different from the responses of the magnetosphere to the southward component of the interplanetary magnetic field. It may be associated with the formation of a neutral line within the plasma sheet and with an enhanced reconnection along the line. A number of substorm-associated phenomena can be understood by noting that the new neutral line formation is caused by a short-circuiting of a part of the magnetotail current.
Effects of a wavy neutral sheet on cosmic ray anisotropies
NASA Technical Reports Server (NTRS)
Kota, J.; Jokipii, J. R.
1985-01-01
The first results of a three-dimensional numerical code calculating cosmic ray anisotropies is presented. The code includes diffusion, convection, adiabatic cooling, and drift in an interplanetary magnetic field model containing a wavy neutral sheet. The 3-D model can reproduce all the principal observations for a reasonable set of parameters.
International cometary explorer encounter with giacobini-zinner: magnetic field observations.
Smith, E J; Tsurutani, B T; Slvain, J A; Jones, D E; Siscoe, G L; Mendis, D A
1986-04-18
The vector helium magnetometer on the International Cometary Explorer observed the magnetic fields induced by the interaction of comet Giacobini-Zinner with the solar wind. A magnetic tail was penetrated approximately 7800 kilometers downstream from the comet and was found to be 10(4) kilometers wide. It consisted of two lobes, containing oppositely directed fields with strengths up to 60 nanoteslas, separated by a plasma sheet approximately 10(3)kilometers thick containing a thin current sheet. The magnetotail was enclosed in an extended ionosheath characterized by intense hydromagnetic turbulene and interplanetary fields draped around the comet. A distant bow wave, which may or may not have been a bow shock, was observed at both edges of the ionosheath. Weak turbulence was observed well upstream of the bow wave.
Counterstreaming electrons in small interplanetary magnetic flux ropes
NASA Astrophysics Data System (ADS)
Feng, H. Q.; Zhao, G. Q.; Wang, J. M.
2015-12-01
Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.
Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J
1992-09-11
Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.
NASA Technical Reports Server (NTRS)
Maurette, Michel; Hammer, C.; Harvey, R.; Immel, G.; Kurat, G.; Taylor, S.
1994-01-01
In a companion paper, Zolensky discusses interplanetary dust particles (IDP's) collected in the stratosphere. Here, we describe the recovery of much larger unmelted to partially melted IDP's from the Greenland and Antarctica ice sheet, and discuss problems arising in their collection and curation, as well as future prospects for tackling these problems.
NASA Astrophysics Data System (ADS)
Potapov, A. S.
2018-04-01
Thirty events of CIR streams (corotating interaction regions between fast and slow solar wind) were analyzed in order to study statistically plasma structure within the CIR shear zones and to examine the interaction of the CIRs with the heliospheric current sheet (HCS) and the Earth's magnetosphere. The occurrence of current layers and high-beta plasma sheets in the CIR structure has been estimated. It was found that on average, each of the CIR streams had four current layers in its structure with a current density of more than 0.12 A/m2 and about one and a half high-beta plasma regions with a beta value of more than five. Then we traced how and how often the high-speed stream associated with the CIR can catch up with the heliospheric current sheet (HCS) and connect to it. The interface of each fourth CIR stream coincided in time within an hour with the HCS, but in two thirds of cases, the CIR connection with the HCS was completely absent. One event of the simultaneous observation of the CIR stream in front of the magnetosphere by the ACE satellite in the vicinity of the L1 libration point and the Wind satellite in the remote geomagnetic tail was considered in detail. Measurements of the components of the interplanetary magnetic field and plasma parameters showed that the overall structure of the stream is conserved. Moreover, some details of the fine structure are also transferred through the magnetosphere. In particular, the so-called "magnetic hole" almost does not change its shape when moving from L1 point to a neighborhood of L2 point.
Observations of disconnection of open coronal magnetic structures
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Phillips, J. L.; Hundhausen, A. J.; Burkepile, J. T.
1991-01-01
The solar maximum mission coronagraph/polarimeter observations are surveyed for evidence of magnetic disconnection of previously open magnetic structures and several sequences of images consistent with this interpretation are identified. Such disconnection occurs when open field lines above helmet streamers reconnect, in contrast to previously suggested disconnections of CMEs into closed plasmoids. In this paper a clear example of open field disconnection is shown in detail. The event, on June 27, 1988, is preceded by compression of a preexisting helmet streamer and the open coronal field around it. The compressed helmet streamer and surrounding open field region detach in a large U-shaped structure which subsequently accelerates outward from the sun. The observed sequence of events is consistent with reconnection across the heliospheric current sheet and the creation of a detached U-shaped magnetic structure. Unlike CMEs, which may open new magnetic flux into interplanetary space, this process could serve to close off previously open flux, perhaps helping to maintain the roughly constant amount of open magnetic flux observed in interplanetary space.
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Sazykin, Stan; Chandler, Michael; Hairston, Marc; Minow, Joseph; Anderson, Brian
2017-01-01
The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the leading-edge shock wave and a sheath carrying a large and highly variable interplanetary magnetic field (IMF) Bz with values ranging from +25 to -40 nT. During the subsequent interval from 0000 to 0800 UT, there was a second intensification of the geomagnetic storm resulting from the impact of the CME. We present dramatic responses of simultaneous particle measurements from the high-altitude Magnetospheric Multiscale Mission (MMS) at high altitudes in the magnetosphere (approx. 9-12 Re) and from the low-altitude (F-region) Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS). We analyze potential causes of these dramatic particle flux dropouts by putting them in the context of storm-time electrodynamics, and support our results with numerical simulations of the global magnetosphere and ionosphere. During the sheath phase of the storm, the MMS spacecraft in the near-earth equatorial plane observed a rapid reconfiguration of the magnetic field near 1923 UT. Initially in the warm plasma sheet, particle flux dropouts were observed as they tracked the plasma-sheet to lobe transitions with the stretching and thinning of the plasma sheet. Anti-sunward flowing O+ ions of ionospheric origin were also measured during this period, confirming that the MMS spacecraft temporarily was in a lobe.
NASA Technical Reports Server (NTRS)
Christon, S. P.; Williams, D. J.; Mitchell, D. G.; Frank, L. A.; Huang, C. Y.
1989-01-01
The spectral characteristics of plasma-sheet ion and electron populations during periods of low geomagnetic activity were determined from the analysis of 127 one-hour average samples of central plasma sheet ions and electrons. Particle data from the ISEE-1 low-energy proton and electron differential energy analyzer and medium-energy particle instrument were combined to obtain differential energy spectra in the plasma sheet at geocentric radial distances above 12 earth radii. The relationships between the ion and electron spectral shapes and between the spectral shapes and the geomagnetic activity index were statistically investigated. It was found that the presence of interplanetary particle fluxes does not affect the plasma sheet particle spectral shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabarova, Olga V.; Zank, Gary P.; Li, Gang
2016-08-20
We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, whichmore » is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.« less
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R.
2009-12-01
Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM), using the Tsyganenko 96 magnetic field model, to investigate how the earthward penetration of electric field depends on plasma sheet conditions. Outer proton and electron sources at r ~20 RE, are based on 11 years of Geotail data, and realistically represent the mixture of cold and hot plasma sheet population as a function of MLT and interplanetary conditions. We found that shielding of the inner magnetosphere electric field is more efficient for a colder and denser plasma sheet, which is found following northward IMF, than for the hotter and more tenuous plasma sheet found following southward IMF. Our simulation results so far indicate further earthward penetration of plasma sheet particles in response to enhanced convection if the preceding IMF is southward, which leads to weaker electric field shielding. Recently we have integrated the RCM with a magnetic field solver to obtain magnetic fields that are in force balance with given plasma pressures in the equatorial plane. We expect the self-consistent magnetic field to have a pronounced dawn dusk asymmetry due to the asymmetric inner magnetospheric pressure. This should affect the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. We are currently using this force-balanced and self-consistent model with our realistic boundary conditions to evaluate the dependence of the shielding timescale on pre-existing plasma sheet number density and temperature and to more quantitatively determine the correlation between the plasma sheet conditions and spatial distribution of the penetrating particles. Our results are potentially crucial to understanding the contribution of plasma sheet penetration to the development of the storm-time ring current.
Formation of the Sun-aligned arc region and the void (polar slot) under the null-separator structure
NASA Astrophysics Data System (ADS)
Tanaka, T.; Obara, T.; Watanabe, M.; Fujita, S.; Ebihara, Y.; Kataoka, R.
2017-04-01
From the global magnetosphere-ionosphere coupling simulation, we examined the formation of the Sun-aligned arc region and the void (polar slot) under the northward interplanetary magnetic field (IMF) with negative By condition. In the magnetospheric null-separator structure, the separatrices generated from two null points and two separators divide the entire space into four types of magnetic region, i.e., the IMF, the northern open magnetic field, the southern open magnetic field, and the closed magnetic field. In the ionosphere, the Sun-aligned arc region and the void are reproduced in the distributions of simulated plasma pressure and field-aligned current. The outermost closed magnetic field lines on the boundary (separatrix) between the northern open magnetic field and the closed magnetic field are projected to the northern ionosphere at the boundary between the Sun-aligned arc region and the void, both on the morning and evening sides. The magnetic field lines at the plasma sheet inner edge are projected to the equatorward boundary of the oval. Therefore, the Sun-aligned arc region is on the closed magnetic field lines of the plasma sheet. In the plasma sheet, an inflated structure (bulge) is generated at the junction of the tilted plasma sheet in the far-to-middle tail and nontilted plasma sheet in the ring current region. In the Northern Hemisphere, the bulge is on the evening side wrapped by the outermost closed magnetic field lines that are connected to the northern evening ionosphere. This inflated structure (bulge) is associated with shear flows that cause the Sun-aligned arc.
NASA Technical Reports Server (NTRS)
Ohtani, S.; Potemra, T. A.; Newell, P. T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Yamauchi, M.; Elphinstone, R. D.; De La Beauijardie, O.; Blomberg, L. G.
1995-01-01
The spatial structure of dayside large-scale field-aligned current (FAC) systems is examined by using Viking and Defense Meteorological Satellite Program-F7 (DMSP-F7) data. We focus on four events in which the satellites simultaneously observed postnoon and prenoon three FAC systems: the region 2, the region 1, and the mantle (referred to as midday region O) systems, from equatorward to poleward. These events provide the most solid evidence to date that the midday region O system is a separate and unique FAC system, and is not an extension of the region 1 system from other local times. The events are examined comprehensively by making use of a mulit-instrumental data set, which includes magnetic field, particle flux, electric field, auroral UV image data from the satellites, and the Sondrestrom convection data. The results are summarized as follows: (1) Region 2 currents flow mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPD) at their poleward edge. (2) The region 1 system is located in the core part of the auroral oval and is confined in a relatively narrow range in latitude which includes the convection reversal. The low-latitude boundary layer, possibly including the outer part of the plasma sheet, and the external cusp are the major source regions of dayside region 1 currents. (2) Midday region O currents flow on open field lines and are collocated with the shear of antisunward convection flows with velocites decreasing poleward. On the basis of these results we support the view that both prenoon and postnoon current systems consist of the three-sheet structure when the disctortion ofthe convection pattern associated with interplanetary magnetic field (IMF) B(sub Y) is small and both morningside and eveningside convection cells are crescent-shaped. We also propose that the midday region O and a part of the region 1 systems are closely coupled to the same source.
A Statistical Model of the Magnetotail Neutral Sheet
NASA Astrophysics Data System (ADS)
Xiao, Sudong; Zhang, Tielong; Baumjohann, Wolfgang; Nakamura, Rumi; Ge, Yasong; Du, Aimin; Wang, Guoqiang; Lu, Quanming
2015-04-01
The neutral sheet of the magnetotail is characterized by weak magnetic field, strong cross tail current, and a reversal of the magnetic field direction across it. The dynamics of the earth's magnetosphere is greatly influenced by physical processes that occur near the neutral sheet. However, the exact position of the neutral sheet is variable in time. It is therefore essential to have a reliable estimate of the average position of the neutral sheet. Magnetic field data from ten years of Cluster, nineteen years of Geotail, four years of TC 1, and seven years of THEMIS observations have been incorporated to obtain a model of the magnetotail neutral sheet. All data in aberrated GSM (Geocentric Solar Magnetospheric) coordinate system are normalized to the same solar wind pressure condition. The shape and position of the neutral sheet, illustrated directly by the separator of positive and negative Bx on the YZ cross sections, are fitted with a displaced ellipse model. It is consistent with previous studies that the neutral sheet becomes curvier in the YZ cross section when the dipole tilt increases, yet our model shows the curviest neutral sheet compared with previous models. The new model reveals a hinging distance very close to 10 RE at a reference solar wind dynamic pressure of 2 nPa. We find that the earth dipole tilt angle not only affects the neutral sheet configuration in the YZ cross section but also in the XZ cross section. The neutral sheet becomes more tilting in the XZ cross section when the dipole tilt increases. The effect of an interplanetary magnetic field (IMF) penetration is studied, and an IMF By-related twisting of about 3° is found. Anticlockwise twisting of the neutral sheet is observed, looking along the downtail direction, for a positive IMF By, and clockwise twisting of the neutral sheet for a negative IMF By.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.
We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less
NASA Astrophysics Data System (ADS)
Nykyri, K.; Chu, C.; Dimmock, A. P.
2017-12-01
Previous studies have shown that plasma sheet in tenuous and hot during southward IMF, whereas northward IMF conditions are associated with cold, dense plasma. The cold, dense plasma sheet (CDPS) has strong influence on magnetospheric dynamics. Closer to Earth, the CDPS could be formed via double high-latitude reconnection, while at increasing tailward distance reconnection, diffusion and kinetic Alfven waves in association with Kelvin-Helmholtz Instability are suggested as dominant source for cold-dense plasma sheet formation. In this paper we present statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet density dependence on IMF orientation and other solar wind properties.
NASA Technical Reports Server (NTRS)
Akasofu, S.-I.
1979-01-01
Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.
Theory for substorms triggered by sudden reductions in convection
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1996-01-01
Many substorm expansions are triggered by interplanetary magnetic field changes that reduce magnetospheric convection. This suggests that expansion onsets are a result of a reduction in the large-scale electric field imparted to the magnetosphere from the solar wind. Such a reduction disrupts the inward motion and energization of plasma sheet particles that occur during the growth phase. It is proposed that the resulting magnetic drift of particles and a large dawn to dusk gradient in the ion energies leads to a longitudinally localized reduction in the plasma pressure, and thus, to the current wedge formation. This theory accounts for the rapid development of the expansion phase relative to growth phase, the magnitude of the wedge currents, the speeds of tailward and westward expansion of the current reduction region in the equatorial plane, and the speeds of the poleward and westward motion of active aurora in the ionosphere.
Relations Between vz and Bx Components in Solar Wind and their Effect on Substorm Onset
NASA Astrophysics Data System (ADS)
Kubyshkina, Marina; Semenov, Vladimir; Erkaev, Nikolay; Gordeev, Evgeny; Dubyagin, Stepan; Ganushkina, Natalia; Shukhtina, Maria
2018-05-01
We analyze two substorm onset lists, produced by different methods, and show that the (Bx·vz) product of the solar wind (SW) velocity and interplanetary magnetic field (IMF) components for two thirds of all substorm onsets has the same sign as IMF Bz. The explanation we suggest is the efficient displacement of the magnetospheric plasma sheet due to IMF Bx and SW flow vz, which both force the plasma sheet moving in one direction if the sign of (Bx·vz) correlates with the sign Bz. The displacement of the current sheet, in its turn, increases the asymmetry of the magnetotail and can alter the threshold of substorm instabilities. We study the SW and IMF data for the 15-year period (which comprises two substorm lists periods and the whole solar cycle) and reveal the similar asymmetry in the SW, so that the sign of (Bx·vz) coincides with the sign of IMF Bz during about two thirds of all the time. This disproportion can be explained if we admit that about 66% of IMF Bz component is transported to the Earth's orbit by the Alfvén waves with antisunward velocities.
NASA Technical Reports Server (NTRS)
El-Alaoui, M.; Ashour-Abdalla, M.; Raeder, J.; Frank, L. A.; Paterson, W. R.
1998-01-01
In this study we investigate the transport of H+ ions that made up the complex ion distribution function observed by the Geotail spacecraft at 0740 UT on November 24, 1996. This ion distribution function, observed by Geotail at approximately 20 R(sub E) downtail, was used to initialize a time-dependent large-scale kinetic (LSK) calculation of the trajectories of 75,000 ions forward in time. Time-dependent magnetic and electric fields were obtained from a global magnetohydrodynamic (MHD) simulation of the magnetosphere and its interaction with the solar wind and the interplanetary magnetic field (IMF) as observed during the interval of the observation of the distribution function. Our calculations indicate that the particles observed by Geotail were scattered across the equatorial plane by the multiple interactions with the current sheet and then convected sunward. They were energized by the dawn-dusk electric field during their transport from Geotail location and ultimately were lost at the ionospheric boundary or into the magnetopause.
Generation of region 1 current by magnetospheric pressure gradients
NASA Technical Reports Server (NTRS)
Yang, Y. S.; Spiro, R. W.; Wolf, R. A.
1994-01-01
The Rice Convection Model (RCM) is used to illustrate theoretical possibilities for generating region 1 Birkeland currents by pressure gradients on closed field lines in the Earth's magnetosphere. Inertial effects and viscous forces are neglected. The RCM is applied to idealized cases, to emphasize the basic physical ideas rather than realistic representation of the actual magnetosphere. Ionospheric conductance is taken to be uniform, and the simplest possible representations of the magnetospheric plasma are used. Three basic cases are considered: (1) the case of pure northward Interplanetary Magnetic Field (IMF), with cusp merging assumed to create new closed field lines near the nose of the magnetosphere, following the suggestion by Song and Russell (1992); (2) the case where Dungey-type reconnection occurs at the nose, but magnetosheath plasma somehow enters closed field lines on the dawnside and duskside of the merging region, causing a pressure-driven low-latitude boundary layer; and (3) the case where Dungey-type reconnection occurs at the nose, but region 1 currents flow on sunward drifting plasma sheet field lines. In case 1, currents of region 1 sense are generated by pressure gradients, but those currents do not supply the power for ionospheric convection. Results for case 2 suggest that pressure gradients at the inner edge of the low-latitude boundary layer might generate a large fraction of the region 1 Birkeland currents that drive magnetospheric convection. Results for case 3 indicate that pressure gradients in the plasma sheet could provide part of the region 1 current.
Effects of Coronal Magnetic Field Structures on the Transport of Solar Energetic Particles
NASA Astrophysics Data System (ADS)
Zhao, Lulu; Zhang, Ming
2018-06-01
This Letter presents a model calculation of solar energetic particle (SEP) transport to test the sensitivity of the distribution of escaped SEPs in interplanetary space and dependence upon the details of the magnetic field structure in the corona. It is applied to a circumsolar event on 2011 November 3, in which SEPs are observed promptly after the solar event eruption by three spacecraft (the twin Solar TErrestrial RElations Observatories (STEREO-A and STEREO-B) and ACE) separated by more than 100° in longitude from each other. The corona magnetic field reconstructed from photosphseric field measurements using the PFSS method changes substantially before and after the solar eruption, especially around the active region. The locations of open field regions, separatrix surfaces including the heliospheric current sheet, and footpoints of magnetic field lines connected to the spacecraft location have shifted substantially. We inject 100 keV energetic electrons on the open field lines at 1.5 R s within the size of observed coronal mass ejections (CMEs) and follow their propagation in the corona and the interplanetary space. We find that with a perpendicular diffusion due to field line random walk equal to 10% of the supergranular diffusion rate, the overall distribution of escaped SEPs does not change much even though the region of open field lines from SEPs has changed. The result suggests that detailed small-scale coronal magnetic field structures and the exact magnetic field connection are not crucially important for observing SEPs in the interplanetary space.
Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; ...
2015-04-11
We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less
Bashful ballerina: Southward shifted heliospheric current sheet
NASA Astrophysics Data System (ADS)
Mursula, K.; Hiltula, T.
2003-11-01
It is known since long [Rosenberg and Coleman, 1969] that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.
Bashful Ballerina: Southward shifted Heliospheric Current Sheet
NASA Astrophysics Data System (ADS)
Mursula, K.; Hiltula, T.
It is known since long (Rosenberg and Coleman, 1969) that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabarova, O.; Zank, G. P.; Li, G.
2015-08-01
Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of themore » trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.« less
Topology and convection of a northward interplanetary magnetic field reconnection event
NASA Astrophysics Data System (ADS)
Wendel, Deirdre E.
>From observations and global MHD simulations, we deduce the local and global magnetic topology and current structure of a northward IMF reconnection event in the dayside magnetopause. The ESA four-satellite Cluster suite crossed the magnetopause at a location mapping along field lines to an ionospheric H-alpha emission observed by the IMAGE spacecraft. Therefore, we seek reconnection signatures in the Cluster data. From the four-point Cluster observations, we develop a superposed epoch method to find the instantaneous x-line, its associated current sheet, and the nature of the reconnecting particle flows. This method is unique in that it removes the motion of the hyperbolic structure and the magnetopause relative to the spacecraft. We detect singular field line reconnection--planar hyperbolic reconnecting fields superposed on an out-of- plane field. We also detect the non-ideal electric field that is required to certify reconnection at locations where the magnetic field does not vanish, and estimate a reconnection electric field of - 4 mV/m. The current sheet appears bifurcated, embedding a 30 km current sheet of opposite polarity within a broader current sheet about 130 km thick. Using a resistive MHD simulation and ionospheric satellite data, we examine the same event at global length scales. This gives a 3D picture of where reconnection occurs on the magnetopause for northward IMF with B x and B y components and a tilted dipole field. It also demonstrates that northward IMF 3D reconnection couples the reconnection electric field and field-aligned currents to the ionosphere, driving sunward convection in a manner that agrees with satellite measurements of sunward flows. We find singular field line reconnection of the IMF with both open and closed field lines near nulls in both hemispheres. The reconnection in turn produces both open and closed field lines. We discuss for the first time how line-tying in the ionosphere and draping of open and IMF field lines produce a torsion of the reconnecting singular magnetic field lines within the magnetopause. The simulation and data show that magnetopause reconnection topology is three-dimensional in a way that challenges accepted models of neutral lines and x-lines with guide fields.
NASA Astrophysics Data System (ADS)
Farrugia, C. J.; Sandholt, P. E.; Maynard, N. C.; Burke, W. J.; Scudder, J. D.; Ober, D. M.; Moen, J.; Russell, C. T.
2000-12-01
Magnetically conjugate observations by the HYDRA and the Magnetic Field Experiment instruments on Polar, meridian-scanning photometers and all-sky imagers at Ny-Ålesund, and International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometers on November 30, 1997, illustrate aspects of magnetosphere-ionosphere coupling at 0900-1000 magnetic local times (MLT) and 70°-80° magnetic latitudes and their dependence on interplanetary parameters. Initially, Polar crossed a boundary layer on closed field lines where magnetospheric and magnetosheath plasmas are mixed. This region contains filaments where magnetospheric electron and ion fluxes are enhanced. These filaments are associated with field-aligned current structures embedded within the large-scale region 1 (R1) current. Ground auroral imagery document the presence at this time of discrete, east-west aligned arcs, which are in one-to-one correspondence with the filaments. Temporal variations present in these auroral arcs correlate with Pc 5 pulsations and are probably related to modulations in the interplanetary electric field. The auroral observations indicate that the filamented mixing region persisted for many tens of minutes, suggesting a spatial structuring. The data suggest further that the filamented, mixing region is an important source of the R1 current and the associated midmorning arcs. When the interplanetary magnetic field (IMF) turned strongly north, Polar had entered the dayside extension of the central plasma sheet/region 2 current system where it and the underlying ground magnetometers recorded a clear field line resonance of frequency ~2.4 mHz (Pc 5 range). The source of these oscillations is most likely the Kelvin-Helmholtz instability. Subsequent to the IMF northward turning, the multiple arcs were replaced by a single auroral form to the north of Ny-Ålesund (at 1000 MLT) in the vicinity of the westward edge of the cusp. ULF pulsation activity changed to the Pc 3-4 range in the regime of the pulsating diffuse aurora when the IMF went to an approximately Parker spiral orientation and the ground stations had rotated into the MLT sector of cusp emissions.
The mean magnetic field of the sun: Observations at Stanford
NASA Technical Reports Server (NTRS)
Scherrer, P. H.; Wilcox, J. M.; Svalgaard, L.; Duvall, T. L., Jr.; Dittmer, P. H.; Gustafson, E. K.
1977-01-01
A solar telescope was built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field were made daily since May 1975. The typical mean field magnitude is about 0.15 gauss with typical measurement error less than 0.05 gauss. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (seen near the earth with a 4 day lag). The differences in the observed structures can be understood in terms of a warped current sheet model.
Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data
NASA Astrophysics Data System (ADS)
Herčík, David; Trávníček, Pavel M.; Å tverák, Å. těpán.; Hellinger, Petr
2016-01-01
Using a global hybrid model and test particle simulations we present a detailed analysis of the Hermean plasma belt structure. We investigate characteristic properties of quasi-trapped particle population characteristics and its behavior under different orientations of the interplanetary magnetic field. The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than the surrounding area. On the dayside the population exhibits loss cone distribution function matching the theoretical loss cone angle. The simulation results are in good agreement with in situ observations of MESSENGER's (MErcury Surface Space ENvironment GEochemistry, and Ranging) MAG and FIPS instruments.
Interplanetary magnetic field effects on high latitude ionospheric convection
NASA Technical Reports Server (NTRS)
Heelis, R. A.
1985-01-01
Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.
Evidence of active region imprints on the solar wind structure
NASA Technical Reports Server (NTRS)
Hick, P.; Jackson, B. V.
1995-01-01
A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.
2010-12-01
Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.
NASA Technical Reports Server (NTRS)
Taguchi, S.; Sugiura, M.; Iyemori, T.; Winningham, J. D.; Slavin, J. A.
1994-01-01
Using the Dynamics Explorer (DE) 2 magnetic and electric field and plasma data, B(sub y)- controlled convection and field-aligned currents in the midnight sector for northward interplanetary magnetic field (IMF) are examined. The results of an analysis of the electric field data show that when IMF is stable and when its magnitude is large, a coherent B(sub y)-controlled convection exists near the midnight auroral oval in the ionosphere having adequate conductivities. When B(sub y) is negative, the convection consists of a westward (eastward) plasma flow at the lower latitudes and an eastward (westward) plasma flow at the higher latitudes in the midnight sector in the northern (southern) ionosphere. When B(sub y) is positive, the flow directions are reversed. The distribution of the field-aligned currents associated with the B(sub y)-controlled convection, in most cases, shows a three-sheet structure. In accordance with the convection the directions of the three sheets are dependent on the sign of B(sub y). The location of disappearance of the precipitating intense electrons having energies of a few keV is close to the convection reversal surface. However, the more detailed relationship between the electron precipitation boundary and the convection reversal surface depends on the case. In some cases the precipitating electrons extend beyond the convection reversal surface, and in others the poleward boundary terminates at a latitude lower than the reversal surface. Previous studies suggest that the poleward boundary of the electrons having energies of a few keV is not necessarily coincident with an open/closed bounary. Thus the open/closed boundary may be at a latitude higher than the poleward boundary of the electron precipitation, or it may be at a latitude lower than the poleward boundary of the electron precipitation. We discuss relationships between the open/closed boundary and the convection reversal surface. When as a possible choice we adopt a view that the open/closed boundary agrees with the convection reversal surface, we can explain qualitatively the configuration of the B(sub y)-controlled convection on the open and close field line regions by proposing a mapping modified in accordance with IMF B(sub y).
NASA Astrophysics Data System (ADS)
Ni, Y. Y.
2018-03-01
We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.
NASA Astrophysics Data System (ADS)
Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.
2002-08-01
The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.
Solar-energetic particles as a probe of the inner heliosphere
NASA Astrophysics Data System (ADS)
Chollet, Eileen Emily
2008-06-01
In this dissertation, I explore the relationship between solar energetic particles (SEPs) and the interplanetary magnetic field, and I use observations of SEPs to probe the region of space between the Sun and the Earth. After an introduction of major concepts in heliospheric physics, describing some of the history of energetic particles and defining the data sets used in the work, the rest of this dissertation is organized around three major concepts related to energetic particle transport: magnetic field-line length, interplanetary turbulence, and particle scattering and diffusion. In Chapter 2, I discuss how energetic particles can be used to measure the lengths of field lines and how particle scattering complicates the interpretation of these measurements. I then propose applying these measurements to a particular open problem: the origin and properties of heliospheric current sheets. In the next chapter, I move from the large to small scale and apply energetic particle measurements to important problems in interplanetary turbulence. I introduce two energetic- particle features, one of which I discovered in the course of this work, which have size scales roughly that of the correlation scale of the turbulence (the largest scale over which observations are expected to be similar). I discuss how multi-spacecraft measurements of these energetic particle features can provide a measure of the correlation scale independent of the magnetic field measurements. Finally, I consider interplanetary scattering and diffusion in detail. I describe new observations of particle diffusion in the direction perpendicular to the average magnetic field, showing that particles only scatter a few times between their injection at the Sun and observation at the Earth. I also provide numerical simulation results of diffusion parallel to the field which can be used to correct for the effects of transport on the particles. These corrections allow inferences to be made about the particle energies at injection from observations of the event-integrated fluences at 1 AU. By carefully including scattering, cooling, field line meandering and turbulence effects, solar-energetic particles become a powerful tool for studying the inner heliosphere.
NASA Technical Reports Server (NTRS)
Hooke, A. J.
2000-01-01
Architectural design of the interplanetary internet is now underway and prototype flight testing of some of the candidate protocols is anticipated within a year. This talk will describe the current status of the project.
The Propagation of Solar Energetic Particles as Observed by the Stereo Spacecraft and Near Earth
NASA Astrophysics Data System (ADS)
von Rosenvinge, T. T.; Richardson, I. G.; Cane, H. V.; Christian, E. R.; Cummings, A. C.; Cohen, C. M.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Wiedenbeck, M. E.
2014-12-01
Over 200 Solar Energetic Particle Events (SEPs) with protons > 25 MeV have been identified using data from the IMPACT HET telescopes on the STEREO A and B spacecraft and similar data from SoHO near Earth. The properties of these events are tabulated in a recent publication in Solar Physics (Richardson, et al., 2014). One of the goals of the Stereo Mission is to better understand the propagation of SEPs. The properties of events observed by multiple spacecraft on average are well-organized by the distance of the footpoints of the nominal Parker Spiral magnetic field lines passing the observing spacecraft from the parent active regions. However, some events deviate significantly from this pattern. For example, in events observed by three spacecraft, the spacecraft with the best nominal connection does not necessarily observe the highest intensity or earliest particle arrival time. We will search for such events and try to relate their behavior to non-nominal magnetic field patterns. We will look, for example, for the effects of the interplanetary current sheet, the influence of magnetic clouds which are thought to contain large magnetic loops with both ends connected to the sun (a large departure from the Parker spiral), and also whether particle propagation can be disrupted by the presence of interplanetary shocks. Reference: Richardson et al., Solar Phys. 289, 3059, 2014
Cosmic-ray streaming and anisotropies
NASA Technical Reports Server (NTRS)
Forman, M. A.; Gleeson, L. J.
1975-01-01
The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.
Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2010-01-01
The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.
A New View of the Origin of the Solar Wind
NASA Technical Reports Server (NTRS)
Woo, Richard; Habbal, Shadia Rifai
1999-01-01
This paper uses white-light measurements made by the SOHO LASCO coronagraph and HAO Mauna Loa Mk III K-coronameter to illustrate the new view of solar wind structure deduced originally from radio occultation measurements. It is shown that the density profile closest to the Sun at 1.15 Ro, representing the imprint of the Sun, is carried essentially radially into interplanetary space by small-scale raylike structures that permeate the solar corona and which have only been observed by radio occultation measurements. The only exception is the small volume of interplanetary space occupied by the heliospheric plasma sheet that evolves from coronal streamers within a few solar radii of the Sun. The radial preservation of the density profile also implies that a significant fraction of field lines which extend into interplanetary space originate from the quiet Sun, and are indistinguishable in character from those emanating from polar coronal holes. The white-light measurements dispel the long-held belief that the boundaries of polar coronal holes diverge significantly, and further support the view originally proposed that the fast solar wind originates from the quiet Sun as well as polar coronal holes.
Computer simulation of a geomagnetic substorm
NASA Technical Reports Server (NTRS)
Lyon, J. G.; Brecht, S. H.; Huba, J. D.; Fedder, J. A.; Palmadesso, P. J.
1981-01-01
A global two-dimensional simulation of a substormlike process occurring in earth's magnetosphere is presented. The results are consistent with an empirical substorm model - the neutral-line model. Specifically, the introduction of a southward interplanetary magnetic field forms an open magnetosphere. Subsequently, a substorm neutral line forms at about 15 earth radii or closer in the magnetotail, and plasma sheet thinning and plasma acceleration occur. Eventually the substorm neutral line moves tailward toward its presubstorm position.
A statistical study on the shape and position of the magnetotail neutral sheet
NASA Astrophysics Data System (ADS)
Xiao, Sudong; Zhang, Tielong; Ge, Yasong; Wang, Guoqiang; Baumjohann, Wolfgang; Nakamura, Rumi
2016-02-01
We study the average shape and position of the magnetotail neutral sheet based on magnetic field data obtained by Cluster, Geotail, TC-1, and THEMIS from the years 1995 to 2013. All data in the aberrated GSM (geocentric solar magnetospheric) coordinate system are normalized to the same solar wind pressure 2 nPa and downtail distance X ˜ -20RE. Our results show characteristics of the neutral sheet, as follows. (1) The neutral sheet assumes a greater degree of curve in the YZ cross section when the dipole tilt increases, the Earth dipole tilt angle affects the neutral sheet configuration not only in the YZ cross section but also in the XY cross section, and the neutral sheet assumes a more significant degree of tilt in the XY cross section when the dipole tilt increases. (2) Counterclockwise twisting of the neutral sheet with 3.10° is observed, looking along the downtail direction, for the positive interplanetary magnetic field (IMF) BY with a value of 3 to 8 nT, and clockwise twisting of the neutral sheet with 3.37° for the negative IMF BY with a value of -8 to -3 nT, and a northward IMF can result in a greater twisting of the near-tail neutral sheet than southward. The above results can be a reference to the neutral sheet model. Our large database also shows that the displaced ellipse model is effective to study the average shape of the neutral sheet with proper parameters when the dipole tilt angle is larger (less) than 10° (-10° ).
A nonsingular model of the open magnetosphere
NASA Technical Reports Server (NTRS)
Toffoletto, F. R.; Hill, T. W.
1993-01-01
We present a modified version of the Toffoletto and Hill (1989) open magnetosphere model that incorporates a tail-like interconection field with a discontinuity 10 represent the slow-mode expansion fan that defines the high-latitude tail magnetopause. (The interconnection field is defined as the perturbation on an initially closed magnetosphere model to make it open.) The expansion fan controls the open field line region in the tail, and the intersection of the fan with the tail current sheet is, by design, the x line. The new interconnection field allows greater control of the tail field structure; in particular, it enables us to eliminate the nightside mapping singularity that occurs in previous models when the interplanetary magnetic field is nonsouthward. Also, in contrast to earlier models, the far tail x line extends farther downstream on the flanks than in the center of the tail, consistent with observations.
NASA Astrophysics Data System (ADS)
Felix Pereira, B.; Girish, T. E.
2004-05-01
The solar cycle variations in the characteristics of the GSE latitudinal angles of the Interplanetary Magnetic Field ($\\theta$GSE) observed near 1 AU have been studied for the period 1967-2000. It is observed that the statistical parameters mean, standard deviation, skewness and kurtosis vary with sunspot cycle. The $\\theta$GSE distribution resembles the Gaussian curve during sunspot maximum and is clearly non-Gaussian during sunspot minimum. The width of the $\\theta$GSE distribution is found to increase with sunspot activity, which is likely to depend on the occurrence of solar transients. Solar cycle variations in skewness are ordered by the solar polar magnetic field changes. This can be explained in terms of the dependence of the dominant polarity of the north-south component of IMF in the GSE system near 1 AU on the IMF sector polarity and the structure of the heliospheric current sheet.
Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet
NASA Astrophysics Data System (ADS)
Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.
2015-05-01
The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.
NASA Astrophysics Data System (ADS)
Bingham, S.; Mouikis, C.; Kistler, L. M.; Fok, M. C. H.; Glocer, A.; Farrugia, C. J.; Gkioulidou, M.; Spence, H. E.
2016-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CMEs), and co-rotating interaction regions (CIRs). Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. In addition, we identify the populations (energy and species) responsible. We find that during the storm main phase and the early recovery phase the plasma sheet particles (10-80 keV) convecting from the nightside contribute the most on the ring current pressure and current density. However, during these phases, the main difference between CMEs and CIRs is in the O+ contribution. This empirical model is compared to the results of CIMI simulations of CMEs and CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model, while different inner magnetosphere boundary conditions will be tested in order to match the empirical model results. Comparing the model and simulation results will fill our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system.
NASA Technical Reports Server (NTRS)
Siregar, Edouard; Roberts, D. A.; Goldstein, Melvyn L.
1993-01-01
We study a transverse plasma flow induced by the evolution of a Karman vortex street using a Chebyshev-Fourier spectral algorithm to solve both the compressible Navier-Stokes and MHD equations. The evolving vortex street is formed by the nonlinear interaction of two vortex sheets initially in equilibrium. We study spatial profiles of the total plasma velocity, the density, the meridional flow angle and the location of sector boundaries and find generally good agreement with Voyager 2 measurements of quasi-periodic transverse flow in the outer heliosphere. The pressure pulses associated with the meridional flows in the simulation are too small, although they are correctly located, and this may be due to the lack of any 'warp' in the current sheet in this model. A strong, flow-aligned magnetic field, such as would occur in the inner heliosphere, is shown to lead to weak effects that would be masked by the background interplanetary turbulence. We also study the plasma and magnetic transport resulting from the meridional flow and find that deficits of magnetic quantities do occur near the ecliptic. While the effect is relatively small, it is in general agreement with the most recent analysis of 'flux deficit' in the outer heliosphere.
NASA Astrophysics Data System (ADS)
Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan
2017-04-01
Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR's shocks, and these shocks to be believed to accelerate ions up to several MeV per nucleon. In this paradigm particle acceleration is commonly believed to occur mainly at the well-formed reverse shock at 2-3 AU with particles streaming back from the shocks from the outer heliosphere to 1 AU (Malandraki et al., 2007). However, AEPEs observed for many hours before the crossing of the forward shock (or even before the leading edge of a CIR without well-formed forward shock) cannot be explained within the framework of this paradigm. We have recently found that the effect of pre-CIR AEPEs occurs mainly as a result of the formation of a region filled with magnetic islands compressed between the high-density leading edge of a CIR and the HCS (Khabarova et al. ApJ, 2016). We show here that any kind of complicated stream-CIR interactions may lead to the same effect due to the formation of magnetic cavities in front of CIRs. The analysis of in situ multi-spacecraft measurements often suggests very complicated ways of propagation of streams and current sheets that form magnetic cavities. In the case of multiple stream-stream interaction, comparisons of data from distant spacecraft may be puzzling and even useless for understanding the large-scale topology of the region of particle acceleration, because even several point measurements cannot reconstruct approximate forms of the magnetic cavities and shed light on the pre-history of their origin and evolution. We employ interplanetary scintillation tomographic data for reconstructions of the solar wind speed, density and interplanetary magnetic field profiles to understand a 3-D picture of stream interactions responsible for pre-CIR AEPEs. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324
The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness
NASA Astrophysics Data System (ADS)
Welling, D. T.; Liemohn, M. W.; Ridley, A. J.
2012-12-01
It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric outflow greatly influences the geoeffectiveness of magnetospheric storms.
Effect of high-latitude ionospheric convection on Sun-aligned polar caps
NASA Technical Reports Server (NTRS)
Sojka, J. J.; Zhu, L.; Crain, D. J.; Schunk, R. W.
1994-01-01
A coupled magnetospheric-ionospheric (M-I) magnetohydrodynamic (MHD) model has been used to simulate the formation of Sun-aligned polar cap arcs for a variety of interplanetary magnetic field (IMF) dependent polar cap convection fields. The formation process involves launching an Alfven shear wave from the magnetosphere to the ionosphere where the ionospheric conductance can react self-consistently to changes in the upward currents. We assume that the initial Alfven shear wave is the result of solar wind-magnetosphere interactions. The simulations show how the E region density is affected by the changes in the electron precipitation that are associated with the upward currents. These changes in conductance lead to both a modified Alfven wave reflection at the ionosphere and the generation of secondary Alfven waves in the ionosphere. The ensuing bouncing of the Alfven waves between the ionosphere and magnetosphere is followed until an asymptotic solution is obtained. At the magnetosphere the Alfven waves reflect at a fixed boundary. The coupled M-I Sun-aligned polar cap arc model of Zhu et al.(1993a) is used to carry out the simulations. This study focuses on the dependence of the polar cap arc formation on the background (global) convection pattern. Since the polar cap arcs occur for northward and strong B(sub y) IMF conditions, a variety of background convection patterns can exist when the arcs are present. The study shows that polar cap arcs can be formed for all these convection patterns; however, the arc features are dramatically different for the different patterns. For weak sunward convection a relatively confined single pair of current sheets is associated with the imposed Alfven shear wave structure. However, when the electric field exceeds a threshold, the arc structure intensifies, and the conductance increases as does the local Joule heating rate. These increases are faster than a linear dependence on the background electric field strength. Furthermore, above the threshold, the single current sheet pair splits into multiple current sheet pairs. For the fixed initial ionospheric and magnetospheric conditions used in this study, the separation distance between the current pairs was found to be almost independent of the background electric field strength. For either three-cell or distorted two-cell background convection patterns the arc formation favored the positive B(sub y) case in the northern hemisphere.
Research in space physics at the University of Iowa
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1979-01-01
Current investigations relating to energetic particles and the electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, comets, and the interplanetary medium are reported. Primary emphasis is on observational work using a wide diversity of intruments on satellites of the earth and the moon and on planetary and interplanetary spacecraft, and on phenomenological analysis and interpretation. Secondary emphasis is given to closely related observational work by ground based radio-astronomical and optical techniques, and to theoretical problems in plasma physics as relevant to solar, planetary, and interplanetary phenomena.
High-latitude Conic Current Sheets in the Solar Wind
NASA Astrophysics Data System (ADS)
Khabarova, Olga V.; Malova, Helmi V.; Kislov, Roman A.; Zelenyi, Lev M.; Obridko, Vladimir N.; Kharshiladze, Alexander F.; Tokumaru, Munetoshi; Sokół, Justyna M.; Grzedzielski, Stan; Fujiki, Ken'ichi
2017-02-01
We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2-3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.
Properties of planetward ion flows in Venus' magnetotail
NASA Astrophysics Data System (ADS)
Kollmann, P.; Brandt, P. C.; Collinson, G.; Rong, Z. J.; Futaana, Y.; Zhang, T. L.
2016-08-01
Venus is gradually losing some of its atmosphere in the form of ions through its induced magnetotail. Some of these ions have been reported previously to flow back to the planet. Proposed drivers are magnetic reconnection and deflection of pickup ions in the magnetic field. We analyze protons and oxygen ions with eV to keV energies acquired by the ASPERA-4/IMA instrument throughout the entire Venus Express mission. We find that venusward flowing ions are important in the sense that their density and deposition rate into the atmosphere is of the same order of magnitude as the density and escape rate of downtail flowing ions. Our analysis shows that during strong EUV irradiance, which occurs during solar maximum, the flux of venusward flowing protons is weaker and of oxygen ions is stronger than during weak irradiance. Since such a behavior was observed when tracing oxygen ions through a MHD model, the ultimate driver of the venusward flowing ions may simply be the magnetic field configuration around Venus. Although the pure downtail oxygen flux stays mostly unchanged for all observed EUV conditions, the increase in venusward oxygen flux for high irradiance results in a lower net atmospheric escape rate. Venusward bulk flows are mostly found in locations where the magnetic field is weak relative to the interplanetary conditions. Although a weak field is generally an indicator of proximity to the magnetotail current sheet, these flows do not cluster around current sheet crossings, as one may expect if they would be driven by magnetic reconnection.
High-latitude Conic Current Sheets in the Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabarova, Olga V.; Obridko, Vladimir N.; Kharshiladze, Alexander F.
We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2–3 au several times in 1994, as the CCSmore » was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/ nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk–Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.« less
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.
Interplanetary sector boundaries, 1971 - 1973
NASA Technical Reports Server (NTRS)
Klein, L.; Burlaga, L. F.
1979-01-01
Eighteen interplanetary sector boundary crossings observed at 1 AU by the magnetometer on the IMP-6 spacecraft are discussed. The events were examined on many different time scales ranging from days on either side of the boundary to high resolution measurements of 12.5 vectors per second. Two categories of boundaries were found, one group being relatively thin and the other being thick. In many cases the field vector rotated in a plane from one polarity to the other. Only two of the transitions were null sheets. Using the minimum variance analysis to determine the normals to the plane of rotation, and assuming that this is the same as the normal to the sector boundary surface, it was found that the normals were close to the ecliptic plane. An analysis of tangential discontinuities contained in 4-day periods about the events showed that their orientations were generally not related to the orientations of the sector boundary surface, but rather their characteristics were about the same as those for discontinuities outside the sector boundaries.
Towards an interplanetary internet: a proposed strategy for standardization
NASA Technical Reports Server (NTRS)
Hooke, A. J.
2002-01-01
This paper reviews the current set of standard data communications capabilities that exist to support advanced missions, discusses the architectural concepts for the future Interplanetary Internet, and suggests how a standardized set of space communications protocols that can grow to support future scenarios where human intelligence is widely distributed across the Solar System.
Unipolar induction in the magnetosphere
NASA Technical Reports Server (NTRS)
Stern, D. P.
1972-01-01
A theory is described for the production of electric currents in the magnetosphere and for the transfer of energy from the solar wind to the magnetosphere. Assuming that the magnetosheath has ohmic-type conduction properties, it is shown that unipolar induction can energize several current flows, explaining the correlation of the east-west component of the interplanetary magnetic field with polar electric fields and polar magnetic variations. In the tail region, unipolar induction can account for effects correlated with the north-south component of the interplanetary magnetic field.
NASA Technical Reports Server (NTRS)
Kitamura, N.; Hasegawa, H.; Saito, Y.; Shinohara, I.; Yokota, S.; Nagai, T.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Dorelli, J. C.;
2016-01-01
At 02:13 UT on 18 November 2015 when the geomagnetic dipole was tilted by -27deg, the MMS spacecraft observed southward reconnection jets near the subsolar magnetopause under southward and dawnward interplanetary magnetic field conditions. Based on four-spacecraft estimations of the magnetic field direction near the separatrix and the motion and direction of the current sheet, the location of the reconnection line was estimated to be approx.1.8 R(sub E) or further northward of MMS. The Geotail spacecraft at GSM Z approx. 1.4 R(sub E) also observed southward reconnection jets at the dawnside magnetopause 30-40 min later. The estimated reconnection line location was northward of GSM Z approx.2 R(sub E). This crossing occurred when MMS observed purely southward magnetic fields in the magnetosheath. The simultaneous observations are thus consistent with the hypothesis that the dayside magnetopause reconnection line shifts from the subsolar point toward the northem (winter) hemisphere due to the effect of geomagnetic dipole tilt.
Statistical Modeling of Extreme Values and Evidence of Presence of Dragon King (DK) in Solar Wind
NASA Astrophysics Data System (ADS)
Gomes, T.; Ramos, F.; Rempel, E. L.; Silva, S.; C-L Chian, A.
2017-12-01
The solar wind constitutes a nonlinear dynamical system, presenting intermittent turbulence, multifractality and chaotic dynamics. One characteristic shared by many such complex systems is the presence of extreme events, that play an important role in several Geophysical phenomena and their statistical characterization is a problem of great practical relevance. This work investigates the presence of extreme events in time series of the modulus of the interplanetary magnetic field measured by Cluster spacecraft on February 2, 2002. One of the main results is that the solar wind near the Earth's bow shock can be modeled by the Generalized Pareto (GP) and Generalized Extreme Values (GEV) distributions. Both models present a statistically significant positive shape parameter which implyies a heavy tail in the probability distribution functions and an unbounded growth in return values as return periods become too long. There is evidence that current sheets are the main responsible for positive values of the shape parameter. It is also shown that magnetic reconnection at the interface between two interplanetary magnetic flux ropes in the solar wind can be considered as Dragon Kings (DK), a class of extreme events whose formation mechanisms are fundamentally different from others. As long as magnetic reconnection can be classified as a Dragon King, there is the possibility of its identification and even its prediction. Dragon kings had previously been identified in time series of financial crashes, nuclear power generation accidents, stock market and so on. It is believed that they are associated with the occurrence of extreme events in dynamical systems at phase transition, bifurcation, crises or tipping points.
Periodic substorm activity in the geomagnetic tail
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Eastman, T. E.; Frank, L. A.; Williams, D. J.
1983-01-01
On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate.
Mercury's plasma belt: hybrid simulations results compared to in-situ measurements
NASA Astrophysics Data System (ADS)
Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.
2012-12-01
The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.
Extreme interplanetary rotational discontinuities at 1 AU
NASA Astrophysics Data System (ADS)
Lepping, R. P.; Wu, C.-C.
2005-11-01
This study is concerned with the identification and description of a special subset of four Wind interplanetary rotational discontinuities (from an earlier study of 134 directional discontinuities by Lepping et al. (2003)) with some "extreme" characteristics, in the sense that every case has (1) an almost planar current sheet surface, (2) a very large discontinuity angle (ω), (3) at least moderately strong normal field components (>0.8 nT), and (4) the overall set has a very broad range of transition layer thicknesses, with one being as thick as 50 RE and another at the other extreme being 1.6 RE, most being much thicker than are usually studied. Each example has a well-determined surface normal (n) according to minimum variance analysis and corroborated via time delay checking of the discontinuity with observations at IMP 8 by employing the local surface planarity. From the variance analyses, most of these cases had unusually large ratios of intermediate-to-minimum eigenvalues (λI/λmin), being on average 32 for three cases (with a fourth being much larger), indicating compact current sheet transition zones, another (the fifth) extreme property. For many years there has been a controversy as to the relative distribution of rotational (RDs) to tangential discontinuities (TDs) in the solar wind at 1 AU (and elsewhere, such as between the Sun and Earth), even to the point where some authors have suggested that RDs with large ∣Bn∣s are probably not generated or, if generated, are unstable and therefore very rare. Some of this disagreement apparently has been due to the different selection criteria used, e.g., some allowed eigenvalue ratios (λI/λmin) to be almost an order of magnitude lower than 32 in estimating n, usually introducing unacceptable error in n and therefore also in ∣Bn∣. However, we suggest that RDs may not be so rare at 1 AU, but good quality cases (where ∣Bn∣ confidently exceeds the error in ∣Bn∣) appear to be uncommon, and further, cases of large ∣Bn∣ may indeed be rare. Finally, the issue of estimating the number of RDs-to-TDs was revisited using the full 134 events of the original Lepping et al. (2003) study (which utilized the RDs' propagation speeds for this estimation, an unconventional approach) but now by considering only normal field components, the more conventional approach. This resulted in slightly different conclusions, depending on specific assumptions used, making the unconventional approach suspect.
NASA Astrophysics Data System (ADS)
Khabarova, Olga
2015-04-01
The “magnetic flux excess” effect is exceeding of magnetic flux Fs=4π|Br|r2 measured by distant spacecraft over the values obtained through measurements at the Earth’s orbit (Owens et al., JGR, 2008). Theoretically, its conservation should take place at any heliocentric distance r further than 10 solar radii, which means that the difference between the flux measured at 1 AU and Fs observed in another point in the heliosphere should be zero. However, the difference is negative closer to the Sun and increasingly positive at larger heliocentric distances. Possible explanations of this effect are continuously discussed, but the consensus is yet not reached.It is shown that a possible source of this effect is the solar wind expansion not accordingly with the Parker solution at least at low heliolatitudes. The difference between the experimentally found (r-5/3) and commonly used (r-2) radial dependence of the radial component of the IMF Br may lead to mistakes in the IMF point-to-point recalculations (Khabarova & Obridko, ApJ, 2012; Khabarova, Astronomy Reports, 2013). Using the observed Br (r) dependence, it is easy to find the variation of difference between the magnetic flux Fs(r) at certain heliocentric distance r and Fs_1AU at 1 AU, which can be calculated as Fs(r)-Fs_1AU =4π·(B1AU /[1AU]-5/3) (r2-5/3 -[1AU]2-5/3) (Khabarova, Astronomy Reports, 2013).The possible influence of presence of the heliospheric current sheet near the ecliptic plane on the picture of magnetic field lines and consequent deviation from the Parker's model is discussed.- Khabarova Olga, and Obridko Vladimir, Puzzles of the Interplanetary Magnetic Field in the Inner Heliosphere, 2012, Astrophysical Journal, 761, 2, 82, doi:10.1088/0004-637X/761/2/82, http://arxiv.org/pdf/1204.6672v2.pdf- Olga V. Khabarova, The interplanetary magnetic field: radial and latitudinal dependences. Astronomy Reports, 2013, Vol. 57, No. 11, pp. 844-859, http://arxiv.org/ftp/arxiv/papers/1305/1305.1204.pdf
Optical spectroscopy of interplanetary dust collected in the earth's stratosphere
NASA Technical Reports Server (NTRS)
Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.
1980-01-01
Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.
NASA Astrophysics Data System (ADS)
Hasegawa, H.; Nakamura, T.; Kitamura, N.; Hoshi, Y.; Saito, Y.; Figueroa-Vinas, A.; Giles, B. L.; Lavraud, B.; Khotyaintsev, Y. V.; Ergun, R.
2017-12-01
The Kelvin-Helmholtz (KH) instability is known to grow along the Earth's magnetopause, but its role in transporting solar wind mass and energy into the magnetosphere is not fully understood. On 8 September 2015, the Magnetospheric Multiscale (MMS) spacecraft, located at the postnoon, southern-hemisphere magnetopause, encountered thin low-shear current sheets at the trailing edge of the KH waves, where KH-induced reconnection, one of the plasma transport processes, was occurring [Eriksson et al., GRL, 2016; Li et al., GRL, 2016]. The event was observed during a prolonged period of northward interplanetary magnetic field, and was characterized by an extended region of the low-latitude boundary layer (LLBL) immediately earthward of the KH unstable magnetopause, which appeared to have been formed through magnetopause reconnection poleward of the cusp. In this LLBL, MMS observed plasma turbulence, another agent for the plasma transport [Stawarz et al., JGR, 2016]. Key features are that (i) significant magnetic shears were seen only at the trailing edges of the KH surface waves, (ii) for both the leading and trailing edge traversals, both field-aligned and anti-field-aligned streaming D-shaped ion populations, which are consistent with reconnection on the southward and northward sides, respectively, of MMS, were observed on either the magnetosheath or LLBL side of the magnetopause, though not always simultaneously, and (iii) the field-aligned Poynting flux was positive in some parts of the LLBL but was negative in other parts. Based on these observations and further wave analysis, we address the questions of how the current sheets at the KH wave trailing edges were generated, and what could have been the driver of the turbulent fluctuations observed within the KH vortices.
Cusp field-aligned currents and ion outflows
NASA Astrophysics Data System (ADS)
Strangeway, R. J.; Russell, C. T.; Carlson, C. W.; McFadden, J. P.; Ergun, R. E.; Temerin, M.; Klumpar, D. M.; Peterson, W. K.; Moore, T. E.
2000-09-01
On September 24 and 25, 1998, the Polar spacecraft observed intense outflows of terrestrial ions in association with the passage of an interplanetary shock and coronal mass ejection. The orbit of the Fast Auroral Snapshot (FAST) Explorer was in the noon-midnight meridian during this ion outflow event, and FAST passed through the day side cusp region at ˜4000 km altitude every 2.2 hours. FAST was therefore able to monitor the ion outflows subsequently observed by Polar. We show that while the outflows were more intense after the shock passage, the overall particle and field signatures within the cusp region were qualitatively similar both before and after the shock passage. FAST observations show that the cusp particle precipitation marks the lower latitude leg of a pair of field-aligned currents and further, that both field-aligned current sheets appear to be on open field lines. Moreover, the polarity of the cusp currents is controlled by the polarity of the interplanetary magnetic field (IMF) y-component, such that the magnetic field perturbation associated with the pair of cusp currents is in the same direction as the IMF By. This is a consequence of the reconnection of cusp-region field lines at the magnetopause, with the flux transport resulting in electromagnetic energy being transmitted along field lines to the ionosphere as Poynting flux. We show that this Poynting flux can be as high as 120 mW m-2 (120 ergs cm-2 s-1) at FAST altitudes (˜500 mW m-2 at ionospheric altitudes), presumably because of the strong IMF By (˜40 nT), and is the dominant energy input to the cusp-region ionosphere. Furthermore, we find that the peak ion outflow flux is correlated with the peak downward Poynting flux, although only a few passes through the cusp centered around the time of the shock passage were used to determine this correlation. The energy carried by Poynting flux is dissipated as heat within the ionosphere, through Joule dissipation. The heating will tend to increase the ionospheric scale height, allowing greater access of ionospheric ions to the altitudes where transverse ion heating via ELF waves can occur. Thus electromagnetic energy supplied by the transport of reconnected magnetic flux is the essential first step in a multistep process that enhances the outflow of ionospheric plasma in the dayside cusp.
NASA Astrophysics Data System (ADS)
Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.
2017-12-01
It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.
NASA Technical Reports Server (NTRS)
Delcourt, D. C.; Horwitz, J. L.; Swinney, K. R.
1988-01-01
The influence of the interplanetary magnetic field (IMF) orientation on the transport of low-energy ions injected from the ionosphere is investigated using three-dimensional particle codes. It is shown that, unlike the auroral zone outflow, the ions originating from the polar cap region exhibit drastically different drift paths during southward and northward IMF. During southward IMF orientation, a 'two-cell' convection pattern prevails in the ionosphere, and three-dimensional simulations of ion trajectories indicate a preferential trapping of the light ions H(+) in the central plasma sheet, due to the wide azimuthal dispersion of the heavy ions, O(+). In contrast, for northward IMF orientation, the 'four-cell' potential distribution predicted in the ionosphere imposes a temporary ion drift toward higher L shells in the central polar cap. In this case, while the light ions can escape into the magnetotail, the heavy ions can remain trapped, featuring more intense acceleration (from a few electron volts up to the keV range) followed by precipitation at high invariant latitudes, as a consequence of their further travel into the tail.
Magnetic Configurations of the Tilted Current Sheets and Dynamics of Their Flapping in Magnetotail
NASA Astrophysics Data System (ADS)
Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.
2009-04-01
Based on multiple spacecraft measurements, the geometrical structures of tilted current sheet and tail flapping waves have been analyzed and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the magnetic equatorial plane, while the tilted current sheet may lean severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, its half thickness is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail thick current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1RE, while the neutral sheet may be very thin, with its half thickness being several tenths ofRE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45
The Interplanetary Internet: a communications infrastructure for Mars exploration.
Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard
2003-01-01
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
The Interplanetary Internet: a communications infrastructure for Mars exploration
NASA Technical Reports Server (NTRS)
Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard
2003-01-01
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
The Ring Current Response to Solar and Interplanetary Storm Drivers
NASA Astrophysics Data System (ADS)
Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.
2014-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.
A Vortical Dawn Flank Boundary Layer for Near-Radial IMF: Wind Observations on 24 October 2001
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Gratton, F. T.; Gnavi, G.; Torbert, R. B.; Wilson, Lynn B., III
2014-01-01
We present an example of a boundary layer tailward of the dawn terminator which is entirely populated by rolled-up flow vortices. Observations were made by Wind on 24 October 2001 as the spacecraft moved across the region at the X plane approximately equal to -13 Earth radii. Interplanetary conditions were steady with a near-radial interplanetary magnetic field (IMF). Approximately 15 vortices were observed over the 1.5 hours duration of Wind's crossing, each lasting approximately 5 min. The rolling up is inferred from the presence of a hot tenuous plasma being accelerated to speeds higher than in the adjoining magnetosheath, a circumstance which has been shown to be a reliable signature of this in single-spacecraft observations. A blob of cold dense plasma was entrained in each vortex, at whose leading edge abrupt polarity changes of field and velocity components at current sheets were regularly observed. In the frame of the average boundary layer velocity, the dense blobs were moving predominantly sunward and their scale size along the X plane was approximately 7.4 Earth radii. Inquiring into the generation mechanism of the vortices, we analyze the stability of the boundary layer to sheared flows using compressible magnetohydrodynamic Kelvin-Helmholtz theory with continuous profiles for the physical quantities. We input parameters from (i) the exact theory of magnetosheath flow under aligned solar wind field and flow vectors near the terminator and (ii) the Wind data. It is shown that the configuration is indeed Kelvin-Helmholtz (KH) unstable. This is the first reported example of KH-unstable waves at the magnetopause under a radial IMF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozai, M.; Munakata, K.; Kato, C.
2016-07-10
We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in themore » western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G {sub y}, shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G {sub z} shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G {sub z} changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.« less
NASA Technical Reports Server (NTRS)
Coffey, Victoria; Sazykin, Stan; Chandler, Michael; Hairston, Marc; Minow, Joseph; Anderson, Brian
2017-01-01
The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the leading-edge shock wave and a sheath carrying a large and highly variable interplanetary magnetic field (IMF) Bz with values ranging from +25 to -40 nT. During the subsequent interval from 0000 to 0800 UT, there was a second intensification of the geomagnetic storm resulting from the impact of the CME. We present dramatic responses of simultaneous particle measurements from the high-altitude Magnetospheric Multiscale Mission (MMS) at high altitudes in the magnetosphere (approx. 9-12 Re) and from the low-altitude (F-region) Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS). We analyze potential causes of these dramatic particle flux dropouts by putting them in the context of storm-time electrodynamics, and support our results with numerical simulations of the global magnetosphere and ionosphere. During the sheath phase of the storm, the MMS spacecraft in the near-earth equatorial plane observed a rapid reconfiguration of the magnetic field near 1923 UT. Initially in the warm plasmasheet, particle flux dropouts were observed as they tracked the plasma-sheet to lobe transitions with the stretching and thinning of the plasmasheet. Anti-sunward flowing O+ ions of ionospheric origin were also measured during this period, confirming that the MMS spacecraft temporarily was in a lobe.
A study of the geomagnetic indices asymmetry based on the interplanetary magnetic field polarities
NASA Astrophysics Data System (ADS)
El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.
2018-05-01
Data of geomagnetic indices ( aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967-2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (T) and Away (A) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of A polarity predominated over the T polarity days by 4.3% during the positive magnetic polarity epoch (1991-1999). While the days of T polarity exceeded the days of A polarity by 5.8% during the negative magnetic polarity epoch (2001-2012). (ii) Considerable yearly North-South (N-S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for aa and Ap indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for aa and Ap indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N-S asymmetry of Kp index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices ( aa, Ap, and Kp) all have northern dominance during positive magnetic polarity epoch (1971-1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001-2012).
Plasma and energetic particle structure of a collisionless quasi-parallel shock
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.
1983-01-01
The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.
Study of large Forbush decreases in cosmic-ray intensity observed during solar cycle 23 and 24
NASA Astrophysics Data System (ADS)
Kumar, Anand; Badruddin, B.
2016-07-01
Neutron monitors at different geomagnetic latitude and longitude of Earth measure the cosmic-ray intensity with high precision. Sudden decreases in cosmic-ray intensity within few hours and slow recovery to pre-decrease level within a few days (Forbush decreases) are observed in neutron monitor data. We identify large-amplitude Forbush decreases (FDs), using high counting rate neutron monitor data, that occurred during previous solar cycle 23 (1995-2009) and current solar cycle 24 (2010-2015). We then search for the solar sources and the interplanetary structures responsible for these decreases. We attempt to find the relative importance of various interplanetary plasma and field parameters and the physical mechanism(s) responsible for FDs of varying amplitudes. We analyze a number of interplanetary plasma and field parameters, during both the phases (main and recovery) of FDs. The interplanetary plasma and field data analyzed in this study are the solar-wind velocity, the interplanetary magnetic field, its fluctuations, interplanetary electric field and the time variation of interplanetary electric potential. For monitoring the changes in interplanetary plasma/field conditions during the development of FDs, we also utilize plasma density, temperature and plasma beta, dynamic pressure and Mach number during the passage of interplanetary structures responsible for FDs. In addition to their amplitude, we study the recovery of FDs in detail after determining the time constant during their recovery by exponential fit to the data. As the solar magnetic polarity reversed during the maximum phase of solar cycle 23 (in the year 2000), we study the differences in amplitude, time constant of recovery and plasma/field condition to search for the polarity dependent effects, if any, on the amplitude and recovery of FDs due to implication for the models suggested to explain the Forbush decrease phenomena. The implications of these results are discussed.
Magnetic configurations of the tilted current sheets in magnetotail
NASA Astrophysics Data System (ADS)
Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.
2008-11-01
In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of weak magnetospheric activity.
NASA Astrophysics Data System (ADS)
Winslow, R. M.; Lugaz, N.; Schwadron, N.; Farrugia, C. J.; Guo, J.; Wimmer-Schweingruber, R. F.; Wilson, J. K.; Joyce, C.; Jordan, A.; Lawrence, D. J.
2017-12-01
We use multipoint spacecraft observations to study interplanetary coronal mass ejection (ICME) evolution and subsequent galactic cosmic ray (GCR) modulation during propagation in the inner heliosphere. We illustrate ICME propagation effects through two different case studies. The first ICME was launched from the Sun on 29 December 2011 and was observed in near-perfect longitudinal conjunction at MESSENGER and STEREO A. Despite the close longitudinal alignment, we infer from force-free field modeling that the orientation of the underlying flux rope rotated ˜80o in latitude and ˜65o in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interactions involving magnetic reconnection with corotating structures in the solar wind dramatically alter the ICME magnetic field. In particular, we observed at STEREO A a highly turbulent region with distinct properties within the flux rope that was not observed at MESSENGER; we attribute this region to interaction between the ICME and a heliospheric plasma sheet/current sheet. This is a concrete example of a sequence of events that can increase the complexity of ICMEs during propagation and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients. Our second case study investigates changes with heliospheric distance in GCR modulation by an ICME event (launched on 12 February 2014) observed in near-conjunction at all four of the inner solar system planets. The ICME caused Forbush decreases (FDs) in the GCR count rates at Mercury (MESSENGER), Earth/Moon (ACE/LRO), and Mars (MSL). At all three locations, the pre-ICME background GCR rate was well-matched, but the depth of the FD of GCR fluxes with similar energy ranges diminished with distance from the Sun. A larger difference in FD size was observed between Mercury and Earth than between Earth and Mars, partly owing to the much larger drop in the ICME magnetic field magnitude between Mercury and Earth, and to the faster ICME speed decrease closer to the Sun. The results from these case studies give both a direct and indirect view of how ICMEs evolve during propagation as well as a glimpse of the inner heliosphere environment about to be explored by the Parker Solar Probe and Solar Orbiter.
Transceiver optics for interplanetary communications
NASA Astrophysics Data System (ADS)
Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.
2017-11-01
In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.
Time-dependent radiation dose estimations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, M. I.; Shprits, Y.; Drozdov, A.
2015-12-01
Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.
Inner Plasma Structure of the Low-Latitude Reconnection Layer
NASA Technical Reports Server (NTRS)
Zhang, Q.-H.; Dunlop, M. W.; Lockwood, M.; Lavraud, B.; Bogdanova, Y. V.; Hasegawa, H.; Yang, H. -G.; Liu, R. -Y.; Hu, H. -Q.; Zhang, B. -C.;
2012-01-01
We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.
A Snapshot of the Sun Near Solar Minimum: The Whole Heliosphere Interval
NASA Technical Reports Server (NTRS)
Thompson, Barbara J.; Gibson, Sarah E.; Schroeder, Peter C.; Webb, David F.; Arge, Charles N.; Bisi, Mario M.; de Toma, Giuliana; Emery, Barbara A.; Galvin, Antoinette B.; Haber, Deborah A.;
2011-01-01
We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar heliospheric planetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March 16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth's mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.
Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event
NASA Astrophysics Data System (ADS)
Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.
2017-12-01
During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.
Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey
NASA Technical Reports Server (NTRS)
Dankanich, John W.; McAdams, James
2011-01-01
The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.
Solar Wind drivers affecting GIC magnitude in New Zealand.
NASA Astrophysics Data System (ADS)
Mac Manus, D. H.; Rodger, C. J.; Dalzell, M.; Petersen, T.; Clilverd, M. A.
2017-12-01
Interplanetary shocks arriving at the Earth drive magnetosphere and ionosphere current systems. Ground based magnetometers detect the time derivation of the horizontal magnetic field (dBH/dt) which can indicate the strength of these ionospheric currents. The strong dBH/dt spikes have been observed to cause large Geomagnetically Induced Currents (GIC) in New Zealand. Such could, potentially lead to large scale damage to technological infrastructure such as power network transformers; one transformer was written off in New Zealand after a sudden commencement on 6 November 2001. The strength of the incoming interplanetary shocks are monitored by satellite measurements undertaken at the L1 point. Such measurements could give power network operators a 20-60 minute warning before potentially damaging GIC occurs. In this presentation we examine solar wind measurements from the Advanced Composition Explorer (ACE), Wind, and the Solar and Heliospheric Observatory (SOHO). We contrast those solar wind observations with GIC measured in New Zealand's South Island from 2001 to 2016. We are searching for a consistent relationship between the incoming interplanetary shock and the GIC magnitude. Such a relationship would allow Transpower New Zealand Limited a small time window to implement mitigation plans in order to restrict any GIC-caused damage.
NASA Technical Reports Server (NTRS)
Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.
1985-01-01
It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.
Continuous development of current sheets near and away from magnetic nulls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Bhattacharyya, R.
2016-04-15
The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scalingmore » than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.« less
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Sibeck, D. G.
2016-01-01
We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, waveparticle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.
Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)
NASA Technical Reports Server (NTRS)
Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.
1996-01-01
Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).
NASA Technical Reports Server (NTRS)
Hoeksema, J. T.
1986-01-01
Using photospheric magnetic field observations obtained at the Stanford Wilcox Solar Observatory, results from a potential field model for the present solar cycle are given, and qualitative predictions of the IMF that Ulysses may encounter are presented. Results indicate that the IMF consists of large regions of opposite polarity separated by a neutral sheet (NS) (extended to at least 50 deg) and a four-sector structure near solar minimum (produced by small quadripolar NS warps). The latitudinal extent of the NS increases following minimum and the structure near maximum includes multiple NSs, while a simplified IMF is found during the declining phase.
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Speiser, T. W.
1985-01-01
The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.
THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howes, Gregory G.
2016-08-20
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less
NASA Astrophysics Data System (ADS)
Shimizu, K.; Shinohara, I.; Fujimoto, M.
2016-12-01
Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.
Simulating Autonomous Telecommunication Networks for Space Exploration
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.
2008-01-01
Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.
SpaceNet: Modeling and Simulating Space Logistics
NASA Technical Reports Server (NTRS)
Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen
2008-01-01
This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.
Probing interferometric parallax with interplanetary spacecraft
NASA Astrophysics Data System (ADS)
Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.
2017-07-01
We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.
An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Cloutier, P. A.; Tascione, T. F.; Danieli, R. E., Jr.
1981-01-01
The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.
Wave-induced drift of large floating sheets
NASA Astrophysics Data System (ADS)
Christensen, K. H.; Weber, J. E.
In this article we study the wave-induced drift of large, flexible shallow floating objects, referred to as sheets. When surface waves propagate through a sheet, they provide a mean stress on the sheet, resulting in a mean drift. In response, the sheet generates an Ekman current. The drift velocity of the sheet is determined by (i) the wave-induced stress, (ii) the viscous stress due to the Ekman current, and (iii) the Coriolis force. The sheet velocity and the current beneath the sheet are determined for constant and depth-varying eddy viscosities.
Validation of Magnetospheric Magnetohydrodynamic Models
NASA Astrophysics Data System (ADS)
Curtis, Brian
Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions. We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar wind, the OpenGGCM has a large region of Earthward flow velocity (Ux) in the current sheet region that grows as time progresses in a compressed environment. BATS-R-US Bz , rho and Ux stabilize to a near constant value approximately one hour into the run under high compression conditions. Under high compression, the SWMF parameters begin to oscillate approximately 100 minutes into the run. All three models have similar magnetopause positions under low pressure conditions. The OpenGGCM current sheet velocities along the Sun-Earth line are largest under low pressure conditions. The results of this analysis indicate the need for accounting for model uncertainties and differences when comparing model predictions with data, provide error bars on model prediction in various magnetospheric regions, and show that the magnetotail is sensitive to the preconditioning time.
NASA Astrophysics Data System (ADS)
Domrin, V. I.; Malova, H. V.; Popov, V. Yu.
2018-04-01
A numerical model is developed that allows tracing the time evolution of a current sheet from a relatively thick current configuration with isotropic distributions of the pressure and temperature in an extremely thin current sheet, which plays a key role in geomagnetic processes. Such a configuration is observed in the Earth's magnetotail in the stage preceding a large-scale geomagnetic disturbance (substorm). Thin current sheets are reservoirs of the free energy released during geomagnetic disturbances. The time evolution of the components of the pressure tensor caused by changes in the structure of the current sheet is investigated. It is shown that the pressure tensor in the current sheet evolves in two stages. In the first stage, a current sheet with a thickness of eight to ten proton Larmor radii forms. This stage is characterized by the plasma drift toward the current sheet and the Earth and can be described in terms of the Chu-Goldberger-Low approximation. In the second stage, an extremely thin current sheet with an anisotropic plasma pressure tensor forms, due to which the system is maintained in an equilibrium state. Estimates of the characteristic time of the system evolution agree with available experimental data.
Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit
NASA Astrophysics Data System (ADS)
Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.
Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.
Global Response to Local Ionospheric Mass Ejection
NASA Technical Reports Server (NTRS)
Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.
2010-01-01
We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.
Earth orbital operations supporting manned interplanetary missions
NASA Astrophysics Data System (ADS)
Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.
The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.
Coronal Mass Ejections Near the Sun and in the Interplanetary Medium
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat
2012-01-01
Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of CMEs and their interplanetary counterparts.
Earth orbital operations supporting manned interplanetary missions
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.
1989-01-01
The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.
Local re-acceleration and a modified thick target model of solar flare electrons
NASA Astrophysics Data System (ADS)
Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.
2009-12-01
Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as spatial distribution of atmospheric heating by fast electrons.
NASA Astrophysics Data System (ADS)
Gkioulidou, Malamati
The convection electric field resulting from the coupling of the Earth's magnetosphere with the solar wind and interplanetary magnetic field (IMF) drives plasma in the tail plasma sheet earthward. This transport and the resulting energy storage in the near Earth plasma sheet are important for setting up the conditions that lead to major space weather disturbances, such as storms and substorms. Penetration of plasma sheet particles into the near-Earth magnetosphere in response to enhanced convection is crucial to the development of the Region 2 field-aligned current system and large-scale magnetosphere-ionosphere (M-I) coupling, which results in the shielding of the convection electric field. In addition to the electric field, plasma transport is also strongly affected by the magnetic field, which is distinctly different from dipole field in the inner plasma sheet and changes with plasma pressure in maintaining force balance. The goal of this dissertation is to investigate how the plasma transport into the inner magnetosphere is affected by the interplay between plasma, electric field and magnetic field. For this purpose, we conduct simulations using the Rice Convection Model (RCM), which self-consistently calculates the electric field resulting from M-I coupling. In order to quantitatively evaluate the interplay, we improved the RCM simulations by establishing realistic plasma sheet particle sources, by incorporating it with a modified Dungey force balance magnetic field solver (RCM-Dungey runs), and by adopting more realistic electron loss rates. We found that plasma sheet particle sources strongly affect the shielding of the convection electric field, with a hotter and more tenuous plasma sheet resulting in less shielding than a colder and denser one and thus in more earthward penetration of the plasma sheet. The Harang reversal, which is closely associated with the shielding of the convection electric field and the earthward penetration of low-energy protons, is found to be located at lower latitudes and extend more dawnward for a hotter and more tenuous plasma sheet. In comparison with simulation runs under an empirical but not force balance magnetic field from the Tsyganenko 96 model, the simulation results show that transport under force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-earth region, weaker shielding of the penetration electric field and, as a result, more earthward penetration of plasma sheet protons and electrons with their inner edges being closer together and more azimuthally symmetric. To evaluate the effect of electron loss rate on ionospheric conductivity, a major contributing factor to M-I coupling, we run RCM-Dungey with a more realistic, MLT dependent electron loss rate established from observed wave activity. Comparing our results with those using a strong diffusion everywhere rate, we found that under the MLT dependent loss rate, the dawn-dusk asymmetry in the precipitating electron energy fluxes agrees better with statistical DMSP observations. The more realistic loss rate is much weaker than the strong diffusion limit in the inner magnetosphere. This allows high-energy electrons in the inner magnetosphere to remain much longer and produce substantial conductivity at lower latitudes. The higher conductivity at lower latitudes under the MLT dependent loss rate results in less efficient shielding in response to an enhanced convection electric field, and thus to deeper penetration of the ion plasma sheet into the inner magnetosphere than under the strong diffusion everywhere rate.
Analysis of Voyager Observed High-Energy Electron Fluxes in the Heliosheath Using MHD Simulations
NASA Technical Reports Server (NTRS)
Washimi, Haruichi; Webber, W. R.; Zank, Gary P.; Hu, Qiang; Florinski, Vladimir; Adams, James; Kubo, Yuki
2011-01-01
The Voyager spacecraft (V1 and V2) observed electrons of 6-14 MeV in the heliosheath which showed several incidences of flux variation relative to a background of gradually increasing flux with distance from the Sun. The increasing flux of background electrons is thought to result from inward radial diffusion. We compare the temporal electron flux variation with dynamical phenomena in the heliosheath that are obtained from our MHD simulations. Because our simulation is based on V2 observed plasma data before V2 crossed the termination shock, this analysis is effective up to late 2008, i.e., about a year after the V2-crossing, during which disturbances, driven prior to the crossing time, survived in the heliosheath. Several electron flux variations correspond to times directly associated with interplanetary shock events. One noteworthy example corresponds to various times associated with the March 2006 interplanetary shock, these being the collision with the termination shock, the passage past the V1 spacecraft, and the collision with the region near the heliopause, as identified by W.R. Webber et al. for proton/helium of 7-200 MeV. Our simulations indicate that all other electron flux variations, except one, correspond well to the times when a shock-driven magneto-sonic pulse and its reflection in the heliosheath either passed across V1/V2, or collided with the termination shock or with the plasma sheet near the heliopause. This result suggests that variation in the electron flux should be due to either direct or indirect effects of magnetosonic pulses in the heliosheath driven by interplanetary shocks
2015-01-01
Abstract The basic properties of the near‐Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail‐like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets. PMID:27722039
Ring current dynamics and plasma sheet sources. [magnetic storms
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1984-01-01
The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.
Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line
NASA Astrophysics Data System (ADS)
Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.
2004-11-01
Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.
ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses
NASA Technical Reports Server (NTRS)
Cano, Juan L.; Cacciatore, Francesco
2007-01-01
ExoMars is ESA s next mission to planet Mars. The probe is aimed for launch either in 2013 or in 2016. The project is currently undergoing Phase B1 studies under ESA management and Thales Alenia Space Italia project leadership. In that context, DEIMOS Space is responsible for the Mission Analysis and Design for the interplanetary and the entry, descent and landing (EDL) activities. The present mission baseline is based on an Ariane 5 or Proton M launch in 2013 of a spacecraft Composite bearing a Carrier Module (CM) and a Descent Module (DM). A back-up option is proposed in 2016. This paper presents the current status of the interplanetary mission design from launch up to the start of the EDL phase.
How Interplanetary Scintillation Data Can Improve Modeling of Coronal Mass Ejection Propagation
NASA Astrophysics Data System (ADS)
Taktakishvili, A.; Mays, M. L.; Manoharan, P. K.; Rastaetter, L.; Kuznetsova, M. M.
2017-12-01
Coronal mass ejections (CMEs) can have a significant impact on the Earth's magnetosphere-ionosphere system and cause widespread anomalies for satellites from geosynchronous to low-Earth orbit and produce effects such as geomagnetically induced currents. At the NASA/GSFC Community Coordinated Modeling Center we have been using ensemble modeling of CMEs since 2012. In this presnetation we demonstrate that using of interplanetary scintillation (IPS) observations from the Ooty Radio Telescope facility in India can help to track CME propagaion and improve ensemble forecasting of CMEs. The observations of the solar wind density and velocity using IPS from hundreds of distant sources in ensemble modeling of CMEs can be a game-changing improvement of the current state of the art in CME forecasting.
ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Kelly, T. J.; Russell, C. T.
1985-01-01
Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkaev, N. V.; Siberian Federal University, Krasnoyarsk; Semenov, V. S.
A new kind of magnetohydrodynamic instability and waves are analyzed for a current sheet in the presence of a small normal magnetic field component varying along the sheet. These waves and instability are related to the existence of two gradients of the tangential (B{sub {tau}}) and normal (B{sub n}) magnetic field components along the normal ({nabla}{sub n}B{sub {tau}}) and tangential ({nabla}{sub {tau}}B{sub n}) directions with respect to the current sheet. The current sheet can be stable or unstable if the multiplication of two magnetic gradients is positive or negative. In the stable region, the kinklike wave mode is interpreted asmore » so-called flapping waves observed in Earth's magnetotail current sheet. The kink wave group velocity estimated for the Earth's current sheet is of the order of a few tens of kilometers per second. This is in good agreement with the observations of the flapping motions of the magnetotail current sheet.« less
NASA Astrophysics Data System (ADS)
Gianibelli, J. C.; Quaglino, N. M.
2007-05-01
The South Atlantic Magnetic Anomaly (SAMA) Region presents evolutive characteristics very important as were observed by a variety of satelital sensors. Important Magnetic Observatories with digital record monitor the effects of the Sun-Earth interaction, such as San Juan de Puerto Rico (SJG), Kourou (KOU), Vassouras (VSS), Las Acacias (LAS), Trelew (TRW), Vernadsky (AIA), Hermanus (HER) and Huancayo (HUA). In the present work we present the features registered during the geomagnetic storm in January 21, 2005, produced by a geoeffective Coronal Mass Ejection (CME) whose Interplanetary Coronal Mass Ejection (ICME) was detected by the instrumental onboard the Advanced Composition Explorer (ACE) Sonde. We analize how the Magnetic Total Intensity records at VSS, TRW and LAS Observatories shows the effect of the entering particles to ionospherical dephts producing a field enhancement following the first Interplanetary Shock (IP) arrival of the ICME. This process manifest in the digital record as an increment over the magnetospheric Ring Current field effect and superinpossed effects over the Antarctic Auroral Electrojet. The analysis and comparison of the records demonstrate that the Ring Current effects are important in SJG and KOU but not in VSS, LAS and TRW observatories, concluding that SAMA region shows a enhancement of the ionospherical currents oposed to those generated at magnetospheric heighs. Moreover in TRW, 5 hours after the ICME shock arrival, shows the effect of the Antarctic Auroral Electrojet counteracting to fields generated by the Ring Current.
A Description of Local Time Asymmetries in the Kronian Current Sheet
NASA Astrophysics Data System (ADS)
Nickerson, J. S.; Hansen, K. C.; Gombosi, T. I.
2012-12-01
Cassini observations imply that Saturn's magnetospheric current sheet is displaced northward above the rotational equator [C.S. Arridge et al., Warping of Saturn's magnetospheric and magnetotail current sheets, Journal of Geophysical Research, Vol. 113, August 2008]. Arridge et al. show that this hinging of the current sheet above the equator occurs over the noon, midnight, and dawn local time sectors. They present an azimuthally independent model to describe this paraboloid-like geometry. We have used our global MHD model, BATS-R-US/SWMF, to study Saturn's magnetospheric current sheet under various solar wind dynamic pressure and solar zenith angle conditions. We show that under reasonable conditions the current sheet does take on the basic shape of the Arridge model in the noon, midnight, and dawn sectors. However, the hinging distance parameter used in the Arridge model is not a constant and does in fact vary in Saturn local time. We recommend that the Arridge model should be adjusted to account for this azimuthal dependence. Arridge et al. does not discuss the shape of the current sheet in the dusk sector due to an absence of data but does presume that the current sheet will assume the same geometry in this region. On the contrary, our model shows that this is not the case. On the dusk side the current sheet hinges (aggressively) southward and cannot be accounted for by the Arridge model. We will present results from our simulations showing the deviation from axisymmetry and the general behavior of the current sheet under different conditions.
The Interplanetary Internet: A Communications Infrastructure for Mars Exploration
NASA Astrophysics Data System (ADS)
Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.
2002-01-01
A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the current set of standard CCSDS data communications protocols can be incrementally evolved so that true InterPlaNetary Internet operations are feasible by the end of the decade. The strategy - which is already in progress via the deployment of Mars relay links - needs individual missions to each contribute increments of capability so that a standard communications infrastructure can rapidly accrete. This paper will describe the IPN architectural concepts, discuss the current set of standard data communications capabilities that exist to support Mars exploration and review the proposed new developments. We will also postulate that the concept is scalable and can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog among planets is routine. 1 2 3 4 5
Why S, Not X, Marks the Spot for CME/Flare Eruptions
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Sterling, Alphonse; Gary, Allen; Cirtain, Jonathan; Falconer, David
2010-01-01
For any major CME/flare eruption: I. The field that erupts is an arcade in which the interior is greatly sheared and twisted. Most of the free magnetic energy to be released: a) Is in the shear and twist of the interior field. b) Is Not due to a big current sheet. The eruption is unleashed by reconnection at a growing current sheet. The current sheet is still little when the reconnection turns on. The unleashed eruption then makes the current sheet much bigger by building it up faster than the reconnection can tear it down. II. Most X-ray jets work the opposite way: a) Tapped free energy is in the field of a pre-jet current sheet. b) Current sheet built by small arcade emerging into ambient field. c) Current sheet still much smaller than the arcade when reconnection turns on and tears it down, producing a jet. III. These rules reflect the low-beta condition in the eruptive magnetic field
NASA Astrophysics Data System (ADS)
Smith, Edward; Dougherty, Michele K.
The global distribution of plasma and its flows inside Saturn's magnetosphere is complex. The large satellites in the inner magnetosphere are a persistent source of plasma that must make its way into the outer magnetosphere and exit through the magnetotail. The mass loaded into the magnetic field stretches the field lines outward resulting in the formation of the equatorial current sheet. The outward radial flow causes the closed stretched fields to spiral out of magnetic meridian planes. The angle associated with the spiralling is given by the ratio of the azimuthal field component, B , to the radial component Br : tan = B / Br . The magnetic spiral is directly related to the corresponding components of plasma velocity, v and v r, provided the conductivity of the ionosphere, , is high enough to enforce co-rotation of the field lines. If, as has been inferred, the conductivity is low, the field and plasma do not co-rotate and the conductivity also enters the expression for . Conditions are more uncertain further out in the magnetosphere where convective motions associated with magnetic reconnection between planetary and interplanetary fields and the motion of the shocked solar wind become dominant. The prevailing model is a superposition of two modes of plasma circulation inside the magnetosphere and magnetotail, the Dungey and Vasyliunas cycles, that depend on radial distance and local time with an x-line in the midnight sector that separates the two cycles. The measured spiral angle will be affected by this complexity and holds the promise of distinguishing the relative influences of v ,v r and . The two field components that define the spiral angle are also involved in the transfer of angular momentum from the ionosphere to the magnetospheric plasma and the outward mass flux. The spiral should also contain evidence, especially at high latitudes, of the return of the current to the ionosphere from the current sheet. Our major objective, therefore, is to characterize as a function of radius, latitude and local time using the global coverage provided by Cassini and apply the findings to the topics listed above.
Effects of electron pressure anisotropy on current sheet configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A.
2016-09-15
Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. Wemore » find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.« less
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.
2008-01-01
Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.
Spatial Distribution and Semiannual Variation of Cold-Dense Plasma Sheet
NASA Astrophysics Data System (ADS)
Bai, Shichen; Shi, Quanqi; Tian, Anmin; Nowada, Motoharu; Degeling, Alexander W.; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rae, I. Jonathan; Fu, Suiyan; Zhang, Hui; Pu, Zuyin; Fazakerly, Andrew N.
2018-01-01
The cold-dense plasma sheet (CDPS) plays an important role in the entry process of the solar wind plasma into the magnetosphere. Investigating the seasonal variation of CDPS occurrences will help us better understand the long-term variation of plasma exchange between the solar wind and magnetosphere, but any seasonal variation of CDPS occurrences has not yet been reported in the literature. In this paper, we investigate the seasonal variation of the occurrence rate of CDPS using Geotail data from 1996 to 2015 and find a semiannual variation of the CDPS occurrences. Given the higher probability of solar wind entry under stronger northward interplanetary magnetic field (IMF) conditions, 20 years of IMF data (1996-2015) are used to investigate the seasonal variation of IMF
Magnetospheric Multiscale Mission Observations of Magnetic Flux Ropes in the Earth's Plasma Sheet
NASA Astrophysics Data System (ADS)
Slavin, J. A.; Akhavan-Tafti, M.; Poh, G.; Le, G.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Gershman, D. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.
2017-12-01
A major discovery by the Cluster mission and the previous generation of science missions is the presence of earthward and tailward moving magnetic flux ropes in the Earth's plasma sheet. However, the lack of high-time resolution plasma measurements severely limited progress concerning the formation and evolution of these reconnection generated structures. We use high-time resolution magnetic and electric field and plasma measurements from the Magnetospheric Multiscale mission's first tail season to investigate: 1) the distribution of flux rope diameters relative to the local ion and electron inertial lengths; 2) the internal force balance sustaining these structures; and 3) the magnetic connectivity of the flux ropes to the Earth and/or the interplanetary medium; 4) the specific entropy of earthward moving flux ropes and the possible effect of "buoyancy" on how deep they penetrate into the inner magnetosphere; and 5) evidence for coalescence of adjacent flux ropes and/or the division of existing flux ropes through the formation of secondary X-lines. The results of these initial analyses will be discussed in terms of their implications for reconnection-driven magnetospheric dynamics and substorms.
Energized Oxygen : Speiser Current Sheet Bifurcation
NASA Astrophysics Data System (ADS)
George, D. E.; Jahn, J. M.
2017-12-01
A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs significantly from previous investigations involving heavy ions in that they are energized as opposed to being simply thermal. This is a variation based firmly on published in-situ measurements. It also differs in that a complete population is used as opposed to simply test particles in a magnetic field model.
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1978-01-01
Specific fields of current investigation by satellite observation and ground-based radio-astronomical and optical techniques are discussed. Topics include: aspects of energetic particles trapped in the earth's magnetic field and transiently present in the outer magnetosphere and the solar, interplanetary, and terrestrial phenomena associated with them; plasma flows in the magnetosphere and the ionospheric effects of particle precipitation, with corresponding studies of the magnetosphere of Jupiter, Saturn, and possibly Uranus; the origin and propagation of very low frequency radio waves in the earth's magnetosphere and ionosphere; solar particle emissions and their interplanetary propagation and acceleration; solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays; radio frequency emissions from the quintescent and flaring sun; shock waves in the interplanetary medium; radio emissions from Jupiter; and radio astronomy of pulsars, flare stars, and other stellar sources.
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.
2011-01-01
Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.
Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P
2009-10-22
Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.
Ring current-energy balance during intense magnetic storms
NASA Astrophysics Data System (ADS)
Clua de Gonzalez, A. L.; Gonzalez, W. D.
2013-12-01
The energy-rate balance that governs the storm-time ring current is analyzed in terms of the Burton-McPherron-Russell equation (Burton et al., 1975). This is a first order differential equation relating the time variation of the pressure corrected Dst index, with the energy input to the magnetosphere. Based on the Burton et al. equation, we have analyzed in detail the geomagnetic storm of February 11, 2004. The energy input is taken proportional to the interplanetary electric field, Q(t) = αBsV, where Bs is the southward component of the interplanetary magnetic field in GSM coordinates, V is the flow speed of the solar wind and α a constant. The equation is integrated using the OMNI-combined interplanetary data and, the value of the decay time is estimated from a best fit of the response to the observed curve. For this storm we also use a rectangular approximation for the energy input function, thus allowing an analytical solution of the Burton et al. equation. The results from this approximation are then compared to the numerical solution. The study is also extended to the geomagnetic storm of April 22, 2001. This analysis seems to indicate that the Burton et al. equation should contain also a corrective term proportional to the second time derivative of the Dst index. This corrective term might become important for intense storms, with an effect of counteracting the growth of |Dst| before the energy input from the interplanetary medium declines, such that the value of |Dst| starts to decrease instead of continuing to grow.
NASA Astrophysics Data System (ADS)
Liu, J.; Angelopoulos, V.; Chu, X.; McPherron, R. L.
2016-12-01
Although Earth's Region 1 and 2 currents are related to activities such as substorm initiation, their magnetospheric origin remains unclear. Utilizing the triangular configuration of THEMIS probes at 8-12 RE downtail, we seek the origin of nightside Region 1 and 2 currents. The triangular configuration allows a curlometer-like technique which do not rely on active-time boundary crossings, so we can examine the current distribution in quiet times as well as active times. Our statistical study reveals that both Region 1 and 2 currents exist in the plasma sheet during quiet and active times. Especially, this is the first unequivocal, in-situ evidence of the existence of Region 2 currents in the plasma sheet. Farther away from the neutral sheet than the Region 2 currents lie the Region 1 currents which extend at least to the plasma sheet boundary layer. At geomagnetic quiet times, the separation between the two currents is located 2.5 RE from the neutral sheet. These findings suggest that the plasma sheet is a source of Region 1 and 2 currents regardless of geomagnetic activity level. During substorms, the separation between Region 1 and 2 currents migrates toward (away from) the neutral sheet as the plasma sheet thins (thickens). This migration indicates that the deformation of Region 1 and 2 currents is associated with redistribution of FAC sources in the magnetotail. In some substorms when the THEMIS probes encounter a dipolarization, a substorm current wedge (SCW) can be inferred from our technique, and it shows a distinctively larger current density than the pre-existing Region 1 currents. This difference suggests that the SCW is not just an enhancement of the pre-existing Region 1 current; the SCW and the Region 1 currents have different sources.
Comet giacobini-zinner: plasma description.
Bame, S J; Anderson, R C; Asbridge, J R; Baker, D N; Feldman, W C; Fuselier, S A; Gosling, J T; McComas, D J; Thomsen, M F; Young, D T; Zwickl, R D
1986-04-18
A strong interaction between the solar wind and comet Giacobini-Zinner was observed oh 11 September 1985 with the Los Alamos plasma electron experiment on the International Cometary Explorer (ICE) spacecraft. As ICE approached an intercept point 7800 kilometers behind the nucleus from the south and receded to the north, upstream phenomena due to the comet were observed. Periods of enhanced electron heat flux from the comet as well as almost continuous electron density fluctuations were measured. These effects are related to the strong electron heating observed in the cometary interaction region and to cometary ion pickup by the solar wind, respectively. No evidence for a conventional bow shock was found as ICE entered and exited the regions of strongest interaction of the solar wind with the cometary environment. The outer extent of this strong interaction zone was a transition region in which the solar wind plasma was heated, compressed, and slowed. Inside the inner boundary of the transition region was a sheath that enclosed a cold intermediate coma. In the transition region and sheath, small-scale enhancements in density were observed. These density spikes may be due to an instability associated with cometary ion pickup or to the passage of ICE through cometary ray structures. In the center of the cold intermediate coma a narrow, high-density core of plasma, presumably the developing plasma tail was found. In some ways this tail can be compared to the plasma sheet in Earth's magnetotail and to the current sheet in the tail at Venus. This type of configuration is expected in the double-lobe magnetic topology detected at the comet, possibly caused by the theoretically expected draping of the interplanetary magnetic field around its ionosphere.
Cross-tail current - Resonant orbits
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Lu, Chen
1993-01-01
A technique to generate self-consistent 1D current sheets is described. Groups of monoenergetic protons were followed in a modified Harris magnetic field. This sample current sheet is characterized by resonant quasi-adiabatic orbits. The magnetic moment of a quasi-adiabatic ion which is injected from outside a current sheet changes substantially during the orbit but returns to almost its initial value by the time the ion leaves. Several ion and electron groups were combined to produce a plasma sheet in which the charged particles carry the currents needed to generate the magnetic field in which the orbits were traced. An electric field also is required to maintain charge neutrality. Three distinct orbit types, one involving untrapped ions and two composed of trapped ions, were identified. Limitations associated with the use of a 1D model also were investigated; it can provide a good physical picture of an important component of the cross-tail current, but cannot adequately describe any region of the magnetotail in which the principal current sheet is separated from the plasma sheet boundary layer by a nearly isotropic outer position of the central plasma sheet.
Kinetic Studies of Thin Current Sheets at Magnetosheath Jets
NASA Astrophysics Data System (ADS)
Eriksson, E.; Vaivads, A.; Khotyaintsev, Y. V.; Graham, D. B.; Yordanova, E.; Hietala, H.; Markidis, S.; Giles, B. L.; Andre, M.; Russell, C. T.; Le Contel, O.; Burch, J. L.
2017-12-01
In near-Earth space one of the most turbulent plasma environments is the magnetosheath (MSH) downstream of the quasi-parallel shock. The particle acceleration and plasma thermalization processes there are still not fully understood. Regions of strong localized currents are believed to play a key role in those processes. The Magnetospheric Multiscale (MMS) mission has sufficiently high cadence to study these processes in detail. We present details of studies of two different events that contain strong current regions inside the MSH downstream of the quasi-parallel shock. In both cases the shape of the current region is in the form of a sheet, however they show internal 3D structure on the scale of the spacecraft separation (15 and 20 km, respectively). Both current sheets have a normal magnetic field component different from zero indicating that the regions at the different sides of the current sheets are magnetically connected. Both current sheets are boundaries between two different plasma regions. Furthermore, both current sheets are observed at MSH jets. These jets are characterized by localized dynamic pressure being larger than the solar wind dynamic pressure. One current sheet does not seem to be reconnecting while the other shows reconnection signatures. Inside the non-reconnecting current sheet we observe locally accelerated electron beams along the magnetic field. At energies above the beam energy we observe a loss cone consistent with part of the hot MSH-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within this current sheet is similar to the one that occurs at the bow shock, where electron beams and loss cones are also observed. Therefore, we conclude that electron beams observed in the MSH do not have to originate from the bow shock, but can also be generated locally inside the MSH. The reconnecting current sheet also shows signs of thermalization and electron acceleration processes that are discussed in detail.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Jauer, P. R.; Alves, L. R.; Padilha, A. L.; Padua, M. B.; Vitorello, I.; Alves, M. V.; Da Silva, L. A.
2017-12-01
Interplanetary structures such as Coronal Mass Ejections (CME), Shocks, Corotating Interaction Regions (CIR) and Magnetic Clouds (MC) interfere directly on Space Weather conditions and can cause severe and intense disturbances in the Earth's magnetic field as measured in space and on the ground. During magnetically disturbed periods characterized by world-wide, abrupt variations of the geomagnetic field, large and intense current systems can be induced and amplified within the Earth even at low latitudes. Such current systems are known as geomagnetically induced currents (GIC) and can cause damage to power transmission lines, transformers and the degradation of pipelines. As part of an effort to estimate GIC intensities throughout the low to equatorial latitudes of the Brazilian territory, we used the 3-D MHD SWMF/BATSRUS code to estimate spatial variations of the geomagnetic field during periods when the magnetosphere is under the influence of CME and MC structures. Specifically, we used the CalcDeltaB tool (Rastatter et al., Space Weather, 2014) to provide a proxy for the spatial variations of the geomagnetic field, with a 1 minute cadence, at 31 virtual magnetometer stations located in the proposed study region. The stations are spatially arranged in a two-dimensional network with each station being 5 degrees apart in latitude and longitude. In a preliminary analysis, we found that prior to the arrival of each interplanetary structure, there is no appreciable variation in the components of the geomagnetic field between the virtual stations. However, when the interplanetary structures reach the magnetosphere, each station perceives the magnetic field variation differently, so that it is not possible to use a single station to represent the magnetic field perturbation throughout the Brazilian region. We discuss the minimum number and spacing between stations to adequately detail the geomagnetic field variations in this region.
NASA Astrophysics Data System (ADS)
Xue, Zhike; Yan, Xiaoli; Yang, Liheng; Wang, Jincheng; Feng, Song; Li, Qiaoling; Ji, Kaifan; Zhao, Li
2018-05-01
We report a possible current sheet region associated with a small-scale magnetic reconnection event by using the spectral and imaging observations of the Interface Region Imaging Spectrograph (IRIS) and the magnetograms obtained by the Solar Dynamics Observatory on 2016 August 08. The length and width of the current sheet region are estimated to be from 1.4 ± 0.1 Mm to 3.0 ± 0.3 Mm and from 0.34 ± 0.01 Mm to 0.64 ± 0.09 Mm, respectively. The evolutions of the length of the current sheet region are positively correlated with that of the width. These measurements are among the smallest reported. When the IRIS slit scans the current sheet region, the spectroscopic observations show that the Si IV line is broadened in the current sheet region and the plasma has a blueshifted feature at the middle and a redshifted feature at the ends of the current sheet region. The maximum measured blueshifted and redshifted Doppler velocities are ‑20.8 ± 0.9 and 34.1 ± 0.4 km s‑1, respectively. Additionally, the electron number densities of the plasma in the current sheet region are computed to be around 1011 cm‑3 based on the spectrums of the two O IV lines. The emergence, movement, and cancellation of a small sunspot with negative polarity are observed during the formation and shift of the current sheet region. We suggest that the occurrence and evolution of the magnetic reconnection are driven by the movement of the small sunspot in the photosphere.
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1974-01-01
Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.
Geomagnetic activity: Dependence on solar wind parameters
NASA Technical Reports Server (NTRS)
Svalgaard, L.
1977-01-01
Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.
The structure of the solar wind in the inner heliosphere
NASA Astrophysics Data System (ADS)
Lee, Christina On-Yee
2010-12-01
This dissertation is devoted to expanding our understanding of the solar wind structure in the inner heliosphere and variations therein with solar activity. Using spacecraft observations and numerical models, the origins of the large-scale structures and long-term trends of the solar wind are explored in order to gain insights on how our Sun determines the space environments of the terrestrial planets. I use long term measurements of the solar wind density, velocity, interplanetary magnetic field, and particles, together with models based on solar magnetic field data, to generate time series of these properties that span one solar rotation (˜27 days). From these time series, I assemble and obtain the synoptic overviews of the solar wind properties. The resulting synoptic overviews show that the solar wind around Mercury, Venus, Earth, and Mars is a complex co-rotating structure with recurring features and occasional transients. During quiet solar conditions, the heliospheric current sheet, which separates the positive interplanetary magnetic field from the negative, usually has a remarkably steady two- or four-sector structure that persists for many solar rotations. Within the sector boundaries are the slow and fast speed solar wind streams that originate from the open coronal magnetic field sources that map to the ecliptic. At the sector boundaries, compressed high-density and the related high-dynamic pressure ridges form where streams from different coronal source regions interact. High fluxes of energetic particles also occur at the boundaries, and are seen most prominently during the quiet solar period. The existence of these recurring features depends on how long-lived are their source regions. In the last decade, 3D numerical solar wind models have become more widely available. They provide important scientific tools for obtaining a more global view of the inner heliosphere and of the relationships between conditions at Mercury, Venus, Earth, and Mars. When I compare the model results with observations for periods outside of solar wind disturbances, I find that the models do a good job of simulating at least the steady, large-scale, ambient solar wind structure. However, it remains a challenge to accurately model the solar wind during active solar conditions. During these times, solar transients such as coronal mass ejections travel through interplanetary space and disturb the ambient solar wind, producing a far less predictable and modelable space environment. However, such conditions may have the greatest impact on the planets - especially on their atmospheres and magnetospheres. I therefore also consider the next steps in modeling, toward including active conditions.
The Bastille Day Magnetic Clouds and Upstream Shocks: Near Earth Interplanetary Observations
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Berdichevsky, D. B.; Burlaga, L. F.; Lazarus, A. J.; Kasper, J.; Desch, M. D.; Wu, C.-C.; Reames, D. V.; Singer, H. J.; Singer, H. J.;
2001-01-01
The energetic charged particle, interplanetary magnetic field, and plasma characteristics of the 'Bastille Day' shock and ejecta/magnetic cloud events at 1 AU occurring over the days 14-16 July 2000 are described. Profiles of MeV (WIND/LEMT) energetic ions help to organize the overall sequence of events from the solar source to 1 AU. Stressed are analyses of an outstanding magnetic cloud (MC2) starting late on 15 July and its upstream shock about 4 hours earlier in WIND magnetic field and plasma data. Also analyzed is a less certain, but likely, magnetic cloud (MC1) occurring early on 15 July; this was separated from MC2 by its upstream shock and many heliospheric current sheet (HCS) crossings. Other HCS crossings occurred throughout the 3-day period. Overall this dramatic series of interplanetary events caused a large multi-phase magnetic storm with min Dst lower than -300 nT. The very fast solar wind speed (greater than or equal to 1100 km/s) in and around the front of MC2 (for near average densities) was responsible for a very high solar wind ram pressure driving in the front of the magnetosphere to geocentric distances estimated to be as low as approx. 5 R(sub E), much lower than the geosynchronous orbit radius. This was consistent with magnetic field observations from two GOES satellites which indicated they were in the magnetosheath for extended times. A static force free field model is used to fit the two magnetic cloud profiles providing estimates of the clouds' physical and geometrical properties. MC2 was much larger than MCI, but their axes were nearly antiparallel, and their magnetic fields had the same left-handed helicity. MC2's axis and its upstream shock normal were very close to being perpendicular to each other, as might be expected if the cloud were driving the shock at the time of observation. The estimated axial magnetic flux carried by MC2 was 52 x 10(exp 20) Mx, which is about 5 times the typical magnetic flux estimated for other magnetic clouds in the WIND data over its first 4 years and is 17 times the flux of MC1. This large flux is due to both the strong axially-directed field of MC2 (46.8 nT on the axis) and the large radius (R(sub 0) = 0.189 AU) of the flux tube. MC2's average speed is consistent with the expected transit time from a halo-CME to which it is apparently related.
Where do field lines go in the quiet magnetosphere?
NASA Technical Reports Server (NTRS)
Stern, David P.; Alekseev, Igor' I.
1988-01-01
The state of knowledge concerning the global pattern of geomagnetic field lines is reviewed. Sources of information on that pattern include (1) magnetic-field models, derived directly from magnetic data or indirectly from generally observed properties and from physics; (2) the tracing of magnetospheric features (e.g., polar cusps or the inner edge of the plasma sheet); (3) matching of magnetic flux; and (4) analysis of magnetic fields. Field-line structure inside about 8 earth radii is known fairly well, but beyond that, especially in the tail, the situation becomes rather uncertain and variable. Two particularly difficult problems are the linkage between open field lines and the interplanetary field and the field-line structure of the quiescent magnetosphere following periods of prolonged northward Bz.
Intermittent magnetic reconnection in TS-3 merging experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Y.; Hayashi, Y.; Ii, T.
2011-11-15
Ejection of current sheet with plasma mass causes impulsive and intermittent magnetic reconnection in the TS-3 spherical tokamak (ST) merging experiment. Under high guide toroidal field, the sheet resistivity is almost classical due to the sheet thickness much longer than the ion gyroradius. Large inflow flux and low current-sheet resistivity result in flux and plasma pileup followed by rapid growth of the current sheet. When the pileup exceeds a critical limit, the sheet is ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed is slow during the flux/plasma pileup and is fast during the ejection, suggesting that intermittentmore » reconnection similar to the solar flare increases the averaged reconnection speed. These transient effects enable the merging tokamaks to have the fast reconnection as well as the high-power reconnection heating, even when their current-sheet resistivity is low under high guide field.« less
Non-Evolutionarity of a Reconnecting Current Sheet as a Cause of Its Splitting into MHD Shocks
NASA Astrophysics Data System (ADS)
Markovsky, S. A.; Somov, B. V.
1995-04-01
Numerical simulations of the magnetic reconnection process in a current sheet show that, in some cases, MHD shocks appear to be attached to edges of the sheet. The appearance of the shocks may be considered to be a result of splitting of the sheet. In the present paper we suppose that this splitting takes place in consequence of non-evolutionarity of the reconnecting current sheet as a discontinuity. The problem of time evolution of small perturbations does not have a unique solution for a non-evolutionary discontinuity, and it splits into other (evolutionary) discontinuities. Such an approach allows us to determine conditions under which the splitting of the-sheet occurs. The main difficulty of this approach is that a current sheet is not reduced to a classified 1D discontinuity, because inhomogeneity of flow velocity inside the sheet is two-dimensional. To formulate the non-evolutionarity problem, we solve the linear MHD equations inside and outside the sheet and deduce linearized 1D boundary conditions at its surface. We show that for large enough conductivity, small perturbations exist which interact with the sheet as with a discontinuity. Then we obtain a non-evolutionarity criterion, with respect to these perturbations, in the form of a restriction on the flow velocity across the surface of the sheet.
Dynamo-driven plasmoid formation from a current-sheet instability
Ebrahimi, F.
2016-12-15
Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less
Spontaneous formation of electric current sheets and the origin of solar flares
NASA Technical Reports Server (NTRS)
Low, B. C.; Wolfson, R.
1988-01-01
It is demonstrated that the continuous boundary motion of a sheared magnetic field in a tenuous plasma with an infinite electrical conductivity can induce the formation of multiple electric current sheets in the interior plasma. In response to specific footpoint displacements, the quadrupolar magnetic field considered is shown to require the formation of multiple electric current sheets as it achieves a force-free state. Some of the current sheets are found to be of finite length, running along separatrix lines of force which separate lobes of magnetic flux. It is suggested that current sheets in the form of infinitely thin magnetic shear layers may be unstable to resistive tearing, a process which may have application to solar flares.
Two-dimensional potential double layers and discrete auroras
NASA Technical Reports Server (NTRS)
Kan, J. R.; Lee, L. C.; Akasofu, S.-I.
1979-01-01
This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.
Current Sheet Properties and Dynamics During Sympathetic Breakout Eruptions
NASA Astrophysics Data System (ADS)
Lynch, B. J.; Edmondson, J. K.
2013-12-01
We present the continued analysis of the high-resolution 2.5D MHD simulations of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the generation of X- and O-type null points during the current sheet tearing and track the magnetic island formation and evolution during periods of reconnection. The magnetic breakout eruption scenario forms an overlying 'breakout' current sheet that evolves slowly and removes restraining flux from above the sheared field core that will eventually become the center of the erupting flux rope-like structure. The runaway expansion from the expansion-breakout reconnection positive feedback enables the formation of the second, vertical/radial current sheet underneath the rising sheared field core as in the standard CHSKP eruptive flare scenario. We will examine the flux transfer rates through the breakout and flare current sheets and compare the properties of the field and plasma inflows into the current sheets and the reconnection jet outflows into the flare loops and flux rope ejecta.
Fluctuation dynamics in reconnecting current sheets
NASA Astrophysics Data System (ADS)
von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas
2015-11-01
During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.
NASA Technical Reports Server (NTRS)
Langel, R. A.
1973-01-01
Variations in the scalar magnetic field (delta B) from the polar orbiting OGO 2, 4, and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the sun and for times when the interplanetary magnetic field away from the sun. This morphology is basically the same as that found when all data, irrespective of interplanetary magnetic sector, are averaged together. Differences in delta B occur, both between sectors and between seasons, which are similar in nature to variations in the surface delta Z found by Langel (1973c). The altitude variation of delta B at sunlit local times, together with delta Z at the earth's surface, demonstrates that the delta Z and delta B which varies with sector has an ionospheric source. Langel (1973b) showed that the positive delta B region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source(s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of delta B.
Comparing Sources of Storm-Time Ring Current O+
NASA Astrophysics Data System (ADS)
Kistler, L. M.
2015-12-01
The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.
Electromagnetic augmentation for casting of thin metal sheets
Hull, John R.
1989-01-01
Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.
A coronal magnetic field model with horizontal volume and sheet currents
NASA Technical Reports Server (NTRS)
Zhao, Xuepu; Hoeksema, J. Todd
1994-01-01
When globally mapping the observed photospheric magnetic field into the corona, the interaction of the solar wind and magnetic field has been treated either by imposing source surface boundary conditions that tacitly require volume currents outside the source surface or by limiting the interaction to thin current sheets between oppositely directed field regions. Yet observations and numerical Magnetohydrodynamic (MHD) calculations suggest the presence of non-force-free volume currents throughout the corona as well as thin current sheets in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines surrounding coronal helmet-streamer structures. This work presents a model including both horizontal volume currents and streamer sheet currents. The present model builds on the magnetostatic equilibria developed by Bogdan and Low and the current-sheet modeling technique developed by Schatten. The calculation uses synoptic charts of the line-of-sight component of the photospheric magnetic field measured at the Wilcox Solar Observatory. Comparison of an MHD model with the calculated model results for the case of a dipole field and comparison of eclipse observations with calculations for CR 1647 (near solar minimum) show that this horizontal current-current-sheet model reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces coro nal helmet structures better than the current-sheet model.
Dynamic Harris current sheet thickness from Cluster current density and plasma measurements
NASA Technical Reports Server (NTRS)
Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.
2005-01-01
We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Mcpherron, R. L.
1990-01-01
A qualitative model of magnetic field reconfiguration as might result from neutral line formation in the central plasma sheet late in a substorm growth phase is considered. It is suggested that magnetic reconnection probably begins before the substorm expansion phase and that cross-tail current is enhanced across the plasma sheet both earthward and tailward of a limited region near the neutral line. Such an enhanced cross-tail current earthward of the original X line region may contribute to thinning the plasma sheet substantially, and this would in turn affect the drift currents in that location, thus enhancing the current even closer toward the earth. In this way a redistribution and progressive diversion of normal cross-tail current throughout much of the inner portion of the plasma sheet could occur. The resulting intensified current, localized at the inner edge of the plasma sheet, would lead to a very thin plasma confinement region. This would explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.
High time resolution observations of the drivers of Forbush decreases
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.
2008-12-01
The drivers of Forbush decreases in galactic cosmic ray (GCR) fluxes are thought to be magnetic turbulence in the sheath of an interplanetary coronal mass ejection (ICME) and the closed magnetic field lines in the ICME itself. This model, however, is the result of studies utilizing hourly or longer time averaging. Such averaging can smooth over important correlations between variabilities in the GCR flux and those in the interplanetary medium. To test the validity of the current model of Forbush decreases, we analyze a number of Forbush decreases using high time resolution GCR data from the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the onset of the decrease and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. We find evidence that planar magnetic structures in the sheath preceding the ICME may be a factor in driving the decrease in at least one event.
NASA Astrophysics Data System (ADS)
Takamoto, M.
2018-05-01
In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.
Solar wind-magnetosphere coupling and the distant magnetotail: ISEE-3 observations
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Smith, E. J.; Sibeck, D. G.; Baker, D. N.; Zwickl, R. D.; Akasofu, S. I.; Lepping, R. P.
1985-01-01
ISEE-3 Geotail observations are used to investigate the relationship between the interplanetary magnetic field, substorm activity, and the distant magnetotail. Magnetic field and plasma observations are used to present evidence for the existence of a quasi-permanent, curved reconnection neutral line in the distant tail. The distance to the neutral line varies from absolute value of X = 120 to 140 R/sub e near the center of the tail to beyond absolute value of X = 200 R/sub e at the flanks. Downstream of the neutral line the plasma sheet magnetic field is shown to be negative and directly proportional to negative B/sub z in the solar wind as observed by IMP-8. V/sub x in the distant plasma sheet is also found to be proportional to IMF B/sub z with southward IMF producing the highest anti-solar flow velocities. A global dayside reconnection efficiency of 20 +- 5% is derived from the ISEE-3/IMP-8 magnetic field comparisons. Substorm activity, as measured by the AL index, produces enhanced negative B/sub z and tailward V/sub x in the distant plasma sheet in agreement with the basic predictions of the reconnection-based models of substorms. The rate of magnetic flux transfer out of the tail as a function of AL is found to be consistent with previous near-Earth studies. Similarly, the mass and energy fluxes carried by plasma sheet flow down the tail are consistent with theoretical mass and energy budgets for an open magnetosphere. In summary, the ISEE-3 Geotail observations appear to provide good support for reconnection models of solar wind-magnetosphere coupling and substorm energy rates.
Electromagnetic augmentation for casting of thin metal sheets
Hull, J.R.
1987-10-28
Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.
NASA Astrophysics Data System (ADS)
Peroomian, Vahé; El-Alaoui, Mostafa; Brandt, Pontus C.:son
2011-05-01
The contribution of solar wind and ionospheric ions to the ion population of the magnetotail during the 17 April 2002 geomagnetic storm was investigated by using large-scale kinetic (LSK) particle tracing calculations. We began our investigation by carrying out a global magnetohydrodynamic simulation of the storm event by using upstream solar wind and interplanetary magnetic field data from the ACE spacecraft. We launched solar wind H+ ions and ionospheric O+ ions beginning at 0900 UT, ˜2 h prior to the sudden storm commencement (SSC), until 2000 UT. We found that during this Dst ˜ -98 nT storm, solar wind ions carried the bulk of the density and energy density in the nightside ring current and plasma sheet, with the notable exception of the 90 min immediately after the SSC when O+ densities in the ring current exceeded those of H+ ions. The LSK simulation did a very good job of reproducing ion densities observed by the Los Alamos National Laboratory spacecraft at geosynchronous orbit and reproduced the changes in the inner magnetosphere and the injection of ions observed by the IMAGE spacecraft during a substorm that occurred at 1900 UT. These comparisons with observations serve to validate our results throughout the magnetotail and allow us to obtain time-dependent maps of H+ and O+ density and energy density where IMAGE cannot make measurements. In essence, this work extends the viewing window of the IMAGE spacecraft far downtail.
Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators
NASA Technical Reports Server (NTRS)
Markusic, Thomas; Choueiri, E. Y.
2003-01-01
The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet
NASA Astrophysics Data System (ADS)
Klimas, Alexander J.; Uritsky, Vadim M.
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet.
Klimas, Alexander J; Uritsky, Vadim M
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Structure of the Magnetotail Current Sheet
NASA Technical Reports Server (NTRS)
Larson, Douglas J.; Kaufmann, Richard L.
1996-01-01
An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(sub E) less than x less than - 14 R(sub E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.
Structure of the Magnetotail Current Sheet
NASA Technical Reports Server (NTRS)
Larson, Douglas J.; Kaufmann, Richard L.
1996-01-01
An orbit tracing technique was used to generate current sheets for three magnetotail models. Groups of ions were followed to calculate the resulting cross-tail current. Several groups then were combined to produce a current sheet. The goal is a model in which the ions and associated electrons carry the electric current distribution needed to generate the magnetic field B in which ion orbits were traced. The region -20 R(E) less than x less than -14 R(E) in geocentric solar magnetospheric coordinates was studied. Emphasis was placed on identifying the categories of ion orbits which contribute most to the cross-tail current and on gaining physical insight into the manner by which the ions carry the observed current distribution. Ions that were trapped near z = 0, ions that magnetically mirrored throughout the current sheet, and ions that mirrored near the Earth all were needed. The current sheet structure was determined primarily by ion magnetization currents. Electrons of the observed energies carried relatively little cross-tail current in these quiet time current sheets. Distribution functions were generated and integrated to evaluate fluid parameters. An earlier model in which B depended only on z produced a consistent current sheet, but it did not provide a realistic representation of the Earth's middle magnetotail. In the present study, B changed substantially in the x and z directions but only weakly in the y direction within our region of interest. Plasmas with three characteristic particle energies were used with each of the magnetic field models. A plasma was found for each model in which the density, average energy, cross-tail current, and bulk flow velocity agreed well with satellite observations.
Current-sheet formation in two-dimensional coronal fields
NASA Astrophysics Data System (ADS)
Billinghurst, M. N.; Craig, I. J. D.; Sneyd, A. D.
1993-11-01
The formation of current sheets by shearing motions in line-tied twin-lobed fields is examined. A general analytic argument shows that current sheets form along the fieldline bounding the two lobes in the case of both symmetric and asymmetric footpoint motions. In the case of strictly antisymmetric motions however no current sheets can form. These findings are reinforced by magnetic relaxation experiments involving sheared two-lobed fields represented by Clebsh variables. It is pointed out that, although current singularites cannot be expected to form when the line-tying assumption is relaxed, the two-lobed geometry is still consistent with the formation of highly localised currents - and strong resistive dissipation - along field lines close to the bounding fieldline.
How northward turnings of the IMF can lead to substorm expansion onsets
NASA Astrophysics Data System (ADS)
Russell, C. T.
2000-10-01
The frequent triggering of the expansion phase of substorms by northward turnings of the interplanetary magnetic field (IMF) can be understood in terms of the existence of two neutral points. The distant neutral point produces a plasma sheet on closed field lines that resupplies the magnetized plasma surrounding the near-Earth neutral point. As long as the near-Earth neutral point reconnects in moderately dense plasma, the reconnection rate is low. When the IMF turns northward, reconnection at the distant neutral point ceases but reconnection at the near-Earth neutral point continues and soon reaches open, low density magnetic field lines where the rate of reconnection is rapid, and a full expansion phase occurs. This model is consistent with the observations of substorms with two onsets: an initial one at low invariant latitudes when reconnection at the near Earth neutral point first begins and the second when reconnection reaches low density field lines at the edge of the plasma sheet and continues into the open flux of the tail lobes. It is also consistent with the occurrence of pseudo breakups in which reconnection at the near Earth neutral point begins but does not proceed to lobe field lines and a full expansion phase.
MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Slavin, J. A.
2013-09-01
Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.
Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-ray Emissions.
Cairns, I H; Lobzin, V V; Donea, A; Tingay, S J; McCauley, P I; Oberoi, D; Duffin, R T; Reiner, M J; Hurley-Walker, N; Kudryavtseva, N A; Melrose, D B; Harding, J C; Bernardi, G; Bowman, J D; Cappallo, R J; Corey, B E; Deshpande, A; Emrich, D; Goeke, R; Hazelton, B J; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kratzenberg, E; Lonsdale, C J; Lynch, M J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Ord, S M; Prabu, T; Roshi, A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Wayth, R B; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L
2018-01-26
Type III solar radio bursts are the Sun's most intense and frequent nonthermal radio emissions. They involve two critical problems in astrophysics, plasma physics, and space physics: how collective processes produce nonthermal radiation and how magnetic reconnection occurs and changes magnetic energy into kinetic energy. Here magnetic reconnection events are identified definitively in Solar Dynamics Observatory UV-EUV data, with strong upward and downward pairs of jets, current sheets, and cusp-like geometries on top of time-varying magnetic loops, and strong outflows along pairs of open magnetic field lines. Type III bursts imaged by the Murchison Widefield Array and detected by the Learmonth radiospectrograph and STEREO B spacecraft are demonstrated to be in very good temporal and spatial coincidence with specific reconnection events and with bursts of X-rays detected by the RHESSI spacecraft. The reconnection sites are low, near heights of 5-10 Mm. These images and event timings provide the long-desired direct evidence that semi-relativistic electrons energized in magnetic reconnection regions produce type III radio bursts. Not all the observed reconnection events produce X-ray events or coronal or interplanetary type III bursts; thus different special conditions exist for electrons leaving reconnection regions to produce observable radio, EUV, UV, and X-ray bursts.
NASA Astrophysics Data System (ADS)
Poh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei-Jie; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W.
2017-08-01
We analyzed MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during 319 crossings of Mercury's cross-tail current sheet. We found that the measured BZ in the current sheet is higher on the dawnside than the duskside by a factor of ≈3 and the asymmetry decreases with downtail distance. This result is consistent with expectations based upon MHD stress balance. The magnetic fields threading the more stretched current sheet in the duskside have a higher plasma beta than those on the dawnside, where they are less stretched. This asymmetric behavior is confirmed by mean current sheet thickness being greatest on the dawnside. We propose that heavy planetary ion (e.g., Na+) enhancements in the duskside current sheet provides the most likely explanation for the dawn-dusk current sheet asymmetries. We also report the direct measurement of Mercury's substorm current wedge (SCW) formation and estimate the total current due to pileup of magnetic flux to be ≈11 kA. The conductance at the foot of the field lines required to close the SCW current is found to be ≈1.2 S, which is similar to earlier results derived from modeling of Mercury's Region 1 field-aligned currents. Hence, Mercury's regolith is sufficiently conductive for the current to flow radially then across the surface of Mercury's highly conductive iron core. Mercury appears to be closely coupled to its nightside magnetosphere by mass loading of upward flowing heavy planetary ions and electrodynamically by field-aligned currents that transfer momentum and energy to the nightside auroral oval crust and interior. Heavy planetary ion enhancements in Mercury's duskside current sheet provide explanation for cross-tail asymmetries found in this study. The total current due to the pileup of magnetic flux and conductance required to close the SCW current is found to be ≈11 kA and 1.2 S. Mercury is coupled to magnetotail by mass loading of heavy ions and field-aligned currents driven by reconnection-related fast plasma flow.
The Interplanetary Magnetic Field Observed by Juno Enroute to Jupiter
NASA Technical Reports Server (NTRS)
Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.
2017-01-01
The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.
NASA Astrophysics Data System (ADS)
Maynard, N. C.; Savin, S.; Erickson, G. M.; Kawano, H.; Němeček, Z.; Peterson, W. K.; Šafránoková, J.; Sandahl, I.; Scudder, J. D.; Siscoe, G. L.; Sonnerup, B. U. Ö.; Weimer, D. R.; White, W. W.; Wilson, G. R.
2001-04-01
Using a unique data set from the Wind, Polar, Interball 1, Magion 4, and Defense Meteorological Satellite Program (DMSP) F11 satellites, comparisons with the Integrated Space Weather Model (ISM) have provided validation of the global structure predicted by the ISM model, which in turn has allowed us to use the model to interpret the data to further understand boundary layers and magnetospheric processes. The comparisons have shown that the magnetospheric ``sash'' [White et al., 1998], a region of low magnetic field discovered by the MHD modeling which extends along the high-latitude flank of the magnetopause, is related to the turbulent boundary layer on the high-latitude magnetopause, recently mapped by Interball 1. The sash in the data and in the model has rotational discontinuity properties, expected for a reconnection site. At some point near or behind the terminator, the sash becomes a site for reconnection of open field lines, which were previously opened by merging on the dayside. This indicates that significant reconnection in the magnetotail occurs on the flanks. Polar mapped to the high-density extension of the sash into the tilted plasma sheet. The source of the magnetosheath plasma observed by Polar on closed field lines behind the terminator was plasma entry through the low field connection of the sash to the central plasma sheet. The Polar magnetic field line footprints in each hemisphere are moving in different directions. Above and below the tilted plasma sheet the flows in the model are consistent with the corresponding flows in the ionosphere. The turbulence in the plasma sheet allows the convection patterns from each hemisphere to adjust. The boundary layer in the equatorial plane on the flank for this interplanetary magnetic field BY condition, which is below the tilted central plasma sheet, is several RE thick and is on tailward flowing open field lines. This thick boundary layer shields the magnetopause from viscous forces and must be driven by magnetic tension. Above the plasma sheet the boundary layer is dominated by the sash, and the model indicates that the open region inside the sash is considerably thinner.
A case study of magnetotail current sheet disruption and diversion
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.; Mcentire, R. W.; Zanetti, L. J.
1988-01-01
On June 1, 1985 the AMPTE/CCE spacecraft (at a geocentric distance of about 8.8 earth radii at the midnight neutral sheet region) observed a dispersionless energetic particle injection and an increase in magnetic field magnitude, which are features commonly attributed to disruption of the near-earth cross-tail current sheet during substorm expansion onsets. An analysis based on high time-resolution measurements from the magnetometer and the energetic particle detector indicates that the current sheet disruption region exhibited localized (less than 1 earth radius) and transient (less than 1 min) particle intensity enhancements, accompanied by complex magnetic field changes with occasional development of a southward magnetic field component. Similar features are seen in other current disruption/diversion events observed by the CCE. The present analysis suggests that the current disruption region is quite turbulent, similar to laboratory experiments on current sheet disruption, with signatures unlike those expected from an X-type neutral line configuration. No clear indication of periodicity in any magnetic field parameter is discernible for this current disruption event.
Tearing Instability of a Current Sheet Forming by Sheared Incompressible Flow
NASA Astrophysics Data System (ADS)
Tolman, Elizabeth; Loureiro, Nuno; Uzdensky, Dmitri
2017-10-01
Sweet-Parker current sheets are unstable to the tearing mode, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Such formation can occur as a result of sheared, sub-Alfvénic incompressible flows into and along the sheet. This work presents an analysis of how tearing perturbations behave in a current sheet forming under the influence of such flows, beginning with a phase when the growth rate of the tearing mode is small and the behavior of perturbations is primarily governed by ideal MHD. Later, after the tearing growth rate becomes significant relative to the time scale of the driving flows, the flows cause a slight reduction in the tearing growth rate and wave vector of the dominant mode. Once the tearing mode enters the nonlinear regime, the flows accelerate the tearing growth slightly; during X-point collapse, the flows have negligible effect on the system behavior. This analysis allows greater understanding of reconnection in evolving systems and increases confidence in the application of tools developed in time-independent current sheets to changing current sheets. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.
Particle Acceleration and Heating by Turbulent Reconnection
NASA Astrophysics Data System (ADS)
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios
2016-08-01
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (I.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.
PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz
2016-08-10
Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method tomore » estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.« less
NASA Astrophysics Data System (ADS)
Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun
2018-05-01
The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.
Radial evolution of the solar wind turbulence with application to charged particle transport
NASA Technical Reports Server (NTRS)
Smith, Charles W.
1991-01-01
The proposed research efforts funded by the Pioneer-Venus Guest Investigator Grant to the Bartol Research Institute center on a study of the radial and temporal variation of the large-scale interplanetary magnetic field (IMF) and include a study of the radial variation of the observed north-south asymmetry of the IMF spiral based on the previous results of Bieber (1988). The preliminary results of Bieber demonstrated that at Earth orbit there exists an asymmetry between the yearly average winding angles of toward and away sector fields that can be as large as 10 degrees. The Bieber (1988) analysis employed the NSSDC omnitape data set of 1 AU measurements. When the observed asymmetry is related to the state of the solar magnetic dipole, it is possible to conclude that the IMF north of the heliospheric current sheet is more tightly wound than the IMF spiral south of the current sheet. The average difference in the winding angle as measured over a 21 year period spanning 1965 through 1985 was 3.1 degrees + 1.1 degrees. The Bieber analysis was able to rule-out several possible sources for the observed behavior including a possible asymmetry in the solar wind speed or the observed hemispherical dependence of solar rotation. The object of this research was to extend this previous result to include observations within the inner and outer heliosphere, to examine the radial dependence of the reported asymmetry, and to better resolve the possible source of the observations. The Pioneer-Venus Orbiter has proven to be the perfect monitor for the inner heliospheric observations. It has provided 9 years of continuous observations at a fixed heliocentric distance (except for those periods when the spacecraft was within the region of space where the magnetic field is influenced by the presence of the planet). Comparisons between the 1 AU observations recorded on the NSSDC omnitape and the 0.7 AU observations of the Pioneer-Venus Orbiter have greatly improved our understanding of the IMF winding angle asymmetry. Further comparison with outer heliospheric measurements have proven interesting, although less conclusive.
Magnetic reconnection physics in the solar wind with Voyager 2
NASA Astrophysics Data System (ADS)
Stevens, Michael L.
2009-08-01
Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found of thinning in Kelvin-Helmholtz unstable reconnection structures. I hypothesize that reconnection in turbulent environments occurs predominantly on smaller scales than one can measure with Voyager 2. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617- 253-5668; Fax 617-253-1690.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.; Landi, E.; Zurbuchen, T. H.
2014-09-20
The solar wind can be categorized into three types based on its 'freeze-in' temperature (T {sub freeze-in}) in the coronal source: low T {sub freeze-in} wind mostly from coronal holes, high T {sub freeze-in} wind mostly from regions outside of coronal holes, including streamers (helmet streamer and pseudostreamer), active regions, etc., and transient interplanetary coronal mass ejections (ICMEs) usually possessing the hottest T {sub freeze-in}. The global distribution of these three types of wind has been investigated by examining the most effective T {sub freeze-in} indicator, the O{sup 7+}/O{sup 6+} ratio, as measured by the Solar Wind Ion Composition Spectrometermore » on board the Advanced Composition Explorer (ACE) during 1998-2008 by Zhao et al. In this study, we extend the previous investigation to 2011 June, covering the unusual solar minimum between solar cycles 23 and 24 (2007-2010) and the beginning of solar cycle 24. We find that during the entire solar cycle, from the ascending phase of cycle 23 in 1998 to the ascending phase of cycle 24 in 2011, the average fractions of the low O{sup 7+}/O{sup 6+} ratio (LOR) wind, the high O{sup 7+}/O{sup 6+} ratio (HOR) wind, and ICMEs at 1 AU are 50.3%, 39.4%, and 10.3%, respectively; the contributions of the three types of wind evolve with time in very different ways. In addition, we compare the evolution of the HOR wind with two heliospheric current sheet (HCS) parameters, which indicate the latitudinal standard deviation (SD) and the slope (SL) of the HCS on the synoptic Carrington maps at 2.5 solar radii surface. We find that the fraction of HOR wind correlates with SD and SL very well (slightly better with SL than with SD), especially after 2005. This result verifies the link between the production of HOR wind and the morphology of the HCS, implying that at least one of the major sources of the HOR wind must be associated with the HCS.« less
Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations
NASA Technical Reports Server (NTRS)
Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.
2001-01-01
The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.
Self-consistent current sheet structures in the quiet-time magnetotail
NASA Technical Reports Server (NTRS)
Holland, Daniel L.; Chen, James
1993-01-01
The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.
Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution
NASA Astrophysics Data System (ADS)
Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi
2015-05-01
Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.
Observational support for the current sheet catastrophe model of substorm current disruption
NASA Technical Reports Server (NTRS)
Burkhart, G. R.; Lopez, R. E.; Dusenbery, P. B.; Speiser, T. W.
1992-01-01
The principles of the current sheet catastrophe models are briefly reviewed, and observations of some of the signatures predicted by the theory are presented. The data considered here include AMPTE/CCE observations of fifteen current sheet disruption events. According to the model proposed here, the root cause of the current disruption is some process, as yet unknown, that leads to an increase in the k sub A parameter. Possible causes for the increase in k sub A are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheetsmore » (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.« less
Collisionless current sheet equilibria
NASA Astrophysics Data System (ADS)
Neukirch, T.; Wilson, F.; Allanson, O.
2018-01-01
Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.
Current sheet formation in a sheared force-free-magnetic field. [in sun
NASA Technical Reports Server (NTRS)
Wolfson, Richard
1989-01-01
This paper presents the results of a study showing how continuous shearing motion of magnetic footpoints in a tenuous, infinitely conducting plasma can lead to the development of current sheets, despite the absence of such sheets or even of neutral points in the initial state. The calculations discussed here verify the earlier suggestion by Low and Wolfson (1988) that extended current sheets should form due to the shearing of a force-free quadrupolar magnetic field. More generally, this work augments earlier studies suggesting that the appearance of discontinuities - current sheets - may be a necessary consequence of the topological invariance imposed on the magnetic field geometry of an ideal MHD system by virtue of its infinite conductivity. In the context of solar physics, the work shows how the gradual and continuous motion of magnetic footpoints at the solar photosphere may lead to the buildup of magnetic energy that can then be released explosively when finite conductivity effects become important and lead to the rapid dissipation of current sheets. Such energy release may be important in solar flares, coronal mass ejections, and other eruptive events.
Research in space physics at the University of Iowa, 1982
NASA Technical Reports Server (NTRS)
Vanallen, J. A.; Frank, L. A.; Gurnett, D. A.; Shawhan, S. D.; Robison, E. D.; Robertson, T. D.
1983-01-01
The energetic particles and the electric, magnetic, and electromagnetic fields associated with the Earth, the Sun, the Moon, the planets, comets, and the interplanetary medium are examined. Matters under current investigation are following: energetic particles trapped in the Earth's magnetic field, origin and propagation of very low frequency radio waves and electrostatic, the magnetospheres of Jupiter, Saturn and prospectively Uranus and Neptune, diffusion of energetic particles in Saturn's magnetosphere, radio emissions from Jupiter and Saturn, solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays, interplanetary propagation and acceleration of energetic particles, the theory of wave phenomena in turbulent plasmas, and basic wave-particle-chemical processes in the ionospheric plasma.
NASA Astrophysics Data System (ADS)
Sofko, G. J.; Hussey, G. C.; McWilliams, K. A.; Reimer, A. S.
2016-12-01
We propose a multi-current-sheet model for magnetic substorms. Those storms are normally driven by frontside magnetically-driven reconnection (MDRx), in which the diffusion zone current JD and the electric field E have a "load" relationship JD*E >0, indicating transfer if magnetic energy to the particles in the "reconnection jets". As a result of lobe field line transport over the north and south poles, polar cap particles are subject to parallel energization as they flow upward out of the ionosphere. These particles convectively drift toward the equator and subsequently mirror near the Neutral Sheet (NSh) region, forming an extended westward NSh current sheet which is unstable and "tears up" into multiple current sheets. Each current sheet has very different behaviour at its ends: (a) strong magnetic pressure and weak particle pressure at its tailward end; (b) strong particle pressure and weak magnetic field at its earthward end. Therefore, in each Separation Zone (SZ) between current sheets, a strong eastward magnetic curl develops. The associated eastward SZ current, caused by diamagnetic electron drift, is squeezed by the repulsion of the westward currents tailward and earthward. That current becomes intense enough to act as a diffusion zone for "generator-type" or Particle-driven reconnection (PDRx) for which JD*E<0, indicating that the particles return energy to the magnetic field. The PDRx produces a Dipolarization Front (DF) on the earthward side of the SZ and a Plasmoid (PMD) on the tailward side. Such DF-PMD pairs form successively in time and radial downtail SZ distance. In this way, the magnetosphere attempts to achieve a dynamic equilibrium between magnetic and particle energy.
NASA Astrophysics Data System (ADS)
Huybrechts, P.
2003-04-01
The evolution of continental ice sheets introduces a long time scale in the climate system. Large ice sheets have a memory of millenia, hence the present-day ice sheets of Greenland and Antarctica are still adjusting to climatic variations extending back to the last glacial period. This trend is separate from the direct response to mass-balance changes on decadal time scales and needs to be correctly accounted for when assessing current and future contributions to sea level. One way to obtain estimates of current ice mass changes is to model the past history of the ice sheets and their underlying beds over the glacial cycles. Such calculations assist to distinguish between the longer-term ice-dynamic evolution and short-term mass-balance changes when interpreting altimetry data, and are helpful to isolate the effects of postglacial rebound from gravity and altimetry trends. The presentation will discuss results obtained from 3-D thermomechanical ice-sheet/lithosphere/bedrock models applied to the Antarctic and Greenland ice sheets. The simulations are forced by time-dependent boundary conditions derived from sediment and ice core records and are constrained by geomorphological and glacial-geological data of past ice sheet and sea-level stands. Current simulations suggest that the Greenland ice sheet is close to balance, while the Antarctic ice sheet is still losing mass, mainly due to incomplete grounding-line retreat of the West Antarctic ice sheet since the LGM. The results indicate that altimetry trends are likely dominated by ice thickness changes but that the gravitational signal mainly reflects postglacial rebound.
The Topology and Dynamics of Mercury's Tail Plasma and Current Sheets
NASA Astrophysics Data System (ADS)
Al Asad, M. M.; Johnson, C. J.; Philpott, L. C.
2018-05-01
In Mercury's environment, the tail plasma and current sheets represent an integral part of the dynamic magnetosphere. Our study aims to understand the time-averaged, as well as the dynamic, properties of these "sheets" in 3D space using MAG data.
Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.
2011-01-01
A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.
Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the ''kink'' and ''sausage'' flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating alongmore » the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity.« less
Electrical-assisted double side incremental forming and processes thereof
Roth, John; Cao, Jian
2014-06-03
A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.
Current disruptions in the near-earth neutral sheet region
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Lopez, R. E.; Anderson, B. J.; Takahashi, K.; Zanetti, L. J.; Mcentire, R. W.; Potemra, T. A.; Klumpar, D. M.; Greene, E. M.; Strangeway, R.
1992-01-01
Current disruption events observed by the Charge Composition Explorer during 1985 and 1986 are examined. Occurrence of current disruption was accompanied by large magnetic field turbulence and frequently with reversal in the sign of the field component normal to the neutral sheet. Current disruptions in the near-earth region are found to be typically shortlived (about 1-5 min), and their onsets coincide well with the ground onsets of substorm expansion or intensification in the local time sector of the footpoint of the spacecraft. These events are found almost exclusively close to the field reversal plane of the neutral sheet (within about 0.5 RE). Prior to current disruption the field strength can be reduced to as low as one seventh of the dipole field value and can recover to nearly the dipole value after disruption. The temporal evolution of particle pressure in the near-earth neutral sheet during the onset of current disruption indicates that the current buildup during the substorm growth phase is associated with enhancement in the particle pressure at the neutral sheet.
NASA Astrophysics Data System (ADS)
Johnson, Michael
2015-04-01
iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.
Cosmic ray transport in astrophysical plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlickeiser, R.
2015-09-15
Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, themore » heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.« less
NASA Astrophysics Data System (ADS)
Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.
2018-05-01
In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.
NASA Technical Reports Server (NTRS)
Henning, H. M.; Scherrer, P. H.; Hoeksema, J. T.
1985-01-01
A complete set of major flares was used to investigate the effect of the heliospheric current sheet on the magnitude of the flare associated disturbance measured at Earth. It was also found that the angular separation tended to result in a smaller disturbance. Thirdly, it was determined that flares tend to occur near the heliospheric current sheet.
Seasonal dependence of large-scale Birkeland currents
NASA Technical Reports Server (NTRS)
Fujii, R.; Iijima, T.; Potemra, T. A.; Sugiura, M.
1981-01-01
Seasonal variations of large-scale Birkeland currents are examined in a study of the source mechanisms and the closure of the three-dimensional current systems in the ionosphere. Vector magnetic field data acquired by the TRIAD satellite in the Northern Hemisphere were analyzed for the statistics of single sheet and double sheet Birkeland currents during 555 passes during the summer and 408 passes during the winter. The single sheet currents are observed more frequently in the dayside of the auroral zone, and more often in summer than in winter. The intensities of both the single and double dayside currents are found to be greater in the summer than in the winter by a factor of two, while the intensities of the double sheet Birkeland currents on the nightside do not show a significant difference from summer to winter. Both the single and double sheet currents are found at higher latitudes in the summer than in the winter on the dayside. Results suggest that the Birkeland current intensities are controlled by the ionospheric conductivity in the polar region, and that the currents close via the polar cap when the conductivity there is sufficiently high. It is also concluded that an important source of these currents must be a voltage generator in the magnetosphere.
Structure of High Latitude Currents in Magnetosphere-Ionosphere Models
NASA Astrophysics Data System (ADS)
Wiltberger, M.; Rigler, E. J.; Merkin, V.; Lyon, J. G.
2017-03-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Field-aligned current response to solar indices
NASA Astrophysics Data System (ADS)
Edwards, Thom R.; Weimer, D. R.; Tobiska, W. K.; Olsen, Nils
2017-05-01
Magnetometer data from three satellite missions have been used to analyze and identify the effects of varying solar radiation on the magnitudes and locations of field-aligned currents in the Earth's upper atmosphere. Data from the CHAMP, Ørsted, and Swarm satellite missions have been brought together to provide a database spanning a 15 year period. The extensive time frame has been augmented by data from the ACE satellite, as well as a number of indices of solar radiation. This data set has been sorted by a number of solar wind, interplanetary magnetic field, and solar radiation indices to provide measurements for the field-aligned current structures in both hemispheres for arbitrary seasonal tilts. In addition, routines have been developed to extract the total current for different regions of the current structures, including regions 0, 1, and 2. Results from this study have been used to evaluate the effects of variations in four different solar indices on the total current in different regions of the polar cap. While the solar indices do not have major influence on the total current of the polar cap when compared to solar wind and interplanetary magnetic field parameters, it does appear that there is a nonlinear response to increasing F10.7, M10.7, and S10.7 solar indices. Surprisingly, there appears to be a very linear response as Y10.7 solar index increases.
Structure of high latitude currents in global magnetospheric-ionospheric models
Wiltberger, M; Rigler, E. J.; Merkin, V; Lyon, J. G
2016-01-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.
1977-01-01
A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.
NASA Astrophysics Data System (ADS)
Verkhoglyadova, Olga P.; Zank, Gary P.; Li, Gang
2015-02-01
Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the "pump mechanism"), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the particle composition of SEP events, we address in some detail the injection problem. Although steady-state models can improve our understanding of the diffusive shock acceleration mechanism, SEP events are inherently time-dependent. We therefore review the time-dependent theory of DSA in some detail, including estimating possible maximum particle energies and particle escape from the shock complex. We also discuss generalizations of the diffusive transport approach to modeling particle acceleration by considering a more general description based on the focused transport equation. The escape of accelerated particles from the shock requires that their subsequent transport in the interplanetary medium be modeled and the consequence of interplanetary transport can lead to the complex spectra and compositional profiles that are observed frequently. The different approaches to particle transport in the inner heliosphere are reviewed. The various numerical models that have been developed to solve the gradual SEP problem are reviewed. Explicit comparisons of modeling results with observations of large SEP events are discussed. A summary of current progress and the outlook on the SEP problem and remaining open questions conclude the review.
Interplanetary field and plasma during initial phase of geomagnetic storms
NASA Technical Reports Server (NTRS)
Patel, V. L.; Wiskerchen, M. J.
1975-01-01
A study has been conducted of a large number of geomagnetic storms occurring during the period from 1966 to 1970. Questions of data selection are discussed and the large-scale interplanetary magnetic field during the initial phase is examined. Small-scale interplanetary fields during the initial phase are also considered, taking into account important features of small-scale variations in the interplanetary field and plasma for three storms. Details concerning 23 geomagnetic storms and the interplanetary magnetic field are presented in a table. A study of the initial phase of these storms indicates that in most of these events, the solar-ecliptic Z component of the interplanetary magnetic field turns southward when the main phase decrease begins.
In situ Observations of Heliospheric Current Sheets Evolution
NASA Astrophysics Data System (ADS)
Liu, Yong; Peng, Jun; Huang, Jia; Klecker, Berndt
2017-04-01
We investigate the Heliospheric current sheet observation time difference of the spacecraft using the STEREO, ACE and WIND data. The observations are first compared to a simple theory in which the time difference is only determined by the radial and longitudinal separation between the spacecraft. The predictions fit well with the observations except for a few events. Then the time delay caused by the latitudinal separation is taken in consideration. The latitude of each spacecraft is calculated based on the PFSS model assuming that heliospheric current sheets propagate at the solar wind speed without changing their shapes from the origin to spacecraft near 1AU. However, including the latitudinal effects does not improve the prediction, possibly because that the PFSS model may not locate the current sheets accurately enough. A new latitudinal delay is predicted based on the time delay using the observations on ACE data. The new method improved the prediction on the time lag between spacecraft; however, further study is needed to predict the location of the heliospheric current sheet more accurately.
On ballooning instability in current sheets
NASA Astrophysics Data System (ADS)
Leonovich, Anatoliy; Kozlov, Daniil
2015-06-01
The problem of instability of the magnetotail current sheet to azimuthally small-scale Alfvén and slow magnetosonic (SMS) waves is solved. The solutions describe unstable oscillations in the presence of a current sheet and correspond to the region of stretched closed field lines of the magnetotail. The spectra of eigen-frequencies of several basic harmonics of standing Alfvén and SMS waves are found in the local and WKB approximation, which are compared. It is shown that the oscillation properties obtained in these approximations differ radically. In the local approximation, the Alfvén waves are stable in the entire range of magnetic shells. SMS waves go into the aperiodic instability regime (the regime of the "ballooning" instability), on magnetic shells crossing the current sheet. In the WKB approximation, both the Alfvén and SMS oscillations go into an unstable regime with a non-zero real part of their eigen-frequency, on magnetic shells crossing the current sheet. The structure of azimuthally small-scale Alfvén waves across magnetic shells is determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaton, Daniel B.; Darnel, Jonathan M.; Bartz, Allison E., E-mail: daniel.seaton@noaa.gov
2017-02-01
We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops.more » We estimate that the rate of reconnection during the event was M{sub A} ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.« less
Large-scale properties of the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Schatten, K. H.
1972-01-01
Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.
System and method of adjusting the equilibrium temperature of an inductively-heated susceptor
Matsen, Marc R; Negley, Mark A; Geren, William Preston
2015-02-24
A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.
Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Matsuoka, C.; Nishihara, K.; Sano, T.
2017-04-01
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.
NASA Astrophysics Data System (ADS)
Alejandro Munoz Sepulveda, Patricio; Buechner, Joerg
2017-04-01
The effects of kinetic instabilities on the solar wind electron velocity distribution functions (eVDFs) are mostly well understood under local homogeneous and stationary conditions. But the solar wind also contains current sheets, which affect the local properties of instabilities, turbulence and thus the observed non-maxwellian features in the eVDFs. Those processes are vastly unexplored. Therefore, we aim to investigate the influence of self-consistently generated turbulence via electron-scale instabilities in reconnecting current sheets on the formation of suprathermal features in the eVDFs. For this sake, we carry out 3D fully-kinetic Particle-in-Cell code numerical simulations of force free current sheets with a guide magnetic field. We find extended tails, anisotropic plateaus and non-gyrotropic features in the eVDFs, correlated with the locations and time where micro-turbulence is enhanced in the current sheet due to current-aligned streaming instabilities. We also discuss the influence of the plasma parameters, such as the ion to electron temperature ratio, on the excitation of current sheet instabilities and their effect on the properties of the eVDFs.
Spectroscopic Diagnostics of Electric Fields in the Plasma of Current Sheets
NASA Astrophysics Data System (ADS)
Gavrilenko, Valeri; Kyrie, Natalya P.; Frank, Anna G.; Oks, Eugene
2004-11-01
Spectroscopic measurements of electric fields (EFs) in current sheet plasmas were performed in the CS-3D device. The device is intended to study the evolution of current sheets and the magnetic reconnection phenomena. We used the broadening of spectral lines (SLs) of HeII ions for diagnostics of EFs in the current sheet middle plane, and the broadening of SLs of HeI atoms for detection of EFs in the current sheet peripheral regions. For detection of EFs in current sheet plasma, we used SLs of HeII ions at 468.6; 320.3 and 656.0 nm, as well as SLs of HeI atoms at 667.8; 587.6; 492.2 and 447.1 nm. The latter two lines are of a special interest since their profiles include the dipole-forbidden components along with the allowed components. The experimental data have been analyzed by using the numerical calculations based on the Model Microfield Method. The maximum plasma density in the middle of the sheet was in the range (2-8) × 10^16 cm-3, the density in the peripheral regions was (1-2)×10^15 cm-3, and the strength of the quasi-one-dimensional anomalous electric fields in the peripheral regions reached the value of 100 kV/cm. Supported by CRDF, grant RU-P1-2594-MO-04; by the RFBR, grant 03-02-17282; and by the ISTC, project 2098.
NASA Astrophysics Data System (ADS)
Del Sarto, Daniele; Pucci, Fulvia; Tenerani, Anna; Velli, Marco
2016-03-01
This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfvén time calculated on the macroscopic scale. For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are generalized to include the dependence on the ratio de2/L2, where de is the electron skin depth, and it is shown that there are limiting scalings which, as in the resistive case, result in reconnecting modes growing on ideal time scales. Finite Larmor radius effects are then included, and the rescaling argument at the basis of "ideal" reconnection is proposed to explain secondary fast reconnection regimes naturally appearing in numerical simulations of current sheet evolution.
NASA Astrophysics Data System (ADS)
Moore, T. W.; Nykyri, K.; Dimmock, A. P.
2017-11-01
In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn sector, the cold-component ions are more abundant and hotter by 30-40% when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contributes to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to Kelvin-Helmholtz instability (KHI): hot and tenuous magnetospheric, cold and dense magnetosheath, and mixed (Hasegawa et al., 2004). These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz (KH) vortex centered ion heating (Moore et al., 2016). The statistical analysis shows that during KH events there is enhanced nonadiabatic heating calculated during ion scale wave intervals when compared to non-KH events. This suggests that during KH events there is more free energy for ion-scale wave generation, which in turn can heat ions more effectively when compared to cases when KH waves are absent. This may contribute to the dawn favored temperature asymmetry of the plasma sheet; recent studies suggest KH waves favor the dawn flank during Parker-Spiral interplanetary magnetic field.
Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment
NASA Astrophysics Data System (ADS)
Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.
2009-11-01
The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.
Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission
NASA Technical Reports Server (NTRS)
Cupples, Michael
2007-01-01
Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.
NASA Technical Reports Server (NTRS)
Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.
2014-01-01
A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.
NASA Astrophysics Data System (ADS)
Kurazhkovskaya, N. A.; Klain, B. I.
2018-03-01
The characteristics and interplanetary excitation conditions of isolated bursts of Pi2 geomagnetic pulsations observed during the development of magnetospheric substorms (substorm Pi2) and in its absence (nonsubstorm Pi2) on the night side of the Earth are comparatively analyzed. It is shown that, regardless of the local time and season, the amplitude of isolated Pi2 substorm bursts is always higher than that of the nonsubstorm ones, and the periods and duration of the wave packets of substorm Pi2 bursts are less than those of nonsubstorms. Diurnal and seasonal variations in the characteristics of the two groups of Pi2 bursts differ in the form and position of maxima and minima. It is found that the start of excitation of isolated Pi2 bursts, during substorms and in its absence, is controlled by the preferred direction of the interplanetary magnetic field (IMF) vector perpendicular to the Sun-Earth line (angle θxB = arccos( B x/B) → 90°). It is assumed that isolated Pi2 bursts of both groups are triggered by reorientation of the IMF vector in the ecliptic plane and the plane perpendicular to it 15 min before their onset. The most likely source of midlatitude isolated Pi2 bursts during substorm development and in its absence are bursty bulk flows (BBFs) in the plasma sheet of the magnetospheric tail, the regularities of which coincide in many respects with the observed features of Pi2 bursts.
Interplanetary Particle Environment. Proceedings of a Conference
NASA Technical Reports Server (NTRS)
Feynman, Joan (Editor); Gabriel, Stephen (Editor)
1988-01-01
A workshop entitled the Interplanetary Charged Particle Environment was held at the Jet Propulsion Laboratory (JPL) on March 16 and 17, 1987. The purpose of the Workshop was to define the environment that will be seen by spacecraft operating in the 1990s. It focused on those particles that are involved in single event upset, latch-up, total dose and displacement damage in spacecraft microelectronic parts. Several problems specific to Magellan were also discussed because of the sensitivity of some electronic parts to single-event phenomena. Scientists and engineers representing over a dozen institutions took part in the meeting. The workshop consisted of two major activities, reviews of the current state of knowledge and the formation of working groups and the drafting of their reports.
NASA Technical Reports Server (NTRS)
Cocks, F. Hadley
1991-01-01
The discovery of materials which are superconducting above 100 K makes possible the use of superconducting coils deployed beyong the hull of an interplanetary spacecraft to produce a magnetic shield capable of giving protection not only against solar flare radiation, but also even against Galactic radiation. Such deployed coils can be of very large size and can thus achieve the great magnetic moments required using only relatively low currents. Deployable high-temperature-superconducting coil magnetic shields appear to offer very substantial reductions in mass and energy compared to other concepts and could readily provide the radiation protection needed for a Mars mission or space colonies.
Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space
NASA Technical Reports Server (NTRS)
Russell, C. T.; Hoppe, M. M.
1983-01-01
The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
NASA Astrophysics Data System (ADS)
Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert
2018-07-01
Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.
Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert
2018-04-17
Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru; Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru
The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.
Coherent current-carrying filaments during nonlinear reconnecting ELMs and VDEs
NASA Astrophysics Data System (ADS)
Ebrahimi, Fatima
2017-10-01
We have examined plasmoid-mediated reconnection in a spherical tokamak using global nonlinear three-dimensional resistive MHD simulations with NIMROD. We have shown that physical current sheets/layers develop near the edge as a peeling component of ELMs or during vertical displacement events (associated with the scrape-off layer currents - halo currents), can become unstable to nonaxisymmetric 3-D current-sheet instabilities (peeling- or tearing-like) and nonlinearly form edge coherent current-carrying filaments. Time-evolving edge current sheets with reconnecting nature in NSTX and NSTX-U configurations are identified. In the case of peeling-like edge localized modes, the longstanding problem of quasiperiodic ELMs cycles is explained through the relaxation of edge current via direct numerical calculations of reconnecting emf terms. For the VDEs during disruption, we show that as the plasma is vertically displaced, edge halo current sheet becomes MHD unstable and forms coherent edge current filament structures, which would eventually bleed into the walls. Our model explains some essential asymmetric physics relevant to the experimental observations. Supported by DOE Grants DE-SC0010565, DE-AC02-09CH11466.
EVIDENCE FOR QUASI-ADIABATIC MOTION OF CHARGED PARTICLES IN STRONG CURRENT SHEETS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malova, H. V.; Popov, V. Yu.; Grigorenko, E. E.
We investigate quasi-adiabatic dynamics of charged particles in strong current sheets (SCSs) in the solar wind, including the heliospheric current sheet (HCS), both theoretically and observationally. A self-consistent hybrid model of an SCS is developed in which ion dynamics is described at the quasi-adiabatic approximation, while the electrons are assumed to be magnetized, and their motion is described in the guiding center approximation. The model shows that the SCS profile is determined by the relative contribution of two currents: (i) the current supported by demagnetized protons that move along open quasi-adiabatic orbits, and (ii) the electron drift current. The simplestmore » modeled SCS is found to be a multi-layered structure that consists of a thin current sheet embedded into a much thicker analog of a plasma sheet. This result is in good agreement with observations of SCSs at ∼1 au. The analysis of fine structure of different SCSs, including the HCS, shows that an SCS represents a narrow current layer (with a thickness of ∼10{sup 4} km) embedded into a wider region of about 10{sup 5} km, independently of the SCS origin. Therefore, multi-scale structuring is very likely an intrinsic feature of SCSs in the solar wind.« less
NASA Astrophysics Data System (ADS)
Korovinskiy, D. B.; Erkaev, N. V.; Semenov, V. S.; Ivanov, I. B.; Kiehas, S. A.; Ryzhkov, I. I.
2018-02-01
The stability of the Fadeev-like current sheet with respect to transversally propagating kink-like perturbations (flapping mode) is considered in terms of two-dimensional linear magnetohydrodynamic numerical simulations. It is found that the current sheet is stable when the total pressure minimum is located in the sheet center and unstable when the maximum value is reached there. It is shown that an unstable spot of any size enforces the whole sheet to be unstable, though the increment of instability decreases with the reduction of the unstable domain. In unstable sheets, the dispersion curve of instability shows a good match with the double-gradient (DG) model prediction. Here, the typical growth rate (short-wavelength limit) is close to the DG estimate averaged over the unstable region. In stable configurations, the typical frequency matches the maximum DG estimate. The dispersion curve of oscillations demonstrates a local maximum at wavelength ˜0.7 sheet half-width, which is a new feature that is absent in simplified analytical solutions.
The Jovian magnetotail and its current sheet
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Burlaga, L. F.; Ness, N. F.
1980-01-01
Analyses of Voyager magnetic field measurements have extended the understanding of the structural and temporal characteristics of Jupiter's magnetic tail. The magnitude of the magnetic field in the lobes of the tail is found to decrease with Jovicentric distance approximately as r to he-1.4, compared with the power law exponent of -1.7 found for the rate of decrease along the Pioneer 10 outbound trajectory. Voyager observations of magnetic field component variations with Jovicentric distance in the tail do not support the uniform radial plasma outflow model derived from Pioneer data. Voyager 2 has shown that the azimuthal current sheet which surrounds Jupiter in the inner and middle magnetosphere extends tailward (in the anti-Sun direction) to a distance of at least 100 R sub J. In the tail this current sheet consists of a plasma sheet and embedded neutral sheet. In the region of the tail where the sheet is observed, the variation of the magnetic field as a result of the sheet structure and its 10 hr periodic motion is the dominant variation seen.
Development of Turbulent Magnetic Reconnection in a Magnetic Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Can; Lu, Quanming; Wang, Rongsheng
In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Mcpherron, R. L.
1990-01-01
A qualitative model of cross-tail current flow is considered. It is suggested that when magnetic reconnection begins, the current effectively flows across the plasma sheet both earthward and tailward of the disruption region near the neutral line. It is shown that an enhanced cross-tail current earthward of this region would thin the plasma sheet substantially due to the magnetic pinch effect. The results explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.
On spontaneous formation of current sheets: Untwisted magnetic fields
NASA Astrophysics Data System (ADS)
Bhattacharyya, R.; Low, B. C.; Smolarkiewicz, P. K.
2010-11-01
This is a study of the spontaneous formation of electric current sheets in an incompressible viscous fluid with perfect electrical conductivity, governed by the magnetohydrodynamic Navier-Stokes equations. Numerical solutions to two initial value problems are presented for a three-dimensional, periodic, untwisted magnetic field evolving, with no change in magnetic topology under the frozen-in condition and at characteristic fluid Reynolds numbers of the order of 500, from a nonequilibrium initial state with the fluid at rest. The evolution converts magnetic free energy into kinetic energy to be all dissipated away by viscosity so that the field settles into a minimum-energy, static equilibrium. The solutions demonstrate that, as a consequence of the frozen-in condition, current sheets must form during the evolution despite the geometric simplicity of the prescribed initial fields. In addition to the current sheets associated with magnetic neutral points and field reversal layers, other sheets not associated with such magnetic features are also in evidence. These current sheets form on magnetic flux surfaces. This property is used to achieve a high degree of the frozen-in condition in the simulations, by describing the magnetic field entirely in terms of the advection of its flux surfaces and integrating the resulting governing equations with a customized version of a general-purpose high-resolution (viz., nonoscillatory) hydrodynamical simulation code EULAG [J. M. Prusa et al., Comput. Fluids 37, 1193 (2008)]. Incompressibility imposes the additional global constraint that the flux surfaces must evolve with no change in the spatial volumes they enclose. In this approach, current sheet formation is demonstrated graphically by the progressive pressing together of suitably selected flux surfaces until their separation has diminished below the minimal resolved distance on a fixed grid. The frozen-in condition then fails in the simulation as the field reconnects through an effecting numerical resistivity. The principal results are related to the Parker theory of current-sheet formation and dissipation in the solar corona.
Eddy current thickness measurement apparatus
Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.
2015-06-16
A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.
Steady State Load Characterization Fact Sheet: 2012 Chevy Volt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoffield, Don
2015-03-01
This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.
NASA Technical Reports Server (NTRS)
Fisk, L. A. (Editor); Axford, W. I. (Editor)
1976-01-01
A series of papers are presented from a symposium attended by over 200 European and American scientists to examine the importance of exploring the interplanetary medium and the sun by out-of-the-ecliptic space missions. The likely scientific returns of these missions in the areas of solar, interplanetary, and cosmic ray physics is examined. Theoretical models of the solar wind and its interaction with interplanetary magnetic fields are given.
The observed North-South Asymmetry of IMF spiral
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, H.S.; Xue, S.S.
1995-06-01
The authors appraise the finding, reported in the literature, that a small but finite north-south asymmetry (NSA) exists in the interplanetary magnetic field (IMF) spiral at Earth`s orbit. The authors have analyzed the data available on the Omnitape for the 1963 to 1993 period. The coverage is very uneven, ranging from less than 40% to greater than 80%. The magnitude of NSA fluctuates considerably during the period of this analysis. This is true even if one considers the period 1967 to 1982 when the coverage is greater than 50%. The values of NSA derived from 27-day averages of the hourlymore » data points range from greater than +50 deg to less than {minus}40 deg. If one arranges the data according to the magnetic polarity epochs of the solar polar field, the epoch averages gives the magnitude of NSA less than approximately 2 deg. This is also true, if one considers the average magnitude of NSA for the 1965 to 1993 period, when the coverage is greater than 25%. A genuine, persistent, NSA of IMF spiral is likely to affect the cosmic ray modulation, on either side of the current sheet, by introducing a corresponding change in the radial diffusion coefficient of energetic particle transport in the heliosphere. The annual mean values of the observed NSA of IMF spiral are compared with the observed off-ecliptic contributions to cosmic ray modulation.« less
MESSENGER Observations of Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Slavin, James A.
2010-01-01
During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic field (IMF) produced intense reconnection signatures in the dayside and nightside magnetosphere and markedly different system-level responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active, with large magnetic field components normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 to 90 s. However, the strength and direction of the tail magnetic field was stable. In contrast, the IMF during the third flyby varied from north to south on timescales of minutes. Although the MESSENGER measurements were limited during that encounter to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Instead, plasmoid release was highly correlated with four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects provide a basis for comparison and contrast with what is known about the response of the Earth s magnetosphere to variable versus steady southward IMF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheeley, N. R. Jr.; Wang, Y.-M.
The quiet nature of sunspot cycle 24 was disrupted during the second half of 2014 when the Sun’s large-scale field underwent a sudden rejuvenation: the solar mean field reached its highest value since 1991, the interplanetary field strength doubled, and galactic cosmic rays showed their strongest 27-day modulation since neutron-monitor observations began in 1957; in the outer corona, the large increase of field strength was reflected by unprecedentedly large numbers of coronal loops collapsing inward along the heliospheric current sheet. Here, we show that this rejuvenation was not caused by a significant increase in the level of solar activity asmore » measured by the smoothed sunspot number and CME rate, but instead was caused by the systematic emergence of flux in active regions whose longitudinal distribution greatly increased the Sun’s dipole moment. A similar post-maximum increase in the dipole moment occurred during each of the previous three sunspot cycles, and marked the start of the declining phase of each cycle. We note that the north–south component of this peak dipole moment provides an early indicator of the amplitude of the next cycle, and conclude that the amplitude of cycle 25 may be comparable to that of cycle 24, and well above the amplitudes obtained during the Maunder Minimum.« less
Convection Constraints and Current Sheet Thinning During the Substorm Growth Phase
NASA Astrophysics Data System (ADS)
Otto, A.; Hsieh, M.
2012-12-01
A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 RE. We propose that the cause for this current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux that is eroded at the dayside as a result of dayside reconnection. Slow (adiabatic) convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is illustrated and examined by three-dimensional meso-scale MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase. The developing thin current sheet is easily destabilized and can undergo localized reconnection events. We present properties of the thinning current sheet, the associated entropy evolution, examples of localized reconnection onset and we discuss the dependence of this process on external parameters such the global reconnection rate.
The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet
NASA Astrophysics Data System (ADS)
Coroniti, F. V.; Pritchett, P. L.
2014-03-01
The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.
Current Sheet Thinning Associated with Dayside Reconnection
NASA Astrophysics Data System (ADS)
Hsieh, M.; Otto, A.; Ma, X.
2011-12-01
The thinning of the near-Earth current sheet during the growth phase is of critical importance to understand geomagnetic substorms and the conditions that lead to the onset of the expansion phase. We have proposed that convection from the midnight tail region to the dayside as the cause for this current sheet thinning. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. The process is examined by three-dimensional MHD simulations. The properties of the current sheet thinning are determined as a function of the magnitude of convection toward the dayside and the lobe boundary conditions. It is shown that the model yields a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase.
Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer
NASA Technical Reports Server (NTRS)
Degnan, John J.; Smith, David E. (Technical Monitor)
2001-01-01
The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results and some concluding remarks regarding future applications.
TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vörös, Zoltán; Narita, Yasuhito; Yordanova, Emiliya
2016-03-01
Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives.more » During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.« less
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Coroniti, F. V.
1992-01-01
The firehose marginally stable current sheet, which may model the flow away from the distant reconnection neutral line, assumes that the accelerated particles escape and never return to re-encounter the current region. This assumption fails on the earthward side where the accelerated ions mirror in the geomagnetic dipole field and return to the current sheet at distances up to about 30 R(E) down the tail. Two-dimensional particle simulations are used to demonstrate that the reflected ions drive a 'shock-like' structure in which the incoming flow is decelerated and the Bz field is highly compressed. These effects are similar to those produced by adiabatic choking of steady convection. Possible implications of this interaction for the dynamics of the tail are considered.
NASA Astrophysics Data System (ADS)
Zhao, Duo; Fu, Suiyan; Parks, George K.; Sun, Weijie; Zong, Qiugang; Pan, Dongxiao; Wu, Tong
2017-08-01
We present new observations of electron distributions and the accompanying waves during the current sheet activities at ˜60 RE in the geomagnetic tail detected by the ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft. We find that electron flat-top distribution is a common feature near the neutral sheet of the tailward flowing plasmas, consistent with the electron distributions that are shaped in the reconnection region. Whistler mode waves are generated by the anisotropic electron temperature associated with the electron flat-top distributions. These whistler mode waves are modulated by low frequency ion scale waves that are possibly excited by the high-energy ions injected during the current sheet instability. The magnetic and electric fields of the ion scale waves are in phase with electron density variations, indicating that they are compressional ion cyclotron waves. Our observations present examples of the dynamical processes occurring during the current sheet activities far downstream of the geomagnetic tail.
High-latitude Pi2 pulsations associated with kink-like neutral sheet oscillations
NASA Astrophysics Data System (ADS)
Wang, G. Q.; Volwerk, M.; Zhang, T. L.; Schmid, D.; Yoshikawa, A.
2017-03-01
A kink-like neutral sheet oscillation event observed by Cluster between 1436 and 1445 UT on 15 October 2004 has been investigated. The oscillations with periods between 40 and 60 s, observed at (-13.1, 8.7, -0.5) RE, are dominant in BX and BY. And they propagate mainly duskward with a velocity of (86, 147, 46) km/s. Their periods and velocity can be explained by the magnetic double-gradient instability. These oscillations are accompanied by strong field-aligned currents (FACs), which prefer to occur near the strongly tilted current sheet, and local maximum FAC tends to occur near the neutral sheet. The FACs show one-to-one correlated with a high-latitude Pi2 pulsation event recorded by KTN and TIK stations with a delay time of 60 and 90 s, respectively. Both the Pi2 and oscillations propagate westward with a comparative conjunctive speed. These findings suggest a strong relation between the FACs and Pi2, and we infer that the Pi2 is caused by the FACs. The periods of the FACs are modulated by the oscillations but not exactly equal, which is one possible reason that the period of the Pi2 caused by the FACs could be different from the oscillations. We speculate that a current circuit between the plasma sheet and ionosphere can be formed during strongly tilted current sheet, and successive tilted current sheet could generate quasiperiodic multiple FAC systems, which can generate high-latitude Pi2 pulsations and control their periods.
Analysis of the interplanetary magnetic field observations at different heliocentric distances
NASA Astrophysics Data System (ADS)
Khabarova, Olga
2013-04-01
Multi-spacecraft measurements of the interplanetary magnetic field (IMF) from 0.29 AU to 5 AU along the ecliptic plane have demonstrated systematic deviations of the observed IMF strength from the values predicted on the basis of the Parker-like radial extension models (Khabarova, Obridko, 2012). In particular, it was found that the radial IMF component |Br| decreases with a heliocentric distance r with a slope of -5/3 (instead of r-2 expansion law). The current investigation of multi-point observations continues the analysis of the IMF (and, especially, Br) large-scale behaviour, including its latitudinal distribution. Additionally, examples of the mismatches between the expected IMF characteristics and observations at smaller scales are discussed. It is shown that the observed effects may be explained by not complete IMF freezing-in to the solar wind plasma. This research was supported by the Russian Fund of Basic Researches' grants Nos.11-02-00259-a, and 12-02-10008-K. Khabarova Olga, and Obridko Vladimir, Puzzles of the Interplanetary Magnetic Field in the Inner Heliosphere, 2012, Astrophysical Journal, 761, 2, 82, doi:10.1088/0004-637X/761/2/82, http://arxiv.org/pdf/1204.6672v2.pdf
Structure of high latitude currents in magnetosphere-ionosphere models
NASA Astrophysics Data System (ADS)
Wiltberger, M. J.; Lyon, J.; Merkin, V. G.; Rigler, E. J.
2016-12-01
Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model the structure of the high latitude field-aligned current patterns is examined. Each LFM resolution was run for the entire Whole Heliosphere Interval (WHI), which contained two high-speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results from the Weimer 2005 computed using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and confined. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths in the model also results in a better shielding of mid- and low-latitude ionosphere from the polar cap convection, also in agreement with observations. Current-voltage relationships between the R1 strength and the cross-polar cap potential (CPCP) are quite similar at the higher resolutions indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.
NASA Astrophysics Data System (ADS)
Nishimura, Yukitoshi; Kikuchi, Takashi; Ebihara, Yusuke; Yoshikawa, Akimasa; Imajo, Shun; Li, Wen; Utada, Hisashi
2016-08-01
We investigated evolution of ionospheric currents during sudden commencements using a ground magnetometer network in conjunction with an all-sky imager, which has the advantage of locating field-aligned currents much more accurately than ground magnetometers. Preliminary (PI) and main (MI) impulse currents showed two-cell patterns propagating antisunward, particularly during a southward interplanetary magnetic field (IMF). Although this overall pattern is consistent with the Araki (solar wind sources of magnetospheric ultra-low-frequency waves. Geophysical monograph series, vol 81. AGU, Washington, DC, pp 183-200, 1994. doi: 10.1029/GM081p0183) model, we found several interesting features. The PI and MI currents in some events were highly asymmetric with respect to the noon-midnight meridian; the post-noon sector did not show any notable PI signal, but only had an MI starting earlier than the pre-noon MI. Not only equivalent currents but also aurora and equatorial magnetometer data supported the much weaker PI response. We suggest that interplanetary shocks impacting away from the subsolar point caused the asymmetric current pattern. Additionally, even when PI currents form in both pre- and post-noon sectors, they can initiate and disappear at different timings. The PI currents did not immediately disappear but coexisted with the MI currents for the first few minutes of the MI. During a southward IMF, the MI currents formed equatorward of a preexisting DP-2, indicating that the MI currents are a separate structure from a preexisting DP-2. In contrast, the MI currents under a northward IMF were essentially an intensification of a preexisting DP-2. The magnetometer and imager combination has been shown to be a powerful means for tracing evolution of ionospheric currents, and we showed various types of ionospheric responses under different upstream conditions.
Graphene electron cannon: High-current edge emission from aligned graphene sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianlong; Li, Nannan; Guo, Jing
2014-01-13
High-current field emitters are made by graphene paper consist of aligned graphene sheets. Field emission luminance pattern shows that their electron beams can be controlled by rolling the graphene paper from sheet to cylinder. These specific electron beams would be useful to vacuum devices and electron beam lithograph. To get high-current emission, the graphene paper is rolled to array and form graphene cannon. Due to aligned emission array, graphene cannon have high emission current. Besides high emission current, the graphene cannon is also tolerable with excellent emission stability. With good field emission properties, these aligned graphene emitters bring application insight.
Lühr, Hermann; Huang, Tao; Wing, Simon; Kervalishvili, Guram; Rauberg, Jan; Korth, Haje
2017-01-01
ESA’s Swarm constellation mission makes it possible for the first time to determine field-aligned currents (FACs) in the ionosphere uniquely. In particular at high latitudes, the dual-satellite approach can reliably detect some FAC structures which are missed by the traditional single-satellite technique. These FAC events occur preferentially poleward of the auroral oval and during times of northward interplanetary magnetic field (IMF) orientation. Most events appear on the nightside. They are not related to the typical FAC structures poleward of the cusp, commonly termed NBZ. Simultaneously observed precipitating particle spectrograms and auroral images from Defense Meteorological Satellite Program (DMSP) satellites are consistent with the detected FACs and indicate that they occur on closed field lines mostly adjacent to the auroral oval. We suggest that the FACs are associated with Sun-aligned filamentary auroral arcs. Here we introduce in an initial study features of the high-latitude FAC structures which have been observed during the early phase of the Swarm mission. A more systematic survey over longer times is required to fully characterize the so far undetected field aligned currents. PMID:29056833
Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate
NASA Technical Reports Server (NTRS)
Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.
1993-01-01
Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.
The Viability of a DTN System for Current Military Application
2013-03-01
Agency (DARPA) Disruption-Tolerant Networking program and the Internet Research Task Force (IRTF) DTN Research Group made significant strides toward...Disruption-Tolerant Networks A Primer,” Interplanetary Internet Special Interest Group, 2012. [4] D. T. N. R. Group, “Compiling DTN2,” Internet Research Task
49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.
Code of Federal Regulations, 2012 CFR
2012-10-01
... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...
49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.
Code of Federal Regulations, 2014 CFR
2014-10-01
... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...
49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.
Code of Federal Regulations, 2013 CFR
2013-10-01
... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...
49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.
Code of Federal Regulations, 2011 CFR
2011-10-01
... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...
49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.
Code of Federal Regulations, 2010 CFR
2010-10-01
... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...
Solar Eruptions, CMEs and Space Weather
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat
2011-01-01
Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from the Sun and propagate far into the interplanetary medium. CMEs represent energy output from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of solar storms.
NASA Astrophysics Data System (ADS)
Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John
2018-05-01
On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.
Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 3: Programmer's manual
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. Here, information is given on the IPOST code.
Impact of the storm-time plasma sheet ion composition on the ring current energy density
NASA Astrophysics Data System (ADS)
Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.
2017-12-01
The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].
FDTD modeling of thin impedance sheets
NASA Technical Reports Server (NTRS)
Luebbers, Raymond; Kunz, Karl
1991-01-01
Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.
NASA Technical Reports Server (NTRS)
Newkirk, G., Jr.; Asbridge, J.; Lockwood, J. A.; Garcia-Munoz, M.; Simpson, J. A.
1986-01-01
The role which empirical determinations of the latitudinal variation of cosmic rays with respect to the current sheet may have in illuminating the importance of the cross-field drift of particles in the large-scale heliospheric magnetic field is discussed. Using K coronameter observations and measured solar wind speeds, the latitudinal gradients have been determined with respect to the current sheet for cosmic rays in four rigidity ranges. Gradients vary between approximately -2 and -50 pct/AU. The rigidity dependence of the decrease of cosmic ray flux with distance from the current sheet lies between the -0.72 to -0.86 power of the rigidity, with the exact dependence being determined by the definition used for the median rigidity of each monitor.
Plasmoid Instability in Forming Current Sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comisso, L.; Lingam, M.; Huang, Y. -M.
The plasmoid instability has revolutionized our understanding of magnetic reconnection in astrophysical environments. By preventing the formation of highly elongated reconnection layers, it is crucial in enabling the rapid energy conversion rates that are characteristic of many astrophysical phenomena. Most previous studies have focused on Sweet–Parker current sheets, which are unattainable in typical astrophysical systems. Here we derive a general set of scaling laws for the plasmoid instability in resistive and visco-resistive current sheets that evolve over time. Our method relies on a principle of least time that enables us to determine the properties of the reconnecting current sheet (aspect ratio and elapsed time) and the plasmoid instability (growth rate, wavenumber, inner layer width) at the end of the linear phase. After this phase the reconnecting current sheet is disrupted and fast reconnection can occur. The scaling laws of the plasmoid instability are not simple power laws, and they depend on the Lundquist number (S), the magnetic Prandtl number (P m), the noise of the system (more » $${\\psi }_{0}$$), the characteristic rate of current sheet evolution ($$1/\\tau $$), and the thinning process. We also demonstrate that previous scalings are inapplicable to the vast majority of astrophysical systems. Furthermore, we explore the implications of the new scaling relations in astrophysical systems such as the solar corona and the interstellar medium. In both of these systems, we show that our scaling laws yield values for the growth rate, wavenumber, and aspect ratio that are much smaller than the Sweet–Parker–based scalings.« less
Plasmoid Instability in Forming Current Sheets
Comisso, L.; Lingam, M.; Huang, Y. -M.; ...
2017-11-28
The plasmoid instability has revolutionized our understanding of magnetic reconnection in astrophysical environments. By preventing the formation of highly elongated reconnection layers, it is crucial in enabling the rapid energy conversion rates that are characteristic of many astrophysical phenomena. Most previous studies have focused on Sweet–Parker current sheets, which are unattainable in typical astrophysical systems. Here we derive a general set of scaling laws for the plasmoid instability in resistive and visco-resistive current sheets that evolve over time. Our method relies on a principle of least time that enables us to determine the properties of the reconnecting current sheet (aspect ratio and elapsed time) and the plasmoid instability (growth rate, wavenumber, inner layer width) at the end of the linear phase. After this phase the reconnecting current sheet is disrupted and fast reconnection can occur. The scaling laws of the plasmoid instability are not simple power laws, and they depend on the Lundquist number (S), the magnetic Prandtl number (P m), the noise of the system (more » $${\\psi }_{0}$$), the characteristic rate of current sheet evolution ($$1/\\tau $$), and the thinning process. We also demonstrate that previous scalings are inapplicable to the vast majority of astrophysical systems. Furthermore, we explore the implications of the new scaling relations in astrophysical systems such as the solar corona and the interstellar medium. In both of these systems, we show that our scaling laws yield values for the growth rate, wavenumber, and aspect ratio that are much smaller than the Sweet–Parker–based scalings.« less
Localized aurora beyond the auroral oval
NASA Astrophysics Data System (ADS)
Frey, Harald U.
2007-03-01
Aurora is the result of the interaction between precipitating energetic electrons and protons with the upper atmosphere. Viewed from space, it generally occurs in continuous and diffuse ovals of light around the geomagnetic poles. Additionally, there are localized regions of aurora that are unrelated to the ovals and exhibit different morphological, spatial, and temporal properties. Some of these localized aurorae are detached from the oval poleward or equatorward of it. Others are located within the oval and are brighter than the surrounding diffuse aurora. Many of them occur only during preferred solar wind conditions and orientations of the interplanetary magnetic field. This review describes the different localized aurorae and their particle sources in the plasma sheet, at the plasmapause, or at the magnetopause. Their origin is still not completely understood, and the study of aurorae can teach a great deal about their underlying physical processes of reconnection, electrostatic acceleration, or wave-particle interactions.
NASA Astrophysics Data System (ADS)
Dargent, J.; Aunai, N.; Belmont, G.; Dorville, N.; Lavraud, B.; Hesse, M.
2016-06-01
> Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.
Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment
NASA Astrophysics Data System (ADS)
Schaffner, D. A.
2015-12-01
The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.
NASA Astrophysics Data System (ADS)
Li, G.; Arnold, L.; Miao, B.; Yan, Y.
2011-12-01
G. Li (1,2), L. Arnold (1), B. Miao (3) and Y. Yan (4) (1) Department of Physics, University of Alabama in Huntsville Huntsville, AL, 35899 (2) CSPAR, University of Alabama in Huntsville Huntsville, AL, 35899 (3) School of Earth and Space Sciences, University of Science and Technology of CHINA, Hefei, China (4) Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012, China Current sheets is a common structure in the solar wind and is a significant source of solar wind MHD turbulence intermittency. The origin of these structure is presently unknown. Non-linear interactions of the solar wind MHD turbulence can spontaneously generate these structures. On the other hand, there are proposals that these structures may represent relic structures having solar origins. Using a technique developed in [1], we examine current sheets in the solar wind from multiple spacecraft. We identify the "single-peak" and "double-peak" events in the solar wind and discuss possible scenarios for these events and its implication of the origin of the current sheets. [1] Li, G., "Identify current-sheet-like structures in the solar wind", ApJL 672, L65, 2008.
NASA Technical Reports Server (NTRS)
Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.
1995-01-01
Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.
Laboratory observation of resistive electron tearing in a two-fluid reconnecting current sheet
Jara-Almonte, Jonathan; Ji, Hantao; Yamada, Masaaki; ...
2016-08-25
The spontaneous formation of plasmoids via the resistive electron tearing of a reconnecting current sheet is observed in the laboratory. These experiments are performed during driven, antiparallel reconnection in the two-fluid regime within the Magnetic Reconnection Experiment. It is found that plasmoids are present even at a very low Lundquist number, and the number of plasmoids scales with both the current sheet aspect ratio and the Lundquist number. Furthermore, the reconnection electric field increases when plasmoids are formed, leading to an enhanced reconnection rate.
A current disruption mechanism in the neutral sheet - A possible trigger for substorm expansions
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Mankofsky, A.; Chang, C.-L.; Papadopoulos, K.; Wu, C. S.
1990-01-01
A linear analysis is performed to investigate the kinetic cross-field streaming instability in the earth's magnetotail neutral sheet region. Numerical solution of the dispersion equation shows that the instability can occur under conditions expected for the neutral sheet just prior to the onset of substorm expansion. The excited waves are obliquely propagating whistlers with a mixed polarization in the lower hybrid frequency range. The ensuing turbulence of this instability can lead to a local reduction of the cross-tail current causing it to continue through the ionosphere to form a substorm current wedge. A substorm expansion onset scenario is proposed based on this instability in which the relative drift between ions and electrons is primarily due to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is within the range of electric field values detected in the neutral sheet region during substorm intervals. The skew in local time of substorm onset location and the three conditions under which substorm onset is observed can be understood on the basis of the proposed scenario.
The Magnetic Field Structure of Mercury's Magnetotail
NASA Astrophysics Data System (ADS)
Rong, Z. J.; Ding, Y.; Slavin, J. A.; Zhong, J.; Poh, G.; Sun, W. J.; Wei, Y.; Chai, L. H.; Wan, W. X.; Shen, C.
2018-01-01
In this study, we use the magnetic field data measured by MErcury Surface, Space ENvironment, GEochemistry, and Ranging from 2011 to 2015 to investigate the average magnetic field morphology of Mercury's magnetotail in the down tail 0-3
Joule heating and runaway electron acceleration in a solar flare
NASA Technical Reports Server (NTRS)
Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.
1989-01-01
The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.
NASA Astrophysics Data System (ADS)
Brown, A. G.; Francis, N. M.; Broomhead, D. S.; Cannon, P. S.; Akram, A.
1999-06-01
Using data from the Sweden and Britain Radar Experiment (SABRE) VHF coherent radar, Yeoman et al. [1990] found evidence for two and four sector structures during the declining phase of solar cycle (SC) 21. No such obvious harmonic features were present during the ascending phase of SC 22. It was suggested that the structure of the heliospheric current sheet might exhibit nonlinear behavior during the latter period. A direct test of this suggestion, using established nonlinear methods, would require the computation of the fractal dimension of the data, for example. However, the quality of the SABRE data is insufficient for this purpose. Therefore we have tried to answer a simpler question: Is there any evidence that the SABRE data was generated by a (low-dimensional) nonlinear process? If this were the case, it would be a powerful indicator of nonlinear behavior in the solar current sheet. Our approach has been to use a system of orthogonal linear filters to separate the data into linearly uncorrelated time series. We then look for nonlinear dynamical relationships between these time series, using radial basis function models (which can be thought of as a class of neural networks). The presence of such a relationship, indicated by the ability to model one filter output given another, would equate to the presence of nonlinear properties within the data. Using this technique, evidence is found for the presence of low-level nonlinear behavior during both phases of the solar cycle investigated in this study. The evidence for nonlinear behavior is stronger during the descending phase of SC 21. However, it is not possible to distinguish between nonlinear dynamics and a nonlinearly transformed colored Gaussian noise process in either instance, using the available data. Therefore, in conclusion, we find insufficient evidence within the SABRE data set to support the suggestion of increased nonlinear dynamical behavior during the ascending phase of SC 22. In fact, nonlinear dynamics would seem to exert very little influence within the measurement time series at all, given the observed data. Therefore it is likely that stochastic or unresolved high-dimensional nonlinear mechanisms are responsible for the observed spectrum complexity during the ascending phase of SC 22.
NASA Astrophysics Data System (ADS)
Worster, Grae; Huppert, Herbert; Robison, Rosalyn; Nandkishore, Rahul; Rajah, Luke
2008-11-01
We have used simple laboratory experiments with viscous fluids to explore the dynamics of grounding lines between Antarctic marine ice sheets and the freely floating ice shelves into which they develop. Ice sheets are shear-dominated gravity currents, while ice shelves are extensional gravity currents with zero shear to leading order. Though ice sheets have non-Newtonian rheology, fundamental aspects of their flow can be explored using Newtonian fluid mechanics. We have derived a mathematical model of this flow that incorporates a new dynamic boundary condition for the position of the grounding line, where the gravity current loses contact with the solid base. Good agreement between our theoretical predictions and our experimental measurements, made using gravity currents of syrup flowing down a rigid slope into a deep, dense salt solution, gives confidence in the fundamental assumptions of our model, which can be incorporated into shallow-ice models to make important predictions regarding the dynamical stability of marine ice sheets.
NASA Technical Reports Server (NTRS)
Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.;
2016-01-01
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
A priori Estimates for 3D Incompressible Current-Vortex Sheets
NASA Astrophysics Data System (ADS)
Coulombel, J.-F.; Morando, A.; Secchi, P.; Trebeschi, P.
2012-04-01
We consider the free boundary problem for current-vortex sheets in ideal incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally) stable due to the existence of surface waves solutions to the linearized equations. The existence of such waves may yield a loss of derivatives in the energy estimate of the solution with respect to the source terms. However, under a suitable stability condition satisfied at each point of the initial discontinuity and a flatness condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth solutions with no loss of derivatives. The result of this paper gives some hope for proving the local existence of smooth current-vortex sheets without resorting to a Nash-Moser iteration. Such result would be a rigorous confirmation of the stabilizing effect of the magnetic field on Kelvin-Helmholtz instabilities, which is well known in astrophysics.
Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y
2016-05-28
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
NASA Technical Reports Server (NTRS)
Dryer, M. (Editor); Tandberg-Hanssen, E.
1980-01-01
The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.
The "Approximate 150 Day Quasi-Periodicity" in Interplanetary and Solar Phenomena During Cycle 23
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2004-01-01
A"quasi-periodicity" of approx. 150 days in various solar and interplanetary phenomena has been reported in earlier solar cycles. We suggest that variations in the occurrence of solar energetic particle events, inter-planetary coronal mass ejections, and geomagnetic storm sudden commenceents during solar cycle 23 show evidence of this quasi-periodicity, which is also present in the sunspot number, in particular in the northern solar hemisphere. It is not, however, prominent in the interplanetary magnetic field strength.
A Time-dependent Heliospheric Model Driven by Empirical Boundary Conditions
NASA Astrophysics Data System (ADS)
Kim, T. K.; Arge, C. N.; Pogorelov, N. V.
2017-12-01
Consisting of charged particles originating from the Sun, the solar wind carries the Sun's energy and magnetic field outward through interplanetary space. The solar wind is the predominant source of space weather events, and modeling the solar wind propagation to Earth is a critical component of space weather research. Solar wind models are typically separated into coronal and heliospheric parts to account for the different physical processes and scales characterizing each region. Coronal models are often coupled with heliospheric models to propagate the solar wind out to Earth's orbit and beyond. The Wang-Sheeley-Arge (WSA) model is a semi-empirical coronal model consisting of a potential field source surface model and a current sheet model that takes synoptic magnetograms as input to estimate the magnetic field and solar wind speed at any distance above the coronal region. The current version of the WSA model takes the Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model as input to provide improved time-varying solutions for the ambient solar wind structure. When heliospheric MHD models are coupled with the WSA model, density and temperature at the inner boundary are treated as free parameters that are tuned to optimal values. For example, the WSA-ENLIL model prescribes density and temperature assuming momentum flux and thermal pressure balance across the inner boundary of the ENLIL heliospheric MHD model. We consider an alternative approach of prescribing density and temperature using empirical correlations derived from Ulysses and OMNI data. We use our own modeling software (Multi-scale Fluid-kinetic Simulation Suite) to drive a heliospheric MHD model with ADAPT-WSA input. The modeling results using the two different approaches of density and temperature prescription suggest that the use of empirical correlations may be a more straightforward, consistent method.
Why does substorm-associated auroral surge travel westward?
NASA Astrophysics Data System (ADS)
Ebihara, Y.; Tanaka, T.
2018-01-01
A substorm is a long-standing unsolved issue in solar-terrestrial physics. One of the big challenges is to explain reasonably the evolution of the morphological structure of the aurora associated with the substorm. The sudden appearance of a bright aurora and an auroral surge traveling westward (westward traveling surge, WTS) are noticeable features of the aurora during the substorm expansion phase. By using a global magnetohydrodynamics (MHD) simulation, we obtained the following results regarding the WTS. When the interplanetary magnetic field turns southward, a persistent dynamo appears in the cusp/mantle region, driving the two-cell magnetospheric convection. Then, the substorm growth phase begins. When magnetic reconnection takes place in the magnetotail, plasma is accelerated earthward in the plasma sheet, and accelerated toward the equatorial plane in the lobe. The second dynamo appears in the near-Earth region, which is closely associated with the generation of the field-aligned current (FAC) on the nightside. When the FAC reaches the ionosphere, the aurora becomes bright, and the onset of the expansion phase begins. In the ionosphere, the conductivity is intensified in the bright aurora due to the precipitation of accelerated electrons. The conductivity gradient gives rise to the overflow of the Hall current, which acts as the third dynamo. The overflow results in the accumulation of space charge, which causes a divergent electric field. The divergent electric field generates a thin, structured upward FAC adjacent to the bright aurora. The opposite process takes place on the opposite side of the bright aurora. In short, the upward FAC increases (appearance of aurora) at the leading edge of the surge, and decreases (disappearance of aurora) at the trailing edge of the surge. By repeating these processes, the surge seems to travel westward.
Collisionless reconnection in a quasi-neutral sheet near marginal stability
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Coroniti, F. V.; Pellat, R.; Karimabadi, H.
1989-01-01
Particle simulations are used to investigate the process of collisionless reconnection in a magnetotail configuration which includes a pressure gradient along the tail axis and tail flaring. In the absence of electron stabilization effects, the tearing mode is stabilized when the ion gyrofrequency in the normal field exceeds the growth rate in the corresponding one-dimensional current sheet. The presence of a low-frequency electromagnetic perturbation in the lobes can serve to destabilize a marginally stable current sheet by producing an extended neutral-sheet region which can then undergo reconnection. These results help to explain how X-type neutral lines, such as those associated with the onset of magnetospheric substorms, can be formed in the near-earth plasma sheet.
NASA Astrophysics Data System (ADS)
Lu, San; Artemyev, A. V.; Angelopoulos, V.
2017-11-01
Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.
Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.
2014-12-01
How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.
MESSENGER Observation of Mercury's Magnetopause: Structure and Dynamics
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Acuna, M. H.; Anderson, B. J.; Baker, D. N.; Benna, M.; Boardsen, S. A.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.;
2008-01-01
MESSENGER'S 14 January 2008 encounter with Mercury has provided new observations of the magnetopause of this small magnetosphere, particularly concerning the effect of the direction of the interplanetary magnetic field (IMF) on the structure and dynamics of this boundary. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through Mercury's magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of well-developed flux transfer events (FTEs) was observed in the magnetosheath following some of these southward-B, intervals. The inbound magnetopause crossing seen in the magnetic field measurements is consistent with a transition from the magnetosheath into the plasma sheet. Immediately following MESSENGER'S entry into the magnetosphere, rotational perturbations in the magnetic field similar to those seen at the Earth in association with large-scale plasma sheet vortices driven by Kelvin-Helmholtz waves along the magnetotail boundary at the Earth were observed. The outbound magnetopause occurred during northward IMF B(sub z) and had the characteristics of a tangential discontinuity. These new observations by MESSENGER may be combined and compared with the magnetopause measurements collected by Mariner 10 to derive new understanding of the response of Mercury's magnetopause to IMF direction and its effect on the rate of solar wind energy and mass input to this small magnetosphere.
Magneto-hydrodynamics of coupled fluid-sheet interface with mass suction and blowing
NASA Astrophysics Data System (ADS)
Ahmad, R.
2016-01-01
There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid-sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses.
NASA Astrophysics Data System (ADS)
Chen, Xiaowei; Wang, Wenping; Wan, Min
2013-12-01
It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.
2012-07-15
Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to thesemore » subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.« less
NASA Technical Reports Server (NTRS)
Stephens, James B. (Inventor); Yang, Mary M. (Inventor); Laue, Eric G. (Inventor)
1985-01-01
A solid electrolytic type hygrometer is described, which operates with high reliability while providing rapid and sensitive response. A gold foil electrode (16) is wrapped about a hollow glass cylinder (18), a sheet (12) of hygroscopic-electrolytic material is wrapped about the foil, and a wire (14) is wound around the outside of the electrolytic sheet. Moisture passing between wire turns can be absorbed by the electrolytic material (12), and then dissociated by current passed by the electrodes (14, 16) through the electrolytic material. The cylinder has a slit (20) extending along its length, to allow resilient expansion to press the sheet of electrolytic material firmly against the electrodes. The wire turns lie against one another to cause rapid dissociation of moisture throughout the electrolytic material. Additional guard wires (42,44, FIG. 2) lie at opposite ends of the electrolytic sheet, and currents pass through them to avoid moisture buildup at the ends of the main wire coil. The electrical current through the sheet or membrane is proportional to the partial pressure of the water-vapor.
Nonguiding Center Motion and Substorm Effects in the Magnetotail
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Kontodinas, Ioannis D.; Ball, Bryan M.; Larson, Douglas J.
1997-01-01
Thick and thin models of the middle magnetotail were developed using a consistent orbit tracing technique. It was found that currents carried near the equator by groups of ions with anisotropic distribution functions are not well approximated by the guiding center expressions. The guiding center equations fail primarily because the calculated pressure tensor is not magnetic field aligned. The pressure tensor becomes field aligned as one moves away from the equator, but here there is a small region in which the guiding center equations remain inadequate because the two perpendicular components of the pressure tensor are unequal. The significance of nonguiding center motion to substorm processes then was examined. One mechanism that may disrupt a thin cross-tail current sheet involves field changes that cause ions to begin following chaotic orbits. The lowest-altitude chaotic region, characterized by an adiabaticity parameter kappa approx. equal to 0.8, is especially important. The average cross-tail particle drift is slow, and we were unable to generate a thin current sheet using such ions. Therefore, any process that tends to create a thin current sheet in a region with kappa approaching 0.8 may cause the cross-tail current to get so low that it becomes insufficient to support the lobes. A different limit may be important in resonant orbit regions of a thin current sheet because particles reach a maximum cross-tail drift velocity. If the number of ions per unit length decreases as the tail is stretched, this part of the plasma sheet also may become unable to carry the cross-tail current needed to support the lobes. Thin sheets are needed for both resonant and chaotic orbit mechanisms because the distribution function must be highly structured. A description of current continuity is included to show how field aligned currents can evolve during the transition from a two-dimensional (2-D) to a 3-D configuration.
Data-based Modeling of the Dynamical Inner Magnetosphere During Strong Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Tsyganenko, N.; Sitnov, M.
2004-12-01
This work builds on and extends our previous effort [Tsyganenko et al., 2003] to develop a dynamical model of the storm-time geomagnetic field in the inner magnetosphere, using space magnetometer data taken during 37 major events in 1996--2000 and concurrent observations of the solar wind and IMF. The essence of the approach is to derive from the data the temporal variation of all major current systems contributing to the geomagnetic field during the entire storm cycle, using a simple model of their growth and decay. Each principal source of the external magnetic field (magnetopause, cross-tail current sheet, axisymmetric and partial ring currents, Birkeland currents) is controlled by a separate driving variable that includes a combination of geoeffective parameters in the form Nλ Vβ Bsγ , where N, V, and Bs are the solar wind density, speed, and the magnitude of the southward component of the IMF, respectively. Each source was also assumed to have an individual relaxation timescale and residual quiet-time strength, so that its partial contribution to the total field was calculated for any moment as a time integral, taking into account the entire history of the external driving of the magnetosphere during each storm. In addition, the magnitudes of the principal field sources were assumed to saturate during extremely large storms with abnormally strong external driving. All the parameters of the model field sources, including their magnitudes, geometrical characteristics, solar wind/IMF driving functions, decay timescales, and saturation thresholds were treated as free variables, to be derived from the data by the least squares. The relaxation timescales of the individual magnetospheric field sources were found to largely differ between each other, from as large as ˜30 hours for the symmetrical ring current to only ˜50 min for the region~1 Birkeland current. The total magnitudes of the currents were also found to dramatically vary in the course of major storms, with the peak values as large as 5--8 MA for the symmetric ring current and region 1 field-aligned current. At the peak of the main phase, the total partial ring current can largely exceed the symmetric one, reaching ˜10 MA and even more, but it quickly subsides as the external solar wind driving disappears, with the relaxation time ≤2 hours. The tail current dramatically increases during the main phase and shifts earthward, so that the peak current concentrates at unusually close distances ˜4-6RE. This is accompanied by a significant thinning of the current sheet and enormous tailward stretching of the inner geomagnetic field lines. As an independent consistency test, we calculated the expected Dst-variation based on the model output at Earth's surface and compared it with the actual observed Dst. A good agreement (cumulative correlation coefficient R=0.92) was found, in spite of that ˜90% of the spacecraft data used in the fitting were taken at synchronous orbit and beyond, while only 3.7% of those data came from distances 2.5≤ R≤4 RE. The obtained results demonstrate the possibility to develop a dynamical model of the magnetic field, based on magnetospheric and interplanetary data and allowing one to reproduce and forecast the entire process of a geomagnetic storm, as it unfolds in time and space. Reference: N. A. Tsyganenko, H. J. Singer, J. C. Kasper, Storm-time distortion of the inner magnetosphere: How severe can it get ? J. Geophys. Res., v. 108(A5), 1209, 2003.
Observations of nonadiabatic acceleration of ions in Earth's magnetotail
NASA Technical Reports Server (NTRS)
Frank, L. A.; Paterson, W. R.; Kivelson, M. G.
1994-01-01
We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity distributions are the result of fractional or few gyromotions before ejection out of the current sheet, but this speculation must be further investigated with appropriate kinetic simulation of trajectories.
Heating of the corona by magnetic singularities
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.
1990-01-01
Theoretical models of current-sheet formation and magnetic heating in the solar corona are examined analytically. The role of photospheric connectivity in determining the topology of the coronal magnetic field and its equilibrium properties is explored; nonequilibrium models of current-sheet formation (assuming an initially well connected field) are described; and particular attention is given to models with discontinuous connectivity, where magnetic singularities arise from smooth footpoint motions. It is shown that current sheets arise from connectivities in which the photospheric flux structure is complex, with three or more polarity regions and a magnetic null point within the corona.
Hart, F X
1990-01-01
The current-density distribution produced inside irregularly shaped, homogeneous human and rat models by low-frequency electric fields is obtained by a two-stage finite-difference procedure. In the first stage the model is assumed to be equipotential. Laplace's equation is solved by iteration in the external region to obtain the capacitive-current densities at the model's surface elements. These values then provide the boundary conditions for the second-stage relaxation solution, which yields the internal current-density distribution. Calculations were performed with the Excel spread-sheet program on a Macintosh-II microcomputer. A spread sheet is a two-dimensional array of cells. Each cell of the sheet can represent a square element of space. Equations relating the values of the cells can represent the relationships between the potentials in the corresponding spatial elements. Extension to three dimensions is readily made. Good agreement was obtained with current densities measured on human models with both, one, or no legs grounded and on rat models in four different grounding configurations. The results also compared well with predictions of more sophisticated numerical analyses. Spread sheets can provide an inexpensive and relatively simple means to perform good, approximate dosimetric calculations on irregularly shaped objects.
NASA Astrophysics Data System (ADS)
Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.
2013-12-01
Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.
Coronal Heating Topology: The Interplay of Current Sheets and Magnetic Field Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rappazzo, A. F.; Velli, M.; Matthaeus, W. H.
2017-07-20
The magnetic topology and field line random walk (FLRW) properties of a nanoflare-heated and magnetically confined corona are investigated in the reduced magnetohydrodynamic regime. Field lines originating from current sheets form coherent structures, called current sheet connected (CSC) regions, which extend around them. CSC FLRW is strongly anisotropic, with preferential diffusion along the current sheets’ in-plane length. CSC FLRW properties remain similar to those of the entire ensemble but exhibit enhanced mean square displacements and separations due to the stronger magnetic field intensities in CSC regions. The implications for particle acceleration and heat transport in the solar corona and wind,more » and for solar moss formation are discussed.« less
Linear response of field-aligned currents to the interplanetary electric field
NASA Astrophysics Data System (ADS)
Weimer, D. R.; Edwards, T. R.; Olsen, Nils
2017-08-01
Many studies that have shown that the ionospheric, polar cap electric potentials (PCEPs) exhibit a "saturation" behavior in response to the level of the driving by the solar wind. As the magnitudes of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response is linear at low driving levels, followed with a rollover to a more constant level. While there are several different theoretical explanations for this behavior, so far, no direct observational evidence has existed to confirm any particular model. In most models of this saturation, the interaction of the field-aligned currents (FACs) with the solar wind/magnetosphere/ionosphere system has a role. As the FACs are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals are found separately for the dawnside and duskside. Results indicate that the total FAC has a response to the IEF that is highly linear, continuing to increase well beyond the level at which the electric potentials saturate. The currents within each region have similar behavior.
Marginal Stability of Sweet–Parker Type Current Sheets at Low Lundquist Numbers
NASA Astrophysics Data System (ADS)
Shi, Chen; Velli, Marco; Tenerani, Anna
2018-06-01
Magnetohydrodynamic simulations have shown that a nonunique critical Lundquist number S c exists, hovering around S c ∼ 104, above which threshold Sweet–Parker type stationary reconnecting configurations become unstable to a fast tearing mode dominated by plasmoid generation. It is known that the flow along the sheet plays a stabilizing role, though a satisfactory explanation of the nonuniversality and variable critical Lundquist numbers observed is still lacking. Here we discuss this question using 2D linear MHD simulations and linear stability analyses of Sweet–Parker type current sheets in the presence of background stationary inflows and outflows at low Lundquist numbers (S ≤ 104). Simulations show that the inhomogeneous outflow stabilizes the current sheet by stretching the growing magnetic islands and at the same time evacuating the magnetic islands out of the current sheet. This limits the time during which fluctuations that begin at any given wavelength can remain unstable, rendering the instability nonexponential. We find that the linear theory based on the expanding-wavelength assumption works well for S larger than ∼1000. However, we also find that the inflow and location of the initial perturbation also affect the stability threshold.
MAGNETAR GIANT FLARES AND THEIR PRECURSORS-FLUX ROPE ERUPTIONS WITH CURRENT SHEETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Cong; Huang Lei, E-mail: cyu@ynao.ac.cn, E-mail: muduri@shao.ac.cn
2013-07-10
We propose a catastrophic magnetospheric model for magnetar precursors and their successive giant flares. Axisymmetric models of the magnetosphere, which contain both a helically twisted flux rope and a current sheet, are established based on force-free field configurations. In this model, the helically twisted flux rope would lose its equilibrium and erupt abruptly in response to the slow and quasi-static variations at the ultra-strongly magnetized neutron star's surface. In a previous model without current sheets, only one critical point exists in the flux rope equilibrium curve. New features show up in the equilibrium curves for the flux rope when currentmore » sheets appear in the magnetosphere. The causal connection between the precursor and the giant flare, as well as the temporary re-entry of the quiescent state between the precursor and the giant flare, can be naturally explained. Magnetic energy would be released during the catastrophic state transitions. The detailed energetics of the model are also discussed. The current sheet created by the catastrophic loss of equilibrium of the flux rope provides an ideal place for magnetic reconnection. We point out the importance of magnetic reconnection for further enhancement of the energy release during eruptions.« less
Long-Term Variability of Jupiter's Magnetodisk and Implications for the Aurora
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Bunce, Emma J.; Nichols, Jonathan D.; Clarke, John T.; Kurth, William S.
2017-12-01
Observations of Jupiter's UV auroral emissions collected over several years show that the ionospheric positions of the main emission and the Ganymede footprint can vary by as much as 3° in latitude. One explanation for this shift is a change of Jupiter's current sheet current density, which would alter the amount of field line stretching and displace the ionospheric mapping of field lines from a given radial distance in the magnetosphere. In this study we measure the long-term variability of Jupiter's magnetodisk using Galileo magnetometer data collected from 1996 to 2003. Using the Connerney et al. (1981) current sheet model, we calculate the current sheet density parameter that gives the best fit to the data from each orbit and find that the current density parameter varies by about 15% of its average value during the Galileo era. We investigate possible relationships between the observed current sheet variability and quantities such as Io's plasma torus production rate inferred from volcanic activity and external solar wind conditions extrapolated from data at 1 AU but find only a weak correlation. Finally, we trace Khurana (1997) model field lines to show that the observed changes in Jupiter's current sheet are sufficient to shift the ionospheric footprint of Ganymede and main auroral emission by a few degrees of latitude, consistent with the magnitude of auroral variability observed by Hubble Space Telescope (HST). However, we find that the measured auroral shifts in HST images are not consistent with concurrent changes in the current density parameter measured by Galileo.
Solar plasma geomagnetism and aurora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, S.
1968-01-01
This book is based on lectures given in July 1962 at the 12th session of the Les Houches Summer School of Theoretical Physics. Topics considered include geomagnetism and related phenomena, solar plasma in interplanetary space, mutual influence of the solar gas and the geomagnetic field. magnetic disturbance and aurorae, and the ring current and its DR field. (WDM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, W.; Heinrich, B.; Zhou, H.
1994-12-31
Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less
Current Sheet Evolution In The Aftermath Of A CME Event
NASA Technical Reports Server (NTRS)
Bemporad, A.; Poletto, G.; Seuss, S. T.; Schwardron, N. A.; Elliott, H. A.; Raymond, J. C.
2006-01-01
We report on SOHO UVCS observations of the coronal restructuring following a coronal mass ejection (CME) on 2002 November 26, at the time of a SOHO-Ulysses quadrature campaign. Starting about 1.5 hr after a CME in the northwest quadrant, UVCS began taking spectra at 1.7 R, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 A line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature versus time in the current sheet and estimate its density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by the Ulysses SWICS throughout the magnetic cloud associated with the CME, although its rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. The SOHO-Ulysses data set provided us with the unique opportunity of analyzing a current sheet structure from its lowest coronal levels out to its in situ properties. Both the remote and in situ observations are compared with predictions of theoretical CME models.
Reconnection in Planetary Magnetospheres
NASA Technical Reports Server (NTRS)
Russell, C. T.
2000-01-01
Current sheets in planetary magnetospheres that lie between regions of "oppositely-directed" magnetic field are either magnetopause-like, separating plasmas with different properties, or tail-like, separating plasmas of rather similar properties. The magnetopause current sheets generally have a nearly limitless supply of magnetized plasma that can reconnect, possibly setting up steady-state reconnection. In contrast, the plasma on either side of a tail current sheet is stratified so that, as reconnection occurs, the plasma properties, in particular the Alfven velocity, change. If the density drops and the magnetic field increases markedly perpendicular to the sheet, explosive reconnection can occur. Even though steady state reconnection can take place at magnetopause current sheets, the process often appears to be periodic as if a certain low average rate was demanded by the conditions but only a rapid rate was available. Reconnection of sheared fields has been postulated to create magnetic ropes in the solar corona, at the Earth's magnetopause, and in the magnetotail. However, this is not the only way to produce magnetic ropes as the Venus ionosphere shows. The geometry of the reconnecting regions and the plasma conditions both can affect the rate of reconnection. Sorting out the various controlling factors can be assisted through the examination of reconnection in planetary settings. In particular we observe similar small-scale tearing in the magnetopause current layers of the Earth, Saturn. Uranus and Neptune and the magnetodisk current sheet at Jupiter. These sites may be seeds for rapid reconnection if the reconnection site reaches a high Alfven velocity region. In the Jupiter magnetosphere this appears to be achieved with resultant substorm activity. Similar seeds may be present in the Earth's magnetotail with the first one to reach explosive growth dominating the dynamics of the tail.
Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona
NASA Technical Reports Server (NTRS)
Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.
2010-01-01
Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection
Correlation of interplanetary-space B sub z field fluctuations and trapped-particle redistribution.
NASA Technical Reports Server (NTRS)
Parks, G. K.; Pellat, R.
1972-01-01
Observations of interplanetary magnetic field fluctuations in correlation with trapped particle fluctuations are discussed. From observations of particle-redistribution effects, properties of the magnetospheric electric field are derived. The obtained results suggest that the interplanetary B(sub z) field fluctuations might represent a strong driving source for particle diffusion.
Radio-scintillation observations of interplanetary disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Kakinuma, T.
1984-01-01
Recent developments in the studies of interplanetary disturbances by scintillation techniques are briefly reviewed. The turbulent postshock region of an interplanetary disturbance produces transient enhancements in the scintillation level and the flow speed in many cases. An empirical method to determine three-dimensional angular distribution of the propagation speed of the disturbance on the basis of interplanetary scintillation measurements of postshock flow speeds is applied to 17 events which took place in 1978-1981. Among them, four representative examples, including two events which were associated with disappearing solar filaments, are described in detail. Several disturbances had oblate configurations the latitudinal extent ismore » smaller than the longitudinal extent. On the average, the angular distribution of the propagation speed at 1-AU heliocentric distance is quasi-isotropic over a longitudinal range of 100 deg centered at the normal of relevant solar phenomenon. The net excess mass and energy in an interplanetary disturbance associated with a disappearing solar filament can be comparable to those of an interplanetary disturbance associated with a large solar flare. 57 references.« less
MESSENGER Observations of Reconnection and Its Effects on Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Imber, Suzanne M.; Korth, Haje;
2010-01-01
During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic fields produced very intense reconnection signatures in the dayside and nightside magnetosphere and very different systemlevel responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active with very large magnetic fields normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 s to 90 s. However, the strength and direction of the tail magnetic field was very stable. In contrast the third flyby experienced a variable IMF with it varying from north to south on timescales of minutes. Although the MESSENGER measurements were limited this time to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Rather, plasmoid release was highly correlated with the four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects will be presented. The results will be examined in light of what is known about the response of the Earth's magnetosphere to variable versus steady southward IMF.
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Wang, Ya-Guang
2008-03-01
Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.
Kinetic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line
NASA Technical Reports Server (NTRS)
Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; DeVore, C. R.; Kuznetsova, M. M.; Zenitani, S.
2011-01-01
The integration of kinetic effects into macroscopic numerical models is currently of great interest to the plasma physics community, particularly in the context of magnetic reconnection. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high resolution particle-in-cell (PIC) simulations. The initial potential magnetic field is perturbed by thermal pressure introduced into the particle distribution far from the X line. The relaxation of this added stress leads to the development of a current sheet, which reconnects for imposed stress of sufficient strength. We compare the evolution and final state of our PIC simulations with magnetohydrodynamic simulations assuming both uniform and localized resistivities, and with force-free magnetic-field equilibria in which the amount of reconnect ion across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the terrestrial magnetotail and solar corona.
CURRENT SHEET THINNING AND ENTROPY CONSTRAINTS DURING THE SUBSTORM GROWTH PHASE
NASA Astrophysics Data System (ADS)
Otto, A.; Hall, F., IV
2009-12-01
A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 R_E. We propose that the cause for the current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux which is eroded at the dayside as a result of dayside reconnection. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is documented by three-dimensional MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution during the substorm growth phase.
Onset of fast "ideal" tearing in thin current sheets: Dependence on the equilibrium current profile
NASA Astrophysics Data System (ADS)
Pucci, F.; Velli, M.; Tenerani, A.; Del Sarto, D.
2018-03-01
In this paper, we study the scaling relations for the triggering of the fast, or "ideal," tearing instability starting from equilibrium configurations relevant to astrophysical as well as laboratory plasmas that differ from the simple Harris current sheet configuration. We present the linear tearing instability analysis for equilibrium magnetic fields which (a) go to zero at the boundary of the domain and (b) contain a double current sheet system (the latter previously studied as a Cartesian proxy for the m = 1 kink mode in cylindrical plasmas). More generally, we discuss the critical aspect ratio scalings at which the growth rates become independent of the Lundquist number S, in terms of the dependence of the Δ' parameter on the wavenumber k of unstable modes. The scaling Δ'(k) with k at small k is found to categorize different equilibria broadly: the critical aspect ratios may be even smaller than L/a ˜ Sα with α = 1/3 originally found for the Harris current sheet, but there exists a general lower bound α ≥ 1/4.
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Gomez-Herrero, Raul; Malandraki, Olga; Szabo, Adam; Dresing, Nina; Davila, Joseph M.
2010-01-01
EUV disk imagers and white light coronagraphs have provided for many years information on the early formation and evolution of corona) mass ejections (CMEs). More recently, the novel heliospheric imaging instruments aboard the STEREO mission are providing crucial remote sensing information on the interplanetary evolution of these events while in situ instruments complete the overall characterization of the interplanetary CMEs. In this work, we present an analysis of CMEs from the Sun to the interplanetary medium using combined data from THE SOHO, STEREO, WIND, and ACE spacecraft. The events were selected to cover the widest possible spectrum of different ambient solar wind, magnetic field configurations, plasma parameters, etc. to allow uncovering those aspects that are important in understanding the propagation and evolution mechanisms of CMEs in the interplanetary medium.
Interplanetary Coronal Mass Ejections During 1996 - 2007
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2007-01-01
Interplanetary coronal mass ejections, the interplanetary counterparts of coronal mass ejections at the Sun, are the major drivers of interplanetary shocks in the heliosphere, and are associated with modulations of the galactic cosmic ray intensity, both short term (Forbush decreases caused by the passage of the shock, post-shock sheath, and ICME), and possibly with longer term modulation. Using several in-situ signatures of ICMEs, including plasma temperature, and composition, magnetic fields, and cosmic ray modulations, made by near-Earth spacecraft, we have compiled a "comprehensive" list of ICMEs passing the Earth since 1996, encompassing solar cycle 23. We summarize the properties of these ICMEs, such as their occurrence rate, speeds and other parameters, the fraction of ICMEs that are classic magnetic clouds, and their association with solar energetic particle events, halo CMEs, interplanetary shocks, geomagnetic storms, shocks and cosmic ray decreases.
Distribution of Plasmoids in Post-Coronal Mass Ejection Current Sheets
NASA Astrophysics Data System (ADS)
Bhattacharjee, A.; Guo, L.; Huang, Y.
2013-12-01
Recently, the fragmentation of a current sheet in the high-Lundquist-number regime caused by the plasmoid instability has been proposed as a possible mechanism for fast reconnection. In this work, we investigate this scenario by comparing the distribution of plasmoids obtained from Large Angle and Spectrometric Coronagraph (LASCO) observational data of a coronal mass ejection event with a resistive magnetohydrodynamic simulation of a similar event. The LASCO/C2 data are analyzed using visual inspection, whereas the numerical data are analyzed using both visual inspection and a more precise topological method. Contrasting the observational data with numerical data analyzed with both methods, we identify a major limitation of the visual inspection method, due to the difficulty in resolving smaller plasmoids. This result raises questions about reports of log-normal distributions of plasmoids and other coherent features in the recent literature. Based on nonlinear scaling relations of the plasmoid instability, we infer a lower bound on the current sheet width, assuming the underlying mechanism of current sheet broadening is resistive diffusion.
NASA Astrophysics Data System (ADS)
Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong
2016-06-01
The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.
Multi-scale multi-point observation of dipolarization in the near-Earth's magnetotail
NASA Astrophysics Data System (ADS)
Nakamura, R.; Varsani, A.; Genestreti, K.; Nakamura, T.; Baumjohann, W.; Birn, J.; Le Contel, O.; Nagai, T.
2017-12-01
We report on evolution of the dipolarization in the near-Earth plasma sheet during two intense substorms based on observations when the four spacecraft of the Magnetospheric Multiscale (MMS) together with GOES and Geotail were located in the near Earth magnetotail. These multiple spacecraft together with the ground-based magnetogram enabled to obtain the location of the large- scale substorm current wedge (SCW) and overall changes in the plasma sheet configuration. MMS was located in the southern hemisphere at the outer plasma sheet and observed fast flow disturbances associated with dipolarizations. The high time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and the flow disturbances separately and to resolve signatures below the ion-scales. We found small-scale transient field-aligned current sheets associated with upward streaming cold plasmas and Hall-current layers in the fast flow shear region. Observations of these current structures are compared with simulations of reconnection jets.
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.; ...
2017-04-03
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
Multiple secondary islands formation in nonlinear evolution of double tearing mode simulations
NASA Astrophysics Data System (ADS)
Guo, W.; Ma, J.; Yu, Z.
2017-03-01
A new numerical code solving the conservative perturbed resistive magnetohydrodynamic (MHD) model is developed. Numerical tests of the ideal Kelvin-Helmholtz instability and the resistive double tearing mode (DTM) show its capability in solving linear and nonlinear MHD instabilities. The nonlinear DTM evolution in 2D geometry is numerically investigated with low guiding field B z 0 , short half-distance y 0 between the equilibrium current sheets, and small resistivity η. The interaction of islands on the two initial current sheets may generate an unstable flow driven current sheet with a high length-to-thickness aspect ratio (α), and multiple secondary islands can form. In general, the length-to-thickness aspect ratio α and the number of secondary islands increase with decreasing guide field B z 0 , decreasing half-distance y 0 , and increasing Lundquist number of the flow driven current sheet S L although the dependence may be non-monotonic. The reconnection rate dependence on S L , B z 0 , and y 0 is also investigated.
NASA Technical Reports Server (NTRS)
Walker, Raymond J.; Ogino, Tatsuki
1988-01-01
A time-dependent three-dimensional MHD model was used to investigate the magnetospheric configuration as a function of the interplanetary magnetic field direction when it was in the y-z plane in geocentric solar magnetospheric coordinates. The model results show large global convection cells, tail lobe cells, high-latitude polarcap cells, and low latitude cells. The field-aligned currents generated in the model magnetosphere and the model convection system are compared with observations from low-altitude polar orbiting satellites.
ESOC's System for Interplanetary Orbit Determination: Implementation and Operational Experience
NASA Astrophysics Data System (ADS)
Budnik, F.; Morley, T. A.; MacKenzie, R. A.
A system for interplanetary orbit determination has been developed at ESOC over the past six years. Today, the system is in place and has been proven to be both reliable and robust by successfully supporting critical operations of ESA's interplanetary spacecraft Rosetta, Mars Express, and SMART-1. To reach this stage a long and challenging way had to be travelled. This paper gives a digest about the journey from the development and testing to the operational use of ESOC's new interplanetary orbit determination system. It presents the capabilities and reflects experiences gained from the performed tests and tracking campaigns.
Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations
NASA Technical Reports Server (NTRS)
Zhang, Hui; Sibeck, David G.; Zong, Q.-G.; McFadden, James P.; Larson, Davin; Glassmeier, K.-H.; Angelopoulos, V.
2011-01-01
We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E).
Cardiovascular Countermeasures for Exploration-Class Space Flight Missions
NASA Technical Reports Server (NTRS)
Charles, John B.
2004-01-01
Astronaut missions to Mars may be many years or even decades in thc future but current and planned efforts can be extrapolated to required treatments and prophylaxis for delerious efforts of prolonged space flight on the cardiovascular system. The literature of candidate countermeasures was considered in combination with unpublished plans for countermeasure implementation. The scope of cardiovascular countermeasures will be guided by assessments of the efficacy of mechanical, physiological and pharmacological approaches in protecting the cardiovascular capacities of interplanetary crewmembers. Plans for countermeasure development, evaluation and validation will exploit synergies among treatment modalities with the goal of maximizing protective effects while minimizing crew time and in-flight resource use. Protection of the cardiovascular capacity of interplanetary crewmembers will become more effective and efficient over the next few decades, but trade-offs between cost and effectiveness of efficiency are always possible if the increased level of risk can be accepted.
Forecasting intense geomagnetic activity using interplanetary magnetic field data
NASA Astrophysics Data System (ADS)
Saiz, E.; Cid, C.; Cerrato, Y.
2008-12-01
Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.
A model of galactic cosmic rays for use in calculating linear energy transfer spectra
NASA Technical Reports Server (NTRS)
Chen, J.; Chenette, D.; Clark, R.; Garcia-Munoz, M.; Guzik, T. G.; Pyle, K. R.; Sang, Y.; Wefel, J. P.
1994-01-01
The Galactic Cosmic Rays (GCR) contain fully stripped nuclei, from Hydrogen to beyond the Iron group, accelerated to high energies and are a major component of the background radiation encountered by satellites and interplanetary spacecraft. This paper presents a GCR model which is based upon our current understanding of the astrophysics of GCR transport through interstellar and interplanetary space. The model can be used to predict the energy spectra for all stable and long-lived radioactive species from H to Ni over an energy range from 50 to 50,000 MeV/nucleon as a function of a single parameter, the solar modulation level phi. The details of this model are summarized, phi is derived for the period 1974 to present, and results from this model during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission are presented.
Intrinsic Dawn-Dusk Asymmetry of Magnetotail Thin Current Sheet
NASA Astrophysics Data System (ADS)
Lu, S.; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A.
2017-12-01
Magnetic reconnection and its related phenomena (flux ropes, dipolarization fronts, bursty bulk flows, particle injections, etc.) occur more frequently on the duskside in the Earth's magnetotail. Magnetohydrodynamic simulations attributed the asymmetry to the nonuniform ionospheric conductance through global scale magnetosphere-ionosphere interaction. Hybrid simulations, on the other hand, found an alternative responsible mechanism: the Hall effect in the magnetotail thin current sheet, but left an open question: What is the physical origin of the asymmetric Hall effect? The answer could be the temperature difference on the two sides and/or the dawn-dusk transportation of magnetic flux and plasmas. In this work, we use 3-D particle-in-cell simulations to further explore the magnetotail dawn-dusk asymmetry. The magnetotail equilibrium contains a dipole magnetic field and a current sheet region. The simulation is driven by a symmetric and localized (in the y direction) high-latitude electric field, under which the current sheet thins with a decrease of Bz. During the same time, a dawn-dusk asymmetry is formed intrinsically in the thin current sheet, with a smaller Bz, a stronger Hall effect (indicated by the Hall electric field Ez), and a stronger cross-tail current jy on the duskside. The deep origin of the asymmetry is also shown to be dominated by the dawnward E×B drift of magnetic flux and plasmas. A direct consequence of this intrinsic dawn-dusk asymmetry is that it favors magnetotail reconnection and related phenomena to preferentially occur on the duskside.
The source of O+ in the storm time ring current
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Menz, A. M.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.; Wygant, J. R.; Lanzerotti, L. J.
2016-06-01
A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring current most is found to be from ~5 to 60 keV. This is in the energy range of the hot population that increased prior to the start of the storm main phase, and the ion fluxes in this energy range only increase slightly during the extended outflow time interval. Thus, the auroral outflow does not have a significant impact on the ring current during the main phase. The auroral outflow is transported to the inner magnetosphere but does not reach high enough energies to affect the energy density. We conclude that the more energetic O+ that entered the plasma sheet prior to the main phase and that dominates the ring current is likely from the cusp.
High energy astronomy or astrophysics and properties of the interplanetary plasma
NASA Technical Reports Server (NTRS)
1971-01-01
The research activities related to high energy astrophysics and interplanetary plasma are reported. The experimental work in the following areas are described: (1) balloon-and rocket-borne cosmic X-ray, (2) X-ray spectroscopy, and (3) OSO-3 gamma ray experiment. Plasma studies in the interplanetary region, magnetosphere, and geomagnetic tail are included.
The Polar Ionosphere and Interplanetary Field.
1987-08-01
model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field
Ignition of Fuel Vapors Beneath Titanium Aircraft Skins Exposed to Lightning
NASA Technical Reports Server (NTRS)
Kosvic, T. C.; Helgeson, N. L.; Gerstein, M.
1971-01-01
Hot-spot and puncture ignition of fuel vapors by simulated lightning discharges was studied experimentally. The influences of skin coating, skin structure, discharge polarity, skin thickness, discharge current level, and current duration were measured and interpreted. Ignition thresholds are reported for titanium alloy constructed as sheets, sheets coated with sealants, and sandwich skins. Results indicated that the ignition threshold charge transfer for coated sheets, honeycomb, and truss skins is respectively about 200%, 400%, 800% that of bare alloy sheet of .102 cm (.040 in.)-thickness. It was found that hot-spot ignition can occur well after termination of the arc, and that sandwich materials allow ignition only if punctured.
Apparatus for electrical-assisted incremental forming and process thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, John; Cao, Jian
A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less
Instability of current sheets with a localized accumulation of magnetic flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritchett, P. L.
2015-06-15
The longstanding problem of whether a current sheet with curved magnetic field lines associated with a small “normal” B{sub z} component is stable is investigated using two-dimensional electromagnetic particle-in-cell simulations, employing closed boundary conditions analogous to those normally assumed in energy principle calculations. Energy principle arguments [Sitnov and Schindler, Geophys. Res. Lett. 37, L08102 (2010)] have suggested that an accumulation of magnetic flux at the tailward end of a thin current sheet could produce a tearing instability. Two classes of such current sheet configurations are probed: one with a monotonically increasing B{sub z} profile and the other with a localizedmore » B{sub z} “hump.” The former is found to be stable (in 2D) over any reasonable time scale, while the latter is prone to an ideal-like instability that shifts the hump peak in the direction of the curvature normal and erodes the field on the opposite side. The growth rate of this instability is smaller by an order of magnitude than previous suggestions of an instability in an open system. An example is given that suggests that such an unstable hump configuration is unlikely to be produced by external driving of a current sheet with no B{sub z} accumulation even in the presence of open boundary conditions.« less
Coronal Current Sheet Evolution in the Aftermath of a CME
NASA Technical Reports Server (NTRS)
Bemporad, A.; Poletto, G.; Suess, S. T.; Ko, Y.-K.; Schwadron, N. A.; Elliott, H. A.; Raymond, J. C.
2005-01-01
We report on SOHO-UVCS observations of coronal restructuring following a Coronal Mass Ejection (CME) on November 26, 2002, at the time of a SOHO-Ulysses quadrature campaign. Starting about 3 hours after the CME, which was directed towards Ulysses, UVCS began taking spectra at 1.7 solar radii, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 Angstrom line of [Fe XVIII], indicating temperatures above 6x10(6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature vs. time in the current sheet and estimate the density. Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by SWICS throughout the magnetic cloud associated with the CME, although the rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. Both the remote and in situ observations are compared with predictions of theoretical CME models.
The Role of Ionospheric O+ in Forming the Storm-time Ring Current
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C.; Menz, A.; Bingham, S.
2017-12-01
During storm times, the particle pressure that creates the storm-time ring current in the inner magnetosphere can be dominated by O+. This is surprising, as the immediate source for the ring current is the nightside plasma sheet, and O+ is usually not the dominant species in the plasma sheet. In this talk we examine the many factors that lead to this result. The O+ outflow is enhanced during geomagnetically active times. The transport paths of O+ and H+ are different, such that the O+ that reaches the near-earth plasma sheet is more energetic than H+. The source spectrum in the near-earth plasma sheet can be harder for O+ than for H+, perhaps due to substorm injections, so that the more energetic plasma has a higher O+/H+ ratio. And finally the plasma sheet O+ can be more abundant towards the beginning of the storm, when the convection is largest, so the enhanced O+ is brought the deepest into the inner magnetosphere. We will discuss the interrelationships between these different effects as well as the ways in which O+ itself may influence the system.
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less
NASA Astrophysics Data System (ADS)
Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.
2017-12-01
It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.
Zodiacal light as an indicator of interplanetary dust
NASA Technical Reports Server (NTRS)
Weinberg, J. L.; Sparrow, J. G.
1978-01-01
The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.
NASA Astrophysics Data System (ADS)
Nichols, J. D.; Badman, S. V.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Cowley, S. W. H.; Ebert, R. W.; Fujimoto, M.; Gérard, J.-C.; Gladstone, G. R.; Grodent, D.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; Murakami, G.; McComas, D. J.; Orton, G. S.; Radioti, A.; Stallard, T. S.; Tao, C.; Valek, P. W.; Wilson, R. J.; Yamazaki, A.; Yoshikawa, I.
2017-08-01
We present the first comparison of Jupiter's auroral morphology with an extended, continuous, and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ˜1-3 days following compression region onset, the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ˜10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought.
Energization of Ions in near-Earth current sheet disruptions
NASA Technical Reports Server (NTRS)
Taktakishvili, A.; Lopez, R. E.; Goodrich, C. C.
1995-01-01
In this study we examine observations made by AMPTE/CCE of energetic ion bursts during seven substorm periods when the satellite was located near the neutral sheet, and CCE observed the disruption cross-tail current in situ. We compare ion observations to analytic calculations of particle acceleration. We find that the acceleration region size, which we assume to be essentially the current disruption region, to be on the order of 1 R(sub E). Events exhibiting weak acceleration had either relatively small acceleration regions (apparently associated with pseudobreakup activity on the ground) or relatively small changes in the local magnetic field (suggesting that the magnitude of the local current disruption region was limited). These results add additional support for the view that the particle bursts observed during turbulent current sheet disruptions are due to inductive acceleration of ions.
Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica
NASA Astrophysics Data System (ADS)
Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.
2017-12-01
The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.
Gender and Employment. Current Statistics and Their Implications.
ERIC Educational Resources Information Center
Equity Issues, 1996
1996-01-01
This publication contains three fact sheets on gender and employment statistics and their implications. The fact sheets are divided into two sections--statistics and implications. The statistics present the current situation of men and women workers as they relate to occupations, education, and earnings. The implications express suggestions for…
Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.
Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram
2015-01-01
In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.
Ionospheric convection inferred from interplanetary magnetic field-dependent Birkeland currents
NASA Technical Reports Server (NTRS)
Rasmussen, C. E.; Schunk, R. W.
1988-01-01
Computer simulations of ionospheric convection have been performed, combining empirical models of Birkeland currents with a model of ionospheric conductivity in order to investigate IMF-dependent convection characteristics. Birkeland currents representing conditions in the northern polar cap of the negative IMF By component are used. Two possibilities are considered: (1) the morning cell shifting into the polar cap as the IMF turns northward, and this cell and a distorted evening cell providing for sunward flow in the polar cap; and (2) the existence of a three-cell pattern when the IMF is strongly northward.
NASA Technical Reports Server (NTRS)
El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.
2012-01-01
We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.
Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo
NASA Astrophysics Data System (ADS)
Takahashi, F.
2011-12-01
Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.
Interplanetary scintillation observations of the solar wind close to the Sun and out of the ecliptic
NASA Technical Reports Server (NTRS)
Sime, D. G.
1983-01-01
A brief review is given of recent developments in the observation of the solar wind by the method of interplanetary scintillation. The emphasis is on observations of the velocity structure, the electron density and the effect of propagating disturbances in the interplanetary medium as detected principally by intensity and phase scintillation and by spectral broadening.
The delivery of organic matter from asteroids and comets to the early surface of Mars
NASA Technical Reports Server (NTRS)
Flynn, G. J.
1996-01-01
Carbon delivered to the Earth by interplanetary dust particles may have been an important source of pre-biotic organic matter (Anders, 1989). Interplanetary dust is shown to deliver an order-of-magnitude higher surface concentration of carbon onto Mars than onto Earth, suggesting interplanetary dust may be an important source of carbon on Mars as well.
Aquarius, a reusable water-based interplanetary human spaceflight transport
NASA Astrophysics Data System (ADS)
Adamo, Daniel R.; Logan, James S.
2016-11-01
Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.
Scientific activity program for 1989
NASA Astrophysics Data System (ADS)
1989-04-01
The current research projects are summarized. The research is grouped into four main directions: infrared astronomy, interplanetary media, cosmic rays and gravitational fields. The projects include instruments for the Infrared Space Observatory (ISO) satellite, problems of star formation and star evolution, Tethered Satellite System (TSS) experiment, Opera experiment, propagation of cosmic rays in the ionosphere, design of a solar neutron detector, and gravitational wave antennas experiments.
Forbush decreases geomagnetic and atmospheric effects cosmogenic nuclides
NASA Technical Reports Server (NTRS)
Flueckiger, E. O.
1986-01-01
An overview and synthesis is given of recent developments that have occurred in the areas of Forbush decreases, geomagnetic and atmospheric effects, and cosmogenic nuclides. Experimental evidence has been found for substantial differences in the effects of the various types of interplanetary perturbations on cosmic rays, and for a dependence of these effects on the three-dimensional configuration of the interplanetary medium. In order to fully understand and to be able to simulate the solar cosmic ray particle access to the polar regions of the earth we need accurate models of the magnetospheric magnetic field. These models must include all major magnetospheric current systems (in particular the field aligned currents), and they should represent magnetically quiet time periods as well as different levels of geomagnetic activity. In the evolution of magnetospheric magnetic field models, cosmic ray and magnetospheric physicists should work closely together since cosmic ray measurements are a powerful additional tool in the study of the perturbed magnetosphere. In the field of cosmogenic nuclides, finally, exciting new results and developments follow in rapid succession. Thanks to new techniques and new isotopes the analysis of cosmic ray history has entered into a new dimension.
NASA Technical Reports Server (NTRS)
Fedder, J. A.; Lyon, J. G.
1995-01-01
The subject of this paper is a self-consistent, magnetohydrodynamic numerical realization for the Earth's magnetosphere which is in a quasi-steady dynamic equilibrium for a due northward interplanetary magnetic field (IMF). Although a few hours of steady northward IMF are required for this asymptotic state to be set up, it should still be of considerable theoretical interest because it constitutes a 'ground state' for the solar wind-magnetosphere interaction. Moreover, particular features of this ground state magnetosphere should be observable even under less extreme solar wind conditions. Certain characteristics of this magnetosphere, namely, NBZ Birkeland currents, four-cell ionospheric convection, a relatively weak cross-polar potential, and a prominent flow boundary layer, are widely expected. Other characteristics, such as no open tail lobes, no Earth-connected magnetic flux beyond 155 R(sub E) downstream, magnetic merging in a closed topology at the cusps, and a 'tadpole' shaped magnetospheric boundary, might not be expected. In this paper, we will present the evidence for this unusual but interesting magnetospheric equilibrium. We will also discuss our present understanding of this singular state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, M.; Lundin, R.; Woch, J.
1993-04-01
latitudinals develop a model to account for the effect of the interplanetary magnetic field (IMF) B[sub y] component on the dayside field-aligned currents (FACs). As part of the model the FACs are divided into a [open quotes]cusp part[close quotes] and a [open quotes]noncusp part[close quotes]. The authors then propose that the cusp part FACs shift in the longitudinal direction while the noncusplike part FACs shift in both longitudinal and latitudinal directions in response to the y component of the IMF. If combined, it is observed that the noncusp part FAC is found poleward of the cusp part FAC system whenmore » the y component of the IMF is large. These two FAC systems flow in the same direction. They reinforce one another, creating a strong FAC, termed the DPY-FAC. The model also predicts that the polewardmost part of the DPY-FAC flows on closed field lines, even in regions conventionally occupied by the polar cap. Results of the model are successfully compared with particle and magnetic field data from Viking missions.« less
Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong
Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamicmore » propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.« less
NASA Astrophysics Data System (ADS)
Coco, I.; Amata, E.; Marcucci, M. F.; Ambrosino, D.; Villain, J.-P.; Hanuise, C.
2008-09-01
On 6 January 1998 an interplanetary shock hit the magnetosphere around 14:15 UT and caused a reconfiguration of the northern high-latitude ionospheric convection. We use SuperDARN, spacecraft and ground magnetometer data to study such reconfiguration. We find that the shock front was tilted towards the morning flank of the magnetosphere, while the Interplanetary Magnetic Field (IMF) was By-dominated, with By<0, IMF Bz>0 and |By|>>Bz. As expected, the magnetospheric compression started at the first impact point of the shock on the magnetopause causing an increase of the Chapman-Ferraro current from dawn to dusk and yielding an increase of the geomagnetic field at the geostationary orbit and on the ground. Moreover, the high-latitude magnetometer data show vortical structures clearly related to the interaction of the shock with the magnetosphere-ionosphere system. In this context, the SuperDARN convection maps show that at very high latitudes above the northern Cusp and in the morning sector, intense sunward convection fluxes appear, well correlated in time with the SI arrival, having a signature typical for Bz>0 dominated lobe reconnection. We suggest that in this case the dynamic pressure increase associated to the shock plays a role in favouring the setting up of a new lobe merging line albeit |By|>>Bz≥0.
NASA Astrophysics Data System (ADS)
Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Nechaev, A. A.
2017-12-01
We derive and describe analytically a new wide class of self-consistent magnetostatic structures with sheared field lines and arbitrary energy distributions of particles. To do so we analyze superpositions of two planar current sheets with orthogonal magnetic fields and cylindrically symmetric momentum distribution functions, such that the magnetic field of one of them is directed along the symmetry axis of the distribution function of the other. These superpositions satisfy the pressure balance equation and allow one to construct configurations with an almost arbitrarily sheared magnetic field. We show that most of previously known current sheet families with sheared magnetic field lines are included in this novel class.
Detection of oppositely directed reconnection jets in a solar wind current sheet
NASA Astrophysics Data System (ADS)
Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.
2006-10-01
We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was ~150°, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field ~ 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.
Detection of oppositely directed reconnection jets in a solar wind current sheet
NASA Astrophysics Data System (ADS)
Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.
2006-12-01
We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was approximately 150 degrees, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field approximately 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.
Collisionless distribution function for the relativistic force-free Harris sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, C. R.; Neukirch, T.
A self-consistent collisionless distribution function for the relativistic analogue of the force-free Harris sheet is presented. This distribution function is the relativistic generalization of the distribution function for the non-relativistic collisionless force-free Harris sheet recently found by Harrison and Neukirch [Phys. Rev. Lett. 102, 135003 (2009)], as it has the same dependence on the particle energy and canonical momenta. We present a detailed calculation which shows that the proposed distribution function generates the required current density profile (and thus magnetic field profile) in a frame of reference in which the electric potential vanishes identically. The connection between the parameters ofmore » the distribution function and the macroscopic parameters such as the current sheet thickness is discussed.« less
NASA Astrophysics Data System (ADS)
Chen, Yani; Zhao, Hongbin; Sheng, Leimei; Yu, Liming; An, Kang; Xu, Jiaqiang; Ando, Yoshinori; Zhao, Xinluo
2012-06-01
Large-scale production of graphene sheets has been achieved by direct current arc discharge evaporation of pure graphite electrodes in various H2-inert gas mixtures. The as-prepared few-layer graphene sheets have high purity, high crystallinity and high oxidation resistance temperature. Their electrochemical characteristics have been evaluated in coin-type cells versus metallic lithium. The first cell discharge capacity reached 1332 mA h g-1 at a current density of 50 mA g-1. After 350 cycles, the discharge capacity still remained at 323 mA h g-1. Graphene sheets produced by this method should be a promising candidate for the electrode material of lithium-ion batteries.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.
Experimental investigation of a 1 kA/cm{sup 2} sheet beam plasma cathode electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Niraj, E-mail: niraj.ceeri@gmail.com; Narayan Pal, Udit; Prajesh, Rahul
In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm{sup 2} from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance inmore » a drift space region maintaining sheet structure without assistance of any external magnetic field.« less
Energetic particles in the pre-dawn magnetotail of Jupiter
NASA Technical Reports Server (NTRS)
Schardt, A. W.; Mcdonald, F. B.; Trainor, J. H.
1980-01-01
A detailed account is given of the energetic electron and proton populations as observed with Voyagers 1 and 2 during their passes through the dawn magnetotail of Jupiter. The region between 20 and 150 R sub J is dominated by a thin plasma sheet, where trapped energetic electron and proton fluxes reach their maximum. Proton spectra can be represented by an exponential in rigidity with a characteristic energy of approximately 50 keV. Proton anisotropies were consistent with corotation even at 100 R sub J. A major proton acceleration event as well as several cases of field aligned proton streaming were observed. The flux of 0.4 MeV protons decreases by three orders of magnitude between 30 and 90 R sub J and then remains relatively constant to the magnetopause. Fine structure in the data indicate longitudinal asymmetries with respect to the dipole orientation. Electron spectra in the magnetosheath and interplanetary space are modulated by the Jovian longitude relative to the subsolar point.
Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.
Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M
1992-09-11
Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.
Examination of returned solar-max surfaces for impacting orbital debris and meteoroids
NASA Astrophysics Data System (ADS)
Kessler, D. J.; Zook, H. A.; Potter, A. E.; McKay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.
1985-11-01
Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.
Examination of returned solar-max surfaces for impacting orbital debris and meteoroids
NASA Technical Reports Server (NTRS)
Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.
1985-01-01
Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
NASA Astrophysics Data System (ADS)
Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.
Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Low resistance, low-inductance power connectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony
An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, withmore » the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.« less
Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source
NASA Astrophysics Data System (ADS)
Christy, Larry
Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.
The magnetosphere of Neptune - Its response to daily rotation
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes; Ness, Norman F.
1990-01-01
The Neptunian magnetosphere periodically changes every eight hours between a pole-on magnetosphere with only one polar cusp and an earth-type magnetosphere with two polar cusps. In the pole-on configuration, the tail current sheet has an almost circular shape with plasma currents closing entirely within the magnetosphere. Eight hours later the tail current sheet assumes an almost flat shape with plasma currents touching the magnetotail boundary and closing over the tail magnetopause. Magnetic field and tail current sheet configurations have been calculated in a three-dimensional model, but the plasma- and thermodynamic conditions were investigated in a simplified two-dimensional MHD equilibrium magnetosphere. It was found that the free energy in the tail region of the two-dimensional model becomes independent of the dipole tilt angle. It is conjectured that the Neptunian magnetotail might assume quasi-static equilibrium states that make the free energy of the system independent of its daily rotation.
NASA Astrophysics Data System (ADS)
Frank, Anna
Magnetic reconnection is a basis for many impulsive phenomena in space and laboratory plasmas accompanied by effective transformation of magnetic energy. Reconnection processes usually occur in relatively thin current sheets (CSs), which separate magnetic fields of different or opposite directions. We report on recent observations of time dependent bending of CSs, which results from plasma dynamics inside the sheet. The experiments are carried out with the CS-3D laboratory device (Institute of General Physics RAS, Moscow) [1]. The CS magnetic structure with an X line provides excitation of the Hall currents and plasma acceleration from the X line to both side edges [2]. In the presence of the guide field By the Hall currents give rise to bending of the sheet: the peripheral regions located away from the X line are deflected from CS middle plane (z=0) in the opposite directions ±z [3]. We have revealed generation of reverse currents jy near the CS edges, i.e. the currents flowing in the opposite direction to the main current in the sheet [4]. There are strong grounds to believe that reverse currents are generated by the outflow plasma jets [5], accelerated inside the sheet and penetrated into the regions with strong normal magnetic field component Bz [4]. An impressive effect of sudden change in the sign of the CS bend has been disclosed recently, when analyzing distributions of plasma density [6] and current away from the X line, in the presence of the guide field By. The CS configuration suddenly becomes opposite from that observed at the initial stage, and this effect correlates well with generation of reverse currents. Consequently this effect can be related to excitation of the reverse Hall currents owing to generation of reverse currents jy in the CS. Hence it may be concluded that CSs may exhibit time dependent vertical z-displacements, and the sheet geometry depends on excitation of the Hall currents, acceleration of plasma jets and generation of reverse currents. The work was supported in part by the Program (OFN-15) “Plasma Processes in Space and Laboratory” of the Division of Physical Sciences of the Russian Academy of Sciences. 1. Frank A.G., Bogdanov S.Yu., Markov V.S. et al. // Phys. Plasmas 2005. 12, 052316(1-11). 2. Frank A.G., Bugrov S.G., Markov V.S. // Phys. Plasmas 2008. 15, 092102 (1-10). 3. Frank A.G., Bogdanov S.Yu., Dreiden G.V. et al. // Phys. Lett. A 2006. 348, 318-325. 4. Frank A.G., Kyrie N.P., Satunin S.N. // Phys. Plasmas 2011. 18, 111209 (1-9). 5. Kyrie N.P., Markov V.S., Frank A.G. // Plasma Phys. Reports 2010. 36, 357-364; JETP Lett. 2012. 95, 14-19. 6. Ostrovskaya G.V., Frank A.G. // Plasma Phys. Reports 2014. 40, 21-33.
NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit.
Hanu, A R; Barberiz, J; Bonneville, D; Byun, S H; Chen, L; Ciambella, C; Dao, E; Deshpande, V; Garnett, R; Hunter, S D; Jhirad, A; Johnston, E M; Kordic, M; Kurnell, M; Lopera, L; McFadden, M; Melnichuk, A; Nguyen, J; Otto, A; Scott, R; Wagner, D L; Wiendels, M
2017-01-01
During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions. The primary objective of the NEUDOSE CubeSat is to map the in situ lineal energy spectra produced by charged particles and neutrons in LEO where most of the preparatory activities for future interplanetary missions are currently taking place. To perform these measurements, the NEUDOSE CubeSat is equipped with the Charged & Neutral Particle Tissue Equivalent Proportional Counter (CNP-TEPC), an advanced radiation monitoring instrument that uses active coincidence techniques to separate the interactions of charged particles and neutrons in real time. The NEUDOSE CubeSat, currently under development at McMaster University, provides a modern approach to test the CNP-TEPC instrument directly in the unique environment of outer space while simultaneously collecting new georeferenced lineal energy spectra of the radiation environment in LEO.
Static current-sheet models of quiescent prominences
NASA Technical Reports Server (NTRS)
Wu, F.; Low, B. C.
1986-01-01
A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.
Static current-sheet models of quiescent prominences
NASA Astrophysics Data System (ADS)
Wu, F.; Low, B. C.
1986-12-01
A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.
Plasma Measurements in an Integrated-System FARAD Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.
2007-01-01
Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current sheet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster[1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). A benchtop FARAD thruster was designed following guidelines and similarity performance parameters presented in Refs. [3,4]. This design is described in detail in Ref. [5]. In this paper, we present the temporally and spatially resolved measurements of the preionized plasma and inductively-accelerated current sheet in the FARAD thruster operating with a Vector Inversion Generator (VIG) to preionize the gas and a Bernardes and Merryman circuit topology to provide inductive acceleration. The acceleration stage operates on the order of 100 J/pulse. Fast-framing photography will be used to produce a time-resolved, global view of the evolving current sheet. Local diagnostics used include a fast ionization gauge capable of mapping the gas distribution prior to plasma initiation; direct measurement of the induced magnetic field using B-dot probes, induced azimuthal current measurement using a mini-Rogowski coil, and direct probing of the number density and electron temperature using triple probes.
NASA Astrophysics Data System (ADS)
Huang, Y. C.; Lyu, L. H.
2014-12-01
Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.
Flapping current sheet with superposed waves seen in space and on the ground
NASA Astrophysics Data System (ADS)
Wang, G. Q.; Volwerk, M.; Nakamura, R.; Boakes, P.; Zhang, T. L.; Yoshikawa, A.; Baishev, D. G.
2014-12-01
A wavy current sheet event observed on 15 October 2004 between 1235 and 1300 UT has been studied by using Cluster and ground-based magnetometer data. Waves propagating from the tail center to the duskside flank with a period ~30 s and wavelength ~1 RE are superimposed on a flapping current sheet, accompanied with a bursty bulk flow. Three Pi2 pulsations, with onset at ~1236, ~1251, and ~1255 UT, respectively, are observed at the Tixie station located near the foot points of Cluster. The mechanism creating the Pi2 (period ~40 s) onset at ~1236 UT is unclear. The second Pi2 (period ~90 s, onset at ~1251 UT) is associated with a strong field-aligned current, which has a strong transverse component of the magnetic field, observed by Cluster with a time delay ~60 s. We suggest that it is caused by bouncing Alfvén waves between the northern and southern ionosphere which transport the field-aligned current. For the third Pi2 (period ~60 s) there is almost no damping at the first three periods. They occur in conjunction with periodic field-aligned currents one-on-one with 72 s delay. We suggest that it is generated by these periodic field-aligned currents. We conclude that the strong field-aligned currents generated in the plasma sheet during flapping with superimposed higher-frequency waves can drive Pi2 pulsations on the ground, and periodic field-aligned currents can even control the period of the Pi2s.
Could we use beamlets as a tool for remote sensing of the magnetotail?
NASA Astrophysics Data System (ADS)
Dolgonosov, Maxim; Zelenyi, Lev; Zimbardo, Gaetano; Perri, Silvia; Kovrazhkin, Rostislav
2012-07-01
In our presentation we are going to raise a question of exploiting beamlets for remote sensing of magnetotail. There is a long history of investigation of particle dynamics and features of distribution functions with prescribed electric and magnetic fields that could be measured by spacecrafts. But we would like to focus our attention on small part of this story and study in detail the behavior of ion the vicinity of the current sheet. Burkhart and Chen [Burkhart and Chen, 1991,JGR] employed the modified Harris model of the current sheet magnetic field [vec{B}=B_{0} tanh (z/L)vec{e}_{x} +B_{z} vec{e}_{z} ] and found a signature of nonlinear particle dynamics and an underlying partitioning of phase space that manifests itself as a series of peaks in the ion distribution function. The separation between the peaks is proportional to the fourth root of the particle energy and quantities that describe the current sheet structure. Formation of these peaks in the ion distribution function was explained on the basis resonant condition proposed by Buchner and Zelenyi [Buchner and Zelenyi,1989, JGR]. The non-adiabatic dynamics of the ions at vicinity of equatorial plane can be characterized by the action integral I_{z} =1/2 π \\oint \\dot{z}dz , which serves as an approximate integral of motion [Sonnerup, 1971]. Chaos is generated by the jumps Δ I_{z} of this invariant which accompany the particle crossing of the current sheet, which can lead both to the almost regular (field-aligned) motion of particles and to the capture of particles in the center of the current sheet, due to the unavoidable chaotic scattering. However, a subset of the ``regularity'' regions can exist in the physical space for certain combinations of current sheet parameters. Successive jumps of the adiabatic invariant Iz within these regions at the entry of particle into the current sheet and its exit from the current sheet, in the first approximation compensate each other, and ions ejected from these regions form almost monoenergetic highly accelerated and spatially localized ion beams, the so-called beamlets. The quasi-stationary dawn-dusk electric field Ey in the magnetotail accelerates ions between these jumps [Buchner and Zelenyi, 1990; Zelenyi et al., 2006a; Grigorenko et al., 2007]. The sites of acceleration depend on the value of Bn, and for a typical energy of the ions coming from the mantle, the resonance condition is satisfied at a number of discrete positions downtail. Zelenyi et al. [Zelenyi et al., 2007, JETP Letters] found the universal scaling characterizing the chain of these "regularity" regions. This ``law'' gives a relation between the typical beamlet energy WN and corresponding number of resonant region N: W_{N} =4/3 log N. Later Dolgonosov et al. [Dolgonosov et al., 2010, JGR] modified ``universal'' scaling and showed that to study experimentally observed beamlets one should take into account presence of the electric field perpendicular to the plane of the current sheet. On the basis of this paper [Kovrakhin et al., 2012, JETP Letters] it was analyzed spacecraft data (Cluster and Interball) to study properties of thin current sheets. Evidently, nonlinear particle dynamic result to the generation of the regularity ``island'' with some characteristic features. In the paper of Zelenyi et al. [Zelenyi et al, 2006, GRL] modulation of the normal component of the magnetic field under influence of self-consistent currents of particles was investigated. Peaks of Bz modulation nearly coincided with ``regularity'' islands. This result indicates on the fact that turbulence in the plasma sheet could be resulted from the nonlinear particle dynamic and properties of these ``noise'' are governed by features of particle motion. Thereby influence of ``noise'' constrains exploiting beamlets for remote sensing. It is also natural to ask what happens with these ``resonant'' regions under influence of external noise (or externally driven turbulence). Experimental observation of the magnetic field in the plasma sheet indicate on the permanent perturbation of the magnetic field and this perturbation could be very significant δBz ˜Bz. At the same time measurements of beamlets at the PSBL show that beamlets are long living structures [Grigorenko, 2003, JETP Letters]. What is the value of the magnetic field perturbation that could destroy generation of beamlets? In our report we are going to discuss current sheet properties obtained from beamlets analysis and natural restrictions imposed by turbulence.
Finite geometry effects of field-aligned currents
NASA Technical Reports Server (NTRS)
Fung, Shing F.; Hoffman, R. A.
1992-01-01
Results are presented of model calculations of the magnetic field produced by finite current regions that would be measured by a spaceborne magnetometer. Conditions were examined under which the infinite current sheet approximation can be applied to the calculation of the field-aligned current (FAC) density, using satellite magnetometer data. The accuracy of the three methods used for calculating the current sheet normal direction with respect to the spacecraft trajectory was assessed. It is shown that the model can be used to obtain the position and the orientation of the spacecraft trajectory through the FAC region.
An elastic analysis of stresses in a uniaxially loaded sheet containing an interference-fit bolt
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1972-01-01
The stresses in a sheet with an interference-fit bolt have been calculated for two sheet-bolt interface conditions: a frictionless interface and a fixed (no-slip) interface. The stress distributions were calculated for various combinations of sheet and bolt moduli. The results show that for repeated loading the local stress range is significantly smaller if an interference bolt is used instead of a loosely fitting one. This reduction in local stress range is more pronounced when the ratio of bolt modulus to sheet modulus is large. The analysis also indicates that currently used standard values of interference cause yielding in the sheet.
Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Badruddin; Mustajab, F.; Derouich, M.
2018-05-01
A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.
Plasma Sheet Circulation Pathways
NASA Technical Reports Server (NTRS)
Moore, Thomas E.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.; Damiano, P.; Lotko, W.
2008-01-01
Global simulations of Earth's magnetosphere in the solar wind compute the pathways of plasma circulation through the plasma sheet. We address the pathways that supply and drain the plasma sheet, by coupling single fluid simulations with Global Ion Kinetic simulations of the outer magnetosphere and the Comprehensive Ring Current Model of the inner magnetosphere, including plasmaspheric plasmas. We find that the plasma sheet is supplied with solar wind plasmas via the magnetospheric flanks, and that this supply is most effective for northward IMF. For southward IMF, the innermost plasma sheet and ring current region are directly supplied from the flanks, with an asymmetry of single particle entry favoring the dawn flank. The central plasma sheet (near midnight) is supplied, as expected, from the lobes and polar cusps, but the near-Earth supply consists mainly of slowly moving ionospheric outflows for typical conditions. Work with the recently developed multi-fluid LFM simulation shows transport via plasma "fingers" extending Earthward from the flanks, suggestive of an interchange instability. We investigate this with solar wind ion trajectories, seeking to understand the fingering mechanisms and effects on transport rates.
TPS Ablator Technologies for Interplanetary Spacecraft
NASA Technical Reports Server (NTRS)
Curry, Donald M.
2004-01-01
This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.
NASA Technical Reports Server (NTRS)
Jones, Ross M.
1988-01-01
The current status and potential scientific applications of intelligent 1-5-kg projectiles being developed by SDIO and DARPA for military missions are discussed. The importance of advanced microelectronics for such small spacecraft is stressed, and it is pointed out that both chemical rockets and EM launchers are currently under consideration for these lightweight exoatmospheric projectiles (LEAPs). Long-duration power supply is identified as the primary technological change required if LEAPs are to be used for interplanetary scientific missions, and the design concept of a solar-powered space-based railgun to accelerate LEAPs on such missions is considered.
Field Demonstrations of Active Laser Ranging with Sub-mm Precision
NASA Technical Reports Server (NTRS)
Chen, Yijiang; Birnbaum, Kevin M.; Hemmati, Hamid
2011-01-01
Precision ranging between planets will provide valuable information for scientific studies of the solar system and fundamental physics. Current passive ranging techniques using retro-reflectors are limited to the Earth-Moon distance due to the 1/R? losses. We report on a laboratory realization and field implementation of active laser ranging in real-time with two terminals, emulating interplanetary distance. Sub-millimeter accuracy is demonstrated.
Bursting reconnection of the two co-rotating current loops
NASA Astrophysics Data System (ADS)
Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi
2000-10-01
Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.
The Onset of Magnetic Reconnection in Tail-Like Equilibria
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim; Kuznetsova, Masha
1999-01-01
Magnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.
Oxygen acceleration in magnetotail reconnection
NASA Astrophysics Data System (ADS)
Liang, Haoming; Lapenta, Giovanni; Walker, Raymond J.; Schriver, David; El-Alaoui, Mostafa; Berchem, Jean
2017-01-01
Motivated by the observed high concentration of oxygen ions in the magnetotail during enhanced geomagnetic activity, we investigated the oxygen acceleration in magnetotail reconnection by using 2.5-D implicit particle-in-cell simulations. We found that lobe oxygen ions can enter the downstream outflow region, i.e., the outflow region downstream of the dipolarization fronts (DFs) or the reconnection jet fronts. Without entering the reconnection exhaust, they are accelerated by the Hall electric field. They can populate the downstream outflow region before the DFs arrive there. This acceleration is in addition to acceleration in the exhaust by the Hall and reconnection electric fields. Oxygen ions in the preexisting current sheet are reflected by the propagating DF creating a reflected beam with a hook shape in phase space. This feature can be applied to deduce a history of the DF speed. However, it is difficult to observe for protons because their typical thermal velocity in the plasma sheet is comparable those of the DF and the reflection speed. The oxygen ions from the lobes and the preexisting current sheet form multiple beams in the distribution function in front of the DF. By comparing oxygen concentrations of 50%, 5%, and 0% with the same current sheet thickness, we found that the DF thickness is proportional to the oxygen concentration in the preexisting current sheet. All the simulation results can be used to compare with the observations from the Magnetospheric Multiscale mission.
Observations of ionospheric electron beams in the plasma sheet.
Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K
2012-11-16
Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.
Spatially Localized Particle Energization by Landau Damping in Current Sheets
NASA Astrophysics Data System (ADS)
Howes, G. G.; Klein, K. G.; McCubbin, A. J.
2017-12-01
Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.
ENERGETIC PARTICLE PRESSURE AT INTERPLANETARY SHOCKS: STEREO-A OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lario, D.; Decker, R. B.; Roelof, E. C.
2015-11-10
We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic (≥83 keV) protons (P{sub EP}) is larger than the pressure exerted by the interplanetary magnetic field (P{sub B}). In the majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when P{sub EP} exceeds P{sub B} by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of energetic particle intensities. When solar wind parameters are available, P{sub EP} also exceeds the pressure exertedmore » by the solar wind thermal population (P{sub TH}). Prolonged periods (>12 hr) with both P{sub EP} > P{sub B} and P{sub EP} > P{sub TH} may also occur when energetic particles accelerated by an approaching shock encounter a region well upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential increases of the sum P{sub SUM} = P{sub B} + P{sub TH} + P{sub EP} are observed in the immediate upstream region of the shocks regardless of individual changes in P{sub EP}, P{sub B}, and P{sub TH}, indicating a coupling between P{sub EP} and the pressure of the background medium characterized by P{sub B} and P{sub TH}. The quasi-exponential increase of P{sub SUM} implies a radial gradient ∂P{sub SUM}/∂r > 0 that is quasi-stationary in the shock frame and results in an outward force applied to the plasma upstream of the shock. This force can be maintained by the mobile energetic particles streaming upstream of the shocks that, in the most intense events, drive electric currents able to generate diamagnetic cavities and depressed solar wind density regions.« less
10 years of Cassini/VIMS observations at Titan
NASA Astrophysics Data System (ADS)
Sotin, C.; Brown, R. H.; Baines, K. H.; Barnes, J.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; LeMouelic, S.; Nicholson, P. D.; Rodriguez, S.; Soderblom, J.; Soderblom, L.; Stephan, K.
2014-04-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.
Investigating the auroral electrojets with low altitude polar orbiting satellites
NASA Astrophysics Data System (ADS)
Moretto, T.; Olsen, N.; Ritter, P.; Lu, G.
2002-07-01
Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly in the auroral electrojets. First, we examine the results during a recent geomagnetic storm. The currents derived from two satellites at different altitudes are in very good agreement, which verifies good stability of the method. Further, a very high degree of correlation (correlation coefficients of 0.8 0.9) is observed between the amplitudes of the derived currents and the commonly used auroral electrojet indices based on magnetic measurements at ground. This points to the potential of defining an auroral activity index based on the satellite observations, which could be useful for space weather monitoring. A specific advantage of the satellite observations over the ground-based magnetic measurements is their coverage of the Southern Hemisphere, as well as the Northern. We utilize this in an investigation of the ionospheric currents observed in both polar regions during a period of unusually steady interplanetary magnetic field with a large negative Y-component. A pronounced asymmetry is found between the currents in the two hemispheres, which indicates real inter-hemispheric differences beyond the mirror-asymmetry between hemispheres that earlier studies have revealed. The method is also applied to another event for which the combined measurements of the three satellites provide a comprehensive view of the current systems. The analysis hereof reveals some surprising results concerning the connection between solar wind driver and the resulting ionospheric currents. Specifically, preconditioning of the magnetosphere (history of the interplanetary magnetic field) is seen to play an important role, and in the winther hemisphere, it seems to be harder to drive currents on the nightside than on the dayside.
Antarctic glacial history from numerical models and continental margin sediments
Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.
1999-01-01
The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.
NASA Astrophysics Data System (ADS)
Slavin, James
M. H. Acũa (2), B. J. Anderson (3), D. N. Baker (4), M. Benna (2), S. A. Boardsen (1), G. n Gloeckler (5), R. E. Gold (3), G. C. Ho (3), H. Korth (3), S. M. Krimigis (3), S. A. Livi (6), R. L. McNutt Jr. (3), J. M. Raines (5), M. Sarantos (1), D. Schriver (7), S. C. Solomon (8), P. Travnicek (9), and T. H. Zurbuchen (5) (1) Heliophysics Science Division, NASA GSFC, Greenbelt, MD 20771, USA, (2) Solar System Exploration Division, NASA GSFC, Greenbelt, MD 20771, USA, (3) The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA, (4) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA, (5) Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA (6) Southwest Research Institute, San Antonio, TX 28510, USA, (7) Institute for Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024, USA, (8) Department of Terrestrial Magnetism, Carnegie Institution of Washington, DC 20015, USA, and (9) Institute of Atmospheric Physics, Prague, Czech Republic, 14131 MESSENGER's 14 January 2008 encounter with Mercury has provided new observations of the solar wind interaction with this planet. Here we report initial results concerning this miniature magnetosphere's response to the north-south component of the interplanetary magnetic field (IMF). This is the component of the IMF that is expected to exert the greatest influence over the structure of the magnetopause and the processes responsible for energy transfer into the magnetosphere. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through this small magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of welldeveloped flux transfer events (FTEs) was observed in the magnetosheath following some of these southward-Bz intervals. The inbound magnetopause crossing in the magnetic field measurements is consistent with a transition from the magnetosheath into the plasma sheet. Immediately following MESSENGER's entry into the magnetosphere, rotational perturbations in the magnetic field similar to those seen at the Earth in association with large-scale plasma sheet vortices driven by Kelvin-Helmholtz waves along the magnetotail boundary at the Earth are observed. The outbound magnetopause occurred during northward IMF Bz and had the characteristics of a tangential discontinuity. These new observations have important implications for our understanding of energy transfer into Mercury's magnetosphere.
Interplanetary Small Satellite Conference 2017 Program
NASA Technical Reports Server (NTRS)
Dalle, Derek Jordan
2017-01-01
The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.
Research in space physics at the University of Iowa
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1976-01-01
Energetic particles in outer space and their relationship to electric, magnetic, and electromagnetic fields associated with the earth, sun, moon, and planets, and the interplanetary medium are investigated. Special attention was given to observations of earth and moon satellites and interplanetary spacecraft; phenomenological analysis and interpretation were emphasized. Data also cover ground based on radio astronomical and optical techniques and theoretical problems in plasma physics as revelant to solar planetary and interplanetary phenomena.
Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium
NASA Technical Reports Server (NTRS)
Barnes, A.
1983-01-01
An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.
International Launch Vehicle Selection for Interplanetary Travel
NASA Technical Reports Server (NTRS)
Ferrone, Kristine; Nguyen, Lori T.
2010-01-01
In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.
STIP Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
The study of travelling interplanetary phenomena has continued over a period of years. The STIP (Study of Travelling Interplanetary Phenomena) Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals was held in Huntsville, Alabama, on May 12-15, 1987, the first of these meetings to be held in the United States. The Symposium's objective was to coordinate and disseminate new science gained from the recent solar-terrestrial and cometary intervals which can be used to better understand the linkage of physical events to the Sun's vagaries (flares, coronal holes, eruptive prominences) from their initial detection to their consequence. Fifty-one presentations were made during the four-day period. Abstracts of these reports are included as Appendix A.
Interplanetary laser ranging - an emerging technology for planetary science missions
NASA Astrophysics Data System (ADS)
Dirkx, D.; Vermeersen, L. L. A.
2012-09-01
Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.
North-south asymmetry in the magnetic deflection of polar coronal hole jets
NASA Astrophysics Data System (ADS)
Nisticò, G.; Zimbardo, G.; Patsourakos, S.; Bothmer, V.; Nakariakov, V. M.
2015-11-01
Context. Measurements of the sunspots area, of the magnetic field in the interplanetary medium, and of the heliospheric current sheet (HCS) position, reveal a possible north-south (N-S) asymmetry in the magnetic field of the Sun. This asymmetry could cause the bending of the HCS of the order of 5-10 deg in the southward direction, and it appears to be a recurrent characteristic of the Sun during the minima of solar activity. Aims: We study the N-S asymmetry as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. Methods: Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure (β ≪ 1), we can assume that the magnetic field controls the dynamics of plasma. On average, jets follow magnetic field lines during their propagation, highlighting their local direction. We measured the position angles at 1 R⊙ and at 2 R⊙ of 79 jets, based on the Solar TErrestrial RElations Observatory (STEREO) ultraviolet and white-light coronagraph observations during the solar minimum period March 2007-April 2008. The average jet deflection is studied both in the plane perpendicular to the line of sight and, for a reduced number of jets, in 3D space. The observed jet deflection is studied in terms of an axisymmetric magnetic field model comprising dipole (g1), quadrupole (g2), and esapole (g3) moments. Results: We found that the propagation of the jets is not radial, which is in agreement with the deflection due to magnetic field lines. Moreover, the amount of the deflection is different between jets over the north and those from the south pole. A comparison of jet deflections and field line tracing shows that a ratio g2/g1 ≃ -0.5 for the quadrupole and a ratio g3/g1 ≃ 1.6-2.0 for the esapole can describe the field. The presence of a non-negligible quadrupole moment confirms the N-S asymmetry of the solar magnetic field for the considered period. Conclusions: We find that the magnetic deflection of jets is larger in the north than in the south of the order of 25-40%, with an asymmetry that is consistent with a southward deflection of the heliospheric current sheet of the order of 10 deg, consistent with that inferred from other independent datasets and instruments.
NASA Astrophysics Data System (ADS)
Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga
2017-04-01
The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization rates of heliospheric particles such as neutral interstellar gas atoms, pick-up ions or energetic neutral atoms This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 and the Russian Foundation for Basic Research under grant agreements No 17-02-00300 & No 17-02-01328. O. Khabarova, H. Malova, R. Kislov, L. Zelenyi, V. Obridko, A. Kharshiladze, M. Tokumaru , J. Sokół, S. Grzedzielski, K. Fujiki, 2017, the Astrophysical Journal, under review
NASA Astrophysics Data System (ADS)
Yokoyama, Takaaki
Temporal evolution of a current sheet with initial perturbations is studied by using the threedimensional resistive magnetohydrodynamic (MHD) simulations. The magnetic reconnection is considered to be the main engine of the energy rele ase in solar flares. The structure of the diffusion region is, however, not stil l understood under the circumstances with enormously large magnetic Reynolds num ber as the solar corona. In particular, the relationship between the flare's macroscopic physics and the microscopic ones are unclear. It is generally believed that the MHD turbulence s hould play a role in the intermediate scale. The initial current sheet is in an approximately hydromagnetic equilibrium with anti-parallel magnetic field in the y-direction. We imposed a finite-amplitude perturbations (=50ee what happens. Special attention is paid upon the evolution of a three-dimens ional structure in the direction along the initial electric current (z-direction ). Our preliminary results are as follows: (1) In the early phase of the evolut ion, high wavenumber modes in the z-direction are excited and grow. (2) Many "X "-type neutral points (lines) are generated along the magnetic neutral line (pla ne) in the current sheet. When they evolve into the non-linear phase, three-dime nsional structures in the z-direction also evolve. The spatial scale in the z-di rection seems to be almost comparable with that in the xy-plane. (3) The energy release rate is reduced in case of 3D simulations compared with 2D ones probably because of the reduction of the inflow cross sections by the formation of pattc hy structures in the current sheet.
Plasmoid formation in the elongated current sheet during transient CHI on HIST
NASA Astrophysics Data System (ADS)
Nagata, Masayoshi; Fujita, Akihiro; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi
2016-10-01
The Transient-Coaxial Helicity Injection (T-CHI) is a promising candidate for the non-inductive plasma start-up on Spherical Torus (ST). The problem of the flux closure in the T-CHI is important and related to understand the physics of fast magnetic reconnection. The recent MHD simulation (F. Ebrahimi and R. Raman, Phys. Rev. Lett. 114, 205003 (2015)) on T-CHI for NSTX predicts the formation and breakup of an elongated Sweet-Parker (S-P) current sheet and a transient to plasmoid instability. According to this simulation, the reconnection rate based on the plasmoid instability is faster than that by S-P model and becomes nearly independent of the Lundquist number S. In this meeting, we will present that the formation of multiple X-points and plasmoids has been observed in T-CHI start-up plasmas on HIST. The stronger external guide (toroidal) magnetic field makes plasma less compressible, leading to slower reconnection time and longer current sheet. The experimental observation shows that 2/3 plasmoids are generated in the elongated current sheet with the narrow width comparable to the ion skin depth or the ion sound gyro-radius. The small plasmoids develop to a large-scale flux structure due to a current inward diffusion during the decay phase.
Flapping current sheet with superposed waves seen in space and on the ground
NASA Astrophysics Data System (ADS)
Wang, Guoqiang; Volwerk, Martin; Nakamura, Rumi; Boakes, Peter; Zhang, Tielong; Ge, Yasong; Yoshikawa, Akimasa; Baishev, Dmitry
2015-04-01
A wavy current sheet event observed on 15th of October 2004 between 1235 and 1300 UT has been studied by using Cluster and ground-based magnetometer data. Waves propagating from the tail centre to the duskside flank with a period ~30 s and wavelength ~1 RE, are superimposed on a flapping current sheet, accompanied with a bursty bulk flow (BBF). Three Pi2 pulsations, with onset at ~1236, ~1251 and ~1255 UT, respectively, are observed at the Tixie (TIK) station located near the foot-points of Cluster. The mechanism creating the Pi2 (period ~40 s) onset at ~1236 UT is unclear. The second Pi2 (period ~90 s, onset at ~1251 UT) is associated with a strong field-aligned current, which has a strong transverse component of the magnetic field, observed by Cluster with a time delay ~60 s. We suggest that it is caused by bouncing Alfvén waves between the northern and southern ionosphere which transport the field-aligned current. For the third Pi2 (period ~60 s) there is almost no damping at the first three periods. They occur in conjunction with periodic field-aligned currents one-on-one with 72s delay. We suggest that it is generated by these periodic field-aligned currents. We conclude that the strong field-aligned currents generated in the plasma sheet during flapping with superimposed higher frequency waves can drive Pi2 pulsations on the ground, and periodic field-aligned currents can even control the period of the Pi2s.
Swarm observation of field-aligned current and electric field in multiple arc systems
NASA Astrophysics Data System (ADS)
Wu, J.; Knudsen, D. J.; Gillies, M.; Donovan, E.; Burchill, J. K.
2017-12-01
It is often thought that auroral arcs are a direct consequence of upward field-aligned currents. In fact, the relation between currents and brightness is more complicated. Multiple auroral arc systems provide and opportunity to study this relation in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the THEMIS all-sky imagers (ASIs), magnetometers and electric field instruments onboard the Swarm satellites during the period from December 2013 to March 2015. In type 1 events, each arc is an intensification within a broad, unipolar current sheet and downward currents only exist outside the upward current sheet. These types of events are termed "unipolar FAC" events. In type 2 events, multiple arc systems represent a collection of multiple up/down current pairs, which are termed as "multipolar FAC" events. Comparisons of these two types of FAC events are presented with 17 "unipolar FAC" events and 12 "multipolar FAC" events. The results show that "unipolar FAC" and "multipolar FAC" events have systematic differences in terms of MLT, arc width and separation, and dependence on substorm onset time. For "unipolar FAC" events, significant electric field enhancements are shown on the edges of the broad upward current sheet. Electric field fluctuations inside the multiple arc system can be large or small. For "multipolar FAC" events, a strong correlation between magnetic and electric field indicate uniform conductance within each upward current sheet. The electrodynamical structures of multiple arc systems presented in this paper represents a step toward understanding arc generation.
NASA Astrophysics Data System (ADS)
Mangeard, Pierre-Simon; Clem, John; Evenson, Paul; Pyle, Roger; Mitthumsiri, Warit; Ruffolo, David; Sáiz, Alejandro; Nutaro, Tanin
2018-05-01
Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (<40° at negative polarity) were well correlated with variations at both NM stations, as predicted by drift models. At a higher tilt angle, the Doi Inthanon count rate is well correlated with the interplanetary magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.
NASA Astrophysics Data System (ADS)
Cheng, Z. W.; Shi, J. K.; Zhang, J. C.; Torkar, K.; Kistler, L. M.; Dunlop, M.; Carr, C.; Rème, H.; Dandouras, I.; Fazakerley, A.
2018-04-01
The influence of the interplanetary magnetic field (IMF) cone angle θ (the angle between the IMF direction and the Sun-Earth line) on the invariant latitudes of the footprints of the field-aligned currents (FACs) in the magnetotail has been investigated. We performed a statistical study of 542 FAC cases observed by the four Cluster spacecraft in the Northern Hemisphere. The results show that there are almost no FACs when the IMF cone angle is less than 10°, and there are indications of the FACs in the plasma sheet boundary layers being weak under the radial IMF conditions. The footprints of the large FAC (>10 nA/m2) cases are within invariant latitudes <71° and mainly within IMF cone angles θ > 60°, which implies that the footprints of the large FACs mainly expand equatorward with large IMF cone angle. The equatorward boundary of the FAC footprints in the polar region decreases with increasing IMF cone angle (and has a better correlation for northward IMF), which shows that the IMF cone angle plays an important controlling role in FAC distributions in the magnetosphere-ionosphere coupling system. There is almost no correlation between the poleward boundary and the IMF cone angle for both northward and southward IMF. This is because the poleward boundary movement is limited by an enhanced lobe magnetic flux. This is the first time a correlation between FAC footprints in the polar region and IMF cone angles has been determined.
Web of Pseudostreamer and Streamer Belts and their Interplanetary Signatures
NASA Astrophysics Data System (ADS)
Crooker, N. U.; Owens, M. J.; McPherron, R. L.
2012-12-01
A new method of identifying pseudostreamer and streamer belts on potential field source surface (PFSS) maps reveals how they interconnect to form a network or web-like pattern that expands to cover the Sun at solar maximum. The method is based upon calculating the distance dS between the photospheric footpoints of field lines that are uniformly spaced in longitude at the source surface. This distance peaks sharply under the large arcades characteristic of both pseudostreamer and streamer belts, where the former (latter) mark boundaries between coronal holes with the same (different) polarities. Thus the two kinds of belts are distinguished from each other by noting whether or not a change in magnetic polarity accompanies the peak, signaling passage of the heliospheric current sheet unique to the streamer belt. To compare the plasma and composition properties of pseudostreamer and streamer belts at 1 AU, we use 12 years of ACE data to perform superposed epoch analysis centered on stream interfaces in interaction regions, where the interfaces mark the trailing boundaries of what was originally slow flow. The interfaces are sorted according to whether they bound streamers or pseudostreamers by ballistically mapping them back to traces of dS across the source surface. Preliminary results indicate sharp drops in oxygen and carbon charge state ratios as well as the elemental abundance ratio Fe/O at both streamer and pseudostreamer boundaries. Combined with the web-like pattern of streamer and pseudostreamer belts, the results are consistent with the separatrix-web model of the slow solar wind first described by Antiochos et al. [Astrophys. J., 731, 112, 2011].
THE SPACE WEATHER OF PROXIMA CENTAURI b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, C.; Drake, J. J.; Cohen, O., E-mail: cgaraffo@cfa.harvard.edu
A planet orbiting in the “habitable zone” of our closest neighboring star, Proxima Centauri, has recently been discovered, and the next natural question is whether or not Proxima b is “habitable.” Stellar winds are likely a source of atmospheric erosion that could be particularly severe in the case of M dwarf habitable zone planets that reside close to their parent star. Here, we study the stellar wind conditions that Proxima b experiences over its orbit. We construct 3D MHD models of the wind and magnetic field around Proxima Centauri using a surface magnetic field map for a star of themore » same spectral type and scaled to match the observed ∼600 G surface magnetic field strength of Proxima. We examine the wind conditions and dynamic pressure over different plausible orbits that sample the constrained parameters of the orbit of Proxima b. For all the parameter space explored, the planet is subject to stellar wind pressures of more than 2000 times those experienced by Earth from the solar wind. During an orbit, Proxima b is also subject to pressure changes of 1–3 orders of magnitude on timescales of a day. Its magnetopause standoff distance consequently undergoes sudden and periodic changes by a factor of 2–5. Proxima b will traverse the interplanetary current sheet twice each orbit, and likely crosses into regions of subsonic wind quite frequently. These effects should be taken into account in any physically realistic assessment or prediction of its atmospheric reservoir, characteristics, and loss.« less
Diffusive Shock Acceleration and Reconnection Acceleration Processes
NASA Astrophysics Data System (ADS)
Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.
2015-12-01
Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.
Exploration of solar photospheric magnetic field data sets using the UCSD tomography
NASA Astrophysics Data System (ADS)
Jackson, B. V.; Yu, H.-S.; Buffington, A.; Hick, P. P.; Nishimura, N.; Nozaki, N.; Tokumaru, M.; Fujiki, K.; Hayashi, K.
2016-12-01
This article investigates the use of two different types of National Solar Observatory magnetograms and two different coronal field modeling techniques over 10 years. Both the "open-field" Current Sheet Source Surface (CSSS) and a "closed-field" technique using CSSS modeling are compared. The University of California, San Diego, tomographic modeling, using interplanetary scintillation data from Japan, provides the global velocities to extrapolate these fields outward, which are then compared with fields measured in situ near Earth. Although the open-field technique generally gives a better result for radial and tangential fields, we find that a portion of the closed extrapolated fields measured in situ near Earth comes from the direct outward mapping of these fields in the low solar corona. All three closed-field components are nonzero at 1 AU and are compared with the appropriate magnetometer values. A significant positive correlation exists between these closed-field components and the in situ measurements over the last 10 years. We determine that a small fraction of the static low-coronal component flux, which includes the Bn (north-south) component, regularly escapes from closed-field regions. The closed-field flux fraction varies by about a factor of 3 from a mean value during this period, relative to the magnitude of the field components measured in situ near Earth, and maximizes in 2014. This implies that a relatively more efficient process for closed-flux escape occurs near solar maximum. We also compare and find that the popular Potential Field Source Surface and CSSS model closed fields are nearly identical in sign and strength.
Interplanetary Magnetic Field Guiding Relativistic Particles
NASA Technical Reports Server (NTRS)
Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.
2011-01-01
The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.
MULTIPLE CURRENT SHEET SYSTEMS IN THE OUTER HELIOSPHERE: ENERGY RELEASE AND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, D.; Gingell, P. W.; Matteini, L.
2016-05-01
In the outer heliosphere, beyond the solar wind termination shock, it is expected that the warped heliospheric current sheet forms a region of closely packed, multiple, thin current sheets. Such a system may be subject to the ion-kinetic tearing instability, and hence may generate magnetic islands and hot populations of ions associated with magnetic reconnection. Reconnection processes in this environment have important implications for local particle transport, and for particle acceleration at reconnection sites and in turbulence. We study this complex environment by means of three-dimensional hybrid simulations over long timescales, in order to capture the evolution from linear growthmore » of the tearing instability to a fully developed turbulent state at late times. The final state develops from the highly ordered initial state via both forward and inverse cascades. Component and spectral anisotropy in the magnetic fluctuations is present when a guide field is included. The inclusion of a population of newborn interstellar pickup protons does not strongly affect these results. Finally, we conclude that reconnection between multiple current sheets can act as an important source of turbulence in the outer heliosphere, with implications for energetic particle acceleration and propagation.« less
The interplanetary and solar magnetic field sector structures, 1962 - 1968
NASA Technical Reports Server (NTRS)
Jones, D. E.
1972-01-01
The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.
NASA Astrophysics Data System (ADS)
Leybourne, Bruce; Smoot, Christian; Longhinos, Biju
2014-05-01
Interplanetary Magnetic Field (IMF) coupling to south polar magnetic ring currents transfers induction energy to the Southern Geostream ringing Antarctica and underlying its encircling mid-ocean ridge structure. Magnetic reconnection between the southward interplanetary magnetic field and the magnetic field of the earth is the primary energy transfer mechanism between the solar wind and the magnetosphere. Induced telluric currents focused within joule spikes along Geostreams heat the southern Pacific. Alignment of the Australian Antarctic Discordance to other tectonic vortexes along the Western Pacific Rim, provide electrical connections to Earths core that modulate global telluric currents. The Banda Sea Triple Junction, a mantle vortex north of Australia, and the Lake Baikal Continental Rift vortex in the northern hemisphere modulate atmospheric Jetstream patterns gravitationally linked to internal density oscillations induced by these telluric currents. These telluric currents are driven by solar magnetic power, rotation and orbital dynamics. A solar rotation 40 day power spectrum in polarity controls north-south migration of earthquakes along the Western Pacific Rim and manifest as the Madden Julian Oscillation a well-documented climate cycle. Solar plasma turbulence cycles related to Hale flares trigger El Nino Southern Oscillations (ENSO's), while solar magnetic field strength frequencies dominate global warming and cooling trends indexed to the Pacific Decadal Oscillation. These Pacific climate anomalies are solar-electro-tectonically modulated via coupling to tropical geostream vortex streets. Particularly the section along the Central Pacific Megatrend connecting the Banda Sea Triple Junction (up welling mantle vortex) north of Australia with the Easter Island & Juan Fernandez twin rotating micro-plates (twin down welling mantle vortexes) along the East Pacific Rise modulating ENSO. Solar eruptions also enhance the equatorial ring current located approximately at the boundary of the plasmasphere and the outer magnetosphere. Induction power of geo-magnetic storms, are linked to ring current strength, and depend on the speed of solar eruptions, along with the dynamic pressure, strength and orientation of the IMF.
NASA Astrophysics Data System (ADS)
Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.; Anastasiadis, A.; Toutountzi, A.
2013-09-01
We treat flaring solar active regions as physical systems having reached the self-organized critical state. Their evolving magnetic configurations in the low corona may satisfy an instability criterion, related to the excession of a specific threshold in the curl of the magnetic field. This imposed instability criterion implies an almost zero resistivity everywhere in the solar corona, except in regions where magnetic-field discontinuities and. hence, local currents, reach the critical value. In these areas, current-driven instabilities enhance the resistivity by many orders of magnitude forming structures which efficiently accelerate charged particles. Simulating the formation of such structures (thought of as current sheets) via a refined SOC cellular-automaton model provides interesting information regarding their statistical properties. It is shown that the current density in such unstable regions follows power-law scaling. Furthermore, the size distribution of the produced current sheets is best fitted by power laws, whereas their formation probability is investigated against the photospheric magnetic configuration (e.g. Polarity Inversion Lines, Plage). The average fractal dimension of the produced current sheets is deduced depending on the selected critical threshold. The above-mentioned statistical description of intermittent electric field structures can be used by collisional relativistic test particle simulations, aiming to interpret particle acceleration in flaring active regions and in strongly turbulent media in astrophysical plasmas. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.
Open Questions, New Instrumentation, and Challenges for Heliospheric Physics beyond 2020
NASA Astrophysics Data System (ADS)
Desai, Mihir; Allegrini, Frederic
The last decade has seen tremendous breakthroughs in our knowledge of the outer edges of the heliosphere and the interaction between the Sun and its local galactic neighborhood. These advances include the crossing of the termination shock and perhaps the heliopause by Voyager 1 and global imaging of energetic neutral atom (ENA) emission from the outer heliosphere by IBEX and Cassini. IBEX discovered a narrow “ribbon” of ENA emissions encircling the heliosphere, and provided direct measurements of interstellar neutral atoms that point to the absence of a bow shock beyond the heliopause. The big picture provided by IBEX, complemented by Voyager observations, shows that the asymmetry of the heliosphere is shaped by the surrounding interstellar magnetic field and that the physical processes that control the interaction exist on relatively small spatial and temporal scales (months) that are not currently measured. Additionally, in-situ observations from ACE, Wind, SoHO, SAMPEX, and STEREO have contributed dramatically to our understanding of solar energetic particle (SEP) events, of the importance of suprathermal ions for efficient energization, of the sources and evolution of solar wind, interplanetary magnetic field, corona mass ejections (CMEs), and SEPs that impact geospace and the heliosphere. These phenomena are controlled by myriad complex and poorly understood physical effects that must be unraveled to develop a complete picture of particle acceleration and transport and of the causes and impacts of interplanetary disturbances on geospace and the heliosphere. In this talk I will summarize our current state of knowledge in heliospheric physics, identify key questions that will be addressed by upcoming missions like Solar Probe Plus and Solar Orbiter, and then discuss a new set of challenges that need to be met in order to obtain a complete understanding of the solar and interplanetary drivers of Space Weather and SEPs, and to discover how our heliosphere interacts with the nearby interstellar and galactic environments.
Penetration electric fields: A Volland Stern approach
NASA Astrophysics Data System (ADS)
Burke, William J.
2007-07-01
This paper reformulates the Volland Stern model, separating contributions from corotation and convection to predict electric field penetration of the inner magnetosphere using data from the Advanced Composition Explorer (ACE) satellite. In the absence of shielding, the model electric field is EVS=ΦPC/2LYRE, where ΦPC is the polar cap potential and 2LYRE is the width of the magnetosphere along the dawn dusk meridian. ΦPC is estimated from the interplanetary electric field (IEF) and the dynamic pressure of the solar wind (PSW); values of LY were approximated using PSW and simple force-balance considerations. ACE measurements on 16 17 April 2002 were then used to calculate EVS for comparison with the eastward electric field component (EJφ) detected by the incoherent scatter radar at Jicamarca, Peru. While the interplanetary magnetic field (IMF) was southward, the model predicted observed ratios of EVS/IEF. During intervals of northward IMF, EJφ turned westward suggesting that a northward IMF BZ system of field-aligned currents affected the electrodynamics of the dayside ionosphere on rapid time scales.
The X-ray Detectability of Electron Beams Escaping from the Sun
NASA Astrophysics Data System (ADS)
Saint-Hilaire, Pascal; Krucker, Säm; Christe, Steven; Lin, Robert P.
2009-05-01
We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (gsim1035 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to gsim3 × 1036 for RHESSI, gsim3 × 1035 for Hinode/XRT, and gsim1033 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.
Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra
NASA Astrophysics Data System (ADS)
Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.
2001-11-01
Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.
Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event
NASA Astrophysics Data System (ADS)
Manchester, W. B., IV; van der Holst, B.; Lavraud, B.
2014-06-01
Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.
Interplanetary density models as inferred from solar Type III bursts
NASA Astrophysics Data System (ADS)
Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert
2016-04-01
We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.
NASA Astrophysics Data System (ADS)
Watanabe, Masakazu; Fujita, Shigeru; Tanaka, Takashi; Kubota, Yasubumi; Shinagawa, Hiroyuki; Murata, Ken T.
2018-01-01
We perform numerical modeling of the interchange cycle in the magnetosphere-ionosphere convection system for oblique northward interplanetary magnetic field (IMF). The interchange cycle results from the coupling of IMF-to-lobe reconnection and lobe-to-closed reconnection. Using a global magnetohydrodynamic simulation code, for an IMF clock angle of 20° (measured from due north), we successfully reproduced the following features of the interchange cycle. (1) In the ionosphere, for each hemisphere, there appears a reverse cell circulating exclusively in the closed field line region (the reciprocal cell). (2) The topology transition of the magnetic field along a streamline near the equatorial plane precisely represents the magnetic flux reciprocation during the interchange cycle. (3) Field-aligned electric fields on the interplanetary-open separatrix and on the open-closed separatrix are those that are consistent with IMF-to-lobe reconnection and lobe-to-closed reconnection, respectively. These three features prove the existence of the interchange cycle in the simulated magnetosphere-ionosphere system. We conclude that the interchange cycle does exist in the real solar wind-magnetosphere-ionosphere system. In addition, the simulation revealed that the reciprocal cell described above is not a direct projection of the diffusion region as predicted by the "vacuum" model in which diffusion is added a priori to the vacuum magnetic topology. Instead, the reciprocal cell is a consequence of the plasma convection system coupled to the so-called NBZ ("northward
Virtual Energetic Particle Observatory for the Heliospheric Data Environment
NASA Technical Reports Server (NTRS)
Cooper, J. F.; Armstrong, T. P.; Hill, M. E.; Lal, N.; McGuire, R. E.; McKibben, R. B.; Narock, T. W.; Szabo, A.; Tranquille, C.
2007-01-01
The heliosphere is pervaded by interplanetary energetic particles, traditionally also called cosmic rays, from solar, internal heliospheric, and galactic sources. The particles species of interest to heliophysics extend from plasma energies to the GeV energies of galactic cosmic rays still measurably affected by heliospheric modulation and the still higher energies contributing to atmospheric ionization. The NASA and international Heliospheric Network of operational and legacy spacecraft measures interplanetary fluxes of these particles. Spatial coverage extends from the inner heliosphere and geospace to the heliosheath boundary region now being traversed by Voyager 1 and soon by Voyager 2. Science objectives include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. The Virtual Energetic Particle Observatory (VEPO) will improve access and usability of selected spacecraft and sub-orbital NASA heliospheric energetic particle data sets as a newly approved effort within the evolving heliophysics virtual observatory environment. In this presentation, we will describe current VEPO science requirements, our initial priorities and an overview of our strategy to implement VEPO rapidly and at minimal cost by working within the high-level framework of the Virtual Heliospheric Observatory (VHO). VEPO will also leverage existing data services of NASA's Space Physics Data Facility and other existing capabilities of the U.S. and international heliospheric research communities.
3D MHD SIMULATION OF FLARE SUPRA-ARCADE DOWNFLOWS IN A TURBULENT CURRENT SHEET MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cécere, M.; Zurbriggen, E.; Costa, A.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin–Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there maymore » be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.« less
3D MHD Simulation of Flare Supra-Arcade Downflows in a Turbulent Current Sheet Medium
NASA Astrophysics Data System (ADS)
Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin-Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there may be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.
Advancing a New Era of Energy Delivery in the West (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-11-01
This 2-page fact sheet provides a high-level overview of the Western Area Power Administration's Transmission Infrastructure Program, including background, purpose, goals, eligibility criteria, and current projects.
Nanotechnology for Site Remediation: Fact Sheet
This fact sheet presents a snapshot of nanotechnology and its current uses in remediation. It presents information to help site project managers understand the potential applications of this group of technologies at their sites.
Observations of interactions between interplanetary and geomagnetic fields
NASA Technical Reports Server (NTRS)
Burch, J. L.
1973-01-01
Magnetospheric effects associated with variations of the north-south component of the interplanetary magnetic field are examined in light of recent recent experimental and theoretical results. Although the occurrence of magnetospheric substorms is statistically related to periods of southward interplanetary magnetic field, the details of the interaction are not understood. In particular, attempts to separate effects resulting directly from the interaction between the interplanetary and geomagnetic fields from those associated with substorms have produced conflicting results. The transfer of magnetic flux from the dayside to the nightside magnetosphere is evidenced by equatorward motion of the polar cusp and increases of the magnetic energy density in the lobes of the geomagnetic tail. The formation of a macroscopic X-type neutral line at tail distances less than 35 R sub E appears to be a substorm phenomenon.
Data reduction and analysis of ISEE magnetometer experiment
NASA Technical Reports Server (NTRS)
Russell, C. T.
1982-01-01
The ISEE-1 and -2 magnetometer data was reduced. The up and downstream turbulence associated with interplanetary shocks were studied, including methods of determining shock normals, and the similarities and differences in laminar and quasi-laminar shock structure. The associated up and downstream turbulence was emphasized. The distributions of flux transfer events, field aligned currents in the near tail, and substorm dynamics in the magnetotail were also investigated.
NASA Technical Reports Server (NTRS)
1989-01-01
Amoco Laser Company, a subsidiary of Amoco Corporation, has developed microlasers for the commercial market based on a JPL concept for optical communications over interplanetary distances. Lasers emit narrow, intense beams of light or other radiation. The beams transmit communication signals, drill, cut or melt materials or remove diseased body tissue. The microlasers cover a broad portion of the spectrum, and performance is improved significantly. Current applications include medical instrumentation, color separation equipment, telecommunications, etc.
A brief history of magnetospheric physics before the spaceflight era
NASA Technical Reports Server (NTRS)
Stern, David P.
1989-01-01
Early research on the earth's magnetic environment is reviewed, with attention given to the period when only ground-based observations were possible. Early work on geomagnetism is discussed as well as the sunspot cycle, solar fares, the possibility of electron beams from the sun, and the Chapman-Ferraro cavity. Consideration is also given to the ring current, Alfvens theory and electric fields, interplanetary plasma, and polar magnetic storms.
Possible directions of refining criteria of radiation safety of spaceflights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalev, Y.Y.; Petrov, V.M.; Sakovich, V.A.
The possibility of characterizing space flight radiation safety is considered using a value which is integrated over the flight time, takes into account the radiation processes in an irradiated body and averages the probability of adverse radiobiological effects with respect to the distribution of solar proton flares of varying intensity. The proposed characteristic is compared with the current standards with reference to a hypothetic interplanetary flight.
NASA Technical Reports Server (NTRS)
Smith, R. E. (Editor)
1971-01-01
A consolidation of natural environment data is presented for use as design criteria guidelines in space and planetary exploration vehicle development programs. In addition to information in the disciplinary areas of aeronomy, radiation, geomagnetism, astrodynamic constants, and meteoroids for the earth's environment above 90 kilometers, interplanetary space, and the planetary environments, the upper atmosphere model currently recommended for use at MSFC is discussed in detail.
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc
Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.
Coronal mass ejections and their sheath regions in interplanetary space
NASA Astrophysics Data System (ADS)
Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.
2017-11-01
Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.
Simultaneous Forbush decreases and associated geomagnetic storms during the last three solar cycles
NASA Astrophysics Data System (ADS)
Okpala, K. C.
2013-12-01
Forbush decrease (FD) are observed reduction in galactic cosmic ray (GCR) intensity as measured by ground neutron monitors. FD is associated with increased activity of the sun as reflected in the size of the interplanetary coronal mass ejections passing around the Earth and the corotating regions in the Heliosphere. Since the interplanetary anisotropy evolves itself during a geomagnetic storm in addition to the reconfiguration of external magnetospheric currents, it is expected that changes in transmissivity of cosmic rays of glactic origin will occur during Geomagnetic storms. In this study we examine over one hundred and fifty (150) FD events and associated geomagnetic storms over the last three solar cycles from 1970 to 2003. The negative peaks of the FDs and the Dst coincided for most of the events (~70%). There was good correlation (>0.65) between the FDs and Dst. Fresh evidence of the influence of external magnetospheric currents on the count rates of the neutron monitors stations during periods of Forbush decreases (FDs) is provided. This evidence is observed as sudden increases in the count rates during the main phase of simultaneous FD. The magnitude of the sudden rise in the count rates of Neutron monitors and peak dst correlated well (>0.50) both for high latitude and mid latitude stations.
Cluster Observations of Currents In The Plasma Sheet During Substorm Expansions
NASA Astrophysics Data System (ADS)
McPherron, R. L.; Kivelson, M. G.; Khurana, K.; Balogh, A.; Conners, M.; Creutzberg, F.; Moldwin, M.; Rostoker, G.; Russell, C. T.
From 00 to 12 UT on August 15, 2001 the Cluster spacecraft passed through the plasma sheet at 0100 lt and distance 18 Re. During this passage three substorms with multiple onsets were observed in the magnetic field and plasma. The North American ground sector was well located to provide the context and timing of these substorms. We find that each substorm was initially associated with strong Earthward directed field-aligned current. The first substorm occurred when the Cluster array was at the boundary of the plasma sheet. The effects of the substorm appear at Cluster in associ- ation with an intensification of the expansion into the morning sector and are initiated by a wave of plasma sheet thickening followed by vertical oscillations of the plasma sheet boundary. The third substorm occurred with Cluster at the neutral sheet. It began with a transient pulse of southward Bz followed by a burst of tailward flow. Subse- quently a sequence of bursts of Earthward flow cause stepwise dipolarization of the local magnetic field. Our goal is to present a coherent three-dimensional representa- tion of the Cluster observations for each of these various substorms.
Embedded Heaters for Joining or Separating Plastic Parts
NASA Technical Reports Server (NTRS)
Bryant, Melvin A., III
2004-01-01
A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.
Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties
NASA Astrophysics Data System (ADS)
Pradhan, D.; Dutta, M.; Venugopalan, T.
2016-11-01
In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).
Cross-tail current, field-aligned current, and B(y)
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Lu, Chen; Larson, Douglas J.
1994-01-01
Orbits of individual charged particles were traced in a one-dimensional magnetic field model that included a uniform cross-tail component B(sub yo). The effects of B(sub yo) on the cross-tail current distribution j(sub y)(z), the average cross-tail drift velocity(nu(sub y)z), and the average pitch angle change(delta alpha) experienced during current sheet encounters were calculated. The addition of a B(sub yo) that exceeded several tenths of one nanotesla completely eliminated all resonance effects for odd-N orbits. An odd-N resonance involves ions that enter and exit the current sheet on the same side. Pitch angles of nearly all such ions changed substantially during a typical current sheet interaction, and there was no region of large cross-tail drift velocity in the presence of a modest B(sub yo). the addition of a very large B(sub yo) guide field in the direction that enhances the natural drift produces a large j(y) and small (Delta alpha) for ions with all energies. The addition of a modest B(sub yo) had less effect near even-N resonances. In this case, ions in a small energy range were found to undergo so little change in pitch angle that particles which originated in the ionosphere would pass through the current sheet and return to the conjugate ionosphere. Finally, the cross-tail drift of ions from regions dominated by stochastic orbits to regions dominated by either resonant or guiding center orbits was considered. The ion drift speed changed substantially during such transitions. The accompanying electrons obey the guiding center equations, so electron drift is more uniform. Any difference between gradients in the fluxes associated with electron and ion drifts requires the presence of a Birkeland current in order to maintain charge neutrality. This plasma sheet region therefore serves as a current generator. The analysis predicts that the resulting Birkeland current connects to the lowest altitude equatorial regions in which ions drift to or from a point at which stochastic orbits predominate. The proposed mechanism appears only in analyses that include non-guiding-center effects.
Reconnection at three dimensional magnetic null points: Effect of current sheet asymmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyper, P. F.; Jain, Rekha
2013-05-15
Asymmetric current sheets are likely to be prevalent in both astrophysical and laboratory plasmas with complex three dimensional (3D) magnetic topologies. This work presents kinematic analytical models for spine and fan reconnection at a radially symmetric 3D null (i.e., a null where the eigenvalues associated with the fan plane are equal) with asymmetric current sheets. Asymmetric fan reconnection is characterized by an asymmetric reconnection of flux past each spine line and a bulk flow of plasma across the null point. In contrast, asymmetric spine reconnection is characterized by the reconnection of an equal quantity of flux across the fan planemore » in both directions. The higher modes of spine reconnection also include localized wedges of vortical flux transport in each half of the fan. In this situation, two definitions for reconnection rate become appropriate: a local reconnection rate quantifying how much flux is genuinely reconnected across the fan plane and a global rate associated with the net flux driven across each semi-plane. Through a scaling analysis, it is shown that when the ohmic dissipation in the layer is assumed to be constant, the increase in the local rate bleeds from the global rate as the sheet deformation is increased. Both models suggest that asymmetry in the current sheet dimensions will have a profound effect on the reconnection rate and manner of flux transport in reconnection involving 3D nulls.« less