Sample records for interplanetary medium parameters

  1. Propagation and Evolution of CMEs in the Interplanetary Medium: Analysis of Remote Sensing and In situ Observations

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Gomez-Herrero, Raul; Malandraki, Olga; Szabo, Adam; Dresing, Nina; Davila, Joseph M.

    2010-01-01

    EUV disk imagers and white light coronagraphs have provided for many years information on the early formation and evolution of corona) mass ejections (CMEs). More recently, the novel heliospheric imaging instruments aboard the STEREO mission are providing crucial remote sensing information on the interplanetary evolution of these events while in situ instruments complete the overall characterization of the interplanetary CMEs. In this work, we present an analysis of CMEs from the Sun to the interplanetary medium using combined data from THE SOHO, STEREO, WIND, and ACE spacecraft. The events were selected to cover the widest possible spectrum of different ambient solar wind, magnetic field configurations, plasma parameters, etc. to allow uncovering those aspects that are important in understanding the propagation and evolution mechanisms of CMEs in the interplanetary medium.

  2. Interplanetary medium data book, appendix

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.

  3. Reply to Comment on ``Effects of fast and slow solar wind on the correlations between interplanetary medium and geomagnetic activity'' by C. B. Wang and J. K. Chao

    NASA Astrophysics Data System (ADS)

    Ballatore, Paola

    2003-10-01

    The paper [2002] (the paper commented) shows that the statistical significance of the correlations between the interplanetary parameters and the geomagnetic indices (Kp or Dst) is generally less significant during the fastest solar wind. On the other hand, at these fast solar wind periods, the significance of the Kp versus Dst correlation is equal to or higher than during slower solar wind. These results, together with further observations related to substorm periods and with previously published findings, are interpreted in terms of a difference in the interplanetary-magnetospheric coupling for solar wind faster or slower than a certain threshold (identified between about 500 and 600 km/s). Specifically, it is suggested that a possible linear approximation of the geomagnetic-interplanetary coupling is more appropriate during solar wind speed (Vsw) slower than this threshold, being nonlinear processes more dominant during the fastest speeds. This reply highlights that the correlation coefficients shown by [2003] are in agreement with these findings. In addition, Wang and Chao show that the statistical significance of the difference between the correlation coefficients for Vsw ≥ 550 km/s and those for Vsw < 550 km/s would indicate that the interplanetary-geomagnetic correlations during the fastest speeds are not significantly different from those at slower Vsw ranges. Here we give evidence of the fact that according to the common definition of this parameter, the calculation of the significance of the difference between two correlation coefficients made by Wang and Chao is wrong. Moreover, Wang and Chao recalculate the correlations between the interplanetary parameters and the ΔDst instead of Dst; in fact they note that the time derivative of this index (not the index itself) is driven by the interplanetary medium. Here we note that on the contrary, they show that the correlation coefficients between interplanetary parameters and Dst are larger than those obtained using ΔDst and we suggest a possible interpretation in terms of nonlinearity.

  4. A Study of the Association of Pc 3, 4 Micropulsations with Interplanetary Magnetic Field Orientation & Other Solar Wind Parameters.

    DTIC Science & Technology

    1977-11-13

    Page 13 DEPENDENCE OF MEDIAN LOG POWER 1.0 ON SOLAR WIND VELOCITY Pc3 PULSATIONS June - September 1974 UCLA Fluxgate Magnetometer ATS - 6 0 Log P=-3.3...interplanetary medium; Cosmic Elec., 1, 90-114, Space Sci. Rev., in press, 1978. 1970. Rusaell, C T., The ISEE I and 2 fluxgate magnetometers IEEE Fairfield. D...investigation is to attain the capacity to use micropulsation records acquired from surface magnetometers to infer certain key parameters of the solar wind

  5. Interplanetary medium data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Unresolved questions on the physics of solar wind and its effects on magnetospheric processes and cosmic ray propagation were addressed with hourly averaged interplanetary plasma and magnetic field data. This composite data set is described with its content and extent, sources, limits of validity, and the mutual consistency studies and normalizations to which the input data were subjected. Hourly averaged parameters were presented in the form of digital listings and 27-day plots. The listings are contained in a separately bound appendix.

  6. Zodiacal light as an indicator of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.; Sparrow, J. G.

    1978-01-01

    The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.

  7. Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Badman, S. V.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Cowley, S. W. H.; Ebert, R. W.; Fujimoto, M.; Gérard, J.-C.; Gladstone, G. R.; Grodent, D.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; Murakami, G.; McComas, D. J.; Orton, G. S.; Radioti, A.; Stallard, T. S.; Tao, C.; Valek, P. W.; Wilson, R. J.; Yamazaki, A.; Yoshikawa, I.

    2017-08-01

    We present the first comparison of Jupiter's auroral morphology with an extended, continuous, and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ˜1-3 days following compression region onset, the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ˜10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought.

  8. Variations of the ionospheric plasma concentration in the region of the main ionospheric trough during the magnetic storm of December 18-19, 1978, in connection with measurements of the interplanetary magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gdalevich, G.L.; Afonin, V.V.; Eliseev, A.Y.

    1986-07-01

    Data from the Kosmos-900 satellite are used to examine variations of the ion concentration in the region of the main ionospheric trough at altitudes of about 500 km during the storm of December 18-19, 1978. These variations of ion densities are compared with the variations of the parameters of the interplanetary medium, in particular, with the E /sub y/ = -VB /sub z/ component of the interplanetary electric field. The results of the comparison are discussed. A scheme is proposed for the formation and motion of the trough during magnetic disturbances.

  9. Influence of the solar wind/interplanetary medium on Saturnian kilometric radiation

    NASA Technical Reports Server (NTRS)

    Rucker, Helmut O.; Desch, M. D.

    1990-01-01

    Previous studies on the periodicities of the Saturnian kilometric radiation (SKR) suggested a considerable solar wind influence on the occurrence of SKR, so it was obvious to investigate the relationship between parameters of the solar wind/interplanetary medium and this Saturnian radio component. Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the external control of SKR. Out of the examined quantities known to be important in controlling magnetospheric processes this investigation yielded a dominance of the solar wind momentum, ram pressure and kinetic energy flux, in stimulating SKR and controlling its activity and emitted energy, and confirmed the results of the Voyager 1 analysis.

  10. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  11. Proceedings of the Symposium on the Study of the Sun and Interplanetary Medium in Three Dimensions. [space mission planning and interplanetary trajectories by NASA and ESA to better observe the sun and solar system

    NASA Technical Reports Server (NTRS)

    Fisk, L. A. (Editor); Axford, W. I. (Editor)

    1976-01-01

    A series of papers are presented from a symposium attended by over 200 European and American scientists to examine the importance of exploring the interplanetary medium and the sun by out-of-the-ecliptic space missions. The likely scientific returns of these missions in the areas of solar, interplanetary, and cosmic ray physics is examined. Theoretical models of the solar wind and its interaction with interplanetary magnetic fields are given.

  12. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  13. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  14. The Ambient and Perturbed Solar Wind: From the Sun to 1 AU

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1997-01-01

    The overall objective of the proposed research was to use numerical solutions of the magnetohydrodynamic (MHD) equations along with comparisons of the computed results with observations to study the following topics: (1) ambient solar wind solutions that extend from the solar surface to 1 astronomical unit (AU), contain closed magnetic structures near the Sun, and are consistent with observed values; (2) magnetic and plasma structures in coronal mass ejections (CMES) as they propagate to the interplanetary medium; (3) relation of MHD shocks to CMEs in the interplanetary medium; (4) interaction of MHD shocks with structures (such as other shocks, corotating interaction regions, current sheets) in the interplanetary plasma; and (5) simulations of observed interplanetary structures. A planned close collaboration with data analysts served to make the model more relevant to the data. The outcome of this research program is an improved understanding of the physical processes occurring in solar-generated disturbances in the interplanetary medium between the Sun and 1 AU.

  15. PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.

    2009-12-01

    In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.

  16. Statistical Study of ICMEs and Their Sheaths During Solar Cycle 23 (1996 - 2008)

    NASA Astrophysics Data System (ADS)

    Mitsakou, E.; Moussas, X.

    2014-08-01

    We have created a new catalog of 325 interplanetary coronal mass ejections (ICMEs) using their in-situ plasma signatures from 1996 to 2008; this time period includes Solar Cycle 23. The data set came from the OMNI near-Earth database. The one-minute resolution data that we used include magnetic-field strength, solar-wind speed, proton density, proton temperature, and plasma β. We compared this new catalog with other published catalogs. For every event, we indicated the presence of an ICME-driven shock. We identified the boundaries of ICMEs and their sheaths, and examined the statistical properties of characteristic parameters. We derived the duration and radial width of ICMEs and sheaths in the region near Earth. The statistical analysis of all events shows that, on average, sheaths travel faster than ICMEs, which indicates the expansion of CMEs in the interplanetary medium. They have higher mean magnetic-field strength values than ICMEs, and they are denser. They have higher mean proton temperature and plasma β than ICMEs, but they are smaller than ICMEs and last for a shorter time. The events were divided into different categories according to whether they included a shock and according to the phase of Solar Cycle 23 in which they are observed, i.e. ascending, maximum, or descending phase. We compared the different categories. We present a catalog of events available to the scientific community that studies ICMEs, and show the distribution and statistical properties of various parameters during these phenomena that govern the solar wind, the interplanetary medium, and space weather.

  17. Research in particles and fields. [using spacecraft and balloons

    NASA Technical Reports Server (NTRS)

    Vogt, R. E.

    1974-01-01

    Investigations, by particle-detectors flown on spacecraft, of the astrophysical aspects of cosmic radiation and the radiation environment of the earth are reported along with the research of the interplanetary medium, and planetary magnetic fields. The cosmic ray interactions with the interplanetary and interstellar medium, and radio scintillation theory were also studied.

  18. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.

  19. Coronal Mass Ejection-driven Shocks and the Associated Sudden Commencements-sudden Impulses

    NASA Technical Reports Server (NTRS)

    Veenadhari, B.; Selvakumaran, R.; Singh, Rajesh; Maurya, Ajeet K.; Gopalswamy, N.; Kumar, Sushil; Kikuchi, T.

    2012-01-01

    Interplanetary (IP) shocks are mainly responsible for the sudden compression of the magnetosphere, causing storm sudden commencement (SC) and sudden impulses (SIs) which are detected by ground-based magnetometers. On the basis of the list of 222 IP shocks compiled by Gopalswamy et al., we have investigated the dependence of SC/SIs amplitudes on the speed of the coronal mass ejections (CMEs) that drive the shocks near the Sun as well as in the interplanetary medium. We find that about 91% of the IP shocks were associated with SC/SIs. The average speed of the SC/SI-associated CMEs is 1015 km/s, which is almost a factor of 2 higher than the general CME speed. When the shocks were grouped according to their ability to produce type II radio burst in the interplanetary medium, we find that the radio-loud (RL) shocks produce a much larger SC/SI amplitude (average approx. 32 nT) compared to the radio-quiet (RQ) shocks (average approx. 19 nT). Clearly, RL shocks are more effective in producing SC/SIs than the RQ shocks. We also divided the IP shocks according to the type of IP counterpart of interplanetary CMEs (ICMEs): magnetic clouds (MCs) and nonmagnetic clouds. We find that the MC-associated shock speeds are better correlated with SC/SI amplitudes than those associated with non-MC ejecta. The SC/SI amplitudes are also higher for MCs than ejecta. Our results show that RL and RQ type of shocks are important parameters in producing the SC/SI amplitude.

  20. Impulsive acceleration and scatter-free transport of about 1 MeV per nucleon ions in (He-3)-rich solar particle events

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Ng, C. K.; Klecker, B.; Green, G.

    1989-01-01

    Impulsive solar energetic particle (SEP) events are studied to: (1) describe a distinct class of SEP ion events observed in interplanetary space, and (2) test models of focused transport through detailed comparisons of numerical model prediction with the data. An attempt will also be made to describe the transport and scattering properties of the interplanetary medium during the times these events are observed and to derive source injection profiles in these events. ISEE 3 and Helios 1 magnetic field and plasma data are used to locate the approximate coronal connection points of the spacecraft to organize the particle anisotropy data and to constrain some free parameters in the modeling of flare events.

  1. Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.

    1977-01-01

    A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.

  2. Solar Wind Plasma Flows and Space Weather Aspects Recent Solar Cycle

    NASA Astrophysics Data System (ADS)

    Kaushik, Sonia; Kaushik, Subhash Chandra

    2016-07-01

    Solar transients are responsible for initiating short - term and long - term variations in earth's magnetosphere. These variations are termed as geomagnetic disturbances, and driven by the interaction of solar wind features with the geo-magnetosphere. The strength of this modulation process depends upon the magnitude and orientation of the Interplanetary Magnetic Field and solar wind parameters. These interplanetary transients are large scale structures containing plasma and magnetic field expelled from the transient active regions of solar atmosphere. As they come to interplanetary medium the interplanetary magnetic field drape around them. This field line draping was thought as possible cause of the characteristic eastward deflection and giving rise to geomagnetic activities as well as a prime factor in producing the modulation effects in the near Earth environment. The Solar cycle 23 has exhibited the unique extended minima and peculiar effects in the geomagnetosphere. Selecting such transients, occurred during this interval, an attempt has been made to determine quantitative relationships of these transients with solar/ interplanetary and Geophysical Parameters. In this work we used hourly values of IMF data obtained from the NSSD Center. The analysis mainly based on looking into the effects of these transients on earth's magnetic field. The high-resolution data IMF Bz and solar wind data obtained from WDC-A, through its omniweb, available during the selected period. Dst and Ap obtained from WDC-Kyoto are taken as indicator of geomagnetic activities. It is found that Dst index, solar wind velocity, proton temperature and the Bz component of magnetic field have higher values and increase just before the occurrence of these events. Larger and varying magnetic field mainly responsible for producing the short-term changes in geomagnetic intensity are observed during these events associated with coronal holes.

  3. Long-term solar-terrestrial observations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The results of an 18-month study of the requirements for long-term monitoring and archiving of solar-terrestrial data is presented. The value of long-term solar-terrestrial observations is discussed together with parameters, associated measurements, and observational problem areas in each of the solar-terrestrial links (the sun, the interplanetary medium, the magnetosphere, and the thermosphere-ionosphere). Some recommendations are offered for coordinated planning for long-term solar-terrestrial observations.

  4. Velocity profiles of interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1983-01-01

    The type 2 radio burst was identified as a shock propagating through solar corona. Radio emission from shocks travelling through the interplanetary (IP) medium was observed. Using the drift rates of IP type II bursts the velocity characteristics of eleven shocks were investigated. It is indicated that shocks in the IP medium undergo acceleration before decelerating and that the slower shocks take longer to attain their maximum velocity.

  5. Pc3 activity at low geomagnetic latitudes - A comparison with solar wind observations

    NASA Technical Reports Server (NTRS)

    Villante, U.; Lepidi, S.; Vellante, M.; Lazarus, A. J.; Lepping, R. P.

    1992-01-01

    On an hourly time-scale the different roles of the solar wind and interplanetary magnetic field (IMF) parameters on ground micropulsation activity can be better investigated than at longer time-scales. A long-term comparison between ground measurements made at L'Aquila and IMP 8 observations confirms the solar wind speed as the key parameter for the onset of pulsations even at low latitudes, although additional control of the energy transfer from the interplanetary medium to the earth's magnetosphere is clearly exerted by the cone angle. Above about 20 mHz the frequency of pulsations is confirmed to be closely related to the IMF magnitude while, in agreement with model predictions, the IMF magnitude is related to the amplitude of the local fundamental resonant mode. We provide an interesting example in which high resolution measurements simultaneously obtained in the foreshock region and on the ground show that external transversal fluctuations do not penetrate deep into the low latitude magnetosphere.

  6. Forecast of solar wind parameters according to STOP magnetograph observations

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Pashchenko, M. P.; Ponyavin, D. I.; Svidskii, P. M.; Peshcherov, V. S.; Demidov, M. L.

    2016-12-01

    The paper discusses the results of the forecast of solar wind parameters at a distance of 1 AU made according to observations made by the STOP telescope magnetograph during 2014-2015. The Wang-Sheeley-Arge (WSA) empirical model is used to reconstruct the magnetic field topology in the solar corona and estimate the solar wind speed in the interplanetary medium. The proposed model is adapted to STOP magnetograph observations. The results of the calculation of solar wind parameters are compared with ACE satellite measurements. It is shown that the use of STOP observations provides a significant correlation of predicted solar wind speed values with the observed ones.

  7. Solar and interplanetary dynamics; Proceedings of the Symposium, Harvard University, Cambridge, Mass., August 27-31, 1979

    NASA Technical Reports Server (NTRS)

    Dryer, M. (Editor); Tandberg-Hanssen, E.

    1980-01-01

    The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.

  8. Interplanetary scintillation observations of the solar wind close to the Sun and out of the ecliptic

    NASA Technical Reports Server (NTRS)

    Sime, D. G.

    1983-01-01

    A brief review is given of recent developments in the observation of the solar wind by the method of interplanetary scintillation. The emphasis is on observations of the velocity structure, the electron density and the effect of propagating disturbances in the interplanetary medium as detected principally by intensity and phase scintillation and by spectral broadening.

  9. Muon and neutron observations in connection with the corotating interaction regions

    NASA Astrophysics Data System (ADS)

    da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.

    Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.

  10. GCR Modulation by Small-Scale Features in the Interplanetary Medium

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.; Galametz, M.

    2007-12-01

    In an effort to uncover the properties of structures in the interplanetary medium (IPM) that modulate galactic cosmic rays (GCR) on short time-scales (from hours to days), we study periods of differing conditions in the IPM. We analyze GCR variations from spacecraft both inside and outside the magnetosphere, using the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the observed GCR modulations and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. Our analysis spans time-/size-scale variations ranging from classic Forbush decreases (Fds), to substructure embedded within Fds, to much smaller amplitude and shorter duration variations observed during comparatively benign interplanetary conditions. We compare and contrast the conditions leading to the range of different GCR responses to modulating structures in the IPM.

  11. Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.

    1992-01-01

    The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.

  12. Predicting ICME properties at 1AU

    NASA Astrophysics Data System (ADS)

    Lago, A.; Braga, C. R.; Mesquita, A. L.; De Mendonça, R. R. S.

    2017-12-01

    Coronal mass ejections (CMEs) are among the main origins of geomagnetic disturbances. They change the properties of the near-earth interplanetary medium, enhancing some key parameters, such as the southward interplanetary magnetic field and the solar wind speed. Both quantities are known to be related to the energy transfer from the solar wind to the Earth's magnetosphere via the magnetic reconnection process. Many attempts have been made to predict the magnetic filed and the solar wind speed from coronagraph observations. However, we still have much to learn about the dynamic evolution of ICMEs as they propagate through the interplanetary space. Increased observation capability is probably needed. Among the several attempts to establish correlations between CME and ICME properties, it was found that the average CME propagation speed to 1AU is highly correlated to the ICME peak speed (Dal Lago et al, 2004). In this work, we present an extended study of such correlation, which confirms the results found in our previous study. Some suggestions on how to use this kind of results for space weather estimates are explored.

  13. Relationship between the growth of the ring current and the interplanetary quantity. [solar wind energy-magnetospheric coupling parameter correlation with substorm AE index

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.

  14. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  15. Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations

    NASA Technical Reports Server (NTRS)

    Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.

    1985-01-01

    It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.

  16. Research in space physics at the University of Iowa

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1976-01-01

    Energetic particles in outer space and their relationship to electric, magnetic, and electromagnetic fields associated with the earth, sun, moon, and planets, and the interplanetary medium are investigated. Special attention was given to observations of earth and moon satellites and interplanetary spacecraft; phenomenological analysis and interpretation were emphasized. Data also cover ground based on radio astronomical and optical techniques and theoretical problems in plasma physics as revelant to solar planetary and interplanetary phenomena.

  17. Plasma-tail activity and the interplanetary medium at Halley's Comet during Armada Week: 6-14 March 1986

    NASA Technical Reports Server (NTRS)

    Niedner, Malcolm B., Jr.; Schwingenschuh, Konrad; Hoeksema, J. Todd; Dryer, Murray; Mcintosh, Patrick S.

    1987-01-01

    The encounters of five spacecraft with Halley's Comet during 6-14 March 1986 offered a unique opportunity to calibrate the solar-wind interaction with cometary plasmas as recorded by remote wide-field and narrow-field/narrowband imaging. Perhaps not generally recognized in the comet community is the additional opportunity offered by the Halley Armada to study the structure of the solar-wind and interplanetary magnetic field (IMF) in three dimensions using five sets of data obtained over similar time intervals and heliocentric distances, but at somewhat different heliolatitudes. In fact, the two problems, i.e., comet physics and the structure of the interplanetary medium, are coupled if one wants to understand what conditions pertained at the comet between the encounters. This relationship is discussed.

  18. Interplanetary medium data book, supplement 4, 1985-1988

    NASA Technical Reports Server (NTRS)

    King, Joseph H.

    1989-01-01

    An extension is presented of the series of Interplanetary Medium Data Books and supplements which have been issued by the National Space Science Data Center since 1977. This volume contains solar wind magnetic field (IMF) and plasma data from the IMP 8 spacecraft for 1985 to 1988, and 1985 IMF data from the Czechoslovakian Soviet Prognoz 10 spacecraft. The normalization of the MIT plasma density and temperature, which has been discussed at length in previous volumes, is implemented as before, using the same normalization constants for 1985 to 1988 data as for the earlier data.

  19. Dusty Plasma Effects in the Interplanetary Medium?

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya

    Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales <100 nm. They contain magnesium-rich silicates and silicon carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.

  20. 3-D model of ICME in the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  1. Solar events and their influence on the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Aspects of a workshop on Solar events and their influence on the interplanetary medium, held in September 1986, are reviewed, the goal of which was to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances. The workshop consisted of three working groups: (1) flares, eruptives, and other near-Sun activity; (2) coronal mass ejections; and (3) interplanetary events. Each group discussed topics distributed in advance. The flares-eruptives group members agreed that pre-event energy is stored in stressed/sheared magnetic fields, but could not agree that flares and other eruptive events (e.g., eruptive solar prominences) are aspects of the same physical phenomenon. In the coronal mass ejection group, general agreement was reached on the presence of prominences in CMEs, and that they have a significant three-dimensional structure. Some topics identified for further research were the aftermath of CMEs (streamer deflections, transient coronal holes, possible disconnections), identification of the leading edge of CMEs, and studies of the range and prevalence of CME mass sizes and energies.

  2. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  3. Research in space physics at the University of Iowa

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1979-01-01

    Current investigations relating to energetic particles and the electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, comets, and the interplanetary medium are reported. Primary emphasis is on observational work using a wide diversity of intruments on satellites of the earth and the moon and on planetary and interplanetary spacecraft, and on phenomenological analysis and interpretation. Secondary emphasis is given to closely related observational work by ground based radio-astronomical and optical techniques, and to theoretical problems in plasma physics as relevant to solar, planetary, and interplanetary phenomena.

  4. The emergence of different polarity photospheric flux as the cause of CMEs and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Bravo, S.

    1995-01-01

    Here we discuss the effect that the emergence of flux with a polarity opposed to that previously established in a certain photospheric region. can have on the magnetic structure of the solar atmosphere. We show that such a flux emergence may lead to the ejection of coronal material into the interplanetary medium (a CME) and also to a rapid change in the velocity of the solar wind from the region, which may eventually lead to the formation of an interplanetary shock.

  5. Radiation signatures from a locally energized flaring loop

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Vlahos, L.

    1980-01-01

    The radiation signatures from a locally energized solar flare loop based on the physical properties of the energy release mechanisms were consistent with hard X-ray, microwave, and EUV observations for plausible source parameters. It was found that a suprathermal tail of high energy electrons is produced by the primary energy release, and that the number of energetic charged particles ejected into the interplanetary medium in the model is consistent with observations. The radiation signature model predicts that the intrinsic polarization of the hard X-ray burst should increase over the photon energy range of 20 to 100 keV.

  6. Solar, interplanetary, and magnetospheric parameters for the radiation belt energetic electron flux

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Fung, S. F.; Klimas, A. J.

    2005-04-01

    In developing models of the radiation belt energetic electron flux, it is important to include the states of the interplanetary medium and the magnetosphere, as well as the solar activity. In this study we choose the log flux je(t;L;E) at 2-6 MeV, as measured by the Proton-Electron Telescope (PET) on SAMPEX in the period 1993-2002, as a representative flux variable and evaluate the usefulness of 17 interplanetary and magnetospheric (IP/MS) parameters in its specification. The reference parameter is the solar wind velocity, chosen because of its known high geoeffectiveness. We use finite impulse response filters to represent the effective coupling of the individual parameters to the log flux. We measure the temporal and spatial scales of the coupling using the impulse response function and the input's geoeffectiveness using the data-model correlation. The correlation profile as a function of L is complex, and we identify its peaks in reference to the radial regions P0 (L = 3.1-4.0, inner edge of the outer belt), P1 (4.1-7.5, main outer belt), and P2 (>7.5, quasi-trapped population), whose boundaries are determined from a radial correlative analysis (Vassiliadis et al., 2003b). Using the profiles, we classify the IP/MS parameters in four categories: (1) For the solar wind velocity and pressure the correlation is high and largely independent of L across P0 and P1, reaching its maximum in L = 4.8-6.1, or the central part of P1. (2) The IMF BSouth component and related IP/MS parameters have a bimodal correlation function, with peaks in region P0 (L = 3.0-4.1) and the geosynchronous orbit region within P1. (3) The IMF BNorth and four other interplanetary or solar irradiance parameters have a minimum correlation in P1, while the highest correlation is in the slot-outer belt boundary (L = 2.5). (4) Finally, the solar wind density has a unique correlation profile, which is anticorrelated with that of the solar wind velocity for certain L shells. We verify this classification using more complex filtering methods as well as standard correlation analysis. The categories correspond to four types of solar-terrestrial interactions, namely, viscous interaction, magnetic reconnection, effects of ionospheric heating, and effects of high solar wind density. The response to these interactions produces the observed inner magnetospheric coherence. In each category the L dependence of the correlation profile helps explain why geoeffective solar wind structures are followed by electron acceleration in some L ranges but not in others.

  7. An interplanetary magnetic field ensemble at 1 AU

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.; King, J. H.

    1985-01-01

    A method for calculation ensemble averages from magnetic field data is described. A data set comprising approximately 16 months of nearly continuous ISEE-3 magnetic field data is used in this study. Individual subintervals of this data, ranging from 15 hours to 15.6 days comprise the ensemble. The sole condition for including each subinterval in the averages is the degree to which it represents a weakly time-stationary process. Averages obtained by this method are appropriate for a turbulence description of the interplanetary medium. The ensemble average correlation length obtained from all subintervals is found to be 4.9 x 10 to the 11th cm. The average value of the variances of the magnetic field components are in the approximate ratio 8:9:10, where the third component is the local mean field direction. The correlation lengths and variances are found to have a systematic variation with subinterval duration, reflecting the important role of low-frequency fluctuations in the interplanetary medium.

  8. Spacelab experiment: ALAE, Atmospheric Lyman-Alpha Emissions

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A spectrophotometer associated with two absorption cells, one filled with hydrogen and the other with deuterium, is described for use in studying various sources of Lyman-alpha emission in the atmosphere, in the interplanetary medium, and possibly in the galactic medium. As the result of charge exchange, Lyman-alpha emission is possibly present in auroral zones, equatorial zones, and at the foot of the polar cusp, where the solar wind interacts directly with the neutral atmosphere. Some emission is also expected from the plasma guns on board Spacelab. The use of the absorption cell is also a test for determining if the presence of geocoronal and interplanetary emission will prevent future astronomical observations of Lyman-alpha emissions.

  9. Relativistic solar particle events during STIP (study of travelling interplanetary phenomena) intervals II and IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, M.A.; Smart, D.F.

    1982-12-27

    Using spaceship 'Earth' as a detector located at 1 AU, the relativistic solar cosmic ray events of 30 April 1976 and 22 November 1977 are compared to deduce the relativistic solar particle flux anisotropy and pitch angle characteristics in the interplanetary medium. These two ground level events occurred during STIP Interval II and IV respectively - periods of time of coordinated and cooperative scientific efforts.

  10. The angular distribution of solar wind ˜20-200 keV superhalo electrons at quiet times

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Wang, Linghua; Li, Gang; He, Jiansen; Salem, Chadi S.; Tu, Chuanyi; Wimmer-Schweingruber, Robert F.; Bale, Stuart D.

    2016-03-01

    We present a comprehensive study of the angular distribution of ˜20-200 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet times from 1995 January through 2005 December. According to the interplanetary magnetic field, we re-bin the observed electron pitch angle distributions to obtain the differential flux, Jout (Jin), of electrons traveling outward from (inward toward) the Sun, and define the anisotropy of superhalo electrons as A =2/(Jo u t-Ji n) Jo u t+Ji n at a given energy. We found that for out in ˜96% of the selected quiet-time samples, superhalo electrons have isotropic angular distributions, while for ˜3% (˜1%) of quiet-time samples, superhalo electrons are outward-anisotropic (inward-anisotropic). All three groups of angular distributions show no correlation with the local solar wind plasma, interplanetary magnetic field and turbulence. Furthermore, the superhalo electron spectral index shows no correlation with the spectral index of local solar wind turbulence. These quiet-time superhalo electrons may be accelerated by nonthermal processes related to the solar wind source and strongly scattered/ reflected in the interplanetary medium, or could be formed due to the electron acceleration through the interplanetary medium.

  11. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  12. Titan's highly variable plasma environment

    NASA Astrophysics Data System (ADS)

    Wolf, D. A.; Neubauer, F. M.

    1982-02-01

    It is noted that Titan's plasma environment is variable for two reasons. The variability of the solar wind is such that Titan may be located in the outer magnetosphere, the magnetosheath, or the interplanetary medium around noon Saturnian local time. What is more, there are local time variations in Saturn's magnetosphere. The location of the stagnation point of Saturn's magnetosphere is calculated, assuming a terrestrial type magnetosphere. Characteristic plasma parameters along the orbit of Titan are shown for high solar wind pressure. During crossings of the Saturnian magnetopause or bow shock by Titan, abrupt changes in the flow direction and stagnation pressure are expected, as are rapid associated changes in Titan's uppermost atmosphere.

  13. Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Burchsted, R.

    1974-01-01

    Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.

  14. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk

    2017-02-10

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibitmore » multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.« less

  15. Theory of interstellar medium diagnostics

    NASA Technical Reports Server (NTRS)

    Fahr, H. J.

    1983-01-01

    The theoretical interpretation of observed interplanetary resonance luminescence patterns is used as one of the must promising methods to determine the state of the local interstellar medium (LISM). However, these methods lead to discrepant results that would be hard to understand in the framework of any physical LISM scenario. Assuming that the observational data are reliable, two possibilities which could help to resolve these discrepancies are discussed: (1) the current modeling of resonance luminescence patterns is unsatisfactory and has to be improved, and (2) the extrapolated interstellar parameters are not indicative of the unperturbed LISM state, but rather designate an intermediate state attained in the outer regions of the solar system. It is shown that a quantitative treatment of the neutral gas-plasma interaction effects in the interface between the heliospheric and the interstellar plasmas is of major importance for the correct understanding of the whole complex.

  16. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  17. SPE in Solar Cycle 24 : Flare and CME characteristic

    NASA Astrophysics Data System (ADS)

    Neflia, Neflia

    SPE is one of the most severe hazards in the space environment. Such events, tend to occur during periods of intense solar activity, and can lead to high radiation doses in short time intervals. The proton enhancements produced by these solar events may last several days and are very hard to predict in advance and they also can cause harm to both satellite and human in space. The most significant sources of proton in the interplanetary medium are both solar flares and interplanetary shocks driven by coronal mass ejections (CMEs). In this study, I try to find the characteristic of Flare and CME that can cause the proton events in interplanetary medium. For my preliminary study, I will search flare characteristic such as class and position as an SPE causes. I also did the research with CME characteristic such as Angular Width (AW) and linier velocity. During solar cycle 24, the solar activity remain very low with several large flare and Halo CME. This low activity also occur on solar proton events in interplanetary medium. From January 2009 to May 2013, there are 25 SPEs with flux range from 12 - 6530 sfu (10 MeV). The solar flare during these events varies from C to X- class flare. From 27 X-class flare that occur during 2009 - May 2013, only 7 flares cause the SPE. Most of active region location are at solar Western Hemisphere (16/25). only 24 from 139 halo CME (AW=360) cause SPE. Although the probability of SPE from all flare and CME during this range of time is small but they have 3 common characteristics, ie, most of the SPE have active region position at Solar Western Hemisphere, the CME have AW=360 and they have a high linier velocity.

  18. Radio Emmision during the interaction of two Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Lara, Alejandro; Niembro, Tatiana; González, Ricardo

    2016-07-01

    We show that some sporadic radio emission observed by the WIND/WAVES experiment in the decametric/kilometric bands are due to the interaction of two interplanetary Coronal Mass Ejections. We have performed hydrodynamic simulations of the evolution of two consecutive Coronal Mass ejections in the interplanetary medium. With these simulations it is possible to follow the density evolution of the merged structure, and therefore, compute the frequency limits of the possible plasma emission. We study four well documented ICME interaction events, and found radio emission at the time and frequencies predicted by the simulations. This emission may help to anticipate the complexity of the merged region before it reaches one AU.

  19. "Driverless" Shocks in the Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  20. Alfven wave refraction by interplanetary inhomogeneities

    NASA Technical Reports Server (NTRS)

    Daily, W. D.

    1973-01-01

    Pioneer 6 magnetic data reveals that the propagation direction of Alfven waves in the interplanetary medium is strongly oriented along the ambient field. Magnetic fluctuations of frequencies up to 1/30 sec in the spacecraft frame are shown to satisfy a necessary condition for Alfven wave normal. It appears from this analysis that geometrical hydromagnetics may satisfactorily describe deviation of the wave normal from the background field. The rotational discontinuity is likely also to propagate along the field lines.

  1. Smoothing and Predicting Celestial Pole Offsets using a Kalman Filter and Smoother

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Chin, T. M.; Gross, R. S.; Winska, M.; Winska, J.

    2017-12-01

    Since the early days of interplanetary spaceflight, accounting for changes in the Earth's rotation is recognized to be critical for accurate navigation. In the 1960s, tracking anomalies during the Ranger VII and VIII lunar missions were traced to errors in the Earth orientation parameters. As a result, Earth orientation calibration methods were improved to support the Mariner IV and V planetary missions. Today, accurate Earth orientation parameters are used to track and navigate every interplanetary spaceflight mission. The interplanetary spacecraft tracking and navigation teams at JPL require the UT1 and polar motion parameters, and these Earth orientation parameters are estimated by the use of a Kalman filter to combine past measurements of these parameters and predict their future evolution. A model was then used to provide the nutation/precession components of the Earth's orientation separately. As a result, variations caused by the free core nutation were not taken into account. But for the highest accuracy, these variations must be considered. So JPL recently developed an approach based upon the use of a Kalman filter and smoother to provide smoothed and predicted celestial pole offsets (CPOs) to the interplanetary spacecraft tracking and navigation teams. The approach used at JPL to do this and an evaluation of the accuracy of the predicted CPOs will be given here.

  2. Global Survey Method for the World Network of Neutron Monitors

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Eroshenko, E. A.; Yanke, V. G.; Oleneva, V. A.; Abunina, M. A.; Abunin, A. A.

    2018-05-01

    One of the variants of the global survey method developed and used for many years at the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences is described. Data from the world network of neutron monitors for every hour from July 1957 to the present has been processed by this method. A consistent continuous series of hourly characteristics of variation of the density and vector anisotropy of cosmic rays with a rigidity of 10 GV is obtained. A database of Forbush decreases in galactic cosmic rays caused by large-scale disturbances of the interplanetary medium for more than half a century has been created based on this series. The capabilities of the database make it possible to perform a correlation analysis of various parameters of the space environment (characteristics of the Sun, solar wind, and interplanetary magnetic field) with the parameters of cosmic rays and to study their interrelationships in the solar-terrestrial space. The features of reception coefficients for different stations are considered, which allows the transition from variations according to ground measurements to variations of primary cosmic rays. The advantages and disadvantages of this variant of the global survey method and the opportunities for its development and improvement are assessed. The developed method makes it possible to minimize the problems of the network of neutron monitors and to make significant use of its advantages.

  3. Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event

    NASA Astrophysics Data System (ADS)

    Manchester, W. B., IV; van der Holst, B.; Lavraud, B.

    2014-06-01

    Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.

  4. Physics of spacecraft-based interplanetary dust collection by impact into low-density media

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Ahrens, T. J.

    1994-01-01

    A spacecraft encountering an interplanetary dust particle (IDP) at a relative velocity of several kilometers per second may be used to capture that particle for in situ analysis or for analysis upon Earth return. In this paper we study the impact of a dust particle into a low-density medium (i.e., a foam) such that the foam dissipates the kinetic energy of impact over a sufficient distance to stop the particle without destroying it.

  5. Contributions to the Fourth Solar Wind Conference. [interplanetary magnetic fields and medium

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Lepping, R.; Ness, N.; Ogilvie, K.; Pizzo, J.

    1979-01-01

    Recent results in interplanetary physics are examined. These include observations of shock waves and post-shock magnetic fields made by Voyager 1, 2; observations of the electron temperature as a function of distance between 1.36 AU and 2.25 AU; and observations of the structure of sector boundaries observed by Helios 1. A theory of electron energy transport in the collisionless solar wind is presented, and compared with observations. Alfven waves and Alvenic fluctuations in the solar wind are also discussed.

  6. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Pogorelov, N. V.; Burlaga, L. F.

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density aremore » compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.« less

  7. Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24

    NASA Astrophysics Data System (ADS)

    Oh, Suyeon; Kim, Bogyeong

    2013-06-01

    The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.

  8. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  9. Forecast the energetic electron flux on geosynchronous orbit with interplanetary parameters

    NASA Astrophysics Data System (ADS)

    Xue, B.; Ye, Z.

    The high flux of energetic electron on geo-synchronous orbit can cause many kinds of malfunction of the satellite there, within which the bulk charging is the most significant that several broadcast satellite failures were confirmed to be due to this effect. The electron flux on geo-synchronous orbit varies in a large range even up to three orders accompanied the passage of interplanetary magnetic cloud and the following geomagnetic disturbances. Upon investigating electron flux, interplanetary solar wind data, and geomagnetic data as well, we found that: (1) The enhancement of energetic flux on the geo-synchronous orbit exhibits periodic recurrence of 27days. (2)Significant increase of electron flux relates to interplanetary index and characters of their distribution. (3)The electron flux also has relation to solar activity index. In our research work, artificial neural network was employed and constructed according to the job. The neural network, we call it full connecting network, was proved to be a sufficient tool to analyze the character of the evolving parameters, remember the omen of "electron storm", and establish the relationship between interplanetary parameters etc., and the fluence of high energetic electrons. The neural network was carefully constructed and trained to do the job mentioned above. Preliminary result showed that the accuracy forecast of electron flux 1 day ahead can reach 80%, and 70% for 2 days ahead.

  10. A study of the relationship between interplanetary parameters and large displacements of the nightside polar cap boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, M.; Freeman, M.P.; Southwood, D.J.

    On July 14, 1982 the Sweden and Britain Radar-Aurora Experiment (SABRE) observed the ionospheric flow reversal boundary at {approximately} 0400 MLT to move equatorward across the radar field of view and then later to return poleward. The polar cap appeared to be considerably inflated at this time. Concurrent observations by ISEE-3 at the L1 libration point of the solar wind speed and density, and of the interplanetary magnetic field (IMF) indicated that the solar wind conditions were unusual throughout the interval under consideration. A mapping of the solar wind parameters from the L1 point to the subsolar magnetopause and thencemore » to the SABRE local time sector indicates that the equatorward motion of the polar cap boundary was controlled by a southward turning of the IMF. The inference of a concomitant increase in open magnetic flux is supported by a comparison of the magnetopause location observed by ISEE-1 on an inbound pass in the 2,100 MLT sector with a magnetopause model based upon the solar wind measurements made by ISEE-3. Some 20 minutes after the expansion of the polar cap boundary was first seen by SABRE, there was a rapid contraction of the boundary, the casue of which was independent of the INF and solar wind parameters, and which had a poleward velocity component in excess of 1,900 m s{sup {minus}1}. the boundary as it moved across the radar field of view was highly structured and oriented at a large angle to the ionospheric footprints of the magnetic L shells. Observations in the premidnight sector by the Air Force Geophysics Laboratory (AFGL) magnetometer array indicate that the polar cap contraction is caused by substorm draining of the polar cap flux and occurs without a clearly associated trigger in the interplanetary medium. The response time in the early morning local time sector to the substorm onset switch is approximately 20 minutes, equivalent to an ionospheric azimuthal phase velocity of some 5 km s{sup {minus}1}.« less

  11. The causes of recurrent geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lepping, R. P.

    1976-01-01

    The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.

  12. Challenges in the determination of the interstellar flow longitude from the pickup ion cutoff

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Möbius, E.; Drews, C.; Heidrich-Meisner, V.; Keilbach, D.; Lee, M. A.; Wimmer-Schweingruber, R. F.

    2018-03-01

    Context. The interstellar flow longitude corresponds to the Sun's direction of movement relative to the local interstellar medium. Thus, it constitutes a fundamental parameter for our understanding of the heliosphere and, in particular, its interaction with its surroundings, which is currently investigated by the Interstellar Boundary EXplorer (IBEX). One possibility to derive this parameter is based on pickup ions (PUIs) that are former neutral ions that have been ionized in the inner heliosphere. The neutrals enter the heliosphere as an interstellar wind from the direction of the Sun's movement against the partially ionized interstellar medium. PUIs carry information about the spatial variation of their neutral parent population (density and flow vector field) in their velocity distribution function. From the symmetry of the longitudinal flow velocity distribution, the interstellar flow longitude can be derived. Aim. The aim of this paper is to identify and eliminate systematic errors that are connected to this approach of measuring the interstellar flow longitude; we want to minimize any systematic influences on the result of this analysis and give a reasonable estimate for the uncertainty. Methods: We use He+ data measured by the PLAsma and SupraThermal Ion Composition (PLASTIC) sensor on the Solar TErrestrial RElations Observatory Ahead (STEREO A) spacecraft. We analyze a recent approach, identify sources of systematic errors, and propose solutions to eliminate them. Furthermore, a method is introduced to estimate the error associated with this approach. Additionally, we investigate how the selection of interplanetary magnetic field angles, which is closely connected to the pickup ion velocity distribution function, affects the result for the interstellar flow longitude. Results: We find that the revised analysis used to address part of the expected systematic effects obtains significantly different results than presented in the previous study. In particular, the derived uncertainties are considerably larger. Furthermore, an unexpected systematic trend of the resulting interstellar flow longitude with the selection of interplanetary magnetic field orientation is uncovered.

  13. Transparency of a magnetic cloud boundary for cosmic rays

    NASA Astrophysics Data System (ADS)

    Petukhov, I. S.; Petukhov, S. I.

    2013-02-01

    We have suggested a model of magnetic cloud presented as a torus with magnetic flux rope structure situated inside the interplanetary corona mass ejecta expanding radially away from the Sun through the interplanetary medium. The magnetic field of the torus changing during its propagation has been obtained. The magnetic cloud — solar wind boundary transparency for cosmic rays with different energies depending on the cloud orientation and properties of the torus magnetic field has been determined by means of calculation of the particle trajectories at the boundary.

  14. Study of large Forbush decreases in cosmic-ray intensity observed during solar cycle 23 and 24

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Badruddin, B.

    2016-07-01

    Neutron monitors at different geomagnetic latitude and longitude of Earth measure the cosmic-ray intensity with high precision. Sudden decreases in cosmic-ray intensity within few hours and slow recovery to pre-decrease level within a few days (Forbush decreases) are observed in neutron monitor data. We identify large-amplitude Forbush decreases (FDs), using high counting rate neutron monitor data, that occurred during previous solar cycle 23 (1995-2009) and current solar cycle 24 (2010-2015). We then search for the solar sources and the interplanetary structures responsible for these decreases. We attempt to find the relative importance of various interplanetary plasma and field parameters and the physical mechanism(s) responsible for FDs of varying amplitudes. We analyze a number of interplanetary plasma and field parameters, during both the phases (main and recovery) of FDs. The interplanetary plasma and field data analyzed in this study are the solar-wind velocity, the interplanetary magnetic field, its fluctuations, interplanetary electric field and the time variation of interplanetary electric potential. For monitoring the changes in interplanetary plasma/field conditions during the development of FDs, we also utilize plasma density, temperature and plasma beta, dynamic pressure and Mach number during the passage of interplanetary structures responsible for FDs. In addition to their amplitude, we study the recovery of FDs in detail after determining the time constant during their recovery by exponential fit to the data. As the solar magnetic polarity reversed during the maximum phase of solar cycle 23 (in the year 2000), we study the differences in amplitude, time constant of recovery and plasma/field condition to search for the polarity dependent effects, if any, on the amplitude and recovery of FDs due to implication for the models suggested to explain the Forbush decrease phenomena. The implications of these results are discussed.

  15. Radioisotope Electric Propulsion (REP) for Selected Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Artis, Gwen

    2005-01-01

    This viewgraph presentation analyzes small body targets (Trojan Asteroids), Medium Outer Planet Class (Jupiter Polar Orbiter with Probes), and Main Belt Asteroids and Comets (Comet Surface Sample Return), for Radioisotope Electric Propulsion (REP).

  16. ENERGETIC PARTICLE PRESSURE AT INTERPLANETARY SHOCKS: STEREO-A OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lario, D.; Decker, R. B.; Roelof, E. C.

    2015-11-10

    We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic (≥83 keV) protons (P{sub EP}) is larger than the pressure exerted by the interplanetary magnetic field (P{sub B}). In the majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when P{sub EP} exceeds P{sub B} by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of energetic particle intensities. When solar wind parameters are available, P{sub EP} also exceeds the pressure exertedmore » by the solar wind thermal population (P{sub TH}). Prolonged periods (>12 hr) with both P{sub EP} > P{sub B} and P{sub EP} > P{sub TH} may also occur when energetic particles accelerated by an approaching shock encounter a region well upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential increases of the sum P{sub SUM} = P{sub B} + P{sub TH} + P{sub EP} are observed in the immediate upstream region of the shocks regardless of individual changes in P{sub EP}, P{sub B}, and P{sub TH}, indicating a coupling between P{sub EP} and the pressure of the background medium characterized by P{sub B} and P{sub TH}. The quasi-exponential increase of P{sub SUM} implies a radial gradient ∂P{sub SUM}/∂r > 0 that is quasi-stationary in the shock frame and results in an outward force applied to the plasma upstream of the shock. This force can be maintained by the mobile energetic particles streaming upstream of the shocks that, in the most intense events, drive electric currents able to generate diamagnetic cavities and depressed solar wind density regions.« less

  17. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2011-02-01

    We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/< N> are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.

  18. An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT

    NASA Technical Reports Server (NTRS)

    Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian

    2015-01-01

    Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.

  19. Coronal Mass Ejections Near the Sun and in the Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    Coronal mass ejections (CMEs) are the most energetic phenomenon in the heliosphere. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of CMEs and their interplanetary counterparts.

  20. Interplanetary Coronal Mass Ejections During 1996 - 2007

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2007-01-01

    Interplanetary coronal mass ejections, the interplanetary counterparts of coronal mass ejections at the Sun, are the major drivers of interplanetary shocks in the heliosphere, and are associated with modulations of the galactic cosmic ray intensity, both short term (Forbush decreases caused by the passage of the shock, post-shock sheath, and ICME), and possibly with longer term modulation. Using several in-situ signatures of ICMEs, including plasma temperature, and composition, magnetic fields, and cosmic ray modulations, made by near-Earth spacecraft, we have compiled a "comprehensive" list of ICMEs passing the Earth since 1996, encompassing solar cycle 23. We summarize the properties of these ICMEs, such as their occurrence rate, speeds and other parameters, the fraction of ICMEs that are classic magnetic clouds, and their association with solar energetic particle events, halo CMEs, interplanetary shocks, geomagnetic storms, shocks and cosmic ray decreases.

  1. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  2. Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi

    We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.

  3. Research in space physics at the University of Iowa. [astronomical observatories, spaceborne astronomy, satellite observation

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1974-01-01

    Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.

  4. Time Delay Between Dst Index and Magnetic Storm Related Structure in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Osherovich, Vladimir A.; Fainberg, Joseph

    2015-01-01

    Benson et al. (2015, this volume) selected 10 large magnetic storms, with associated Dst minimum values less than or equal to -100 nT, for which high-latitude topside ionospheric electron density profiles are available from topside-sounder satellites. For these 10 storms, we performed a superposition of Dst and interplanetary parameters B, v, N(sub p) and T(sub p). We have found that two interplanetary parameters, namely B and v, are sufficient to reproduce Dst with correlation coefficient cc approximately 0.96 provided that the interplanetary parameter times are taken 0.15 days earlier than the associated Dst times. Thus we have found which part of the solar wind is responsible for each phase of the magnetic storm. This result is also verified for individual storms as well. The total duration of SRS (storm related structure in the solar wind) is 4 - 5 days which is the same as the associated Dst interval of the magnetic storm.

  5. Diagnostics of the Solar Wind and Global Heliosphere with Lyman-α Emission Measurements

    NASA Astrophysics Data System (ADS)

    Provornikova, E. P.; Izmodenov, V. V.; Laming, J. M.; Strachan, L.; Wood, B. E.; Katushkina, O. A.; Ko, Y.-K.; Tun Beltran, S.; Chakrabarti, S.

    2018-02-01

    We propose to develop an instrument measuring full sky intensity maps and spectra of interplanetary Lyman-α emission to reveal the global solar wind variability and the nature of the heliosphere and the local interstellar medium.

  6. Research in space physics at the University of Iowa. [energetic particles and electric, magnetic, and electromagnetic fields

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1978-01-01

    Specific fields of current investigation by satellite observation and ground-based radio-astronomical and optical techniques are discussed. Topics include: aspects of energetic particles trapped in the earth's magnetic field and transiently present in the outer magnetosphere and the solar, interplanetary, and terrestrial phenomena associated with them; plasma flows in the magnetosphere and the ionospheric effects of particle precipitation, with corresponding studies of the magnetosphere of Jupiter, Saturn, and possibly Uranus; the origin and propagation of very low frequency radio waves in the earth's magnetosphere and ionosphere; solar particle emissions and their interplanetary propagation and acceleration; solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays; radio frequency emissions from the quintescent and flaring sun; shock waves in the interplanetary medium; radio emissions from Jupiter; and radio astronomy of pulsars, flare stars, and other stellar sources.

  7. Cultural ethology as a new approach of interplanetary crew's behavior

    NASA Astrophysics Data System (ADS)

    Tafforin, Carole; Giner Abati, Francisco

    2017-10-01

    From an evolutionary perspective, during short-term and medium-term orbital flights, human beings developed new spatial and motor behaviors to compensate for the lack of terrestrial gravity. Past space ethological studies have shown adaptive strategies to the tri-dimensional environment, with the goal of optimizing relationships between the astronaut and unusual sensorial-motor conditions. During a long-term interplanetary journey, crewmembers will have to develop new individual and social behaviors to adapt, far from earth, to isolation and confinement and as a result to extreme conditions of living and working together. Recent space psychological studies pointed out that heterogeneity is a feature of interplanetary crews, based on personality, gender mixing, internationality and diversity of backgrounds. Intercultural issues could arise between space voyagers. As a new approach we propose to emphasize the behavioral strategies of human groups' adaptation to this new multicultural dimension of the environment.

  8. International Launch Vehicle Selection for Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  9. Helmet and active streamers from radio observations

    NASA Technical Reports Server (NTRS)

    Avignon, Y.; Axisa, F.; Martres, M. J.; Pick, M.; Simon, P.

    1972-01-01

    Large coronal regions disconnected from any calcium plages and identified by their thermal emission at 169 mHz play a basic role in the sector structure of the interplanetary medium. It was concluded that these coronal regions are to be interpreted as streamers.

  10. On the causes of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    The causes of geomagnetic activity are studied both theoretically in terms of the reconnection model and empirically using the am-index and interplanetary solar wind parameters. It is found that two separate mechanisms supply energy to the magnetosphere. One mechanism depends critically on the magnitude and direction of the interplanetary magnetic field. Both depend strongly on solar wind speed.

  11. Photospheric magnetic field of an eroded-by-solar-wind coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Cid, C.; Saiz, E.; Guerrero, A.

    2017-10-01

    We have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.

  12. A theory of local and global processes which affect solar wind electrons. 2: Experimental support

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Olbert, S.

    1979-01-01

    The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E kT sub c; the transthermals with kT sub c E 7 kT sub c and the extrathermals E 7 kT sub c. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal "temperature" should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU.

  13. Interplanetary medium data book, supplement 5, 1988-1993

    NASA Technical Reports Server (NTRS)

    King, Joseph H.; Papitashvili, Natalia E.

    1994-01-01

    This publication represents an extension of the series of Interplanetary Medium Data Books and supplements that have been issued by the National Space Science Data Center since 1977. This volume contains solar wind magnetic field and plasma data from the IMP 8 spacecraft for 1988 through the end of 1993. The normalization of the MIT plasma density and temperature, which has been discussed at length in previous volumes, is implemented as before, using the same normalization constants for 1988-1993 data as for the earlier data. Owing to a combination of non-continuity of IMP 8 telemetry acquisition and IMP's being out of the solar wind for about 40 percent of its orbit, the annual solar wind coverage for 1988-1993 is 40 plus or minus 5 percent. The plots and listings of this supplement are in essentially the same format as in previous supplements. Days for which neither IMF nor plasma data were available for any hours are omitted from the listings.

  14. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 2: Analytic manual

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows subproblems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  15. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  16. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  17. The statistical analysis of the Geomagnetically Induced Current events occurred in Guangdong, China during the declining phase of solar cycle 23 (2003–2006)

    NASA Astrophysics Data System (ADS)

    Ni, Y. Y.

    2018-03-01

    We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.

  18. Nonlinear stability of solar type 3 radio bursts. 1: Theory

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.

    1978-01-01

    A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.

  19. Time-dependent MHD modeling of the global structure of the heliosphere

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Brackbill, J. U.; Karmesin, S. Roy

    1995-01-01

    We present results from time-dependent modeling of the global structure of the heliosphere with neutral and magnetic field effects included. The magnetic field is assumed parallel to the interstellar flow in this two-dimensional axisymmetric model; the neutrals are treated as a fluid. The effects of interstellar neutrals and the interplanetary magnetic field on the location of the termination shock are studied using the most recent estimate of the interstellar medium parameters, results will be compared to those of Baranov and Zaitsev. The effect of the solar wind - VLISM interaction on the density and velocity of interstellar neutrals within the heliosphere will also be presented and related to observations. The response of the termination shock to the solar cycle variation in the solar wind will be compared to the response found previously using an axisymmetric hydrodynamic model without neutrals.

  20. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  1. High time resolution observations of the drivers of Forbush decreases

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.

    2008-12-01

    The drivers of Forbush decreases in galactic cosmic ray (GCR) fluxes are thought to be magnetic turbulence in the sheath of an interplanetary coronal mass ejection (ICME) and the closed magnetic field lines in the ICME itself. This model, however, is the result of studies utilizing hourly or longer time averaging. Such averaging can smooth over important correlations between variabilities in the GCR flux and those in the interplanetary medium. To test the validity of the current model of Forbush decreases, we analyze a number of Forbush decreases using high time resolution GCR data from the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the onset of the decrease and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. We find evidence that planar magnetic structures in the sheath preceding the ICME may be a factor in driving the decrease in at least one event.

  2. Research in space physics at the University of Iowa, 1982

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.; Frank, L. A.; Gurnett, D. A.; Shawhan, S. D.; Robison, E. D.; Robertson, T. D.

    1983-01-01

    The energetic particles and the electric, magnetic, and electromagnetic fields associated with the Earth, the Sun, the Moon, the planets, comets, and the interplanetary medium are examined. Matters under current investigation are following: energetic particles trapped in the Earth's magnetic field, origin and propagation of very low frequency radio waves and electrostatic, the magnetospheres of Jupiter, Saturn and prospectively Uranus and Neptune, diffusion of energetic particles in Saturn's magnetosphere, radio emissions from Jupiter and Saturn, solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays, interplanetary propagation and acceleration of energetic particles, the theory of wave phenomena in turbulent plasmas, and basic wave-particle-chemical processes in the ionospheric plasma.

  3. Solar wind and magnetosphere interactions

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Allen, J. H.; Cauffman, D. P.; Feynman, J.; Greenstadt, E. W.; Holzer, R. E.; Kaye, S. M.; Slavin, J. A.; Manka, R. H.; Rostoker, G.

    1979-01-01

    The relationship between the magnetosphere and the solar wind is addressed. It is noted that this interface determines how much of the solar plasma and field energy is transferred to the Earth's environment, and that this coupling not only varies in time, responding to major solar disturbances, but also to small changes in solar wind conditions and interplanetary field directions. It is recommended that the conditions of the solar wind and interplanetary medium be continuously monitored, as well as the state of the magnetosphere. Other recommendations include further study of the geomagnetic tail, tests of Pc 3,4 magnetic pulsations as diagnostics of the solar wind, and tests of kilometric radiation as a remote monitor of the auroral electrojet.

  4. Solar energetic particle transport and the possibility of wave generation by streaming electrons

    NASA Astrophysics Data System (ADS)

    Strauss, R. D. T.; le Roux, J. A.

    2017-12-01

    After being accelerated close to the Sun, solar energetic particles (SEPs) are transported (mainly) along the turbulent interplanetary magnetic field. In this study, we simulate the propagation of 100 keV electrons as they are scattered in the interplanetary medium. A consequence of these wave-particle interactions is the possible modification (either growth or damping) of the background turbulence by anisotropic SEP electron beams. This process was thought to be negligible, and therefore neglected in past modeling approaches. However, recent observations and modeling by Agueda and Lario (2016) suggest that wave generation may be significant and is therefore included and evaluated in our present model. Our results suggest that wave amplification by streaming SEP electrons is indeed possible and may even significantly alter the background turbulent field. However, the simulations show that this process is much too weak to produce observable effects at Earth's orbit, but such effects may well be observed in future by spacecraft closer to the Sun, presenting an intriguing observational opportunity for either the Solar Orbiter or the Parker Solar Probe spacecraft. Lastly, we note that the level of perpendicular diffusion may also play an important role in determining the effectiveness of the wave growth process. Reference: Agueda, N. and Lario, D. Release History and Transport Parameters of Relativistic Solar Electrons Inferred From Near-the-Sun In Situ Observations, ApJ, 829, 131, 2016.

  5. The Global Survey Method Applied to Ground-level Cosmic Ray Measurements

    NASA Astrophysics Data System (ADS)

    Belov, A.; Eroshenko, E.; Yanke, V.; Oleneva, V.; Abunin, A.; Abunina, M.; Papaioannou, A.; Mavromichalaki, H.

    2018-04-01

    The global survey method (GSM) technique unites simultaneous ground-level observations of cosmic rays in different locations and allows us to obtain the main characteristics of cosmic-ray variations outside of the atmosphere and magnetosphere of Earth. This technique has been developed and applied in numerous studies over many years by the Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN). We here describe the IZMIRAN version of the GSM in detail. With this technique, the hourly data of the world-wide neutron-monitor network from July 1957 until December 2016 were processed, and further processing is enabled upon the receipt of new data. The result is a database of homogeneous and continuous hourly characteristics of the density variations (an isotropic part of the intensity) and the 3D vector of the cosmic-ray anisotropy. It includes all of the effects that could be identified in galactic cosmic-ray variations that were caused by large-scale disturbances of the interplanetary medium in more than 50 years. These results in turn became the basis for a database on Forbush effects and interplanetary disturbances. This database allows correlating various space-environment parameters (the characteristics of the Sun, the solar wind, et cetera) with cosmic-ray parameters and studying their interrelations. We also present features of the coupling coefficients for different neutron monitors that enable us to make a connection from ground-level measurements to primary cosmic-ray variations outside the atmosphere and the magnetosphere. We discuss the strengths and weaknesses of the current version of the GSM as well as further possible developments and improvements. The method developed allows us to minimize the problems of the neutron-monitor network, which are typical for experimental physics, and to considerably enhance its advantages.

  6. Interplanetary program to optimize simulated trajectories (IPOST). Volume 4: Sample cases

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Simulated Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization are performed using the Standard NPSOL algorithm. The IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  7. IUE observations of interstellar hydrogen and deuterium toward Alpha Centauri B

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1986-01-01

    A high dispersion profile is presented of the Lyman-alpha emission toward Alpha Cen B as recorded in two images taken with the IUE spacecraft. The spectra were examined with a three-parameter Gaussian or five-parameter solar-type profile to derive the intrinsic background stellar emission. Voight absorption profiles were calculated for the intervening H I and D I gas. A uniform, thermally broadened medium was assumed, with the calculations being based on the free stellar parameters of density, velocity dispersion and the bulk velocity of H I, and the density of D I. The use of a small aperture is shown to have been effective in eliminating geocoronal and interplanetary diffuse Ly-alpha contamination. The H I absorption profile toward Alpha Cen B is found to be equivalent to that toward Alpha Cen A, indicating that the H I profiles derived are essentially independent of stellar emission. Less success, however, was attained in obtaining any definitive D I profile, although an asymmetry in the blue and red wings of the Lyman-alpha emissions did show the presence of absorption by interstellar deuterium and allow setting a lower limit of 0.00001 for the D I/H I ratio.

  8. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.

  9. An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.

    NASA Astrophysics Data System (ADS)

    Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.

    2017-12-01

    It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.

  10. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003-2010

    NASA Astrophysics Data System (ADS)

    Regi, Mauro; Redaelli, Gianluca; Francia, Patrizia; De Lauretis, Marcello

    2017-06-01

    In the present study we investigated the possible relationship between the ULF geomagnetic activity and the variations of several atmospheric parameters. In particular, we compared the ULF activity in the Pc1-2 frequency band (100 mHz-5 Hz), computed from geomagnetic field measurements at Terra Nova Bay in Antarctica, with the tropospheric temperature T, specific humidity Q, and cloud cover (high cloud cover, medium cloud cover, and low cloud cover) obtained from reanalysis data set. The statistical analysis was conducted during the years 2003-2010, using correlation and Superposed Epoch Analysis approaches. The results show that the atmospheric parameters significantly change following the increase of geomagnetic activity within 2 days. These changes are evident in particular when the interplanetary magnetic field Bz component is oriented southward (Bz<0) and the By component duskward (By>0). We suggest that both the precipitation of electrons induced by Pc1-2 activity and the intensification of the polar cap potential difference, modulating the microphysical processes in the clouds, can affect the atmosphere conditions.

  11. What predictions can be made on the nature of carbon and carbon-bearing compounds (hydrocarbons) in the interstellar medium based on studies of interplanetary dust particles?

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    1986-01-01

    The nature of hydrocarbons and properties of elemental carbon in circumstellar, interstellar, and interplanetary dust is a long standing problem in astronomy and meteorite research. The textures and crystallographical properties of poorly graphitized carbon (PGC) from carbonaceous chondrites and Chondritic Porous Aggregates (CPAs) are comparable with PGCs formed by dehydrogenation and carbonization of hydrocarbon precursors under natural terrestrial and experimental conditions. A multistage model of hydrocarbon diagenesis in CPA and carbonaceous chondrite (proto-) planetary parent bodies was proposed in which hydrocarbons are subjected to low temperature hydrous pyrolysis. Continued efforts to recognize hydrocarbons and elemental phases in CPAs may allow understanding of the multistage hydrocarbon/elemental carbon model.

  12. Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Hoppe, M. M.

    1983-01-01

    The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.

  13. Solar-Planetary Relationships: Magnetospheric Physics

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron

    1979-01-01

    The quadrennium 1975-1978 was a period of great advance for solar-wind studies, a period that combined exploration of new regions with increased maturity in established fields of study. The Helios, Pioneer, and Voyager spacecraft have been exploring the inner and outer regions of the solar wind. There has been a rebirth of the study of possible relations between solar variability and Earth's climate and weather, stimulated largely by Eddy's investigation of the Maunder Minimum; the solar wind may well prove to be a significant link in solar-terrestrial relations. Unique coronal data from the SKYLAB 1973-1974 mission, in combination with satellite and ground-based observations, provided the basis for identification of coronal holes as the main source of highspeed solar wind. The interplanetary medium has continued to serve as a laboratory for the study of plasma processes that cannot yet be studied in terrestrial laboratories, providing insights of potential importance both for controlled fusion research and for astrophysics. It is ironic that such a productive period, the legacy of many past space missions, was also a time of severely limited opportunity for new space investigations; the outlook for the future is equally austere. Especially regrettable is the dearth of career opportunities for young scientists in this field; comparison of the bibliography of this report with that of its predecessor 4 years ago shows few new names. Despite such problems, research has continued with enthusiasm and much has been learned. The present report will survey selected topics related to the origin, expansion, and acceleration of the solar wind and the plasma physics of the interplanetary medium. Companion reports deal with a number of closely related topics, including the heliocentric distance and latitude variation of the solar wind and its fluctuations topology of the interplanetary magnetic field morphology of solar-wind streams and shocks, sunweather studies, and interplanetary manifestations of type-3 bursts. Of the subjects that fall within the scope of this report, the study of the relationship between coronal holes and solar-wind streams, and the associated revision of our ideas about solar wind acceleration and heating, have had the most impact; hence I review these topics in considerable detail. In addition, I discuss the topics of hydromagnetic waves and turbulence, and interplanetary electrons, as items of particular importance during the past quadrennium.

  14. Model interpretation of type III radio burst characteristics. I - Spatial aspects

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.

    1988-01-01

    The ways that the finite size of the source region and directivity of the emitted radiation modify the observed characteristics of type III radio bursts as they propagate through the interplanetary medium are investigated. A simple model that simulates the radio source region is developed to provide insight into the spatial behavior of the parameters that characterize radio bursts. The model is used to demonstrate that observed radio azimuths are systematically displaced from the geometric centroid of the exciter electron beam in such a way as to cause trajectories of the radio bursts to track back to the observer at low frequencies, rather than to follow expected Archimedean spiral-like paths. The source region model is used to investigate the spatial behavior of the peak intensities of radio bursts, and it is found that the model can qualitatively account for both the frequency dependence and the east-west asymmetry of the observed peak flux densities.

  15. Study of an expanding magnetic cloud

    NASA Astrophysics Data System (ADS)

    Nakwacki, M. S.; Dasso, S.; Mandrini, C. H.; Démoulin, P.

    Magnetic Clouds (MCs) transport into the interplanetary medium the magnetic flux and helicity released in coronal mass ejections by the Sun. At 1 AU from the Sun, MCs are generally modelled as static flux ropes. However, the velocity profile of some MCs presents signatures of expansion. We analise here the magnetic structure of an expanding magnetic cloud observed by Wind spacecraft. We consider a dynamical model, based on a self-similar behaviour for the cloud radial velocity. We assume a free expansion for the cloud, and a cylindrical linear force free field (i.e., the Lundquist's field) as the initial condition for its magnetic configuration. We derive theoretical expressions for the magnetic flux across a surface perpendicular to the cloud axis, for the magnetic helicity and magnetic energy per unit length along the tube using the self-similar model. Finally, we compute these magntitudes with the fitted parameters. FULL TEXT IN SPANISH

  16. Cosmic ray transport in astrophysical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, themore » heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.« less

  17. Research at the Stanford Center for Radar Astronomy

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Theoretical and experimental radio and radar studies are presented concerning lunar and planetary atmospheres and surfaces; the sun and interplanetary medium; and software and hardware conceived while doing research. Emphasis is given to probe and radio accumulation measurements of planetary atmospheres. A list is included of recent publications, technical and scientific reports, and symposia with papers.

  18. Solar Eruptions, CMEs and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from the Sun and propagate far into the interplanetary medium. CMEs represent energy output from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. The plasma clouds can drive shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. The plasma clouds also arrive at Earth in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currents that can disrupt power grids, railroads, and underground pipelines. This lecture presents an overview of the origin, propagation, and geospace consequences of solar storms.

  19. The effect of the interplanetary magnetic field on sidereal variations observed at medium depth underground detectors

    NASA Technical Reports Server (NTRS)

    Humble, J. E.; Fenton, A. G.

    1985-01-01

    It has been known for some years that the intensity variations in sidereal time observed by muon detectors at moderate underground depths are sensitive to the polarity of the interplanetary magnetic field (ipmf) near the Earth. There are differences in the response to these anisotropies as observed in the Norhtern and southern hemispheres. When fully understood, the nature of the anisotropy seems likely to provide information on the 3-dimensional structure of the heliomagnetosphere, its time variations, and its linking with the local interstellar field. The summation harmonic dials for the sidereal diurnal variation during 1958 to 1982 show that there is a strong dependence on whether the ipmf near the Earth is directed outwards from the Sun or inwards it.

  20. Interplanetary propagation of flare-associated energetic particles

    NASA Technical Reports Server (NTRS)

    Masung, L. L.; Earl, J. A.

    1978-01-01

    A propagation model which combines a Gaussian profile for particle release from the sun, with interplanetary particle densities predicted by focused diffusion, was proposed to explain the propagation history of flare associated energetic particles. This model, which depends on only two parameters, successfully describes the time-intensity profiles of 30 proton and electron events originating from the western hemisphere of the sun. Generally, particles are released from the sun over a finite interval. In almost all events, particle release begins at the time of flare acceleration.

  1. The Voyager flights to Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of the mini-Grand Tour to Jupiter and Saturn by the Voyager 1 and 2 spacecraft are highlighted. Features of the spacecraft are depicted including the 11 instruments designed to probe the planets and their magnetic environments, the rings of Saturn, the fleets of satellites escorting the planets, and the interplanetary medium. Major scientific discoveries relating to these phenomena are summarized.

  2. Microwave dual frequency propagation experiment using the Mariner Venus Mercury probe.

    NASA Technical Reports Server (NTRS)

    Levy, G. S.

    1972-01-01

    The Mariner Venus Mercury spacecraft (MVM) will be launched in a multiple planet flyby orbit. A coherent dual frequency down link operating at 2.3 and 8.4 GHz will be used to measure the dispersive nature of the transmission medium. Radio tracking will produce Doppler and range information at both 2.3 and 8.4 GHz so that the dispersive group and phase velocity perturbations of the medium can be measured. Interpretation of the dispersive results will yield information about the neutral and ionized atmospheres of Venus and Mercury, the interplanetary media, the solar wind, and corona.

  3. A case study of the response of the magnetosphere to changes in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Rostoker, G.; Baumjohann, W.; Russell, C. T.

    1983-01-01

    A detailed analysis of world-wide ground based magnetometer data is presented, together with information on the plasma and magnetic field properties of the interplanetary medium and magnetosheath obtained from the ISEE 1 and 2 and IMP 8 spacecraft. The event concerned exhibited an interval of relatively stable southward IMF followed by a sharp northward turning. It is pointed out that during the interval of southward IMF there were occasional transient northward turnings with significant substorm expansive phase activity appearing to be triggered by these transient northward turnings. The final northward turning of the IMF was linked with an episode of strong magnetospheric substorm expansive phase activity after which the level of high latitude magnetic activity declined to a low level. Evidence is presented indicating that the driven system auroral electrojets begin to decay at the time of the northward turning of the IMF, even as the substorm expansive phase activity is initiated in the midnight sector. The collapse of the substorm current wedge during the final decay of high latitude activity is described in some detail, and it is shown that this collapse occurs progressively from east to west in a series of impulsive episodes.

  4. Evidence of scattering effects on the sizes of interplanetary Type III radio bursts

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Hoang, S.; Dulk, G. A.

    1985-01-01

    An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.

  5. Interplanetary dust. [survey of last four years' research

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1979-01-01

    Progress in the study of interplanetary dust during the past four years is reviewed. Attention is given to determinations of the relative contributions of interstellar dust grains, collisional debris from the asteroid belt and short-period comets to the interplanetary dust cloud. Effects of radiation pressure and collisions on particle dynamics are discussed, noting the discovery of the variation of the orbital parameters of dust particles at 1 AU with size and in situ measurements of dust density between 0.3 and 5 AU by the Helios and Pioneer spacecraft. The interpretation of the zodiacal light as produced by porous absorbing particles 10 to 100 microns in size is noted, and measurements of the Doppler shift, light-producing-particle density, UV spectrum, photometric axis and angular scattering function of the zodiacal light are reported. Results of analyses of lunar rock microcraters as to micrometeoroid density, flux rate, size distribution and composition are indicated and interplanetary dust particles collected from the stratosphere are discussed. Findings concerning the composition of fragile meteoroid types found as cosmic spherules in deep sea sediments are also presented.

  6. The generation of magnetic fields and electric currents in cometary plasma tails

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.; Mendis, D. A.

    1976-01-01

    Due to the folding of the interplanetary magnetic field into the tail as a comet sweeps through the interplanetary medium, the magnetic field in the tail can be built up to the order of 100 gammas at a heliocentric distance of about 1 AU. This folding of magnetic flux tubes also results in a cross-tail electric current passing through a neutral sheet. When streams of enhanced plasma density merge with the main tail, cross-tail currents as large as 1 billion A may result. A condition could arise which causes a significant fraction of this current to be discharged through the inner coma, resulting in rapid ionization. The typical time scale for such outbursts of ionization is estimated to be of the order of 10,000 sec, which is in reasonable agreement with observation.

  7. A time-dependent diffusion convection model for the long term modulation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Gallagher, J. J.

    1974-01-01

    A model is developed which incorporates to first order the direct effects of the time dependent diffusive propagation of interstellar cosmic rays in a slowly changing interplanetary medium. The model provides a physical explanation for observed rigidity-dependent phase lags in modulated spectra (cosmic ray hysteresis). The average distance to the modulating boundary during the last solar cycle is estimated.

  8. Fluxgate magnetometers for outer planets exploration

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1974-01-01

    The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.

  9. Determination of magnetic helicity in the solar wind and implications for cosmic ray propagation

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.

    1981-01-01

    The mean value of the correlation between local magnetic field and vector potential, known as the magnetic helicity, is a measure of the lack of mirror reflection symmetry of magnetic covariances in a turbulent medium. A method is presented for extraction of helicity spectra from magnetometer data, and applied to an evaluation of the magnetic helicity of interplanetary magnetic fluctuations.

  10. Support of Data Access for the IMP-8 UMD Experiment

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Gloeckler, G.

    2002-01-01

    This grant report provides information on data from the Interplanetary Monitoring Platform-8 (IMP-8). Topics covered include: (1) the science involved in the project; (2) the collection of data; (3) the processing of data; (4) the submission of data to other facilities; (5) the availability of data on the world wide web (WWW). Graphs are also included of data on the interstellar medium.

  11. Study of the relation between Pc 3 micropulsations and magnetosheath fluctuations and for the multisatellite multimeasurement investigation of earths bow shock

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.

    1974-01-01

    Hourly averages of HEOS A interplanetary field and plasma parameters are compared with micropulsation spectrograms taken by auroral zone stations. Visual evaluation of tungsten induction coil records and a statistical summary indicate a class of pulsations sometimes in the Pc 3, sometimes in the Pc 4 range, whose appearance correlates with solar wind field flow alignment. It is concluded that there is a pulsation phenomenon of variable period strongly associated with certain interplanetary field directions.

  12. Transfers from Earth to LEO and LEO to interplanetary space using lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Bonnal, Christophe; Masson, Fréderic; Boustie, Michel; Berthe, Laurent; Schneider, Matthieu; Baton, Sophie; Brambrink, Erik; Chevalier, Jean-Marc; Videau, Laurent; Boyer, Séverine A. E.

    2018-05-01

    New data on some materials at 80ps pulse duration and 1057 nm wavelength give us the option of proportionally combining them to obtain arbitrary values between 35 (aluminum) and 800 N/MW (POM, polyoxymethylene) for momentum coupling coefficient Cm. Laser ablation physics lets us transfer to LEO from Earth, or to interplanetary space using repetitively pulsed lasers and Cm values appropriate for each mission. We discuss practical results for lifting small payloads from Earth to LEO, and space missions such as a cis-Mars orbit with associated laser system parameters.

  13. MODELING THE SOLAR WIND AT THE ULYSSES , VOYAGER , AND NEW HORIZONS SPACECRAFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Pogorelov, N. V.; Zank, G. P.

    The outer heliosphere is a dynamic region shaped largely by the interaction between the solar wind and the interstellar medium. While interplanetary magnetic field and plasma observations by the Voyager spacecraft have significantly improved our understanding of this vast region, modeling the outer heliosphere still remains a challenge. We simulate the three-dimensional, time-dependent solar wind flow from 1 to 80 astronomical units (au), where the solar wind is assumed to be supersonic, using a two-fluid model in which protons and interstellar neutral hydrogen atoms are treated as separate fluids. We use 1 day averages of the solar wind parameters frommore » the OMNI data set as inner boundary conditions to reproduce time-dependent effects in a simplified manner which involves interpolation in both space and time. Our model generally agrees with Ulysses data in the inner heliosphere and Voyager data in the outer heliosphere. Ultimately, we present the model solar wind parameters extracted along the trajectory of the New Horizons spacecraft. We compare our results with in situ plasma data taken between 11 and 33 au and at the closest approach to Pluto on 2015 July 14.« less

  14. Exospheres from Asteroids to Planets

    NASA Astrophysics Data System (ADS)

    Killen, Rosemary M.; Burger, Matthew H.; Farrell, William M.; DREAM2

    2016-10-01

    The study of exospheres can help us understand the long-term loss of volatiles from planetary bodies due to interactions of planets, satellites, and small bodies with the interplanetary medium (solar wind, meteors, and dust), solar radiation, internal forces including diffusion and outgassing, and surface effects like sticking and chemistry. Recent evidence for water and OH on the moon has spurred interest in processes involving chemistry and sequestration of volatile species at the poles and in voids. In recent years, NASA has sent spacecraft to asteroids including Vesta and Ceres, and ESA sent Rosetta to the asteroids Lutetia and Steins. OSIRIS-REX will return a sample from a primitive asteroid, Bennu, to Earth. It is possible that a Phobos-Deimos flyby will be a precursor to a manned mission to Mars. Exospheric particles are derived from the surface and to some extent from interplanetary dust and meteoroids. By comparing the exospheric compositions before and after major meteor shower events it may be possible to determine the extent to which the exosphere reflects the surface composition. Observation of an escaping exosphere, termed a corona, is challenging. We therefore have embarked on a parametrical study of exospheres as a function of basic controlling parameters such as the mass of the primary object, mass of the exospheric species, heliocentric distance, rotation rate of the primary, composition of the body (asteroid type or icy body). These parameters will be useful for mission planning as well as quick look data to determine the size and location of bodies likely to retain their exospheres and observability of exospheric species. We will also consider the sizes of small clusters that may be gravitationally bound to small bodies such as Phobos. In addition, it is of interest to be able to determine the extent of contamination of the pristine exosphere due to the spacecraft sent to make measurements, and the effect on the measurements of outgassing in the instruments.

  15. The Missing Link Coupling the Foreshock to the Magnetosphere?: Impact of the Magnetosheath Velocity Fluctuations on the Growth of the Kelvin-Helmholtz instability.

    NASA Astrophysics Data System (ADS)

    Nykyri, K.; Dimmock, A. P.; Pulkkinen, T. I.; Otto, A.; Ma, X.

    2014-12-01

    Our statistical study of magnetosheath velocity fluctuations using 6+ years of THEMIS spacecraft measurements in Magnetosheath InterPlanetary Medium (MIPM) reference frame show that amplitudes of the velocity fluctuations are enhanced in the magnetosheath downstream of the quasi-parallel shock. The fluctuation amplitudes can be substantial and frequencies of these flcutuations can vary. We have examined the role of the i) amplitude, ii) frequency, iii) number of the modes, iv) as well as mode combinations of magnetosheath velocity fluctuations on the growth of Kelvin-Helmholtz Instability (KHI) using high-resolution macro-scale MHD simulations in magnetospheric inertial frame. The results show that even for the same magnetic field and plasma parameters across the magnetopause there can be major differences due to 'magnetosheath fluctuation state' on the growth and dynamical evolution of the KHI. This may provide the missing link how foreshock fluctuations couple to the magnetosphere and into the ionosphere

  16. CHARGED DUST GRAIN DYNAMICS SUBJECT TO SOLAR WIND, POYNTING–ROBERTSON DRAG, AND THE INTERPLANETARY MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase ormore » decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.« less

  17. An ISEE 3 high time resolution study of interplanetary parameter correlations with magnetospheric activity

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Zwickl, R. D.; Bame, S. J.; Hones, E. W., Jr.; Tsurutani, B. T.; Smith, E. J.; Akasofu, S.-I.

    1983-01-01

    The coupling between the solar wind and the geomagnetic disturbances was examined using data from the ISEE-3 spacecraft at an earth-sun libration point and ground-based data. One minute data were used to avoid aliasing in determining the internal magnetospheric response to solar wind conditions. Attention was given to the cross-correlations between the geomagnetic index (AE), the total energy dissipation rate (UT), and the solar wind parameters, as well as the spatial and temporal scales on which the magnetosphere reacts to the solar wind conditions. It was considered necessary to characterize the physics of the solar wind-magnetosphere coupling in order to define the requirements for a spacecraft like the ISEE-3 that could be used as a real time monitoring system for predicting storms and substorms. The correlations among all but one parameter were lower during disturbance intervals; UT was highly correlated with all parameters during the disturbed times. An intrinsic 25-40 min delay was detected between interplanetary activity and magnetospheric response in quite times, diminishing to no more than 15 min during disturbed times.

  18. A novel interplanetary optical navigation algorithm based on Earth-Moon group photos by Chang'e-5T1 probe

    NASA Astrophysics Data System (ADS)

    Bu, Yanlong; Zhang, Qiang; Ding, Chibiao; Tang, Geshi; Wang, Hang; Qiu, Rujin; Liang, Libo; Yin, Hejun

    2017-02-01

    This paper presents an interplanetary optical navigation algorithm based on two spherical celestial bodies. The remarkable characteristic of the method is that key navigation parameters can be estimated depending entirely on known sizes and ephemerides of two celestial bodies, especially positioning is realized through a single image and does not rely on traditional terrestrial radio tracking any more. Actual Earth-Moon group photos captured by China's Chang'e-5T1 probe were used to verify the effectiveness of the algorithm. From 430,000 km away from the Earth, the camera pointing accuracy reaches 0.01° (one sigma) and the inertial positioning error is less than 200 km, respectively; meanwhile, the cost of the ground control and human resources are greatly reduced. The algorithm is flexible, easy to implement, and can provide reference to interplanetary autonomous navigation in the solar system.

  19. Propagation of low energy solar electrons

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Mcfadden, J. P.; Lin, R. P.

    1981-01-01

    Two events are reported in which 2-10 keV electrons of solar energy have undergone significant adiabatic mirroring and pitch angle scattering in large scale magnetic structures in the interplanetary medium within a distance of about 0.5 AU from the earth. Electrons of 3 keV, typical of the energies measured, have a speed of about one-tenth of the speed of light, so that their travel time from the sun at 0 deg pitch angle would be about 100 minutes. Their cyclotron radius is about 20 km for a pitch angle of 30 deg, and a field of magnitude of 5 nT, and the cyclotron period is about 7.1 milliseconds. The electrons are scattered by spatial variations in the interplanetary magnetic field. When the spatial variations are convected past a stationary spacecraft by a 500 km/sec solar wind, they are seen as temporal fluctuations at a frequency of about 3 Hz.

  20. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    NASA Astrophysics Data System (ADS)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  1. Analysis of the Organic Matter in Interplanetary Dust Particles: Clues to the Organic Matter in Comets, Asteroids, and Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2003-01-01

    Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.

  2. Ring current-energy balance during intense magnetic storms

    NASA Astrophysics Data System (ADS)

    Clua de Gonzalez, A. L.; Gonzalez, W. D.

    2013-12-01

    The energy-rate balance that governs the storm-time ring current is analyzed in terms of the Burton-McPherron-Russell equation (Burton et al., 1975). This is a first order differential equation relating the time variation of the pressure corrected Dst index, with the energy input to the magnetosphere. Based on the Burton et al. equation, we have analyzed in detail the geomagnetic storm of February 11, 2004. The energy input is taken proportional to the interplanetary electric field, Q(t) = αBsV, where Bs is the southward component of the interplanetary magnetic field in GSM coordinates, V is the flow speed of the solar wind and α a constant. The equation is integrated using the OMNI-combined interplanetary data and, the value of the decay time is estimated from a best fit of the response to the observed curve. For this storm we also use a rectangular approximation for the energy input function, thus allowing an analytical solution of the Burton et al. equation. The results from this approximation are then compared to the numerical solution. The study is also extended to the geomagnetic storm of April 22, 2001. This analysis seems to indicate that the Burton et al. equation should contain also a corrective term proportional to the second time derivative of the Dst index. This corrective term might become important for intense storms, with an effect of counteracting the growth of |Dst| before the energy input from the interplanetary medium declines, such that the value of |Dst| starts to decrease instead of continuing to grow.

  3. Properties of Coronal Shocks at the Origin of SEP events Observed by Only One Single Spacecraft

    NASA Astrophysics Data System (ADS)

    Lario, D.; Kwon, R.

    2017-12-01

    The simultaneous observation of solar energetic particle (SEP) events by multiple spacecraft distributed in the interplanetary medium depends not only on the spatial separation among the different spacecraft, but also on the properties of the particle sources and the characteristics of the SEP transport in interplanetary space. Among the SEP events observed by STEREO-A, STEREO-B and/or near-Earth spacecraft during solar cycle 24, we select SEP events observed by a single spacecraft (specifically, the SEP events observed only by near-Earth spacecraft on 2012 April 5, 2011 September 4, and 2013 August 17). We analyze whether the properties of the coronal shock associated with the origin of the events (as seen in extreme-ultraviolet and white-light coronal images) differ from those associated with SEP events observed by two or three spacecraft. For the selected events we find that the associated CMEs are, in general, narrower than those associated with SEP events observed by two or three spacecraft. The confined extension of the parent coronal shock and the absence of magnetic connection between distant spacecraft and the regions of the expanding coronal shock able to efficiently accelerate SEPs seem to be the conditions leading to intense SEP events observed only over narrow regions of interplanetary space by spacecraft magnetically connected to regions close to the parent eruption site. Weak and gradual intensity increases observed in extended regions of space might involve transport processes and/or later connections established with interplanetary shocks. Systematic analyses of a larger number of events are required before drawing firm conclusions.

  4. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  5. Effects of interplanetary magnetic clouds, interaction regions, and high-speed streams on the transient modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Badruddin

    2007-02-01

    Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.

  6. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    IPOST is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence fo trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the coat function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  7. Statistical analysis of solar events associated with SSC over one year of solar maximum during cycle 23: propagation and effects from the Sun to the Earth

    NASA Astrophysics Data System (ADS)

    Cornilleau-Wehrlin, Nicole; Bocchialini, Karine; Menvielle, Michel; Chambodut, Aude; Fontaine, Dominique; Grison, Benjamin; Marchaudon, Aurélie; Pick, Monique; Pitout, Frédéric; Schmieder, Brigitte; Régnier, Stéphane; Zouganelis, Yannis

    2017-04-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, helicity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The observed Sun-to-Earth travel times are compared to those estimated using existing simple models of propagation in the interplanetary medium. This comparison is used to statistically assess performances of various models. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach (for instance the all 12 well identified Magnetic Clouds of 2002 give rise to SSCs).

  8. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  9. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  10. Division E Commission 49: Interplanetary Plasma and Heliosphere

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Manoharan, P. K.; Gopalswamy, Natchimuthuk; Briand, Carine; Chashei, Igor V.; Gibson, Sarah E.; Lario, David; Hanaoka, Yoichiro; Malandraki, Olga; Kontar, Eduard; Richardson, John D.

    2016-04-01

    After a little more than forty years of work related to the interplanetary plasma and the heliosphere the IAU's Commission 49 was formally discontinued in 2015. The commission started its work when the first spacecraft were launched to measure the solar wind in-situ away from Earth orbit, both inward and outward from 1 AU. It now hands over its activities to a new commission during an era of space research when Voyager 1 measures in-situ the parameters of the local interstellar medium at the edge of the heliosphere. The commission will be succeeded by C.E3 with a similar area of responsibility but with more focused specific tasks that the community intends to address during the coming several years. This report includes a short description of the motivation for this commission and of the historical context. It then describes work from 2012 to 2015 during the present solar cycle 24 that has been the weakest in the space era so far. It gave rise to a large number of studies on solar energetic particles and cosmic rays. Other studies addressed e.g. the variation of the solar wind structure and energetic particle fluxes on long time scales, the detection of dust in the solar wind and the Voyager measurements at the edge of the heliosphere. The research is based on measurements from spacecraft that are at present operational and motivated by the upcoming Solar Probe + and Solar Orbiter missions to explore the vicinity of the Sun. We also report here the progress on new and planned radio instruments and their importance for heliospheric studies. Contributors to this report are Carine Briand, Yoichiro Hanaoka, Eduard Kontar, David Lario, Ingrid Mann, John D. Richardson.

  11. On Interplanetary Shocks Driven by Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswarmy, Nat

    2011-01-01

    Traveling interplanetary (IP) shocks were first detected in the early 1960s, but their solar origin has been controversial. Early research focused on solar flares as the source of the shocks, but when CMEs were discovered, it became clear that fast CMEs are the shock drivers. Type radio II bursts are excellent signatures of shocks near the Sun (Type II radio bursts were known long before the detection of shocks and CMEs). The excellent correspondence between type II bursts and solar energetic particle (SEP) events made it clear that the same shock accelerates ions and electrons. Shocks near the Sun are also seen occasionally in white-light coronagraphic images. In the solar wind, shocks are observed as discontinuities in plasma parameters such as density and speed. Energetic storm particle events and sudden commencement of geomagnetic storm are also indicators of shocks arriving at Earth. After an overview on these shock signatures, I will summarize the results of a recent investigation of a large number of IP shocks. The study revealed that about 35% of IP shocks do not produce type II bursts (radio quiet - RQ) or SEPs. Comparing the RQ shocks with the radio loud (RL) ones revealed some interesting results: (1) There is no evidence for blast wave shocks. (2) A small fraction (20%) of RQ shocks is associated with ion enhancements at the shock when the shock passes the spacecraft. (3) The primary difference between the RQ and RL shocks can be traced to the different kinematic properties of the associated CMEs. On the other hand the shock properties measured at 1 AU are not too different for the RQ and RL cases. This can be attributed to the interaction with the IP medium, which seems to erase the difference between the shocks.

  12. Interpretation of increased energetic particle flux measurements by SEPT aboard the STEREO spacecraft and contamination

    NASA Astrophysics Data System (ADS)

    Wraase, S.; Heber, B.; Böttcher, S.; Bucik, R.; Dresing, N.; Gómez-Herrero, R.; Klassen, A.; Müller-Mellin, R.

    2018-04-01

    Context. Interplanetary (IP) shocks are known to be accelerators of energetic charged particles observed in-situ in the heliosphere. However, the acceleration of near-relativistic electrons by shocks in the interplanetary medium is often questioned. On 9 August 2011 a corotating interaction region (CIR) passed STEREO B (STB), which resulted in a flux increase in the electron and ion channels of the Solar Electron and Proton Telescope (SEPT). Because electron measurements in the few keV to several 100 keV range rely on the so-called magnet foil technique, which is utilized by SEPT, ions can contribute to the electron channels. Aim. We aim to investigate whether the flux increase in the electron channels of SEPT during the CIR event on 9 August 2011 is caused by ion contamination only. Methods: We compute the SEPT response functions for protons and helium utilizing an updated GEANT4 model of SEPT. The CIR energetic particle ion spectra for protons and helium are assumed to follow a Band function in energy per nucleon with a constant helium to proton ratio. Results: Our analysis leads to a helium to proton ratio of 16.9% and a proton flux following a Band function with the parameters I0 = 1.24 × 104 (cm2 s sr MeV nuc-1)-1, Ec = 79 keV nuc-1, and spectral indices of γ1 = -0.94 and γ2 = -3.80, which are in good agreement with measurements by the Suprathermal Ion Telescope (SIT) aboard STB. Conclusions: Since our results explain the SEPT measurements, we conclude that no significant amount of electrons were accelerated between 55 and 425 keV by the CIR.

  13. Characterization of high-intensity, long-duration continuous auroral activity (HILDCAA) events using recurrence quantification analysis

    NASA Astrophysics Data System (ADS)

    Mendes, Odim; Oliveira Domingues, Margarete; Echer, Ezequiel; Hajra, Rajkumar; Everton Menconi, Varlei

    2017-08-01

    Considering the magnetic reconnection and the viscous interaction as the fundamental mechanisms for transfer particles and energy into the magnetosphere, we study the dynamical characteristics of auroral electrojet (AE) index during high-intensity, long-duration continuous auroral activity (HILDCAA) events, using a long-term geomagnetic database (1975-2012), and other distinct interplanetary conditions (geomagnetically quiet intervals, co-rotating interaction regions (CIRs)/high-speed streams (HSSs) not followed by HILDCAAs, and events of AE comprised in global intense geomagnetic disturbances). It is worth noting that we also study active but non-HILDCAA intervals. Examining the geomagnetic AE index, we apply a dynamics analysis composed of the phase space, the recurrence plot (RP), and the recurrence quantification analysis (RQA) methods. As a result, the quantification finds two distinct clusterings of the dynamical behaviours occurring in the interplanetary medium: one regarding a geomagnetically quiet condition regime and the other regarding an interplanetary activity regime. Furthermore, the HILDCAAs seem unique events regarding a visible, intense manifestations of interplanetary Alfvénic waves; however, they are similar to the other kinds of conditions regarding a dynamical signature (based on RQA), because it is involved in the same complex mechanism of generating geomagnetic disturbances. Also, by characterizing the proper conditions of transitions from quiescent conditions to weaker geomagnetic disturbances inside the magnetosphere and ionosphere system, the RQA method indicates clearly the two fundamental dynamics (geomagnetically quiet intervals and HILDCAA events) to be evaluated with magneto-hydrodynamics simulations to understand better the critical processes related to energy and particle transfer into the magnetosphere-ionosphere system. Finally, with this work, we have also reinforced the potential applicability of the RQA method for characterizing nonlinear geomagnetic processes related to the magnetic reconnection and the viscous interaction affecting the magnetosphere.

  14. A theory of solar type 3 radio bursts

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Papadopoulos, K.; Smith, R. A.

    1979-01-01

    Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes.

  15. Interplanetary medium data book. Supplement 3: 1977-1985

    NASA Technical Reports Server (NTRS)

    Couzens, David A.; King, Joseph H.

    1986-01-01

    The updating of the hourly resolution, near-Earth solar wind data compilation is discussed. Data plots and listings are then presented. In the text, the time shifting of ISEE 3 fine-scale magnetic field and and plasma data, using corotation delay, and the normalization of IMP-MIT and ISEE densities and temperatures to equivalent IMP-LANL values, are discussed in detail. The levels of arbitrariness in combining data sets, and of random differences between data sets, are elucidated.

  16. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  17. A versatile detector system to measure the change states, mass compositions and energy spectra of interplanetary and magnetosphere ions

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1977-01-01

    An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.

  18. Data catalog series for space science and applications flight missions. Volume 3B: Descriptions of data sets from low- and medium-altitude scientific spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Jackson, John E. (Editor); Horowitz, Richard (Editor)

    1986-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  19. Interplanetary scintillation at large elongation angles: Response to solar wind density structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, F.T.; Cronyn, W.M.; Shawhan, S.D.

    1978-09-01

    Synoptic interplanetary scintillation (IPS) index measurements were taken at 34.3 MHz during May-December 1974 using the University of Iowa Coca Cross radiotelescope on a 'grid' of 150 selected radio sources covering solar elongation angles up to 180/sup 0/. Over 80 of these sources displayed definite IPS. The solar elongation dependence of the 34.3-MHz IPS index is consistent with the elongation angle dependence measured at higher frequencies. Large enhancements (factors of> or approx. =2) of the IPS index are found to coincide with the solar wind (proton density increases greater than 10 cm/sup -3/ as measured by Imp 7 and 8more » for nearly all observed IPS sources throughout the sky. These 'all-sky' IPS enhancements appear to be caused by incresed contributions to the scintillation power by turbulent plasma in regions close to the earth (< or approx. =0.3AU) in all directions. Correlation analysis confirms the IPS response to solar wind density and indicates that the events are due primarily to the corotating solar wind turbulent plasma structures which dominated the interplanetary medium during 1974. The expected IPS space-time signature for a simple model of an approaching corotating turbulent structure is not apparent in our observations. In some cases, the enhancement variatons can be attributed to structural differences in the solar wind density turbulence in and out of the ecliptic.« less

  20. Interplanetary type II radio bursts and their association with CMEs and flares

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Suresh, K.; Vasanth, V.; Selvarani, G.; Umapathy, S.

    2018-06-01

    We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts-flares-CMEs) observed during the period 1997-2012. The present analysis consider only the type II bursts having starting frequency < 14 MHz to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (m) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as m= 1 to 10 and m = 1 to 3. This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.

  1. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitňa, A.; Šafránková, J.; Němeček, Z.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those inmore » the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.« less

  2. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  3. Structure of Solar Ejecta

    NASA Astrophysics Data System (ADS)

    Muñoz, G.; Cantó, J.; Lara, A.; González, R.; Schwenn, R.

    Solar Ejecta (SE) have been of interest in the last years, especially those which may reach Earth environment. It is possible to observe the SE early evolution, when they are in the field of view of coronagraphs. There are few indirect observations, as the case of interplanetary scintillation, of SEs in the interplanetary medium. Finally, we observe SEs in situ when they arrive at 1 AU.The SEs structure and evolution are important to understand the origin of these phenomena but to predict the possible effects in the space weather. It is of general acceptance that SEs are "Erupting Flux Ropes" traveling trough the Solar Wind. The "shapes" have been modeled as cylinders or as "ice cream cones" in order to represent the many different projections observed on Coronagraphs.We present a model of the SE evolution based on purely Hydrodynamic considerations. This model reproduces in good approximation some of the features observed in the images and in the measures of the shocks near Earth.

  4. A Voyage through the Heliosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.

    2009-12-01

    Parker adopted the word “Heliosphere” to denote “the region of interstellar space swept out by the solar wind” His book “Interplanetary Dynamical Processes” (1963) provided “a comprehensive self-consistent dynamical picture of interplanetary activity” on spatial scales from the Larmor radius to the outermost limits of the heliosphere and over a broad range of temporal scales. The spacecraft Voyagers 1 and 2 have taken us on a journey through much of the heliosphere: from Earth, past the termination shock near 90 AU, and into the inner heliosheath. This talk will use magnetic field observations from V1 and V2 to illustrate how Parker’s dynamical picture has been largely confirmed by observations out to ~100 AU. It will also discuss some “complicating aspects of the dynamics…which will turn up in future observations…” that Parker envisaged. With continued funding, the Voyager spacecraft will allow us to explore the heliosheath, cross the boundary of the heliosphere, and sample the local interstellar medium, guided by still untested predictions of Parker.

  5. Magnetohydrodynamic modelling of solar disturbances in the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Dryer, M.

    1985-12-01

    A scientifically constructed series of interplanetary magnetohydrodynamic models is made that comprise the foundations for a composite solar terrestrial environment model. These models, unique in the field of solar wind physics, include both 2-1/2D as well as 3D time dependent codes that will lead to future operational status. We have also developed a geomagnetic storm forecasting strategy, referred to as the Solar Terrestrial Environment Model (STEM/2000), whereby these models would be appended in modular fashion to solar, magnetosphere, ionosphere, thermosphere, and neutral atmosphere models. We stress that these models, while still not appropriate at this date for operational use, outline a strategy or blueprint for the future. This strategy, if implemented in its essential features, offers a high probability for technology transfer from theory to operational testing within, approximately, a decade. It would ensure that real time observations would be used to drive physically based models that outputs of which would be used by space environment forecasters.

  6. [Radiation situation prognosis for deep space: reactions of water and living systems to chronic low-dose ionizing irradiation].

    PubMed

    Ushakov, I B; Tsetlin, V V; Moisa, S S

    2013-01-01

    The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.

  7. The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.

  8. A novel approach to the dynamical complexity of the Earth's magnetosphere at geomagnetic storm time-scales based on recurrences

    NASA Astrophysics Data System (ADS)

    Donner, Reik; Balasis, Georgios; Stolbova, Veronika; Wiedermann, Marc; Georgiou, Marina; Kurths, Jürgen

    2016-04-01

    Magnetic storms are the most prominent global manifestations of out-of-equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we introduce several innovative data analysis techniques enabling a quantitative analysis of the Dst index non-stationary behavior. Using recurrence quantification analysis (RQA) and recurrence network analysis (RNA), we obtain a variety of complexity measures serving as markers of quiet- and storm-time magnetospheric dynamics. We additionally apply these techniques to the main driver of Dst index variations, the V BSouth coupling function and interplanetary medium parameters Bz and Pdyn in order to discriminate internal processes from the magnetosphere's response directly induced by the external forcing by the solar wind. The derived recurrence-based measures allow us to improve the accuracy with which magnetospheric storms can be classified based on ground-based observations. The new methodology presented here could be of significant interest for the space weather research community working on time series analysis for magnetic storm forecasts.

  9. Space weather monitoring and forecasting in South America: products from the user requests to the development of regional magnetic indices and GNSS vertical error maps

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Padilha, Antonio; Takahashi, Hisao; Souza, Jonas; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Costa, D. Joaquim

    On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is kwon by the acronyms Embrace that stands for the Portuguese statement “Estudo e Monitoramento BRAasileiro de Clima Espacial” Program (Brazilian Space Weather Study and Monitoring program). The main purpose of the Embrace Program is to monitor the space climate and weather from sun, interplanetary space, magnetosphere and ionosphere-atmosphere, and to provide useful information to space related communities, technological, industrial and academic areas. Since then we have being visiting several different space weather costumers and we have host two workshops of Brazilian space weather users at the Embrace facilities. From the inputs and requests collected from the users the Embrace Program decided to monitored several physical parameters of the sun-earth environment through a large ground base network of scientific sensors and under collaboration with space weather centers partners. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. A comprehensive data bank and an interface layer are under development to allow an easy and direct access to the useful information. Nowadays, the users will count on products derived from a GNSS monitor network that covers most of the South American territory; a digisonde network that monitors the ionospheric profiles in two equatorial sites and in one low latitude site; several solar radio telescopes to monitor solar activity, and a magnetometer network, besides a global ionospheric physical model. Regarding outreach, we publish a daily bulletin in Portuguese with the status of the space weather environment on the Sun, in the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, we have release brand new products, among them, some regional magnetic indices and the GNSS vertical error map over South America. Contacting Author: C. M. Denardini (clezio.denardin@inpe.br)

  10. The solar radio corona: Manifestations of energetic electrons

    NASA Technical Reports Server (NTRS)

    Pick, M.

    1986-01-01

    Radio observations are powerful tools which are complementary to the space missions devoted to the physics of the flares, of the corona, or of the interplanetary medium. To undertake this task two multifrequency radioheliographs presently exist: the Nancay instrument (the multifrequency facility will be in operation by the end of 1985) observes the middle corona at decimeter-meter wavelengths, and the Clark Lake radioheliograph, operating at decameter wavelengths, is the only one in the world to have the ability of observing the outer corona above the disk.

  11. Prebiotic chemistry in space; Proceedings of Symposia B1.4 and F3.3 of the COSPAR Scientific Assembly, 30th, Hamburg, Germany, July 11-21, 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A two-part symposium was held concerning topics in Solar System chemistry. The first part covered the organic chemistry ofsmall bodies of the interplanetray medium. It produced papers on the evolution, spectral properties and composition of organic matter in comets, interplanetary dust and asteroids. The second part covered cryochemistry and exobiology in planetary atmospheres (gas giant planets and their satellites) and in various astronomical ices.

  12. Solar Terrestrial Physics: Present and Future

    NASA Technical Reports Server (NTRS)

    Butler, D. M. (Editor); Papadopoulos, K. (Editor)

    1984-01-01

    The following topics relating to solar-terrestrial interactions are considered: (1) reconnection of magnetic fields; (2) particle acceleration; (3) solar magnetic flux; (4) magnetohydrodynamic waves and turbulence in the Sun and interplanetary medium; (5) coupling of the solar wind to the magnetosphere; (6) coronal transients; (7) the connection between the magnetosphere and ionosphere; (8) substorms in the magnetosphere; (9) solar flares and the solar terrestrial environment; (10) shock waves in the solar terrestrial environment; (11) plasma transport and convection at high latitudes; and (12) high latitude ionospheric structure.

  13. Study of the Geoeffectiveness and Galactic Cosmic-Ray Response of VarSITI-ISEST Campaign Events in Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Aslam, O. P. M.; Badruddin

    2017-09-01

    We analyze and compare the geomagnetic and galactic cosmic-ray (GCR) response of selected solar events, particularly the campaign events of the group International Study of Earth-affecting Solar Transients (ISEST) of the program Variability of the Sun and Its Terrestrial Impact (VarSITI). These selected events correspond to Solar Cycle 24, and we identified various of their features during their near-Earth passage. We evaluated the hourly data of geomagnetic indices and ground-based neutron monitors and the concurrent data of interplanetary plasma and field parameters. We recognized distinct features of these events and solar wind parameters when the geomagnetic disturbance was at its peak and when the cosmic-ray intensity was most affected. We also discuss the similarities and differences in the geoeffectiveness and GCR response of the solar and interplanetary structures in the light of plasma and field variations and physical mechanism(s), which play a crucial role in influencing the geomagnetic activity and GCR intensity.

  14. Large-scale structures of solar wind and dynamics of parameters in them

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael

    2017-04-01

    On the basis of OMNI dataset and our catalog of large-scale solar wind (SW) phenomena (see web-site ftp://ftp.iki.rssi.ru/pub/omni/ and paper by Yermolaev et al., 2009) we study temporal profile of interplanetary and magnetospheric parameters in following SW phenomena: interplanetary manifestation of coronal mass ejection (ICME) including magnetic cloud (MC) and Ejecta, Sheath—compression region before ICME and corotating interaction region (CIR)—compression region before high-speed stream (HSS) of solar wind. To take into account a possible influence of other SW types, following sequences of phenomena, which include all typical sequences of non-stationary SW events, are analyzed: (1) SW/ CIR/ SW, (2) SW/ IS/ CIR/ SW, (3) SW/ Ejecta/ SW, (4) SW/ Sheath/Ejecta/ SW, (5) SW/ IS/ Sheath/ Ejecta/ SW, (6) SW/ MC/ SW, (7) SW/Sheath/ MC/ SW, (8) SW/ IS/ Sheath/ MC/ SW (where SW is undisturbed solar wind, and IS is interplanetary shock) (Yermolaev et al., 2015) using the method of double superposed epoch analysis for large numbers of events (Yermolaev et al., 2010). Similarities and distinctions of different SW phenomena depending on neighboring SW types and their geoeffectiveness are discussed. The work was supported by the Russian Science Foundation, projects 16-12-10062. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274.

  15. Time-dependent Processes in the Sheath Between the Heliospheric Termination Shock and the Heliopause

    NASA Astrophysics Data System (ADS)

    Pogorelov, N. V.; Borovikov, S. N.; Heerikhuisen, J.; Kim, T. K.; Zank, G. P.

    2014-09-01

    In this paper, we present the results of our numerical simulation of the solar wind (SW) interaction with the local interstellar medium (LISM). In particular, a solar cycle model based on Ulysses measurements allowed us to estimate the interrelationship between heliospheric asymmetries due to the action of the interstellar magnetic field and the decrease in the solar wind ram pressure. We evaluate the possibility to develop an improved approach to derive SW boundary conditions from interplanetary scintillation data. It is shown that solar cycle affects stability of the heliopause in a way favorable for the interpretation of Voyager 1 “early” penetration into the local interstellar medium. We also show that the heliotail is always a subject of violent Kelvin-Helmholtz instability, which ultimately should make the heliotail indistinguishable from the LISM. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. We have enhanced the code with additional physical treatments for the transport of turbulence and acceleration of pickup ions in interplanetary space and at the termination shock.

  16. Magnetic clouds, helicity conservation, and intrinsic scale flux ropes

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Rust, D. M.

    1995-01-01

    An intrinsic-scale flux-rope model for interplanetary magnetic clouds, incorporating conservation of magnetic helicity, flux and mass is found to adequately explain clouds' average thermodynamic and magnetic properties. In spite their continuous expansion as they balloon into interplanetary space, magnetic clouds maintain high temperatures. This is shown to be due to magnetic energy dissipation. The temperature of an expanding cloud is shown to pass through a maximum above its starting temperature if the initial plasma beta in the cloud is less than 2/3. Excess magnetic pressure inside the cloud is not an important driver of the expansion as it is almost balanced by the tension in the helical field lines. It is conservation of magnetic helicity and flux that requires that clouds expand radially as they move away from the Sun. Comparison with published data shows good agreement between measured cloud properties and theory. Parameters determined from theoretical fits to the data, when extended back to the Sun, are consistent with the origin of interplanetary magnetic clouds in solar filament eruptions. A possible extension of the heating mechanism discussed here to heating of the solar corona is discussed.

  17. An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Tascione, T. F.; Danieli, R. E., Jr.

    1981-01-01

    The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.

  18. The Interplanetary Magnetic Field and Magnetospheric Current Systems

    NASA Technical Reports Server (NTRS)

    El-Alaoui, Mostafa

    2003-01-01

    We have performed systematic global magnetohydrodynamic (MHD) simulation studies driven by an idealized time series of solar wind parameters to establish basic cause and effect relationships between the solar wind variations and the ionosphere parameters. We studied six cases in which the interplanetary magnetic field (IMF) rotated from southward to northward in one minute. In three cases (cases A, B, and C) we ran five hours of southward IMF with Beta(sub Zeta) = 5 nT, followed by five hours of northward IMF with Beta(sub Zeta) = 5 nT. In the other three cases (cases D, E, and F) the magnetic field magnitude was increased to 10 nT. The solar wind parameters were: For cases A and D a density of 5 cm(exp -3), a thermal pressure of 3.3 nPa, and a solar wind speed 375 km/s, for cases B and E a density of 10 cm(exp -3), a thermal pressure of 9.9 nPa, and a solar wind speed 420 km/s, while for cases C and F a density of 15 cm(exp -3), a thermal pressure of 14.9 nPa, and a solar wind speed of 600 km/s.

  19. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr - Part 4: Near-Earth solar wind speed, IMF, and open solar flux

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Nevanlinna, H.; Barnard, L.; Owens, M. J.; Harrison, R. G.; Rouillard, A. P.; Scott, C. J.

    2014-04-01

    In the concluding paper of this tetralogy, we here use the different geomagnetic activity indices to reconstruct the near-Earth interplanetary magnetic field (IMF) and solar wind flow speed, as well as the open solar flux (OSF) from 1845 to the present day. The differences in how the various indices vary with near-Earth interplanetary parameters, which are here exploited to separate the effects of the IMF and solar wind speed, are shown to be statistically significant at the 93% level or above. Reconstructions are made using four combinations of different indices, compiled using different data and different algorithms, and the results are almost identical for all parameters. The correction to the aa index required is discussed by comparison with the Ap index from a more extensive network of mid-latitude stations. Data from the Helsinki magnetometer station is used to extend the aa index back to 1845 and the results confirmed by comparison with the nearby St Petersburg observatory. The optimum variations, using all available long-term geomagnetic indices, of the near-Earth IMF and solar wind speed, and of the open solar flux, are presented; all with ±2σ uncertainties computed using the Monte Carlo technique outlined in the earlier papers. The open solar flux variation derived is shown to be very similar indeed to that obtained using the method of Lockwood et al. (1999).

  20. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  1. Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth

    PubMed Central

    Ehrenfreund, Pascale; Cami, Jan

    2010-01-01

    Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702

  2. A new Method for Determining the Interplanetary Current-Sheet Local Orientation

    NASA Astrophysics Data System (ADS)

    Blanco, J. J.; Rodríguez-pacheco, J.; Sequeiros, J.

    2003-03-01

    In this work we have developed a new method for determining the interplanetary current sheet local parameters. The method, called `HYTARO' (from Hyperbolic Tangent Rotation), is based on a modified Harris magnetic field. This method has been applied to a pool of 57 events, all of them recorded during solar minimum conditions. The model performance has been tested by comparing both, its outputs and noise response, with these of the `classic MVM' (from Minimum Variance Method). The results suggest that, despite the fact that in many cases they behave in a similar way, there are specific crossing conditions that produce an erroneous MVM response. Moreover, our method shows a lower noise level sensitivity than that of MVM.

  3. The application of dimensional analysis to the problem of solar wind-magnetosphere energy coupling

    NASA Technical Reports Server (NTRS)

    Bargatze, L. F.; Mcpherron, R. L.; Baker, D. N.; Hones, E. W., Jr.

    1984-01-01

    The constraints imposed by dimensional analysis are used to find how the solar wind-magnetosphere energy transfer rate depends upon interplanetary parameters. The analyses assume that only magnetohydrodynamic processes are important in controlling the rate of energy transfer. The study utilizes ISEE-3 solar wind observations, the AE index, and UT from three 10-day intervals during the International Magnetospheric Study. Simple linear regression and histogram techniques are used to find the value of the magnetohydrodynamic coupling exponent, alpha, which is consistent with observations of magnetospheric response. Once alpha is estimated, the form of the solar wind energy transfer rate is obtained by substitution into an equation of the interplanetary variables whose exponents depend upon alpha.

  4. Review of chemical-kinetic problems of future NASA missions, II: Mars entries

    NASA Technical Reports Server (NTRS)

    Park, Chul; Howe, John T.; Jaffe, Richard L.; Candler, Graham V.

    1994-01-01

    The present work aims to derive a set of thermomechanical relaxation rate parameters and chemical reaction rate coefficients relevant to future interplanetary missions. It also attempts to assess the impact of thermochemical nonequilibrium phenomena on radiative heating rates for the stagnation point of the Martian entry vehicle.

  5. Interplanetary energetic particle observations of the March 1989 events

    NASA Technical Reports Server (NTRS)

    Sarris, E. T.; Krimigis, S. M.

    1989-01-01

    The IMP-8 spacecraft placed in an elongated orbit of approximately R(sub E) x R(sub E) orbit around the Earth was the only monitor of the energetic particle environment of the near interplanetary space during the period of the solar particle events associated with the Active Region 5395 in March 1989. Measurements of energetic ion and electron intensities were obtained in a series of channels within the energy range: 0.3 to 440 MeV for photons, 0.6 to 52 MeV/nuc for alpha particles, 0.7 to 3.3 MeV/nuc for nuclei with Z greater than or equal to 3, 3 to 9 MeV/nuc with Z greater than or equal to 20, and 0.2 to 2.5 MeV for electrons. The responses of selected energy channels during the period 5 to 23 March 1989 are displayed. It is clearly noted that the most prominent energetic ion intensity enhancements in that time interval were associated with the interplanetary shock wave of March 13 (07:42 UT) as well as that of March 8 (17:56 UT), which have distinct particle acceleration signatures. These shock waves play a major role in determining the near Earth energetic ion intensities during the above period by accelerating and modulating the ambient solar energetic particle population, which was already present in high intensities in the interplanetary medium due to the superposition of a series of solar flare particle events originating in AR 5395. The differential ion intensities at the lowest energy channel of the CPME experiment, which were associated with the March 13 shock wave, reached the highest level in the life of the IMP-8 spacecraft at this energy. At high energies, the shock associated intensity peak was smaller by less than a factor of 3 than the maxima of solar flare particle intensities from some other major flares, in particular from those with sites well connected to the Earth's magnetic flux tubes.

  6. Interplanetary Magnetic Field and Plasma Values Related to Hildcaas Events

    NASA Astrophysics Data System (ADS)

    Prestes, A.; Serra, S. L.; Vieira, L. A.

    2013-05-01

    In this work we investigate the interplanetary conditions during the occurrence of 150 HILDCAAs/QUASI-HILDCAAs events occurred between 1998 and 2007. These events were chosen by following strictly the selection criteria for this kind of phenomena and with some criteria flexible. Among the criteria used to characterize events HILDCAAs, the criterion that considers "the AE values never dropped below 200 nT for more than 2 h at a time" was more restrictive, thus only this was modified by changing from 2 to 4 hours the period in which the AE value can't be below 200 nT. In the interplanetary medium, HILDCAAs are associated with high speed solar wind streams, which are frequently embedded with alfvénic fluctuations. At the Sun, these high speed streams are originated in coronal holes. The distribution of events HILDCAAs/quasi-HILDCAAs along the solar cycle shows a pattern of double peak, a less intense around the maximum of the sunspot cycle and other intense in the descending phase, similar to the distribution of low-latitude coronal holes. For each one of the selected events we have found the most probable value of interplanetary magnetic field and plasma. The average values of AE, AU, AL and Dst indices, the density and temperature of the solar wind protons, the solar wind speed, the Bz component of the IMF, the IMF intensity, dynamic pressure and factor beta, among all the 150 events HILDCAAs/quasi-HILDCAAs, were: AE (344.5 ± 65.0 nT), AU (131.0 ± 33.0 nT), AL (-213.7 ± 51.2 nT), Dst (-25.8 ± 12.2 nT), Density (5,0 ± 1,8 cm-3), Temperature (151269.5 ± 48907.7 K), |V| (538.2 ± 83.3 km/s) Bz (-0.71 ± 1.02 nT), |B| (6.7 ± 1.4 nT) pressure (2.6 ± 0.7 nPa) and Beta (0.66 ± 0.27).

  7. Stardust in meteorites.

    PubMed

    Davis, Andrew M

    2011-11-29

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars.

  8. Electromagnetic fluctuation spectra of collective oscillations in magnetized Maxwellian plasmas for parallel wave vectors

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2016-05-01

    The general electromagnetic fluctuation theory for magnetized plasmas is used to calculate the steady-state wave number spectra and total electromagnetic field strength of low-frequency collective weakly damped eigenmodes with parallel wavevectors in a Maxwellian electron-proton plasma. These result from the equilibrium of spontaneous emission and collisionless damping, and they represent the minimum electromagnetic fluctuations guaranteed in quiet thermal space plasmas, including the interstellar and interplanetary medium. Depending on the plasma beta, the ratio of |δB |/B0 can be as high as 10-12 .

  9. Barium release system

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)

    1973-01-01

    A chemical system is described for releasing a good yield of free barium neutral atoms and barium ions in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium. The barium is released in the vapor phase so that it can be ionized by solar radiation and also be excited to emit resonance radiation in the visible range. The ionized luminous cloud of barium becomes a visible indication of magnetic and electrical characteristics in space and allows determination of these properties over relatively large areas at a given time.

  10. Spacecraft shielding for a Mars mission

    NASA Astrophysics Data System (ADS)

    O'Brien, K.

    Calculations of the effective radiation dose due to cosmic rays in the interplanetary medium between Earth and Mars show that, as in the atmosphere above the Pfotzer Maximum, the dose rate increases with increasing wall thickness. An unshielded space crew member would receive almost 70 rem (0.70 Sv) a year. The effect of a typically proposed composite space-craft hull of aluminum and polyethylene would increase the dose rate by a few percent. However, 100 g/cm2 of almost any light material would more than double the cosmic radiation exposure of the crew.

  11. Stardust in meteorites

    PubMed Central

    Davis, Andrew M.

    2011-01-01

    Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars. PMID:22106261

  12. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  13. The Roles of Flares and Shocks in determining SEP Abundances

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Mewaldt, R. A.; Cohen, C. M. S.; vonRosenvinge, T. T.

    2007-01-01

    We examine solar energetic particle (SEP) event-averaged abundances of Fe relative to O and intensity versus time profiles at energies above 25 MeV/nucleon using the SIS instrument on ACE. These data are compared with solar wind conditions during each event and with estimates of the strength of the associated shock based on average travel times to 1 AU. We find that the majority of events with an Fe to 0 abundance ratio greater than two times the average 5-12 MeV/nuc value for large SEP events (0.134) occur in the western hemisphere. Furthermore, in most of these Fe-rich events the profiles peak within 12 hours of the associated flare, suggesting that some of the observed interplanetary particles are accelerated in these flares. The vast majority of events with Fe/O below 0.134 are influenced by interplanetary shock acceleration. We suggest that variations in elemental composition in SEP events mainly arise from the combination of flare particles and shock acceleration of these particles and/or the ambient medium.

  14. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  15. Nonthermal Radiation Processes in Interplanetary Plasmas

    NASA Astrophysics Data System (ADS)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large amplitude to exceed the thresfiold conditions, nonlinear mode conversion electromagnetic waves can be effected through parametric instabilities. A number of electromagnetic parametric instabilities driven by intense Langmuir waves can be excited in a plasma: (1) electromagnetic decay/fusion instabilities driven by a traveling Langmuir pump; (2) double electromagnetic decay/fusion instabilities driven by two oppositely directed Langmuir pumps; and (3) electromagnetic oscillating two-stream instabilities driven by two counterstreaming Langmuir pumps. It is concluded that the electromagnetic parametric instabilities induced by Langmuir waves are likely sources of nonthermal radiations in interplanetary plasmas. Keq ( : INTERPLANETARY MEDIUM - PLASMAS

  16. Effects of a wavy neutral sheet on cosmic ray anisotropies

    NASA Technical Reports Server (NTRS)

    Kota, J.; Jokipii, J. R.

    1985-01-01

    The first results of a three-dimensional numerical code calculating cosmic ray anisotropies is presented. The code includes diffusion, convection, adiabatic cooling, and drift in an interplanetary magnetic field model containing a wavy neutral sheet. The 3-D model can reproduce all the principal observations for a reasonable set of parameters.

  17. Structure of magnetopause layers formed by a radial interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Safrankova, Jana; Simunek, Jiri; Nemecek, Zdenek; Prech, Lubomir; Grygorov, Kostiantyn; Shue, Jih-Hong; Samsonov, Andrey; Pi, Gilbert

    2016-07-01

    The magnetopause location is generally believed to be determined by the solar wind dynamic pressure and by the sign and value of the interplanetary magnetic field (IMF) vertical (Bz) component. A contribution of other parameters is usually assumed to be minor or negligible near the equatorial plane. However, recent papers have shown a magnetopause expansion during intervals of a nearly radial IMF (large IMF Bx component). Under such conditions, the total pressure exerted on the subsolar magnetopause is significantly lower than the solar wind dynamic pressure as demonstrate both MHD simulations and statistical investigations. During a long-duration radial IMF, all parameters - the IMF magnitude, solar wind speed, density, and especially the temperature are depressed in comparison with their yearly averages. Moreover, in this case, the structures of the LLBL change; the LLBL shows different profiles at both hemispheres for negative and positive IMF Bx polarities. This asymmetry changes over time and influences the LLBL structures due to magnetic reconnection. We present an overview of important physical quantities controlling the magnetopause compression and new results that deal with the structure of the magnetopause and adjacent layers.

  18. Prompt Injections of Highly Relativistic Electrons Induced by Interplanetary Shocks: A Statistical Study of Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Schiller, Q.; Kanekal, S. G.; Jian, L. K,; Li, X.; Jones, A.; Baker, D. N.; Jaynes, A.; Spence, H. E.

    2016-01-01

    We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E greater than 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.

  19. Characteristics of magnetised plasma flow around stationary and expanding magnetic clouds

    NASA Astrophysics Data System (ADS)

    Dalakishvili, Giorgi

    Studies of interplanetary magnetic clouds have shown that the characteristics of the region ahead of these objects, which are moving away from the Sun in the solar wind, play a role in determining their geo-efficiency, i.e. the kind and the degree of their effects on the Earth environment. Therefore, our main goal is to model and study the plasma parameters in the vicinity of interplanetary magnetic clouds. To this end we present a model in which the magnetic clouds are immersed in a magnetised plasma flow with a homogeneous magnetic field. We first calculate the resulting distortion of the external magnetic field and then determine the plasma velocity by employing the frozen-in condition. Subsequently, the plasma density and pressure are expressed as functions of the magnetic field and the velocity field. The plasma flow parameters are determined by solving the time-independent ideal MHD equations for both the stationary regime and for the case of an expand-ing cylindrical magnetic cloud, thus extending previous results that appeared in the literature.

  20. The acceleration of particles at propagating interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  1. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem.

    PubMed

    Englander, Jacob A; Conway, Bruce A

    2017-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto.

  2. Optimization of the interplanetary trajectories of spacecraft with a solar electric propulsion power plant of minimal power

    NASA Astrophysics Data System (ADS)

    Ivanyukhin, A. V.; Petukhov, V. G.

    2016-12-01

    The problem of optimizing the interplanetary trajectories of a spacecraft (SC) with a solar electric propulsion system (SEPS) is examined. The problem of investigating the permissible power minimum of the solar electric propulsion power plant required for a successful flight is studied. Permissible ranges of thrust and exhaust velocity are analyzed for the given range of flight time and final mass of the spacecraft. The optimization is performed according to Portnyagin's maximum principle, and the continuation method is used for reducing the boundary problem of maximal principle to the Cauchy problem and to study the solution/ parameters dependence. Such a combination results in the robust algorithm that reduces the problem of trajectory optimization to the numerical integration of differential equations by the continuation method.

  3. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Conway, Bruce

    2016-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto.

  4. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem

    PubMed Central

    Englander, Jacob A.; Conway, Bruce A.

    2017-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto. PMID:29515289

  5. Determination of the Far-Infrared Cosmic Background Using COBE/DIRBE and WHAM Data

    NASA Technical Reports Server (NTRS)

    Odegard, N.; Arendt, R. G.; Dwek, E.; Haffner, L. M.; Hauser, M. G.; Reynolds, R. J.

    2007-01-01

    Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of the far infrared CIB (e.g., Hauser et al. 1998) were based on the detection of residual isotropic emission in skymaps from which the emission from interplanetary dust and the neutral interstellar medium were removed. In this paper we use the Wisconsin H(alpha) Mapper (WHAM) Northern Sky Survey as a tracer of the ionized medium to examine the effect of this foreground component on determination of the CIB. We decompose the DIRBE far infrared data for five high Galactic latitude regions into HI- and H(alpha)- correlated components and a residual component. Eased on FUSE H2 absorption line observations, the contribution of a11 H2-correlated component is expected to he negligible. We find the H(alpha)-correlated component to be consistent with zero for each region, and we find that addition of an H(alpha)-correlated component in modeling the foreground emission has negligible effect on derived CIB results. Our CIB detections and 2(sigma) upper limits are essentially the same as those derived by Hauser et al. and are given by (nu)I(sub nu)(nW/sq m/sr) < 75, < 32, 25+/-8, and 13+/-3 at gamma = 60, 100, 140, and 240 microns, respectively. Our residuals have not been subjected to a detailed anisotropy test, so our CIB results do not supersede those of Hauser et al. Mie derive upper limits on the 100 micron emissivity of the ionized medium that are typically about 40% of the 100 micron emissivity of the neutral atomic medium. This low value may be caused in part by a lower dust-to-gas mass ratio in the ionized medium than in the neutral medium, and in part by a shortcoming of using H(alpha) intensity as a tracer of far infrared emission. If H(alpha) is not a reliable tracer, our analysis would underestimate the emissivity of the ionized medium, and both our analysis and the Hauser et al. analysis may slightly overestimate the CIB. We estimate the possible effect for the CIB to be only about 5%, which is much smaller than the quoted uncertainties. From a comparison of the Hauser et al. CIB results with the integrated galaxy brightness from Spitzer source counts, we obtain 2(sigma) upper limits on a possible diffuse CIB component that are 26 nW/sq m/sr at 140 microns and 8.5 nW/sq m/sr at 240 microns.

  6. Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries

    NASA Astrophysics Data System (ADS)

    Fan, Quan-Lin; Wei, Feng-Si; Feng, Xue-Shang

    2003-08-01

    The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet. The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc. The project supported by National Natural Science Foundation of China under Grant Nos. 40104006, 49925412, and 49990450

  7. Does magnetic storm generation depend on the solar wind type?

    NASA Astrophysics Data System (ADS)

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.; Yermolaev, M. Yu.

    2017-09-01

    The purpose of this work is to draw the reader's attention to the problem of possible differences in the generation of magnetic storms by different large-scale solar wind types: corotating interaction regions (CIRs), Sheaths, and interplanetary coronal mass ejections (ICMEs), including magnetic clouds (MCs) and Ejecta. We recently showed that the description of relationships between interplanetary conditions and Dst and Dst* indices with the modified formula by Burton et al. gives an 50% higher efficiency of storm generation by Sheath and CIR than that by ICME. Many function couplings (FCs) between different interplanetary parameters and the magnetosphere state have been suggested in the literature; however, they have not been analyzed for different solar wind types. In this work, we study the generation efficiency of the main phase of a storm by different solar wind streams with the use of 12 FCs on the basis of OMNI data for 1976-2000. The results show that the Sheath has the highest efficiency for most FCs, and MC is the least efficient, and this result corresponds to our previous results. The reliability of the results and possible causes of differences for different FCs and solar wind types are to be studied further.

  8. Near-magnetopause magnetosheath in 3D gasdynamic module of the numerical magnetosheath-magnetosphere model

    NASA Astrophysics Data System (ADS)

    Dobreva, P. S.; Kartalev, M. D.; Borodkova, N. L.; Zastenker, G. N.

    2016-07-01

    This paper describes an approach to a theoretical interpretation of Interball-1 satellite measurements data in two cases of the satellite's crossings of the magnetosheath. An interpretation is made of both the measured crossings of the magnetosheath boundaries and the behavior of the registered plasma parameters. In our case, it is the value of the ion flux along the spacecraft trajectory. The magnetosheath-magnetosphere model, developed at the Institute of Mechanics, Sofia, Bulgaria, is used as a theoretical basis. It describes the interaction between the solar wind and the Earth's magnetosphere in a simplified gas-dynamic approximation. A characteristic feature of the model is that it allows for the self-consistent description of the magnetosheath boundaries - the bow shock (BS) and the magnetopause (MP). The three-dimensional picture of the magnetosheath fluid flow is also obtained as part of the solution. The magnetosheath characteristics thus obtained are in correspondence with a given momentary state of the interplanetary medium, defined on the basis of WIND satellite data (appropriately shifted by time). The results are discussed in the context of advantages and limitations of using the gas-dynamic model for the interpretation of magnetosheath plasma measurements in the near-magnetopause magnetosheath.

  9. Plasma electron analysis: Voyager plasma science experiment

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.

    1983-01-01

    The Plasma Science Experiment (PLS) on the Voyager spacecraft provide data on the plasma ions and electrons in the interplanetary medium and the magnetospheres of the giant planets Jupiter and Saturn. A description of the analysis used to obtain electron parameters (density, temperature, etc.) from the plasma science experiment PLS electron measurements which cover the energy range from 10 eV to 5950 eV is presented. The electron sensor (D cup) and its transmission characteristics are described. A derivation of the fundamental analytical expression of the reduced distribution function F(e) is given. The electron distribution function F(e), used in the moment integrations, can be derived from F(e). Positive ions produce a correction current (ion feedthrough) to the measured electron current, which can be important to the measurements of the suprathermal electron component. In the case of Saturn, this correction current, which can either add to or subtract from the measured electron current, is less than 20% of the measured signal at all times. Comments about the corrections introduced by spacecraft charging to the Saturn encounter data, which can be important in regions of high density and shadow when the spacecraft can become negatively charged are introduced.

  10. Radiation Processing of Polycyclic Aromatic Hydrocarbons (PAHs) in Space: ICEE PoC

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew; Cruz-Diaz, Gustavo; Barnhardt, Michael; Ging, Andrew; Schneider, Todd; Vaughn, Jason; Quigley, Emmett; Phillips, Brandon

    2017-01-01

    Small Polycyclic Aromatic Hydrocarbon molecules or PAHs (<30 carbon atoms) have been identified in comets, meteorites, asteroids, and interplanetary dust particles in our Solar System, while PAHs in the Interstellar Medium (ISM) tend to be much larger, usually between 50 to 100 carbon atoms in size. The cause of the size disparity between PAHs found in the ISM and Solar System as well as their influence on Solar System organics is not yet understood. Two chemical evolutionary paths have been proposed to explain the inventory of solar system organics. In one the prebiotic material was formed from the radiation induced modification of large pre-solar carbon-bearing species (e.g. ISM PAHs). The second path suggests that Solar System prebiotic matter is the result of bottom-up synthesis from small reactive molecules after the Solar System was formed. In this second scenario very few ISM PAHs survived the harsh pre-solar radiation as aromatic structures. ICEE PoC (ICEE Proof of Concept) investigated factors impacting the chemical evolution of large PAHs irradiated under conditions similar to the proto-solar nebula. Likewise ICEE PoC will refine the technical parameters of the proposed ICEE (Institute for Carbon Evolution Experiment) laboratory.

  11. Mapping the Solar Wind from its Source Region into the Outer Corona

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1998-01-01

    Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the present proposal is to determine as many plasma parameters in that region as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters are then used to constrain solar wind models.

  12. Transient phenomena in cosmic ray intensity during extreme events

    NASA Astrophysics Data System (ADS)

    Agarwal, Rekha; Mishra, Rajesh K.

    2008-04-01

    In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ˜500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ˜-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days.

  13. Advanced In-Space Propulsion: "Exploring the Solar System"

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2003-01-01

    This viewgraph presentation reviews a number of advanced propulsion technologies for interplanetary spacecraft. The objective of the In Space Propulsion Technology Projects Office is to develop in-space propulsion technologies that can enable and/or benefit near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. The technologies profiled are divided into several categories: High Priority (aerocapture, next generation ion propulsion, solar sails); Medium Priority (advanced chemical propulsion, solar electric propulsion, Hall thrusters); Low Priority (solar thermal propulsion); and High Payoff/High Risk (1 g/sq m solar sails, momentum exchange tethers, and plasma sails).

  14. The electric potential of particles in interstellar space released from a nuclear waste payload

    NASA Technical Reports Server (NTRS)

    Williams, A. C.

    1980-01-01

    Mechanisms for charging a grain in the interplanetary medium include: (1) capture of solar wind electrons; (2) capture of solar wind protons; (3) ejection of electrons through the photoelectric effect due to the solar radiation; (4) escape of beta particles from beta emitters in the grain; and (5) escape of alpha particles from alpha emitters in the grain. The potentials on both nonradioactive and radioactive grains are considered with relation to particle size and time, and the distance from the Sun. Numerical results are presented where the waste mix is assumed to be PW-4b.

  15. Low frequency gyro-synchrotron radio noise from the earth's outer radiation belt

    NASA Technical Reports Server (NTRS)

    Frankel, M. S.

    1973-01-01

    The problem of detecting cyclotron and synchrotron noise from superthermal electrons is analyzed for the frequency range 30 kHz 300 kHz. Due to the earth's ionosphere, ground based observation of this noise is improbable. Therefore, the calculations are made for an observer in the interplanetary medium. In particular, the location is chosen in the geomagnetic equatorial plane at a geocentric distance of 32 earth radii. This position of the observer allows the theoretical results to be compared directly with data obtained from the radio astronomy experiment aboard the IMP-6 spacecraft.

  16. Research in Space Physics at the University of Iowa. [spaceborne experiments and instruments

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1981-01-01

    Currently active projects conducted to extend knowledge of the energetic particles and the electric, magnetic, and electromagnetic fields associated with Earth, other celestial bodies, and the interplanetary medium are summarized. These include investigations and/or instruments for Hawkeye 1; Pioneers 10 and 11; Voyagers 1 and 2; ISEE; IMP 8; Dynamics Explorer; Galileo; Spacelab and Orbital flight test missions; VLBI; and the International Solar Polar mission. Experiments and instruments proposed for the future international comet mission, the origin of plasmas in the Earth's environment mission, and the NASA active magnetospheric particle tracer experiment are mentioned.

  17. High energy particles and quanta in astrophysics

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  18. Atlas/Centaur Pioneer G operations summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Specifications of the Pioneer G and Atlas/Centaur 30 Launch Vehicle are provided, along with information concerning mission objectives. The Atlas/Centaur engine group will generate a 431,383 lb. thrust for an injection velocity of approximately 32,400 miles per hour using liquid oxygen and RP-1 propellants. In addition to detailed diagrams of equipment aboard the Pioneer G, an account is given of intended investigations of the interplanetary medium beyond the orbit of Mars, the nature of the asteroid belt, and the environmental and atmospheric characteristics of Jupiter. Pertinent data regarding the option of a Saturn-oriented trajectory are also reviewed and evaluated.

  19. Modeling of Electromagnetic Scattering by Discrete and Discretely Heterogeneous Random Media by Using Numerically Exact Solutions of the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.

    2017-01-01

    In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.

  20. Scientific results from the Pioneer Saturn encounter - Summary

    NASA Technical Reports Server (NTRS)

    Opp, A. G.

    1980-01-01

    The scientific results of the Pioneer Saturn encounter with Saturn are summarized. The Pioneer mission was designed to image the planet, its satellites and rings, and measure its particulate environment and the magnetic field and photon and charged particle radiation by means of 11 operational scientific instruments and its 2.293-GHz telemetry carrier signal. Principle results of the mission include the discovery of an additional ring and a previously unidentified satellite, the further characterization of the physical properties of Saturn and its magnetic field, and the description of the planetary magnetosphere. The successful completion of the mission demonstrated the ability of spacecraft such as Voyager 1 and 2 to survive the particle environments of Saturn's rings and trapped radiation environments, and Pioneer Saturn is expected to continue transmitting information on the interplanetary medium and the solar wind interaction with the interstellar medium until the mid-1980's.

  1. Use of magnetic sails for advanced exploration missions

    NASA Technical Reports Server (NTRS)

    Andrews, Dana G.; Zubrin, Robert M.

    1990-01-01

    The magnetic sail, or magsail, is a field effect device which interacts with the ambient solar wind or interstellar medium over a considerable volume of space to generate drag and lift forces. Two theories describing the method of thrust generation are analyzed and data results are presented. The techniques for maintaining superconductor temperatures in interplanetary space are analyzed and low risk options presented. Comparisons are presented showing mission performance differences between currently proposed spacecraft using chemical and electric propulsion systems, and a Magsail propelled spacecraft capable of generating an average thrust of 250 Newtons at a radius of one A.U. The magsail also provides unique capabilities for interstellar missions, in that at relativistic speeds the magnetic field would ionize and deflect the interstellar medium producing a large drag force. This would make it an ideal brake for decelerating a spacecraft from relativistic speeds and then maneuvering within the target star system.

  2. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  3. A Quick Method for Estimating Vehicle Characteristics Appropriate for Continuous Thrust Round Trip Missions Within the Solar System

    NASA Technical Reports Server (NTRS)

    Emrich, Bill

    2006-01-01

    A simple method of estimating vehicle parameters appropriate for interplanetary travel can provide a useful tool for evaluating the suitability of particular propulsion systems to various space missions. Although detailed mission analyses for interplanetary travel can be quite complex, it is possible to derive hirly simple correlations which will provide reasonable trip time estimates to the planets. In the present work, it is assumed that a constant thrust propulsion system propels a spacecraft on a round trip mission having equidistant outbound and inbound legs in which the spacecraft accelerates during the first portion of each leg of the journey and decelerates during the last portion of each leg of the journey. Comparisons are made with numerical calculations from low thrust trajectory codes to estimate the range of applicability of the simplified correlations.

  4. The relation of variations in total magnetic field at high latitude with the parameters of the interplanetary magnetic field and with DP2 fluctuations. [using OGO -3-C, and -4 observations

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1974-01-01

    The maximum disturbances from the positive and negative regions of delta B (Bp and Bn, respectively) are investigated with respect to their correlation with (1) the average N-S component, Bz, (2) the average angle with respect to the solar magnetospheric equatorial plane, theta (3) the variance, sigma sub i, and (4) the magnitude, Bi, of the interplanetary magnetic field. These quantities were averaged over a period, T, ranging from 20 min. to 8 hours prior to the measurement of Bp or Bn. Variations (i.e., disturbances) in total magnetic field magnitude were studied utilizing data from the Polar Orbiting Geophysical Observatory satellites (OGO 2, 4, and 6), unofficially referred to as POGO.

  5. Interplanetary magnetic field over two solar cycles and out to 20 AU

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1989-01-01

    Interplanetary field measurements are now available from Pioneer and Voyager at large distances and from various spacecraft in the inner solar system. These multiple observations at different locations have proven indispensable in separating temporal from spatial dependences. The data set has revealed a number of characteristic solar cycle variations including changes in field strength and the inclination of the heliospheric current sheet responsible for magnetic sectors. Spatial gradients in the field parameters out to 20 AU have been compared with the Parker Model including the spiral angle, the north-south field component and the magnitude. As a result of planetary encounters, Pioneer and the Voyagers are traveling outward at significantly different latitudes making it possible to investigate latitudinal, as well as radial, dependences. Effects associated with the pick-up of interstellar ions are being sought.

  6. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta

    NASA Astrophysics Data System (ADS)

    Yermolaev, Y. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Y.

    2017-12-01

    This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976 - 2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions ( i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry ( i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.

  7. Forbush decreases geomagnetic and atmospheric effects cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Flueckiger, E. O.

    1986-01-01

    An overview and synthesis is given of recent developments that have occurred in the areas of Forbush decreases, geomagnetic and atmospheric effects, and cosmogenic nuclides. Experimental evidence has been found for substantial differences in the effects of the various types of interplanetary perturbations on cosmic rays, and for a dependence of these effects on the three-dimensional configuration of the interplanetary medium. In order to fully understand and to be able to simulate the solar cosmic ray particle access to the polar regions of the earth we need accurate models of the magnetospheric magnetic field. These models must include all major magnetospheric current systems (in particular the field aligned currents), and they should represent magnetically quiet time periods as well as different levels of geomagnetic activity. In the evolution of magnetospheric magnetic field models, cosmic ray and magnetospheric physicists should work closely together since cosmic ray measurements are a powerful additional tool in the study of the perturbed magnetosphere. In the field of cosmogenic nuclides, finally, exciting new results and developments follow in rapid succession. Thanks to new techniques and new isotopes the analysis of cosmic ray history has entered into a new dimension.

  8. Laboratory Measurements of Solar-Wind/Comet X-Ray Emission and Charge Exchange Cross Sections

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Cadez, I.; Greenwood, J. B.; Mawhorter, R. J.; Smith, S. J.; Lozano, J.

    2002-01-01

    The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --> O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.

  9. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  10. Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2016-01-01

    Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.

  11. The existence and nature of the interstellar bow shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Jaffel, Lotfi; Strumik, M.; Ratkiewicz, R.

    2013-12-20

    We report a new diagnosis of two different states of the local interstellar medium (LISM) near our solar system by using a sensitivity study constrained by several distinct and complementary observations of the LISM, solar wind, and inner heliosphere. Assuming the Interstellar Boundary Explorer (IBEX) He flow parameters for the LISM, we obtain a strength of ∼2.7 ± 0.2 μG and a direction pointing away from galactic coordinates (28, 52) ± 3° for the interstellar magnetic field as a result of fitting Voyager 1 and Voyager 2 in situ plasma measurements and IBEX energetic neutral atoms ribbon. When using Ulyssesmore » parameters for the LISM He flow, we recently reported the same direction but with a strength of 2.2 ± 0.1 μG. First, we notice that with Ulysses He flow, our solution is in the expected hydrogen deflection plane (HDP). In contrast, for the IBEX He flow, the solution is ∼20° away from the corresponding HDP plane. Second, the long-term monitoring of the interplanetary H I flow speed shows a value of ∼26 km s{sup –1} measured upwind from the Doppler shift in the strong Lyα sky background emission line. All elements of the diagnosis seem therefore to support Ulysses He flow parameters for the interstellar state. In that frame, we argue that reliable discrimination between superfast, subfast, or superslow states of the interstellar flow should be based on most existing in situ and remote observations used together with global modeling of the heliosphere. For commonly accepted LISM ionization rates, we show that a fast interstellar bow shock should be standing off upstream of the heliopause.« less

  12. Nonextensive Entropy Approach to Space Plasma Fluctuations and Turbulence

    NASA Astrophysics Data System (ADS)

    Leubner, M. P.; Vörös, Z.; Baumjohann, W.

    Spatial intermittency in fully developed turbulence is an established feature of astrophysical plasma fluctuations and in particular apparent in the interplanetary medium by in situ observations. In this situation, the classical Boltzmann— Gibbs extensive thermo-statistics, applicable when microscopic interactions and memory are short ranged and the environment is a continuous and differentiable manifold, fails. Upon generalization of the entropy function to nonextensivity, accounting for long-range interactions and thus for correlations in the system, it is demonstrated that the corresponding probability distribution functions (PDFs) are members of a family of specific power-law distributions. In particular, the resulting theoretical bi-κ functional reproduces accurately the observed global leptokurtic, non-Gaussian shape of the increment PDFs of characteristic solar wind variables on all scales, where nonlocality in turbulence is controlled via a multiscale coupling parameter. Gradual decoupling is obtained by enhancing the spatial separation scale corresponding to increasing κ-values in case of slow solar wind conditions where a Gaussian is approached in the limit of large scales. Contrary, the scaling properties in the high speed solar wind are predominantly governed by the mean energy or variance of the distribution, appearing as second parameter in the theory. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time-lags and bulk speeds and analyzed within the nonextensive theory, where also a particular nonlinear dependence of the coupling parameter and variance with scale arises for best fitting theoretical PDFs. Consequently, nonlocality in fluctuations, related to both, turbulence and its large scale driving, should be related to long-range interactions in the context of nonextensive entropy generalization, providing fundamentally the physical background of the observed scale dependence of fluctuations in intermittent space plasmas.

  13. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid

    2017-05-01

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size. This article is part of the themed issue 'Cometary science after Rosetta'.

  14. The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Giacalone, J.; Lario, D.; Lepri, S. T.

    2017-12-01

    We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.

  15. The MHD simulation of interplanetary space and heliosphere by using the boundary conditions of time-varying magnetic field and IPS-based plasma

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Kojima, M.; Fujiki, K.

    2008-12-01

    We present our new boundary treatment to introduce the temporal variation of the observation-based magnetic field and plasma parameters on the inner boundary sphere (at 30 to 50 Rs) to the MHD simulation of the interplanetary space and the simulation results. The boundary treatment to induce the time-variation of the magnetic field including the radial component is essentially same as shown in our previous AGU meetings and newly modified so that the model can also include the variation of the plasma variables detected by IPS (interplanetary scintillation) observation, a ground-based remote sensing technique for the solar wind plasma. We used the WSO (Wilcox Solar Observatory at Stanford University) for the solar magnetic field input. By using the time-varying boundary condition, smooth variations of heliospheric MHD variables during the several Carrington solar rotation period are obtained. The simulation movie will show how the changes in the inner heliosphere observable by the ground-based instrument propagate outward and affects the outer heliosphere. The simulated MHD variables are compared with the Ulysses in-situ measurement data including ones made during its travel from the Earth to Jupiter for validation, and we obtain better agreements than with the simulation with fixed boundary conditions.

  16. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2015-09-01

    Using the OMNI data for period 1976-2000, we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately eights sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively) and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.

  17. Space weather modeling using artificial neural network. (Slovak Title: Modelovanie kozmického počasia umelou neurónovou sietou)

    NASA Astrophysics Data System (ADS)

    Valach, F.; Revallo, M.; Hejda, P.; Bochníček, J.

    2010-12-01

    Our modern society with its advanced technology is becoming increasingly vulnerable to the Earth's system disorders originating in explosive processes on the Sun. Coronal mass ejections (CMEs) blasted into interplanetary space as gigantic clouds of ionized gas can hit Earth within a few hours or days and cause, among other effects, geomagnetic storms - perhaps the best known manifestation of solar wind interaction with Earth's magnetosphere. Solar energetic particles (SEP), accelerated to near relativistic energy during large solar storms, arrive at the Earth's orbit even in few minutes and pose serious risk to astronauts traveling through the interplanetary space. These and many other threats are the reason why experts pay increasing attention to space weather and its predictability. For research on space weather, it is typically necessary to examine a large number of parameters which are interrelated in a complex non-linear way. One way to cope with such a task is to use an artificial neural network for space weather modeling, a tool originally developed for artificial intelligence. In our contribution, we focus on practical aspects of the neural networks application to modeling and forecasting selected space weather parameters.

  18. Mapping the Solar Wind from its Source Region into the Outer Corona

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1997-01-01

    Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the proposal was to determine as many plasma parameters in the solar wind acceleration region and beyond as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters were then used to constrain solar wind models.

  19. Interplanetary mission design handbook. Volume 1, part 3: Earth to Jupiter ballistic mission opportunities, 1985-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.

    1982-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Jupiter are provided. Contours of launch energy requirements, as well as many other launch and Jupiter arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Jupiter probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  20. Interplanetary mission design handbook. Volume 1, part 2: Earth to Mars ballistic mission opportunities, 1990-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.; Cunniff, R. A.

    1983-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Mars are provided. Contours of launch energy requirements, as well as many other launch and Mars arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1990 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Mars probe and orbiter arrival design, utilizing the graphical data as well as numerous equations relating various parameters.

  1. Interplanetary mission design handbook. Volume 1, part 1: Earth to Venus ballistic mission opportunities, 1991-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Yin, N. H.

    1983-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Venus is presented. Contours of launch energy requirements, as well as many other launch and arrival parameters, are presented in launch data/arrival date space for all launch opportunities from 1991 through 2005. An extensive text is included which explains mission design methods, from launch window development to Venus probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  2. Interplanetary field and plasma during initial phase of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.; Wiskerchen, M. J.

    1975-01-01

    A study has been conducted of a large number of geomagnetic storms occurring during the period from 1966 to 1970. Questions of data selection are discussed and the large-scale interplanetary magnetic field during the initial phase is examined. Small-scale interplanetary fields during the initial phase are also considered, taking into account important features of small-scale variations in the interplanetary field and plasma for three storms. Details concerning 23 geomagnetic storms and the interplanetary magnetic field are presented in a table. A study of the initial phase of these storms indicates that in most of these events, the solar-ecliptic Z component of the interplanetary magnetic field turns southward when the main phase decrease begins.

  3. A Sun-to-Earth Analysis of Magnetic Helicity of the 2013 March 17–18 Interplanetary Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Pal, Sanchita; Gopalswamy, Nat; Nandy, Dibyendu; Akiyama, Sachiko; Yashiro, Seiji; Makela, Pertti; Xie, Hong

    2017-12-01

    We compare the magnetic helicity in the 2013 March 17–18 interplanetary coronal mass ejection (ICME) flux rope at 1 au and in its solar counterpart. The progenitor coronal mass ejection (CME) erupted on 2013 March 15 from NOAA active region 11692 and is associated with an M1.1 flare. We derive the source region reconnection flux using the post-eruption arcade (PEA) method that uses the photospheric magnetogram and the area under the PEA. The geometrical properties of the near-Sun flux rope is obtained by forward-modeling of white-light CME observations. Combining the geometrical properties and the reconnection flux, we extract the magnetic properties of the CME flux rope. We derive the magnetic helicity of the flux rope using its magnetic and geometric properties obtained near the Sun and at 1 au. We use a constant-α force-free cylindrical flux rope model fit to the in situ observations in order to derive the magnetic and geometric information of the 1 au ICME. We find a good correspondence in both amplitude and sign of the helicity between the ICME and the CME, assuming a semi-circular (half torus) ICME flux rope with a length of π au. We find that about 83% of the total flux rope helicity at 1 au is injected by the magnetic reconnection in the low corona. We discuss the effect of assuming flux rope length in the derived value of the magnetic helicity. This study connecting the helicity of magnetic flux ropes through the Sun–Earth system has important implications for the origin of helicity in the interplanetary medium and the topology of ICME flux ropes at 1 au and hence their space weather consequences.

  4. The Spanish Fireball Network: Popularizing Interplanetary Matter

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Castro-Tirado, A.; Llorca, J.; Fabregat, J.

    In order to increase in Spain the social interest in the study of interplanetary matter (asteroids, comets and meteoroids) we created the Spanish Photographic Meteor Network (SPMN) in 1997. This network has been dedicated to studying interplanetary matter with participation of researchers from three universities (Universitat Jaume I, Universitat de Barcelona and Universitat de València), the Institut d'Estudis Espacials de Catalunya (IEEC) and the Instituto de Astrofísica de Andalucía and it is also supported by the Atmospheric Sounding Station at El Arenosillo (INTA-CEDEA) and by the Experimental Station La Mayora (EELM-CSIC). In order to promote the participation of amateurs, our homepage (www.spmn.uji.es) presents public information about our research explains how amateur astronomers can participate in our network. In this paper we give some examples of the social role of a Fireball Network in order to give a coherent explanation to bright fireball events. Moreover, we also discuss the role of this kind of research project as a promoter of amateur participation and contribution to science. In fact, meteor astronomy can become an excellent area to form young researchers because systematic observation of meteors using photographic, video and CCD techniques has become one of the rare fields in astronomy in which amateurs can work together with professionals to make important contributions. We present here some results of the campaigns realized from the formation of the network. Finally, in a new step of development of our network, the all-sky CCD automatic cameras will be continuously detecting meteors and fireballs from four stations located in the Andalusia and Valencian communities by the end of 2005. Additionally, during important meteor showers we plan to develop fireball spectroscopy using medium field lenses.

  5. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  6. Control of particle precipitation by energy transfer from solar wind

    NASA Astrophysics Data System (ADS)

    Bremer, J.; Gernandt, H.

    1985-12-01

    The energy transfer function (epsilon), introduced by Perreault and Akasofu (1978), appears to be well suited for the description of the long-term control of the particle precipitation by interplanetary parameters. An investigation was conducted with the objective to test this control in more detail. This investigation included the calculation of hourly epsilon values on the basis of satellite-measured solar wind and IMF (interplanetary magnetic field) data. The results were compared with corresponding geomagnetic and ionospheric data. The ionospheric data had been obtained by three GDR (German Democratic Republic) teams during the 21st, 22nd, and 23rd Soviet Antarctic Expeditions in the time period from 1976 to 1979. It was found that, in high latitudes, the properties of the solar wind exercise a pronounced degree of control on the precipitation of energetic particles into the atmosphere, taking into account a time delay of about one hour due to the occurrence of magnetospheric storage processes.

  7. Comparative study of predicted and experimentally detected interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Grigorov, K. G.; Smith, Z.; Dryer, M.; Fry, C. D.; Sun, Wei; Deehr, C. S.

    2002-03-01

    We compare the real time space weather prediction shock arrival times at 1 AU made by the USAF/NOAA Shock Time of Arrival (STOA) and Interplanetary Shock Propagation Model (ISPM) models, and the Exploration Physics International/University of Alaska Hakamada-Akasofu-Fry Solar Wind Model (HAF-v2) to a real time analysis analysis of plasma and field ACE data. The comparison is made using an algorithm that was developed on the basis of wavelet data analysis and MHD identification procedure. The shock parameters are estimated for selected "candidate events". An appropriate automatically performing Web-based interface periodically utilizes solar wind observations made by the ACE at L1. Near real time results as well an archive of the registered interesting events are available on a specially developed web site. A number of events are considered. These studies are essential for the validation of real time space weather forecasts made from solar data.

  8. An Analytic Approximation to Very High Specific Impulse and Specific Power Interplanetary Space Mission Analysis

    NASA Technical Reports Server (NTRS)

    Williams, Craig Hamilton

    1995-01-01

    A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.

  9. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  10. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  11. A model of galactic cosmic rays for use in calculating linear energy transfer spectra

    NASA Technical Reports Server (NTRS)

    Chen, J.; Chenette, D.; Clark, R.; Garcia-Munoz, M.; Guzik, T. G.; Pyle, K. R.; Sang, Y.; Wefel, J. P.

    1994-01-01

    The Galactic Cosmic Rays (GCR) contain fully stripped nuclei, from Hydrogen to beyond the Iron group, accelerated to high energies and are a major component of the background radiation encountered by satellites and interplanetary spacecraft. This paper presents a GCR model which is based upon our current understanding of the astrophysics of GCR transport through interstellar and interplanetary space. The model can be used to predict the energy spectra for all stable and long-lived radioactive species from H to Ni over an energy range from 50 to 50,000 MeV/nucleon as a function of a single parameter, the solar modulation level phi. The details of this model are summarized, phi is derived for the period 1974 to present, and results from this model during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission are presented.

  12. Dynamics of nanoparticules detected at 1 AU by S/WAVES onboard STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Belheouane, Soraya; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Mann, Ingrid

    In order to interpret in detail the S/WAVES data on the interplanetary nanodust discovered by STEREO at 1 AU [Meyer-Vernet et al., 2009], we study the dynamics of nanoparticles in the inner interplanetary medium as well as the distribution of their velocities and directions of arrival, with a model based on [Czechowski and Mann, 2012]. We deduce the charges released by their impacts on the STEREO spacecraft at 1 AU and their dependence on the position of the spacecraft on their orbits. The model studies nanoparticles of size equal or smaller than about 70 nm, assumed to be created via collisional fragmentation of dust grains of larger size moving on keplerian orbits, and sublimation of dust, meteoroids and comets. The nanoparticles are released near the Sun with initial velocities close to keplerian, and mainly subjected to the Lorentz force calculated with a simple solar wind model. A part of the nanoparticles is accelerated to high speeds of the order of 300 km/s, thereby providing impact charges between 10(-14) and 10(-11) Cb [Belheouane, 2014] which enable them to be detected by S/WAVES, whereas another part is trapped within about 0.2 AU from the Sun. We discuss how the fluxes and direction of arrival at 1 AU are expected to change in function of the solar cycle. These results enable us to interpret in detail the STEREO/WAVES observations [Zaslavsky et al., 2012]; [Pantellini et al., 2013]; [Le Chat et al., 2013]. Belheouane, S. (2014). Nanoparticules dans le vent solaire, observations spatiales et theorie. PhD thesis, Pierre and Marie Curie University UPMC. Czechowski, A. and Mann, I. (2012). Nanodust Dynamics in Interplanetary Space, chapter Nanodust Dynamics in Interplanetary Space. Springer Berlin Heidelberg. Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S., and Kasper, J. (2013). Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver. Solar Physics, 286(2):549-559. Meyer-Vernet, N., Maksimovic, M., Czechowski, A., Mann, I., Zouganelis, I., Goetz, K., Kaiser, M., Cyr, O. S., Bougeret, J.-L., and Bale, S. (2009). Dust Detection by the Wave Instrument on STEREO : Nanoparticles Picked up by the Solar Wind? Solar Phys, 256:463-474. Pantellini, F., Le Chat, G., Belheouane, S., Meyer-Vernet, N., and Zaslavsky, A. (2013). On the detection of nano dust using spacecraft based boom antennas. Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conference, 1539:414-417. Zaslavsky, A., Meyer-Vernet, N., Mann, I., Czechowski, A., Issautier, K., Le Chat, G., Pantellini, F., Goetz, K., Maksimovic, M., Bale, S. D., and Kasper, J. K. (2012). Interplanetary dust detection by radio antennas: Mass calibration and fluxes measured by STEREO/WAVES. J. Geophys. Res., 117.

  13. Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Moon, Y.-J.; Yashiro, S.

    2013-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km s-1) is faster than that of EJ-associated CMEs (771 km s-1). For seven very fast CMEs (≥ 1500 km s-1), all CMEs with large D (≥ 0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.

  14. The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth

    NASA Astrophysics Data System (ADS)

    Zhuang, Bin; Wang, Yuming; Shen, Chenglong; Liu, Siqing; Wang, Jingjing; Pan, Zonghao; Li, Huimin; Liu, Rui

    2017-08-01

    As one of the most violent astrophysical phenomena, coronal mass ejections (CMEs) have strong potential space weather effects. However, not all Earth-directed CMEs encounter the Earth and produce geo-effects. One reason is the deflected propagation of CMEs in interplanetary space. Although there have been several case studies clearly showing such deflections, it has not yet been statistically assessed how significantly the deflected propagation would influence the CME’s arrival at Earth. We develop an integrated CME-arrival forecasting (iCAF) system, assembling the modules of CME detection, three-dimensional (3D) parameter derivation, and trajectory reconstruction to predict whether or not a CME arrives at Earth, and we assess the deflection influence on the CME-arrival forecasting. The performance of iCAF is tested by comparing the two-dimensional (2D) parameters with those in the Coordinated Data Analysis Workshop (CDAW) Data Center catalog, comparing the 3D parameters with those of the gradual cylindrical shell model, and estimating the success rate of the CME Earth-arrival predictions. It is found that the 2D parameters provided by iCAF and the CDAW catalog are consistent with each other, and the 3D parameters derived by the ice cream cone model based on single-view observations are acceptable. The success rate of the CME-arrival predictions by iCAF with deflection considered is about 82%, which is 19% higher than that without deflection, indicating the importance of the CME deflection for providing a reliable forecasting. Furthermore, iCAF is a worthwhile project since it is a completely automatic system with deflection taken into account.

  15. Comparison of interplanetary CME arrival times and solar wind parameters based on the WSA-ENLIL model with three cone types and observations

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.-J.; Lee, Jae-Ok; Na, Hyeonock

    2014-09-01

    We have made a comparison between coronal mass ejection (CME)-associated shock propagations based on the Wang-Sheeley-Arge (WSA)-ENLIL model using three cone types and in situ observations. For this we use 28 full-halo CMEs, whose cone parameters are determined and their corresponding interplanetary shocks were observed at the Earth, from 2001 to 2002. We consider three different cone types (an asymmetric cone model, an ice cream cone model, and an elliptical cone model) to determine 3-D CME cone parameters (radial velocity, angular width, and source location), which are the input values of the WSA-ENLIL model. The mean absolute error of the CME-associated shock travel times for the WSA-ENLIL model using the ice-cream cone model is 9.9 h, which is about 1 h smaller than those of the other models. We compare the peak values and profiles of solar wind parameters (speed and density) with in situ observations. We find that the root-mean-square errors of solar wind peak speed and density for the ice cream and asymmetric cone model are about 190 km/s and 24/cm3, respectively. We estimate the cross correlations between the models and observations within the time lag of ± 2 days from the shock travel time. The correlation coefficients between the solar wind speeds from the WSA-ENLIL model using three cone types and in situ observations are approximately 0.7, which is larger than those of solar wind density (cc ˜0.6). Our preliminary investigations show that the ice cream cone model seems to be better than the other cone models in terms of the input parameters of the WSA-ENLIL model.

  16. The Statistical Properties of Solar Wind Temperature Parameters Near 1 au

    NASA Astrophysics Data System (ADS)

    Wilson, Lynn B., III; Stevens, Michael L.; Kasper, Justin C.; Klein, Kristopher G.; Maruca, Bennett A.; Bale, Stuart D.; Bowen, Trevor A.; Pulupa, Marc P.; Salem, Chadi S.

    2018-06-01

    We present a long-duration (∼10 yr) statistical analysis of the temperatures, plasma betas, and temperature ratios for the electron, proton, and alpha-particle populations observed by the Wind spacecraft near 1 au. The mean(median) scalar temperatures are T e,tot = 12.2(11.9) eV, T p,tot = 12.7(8.6) eV, and T α,tot = 23.9(10.8) eV. The mean(median) total plasma betas are β e,tot = 2.31(1.09), β p,tot = 1.79(1.05), and β α,tot = 0.17(0.05). The mean(median) temperature ratios are (T e /T p )tot = 1.64(1.27), (T e /T α )tot = 1.24(0.82), and (T α /T p )tot = 2.50(1.94). We also examined these parameters during time intervals that exclude interplanetary (IP) shocks, times within the magnetic obstacles (MOs) of interplanetary coronal mass ejections (ICMEs), and times that exclude MOs. The only times that show significant alterations to any of the parameters examined are those during MOs. In fact, the only parameter that does not show a significant change during MOs is the electron temperature. Although each parameter shows a broad range of values, the vast majority are near the median. We also compute particle–particle collision rates and compare to effective wave–particle collision rates. We find that, for reasonable assumptions of wave amplitude and occurrence rates, the effect of wave–particle interactions on the plasma is equal to or greater than the effect of Coulomb collisions. Thus, wave–particle interactions should not be neglected when modeling the solar wind.

  17. Variations of solar, interplanetary, and geomagnetic parameters with solar magnetic multipole fields during Solar Cycles 21-24

    NASA Astrophysics Data System (ADS)

    Kim, Bogyeong; Lee, Jeongwoo; Yi, Yu; Oh, Suyeon

    2015-01-01

    In this study we compare the temporal variations of the solar, interplanetary, and geomagnetic (SIG) parameters with that of open solar magnetic flux from 1976 to 2012 (from Solar Cycle 21 to the early phase of Cycle 24) for a purpose of identifying their possible relationships. By the open flux, we mean the average magnetic field over the source surface (2.5 solar radii) times the source area as defined by the potential field source surface (PFSS) model of the Wilcox Solar Observatory (WSO). In our result, most SIG parameters except the solar wind dynamic pressure show rather poor correlations with the open solar magnetic field. Good correlations are recovered when the contributions from individual multipole components are counted separately. As expected, solar activity indices such as sunspot number, total solar irradiance, 10.7 cm radio flux, and solar flare occurrence are highly correlated with the flux of magnetic quadrupole component. The dynamic pressure of solar wind is strongly correlated with the dipole flux, which is in anti-phase with Solar Cycle (SC). The geomagnetic activity represented by the Ap index is correlated with higher order multipole components, which show relatively a slow time variation with SC. We also found that the unusually low geomagnetic activity during SC 23 is accompanied by the weak open solar fields compared with those in other SCs. It is argued that such dependences of the SIG parameters on the individual multipole components of the open solar magnetic flux may clarify why some SIG parameters vary in phase with SC and others show seemingly delayed responses to SC variation.

  18. Observations of the scatter-free solar-flare electrons in the energy range 20-1000 keV

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Fisk, L. A.; Lin, R. P.

    1971-01-01

    Observations of the scatter-free electron events from solar active region McMath No. 8905 are presented. The measurements were made on Explorer 33 satellite. The data show that more than 80% of the electrons from these events undergo no or little scattering and that these electrons travel only approximately 1.5 a.u. between the sun and the earth. The duration of these events cannot be accounted fully by velocity dispersion alone. It is suggested that these electrons could be continuously injected into interplanetary medium for a time interval of approximately 2 to 3 minutes. Energy spectra of these electrons are discussed.

  19. Type 2 solar radio events observed in the interplanetary medium. Part 1: General characteristics

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.

    1980-01-01

    Twelve type 2 solar radio events were observed in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type 2 radio bursts observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 12 events were associated with an initiating flare, ground based radio data, the passage of a shock at the spacecraft, and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type 2 bursts are discussed.

  20. IPS Space Weather Research: Korea-Japan-UCSD

    DTIC Science & Technology

    2015-04-27

    SUBJECT TERMS Solar Physics , Solar Wind, interplanetary scintillation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...Institution : Center for Astrophysics and space science (CASS), University of California, San Diego (UCSD) - Mailing Address : 9500 Gilman Dr. #0424...the physical parameters like solar wind velocities and densities. This is the one of the unique way to observer the solar wind from the earth. The

  1. The Solar Connections Observatory for Planetary Environments

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Harris, W. M.

    2002-05-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative studies of planetary, cometary, and local interstellar medium (LISM) interaction with the Sun and solar variability. Through such studies, we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the STP, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap, we propose a mission to study the solar interaction with bodies throughout our solar system and the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/UV telescope operating from a heliocentric, Earth-trailing orbit that provides high observing efficiency, sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high resolution (R>105) H Ly-α emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. The other planets and comets will be monitored in long duration campaigns centered, when possible, on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using the combination of SCOPE observations and models including MHD, general circulation, and radiative transfer, we will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.

  2. Determination of the Parameter Sets for the Best Performance of IPS-driven ENLIL Model

    NASA Astrophysics Data System (ADS)

    Yun, Jongyeon; Choi, Kyu-Cheol; Yi, Jonghyuk; Kim, Jaehun; Odstrcil, Dusan

    2016-12-01

    Interplanetary scintillation-driven (IPS-driven) ENLIL model was jointly developed by University of California, San Diego (UCSD) and National Aeronaucics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The model has been in operation by Korean Space Weather Cetner (KSWC) since 2014. IPS-driven ENLIL model has a variety of ambient solar wind parameters and the results of the model depend on the combination of these parameters. We have conducted researches to determine the best combination of parameters to improve the performance of the IPS-driven ENLIL model. The model results with input of 1,440 combinations of parameters are compared with the Advanced Composition Explorer (ACE) observation data. In this way, the top 10 parameter sets showing best performance were determined. Finally, the characteristics of the parameter sets were analyzed and application of the results to IPS-driven ENLIL model was discussed.

  3. Influence of thermal anisotropy on best-fit estimates of shock normals

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.

    1971-01-01

    The influence of thermal anisotropy on the estimates of interplanetary shock parameters and the associated normals is discussed. A practical theorem is presented for quantitatively correcting for anisotropic effects by weighting the before and after magnetic fields by the same anisotropy parameter h. The quantity h depends only on the thermal anisotropies before and after the shock and on the angles between the magnetic fields and the shock normal. The theorem can be applied to most slow shocks, but in those cases h usually should be lower, and sometimes markedly lower, than unity. For the extreme values of h, little change results in the shock parameters or in the shock normal.

  4. Operational, Real-Time, Sun-to-Earth Interplanetary Shock Predictions During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Dryer, M.; Sun, W.; Deehr, C. S.; Smith, Z.; Akasofu, S.

    2002-05-01

    We report on our progress in predicting interplanetary shock arrival time (SAT) in real-time, using three forecast models: the Hakamada-Akasofu-Fry (HAF) modified kinematic model, the Interplanetary Shock Propagation Model (ISPM) and the Shock Time of Arrival (STOA) model. These models are run concurrently to provide real-time predictions of the arrival time at Earth of interplanetary shocks caused by solar events. These "fearless forecasts" are the first, and presently only, publicly distributed predictions of SAT and are undergoing quantitative evaluation for operational utility and scientific benchmarking. All three models predict SAT, but the HAF model also provides a global view of the propagation of interplanetary shocks through the pre-existing, non-uniform heliospheric structure. This allows the forecaster to track the propagation of the shock and to differentiate between shocks caused by solar events and those associated with co-rotating interaction regions (CIRs). This study includes 173 events during the period February, 1997 to October, 2000. Shock predictions were compared with spacecraft observations at the L1 location to determine how well the models perform. Sixty-eight shocks were observed at L1 within 120 hours of an event. We concluded that 6 of these observed shocks were caused by CIRs, and the remainder were caused by solar events. The forecast skill of the models are presented in terms of RMS errors, contingency tables and skill scores commonly used by the weather forecasting community. The false alarm rate for HAF was higher than for ISPM or STOA but much lower than for predictions based upon empirical studies or climatology. Of the parameters used to characterize a shock source at the Sun, the initial speed of the coronal shock, as represented by the observed metric type II speed, has the largest influence on the predicted SAT. We also found that HAF model predictions based upon type II speed are generally better for shocks originating from sites near central meridian, and worse for limb events. This tendency suggests that the observed type II speed is more representative of the interplanetary shock speed for events occurring near central meridian. In particular, the type II speed appears to underestimate the actual Earth-directed IP shock speed when the source of the event is near the limb. Several of the most interesting events (Bastille Day epoch (2000), April Fools Day epoch (2001))will be discussed in more detail with the use of real-time animations.

  5. Solar wind velocity and daily variation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Ahluwalia, H. S.; Riker, J. F.

    1985-01-01

    Recently parameters applicable to the solar wind and the interplanetary magnetic field (IMF) have become much better defined. Superior quality of data bases that are now available, particularly for post-1971 period, make it possible to believe the long-term trends in the data. These data are correlated with the secular changes observed in the diurnal variation parameters obtained from neutron monitor data at Deep River and underground muon telescope data at Embudo (30 MEW) and Socorro (82 MWE). The annual mean amplitudes appear to have large values during the epochs of high speed solar wind streams. Results are discussed.

  6. Cooked GEMS - Insights into the Hot Origins of Crystalline Silicates in Circumstellar Disks and the Cold Origins of GEMS

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Matrajt, G.; Wooden, D. H.

    2005-01-01

    The comparison of interstellar, circumstellar and primitive solar nebula silicates has led to a significant conundrum in the understanding of the nature of solid materials that begin the planet forming processes. Crystalline silicates are found in circumstellar regions around young stars and also evolved stars ejecting particles into the interstellar medium (ISM) but they are not seen in the interstellar medium itself, the source material for star and planet formation. Crystalline silicates are minor to major components of all known early solar system materials that have been examined as meteorites or interplanetary dust samples. The strong presence of Mg-rich crystalline silicates in Oort cloud comets and their minor presence in some Kuiper belt comets is also indicated by 11.2 m peak in approx. 10 microns "silicate" infrared feature. This evidence strongly indicates that Mg-rich crystalline silicates were abundant components of the solar nebula disk out to at least 10 AU, and present out to 30 AU.

  7. On the deficit problem of mass and energy of solar coronal mass ejections connected with interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Ivanchuk, V. I.; Pishkalo, N. I.

    1995-01-01

    Mean values of a number of parameters of the most powerful coronal mass ejections (CMEs) and interplanetary shocks generated by these ejections are estimated using an analysis of data obtained by the cosmic coronagraphs and spacecrafts, and geomagnetic storm measurements. It was payed attention that the shock mass and mechanical energy, averaging 5 x 10(exp 16) grm and 2 x 10(exp 32) erg respectively, are nearly 10 times larger than corresponding parameters of the ejections. So, the CME energy deficit problem seems to exist really. To solve this problem one can make an assumption that the process of the mass and energy growth of CMEs during their propagation out of the Sun observed in the solar corona is continued in supercorona too up to distances of 10-30 solar radii. This assumption is confirmed by the data analysis of five events observed using zodiacal light photometers of the HELIOS- I and HELIOS-2 spacecrafts. The mass growth rate is estimated to be equal to (1-7) x 10(exp 11) grm/sec. It is concluded that the CME contribution to mass and energy flows in the solar winds probably, is larger enough than the value of 3-5% adopted usually.

  8. Prediction system of the 1-AU arrival times of CME-associated interplanetary shocks using three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    den, Mitsue; Amo, Hiroyoshi; Sugihara, Kohta; Takei, Toshifumi; Ogawa, Tomoya; Tanaka, Takashi; Watari, Shinichi

    We describe prediction system of the 1-AU arrival times of interplanetary shock waves associated with coromal mass ejections (CMEs). The system is based on modeling of the shock propagation using a three-dimensional adaptive mesh refinement (AMR) code. Once a CME is observed by LASCO/SOHO, firstly ambient solar wind is obtained by numerical simulation, which reproduces the solar wind parameters at that time observed by ACE spacecraft. Then we input the expansion speed and occurrence position data of that CME as initial condtions for an CME model, and 3D simulation of the CME and the shock propagation is perfomed until the shock wave passes the 1-AU. Input the parameters, execution of simulation and output of the result are available on Web, so a person who is not familiar with operation of computer or simulations or is not a researcher can use this system to predict the shock passage time. Simulated CME and shock evolution is visuallized at the same time with simulation and snap shots appear on the web automatically, so that user can follow the propagation. This system is expected to be useful for forecasters of space weather. We will describe the system and simulation model in detail.

  9. Studies on the latitudinal distribution of ground-based geomagnetic pulsations and fluctuations in the interplanetary medium using discrete mathematical analysis methods

    NASA Astrophysics Data System (ADS)

    Zelinsky, N. R.; Kleimenova, N. G.; Malysheva, L. M.

    2014-07-01

    Ground-based geomagnetic Pc5 (2-7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ˜ 30-50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called "anomaly rectification" in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth's magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.

  10. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 3: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. Here, information is given on the IPOST code.

  11. Nanosatellites for Interplanetary Exploration : Missions of Co-Operation and Exploration to Mars, Exo-Moons and other worlds in the Solar System

    NASA Astrophysics Data System (ADS)

    Ravi, Aditya; Radhakrishnan, Arun

    2016-07-01

    The last decade has borne witness to a large number of Nano-satellites being launched.This increasing trend is mainly down to the advancements in consumer electronics that has played a crucial role in increasing the potential power available on board for mission study and analysis whilst being much smaller in size when compared to their satellite counterparts. This overall reduction in size and weight is a crucial factor when coupled with the recent innovations in various propulsion systems and orbital launch vehicles by private players has also allowed the cost of missions to brought down to a very small budget whilst able to retain the main science objectives of a dedicated space Missions. The success of first time missions such as India's Mars Orbiter Mission and the upcoming Cube-Sat Mission to Mars has served as a catalyst and is a major eye-opener on how Interplanetary missions can be funded and initiated in small time spans. This shows that Interplanetary missions with the main objective of a scientific study can be objectified by using Dedicated Nano-satellite constellations with each satellite carrying specific payloads for various mission parameters such as Telemetry, Observation and possible small lander payloads for studying the various Atmospheric and Geo-Physical parameters of a particular object with-out the requirement of a very long term expensive Spacecraft Mission. The association of Major Universities and Colleges in building Nano and-satellites are facilitating an atmosphere of innovation and research among students in a class-room level as their creative potential will allow for experiments and innovation on a scale never imagined before. In this paper, the Author envisions the feasibility of such low cost Nano satellite missions to various bodies in the solar system and how Nano satellite partnerships from universities and space agencies from around the world could foster a new era in diplomacy and International Co-operation.

  12. Validation for Global Solar Wind Prediction Using Ulysses Comparison: Multiple Coronal and Heliospheric Models Installed at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-01-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and Heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, wehave quantitatively assessed the models capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs.The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  13. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-08-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, we have quantitatively assessed the models' capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs. The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  14. Sun-to-Earth simulations of geo-effective Coronal Mass Ejections with EUHFORIA: a heliospheric-magnetospheric model chain approach

    NASA Astrophysics Data System (ADS)

    Scolini, C.; Verbeke, C.; Gopalswamy, N.; Wijsen, N.; Poedts, S.; Mierla, M.; Rodriguez, L.; Pomoell, J.; Cramer, W. D.; Raeder, J.

    2017-12-01

    Coronal Mass Ejections (CMEs) and their interplanetary counterparts are considered to be the major space weather drivers. An accurate modelling of their onset and propagation up to 1 AU represents a key issue for more reliable space weather forecasts, and predictions about their actual geo-effectiveness can only be performed by coupling global heliospheric models to 3D models describing the terrestrial environment, e.g. magnetospheric and ionospheric codes in the first place. In this work we perform a Sun-to-Earth comprehensive analysis of the July 12, 2012 CME with the aim of testing the space weather predictive capabilities of the newly developed EUHFORIA heliospheric model integrated with the Gibson-Low (GL) flux rope model. In order to achieve this goal, we make use of a model chain approach by using EUHFORIA outputs at Earth as input parameters for the OpenGGCM magnetospheric model. We first reconstruct the CME kinematic parameters by means of single- and multi- spacecraft reconstruction methods based on coronagraphic and heliospheric CME observations. The magnetic field-related parameters of the flux rope are estimated based on imaging observations of the photospheric and low coronal source regions of the eruption. We then simulate the event with EUHFORIA, testing the effect of the different CME kinematic input parameters on simulation results at L1. We compare simulation outputs with in-situ measurements of the Interplanetary CME and we use them as input for the OpenGGCM model, so to investigate the magnetospheric response to solar perturbations. From simulation outputs we extract some global geomagnetic activity indexes and compare them with actual data records and with results obtained by the use of empirical relations. Finally, we discuss the forecasting capabilities of such kind of approach and its future improvements.

  15. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  16. Solar system plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  17. Dual technique magnetometer experiment for the Cassini Orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Southwood, D. J.; Balogh, A.; Smith, E. J.

    1992-01-01

    The dual technique magnetometer to fly on the Cassini Saturn Orbiter Spacecraft is described. The instrument combines two separate techniques of measuring the magnetic field in space using both fluxgate and vector helium devices. In addition, the instrument can be operated in a special scalar mode which is to be used near the planet for highly accurate determination of the interior field of the planet. As well as the planetary field, the instrument will make large contributions to the scientific measurements of the planetary magnetosphere, the highly electrically conducting region of space surrounding Saturn permeated by the Saturnian field, the interaction of Saturn and the interplanetary medium and the interaction of Titan with its space environment.

  18. MAST - A mass spectrometer telescope for studies of the isotopic composition of solar, anomalous, and galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.

    1993-01-01

    The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.

  19. A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Coverstone, Vicki

    2003-01-01

    Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.

  20. A new way to measure the composition of the interstellar gas surrounding the heliosphere

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1993-01-01

    The composition of neutral gas in the Local Interstellar Medium can be studied by direct, in situ measuring of interstellar neutral atoms penetrating into interplanetary space. A novel experimental approach for in situ atom detection, which has never been used earlier in space, is proposed. The technique is based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free, multicoincidence mode. It is shown that interstellar hydrogen, deuterium, and oxygen atoms can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe.

  1. Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Williams, D. J.; Mitchell, D. G.; Frank, L. A.; Huang, C. Y.

    1989-01-01

    The spectral characteristics of plasma-sheet ion and electron populations during periods of low geomagnetic activity were determined from the analysis of 127 one-hour average samples of central plasma sheet ions and electrons. Particle data from the ISEE-1 low-energy proton and electron differential energy analyzer and medium-energy particle instrument were combined to obtain differential energy spectra in the plasma sheet at geocentric radial distances above 12 earth radii. The relationships between the ion and electron spectral shapes and between the spectral shapes and the geomagnetic activity index were statistically investigated. It was found that the presence of interplanetary particle fluxes does not affect the plasma sheet particle spectral shape.

  2. Deuterium Enrichment of PAHs by VUV Irradiation of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Gillette, J. Seb; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Laboratory results demonstrate that polycyclic aromatic hydrocarbons (PAHs) rapidly exchange their hydrogen atoms with those of nearby molecules when they are frozen into low-temperature ices and exposed to vacuum ultraviolet radiation. As a result, PAHs quickly become deuterium-enriched when VUV irradiated in D-containing ices. This mechanism has important consequences for several astrophysical issues owing to the ubiquitous nature of PAHs in the interstellar medium. For example, this process may explain the deuterium enrichments found in PAHs in meteorites and interplanetary dust particles. These results also provide general predictions about the molecular siting of the deuterium on aromatic materials in meteorites if this process produced a significant fraction of their D-enrichment.

  3. Relation of large-scale coronal X-ray structure and cosmic rays. II - Coronal control of interplanetary injection of 300 keV protons

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Gold, R. E.; Krimigis, S. M.; Krieger, A. S.; Nolte, J. T.; Mcintosh, P. S.; Lazarus, A. J.; Sullivan, J. D.

    1975-01-01

    We report the striking coronal control of low-energy solar particles from the solar flare of September 7, 1973. The flare was at S18, W46 (Carrington longitude 188 deg) in McMath Plage Region 12307. We find strong intensity gradients in heliolongitude (about 10% per deg) that are nearly identical in protons, helium, and medium nuclei at energies about 0.5 MeV/nuc, as well as relativistic electrons and 3 MeV protons. This pervasive gradient occurs at longitudes over bright X-ray emission structures east of the flare site which interconnect large-scale chromospheric polarity regions identifiable in H-alpha filtergrams.

  4. Evaluation of radioisotope electric propulsion for selected interplanetary science missions

    NASA Technical Reports Server (NTRS)

    Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Robinson Artis, Gwen

    2005-01-01

    This study assessed the benefits and applicability of REP to missions relevant to the In-Space Propulsion Program (ISPP) using first and second generation RPS with specific powers of 4 We/kg and 8 We/kg, respectively. Three missions representing small body targets, medium outer planet class, and main belt asteroids and comets were evaluated. Those missions were a Trojan Asteroid Orbiter, Comet Surface Sample Return (CSSR), and Jupiter Polar Orbiter with Probes (JPOP). For each mission, REP cost and performance was compared with solar electric propulsion system (SEPS) and SOA chemical propulsion system (SCPS) cost and performance. The outcome of the analysis would be a determinant for potential inclusion in the ISPP investment portfolio.

  5. Microwave communications from outer planets - The Voyager Project

    NASA Technical Reports Server (NTRS)

    Brejcha, A. G.

    1980-01-01

    The paper summarizes the Voyager Project, the mission objectives, and the spacecraft communications system required to meet the mission objectives. The primary emphasis of the mission is on comparative studies of the Jupiter and Saturn systems in the areas of: (1) the environment, atmosphere and body characteristics of the planets, and one or more of the satellites, (2) the nature of the recently discovered Jovian ring and the rings of Saturn, and (3) the interplanetary medium at increasing distances from the sun. The complexities and problems, such as power consumption, weight, and antenna pointing constraints are presented, along with a detailed description of the radio frequency and S/X-band antenna subsystems.

  6. The "Approximate 150 Day Quasi-Periodicity" in Interplanetary and Solar Phenomena During Cycle 23

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    A"quasi-periodicity" of approx. 150 days in various solar and interplanetary phenomena has been reported in earlier solar cycles. We suggest that variations in the occurrence of solar energetic particle events, inter-planetary coronal mass ejections, and geomagnetic storm sudden commenceents during solar cycle 23 show evidence of this quasi-periodicity, which is also present in the sunspot number, in particular in the northern solar hemisphere. It is not, however, prominent in the interplanetary magnetic field strength.

  7. Plasma properties of driver gas following interplanetary shocks observed by ISEE-3

    NASA Technical Reports Server (NTRS)

    Zwickl, R. D.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Smith, E. J.

    1983-01-01

    Plasma fluid parameters calculated from solar wind and magnetic field data to determine the characteristic properties of driver gas following a select subset of interplanetary shocks were studied. Of 54 shocks observed from August 1978 to February 1980, 9 contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature. While helium enhancements were present downstream of the shock in all 9 of these events, only about half of them contained simultaneous changes in the two quantities. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance, by a small decrease in the variance of the bulk velocity, and by an increase in the ratio of parallel to perpendicular temperature. The cold driver gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies.

  8. Plasma properties of driver gas following interplanetary shocks observed by ISEE-3

    NASA Technical Reports Server (NTRS)

    Zwickl, R. D.; Ashbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Smith, E. J.

    1982-01-01

    Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied. The characteristic properties of driver gas following interplanetary shocks was determined. Of 54 shocks observed from August 1978 to February 1980, nine contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of nine of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies.

  9. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  10. Effective radiation reduction in Space Station and missions beyond the magnetosphere

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas M.; Stassinopoulos, E. G.

    1989-01-01

    This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).

  11. Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study

    NASA Astrophysics Data System (ADS)

    Szabo, A.; Koval, A.; Merka, J.; Narock, T. W.

    2010-12-01

    The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the ~2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.

  12. Hourly average values of solar wing parameters (flow rate and ion temperatures) according to data of measurements of the Venera-9 and Venera-10 automatic interplanetary stations on an Earth-Venus during the period June 1975 - April 1976

    NASA Technical Reports Server (NTRS)

    Vaysberg, O. L.; Dyachkov, A. V.; Smirnov, V. N.; Tsyrkin, K. B.; Isaeva, R. A.

    1980-01-01

    Four electrostatic analyzers with channel electron multipliers as detectors were used to measure solar wind ionic flow. The axes of the fields of vision of two of these analyzers were directed along the axis of the automatic interplanetary station, oriented towards the Sun, while the other two were turned in one plane at angles of +15 deg and -15 deg. The full hemisphere of the angular diagram of each analyzer was approximately 5 deg. The energetic resolution was approximately 6%, and the geometric energy was 0.002 sq cm ave. keV. Each analyzer covered an energetic range of approximately 10 in eight energetic intervals. Spectral distributions were processed in order to obtain the velocity and temperature of the protons. Tabular data show the hour interval (universal time) and the average solar wind velocity in kilometers per second.

  13. Particle acceleration and transport at a 2D CME-driven shock using the HAFv3 and PATH Code

    NASA Astrophysics Data System (ADS)

    Li, G.; Ao, X.; Fry, C. D.; Verkhoglyadova, O. P.; Zank, G. P.

    2012-12-01

    We study particle acceleration at a 2D CME-driven shock and the subsequent transport in the inner heliosphere (up to 2 AU) by coupling the kinematic Hakamada-Akasofu-Fry version 3 (HAFv3) solar wind model (Hakamada and Akasofu, 1982, Fry et al. 2003) with the Particle Acceleration and Transport in the Heliosphere (PATH) model (Zank et al., 2000, Li et al., 2003, 2005, Verkhoglyadova et al. 2009). The HAFv3 provides the evolution of a two-dimensional shock geometry and other plasma parameters, which are fed into the PATH model to investigate the effect of a varying shock geometry on particle acceleration and transport. The transport module of the PATH model is parallelized and utilizes the state-of-the-art GPU computation technique to achieve a rapid physics-based numerical description of the interplanetary energetic particles. Together with a fast execution of the HAFv3 model, the coupled code gives us a possibility to nowcast/forecast the interplanetary radiation environment.

  14. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design Using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.

    2015-01-01

    Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multiobjective hybrid optimal control problem. The method is demonstrated on several real-world problems.

  15. Subcritical and supercritical interplanetary shocks - Magnetic field and energetic particle observations

    NASA Technical Reports Server (NTRS)

    Bavassano-Cattaneo, M. B.; Tsurutani, B. T.; Smith, E. J.; Lin, R. P.

    1986-01-01

    A study of 34 forward interplanetary shocks observed by ISEE 3 during 1978 and 1979 has been conducted. Magnetic field and high-energy particle data have been used, and for each shock the first critical Mach number has been determined. The first surprising result is that the majority of the observed shocks appear to be supercritical, and consistent with their supercritical character, many shocks have a foot and/or an overshoot in the magnetic field structure. Large-amplitude low-frequency waves (period of about 20 s in the spacecraft frame) are commonly observed upstream of all supercritical shocks (except for a few quasi-perpendicular shocks) and also upstream of the few subcritical shocks. Intense particle events are frequently observed at many shocks: spikes at quasi-perpendicular shocks and energetic storm particle events associated with quasi-parallel shocks can be comparably intense. The correlation of the high-energy particle peak flux with various shock parameters is in agreement with the acceleration mechanisms proposed by previous studies.

  16. Genesis of Interplanetary Intermittent Turbulence: a Case Study of Rope-Rope Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.- L.; Feng, Heng Q.; Hu, Qiang; Loew, Murray H.; Miranda, Rodrigo A.; Munoz, Pablo R.; Sibeck, David G.; Wu, De J.

    2016-01-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  17. Solar wind parameters and magnetospheric coupling studies

    NASA Technical Reports Server (NTRS)

    King, Joseph H.

    1986-01-01

    This paper presents distributions, means, and standard deviations of the fluxes of solar wind protons, momentum, and energy as observed near earth during the solar quiet and active years 1976 and 1979. Distributions of ratios of energies (Alfven Mach number, plasma beta) and distributions of interplanetary magnetic field orientations are also given. Finally, the uncertainties associated with the use of the libration point orbiting ISEE-3 spacecraft as a solar wind monitor are discussed.

  18. Real Distribution of the Coronal Green Line Intensity and Modelling Study of Galactic Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Gushchina, R. T.; Alania, M. V.; Gil, A.; Iskra, K.; Siluszyk, M.

    2003-07-01

    transport equation of galactic cosmic rays (GCR) has been numerically solved for different qA>0 (1996) and qA<0 (1987) epochs assuming that free path of GCR scattering in the interplanetary space is controlled by the Sun's coronal green line intensity (CGLI). We found some distinctions in the distribution of the expected heliolatitudinal gradients of GCR for two and three dimensional interplanetary magnetic field. INTRODUCTION. modulation of GCR in the interplanetary space is generally determined by four processesdiffusion, convection, drift and energy change of GCR particles due to interaction with the solar wind. The joint effect of all above mentioned processes result the 11year variation of GCR. In papers [1-3] are assumed that the general reason of the 11-year variation of GCR in the energy range more than 1 GeV is different structure of the irregularities of the IMF in the maxima and minima epochs of solar activity (SA) caused the radical changes of the dependence of diffusion coefficient on the rigidity of GCR particles. EXPERIMENTAL DATA AND METHOD OF INVESTIGATION. experimental data of sunspot numbers, sunspots' areas and CGLI (λ = 5303˚) show a considerable changes during the 11-year cycle of SA, while e.g. A the changes of the solar wind velocity are not so noticeable [4, 5]. An attempt to take into account influences of the real distributions of the sunspot's areas and the Sun's CGLI on the modulation of GCR considering delay time of the phenomena in the interplanetary space with respect to the processes on the Sun have been undertaken in papers [6-8]. One of parameters of SA contentiously observed on the Earth is the Sun's CGLI. One can suppose that a modulation of GCR by some means is controlled by the changes of the CGLI; particularly there is assumed that a scattering free path of GCR transport is related with the

  19. Model of Energy Spectrum Parameters of Ground Level Enhancement Events in Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Wu, S.-S.; Qin, G.

    2018-01-01

    Mewaldt et al. (2012) fitted the observations of the ground level enhancement (GLE) events during solar cycle 23 to the double power law equation to obtain the four spectral parameters, the normalization constant C, low-energy power law slope γ1, high-energy power law slope γ2, and break energy E0. There are 16 GLEs from which we select 13 for study by excluding some events with complicated situation. We analyze the four parameters with conditions of the corresponding solar events. According to solar event conditions, we divide the GLEs into two groups, one with strong acceleration by interplanetary shocks and another one without strong acceleration. By fitting the four parameters with solar event conditions we obtain models of the parameters for the two groups of GLEs separately. Therefore, we establish a model of energy spectrum of solar cycle 23 GLEs, which may be used in prediction in the future.

  20. Large-scale solar wind streams: Average temporal evolution of parameters

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael; Nikolaeva, Nadezhda

    2016-07-01

    In the report we describe the average temporal profiles of plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS) on the basis of OMNI database and our Catalog of large-scale solar wind phenomena during 1976-2000 (see website ftp://ftp.iki.rssi.ru/pub/omni/ and paper [Yermolaev et al., 2009]). To consider influence of both the surrounding undisturbed solar wind, and the interaction of the disturbed types of the solar wind on the parameters, we separately analyze the following sequences of the phenomena: (1) SW/CIR/SW, (2) SW/IS/CIR/SW, (3) SW/Ejecta/SW, (4) SW/Sheath/Ejecta/SW, (5) SW/IS/Sheath/Ejecta/SW, (6) SW/MC/SW, (7) SW/Sheath/MC/SW, and (8) SW/IS/Sheath/MC/SW. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allow us to suggest that (1) the behavior of parameters in Sheath and in CIR is very similar not only qualitatively but also quantitatively, and (2) the speed angle phi in ICME changes from 2 to -2deg. while in CIR and Sheath it changes from -2 to 2 deg., i.e., the streams in CIR/Sheath and ICME deviate in the opposite side. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274

  1. Interplanetary plasma scintillation parameters measurements retrieved from the spacecraft observations.

    NASA Astrophysics Data System (ADS)

    Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.

    2010-05-01

    Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target, positions of the source in the Solar system and Solar activity index were retrieved from our measurements and are reported. This study is focused on the technique of the measurements and data analysis, leaving the physical interpretation of the measurement results to the upcoming studies when more observational data is collected. Our measurements of the phase scintillations from the sources within the Solar system are complementary to the classical measurements of the power level scintillations of signals from the natural radio sources. The results presented in this paper are promising and observations will continue during 2010.

  2. The use of database management systems and artificial intelligence in automating the planning of optical navigation pictures

    NASA Technical Reports Server (NTRS)

    Davis, Robert P.; Underwood, Ian M.

    1987-01-01

    The use of database management systems (DBMS) and AI to minimize human involvement in the planning of optical navigation pictures for interplanetary space probes is discussed, with application to the Galileo mission. Parameters characterizing the desirability of candidate pictures, and the program generating them, are described. How these parameters automatically build picture records in a database, and the definition of the database structure, are then discussed. The various rules, priorities, and constraints used in selecting pictures are also described. An example is provided of an expert system, written in Prolog, for automatically performing the selection process.

  3. Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1989-01-01

    The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins by Oort that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) MPs, sample numbers W7010A2 and W7029Cl, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

  4. Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Reitmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1997-01-01

    The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon [1987] developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer [1988] provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer [1988] noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

  5. Connection between the CMEs in the coronagraph and the MCs near the Earth

    NASA Astrophysics Data System (ADS)

    Shen, C.; Wang, Y.

    2016-12-01

    Magnetic Clouds (MCs) are thought to be a subset of the interplanetary counterparts of Coronal Mass Ejections (CMEs) near the Earth. Using different models, the parameters of MCs are obtained based on the in situ observations. In recent, the propagation speed, the expansion speed, and poloidal speed of MCs are obtained based on the velocity-modified cylindrical force-free flux rope model developed by Wang et al. (2015). In this work, we first make the association between the MCs recorded by WIND and their source CMEs observed by SOHO. Then, the parameters of these MCs obtained by the model developed by Wang et al. (2016) will be compared with the parameters of the CMEs during their propagation in the coronagraph. The parameters of CMEs are obtained by the GCS model using multiple observations from SOHO and STEREO.

  6. Geoeffectiveness of three Wind magnetic clouds: A comparative study

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Scudder, J. D.; Freeman, M. P.; Janoo, L.; Lu, G.; Quinn, J. M.; Arnoldy, R. L.; Torbert, R. B.; Burlaga, L. F.; Ogilvie, K. W.; Lepping, R. P.; Lazarus, A. J.; Steinberg, J. T.; Gratton, F. T.; Rostoker, G.

    1998-08-01

    We compare the large-scale geomagnetic response to the three magnetic clouds observed by Wind in October 1995 (OCT95), May 1996 (MAY96), and January 1997 (JAN97), studying specifically storm and substorm activity, and other global effects due to untypically large and variable solar wind dynamic pressures. Since the temporal profiles of the interplanetary parameters of the three clouds resemble one another closely, the comparison is meaningful. Using the integrated Poynting flux into the magnetosphere as a rough measure of energy input into the magnetosphere, we find relative energy inputs to be OCT95:JAN97:MAY96=22:11:4, with most of the accumulation in the 3-day periods occurring during passage of the Bz<0 cloud phase. The peak Dst ring current indices, corrected for magnetopause currents, were in the ratio -138:-87:-38, and hence OCT95 caused a major, JAN97 a moderate, and MAY96 a weak storm. The empirical criterion derived from studies near solar maximum that a solar wind dawn-dusk electric field >=5 mVm-1 lasting for at least 3 hours is necessary and sufficient to generate major storms does not hold for JAN97. Storm main phase onset coincides with cloud arrival in all three cases. The number of substorm onsets during the cloud periods were OCT95:JAN97:MAY96=5:3:2, with peak AL values in the ratio -1180:-1750:-570. The dayside magnetosphere was variably compressed, the largest amplitude of variation being on JAN97, where the dynamic pressure change spanned 2 orders of magnitude. MAY96 showed the least variation. The interaction of the individual clouds with the faster trailing flows had two major effects on the magnetosphere: (1) a compression of the cavity during passage of the Bz>0 cloud phase and the leading edge of the fast stream; and (2) a weakening of the control of the cloud field on magnetosheath flow during the Bz>0 cloud phase. In summary we find that under most of the aspects considered, OCT95 is the most geoeffective. The buffetting of the magnetospheric cavity by dynamic pressure changes was, however, strongest on JAN97. The profound differences in the magnetospheric response elicited by the clouds is found to be due to the amplitude, duration and rapidity of change of the relevant interplanetary parameters. At present, interplanetary monitors are indispensable for understanding the geomagnetic response to interplanetary structures.

  7. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chian, Abraham C.-L.; Loew, Murray H.; Feng, Heng Q.

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event.more » The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.« less

  8. Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013

    NASA Astrophysics Data System (ADS)

    Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.

    2013-12-01

    Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.

  9. Automated Detection and Analysis of Interplanetary Shocks with Real-Time Application

    NASA Astrophysics Data System (ADS)

    Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.

    2006-12-01

    The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. Our goal is to provide an automated code that finds and analyzes interplanetary shocks as they occur for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. Although these codes can be automated in a reasonable manner to yield solutions not far from those obtained by user-directed interactive analysis, event detection presents an added obstacle and the first step in a fully automated analysis. We present a fully automated Rankine-Hugoniot analysis code that can scan the ACE science data, find shock candidates, analyze the events, obtain solutions in good agreement with those derived from interactive applications, and dismiss false positive shock candidates on the basis of the conservation equations. The intent is to make this code available to NOAA for use in real-time space weather applications. The code has the added advantage of being able to scan spacecraft data sets to provide shock solutions for use outside real-time applications and can easily be applied to science-quality data sets from other missions. Use of the code for this purpose will also be explored.

  10. Statistical Study in the mid-altitude cusp region: wave and particle data comparison using a normalized cusp crossing duration

    NASA Astrophysics Data System (ADS)

    Grison, B.; Escoubet, C. P.; Pitout, F.; Cornilleau-Wehrlin, N.; Dandouras, I.; Lucek, E.

    2009-04-01

    In the mid altitude cusp region the DC magnetic field presents a diamagnetic cavity due to intense ion earthward flux coming from the magnetosheath. A strong ultra low frequency (ULF) magnetic activity is also commonly observed in this region. Most of the mid altitude cusp statistical studies have focused on the location of the cusp and its dependence and response to solar wind, interplanetary magnetic field, dipole tilt angle parameters. In our study we use the database build by Pitout et al. (2006) in order to study the link of wave power in the ULF range (0.35-10Hz) measured by STAFF SC instrument with the ion plasma properties as measured by CIS (and CODIF) instrument as well as the diamagnetic cavity in the mid-altitude cusp region with FGM data. To compare the different crossings we don`t use the cusp position and dynamics but we use a normalized cusp crossing duration that permits to easily average the properties over a large number of crossings. As usual in the cusp, it is particularly relevant to sort the crossings by the corresponding interplanetary magnetic field (IMF) orientation in order to analyse the results. In particular we try to find out what is the most relevant parameter to link the strong wave activity with. The global statistic confirms previous single case observations that have noticed a simultaneity between ion injections and wave activity enhancements. We will also present results concerning other ion parameters and the diamagnetic cavity observed in the mid altitude cusp region.

  11. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an increasingly debated topic over the last several years. The principal source for such intact organics was probably accretion of interplanetary dust particles of cometary origin.

  12. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs.

    PubMed

    Mann, Ingrid

    2017-07-13

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  13. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    NASA Astrophysics Data System (ADS)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  14. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE PAGES

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.; ...

    2016-01-16

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterizedmore » by two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥/T || > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  15. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterizedmore » by two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥/T || > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  16. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005.

    PubMed

    Gary, S Peter; Jian, Lan K; Broiles, Thomas W; Stevens, Michael L; Podesta, John J; Kasper, Justin C

    2016-01-01

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o . The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o  = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥ /T ||  > 1 (where the subscripts denote directions relative to B o ), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.

  17. Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005

    PubMed Central

    Jian, Lan K.; Broiles, Thomas W.; Stevens, Michael L.; Podesta, John J.; Kasper, Justin C.

    2016-01-01

    Abstract Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft‐frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén‐cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right‐hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind. PMID:27818854

  18. Physical properties of interplanetary dust: laboratory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, Edith; Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Renard, Jean-Baptiste; Buch, Arnaud; Carrasco, Nathalie; Cottin, Hervé; Fray, Nicolas; Guan, Yuan Yong; Szopa, Cyril

    Laboratory light scattering measurements with the PROGRA2 experiment, in A300-CNES and ESA dedicated microgravity flights or in ground based configurations, offer an alternative to models for exploring the scattering properties of particles with structures too complex to be easily handled by computer simulations [1,2]. The technique allows the use of large size distributions (nanometers to hundreds of micrometers) and a large variety of materials, similar to those suspected to compose the interplanetary particles [3]. Asteroids are probably the source of compact particles, while comets have been shown to eject compact and fluffy materials [4]. Moreover giant planets provide further a small number of interplanetary particles. Some interstellar particles are also present. To choose the best samples and size distributions, we consider previous numerical models for the interplanetary particles and their evolution with solar distance. In this model, fluffy particles are simulated by fractal aggregates and compact particles by ellipsoids. The materials considered are silicates and carbonaceous compound. The silicate grains can be coated by the organics. Observations are fitted with two parameters: the size distribution of the particles and the ratio of silicates over carbonaceous compounds. From the light scattering properties of the particles, their equilibrium temperature can be calculated for different structures and composition. The variation of their optical properties and temperatures are studied with the heliocentric distance [5,6]. Results on analogs of cometary particles [7] and powdered meteorites as asteroidal particles will be presented and compared to numerical simulations as well as observations. Organics on cometary grains can constitute distributed sources if degraded by solar UV and heat [8, 9]. The optical properties of CxHyNz compounds are studied after thermal evolution [10]. As a first approach, they are used to simulate the evolution of cometary or interplanetary dust organics approaching the Sun. Albedo and polarization variations will be discussed. The polarization evolution will be compared to those obtained through observations [11]. Studies of the properties of our interplanetary dust cloud should provide information to better interpret observations of dust around exoplanets. Some of these planets are very close to their star. The thermal evolution of organics driven by chemical reactions will represent a fundamental knowledge to interpret the relevant polarimetric observations. We acknowledge CNES for funding the PROGRA2 experiment, CNES and ESA for the micro-gravity flights. [1] Renard J.-B. et al., Appl. Opt. 41, 609 (2002) [2] Hadamcik E. et al., In: Light scattering rev. 4, 31 (Kokhanovszky ed.), Springer -Praxis, Berlin (2009) [3] Mann I. et al., Space Sci. Rev. 110, 269 (2004) [4] Hoertz F. et al., Science 314, 716 (2006) [5] Lasue J. et al., Astron. Astrophys. 473, 641 (2007) [6] Levasseur-Regourd A.C et al., Planet Space Sci. 55, 1010 (2007) [7] Hadamcik E. et al., Icarus 190, 660 (2007) [8] Cottin H. et al., Adv. Space Res. 42, 2019 (2008) [9] Fray N. et al., Planet. Space Sci. 53, 1243 (2005) [10] Sciamma-O'Brien E. et al., Icarus, accepted [11] Levasseur-Regourd A.C., et al., In: Interplanetary dust, Gruen, Gustafson B., Dermott S., Fechtig H. (Eds), Springer, Berlin, 57 (2001)

  19. Plasma flows in the heliosheath along the Voyager 1 and 2 trajectories due to effects of the 11 yr solar cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provornikova, E.; Opher, M.; Izmodenov, V. V.

    We investigate the role of the 11 yr solar cycle variations in the solar wind (SW) parameters on the flows in the heliosheath using a new three-dimensional time-dependent model of the interaction between the SW and the interstellar medium. For boundary conditions in the model we use realistic time and the latitudinal dependence of the SW parameters obtained from SOHO/SWAN and interplanetary scintillation data for the last two solar cycles (1990-2011). This data set generally agrees with the in situ Ulysses measurements from 1991 to 2009. For the first ∼30 AU of the heliosheath the time-dependent model predicts constant radialmore » flow speeds at Voyager 2 (V2), which is consistent with observations and different from the steady models that show a radial speed decrease of 30%. The model shows that V2 was immersed in SW with speeds of 500-550 km s{sup –1} upstream of the termination shock before 2009 and in wind with upstream speeds of 450-500 km s{sup –1} after 2009. The model also predicts that the radial velocity along the Voyager 1 (V1) trajectory is constant across the heliosheath, contrary to observations. This difference in observations implies that additional effects may be responsible for the different flows at V1 and V2. The model predicts meridional flows (VN) higher than those observed because of the strong bluntness of the heliosphere shape in the N direction in the model. The modeled tangential velocity component (VT) at V2 is smaller than observed. Both VN and VT essentially depend on the shape of the heliopause.« less

  20. Exospheres from asteroids to planets

    NASA Astrophysics Data System (ADS)

    Killen, R.; Burger, M.; Hurley, D.; Sarantos, M.; Farrell, W.

    2014-07-01

    The study of exospheres can give us a handle on the long-term loss of volatiles from planetary bodies due to interaction of planets, satellites and small bodies with the interplanetary medium such as the solar wind, meteors and dust, the solar radiant flux, and internal forces like diffusion and outgassing. Recent evidence for water and OH on the Moon has spurred interest in processes involving chemistry and sequestration of volatile species at the poles and in voids. In recent years, NASA has sent spacecraft to some asteroids including Vesta and Ceres, and ESA sent Rosetta to asteroids Lutetia and Steins. OSIRIS- Rex will return a sample from a primitive asteroid, Bennu, to the Earth. It is possible that a Phobos-Deimos flyby will be a precursor to a manned mission to Mars. Exospheric particles are derived from the surface and thus reflect the composition of the body's regolith, although not in a one-to-one ratio. Observation of an escaping exosphere, termed a corona, is challenging. We therefore have embarked on a parametrical study of exospheres as a function of basic controlling parameters such as the mass of the primary object, the mass of the exospheric species, the heliocentric distance, the rotation rate of the primary, the composition of the body (asteroid type or icy body). These parameters will be useful for mission planning as well as quick-look data to determine the size and location of bodies likely to retain their exospheres and observability of exospheric species. It is also of interest to be able to determine the extent of contamination of the pristine exosphere due to the spacecraft sent to make measurements.

  1. Correlation of interplanetary-space B sub z field fluctuations and trapped-particle redistribution.

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Pellat, R.

    1972-01-01

    Observations of interplanetary magnetic field fluctuations in correlation with trapped particle fluctuations are discussed. From observations of particle-redistribution effects, properties of the magnetospheric electric field are derived. The obtained results suggest that the interplanetary B(sub z) field fluctuations might represent a strong driving source for particle diffusion.

  2. Radio-scintillation observations of interplanetary disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.; Kakinuma, T.

    1984-01-01

    Recent developments in the studies of interplanetary disturbances by scintillation techniques are briefly reviewed. The turbulent postshock region of an interplanetary disturbance produces transient enhancements in the scintillation level and the flow speed in many cases. An empirical method to determine three-dimensional angular distribution of the propagation speed of the disturbance on the basis of interplanetary scintillation measurements of postshock flow speeds is applied to 17 events which took place in 1978-1981. Among them, four representative examples, including two events which were associated with disappearing solar filaments, are described in detail. Several disturbances had oblate configurations the latitudinal extent ismore » smaller than the longitudinal extent. On the average, the angular distribution of the propagation speed at 1-AU heliocentric distance is quasi-isotropic over a longitudinal range of 100 deg centered at the normal of relevant solar phenomenon. The net excess mass and energy in an interplanetary disturbance associated with a disappearing solar filament can be comparable to those of an interplanetary disturbance associated with a large solar flare. 57 references.« less

  3. Long-term variation of radar-auroral backscatter and the interplanetary sector structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeoman, T.K.; Burrage, M.D.; Lester, M.

    Recurrent variation of geomagnetic activity at the {approximately}27-day solar rotation period and higher harmonics is a well-documented phenomenon. Auroral radar backscatter data from the Sweden and Britain Radar-Auroral Experiment (SABRE) radar provide a continuous time series from 1981 to the present which is a highly sensitive monitor of geomagnetic activity. In this study, Maximum Entropy Method (MEM) dynamic power spectra of SABRE backscatter data from 1981 to 1989, concurrent interplanetary magnetic field (IMF) and solar wind parameters from 1981 to 1987, and the Kp index since 1932 are examined. Data since 1977 are compared with previously published heliospheric current sheetmore » measurements mapped out from the solar photosphere. Stong periodic behavior is observed in the radar backscatter during the declining phase of solar cycle 21, but this periodicity disappears at the start of solar cycle 22. Similar behavior is observed in earlier solar cycles in the Kp spectra. Details of the radar backscatter, IMF, and solar wind spectra indicate that the solar wind momentum density is the dominant parameter in determining the backscatter periodicity. The temporal evolution of two- and four-sector structures, as predicted by SABRE backscatter spectra, throughout solar cycle 21 generally still agree well with heliospheric current sheet measurements. For one interval, however, there is evidence that evolution of the current sheet has occurred between the photospheric source surface and the Earth.« less

  4. Semiempirical Two-Dimensional Magnetohydrodynamic Model of the Solar Corona and Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Guhathakurta, Madhulika

    1999-01-01

    We have developed a two-dimensional semiempirical MHD model of the solar corona and solar wind. The model uses empirically derived electron density profiles from white-light coronagraph data measured during the Skylub period and an empirically derived model of the magnetic field which is fitted to observed streamer topologies, which also come from the white-light coronagraph data The electron density model comes from that developed by Guhathakurta and coworkers. The electron density model is extended into interplanetary space by using electron densities derived from the Ulysses plasma instrument. The model also requires an estimate of the solar wind velocity as a function of heliographic latitude and radial component of the magnetic field at 1 AU, both of which can be provided by the Ulysses spacecraft. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity V, effective temperature T(sub eff), and effective heat flux q(sub eff), which are derived from the equations of conservation of mass, momentum, and energy, respectively. The term effective indicates that wave contributions could be present. The model naturally provides the spiral pattern of the magnetic field far from the Sun and an estimate of the large-scale surface magnetic field at the Sun, which we estimate to be approx. 12 - 15 G. The magnetic field model shows that the large-scale surface magnetic field is dominated by an octupole term. The model is a steady state calculation which makes the assumption of azimuthal symmetry and solves the various conservation equations in the rotating frame of the Sun. The conservation equations are integrated along the magnetic field direction in the rotating frame of the Sun, thus providing a nearly self-consistent calculation of the fluid parameters. The model makes a minimum number of assumptions about the physics of the solar corona and solar wind and should provide a very accurate empirical description of the solar corona and solar wind Once estimates of mass density rho, flow velocity V, effective temperature T(sub eff), effective heat flux q(sub eff), and magnetic field B are computed from the model and waves are assumed unimportant, all other plasma parameters such as Mach number, Alfven speed, gyrofrequency, etc. can be derived as a function of radial distance and latitude from the Sun. The model can be used as a planning tool for such missions as Slar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind The model will be used to construct a semiempirical MHD description of the steady state solar corona and solar wind using the SOHO Large Angle Spectrometric Coronagraph (LASCO) polarized brightness white-light coronagraph data, SOHO Extreme Ultraviolet Imaging Telescope data, and Ulysses plasma data.

  5. ESOC's System for Interplanetary Orbit Determination: Implementation and Operational Experience

    NASA Astrophysics Data System (ADS)

    Budnik, F.; Morley, T. A.; MacKenzie, R. A.

    A system for interplanetary orbit determination has been developed at ESOC over the past six years. Today, the system is in place and has been proven to be both reliable and robust by successfully supporting critical operations of ESA's interplanetary spacecraft Rosetta, Mars Express, and SMART-1. To reach this stage a long and challenging way had to be travelled. This paper gives a digest about the journey from the development and testing to the operational use of ESOC's new interplanetary orbit determination system. It presents the capabilities and reflects experiences gained from the performed tests and tracking campaigns.

  6. Time-lag and Correlation between ACE and RBSPICE Injection Event Observations during Storm Times

    NASA Astrophysics Data System (ADS)

    Madanian, H.; Patterson, J. D.; Manweiler, J. W.; Soto-chavez, A. R.; Gerrard, A. J.; Lanzerotti, L. J.

    2017-12-01

    The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the Van Allen Probes mission measures energetic charged particles [ 20 keV to 1 MeV] in the inner magnetosphere and ring current. During geomagnetic storms, injections of energetic ions into the ring current change the ion population and produce geomagnetic field depressions on Earth's surface. We analyzed the magnetic field strength and particle composition in the interplanetary medium measured by instruments on the Advanced Composition Explorer (ACE) spacecraft near the inner Lagrangian point. The Electron, Proton, and Alpha Monitor-Low Energy Magnetic Spectrometer (EPAM-LEMS) sensor on ACE measures energetic particles [ 50 keV to 5 MeV] in the interplanetary space. The SYM-H index is utilized to classify the storm events by magnitude and to select more than 60 storm events between 2013 and 2017. We cross-compared ACE observations at storm times, with the RBSPICE ion measurements at dusk to midnight magnetic local time and over the 3-6 L-shell range. We report on the relative composition of the solar particles and the relative composition of the inner magnetospheric hot plasma during storm times. The data correlation is accomplished by shifting the observation time from ACE to RBSPICE using the solar wind velocity at the time of the observation. We will discuss time lags between storm onset at the magnetopause and injection events measured for each storm.

  7. Carbon analyses of IDP's sectioned in sulfur and supported on beryllium films

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Keller, L.; Thomas, K. L.; Vanderwood, T. B.; Brownlee, D. E.

    1993-01-01

    Carbon is the only major element in interplanetary dust whose abundance, distribution and chemical state are not well understood. Information about carbon could clarify the relationship between the various classes of IDP's, conventional meteorites, and sources (e.g., comets vs. asteroids). To date, the most reliable estimates of C abundance in Interplanetary Dust Particles (IDP's) have been obtained by analyzing particles on thick-flat Be substrates using thin-window energy-dispersive spectroscopy in the SEM. These estimates of C abundance are valid only if C is homogeneously distributed, because detected C x-rays originate from the outer 0.1 micrometers of the particle. An alternative and potentially more accurate method of measuring C abundances is to analyze multiple thin sections (each less than 0.1 less than 0.1 micrometers thick) of IDP's. These efforts however, have been stymied because of a lack of a suitable non-carbonaceous embedding medium and the availability of C-free conductive substrates. We have embedded and thin-sectioned IDP's in glassy sulfur, and transferred the thin sections to Be support films approximately 25 nm thick. The sections were then analyzed in a 200 KeV analytical TEM. S sublimes rapidly under vacuum in the TEM, leaving non-embedded sections supported on Be. Apart from quantitative C (and O) analyses, S sectioning dramatically expands the range of analytical measurements that can be performed on a single IDP.

  8. Troitskaya-Bolshakova effect as a manifestation of the solar wind wave turbulence

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Polyushkina, T. N.; Guglielmi, A. V.

    2018-02-01

    The impact of changes in the direction of the interplanetary magnetic field (IMF) on the amplitude of geomagnetic Pc3 pulsations (the Troitskaya-Bolshakova effect) is demonstrated using observations of several pulsation events. We show that the source of changes in the IMF cone angle is sometimes Alfvén waves propagating in the solar wind. For the analysis, measurements of geomagnetic pulsations at the mid-latitude Uzur magneto-telluric observatory and on three spacecraft outside the bow shock wave were used. The results show that the influence is exerted only by waves with a period of more than 40-60 min in a coordinate system fixed relative to the Earth. The Alfvén turbulence of a higher frequency is incoherent; the oscillations are of a chaotic nature, not coordinated in amplitude and phase either between satellites or with variations in the amplitude of Pc3. In some cases, the modulation of the pulsation amplitude is associated with the passage of the IMF sector boundary. An evaluation of the direction of propagation of Alfvén waves showed that they predominantly propagate from the Sun, but the normal of the wave fronts can deviate from the Sun-Earth line. This is quite consistent with earlier published results. The statistics of the basic properties of the oscillatory structures in the interplanetary medium, which we observed during the observation period, are given.

  9. Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Sibeck, David G.; Zong, Q.-G.; McFadden, James P.; Larson, Davin; Glassmeier, K.-H.; Angelopoulos, V.

    2011-01-01

    We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E).

  10. Satellite failures revisited

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-12-01

    In January 1994, the two geostationary satellites known as Anik-E1 and Anik-E2, operated by Telesat Canada, failed one after the other within 9 hours, leaving many northern Canadian communities without television and data services. The outage, which shut down much of the country's broadcast television for hours and cost Telesat Canada more than $15 million, generated significant media attention. Lam et al. used publicly available records to revisit the event; they looked at failure details, media coverage, recovery effort, and cost. They also used satellite and ground data to determine the precise causes of those satellite failures. The researchers traced the entire space weather event from conditions on the Sun through the interplanetary medium to the particle environment in geostationary orbit.

  11. Mariner Jupiter/Saturn 1977 - The mission frame.

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Miles, R. F., Jr.; Penzo, P. A.; Van Dillen, S. L.; Wallace, R. A.

    1972-01-01

    Following the cancellation of the Outer Planet Grand Tour Project, NASA and JPL examined less ambitious, alternative missions for exploring the outer planets. The mission that proved most attractive scientifically and fits within the projected NASA budget constraints embraces dual flights to Jupiter and Saturn, with launch in 1977. NASA has implemented it as the Mariner Jupiter/Saturn 1977 (MJS77) Project. The MJS77 mission covers exploratory investigations of the Jupiter and Saturn planetary systems and the interplanetary medium out to Saturn. Items of special interest include Jupiter's great red spot, the question of Io's anomalous brightening and phenomena associated with its EM behavior. After Saturn encounter, the spacecraft will escape the solar system in the general direction of the solar apex.

  12. Conditioning of MVM '73 radio-tracking data

    NASA Technical Reports Server (NTRS)

    Koch, R. E.; Chao, C. C.; Winn, F. B.; Yip, K. W.

    1974-01-01

    An extensive effort was undertaken to edit Mariner 10 radiometric tracking data. Interactive computer graphics were used for the first time by an interplanetary mission to detect blunder points and spurious signatures in the data. Interactive graphics improved the former process time by a factor of 10 to 20, while increasing reliability. S/X dual Doppler data was used for the first time to calibrate charged particles in the tracking medium. Application of the charged particle calibrations decreased the orbit determination error for a short data arc following the 16 March 1974 maneuver by about 80%. A new model was developed to calibrate the earth's troposphere with seasonal adjustments. The new model has a 2% accuracy and is 5 times better than the old model.

  13. On the Origin of GEMS

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2004-01-01

    GEMS (glass with embedded metal and sulfides) are a major component of anhydrous interplanetary dust particles (IDPs) their physical and chemical characteristics show marked similarities to contemporary interstellar dust. Recent oxygen isotopic measurements confirm that at least a small fraction (less than 5%) of GEMS are demonstrably presolar, while the remainder have ratios that are indistinguishable from solar values. GEMS with solar oxygen isotopic compositions either (1) had their isotopic compositions homogenized through processing in the interstellar medium (ISM), or (2) formed in the early solar system. Isotopic homogenization necessarily implies chemical homogenization, so (interstellar) GEMS compositions should reflect the average composition of dust in the local ISM. We performed a systematic examination of the bulk chemistry of GEMS in primitive IDPs in order to test this hypothesis.

  14. An Empirical Model of the Variation of the Solar Lyman-α Spectral Irradiance

    NASA Astrophysics Data System (ADS)

    Kretzschmar, Matthieu; Snow, Martin; Curdt, Werner

    2018-03-01

    We propose a simple model that computes the spectral profile of the solar irradiance in the hydrogen Lyman alpha line, H Ly-α (121.567 nm), from 1947 to present. Such a model is relevant for the study of many astronomical environments, from planetary atmospheres to interplanetary medium. This empirical model is based on the SOlar Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation observations of the Ly-α irradiance over solar cycle 23 and the Ly-α disk-integrated irradiance composite. The model reproduces the temporal variability of the spectral profile and matches the independent SOlar Radiation and Climate Experiment/SOLar-STellar Irradiance Comparison Experiment spectral observations from 2003 to 2007 with an accuracy better than 10%.

  15. High energy astronomy or astrophysics and properties of the interplanetary plasma

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The research activities related to high energy astrophysics and interplanetary plasma are reported. The experimental work in the following areas are described: (1) balloon-and rocket-borne cosmic X-ray, (2) X-ray spectroscopy, and (3) OSO-3 gamma ray experiment. Plasma studies in the interplanetary region, magnetosphere, and geomagnetic tail are included.

  16. The Polar Ionosphere and Interplanetary Field.

    DTIC Science & Technology

    1987-08-01

    model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field

  17. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, Olga P.; Zank, Gary P.; Li, Gang

    2015-02-01

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the "pump mechanism"), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the particle composition of SEP events, we address in some detail the injection problem. Although steady-state models can improve our understanding of the diffusive shock acceleration mechanism, SEP events are inherently time-dependent. We therefore review the time-dependent theory of DSA in some detail, including estimating possible maximum particle energies and particle escape from the shock complex. We also discuss generalizations of the diffusive transport approach to modeling particle acceleration by considering a more general description based on the focused transport equation. The escape of accelerated particles from the shock requires that their subsequent transport in the interplanetary medium be modeled and the consequence of interplanetary transport can lead to the complex spectra and compositional profiles that are observed frequently. The different approaches to particle transport in the inner heliosphere are reviewed. The various numerical models that have been developed to solve the gradual SEP problem are reviewed. Explicit comparisons of modeling results with observations of large SEP events are discussed. A summary of current progress and the outlook on the SEP problem and remaining open questions conclude the review.

  18. Interplanetary mission design handbook. Volume 1, part 4: Earth to Saturn ballistic mission opportunities, 1985-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Snyder, G. C.

    1981-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Saturn are provided. Contours of launch energy requirements as well as many other launch and Saturn arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Saturn probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations elating various parameters. This is the first of a planned series of mission design documents which will apply to all planets and some other bodies in the solar system.

  19. The delivery of organic matter from asteroids and comets to the early surface of Mars

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.

    1996-01-01

    Carbon delivered to the Earth by interplanetary dust particles may have been an important source of pre-biotic organic matter (Anders, 1989). Interplanetary dust is shown to deliver an order-of-magnitude higher surface concentration of carbon onto Mars than onto Earth, suggesting interplanetary dust may be an important source of carbon on Mars as well.

  20. Aquarius, a reusable water-based interplanetary human spaceflight transport

    NASA Astrophysics Data System (ADS)

    Adamo, Daniel R.; Logan, James S.

    2016-11-01

    Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.

  1. The source of the electric field in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.

  2. The role of distinct parameters of interplanetary shocks in their propagation into and within the Earth's dayside magnetosphere, and their impact on magnetospheric particle populations

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Cattell, C. A.

    2016-12-01

    Interplanetary (IP) shocks are abrupt changes in the solar wind velocity and/or magnetic field. When an IP shock impacts the Earth's magnetosphere, it can trigger a number of responses including geomagnetic storms and substorms that affect radiation to satellites and aircraft, and ground currents that disrupt the power grid. There are a wide variety of IP shocks, and they interact with the magnetosphere in different ways depending on their orientation, speed and other factors. The distinct individual characteristics of IP shocks can have a dramatic effect on their impact on the near-earth environment. While some research has been done on the impact of shock parameters on their geo-effectiveness, these studies primarily utilized ground magnetometer derived indices such as Dst, AE and SME or signals at geosynchronous satellites. The current unprecedented satellite coverage of the magnetosphere, particularly on the dayside, presents an opportunity to directly measure how different shocks propagate into and within the magnetosphere, and how they affect the various particle populations therein. Initial case studies reveal that smaller shocks can have unexpected impacts in the dayside magnetosphere, including unusual particle and electric field signatures, depending on shock parameters. We have recently compiled a database of sudden impulses from 2012-2016, and the location of satellites in the dayside magnetosphere at the impulse times. We are currently combining and comparing this with existing databases compiled at UNH, Harvard and others, as well as solar wind data from ACE, Wind and other solar wind monitors, to generate a complete and accurate list of IP shocks, cataloguing parameters such as the type of shock (CME, CIR etc.), strength (Mach number, solar wind velocity etc.) and shock normal angle. We are investigating the magnetospheric response to these shocks using GOES, ARTEMIS and Cluster data, augmented with RBSP and MMS data where available, to determine what effect the various shock parameters have on their propagation through and impact on the magnetosphere. We will present several case studies from our database that show how different parameters affect how shocks propagate in the dayside and how they affect the particles therein.

  3. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamicmore » propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.« less

  4. Automated Detection and Analysis of Interplanetary Shocks Running Real-Time on the Web

    NASA Astrophysics Data System (ADS)

    Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.; Davis, A. J.

    2008-05-01

    The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. We have built a fully automated code that finds and analyzes interplanetary shocks as they occur and posts their solutions on the Web for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. At a previous meeting we reported on efforts to develop a fully automated code that used ACE Level-2 (science quality) data to prove the applicability and correctness of the code and the associated shock-finder. We have since adapted the code to run ACE RTSW data provided by NOAA. This data lacks the full 3-dimensional velocity vector for the solar wind and contains only a single component wind speed. We show that by assuming the wind velocity to be radial strong shock solutions remain essentially unchanged and the analysis performs as well as it would if 3-D velocity components were available. This is due, at least in part, to the fact that strong shocks tend to have nearly radial shock normals and it is the strong shocks that are most effective in space weather applications. Strong shocks are the only shocks that concern us in this application. The code is now running on the Web and the results are available to all.

  5. Monitoring of the turbulent solar wind with the upgraded Large Phased Array of the Lebedev Institute of Physics: First results

    NASA Astrophysics Data System (ADS)

    Shishov, V. I.; Chashei, I. V.; Oreshko, V. V.; Logvinenko, S. V.; Tyul'bashev, S. A.; Subaev, I. A.; Svidskii, P. M.; Lapshin, V. B.; Dagkesamanskii, R. D.

    2016-12-01

    The design properties and technical characteristics of the upgraded Large Phased Array (LPA) are briefly described. The results of an annual cycle of observations of interplanetary scintillations of radio sources on the LPA with the new 96-beam BEAM 3 system are presented. Within a day, about 5000 radio sources displaying second-timescale fluctuations in their flux densities due to interplanetary scintillations were observed. At present, the parameters of many of these radio sources are unknown. Therefore, the number of sources with root-mean-square flux-density fluctuations greater than 0.2 Jy in a 3° × 3° area of sky was used to characterize the scintillation level. The observational data obtained during the period of the maximum of solar cycle 24 can be interpreted using a three-component model for the spatial structure of the solar wind, consisting of a stable global component, propagating disturbances, and corotating structures. The global component corresponds to the spherically symmetric structure of the distribution of the turbulent interplanetary plasma. Disturbances propagating from the Sun are observed against the background of the global structure. Propagating disturbances recorded at heliocentric distances of 0.4-1 AU and at all heliolatitudes reach the Earth's orbit one to two days after the scintillation enhancement. Enhancements of ionospheric scintillations are observed during night-time. Corotating disturbances have a recurrence period of 27 d . Disturbances of the ionosphere are observed as the coronal base of a corotating structure approaches the western edge of the solar limb.

  6. Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Grygorov, K.; Šafránková, J.; Němeček, Z.; Pi, G.; Přech, L.; Urbář, J.

    2017-11-01

    The ability of a prediction of the magnetopause location under various upstream conditions can be considered as a test of our understanding of the solar wind-magnetosphere interaction. The present magnetopause models are parametrized with the solar wind dynamic pressure and usually with the north-south interplanetary magnetic field (IMF) component. However, several studies pointed out an importance of the radial IMF component, but results of these studies are controversial up to now. The present study compares magnetopause observations by five THEMIS spacecraft during long lasting intervals of the radial IMF with two empirical magnetopause models. A comparison reveals that the magnetopause location is highly variable and that the average difference between the observed and predicted positions is ≈ + 0.7 RE under this condition. The difference does not depend on the local times and other parameters, like the upstream pressure, IMF north-south component, or tilt angle of the Earth dipole. We conclude that our results strongly support the suggestion on a global expansion of the equatorial magnetopause during intervals of the radial IMF.

  7. Main Properties of Forbush Effects Related to High-Speed Streams from Coronal Holes

    NASA Astrophysics Data System (ADS)

    Melkumyan, A. A.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.; Eroshenko, E. A.; Oleneva, V. A.; Yanke, V. G.

    2018-03-01

    The IZMIRAN database of Forbush effects and interplanetary disturbances was used to study features of the action of high-speed solar wind streams from coronal holes on cosmic rays. Three hundred and fifty Forbush effects created by coronal holes without other actions were distinguished. The mean values and distributions have been found for different characteristics of events from this group and compared with all Forbush effects and Forbush effects caused by coronal ejections. Despite the great differences in high-speed streams from coronal holes, this group turned out to be more compact and uniform as compared to events related to coronal ejections. Regression dependences and correlation relations between different parameters of events for the studied groups have been obtained. It has been shown that Forbush effects caused by coronal ejections depend considerably more strongly on the characteristics of interplanetary disturbances as compared to Forbush effects related to coronal holes. This suggests a significant difference between the modulation mechanisms of Forbush effects of different types and corroborates earlier conclusions based on indirect data.

  8. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The methods is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  9. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.

    2014-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often may thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  10. Multifractal Turbulence in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Macek, Wieslaw M.; Wawrzaszek, Anna

    2010-05-01

    We consider a solar wind plasma with frozen-in interplanetary magnetic fields, which is a complex nonlinear system that may exhibit chaos and intermittency, resulting in a multifractal scaling of plasma characteristics. We analyze time series of plasma velocity and interplanetary magnetic field strengths measured during space missions onboard various spacecraft, such as Helios, Advanced Composition Explorer, Ulysses, and Voyager, exploring different regions of the heliosphere during solar minimum and maximum. To quantify the multifractality of solar wind turbulence, we use a generalized two-scale weighted Cantor set with two different rescaling parameters [1]. We investigate the resulting spectrum of generalized dimensions and the corresponding multifractal singularity spectrum depending on the parameters of this new cascade model [2]. We show that using the model with two different scaling parameters one can explain the multifractal singularity spectrum, which is often asymmetric. In particular, the multifractal scaling of magnetic fields is asymmetric in the outer heliosphere, in contrast to the symmetric spectrum observed in the heliosheath as described by the standard one-scale model [3]. We hope that the generalized multifractal model will be a useful tool for analysis of intermittent turbulence in the heliospheric plasma. We thus believe that multifractal analysis of various complex environments can shed light on the nature of turbulence. [1] W. M. Macek and A. Szczepaniak, Generalized two-scale weighted Cantor set model for solar wind turbulence, Geophys. Res. Lett., 35, L02108 (2008), doi:10.1029/2007GL032263. [2] W. M. Macek and A. Wawrzaszek, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere, J. Geophys. Res., A013795 (2009), doi:10.1029/2008JA013795. [3] W. M. Macek and A. Wawrzaszek, Multifractal turbulence at the termination shock, in Solar Wind Twelve, edited by M. Maximovic et al., American Institute of Physics, 2010.

  11. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.

  12. The Solar Connections Observatory for Planetary Environments

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.

  13. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  14. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.

    PubMed

    Smirnova, Olga A; Cucinotta, Francis A

    2018-02-01

    A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can also be used on the phase of the real-time responses during the space mission to make the decisions on the operational application of appropriate countermeasures to minimize the risks of occurrences of leukemia, especially, for emergency cases. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  15. Geometric effects of ICMEs on geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  16. High Performance Materials Applications to Moon/Mars Missions and Bases

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Smith, David D.; Sibille, Laurent; Brown, Scott C.; Cronise, Raymond J.; Lehoczky, Sandor L.

    1998-01-01

    Two classes of material processing scenarios will feature prominently in future interplanetary exploration- in situ production using locally available materials in lunar or planetary landings and high performance structural materials which carve out a set of properties for uniquely hostile space environments. To be competitive, high performance materials must typically offer orders of magnitude improvements in thermal conductivity or insulation, deliver high strength-to-weight ratios, or provide superior durability (low corrosion and/or ablative character, e.g. in heat shields). The space-related environmental parameters of high radiation flux, low weight and superior reliability limits many typical aerospace materials to a short list comprising high performance alloys, nanocomposites and thin-layer metal laminates (Al-Cu, Al-Ag) with typical dimensions less than the Frank-Reed-type dislocation source. Extremely light weight carbon-carbon composites and car on aerogels will be presented as novel examples which define broadened material parameters, particularly owing to their extreme thermal insulation (R-32-64) and low densities (less than 0.01 g/cc) approaching that of air itself. Even with these low weight payload additions, rocket thrust limits and transport costs will always place a premium on assembling as much structural and life support resources upon interplanetary, lunar or asteroid arrival. As an example for in situ lunar glass manufacture, solar furnaces reaching 1700 C for pure silica glass manufacture in situ are compared with sol-gel technology and acid-leached ultrapure (less than 0.1% FeO) silica aerogel precursors.

  17. High Performance Materials Applications to Moon/Mars Missions and Bases

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Smith, David D.; Sibille, Laurent; Brown, Scott C.; Cronise, Raymond J.; Lehoczky, Sandor L.

    1998-01-01

    Two classes of material processing scenarios will feature prominently in future interplanetary exploration: in situ production using locally available materials in lunar or planetary landings and high performance structural materials which carve out a set of properties for uniquely hostile space environments. To be competitive, high performance materials must typically offer orders of magnitude improvements in thermal conductivity or insulation, deliver high strength-to-weight ratios, or provide superior durability (low corrosion and/or ablative character, e.g., in heat shields). The space-related environmental parameters of high radiation flux, low weight, and superior reliability limits many typical aerospace materials to a short list comprising high performance alloys, nanocomposites and thin-layer metal laminates (Al-Cu, Al-Ag) with typical dimensions less than the Frank-Reed-type dislocation source. Extremely light weight carbon-carbon composites and carbon aerogels will be presented as novel examples which define broadened material parameters, particularly owing to their extreme thermal insulation (R-32-64) and low densities (<0.01 g/cu cm) approaching that of air itself. Even with these low-weight payload additions, rocket thrust limits and transport costs will always place a premium on assembling as much structural and life support resources upon interplanetary, lunar, or asteroid arrival. As an example, for in situ lunar glass manufacture, solar furnaces reaching 1700 C for pure silica glass manufacture in situ are compared with sol-gel technology and acid-leached ultrapure (<0.1% FeO) silica aerogel precursors.

  18. Pristine Stratospheric Collections of Cosmic Dust

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Clemett, S. J.

    2012-01-01

    Since 1981, NASA has routinely collected interplanetary dust particles (IDPs) in the stratosphere by inertial impact onto silicone oil-coated flat plate collectors deployed on the wings of high-altitude aircraft [1]. The highly viscous oil traps and localizes the particles, which can fragment during collection. Particles are removed from the collectors with a micromanipulator and washed of the oil using organic solvents, typically hexane or xylene. While silicone oil is an efficient collection medium, its use is problematic. All IDPs are initially coated with this material (polydimethylsiloxane, n(CH3)2SiO) and traces of oil may remain after cleaning. The solvent rinse itself is also a concern as it likely removes indigenous organics from the particles. To avoid these issues, we used a polyurethane foam substrate for the oil-free stratospheric collection of IDPs.

  19. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  20. Close encounters with PHOBOS

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.

    1988-07-01

    Aspects of the Soviet mission to Phobos are examined, including the objectives of the mission, the spapcecraft, experiments, and landers. Past Mars research and unanswered questions concerning Mars and its satellites are discussed. The spacecraft is expected to reach Mars in early 1989 and to observe the planet from two orbits, coming as close as 500 km from the surface, before moving into a third path close to Phobos. After studying the Phobos terrain from above, the craft will jettison one or two small long-duration automated landers, which will perform surface experiments, including work on celestial mechanics, the history of the Phobos orbit, surface composition, and mechanical properties. In addition to studying Phobos and Mars, the craft will examine the interplanetary medium, make observations of the Sun, and possibly study Deimos.

  1. Decades-long changes of the interstellar wind through our solar system.

    PubMed

    Frisch, P C; Bzowski, M; Livadiotis, G; McComas, D J; Moebius, E; Mueller, H-R; Pryor, W R; Schwadron, N A; Sokół, J M; Vallerga, J V; Ajello, J M

    2013-09-06

    The journey of the Sun through the dynamically active local interstellar medium creates an evolving heliosphere environment. This motion drives a wind of interstellar material through the heliosphere that has been measured with Earth-orbiting and interplanetary spacecraft for 40 years. Recent results obtained by NASA's Interstellar Boundary Explorer mission during 2009-2010 suggest that neutral interstellar atoms flow into the solar system from a different direction than found previously. These prior measurements represent data collected from Ulysses and other spacecraft during 1992-2002 and a variety of older measurements acquired during 1972-1978. Consideration of all data types and their published results and uncertainties, over the three epochs of observations, indicates that the trend for the interstellar flow ecliptic longitude to increase linearly with time is statistically significant.

  2. An Empirical Model of the Variations of the Solar Lyman-Alpha Spectral Irradiance

    NASA Astrophysics Data System (ADS)

    Kretzschmar, M.; Snow, M. A.; Curdt, W.

    2017-12-01

    We propose a simple model that computes the spectral profile of the solar irradiance in the Hydrogen Lyman alpha line, H Ly-α (121.567nm), from 1947 to present. Such a model is relevant for the study of many astronomical environments, from planetary atmospheres to interplanetary medium, and can be used to improve the analysis of data from mission like MAVEN or GOES-16. This empirical model is based on the SOHO/SUMER observations of the Ly-α irradiance over solar cycle 23, which we analyze in details, and relies on the Ly-α integrated irradiance composite. The model reproduces the temporal variability of the spectral profile and matches the independent SORCE/SOSLTICE spectral observations from 2003 to 2007 with an accuracy better than 10%.

  3. The origin of life in a cosmic context

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1974-01-01

    It is shown that there is at present no aspect of contemporary biology where the contingent can be distinguished from the necessary, or the evolutionary accident from the biological sine qua non; and no amount of terrestrial experimentation alone is likely to make such distinctions possible. Hence, biology suffers from a deadening parochialism, much like the physics of falling bodies before Newton showed that the same laws applied to the motion of apples in England and to the planets about the sun. The deparochialization of biology can only come in the same way and must therefore await the search for extraterrestrial life. It is in this sense that the significance of explorations of the planets and their satellites, asteroids, comets, and the interplanetary medium for the origin of life is assessed.

  4. Are supernova remnants quasi-parallel or quasi-perpendicular accelerators

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.; Leckband, J. A.; Cairns, I. H.

    1989-01-01

    Observations of shock waves in the solar system which show a pronounced difference in the plasma wave and particle environment depending on whether the shock is propagating along or perpendicular to the interplanetary magnetic field are discussed. Theories for particle acceleration developed for quasi-parallel and quasi-perpendicular shocks, when extended to the interstellar medium suggest that the relativistic electrons in radio supernova remnants are accelerated by either the Q parallel or Q perpendicular mechanisms. A model for the galactic magnetic field and published maps of supernova remnants were used to search for a dependence of structure on the angle Phi. Results show no tendency for the remnants as a whole to favor the relationship expected for either mechanism, although individual sources resemble model remnants of one or the other acceleration process.

  5. Interplanetary Small Satellite Conference 2017 Program

    NASA Technical Reports Server (NTRS)

    Dalle, Derek Jordan

    2017-01-01

    The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.

  6. STIP Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1987-01-01

    The study of travelling interplanetary phenomena has continued over a period of years. The STIP (Study of Travelling Interplanetary Phenomena) Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals was held in Huntsville, Alabama, on May 12-15, 1987, the first of these meetings to be held in the United States. The Symposium's objective was to coordinate and disseminate new science gained from the recent solar-terrestrial and cometary intervals which can be used to better understand the linkage of physical events to the Sun's vagaries (flares, coronal holes, eruptive prominences) from their initial detection to their consequence. Fifty-one presentations were made during the four-day period. Abstracts of these reports are included as Appendix A.

  7. Interplanetary laser ranging - an emerging technology for planetary science missions

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Vermeersen, L. L. A.

    2012-09-01

    Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.

  8. Enhanced orbit determination filter: Inclusion of ground system errors as filter parameters

    NASA Technical Reports Server (NTRS)

    Masters, W. C.; Scheeres, D. J.; Thurman, S. W.

    1994-01-01

    The theoretical aspects of an orbit determination filter that incorporates ground-system error sources as model parameters for use in interplanetary navigation are presented in this article. This filter, which is derived from sequential filtering theory, allows a systematic treatment of errors in calibrations of transmission media, station locations, and earth orientation models associated with ground-based radio metric data, in addition to the modeling of the spacecraft dynamics. The discussion includes a mathematical description of the filter and an analytical comparison of its characteristics with more traditional filtering techniques used in this application. The analysis in this article shows that this filter has the potential to generate navigation products of substantially greater accuracy than more traditional filtering procedures.

  9. Organic and inorganic correlations for Northwest Africa 852 by synchrotron-based Fourier transform infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Yesiltas, Mehmet; Peale, Robert E.; Unger, Miriam; Sedlmair, Julia; Hirschmugl, Carol J.

    2015-10-01

    Relationships between organic molecules and inorganic minerals are investigated in a single 34 μm diameter grain of the CR2 chondrite Northwest Africa 852 (NWA) 852 with submicron spatial resolution using synchrotron-based imaging micro-FTIR spectroscopy. Correlations based on absorption strength for the various constituents are determined using statistical correlation analysis. The silicate band is found to be correlated with the hydration band, and the latter is highly correlated with stretching modes of aliphatic hydrocarbons. Spatial distribution maps show that water+organic combination, silicate, OH, and C-H distributions overlap, suggesting a possible catalytic role of phyllosilicates in the formation of organics. In contrast, the carbonate band is anticorrelated with water+organic combination, however uncorrelated with any other spectral feature. The average ratio of asymmetric CH2 and CH3 band strengths (CH2/CH3 = 2.53) for NWA 852 is similar to the average ratio of interplanetary dust particles (~2.40) and Wild 2 cometary dust particles (2.50), but it significantly exceeds that of interstellar medium objects (~1.00) and several aqueously altered carbonaceous chondrites (~1.40). This suggests organics of similar length/branching, and perhaps similar formation regions, for NWA 852, Wild 2 dust particles, and interplanetary dust particles. The heterogeneous spatial distribution of ratio values indicates the presence of a mixture of aliphatic organic material with different length/branching, and thus a wide range of parent body processes, which occurred before the considered grain was formed.

  10. Properties of the suprathermal heavy ion population near 1 AU during solar cycles 23 and 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayeh, Maher A., E-mail: maldayeh@swri.edu; Ebert, Robert W.; Desai, Mihir I.

    2016-03-25

    Using measurements from the Advanced Composition Explorer/Ultra-Low Energy Isotope Spectrometer (ACE/ULEIS) near 1 AU, we surveyed the composition and spectra of heavy ions (He-through-Fe) during interplanetary quiet times from 1998 January 1 to 2014 December 31 at suprathermal energies between ∼0.11 and ∼1.28 MeV nucleon{sup −1}. The selected time period covers the maxima of solar cycles 23 and 24 and the extended solar minimum in between. We find the following: (1) The number of quiet-hours in each year correlates well with the sunspot number, year 2009 was the quietest for about 90% of the time; (2) The composition of the quiet-timemore » suprathermal heavy ion population ({sup 3}He, C-through-O, and Fe) correlates well with the level of solar activity, exhibiting SEP-like composition signatures during solar maximum, and CIR- or solar wind-like composition during solar minimum; (3) The heavy ion spectra at ∼0.11-0.32 MeV nucleon{sup −1} exhibit suprathermal tails with power-law spectral indices ranging from 1.4 to 2.7. (4) Fe spectral indices get softer (steeper) from solar minimum of cycle 23 to solar cycle 24 maximum. These results imply that during IP quiet times and at energies above ∼0.1 MeV nucleon{sup −1}, the IP medium is dominated by material from prior solar and interplanetary events.« less

  11. The Heavy Ion Sensor (HIS) Onboard Solar Orbiter (SOLO): Calibration Results and Science Outlook

    NASA Astrophysics Data System (ADS)

    Livi, S. A.; Lepri, S. T.; Raines, J. M.; Galvin, A.; Kistler, L. M.; Allegrini, F.; Ogasawara, K.; Collier, M. R.

    2017-12-01

    The HIS sensor has been designed and optimized to study heavy ions in the solar wind, suprathermal particles, and pickup ions in the range 0.5 to 75keV/e. This instrument will allow for unprecedented data collection of particle characteristics near the Sun at various heliolatitudes during both the quiet and active phases of the solar cycle. The close proximity and the quasi-corotation will allow for determination of the source regions on the sun for the observed events. As a result of the measurements HIS will take, we will be able to: link events on the surface of the Sun with structures in the interplanetary medium; determine the extent of gravitational settling in the expansion region of the solar wind; identify interplanetary shocks and characterize their spatial and temporal evolution; characterize the power spectra of density and velocity uctuations upstream and downstream of shocks; study the heating and dissipation mechanisms at shocks at various radial distances and latitudes; and identify the mechanisms that heat thermal solar wind ions near shocks and determine the energy partition at shocks. During the course of 2016 and 2017 HIS has been calibrated at the facility of SwRI and University of Bern, using a large energy range (0.1-450 keV), multiple masses (H-Fe), as well as charge states (1-6). The results show that HIS will meet or exceed all necessary requirements to fullfill its ambitious scientific goals.

  12. The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Xie, H.; Yashiro, S.; Reinard, A. A.

    2013-01-01

    We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within +/- 15deg from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.

  13. Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Li, G.; Zank, G. P.; Hu, Q.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Haggerty, D. K.; von Rosenvinge, T. T.; Looper, M. D.

    2010-12-01

    The Particle Acceleration and Transport in the Heliosphere (PATH) numerical code was developed to understand solar energetic particle (SEP) events in the near-Earth environment. We discuss simulation results for the 13 December 2006 SEP event. The PATH code includes modeling a background solar wind through which a CME-driven oblique shock propagates. The code incorporates a mixed population of both flare and shock-accelerated solar wind suprathermal particles. The shock parameters derived from ACE measurements at 1 AU and observational flare characteristics are used as input into the numerical model. We assume that the diffusive shock acceleration mechanism is responsible for particle energization. We model the subsequent transport of particles originated at the flare site and particles escaping from the shock and propagating in the equatorial plane through the interplanetary medium. We derive spectra for protons, oxygen, and iron ions, together with their time-intensity profiles at 1 AU. Our modeling results show reasonable agreement with in situ measurements by ACE, STEREO, GOES, and SAMPEX for this event. We numerically estimate the Fe/O abundance ratio and discuss the physics underlying a mixed SEP event. We point out that the flare population is as important as shock geometry changes during shock propagation for modeling time-intensity profiles and spectra at 1 AU. The combined effects of seed population and shock geometry will be examined in the framework of an extended PATH code in future modeling efforts.

  14. The interplanetary and solar magnetic field sector structures, 1962 - 1968

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1972-01-01

    The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.

  15. Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.

    2001-11-01

    Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.

  16. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Xiong, Ming; Zheng, Huinan; Wu, S. T.; Wang, Yuming; Wang, Shui

    2007-11-01

    Numerical studies of the interplanetary "multiple magnetic clouds (Multi-MC)" are performed by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Both slow MC1 and fast MC2 are initially emerged along the heliospheric equator, one after another with different time intervals. The coupling of two MCs could be considered as the comprehensive interaction between two systems, each comprising of an MC body and its driven shock. The MC2-driven shock and MC2 body are successively involved into interaction with MC1 body. The momentum is transferred from MC2 to MC1. After the passage of MC2-driven shock front, magnetic field lines in MC1 medium previously compressed by MC2-driven shock are prevented from being restored by the MC2 body pushing. MC1 body undergoes the most violent compression from the ambient solar wind ahead, continuous penetration of MC2-driven shock through MC1 body, and persistent pushing of MC2 body at MC1 tail boundary. As the evolution proceeds, the MC1 body suffers from larger and larger compression, and its original vulnerable magnetic elasticity becomes stiffer and stiffer. So there exists a maximum compressibility of Multi-MC when the accumulated elasticity can balance the external compression. This cutoff limit of compressibility mainly decides the maximally available geoeffectiveness of Multi-MC because the geoeffectiveness enhancement of MCs interacting is ascribed to the compression. Particularly, the greatest geoeffectiveness is excited among all combinations of each MC helicity, if magnetic field lines in the interacting region of Multi-MC are all southward. Multi-MC completes its final evolutionary stage when the MC2-driven shock is merged with MC1-driven shock into a stronger compound shock. With respect to Multi-MC geoeffectiveness, the evolution stage is a dominant factor, whereas the collision intensity is a subordinate one. The magnetic elasticity, magnetic helicity of each MC, and compression between each other are the key physical factors for the formation, propagation, evolution, and resulting geoeffectiveness of interplanetary Multi-MC.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian

    We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtainedmore » concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the observer; and (3) our approach to comparing wide-angle heliospheric imaging observations with interplanetary radio type II bursts provides a novel tool in investigating CME propagation characteristics. Future CME observations and space weather forecasting are discussed based on these results.« less

  18. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  19. Solar-terrestrial models and application software

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1990-01-01

    The empirical models related to solar-terrestrial sciences are listed and described which are available in the form of computer programs. Also included are programs that use one or more of these models for application specific purposes. The entries are grouped according to the region of the solar-terrestrial environment to which they belong and according to the parameter which they describe. Regions considered include the ionosphere, atmosphere, magnetosphere, planets, interplanetary space, and heliosphere. Also provided is the information on the accessibility for solar-terrestrial models to specify the magnetic and solar activity conditions.

  20. Microphysics of Waves and Instabilities in the Solar Wind and their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph (Technical Monitor); Habbal, Shadia Rifai

    2004-01-01

    Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored (1) the role of proton temperature anisotropy in the expansion of the solar wind, (2) the role of plasma parameters at the coronal base in the formation of high speed solar wind streams at mid-latitudes, and (3) the heating of coronal loops.

  1. Autonomous System for MISSE Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.; Lash, T. J.; Kinard, W. H.; Bull, K.; deGeest, F.

    2001-01-01

    The Materials International Space Station Experiment (MISSE) is scheduled to be deployed during the summer of 2001. This experiment is a cooperative endeavor by NASA-LaRC, NASA-GRC, NASA MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials.

  2. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 3. Deflection of the Velocity Vector

    NASA Astrophysics Data System (ADS)

    Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.

    2018-06-01

    This work is a continuation of our previous articles (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015 and Yermolaev et al. in Solar Phys. 292, 193, 2017), which describe the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs, including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). Changes in the longitude angle, φ, in CIRs from -2 to 2° agree with earlier results ( e.g. Gosling and Pizzo, 1999). We have also analyzed the average temporal profiles of the bulk velocity angles in sheaths and ICMEs. We have found that the angle φ in ICMEs changes from 2 to -2°, while in sheaths it changes from -2 to 2° (similar to the change in CIRs), i.e. the angle in CIRs and sheaths deflects in the opposite sense to ICMEs. When averaging the latitude angle θ on all the intervals of the chosen SW types, the angle θ is almost constant at {˜} 1°. We made for the first time a selection of SW events with increasing and decreasing θ and found that the average θ temporal profiles in the selected events have the same "integral-like" shape as for φ. The difference in φ and θ average profiles is explained by the fact that most events have increasing profiles for the angle in the ecliptic plane as a result of solar rotation, while for the angle in the meridional plane, the numbers of events with increasing and decreasing profiles are equal.

  3. Development and Transition of the Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Zank, G.

    2014-01-01

    We outline a plan to develop and transition a physics based predictive toolset called The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 Astronomical Units; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements. The described transition plan is based on a well established approach developed in the Earth Science discipline that ensures that the customer has a tool that meets their needs

  4. Observations of interactions between interplanetary and geomagnetic fields

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1973-01-01

    Magnetospheric effects associated with variations of the north-south component of the interplanetary magnetic field are examined in light of recent recent experimental and theoretical results. Although the occurrence of magnetospheric substorms is statistically related to periods of southward interplanetary magnetic field, the details of the interaction are not understood. In particular, attempts to separate effects resulting directly from the interaction between the interplanetary and geomagnetic fields from those associated with substorms have produced conflicting results. The transfer of magnetic flux from the dayside to the nightside magnetosphere is evidenced by equatorward motion of the polar cusp and increases of the magnetic energy density in the lobes of the geomagnetic tail. The formation of a macroscopic X-type neutral line at tail distances less than 35 R sub E appears to be a substorm phenomenon.

  5. Link between interplanetary & cometary dust: Polarimetric observations and space studies with Rosetta & Eye-Sat

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc

    Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.

  6. Definition of parameters of daily anisotropy of cosmic rays according to the world network of neutron monitors

    NASA Astrophysics Data System (ADS)

    Grigoryev, V. G.; Starodubtsev, S. A.; Potapova, V. D.

    2013-02-01

    In our previous works we have created the method of determination of parameters of cosmic ray daily anisotropy in the interplanetary environment based on the data provided by only single station - cosmic ray spectrograph named after A.I.Kuzmin. This method allows to predict the ingress of the Earth into large-scale solar wind disturbances with a probability of more than 70% and in advance time of about from several hours up to 2 days. Now it became possible to use the data of the neutron monitor networks, which can be seen in the neutron monitor database (NMDB) in real time. In this case the well-known method of global survey is applied for determination of cosmic ray anisotropy. Usage of the data of the cosmic ray station network allows to determine parameters of daily cosmic ray anisotropy with a greater accuracy.

  7. The interplanetary Internet

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    2000-01-01

    Architectural design of the interplanetary internet is now underway and prototype flight testing of some of the candidate protocols is anticipated within a year. This talk will describe the current status of the project.

  8. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  9. The Structure of Shocks in the Very Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.

    2018-02-01

    The Voyager 1 magnetometer has detected several shock waves in the very local interstellar medium (VLISM). Interplanetary shock waves can be transmitted across the heliopause (HP) into the VLISM. The first in situ shock observed by Voyager 1 inside the VLISM was remarkably broad and had properties different than those of shocks inside the heliosphere. We present a model of the 2012 VLISM shock, which was observed to be a weak, quasi-perpendicular, low magnetosonic Mach number, low beta, and subcritical shock. Although the heliosphere is a collisionless environment, we show that the VLISM is collisional with respect to the thermal plasma, and that the thermal collisions introduce dissipative terms such as heat conduction and viscosity. The structure of the VLISM shock is determined by thermal proton–proton collisions. VLISM pickup ions (PUIs) do not introduce a significant pressure or dissipation through the shock transition, meaning that the VLISM shock is not mediated by PUIs but only by the thermal gas and magnetic field. Therefore, VLISM shocks are controlled by particle collisions and not by wave–particle interactions. We find that the weak VLISM shock is very broad with a thickness of about 0.12 au, corresponding to the characteristic thermal heat conduction scale length.

  10. Carl Sagan and Joseph Shklovsky: Intelligent Life in the Universe

    NASA Astrophysics Data System (ADS)

    Kurt, Vladimir

    J. S. Shklovsky and Carl Sagan played an outstanding role in modern astronomy. Their names are well known not only to professional astronomers, but also to millions of educated people in many countries, which are interested in modern state of science research. Among these trends of modern science, which are difficult to define, are such problems, as the creation of Solar system, the origin of life on Earth, the evolution of living organisms on Earth from the simplest viruses to Homo Sapiens, the evolution of intelligence and technology. Finally, both outstanding scientists were deeply interested in the problem of SETI (Search Extraterrestrial Intelligence), i.e. search of extraterrestrial civilizations and methods of making contacts with them. And both scientists were high professionals in their fields. Joseph Shklovsky was a theoretical astronomer in all fields of modern astronomy (geophysics and physics of the upper atmosphere of the Earth, Sun and Solar Corona, Interplanetary Medium and Solar Wind, Interstellar Medium, Supernova and their remnants, the Galaxy and galaxies, Quasars and Cosmology). There is hardly a field in modern astrophysics (except perhaps the theory of the interior structure of stars), where Joseph Shklovsky has not l a bright stamp of his talent…

  11. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  12. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  13. Transverse Vibration of Tapered Single-Walled Carbon Nanotubes Embedded in Viscoelastic Medium

    NASA Astrophysics Data System (ADS)

    Lei, Y. J.; Zhang, D. P.; Shen, Z. B.

    2017-12-01

    Based on the nonlocal theory, Euler-Bernoulli beam theory and Kelvin viscoelastic foundation model, free transverse vibration is studied for a tapered viscoelastic single-walled carbon nanotube (visco-SWCNT) embedded in a viscoelastic medium. Firstly, the governing equations for vibration analysis are established. And then, we derive the natural frequencies in closed form for SWCNTs with arbitrary boundary conditions by applying transfer function method and perturbation method. Numerical results are also presented to discuss the effects of nonlocal parameter, relaxation time and taper parameter of SWCNTs, and material property parameters of the medium. This study demonstrates that the proposed model is available for vibration analysis of the tapered SWCNTs-viscoelastic medium coupling system.

  14. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  15. One-Year Mission on ISS Is a Step Towards Interplanetary Missions.

    PubMed

    Fomina, Elena V; Lysova, Nataliya Yu; Kukoba, Tatyana B; Grishin, Alexey P; Kornienko, Mikhail B

    2017-12-01

    in the 1990s Russian cosmonauts performed six long-duration missions on Mir that went from 312 to 438 d. In 2015 a mission on the International Space Station that continued for 340 d, 8 h, and 47 min was successfully accomplished. It was a joint U.S./Russian mission completed by Scott Kelly and Mikhail Kornienko (KM). The intensity of in-flight physical exercises and postflight motor changes were measured in KM and in the six cosmonauts who made shorter flights (173.3 ± 13.8 d) on ISS while using similar countermeasures against the adverse effects of microgravity. It was found that both parameters varied similarly in spite of the difference in the duration of ISS missions. KM maintained adequate physical performance throughout the entire flight; moreover, the level of postflight changes he displayed was comparable to that recorded in the group of cosmonauts who completed 6-mo missions on ISS. In summary, the 1-yr mission has clearly demonstrated the high efficacy of the countermeasures used by KM.Fomina EV, Lysova NYu, Kukoba TB, Grishin AP, Kornienko MB. One-year mission on ISS is a step towards interplanetary missions. Aerosp Med Hum Perform. 2017; 88(12):1094-1099.

  16. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.

    PubMed

    Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank

    2008-01-25

    The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

  17. Interplanetary magnetic field effects on high latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1985-01-01

    Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.

  18. Study of Travelling Interplanetary Phenomena Report

    NASA Astrophysics Data System (ADS)

    Dryer, Murray

    1987-09-01

    Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.

  19. Electron dropout echoes induced by interplanetary shock: A statistical study

    NASA Astrophysics Data System (ADS)

    Liu, Z. Y.; Zong, Q.-G.; Hao, Y. X.; Zhou, X.-Z.; Ma, X. H.; Liu, Y.

    2017-08-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the outer radiation belt region has been investigated systematically. The electron moderate dropout and its echoes are usually found for higher-energy (>300 keV) channel fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. The electron dropout echo events are found to be usually associated with the interplanetary shocks arrival. The 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on the Los Alamos National Laboratory satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the ˜1 min electric field impulse induced by the interplanetary shock produces a more pronounced inward migration of electrons at the duskside, resulting in the observed duskside moderate dropout of electron flux and its consequent echoes.

  20. Relation of large-scale coronal X-ray structure and cosmic rays. I - Sources of solar wind streams as defined by X-ray emission and H-alpha absorption features

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; Nolte, J. T.; Sullivan, J. D.; Lazarus, A. J.; Mcintosh, P. S.; Gold, R. E.; Roelof, E. C.

    1975-01-01

    The large-scale structure of the corona and the interplanetary medium during Carrington rotations 1601-1607 is discussed relative to recurrent high-speed solar wind streams and their coronal sources. Only streams A, C, D, and F recur on more than one rotation. Streams A and D are associated with coronal holes, while C and F originate in the high corona (20-50 solar radii) over faint X-ray emissions. The association of the streams with holes is confirmed by earlier findings that there are no large equatorial holes without an associated high-speed stream and that the area of the equatorial region of coronal holes is highly correlated with the maximum velocity observed in the associated stream near 1 AU.

  1. Lyman-alpha observations in the vicinity of Saturn with Copernicus

    NASA Technical Reports Server (NTRS)

    Barker, E.; Cazes, S.; Emerich, C.; Vidal-Madjar, A.; Owen, T.

    1980-01-01

    For the first time, high-resolution Ly-alpha observations of the Saturn vicinity were completed with the Princeton spectrometer on board the Copernicus satellite. They showed that near a minimum solar activity the emissions related to several sources are 250 + or - 50 rayleighs for the interplanetary medium in a near-downwind direction, less than 100 rayleighs for the rings, 200 + or - 100 rayleighs for a torus linked to the Titan orbit, and 1400 + or - 450 rayleighs for the disk of Saturn. These results induce some constraints through the corresponding theoretical evaluations: the B ring as the primary source of the atoms for the ring emissions; an efficient production mechanism for hydrogen atoms in the Titan torus; and a slightly larger eddy diffusion coefficient in the Saturn atmosphere than in the Jupiter atmosphere near solar minimum.

  2. STEREO/Waves Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Bougeret, J.; Bale, S. D.; Goetz, K.; Kaiser, M. L.

    2005-05-01

    We present the education and public outreach plan and activities of the STEREO Waves (aka SWAVES) investigation. SWAVES measures radio emissions from the solar corona, interplanetary medium, and terrestrial magnetosphere, as well as in situ waves in the solar wind. In addition to the web site components that display stereo/multi-spacecraft data in a graphical form and explain the science and instruments, we will focus on the following three areas of EPO: class-room demonstrations using models of the STEREO spacecraft with battery powered radio receivers (and speakers) to illustrate spacecraft radio direction finding, teacher developed and tested class-room activities using SWAVES solar radio observations to motivate geometry and trigonometry, and sound-based delivery of characteristic radio and plasma wave events from the SWAVES web site for accessibility and esthetic reasons. Examples of each element will be demonstrated.

  3. Control of the Earth's electric field intensity through solar wind modulation of galactic cosmic radiation: Support for a proposed atmospheric electrical sun-weather mechanism

    NASA Technical Reports Server (NTRS)

    Markson, R.

    1980-01-01

    The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.

  4. The radial gradients and collisional properties of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.

    1978-01-01

    The plasma electron detector on Mariner 10 is used to obtain measurements of electron density and temperature in the interplanetary medium between heliocentric distances of 0.85 and 0.45 AU. The observations show quantitatively that the core of the electron distribution function can be described as collisional at least for radial distances within 1 AU, since with a very few well-marked exceptions associated with high-speed streams, the Coulomb collisional momentum relaxation length is less than the density scale height at all times and all radial distances at which data were obtained. It is found that the Coulomb energy exchange collisions between the core and the (test) halo population are negligible. The power law exponent of the core temperature is about -0.3, whereas the halo temperature is almost independent of heliocentric distance.

  5. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  6. Interplanetary Parameters Leading to Relativistic Electron Enhancement and Persistent Depletion Events at Geosynchronous Orbit and Potential for Prediction

    NASA Astrophysics Data System (ADS)

    Pinto, Victor A.; Kim, Hee-Jeong; Lyons, Larry R.; Bortnik, Jacob

    2018-02-01

    We have identified 61 relativistic electron enhancement events and 21 relativistic electron persistent depletion events during 1996 to 2006 from the Geostationary Operational Environmental Satellite (GOES) 8 and 10 using data from the Energetic Particle Sensor (EPS) >2 MeV fluxes. We then performed a superposed epoch time analysis of the events to find the characteristic solar wind parameters that determine the occurrence of such events, using the OMNI database. We found that there are clear differences between the enhancement events and the persistent depletion events, and we used these to establish a set of threshold values in solar wind speed, proton density and interplanetary magnetic field (IMF) Bz that can potentially be useful to predict sudden increases in flux. Persistent depletion events are characterized by a low solar wind speed, a sudden increase in proton density that remains elevated for a few days, and a northward turning of IMF Bz shortly after the depletion starts. We have also found that all relativistic electron enhancement or persistent depletion events occur when some geomagnetic disturbance is present, either a coronal mass ejection or a corotational interaction region; however, the storm index, SYM-H, does not show a strong connection with relativistic electron enhancement events or persistent depletion events. We have tested a simple threshold method for predictability of relativistic electron enhancement events using data from GOES 11 for the years 2007-2010 and found that around 90% of large increases in electron fluxes can be identified with this method.

  7. Statistical Modeling of Extreme Values and Evidence of Presence of Dragon King (DK) in Solar Wind

    NASA Astrophysics Data System (ADS)

    Gomes, T.; Ramos, F.; Rempel, E. L.; Silva, S.; C-L Chian, A.

    2017-12-01

    The solar wind constitutes a nonlinear dynamical system, presenting intermittent turbulence, multifractality and chaotic dynamics. One characteristic shared by many such complex systems is the presence of extreme events, that play an important role in several Geophysical phenomena and their statistical characterization is a problem of great practical relevance. This work investigates the presence of extreme events in time series of the modulus of the interplanetary magnetic field measured by Cluster spacecraft on February 2, 2002. One of the main results is that the solar wind near the Earth's bow shock can be modeled by the Generalized Pareto (GP) and Generalized Extreme Values (GEV) distributions. Both models present a statistically significant positive shape parameter which implyies a heavy tail in the probability distribution functions and an unbounded growth in return values as return periods become too long. There is evidence that current sheets are the main responsible for positive values of the shape parameter. It is also shown that magnetic reconnection at the interface between two interplanetary magnetic flux ropes in the solar wind can be considered as Dragon Kings (DK), a class of extreme events whose formation mechanisms are fundamentally different from others. As long as magnetic reconnection can be classified as a Dragon King, there is the possibility of its identification and even its prediction. Dragon kings had previously been identified in time series of financial crashes, nuclear power generation accidents, stock market and so on. It is believed that they are associated with the occurrence of extreme events in dynamical systems at phase transition, bifurcation, crises or tipping points.

  8. CORRECTING FOR INTERPLANETARY SCATTERING IN VELOCITY DISPERSION ANALYSIS OF SOLAR ENERGETIC PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laitinen, T.; Dalla, S.; Huttunen-Heikinmaa, K.

    2015-06-10

    To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energeticmore » protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA.« less

  9. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  10. Testing Fundamental Gravity with Interplanetary Laser Ranging

    NASA Astrophysics Data System (ADS)

    Turyshev, S. G.; Shao, M.; Hahn, I.

    2018-02-01

    Very accurate range measurements with the Interplanetary Laser Ranging Terminal (ILRT) will push high-precision tests of astrophysics/gravitation into a new regime. It could be used for navigation and investigations in planetary/lunar science.

  11. First Solar Power Sail Demonstration by IKAROS

    NASA Astrophysics Data System (ADS)

    Mori, Osamu; Sawada, Hirotaka; Funase, Ryu; Morimoto, Mutsuko; Endo, Tatsuya; Yamamoto, Takayuki; Tsuda, Yuichi; Kawakatsu, Yasuhiro; Kawaguchi, Jun'ichiro; Miyazaki, Yasuyuki; Shirasawa, Yoji; Demonstration Team; Solar Sail Working Group, Ikaros

    The Japan Aerospace Exploration Agency (JAXA) will make the world's first solar power sail craft demonstration of photon propulsion and thin film solar power generation during its interplanetary cruise by IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The spacecraft deploys and spans a membrane of 20 meters in diameter taking the advantage of the spin centrifugal force. The spacecraft weighs approximately 310kg, launched together with the agency's Venus Climate Orbiter, AKATSUKI in May 2010. This will be the first actual solar sail flying an interplanetary voyage.

  12. Influences of the Driver and Ambient Medium Characteristics on the Formation of Shocks in the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Nat, Gopalswamy; Hong, Xie; Seiji, Yashiro; Pertti, Makela; Sachiko, Akiyama

    2010-01-01

    Traveling interplanetary (IP) shocks were discovered in the early 1960s, but their solar origin has been controversial. Early research focused on solar flares as the source of the shocks, but when coronal mass ejections (CMEs) were discovered, it became clear that fast CMEs clearly can drive the shocks. Type II radio bursts are excellent signatures of shocks near the Sun. The close correspondence between type II radio bursts and solar energetic particles (SEPs) makes it clear that the same shock accelerates ions and electrons. A recent investigation involving a large number of IP shocks revealed that about 35% of IP shocks do not produce type II bursts or SEPs. Comparing these radio quiet (RQ) shocks with the radio loud (RL) ones revealed some interesting results: (1) there is no evidence for blast waves, in that all IP shocks can be attributed to CMEs, (2) a small fraction (20%) of RQ shocks is associated with ion enhancements at the shocks when they move past the observing spacecraft, (3) the primary difference between the RQ and RL shocks can be traced to the different kinematic properties of the associated CMEs and the variation of the characteristic speeds of the ambient medium, and (4) the shock properties measured at 1 AU are not too different for the RQ and RL cases due to the interaction of the shock driver with the IP medium that seems to erase the difference.

  13. Nanodust released in interplanetary collisions

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.

    2018-07-01

    The lifecycle of near-Earth objects (NEOs) involves a collisional cascade that produces ever smaller debris ending with nanoscale particles which are removed from the solar system by radiation pressure and electromagnetic effects. It has been proposed that the nanodust clouds released in collisions perturb the background interplanetary magnetic field and create the interplanetary field enhancements (IFEs). Assuming that this IFE formation scenario is actually operating, we calculate the interplanetary collision rate, estimate the total debris mass carried by nanodust, and compare the collision rate with the IFE rate. We find that to release the same amount of nanodust, the collision rate is comparable to the observed IFE rate. Besides quantitatively testing the association between the collisions evolving large objects and giant solar wind structures, such a study can be extended to ranges of smaller scales and to investigate the source of moderate and small solar wind perturbations.

  14. Bi-directional streaming of solar wind electrons greater than 80 eV - ISEE evidence for a closed-field structure within the driver gas of an interplanetary shock

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Gosling, J. T.; Zwickl, R. D.

    1981-01-01

    In near time coincidence with the arrival of helium enriched plasma driving the shock wave disturbance of November 12-13, 1978, strong bi-directional streaming of solar wind electrons greater than about 80 eV was observed with Los Alamos instrumentation on ISEE 3. The streaming persisted for many hours simultaneously parallel and anti-parallel to the interplanetary magnetic field which was directed roughly perpendicular to the sun-satellite line. This example of bidirectional streaming cannot be explained by field line connection to the earth's bow shock or the outward propagating interplanetary shock which passed ISEE 3 approximately 16 hours earlier. The event is explained if the local interplanetary field was a part of a magnetic bottle rooted at the sun or a disconnected loop propagating outward.

  15. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.

  16. The influence of the energy emitted by solar flare soft X-ray bursts on the propagation of their associated interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pinter, S.; Dryer, M.

    1985-01-01

    The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.

  17. Direct Measurements of Interplanetary Dust Particles in the Vicinity of Earth

    NASA Technical Reports Server (NTRS)

    McCracken, C. W.; Alexander, W. M.; Dubin, M.

    1961-01-01

    The direct measurements made by the Explorer VIII satellite provide the first sound basis for analyzing all available direct measurements of the distribution of interplanetary dust particles. The model average distribution curve established by such an analysis departs significantly from that predicted by the (uncertain) extrapolation of results from meteor observations. A consequence of this difference is that the daily accretion of interplanetary particulate matter by the earth is now considered to be mainly dust particles of the direct measurements range of particle size. Almost all the available direct measurements obtained with microphone systems on rockets, satellites, and spacecraft fit directly on the distribution curve defined by Explorer VIII data. The lack of reliable datum points departing significantly from the model average distribution curve means that available direct measurements show no discernible evidence of an appreciable geocentric concentration of interplanetary dust particles.

  18. Badhwar - O'Neill galactic cosmic ray model update based on Advanced Composition Explorer (ACE) energy spectra from 1997 to present

    NASA Astrophysics Data System (ADS)

    O'Neill, P.

    Accurate knowledge of the interplanetary Galactic Cosmic Ray (GCR) environment is critical to planning and operating manned space flight to the moon and beyond. In the early 1990's Badhwar and O'Neill developed a GCR model based on balloon and satellite data from 1954 to 1992. This model accurately accounts for solar modulation of each element (hydrogen -- iron) by propagating the Local Interplanetary Spectrum (LIS) of each element through the heliosphere by solving the Fokker -- Planck diffusion, convection, energy loss boundary value problem. A single value of the deceleration parameter describes the modulation of each of the elements and determines the GCR energy spectrum at any distance from the sun for a given level of solar cycle modulation. Since August 1997 the Advanced Composition Explorer (ACE) stationed at the Earth-Sun L1 libration point (about 1.5 million km from earth) has provided GCR energy spectra for boron - nickel. The Cosmic Ray Isotope Spectrometer (CRIS) provides ``quiet time'' spectra in the range of highest modulation ˜ 50 -- 500 MeV / nucleon. The collection power of CRIS is much larger than any of the previous satellite or balloon GCR instruments: 250 cm**2 --sr compared to <10 cm**2-sr! This new data was used to update the original Badhwar -- O'Neill Model and greatly improve the interplanetary GCR prediction accuracy. When the new -- highly precise ACE CRIS data was analyzed it became obvious that the LIS spectrum for each element precisely fit a very simple analytical energy power-law that was suggested by Leonard Fisk over 30 years ago. The updated Badhwar -- O'Neill Model is shown to be accurate to within 5%, for elements such as oxygen, which have sufficient abundance that over 1000 ions are captured in each energy bin within a 30 day period. The paper clearly demonstrates the statistical relationship between the number of ions captured by the instrument in a given time and the precision of the model for each element. This is a significant model upgrade that should provide interplanetary mission planners with highly accurate GCR environment data for radiation protection for astronauts and radiation hardness assurance for electronic equipment.

  19. Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.

    Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.

  20. Organic compounds in circumstellar and interstellar environments.

    PubMed

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  1. Solar Wind 0.1-1 keV Electrons in the Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Wang, L.; Tao, J.; Li, G.; Wimmer-Schweingruber, R. F.; Jian, L. K.; He, J.; Tu, C.; Tian, H.; Bale, S. D.

    2017-12-01

    Here we present a statistical study of the 0.1-1 keV suprathermal electrons in the undisturbed and compressed slow/fast solar wind, for the 71 corotating interaction regions (CIRs) with good measurements from the WIND 3DP and MFI instruments from 1995 to 1997. For each of these CIRs, we separate the strahl and halo electrons based on their different behaviors in pitch angle distributions in the undisturbed and compressed solar wind. We fit both the strahl and halo energy spectra to a kappa function with an index κ index and effective temperature Teff, and calculate the pitch-angle width at half-maximum (PAHM) of the strahl population. We also integrate the electron measurements between 0.1 and 1.0 keV to obtain the number density n and average energy Eavg for the strahl and halo populations. We find that for both the strahl and halo populations within and around these CIRs, the fitted κ index strongly correlates with Teff, similar to the quiet-time solar wind (Tao et al., ApJ, 2016). The number density of both the strahl and halo shows a strong positive correlation with the electron core temperature. The strahl number density ns is correlated with the magnitude of interplanetary magnetic field, and the strahl PAHM width is anti-correlated with the solar wind speed. These results suggest that the origin of strahl electrons from the solar corona is likely related to the electron core temperature and magnetic field strength, while the production of halo electrons in the interplanetary medium could depend on the solar wind velocity.

  2. Operating CFDP in the Interplanetary Internet

    NASA Technical Reports Server (NTRS)

    Burleigh, S.

    2002-01-01

    This paper examines the design elements of CCSDS File Delivery Protocol and Interplanetary Internet technologies that will simplify their integration and discusses the resulting new capabilities, such as efficient transmission of large files via multiple relay satellites operating in parallel.

  3. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Theory of four-wave mixing in photorefractive media when the response of a medium is nonlinear in respect of the modulation parameter

    NASA Astrophysics Data System (ADS)

    Zozulya, A. A.

    1988-12-01

    A theoretical model is constructed for four-wave mixing in a photorefractive crystal where a transmission grating is formed by the drift-diffusion nonlinearity mechanism in the absence of an external electrostatic field and the response of the medium is nonlinear in respect of the modulation parameter. A comparison is made with a model in which the response of the medium is linear in respect of the modulation parameter. Theoretical models of four-wave and two-wave mixing are also compared with experiments.

  4. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  5. LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1992-01-01

    The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF, corresponding to a V(infinity) Earth approach velocity = 20.9 km/s. Normally resolved average impact velocities on LDEF's cardinal point faces are shown. As 'excess' flux on the east, north, and south faces is observed, compatible with an Earth orbital component below some 5 microns in particle diameter.

  6. Comparison of the WSA-ENLIL model with three CME cone types

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.; Na, H.

    2013-07-01

    We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.Abstract (2,250 Maximum Characters): We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.

  7. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  8. Properties of ΣQ*, ΞQ* and ΩQ* heavy baryons in cold nuclear matter

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Er, N.

    2018-02-01

    The in-medium properties of the heavy spin-3/2 ΣQ*, ΞQ* and ΩQ* baryons with Q being b or c quark are investigated. The shifts in some spectroscopic parameters of these particles due to the saturated cold nuclear matter are calculated. The variations of those parameters with respect to the changes in the density of the cold nuclear medium are studied, as well. It is observed that the parameters of ΣQ* baryons are considerably affected by the nuclear matter compared to the ΞQ* and ΩQ* particles that roughly do not see the medium. The results obtained may be used in analyses of the data to be provided by the in-medium experiments like PANDA.

  9. Interplanetary Trajectories, Encke Method (ITEM)

    NASA Technical Reports Server (NTRS)

    Whitlock, F. H.; Wolfe, H.; Lefton, L.; Levine, N.

    1972-01-01

    Modified program has been developed using improved variation of Encke method which avoids accumulation of round-off errors and avoids numerical ambiguities arising from near-circular orbits of low inclination. Variety of interplanetary trajectory problems can be computed with maximum accuracy and efficiency.

  10. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  11. Mars Science Laboratory Interplanetary Navigation Performance

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Kruizinga, Gerhard; Wong, Mau

    2013-01-01

    The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission.

  12. Geometry of the diffusive propagation region in the August 14, 1982 solar electron event

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.

    1985-01-01

    On August 14, 1982, relativistic electrons arrived promptly after an impulsive gamma ray flare, indicating that very little scattering was taking place in interplanetary space. By ignoring anisotropy data the time profile of the event is well described by interplanetary diffusion except for the derived particle injection time. This discrepancy provides independent evidence that the particles are diffusing in a volume close to the Sun rather than in interplanetary space. The flux at maximum method of determining the number of particles produced is still a good approximation when appropriately applied.

  13. Characteristics of the interplanetary shocks formed by a sudden increase in the velocity of the solar wind from a coronal hole

    NASA Technical Reports Server (NTRS)

    Bravo, S.

    1995-01-01

    Coronal holes are the sources of the solar wind and, according to recent YOKOH observations, may undergo rapid changes which are associated with manifestations of explosive solar activity. Rapid changes in a hole's structure will produce rapid changes in the characteristics of the wind emerging from it and, in the particular c se of a sudden increase in wind velocity, this may lead to the formation of an interplanetary shock. We discuss the characteristics of shocks formed in such a way and compare them with interplanetary observations.

  14. MHD Simulation of the Interplanetary Environment in the Ecliptic Plane during the 3-9 February 1986 Solar and Geomagnetic Activity.

    DTIC Science & Technology

    1986-09-01

    AD-R173 822 MWD SIMULATION OF THE INTERPLANETARY ENVIRONMENT IN THE 1/1 ECLIPTIC PLRNE DU (U) AIR FORCE GEOPHYSICS LAS HANSCOM AFB MA M DRYER ET AL...RESOLUTION TEST CHART M4rtqOAI RIM) Of STANDARMS 96I-A AFGL-TR-86-0189 M Simulation of the Interplanetary Environment in the Ecliptic Plane During the 3-9...CLASSIFICATION OF THIS PAGE Cant of Block 11: in the Ecliptic Plane During the 3-9 February 1986 Solar and Geomagnetic Activity Cant of Block 19 (ABSTRACT

  15. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  16. Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance

    NASA Technical Reports Server (NTRS)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-01-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  17. Organic matter on the early surface of Mars: An assessment of the contribution by interplanetary dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.

    1993-01-01

    Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.

  18. Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry

    NASA Astrophysics Data System (ADS)

    Pan, Xinpeng; Zhang, Guangzhi; Yin, Xingyao

    2018-01-01

    Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen's weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen's WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen's WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen's WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.

  19. The Wavelength Dependence of the Lunar Phase Curve as Seen by the LRO LAMP

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Retherford, K. D.; Greathouse, T. K.; Hendrix, A. R.; Mandt, K.; Gladstone, R.; Cahill, J. T.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.

    2016-12-01

    The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) provides global coverage of both nightside and dayside of the Moon in the far ultraviolet (FUV) wavelengths. The nightside observations use roughly uniform diffuse illumination sources from interplanetary medium Lyman-α sky glow and UV-bright stars so that traditional photometric corrections do not apply. In contrast, the dayside observations use sunlight as its illumination source where bidirectional reflectance is measured. The bidirectional reflectance is dependent on the incident, emission, and phase angles as well as the soil properties. Thus the comparisons of dayside mapping and nightside mapping techniques offer a method for cross-comparing the photometric correction factors because the observations are made under different lighting and viewing conditions. Specifically, the nightside data well constrain the single-scattering coefficient. We'll discuss the wavelength dependence of the lunar phase curve as seen by the LAMP instrument in dayside data. Our preliminary results indicate that the reflectance in the FUV wavelengths decreases with the increasing phase angles from 0° to 90°, similar to the phase curve in the UV-visible wavelengths as studied by Hapke et al. (2012) using LRO wide angle camera (WAC) data, among other visible-wavelength lunar studies. Particularly, we'll report how coherent backscattering and shadow hiding contribute to the opposition surge, given the fact that the albedo at FUV wavelengths is extremely low and thus multiple scattering is significantly less important. Finally, we'll report the derived Hapke parameters at FUV wavelengths for our study areas.

  20. Exospheric Escape: A Parametrical Study

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Burger, Matthew H.; Farrell, William M.

    2017-01-01

    The study of exospheres can help us understand the long-term loss of volatiles from planetary bodies due to interactions of planets, satellites, and small bodies with the interplanetary medium, solar radiation, and internal forces including diffusion and outgassing. Recent evidence for water and OH on the Moon has spurred interest in processes involving chemistry and sequestration of volatile species at the poles and in voids. In recent years, NASA has sent spacecraft to asteroids including Vesta and Ceres, and ESA sent Rosetta to comet 67P/Churyumov-Gerasimenko and the asteroids Lutetia and Steins. Japan's Hayabusa spacecraft returned a sample from asteroid Itakowa, and OSIRIS-REX will return a sample from a primitive asteroid, Bennu, to Earth. In a surface-bounded exosphere, the gases are derived from the surface and thus reflect the composition of the body's regolith, although not in a one-to-one ratio. Observation of an escaping exosphere, termed a corona, is challenging. We have therefore embarked on a parametrical study of exospheres as a function of mass of the exospheric species, mass of the primary body and source velocity distribution, specifically thermal (Maxwell-Boltzmann) and sputtering. The goal is to provide a quick look to determine under what conditions and for what mass of the primary body the species of interest are expected to be bound or escaping and to quickly estimate the observability of exospheric species. This work does not provide a comprehensive model but rather serves as a starting point for further study. These parameters will be useful for mission planning as well as for students beginning a study of planetary exospheres.

  1. Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum

    NASA Astrophysics Data System (ADS)

    Xiong, Ming; Davies, Jackie A.; Li, Bo; Yang, Liping; Liu, Ying D.; Xia, Lidong; Harrison, Richard A.; Keiji, Hayashi; Li, Huichao

    2017-07-01

    Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.

  2. Status of the Stardust ISPE and the Origin of Four Interstellar Dust Candidates

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Ansari, A.; Bajt, S.; Bastien, R. S.; Bassim, N.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.; hide

    2012-01-01

    Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.

  3. Physical processes in comets

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.; Huebner, W. F.

    1976-01-01

    The paper discusses physical processes in comets which involve solar and nuclear radial forces that affect the motions of gases and icy grains, gas-phase chemistry very close to the nuclei of large comets near the sun, sublimation of icy grains, dissociation of parent molecules into radicals and of radicals into atoms, and ionization by sunlight and collisions. The composition and dimensions of nuclei are examined along with variations in intrinsic brightness, the nature of volatiles, gas production rates in the coma, characteristics of icy grains in the coma, and the structure of streamers, ion tails, and dust tails. The structure of the coma is described in detail on the basis of spectroscopic observations of several comets. The origin of comets is briefly reviewed together with the relation of comets to earth, the interplanetary complex, and the interstellar medium. Desirable future observations are noted, especially by space missions to comets.

  4. Propulsion of space ships by nuclear explosion

    NASA Astrophysics Data System (ADS)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  5. The magnetic field of saturn: pioneer 11 observations.

    PubMed

    Acuña, M H; Ness, N F

    1980-01-25

    The intrinsic magnetic field of Saturn measured by the high-field fluxgate magnetometer is much weaker than expected. An analysis of preliminary data combined with the preliminary trajectory yield a model for the main planetary field which is a simple centered dipole of moment 0.20 +/- 0.01 gauss-Rs(3) = 4.3 +/- 0.2 x 10(28) gauss-cm(3) (1 Rs = 1 Saturn radius = 60,000 km). The polarity is opposite that of Earth, and, surprisingly, the tilt is small, within 2 degrees +/- 1 degrees of the rotation axis. The equatorial field intensity at the cloud tops is 0.2 gauss, and the polar intensity is 0.56 gauss. The unique moon Titan is expected to be located within the magnetosheath of Saturn or the interplanetary medium about 50 percent of the time because the average subsolar point distance to the magnetosphere is estimated to be 20 Rs, the orbital distance to Titan.

  6. Organic Chemistry in Space

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  7. Treatment of Viscosity in the Shock Waves Observed After Two Consecutive Coronal Mass Ejection Activities CME08/03/2012 and CME15/03/2012

    NASA Astrophysics Data System (ADS)

    Cavus, Huseyin

    2016-11-01

    A coronal mass ejection (CME) is one of the most the powerful activities of the Sun. There is a possibility to produce shocks in the interplanetary medium after CMEs. Shock waves can be observed when the solar wind changes its velocity from being supersonic nature to being subsonic nature. The investigations of such activities have a central place in space weather purposes, since; the interaction of shocks with viscosity is one of the most important problems in the supersonic and compressible gas flow regime (Blazek in Computational fluid dynamics: principles and applications. Elsevier, Amsterdam 2001). The main aim of present work is to achieve a search for the viscosity effects in the shocks occurred after two consecutive coronal mass ejection activities in 2012 (i.e. CME08/03/2012 and CME15/03/2012).

  8. Waves from the Sun: to the 100th anniversary of V.A. Troitskaya's birth

    NASA Astrophysics Data System (ADS)

    Guglielmi, Anatol; Potapov, Alexander

    2017-09-01

    It has been one hundred years since the birth of the outstanding scientist Professor V.A. Troitskaya. Her remarkable achievements in solar-terrestrial physics are widely known. For many years, Valeria A. Troitskaya was the President of the International Association of Geomagnetism and Aeronomy. This article deals with only one aspect of the multifaceted creative activity of V.A. Troitskaya. It relates to the problem of sources of ultra-low frequency (ULF) electromagnetic oscillations and waves outside Earth’s magnetosphere. We were fortunate to work under the leadership of V.A. Troitskaya on this problem. In this paper, we briefly describe the history from the emergence of the idea of the extramagnetospheric origin of dayside permanent ULF oscillations in the late 1960s to the modern quest made by ground and satellite means for ULF waves excited by solar surface oscillations propagating in the interplanetary medium and reaching Earth.

  9. Galactic cosmic ray gradients, field-aligned and latitudinal, among Voyagers 1/2 and IMP-8

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Decker, R. B.; Krimigis, S. M.; Venkatesan, D.; Lazarus, A. J.

    1982-01-01

    The present investigation represents a summary of a comprehensive analysis of the same subject conducted by Roelof et al. (1981). It is pointed out that the tandem earth-Jupiter trajectories of the Voyager 1/2 spacecraft, combined with baseline measurements from the earth-orbiting IMP 7/8 spacecraft, provide the first opportunity for unambiguously separating latitude from radial or field-aligned effects in galactic cosmic ray gradients. Attention is given to the method of data analysis, and the separation of field-aligned and latitudinal gradients. It is found that latitudinal gradients approximately equal to or greater than 1 percent per deg in the cosmic ray intensity were a common feature of the interplanetary medium between 1 and 5 AU in 1977-78. Except in the most disturbed periods, cosmic ray intensities are well-ordered in field-aligned structures.

  10. Three-Dimensional Hybrid-Kinetic Simulations of Alfvénic Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Arzamasskiy, Lev; Kunz, Matthew; Chandran, Benjamin; Quataert, Eliot

    2017-10-01

    The interplanetary medium hosts a solar wind, which contains a broadband turbulent spectrum of large-amplitude Alfvén waves. In this talk, we present results from hybrid-kinetic simulations of this turbulent and essentially collisionless system. We confirm power-law indices obtained in previous analytical and numerical (e.g., gyrokinetic) studies, and carefully explore the location of the spectral break and physics occurring at the ion-Larmor scale. In the low-beta regime, we find evidence of perpendicular ion heating, which we interpret as stochastic heating arising from interactions between ions and strong fluctuations at wavelengths comparable to the ion-Larmor scale. We explore the dependence of ion heating on plasma beta. Finally, we discuss the interpretation of spacecraft measurements of this turbulence by testing the Taylor hypothesis with synthetic spacecraft measurements of our simulation data. This work was supported by NASA Grant NNX16AK09G.

  11. The three-dimensional analysis of hinode polar jets using images from LASCO C2, the STEREO COR2 coronagraphs, and SMEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H.-S.; Jackson, B. V.; Buffington, A.

    2014-04-01

    Images recorded by the X-ray Telescope on board the Hinode spacecraft are used to provide high-cadence observations of solar jetting activity. A selection of the brightest of these polar jets shows a positive correlation with high-speed responses traced into the interplanetary medium. LASCO C2 and STEREO COR2 coronagraph images measure the coronal response to some of the largest jets, and also the nearby background solar wind velocity, thereby giving a determination of their speeds that we compare with Hinode observations. When using the full Solar Mass Ejection Imager (SMEI) data set, we track these same high-speed solar jet responses intomore » the inner heliosphere and from these analyses determine their mass, flow energies, and the extent to which they retain their identity at large solar distances.« less

  12. Carriers of the astronomical 2175 ? extinction feature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J; Dai, Z; Ernie, R

    2004-07-20

    The 2175 {angstrom} extinction feature is by far the strongest spectral signature of interstellar dust observed by astronomers. Forty years after its discovery the origin of the feature and the nature of the carrier remain controversial. The feature is enigmatic because although its central wavelength is almost invariant its bandwidth varies strongly from one sightline to another, suggesting multiple carriers or a single carrier with variable properties. Using a monochromated transmission electron microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV (2175 {angstrom}) feature in submicrometer-sized interstellar grains within interplanetary dust particles (IDPs) collected in the stratosphere.more » The carriers are organic carbon and amorphous silicates that are abundant and closely associated with one another both in IDPs and in the interstellar medium. Multiple carriers rather than a single carrier may explain the invariant central wavelength and variable bandwidth of the astronomical 2175 {angstrom} feature.« less

  13. Physical Origins of Space Weather Impacts: Open Physics Questions

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2011-12-01

    Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.

  14. Characteristics of type III exciters derived from low frequency radio observations

    NASA Technical Reports Server (NTRS)

    Evans, L. G.; Fainberg, J.; Stone, R. G.

    1973-01-01

    Low-frequency radio observations (2.8 MHz to 67 kHz) from the RAE-1 and IMP-6 satellites allow the tracking of type III solar burst exciters out to large distances from the sun (of the order of 1 AU). A study of the interaction processes between the exciter and the interplanetary medium was made using the time-intensity profiles of the radio emission. The change in exciter length with distance from the sun, and the resulting exciter velocity dispersion which can be deduced from this change are investigated. From detailed measurements on 35 simple bursts it is found that the exciter length increases at a faster rate than a constant velocity dispersion would give. The damping of the radio emission is also investigated, and it is concluded that some current theories of the damping mechanism give results which are not consistent with the low-frequency observations.

  15. Determining magnetospheric ULF wave activity from external drivers using the most influential solar wind parameters

    NASA Astrophysics Data System (ADS)

    Bentley, S.; Watt, C.; Owens, M. J.

    2017-12-01

    Ultra-low frequency (ULF) waves in the magnetosphere are involved in the energisation and transport of radiation belt particles and are predominantly driven by the external solar wind. By systematically examining the instantaneous relative contribution of non-derived solar wind parameters and accounting for their interdependencies using fifteen years of ground-based measurements (CANOPUS) at a single frequency and magnetic latitude, we conclude that the dominant causal parameters for ground-based ULF wave power are solar wind speed v, interplanetary magnetic field component Bz and summed power in number density perturbations δNp. We suggest that these correspond to driving by the Kelvin-Helmholtz instability, flux transfer events and direct perturbations from solar wind structures sweeping past. We will also extend our analysis to a stochastic wave model at multiple magnetic latitudes that will be used in future to predict background ULF wave power across the radiation belts in different magnetic local time sectors, and to examine the relative contribution of the parameters v, Bz and var(Np) in these sectors.

  16. Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; hide

    2016-01-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.

  17. Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T.L.; Schwingenschuh, K.; Lichtenegger, H.

    1991-07-01

    The Mars bow shock location and shape have been determined by examining the PHOBOS spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The authors also find that the shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field as expected from the asymmetricmore » propagation velocity of the fast magnetosonic wave. Comparing with earlier mission data, they show that the Mars shock location varies with solar activity. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.« less

  18. The interplanetary exchange of photosynthesis.

    PubMed

    Cockell, Charles S

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  19. Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; McAdams, James

    2011-01-01

    The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.

  20. The search for refractory interplanetary dust particles from preindustrial aged Antarctic ice

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Webb, Susan J.; Thomas, Kathie

    1988-01-01

    In a study of refractory interplanetary dust particles, preindustrial-aged Antarctic ice samples have been collected, melted, and filtered to separate the particle load. Particles containing a significant amount of aluminum, titanium, and/or calcium were singled out for detailed SEM and STEM characterization. The majority of these particles are shown to be volcanic tephra from nearby volcanic centers. Six spherical aggregates were encountered that consist of submicron-sized grains of rutile within polycrystalline cristobalite. These particles are probably of terrestrial volcanic origin, but have not been previously reported from any environment. One aggregate particle containing fassaite and hibonite is described as a probable interplanetary dust particle. The constituent grain sizes of this particle vary from 0.1 to 0.3 microns, making it significantly more fine-grained than meteoritic calcium-aluminum-rich inclusions. This particle is mineralogically and morphologically similar to recently reported refractory interplanetary dust particles collected from the stratosphere, and dissimilar to the products of modern spacecraft debris.

  1. On the Occurrence of Magnetic Reconnection Along the Dawn and Dusk Magnetopause

    NASA Astrophysics Data System (ADS)

    Petrinec, S. M.; Burch, J. L.; Fuselier, S. A.; Trattner, K. J.; Gomez, R. G.; Giles, B. L.; Pollock, C.; Russell, C. T.; Strangeway, R. J.

    2017-12-01

    Magnetic reconnection is recognized as the primary process by which bulk solar wind plasma is able to enter the magnetosphere. The amount of plasma and energy transport is affected by the reconnection rate along the reconnection line as well as the spatial extent of the reconnection line. These parameters are in turn influenced by parameters such as the orientation of the interplanetary magnetic field (IMF), the dipole tilt angle of the Earth, and the local change in plasma beta between the magnetosheath and magnetosphere. Local variations of magnetosheath parameters are influenced by the character of the standing bow shock upstream of the observing location; i.e., there is greater variation downstream of the quasi-parallel shock than downstream of the quasi-perpendicular shock. Observations from the MMS mission are used to examine the occurrence of quasi-steady magnetic reconnection along the dawn and dusk regions of the magnetopause, and to determine the influence of local magnetosheath variations on the characteristics of the extended reconnection line.

  2. Searching for a Link Between Suprathermal Ions and Solar Wind Parameters During Quiet Times.

    NASA Astrophysics Data System (ADS)

    Nickell, J.; Desai, M. I.; Dayeh, M. A.

    2017-12-01

    The acceleration processes that suprathermal particles undergo are largely ambiguous. The two prevailing acceleration processes are: 1) Continuous acceleration in the IP space due to i) Bulk velocity fluctuations (e.g., Fahr et al. 2012), ii) magnetic compressions (e.g., Fisk and Gloeckler 2012), iii) magnetic field waves and turbulence (e.g., Zhang and Lee 2013), and iv) reconnection between magnetic islands (e.g., Drake et al. 2014) . 2) Discrete acceleration that occurs in discrete solar events such as CIRs, CME-driven shocks, and flares (e.g., Reames 1999, Desai et al. 2008). Using data from ACE/ULEIS during solar cycles 23 and 24 (1997-present), we examine the solar wind and magnetic field parameters during quiet-times (e.g., Dayeh et al. 2017) in an attempt to gain insights into the acceleration processes of the suprathermal particle population. In particular, we look for compression regions by performing comparative studies between solar wind and magnetic field parameters during quiet-times in the interplanetary space.

  3. The UCSD Time-dependent Tomography and IPS use for Exploring Space Weather Events

    NASA Astrophysics Data System (ADS)

    Yu, H. S.; Jackson, B. V.; Buffington, A.; Hick, P. P.; Tokumaru, M.; Odstrcil, D.; Kim, J.; Yun, J.

    2016-12-01

    The University of California, San Diego (UCSD) time-dependent, iterative, kinematic reconstruction technique has been used and expanded upon for over two decades. It provides some of the most-accurate predictions and three-dimensional (3D) analyses of heliospheric solar-wind parameters now available using interplanetary scintillation (IPS) data. The parameters provided include reconstructions of velocity, density, and three-component magnetic fields. Precise time-dependent results are now obtained at any solar distance in the inner heliosphere using ISEE (formerly STELab), Japan, IPS data sets, and can be used to drive 3D-MHD models including ENLIL. Using IPS data, these reconstructions provide a real-time prediction of the global solar wind parameters across the whole heliosphere with a time cadence of about one day (see http://ips.ucsd.edu). Here we compare the results (such as density, velocity, and magnetic fields) from the IPS tomography with different in-situ measurements and discuss several specific space weather events that demonstrate the issues resulting from these analyses.

  4. A Distributed Lag Autoregressive Model of Geostationary Relativistic Electron Fluxes: Comparing the Influences of Waves, Seed and Source Electrons, and Solar Wind Inputs

    NASA Astrophysics Data System (ADS)

    Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey

    2018-05-01

    Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.

  5. Revisiting Ionosphere-Thermosphere Responses to Solar Wind Driving in Superstorms of November 2003 and 2004

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Komjathy, A.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Paxton, L. J.

    2017-10-01

    We revisit three complex superstorms of 19-20 November 2003, 7-8 November 2004, and 9-11 November 2004 to analyze ionosphere-thermosphere (IT) effects driven by different solar wind structures associated with complex interplanetary coronal mass ejections (ICMEs) and their upstream sheaths. The efficiency of the solar wind-magnetosphere connection throughout the storms is estimated by coupling functions. The daytime IT responses to the complex driving are characterized by combining and collocating (where possible) measurements of several physical parameters (total electron content or TEC, thermospheric infrared nitric oxide emission, and composition ratio) from multiple satellite platforms and ground-based measurements. A variety of metrics are utilized to examine global IT phenomena at 1 h timescales. The role of direct driving of IT dynamics by solar wind structures and the role of IT preconditioning in these storms, which feature complex unusual TEC responses, are examined and contrasted. Furthermore, IT responses to ICME magnetic clouds and upstream sheaths are separately characterized. We identify IT feedback effects that can be important for long-lasting strong storms. The role of the interplanetary magnetic field By component on ionospheric convection may not be well captured by existing coupling functions. Mechanisms of thermospheric overdamping and consequential ionospheric feedback need to be further studied.

  6. Transport theory and the WKB approximation for interplanetary MHD fluctuations

    NASA Technical Reports Server (NTRS)

    Matthaeus, William H.; Zhou, YE; Zank, G. P.; Oughton, S.

    1994-01-01

    An alternative approach, based on a multiple scale analysis, is presented in order to reconcile the traditional Wentzel-Kramer-Brillouin (WKB) approach to the modeling of interplanetary fluctuations in a mildly inhomogeneous large-scale flow with a more recently developed transport theory. This enables us to compare directly, at a formal level, the inherent structure of the two models. In the case of noninteracting, incompressible (Alven) waves, the principle difference between the two models is the presence of leading-order couplings (called 'mixing effects') in the non-WKB turbulence model which are absent in a WKB development. Within the context of linearized MHD, two cases have been identified for which the leading order non-WJB 'mixing term' does not vanish at zero wavelength. For these cases the WKB expansion is divergent, whereas the multiple-scale theory is well behaved. We have thus established that the WKB results are contained within the multiple-scale theory, but leading order mixing effects, which are likely to have important observational consequences, can never be recovered in the WKB style expansion. Properties of the higher-order terms in each expansion are also discussed, leading to the conclusion that the non-WKB hierarchy may be applicable even when the scale separation parameter is not small.

  7. Dependence of the High Latitude Middle Atmosphere Ionization on Structures in Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Bremer, J.; Lauter, E. A.

    1984-01-01

    The precipitation of high energetic electrons during and after strong geomagnetic storms into heights below 100 km in middle and subauroral latitudes is markedly modulated by the structure of the interplanetary magnetic field (IMF). Under relative quiet conditions the D-region ionization caused by high energetic particle precipitation (energies greater than 20 to 50 keV) depends on changes of the interplanetary magnetic field and also on the velocity of the solar wind. To test this assumption, the influence of the IMF-sector boundary crossings on ionospheric absorption data of high and middle latitudes by the superposed-epoch method was investigated.

  8. Signatures of solar wind latitudinal structure in interplanetary Lyman-alpha emissions - Mariner 10 observations

    NASA Technical Reports Server (NTRS)

    Kumar, S.; Broadfoot, A. L.

    1979-01-01

    A detailed analysis is conducted which shows that signatures in the interplanetary Lyman-alpha emissions observed in three different data sets from Mariner 10 (corresponding to different locations of the spacecraft) provide firm evidence that the intensity departures are correlated with a decrease in solar wind flux with increasing latitude. It is suggested that observations of the interplanetary emission can be used to monitor average solar wind activity at high latitudes. The asymmetry in the solar radiation field as a source of observed departures in L-alpha data is considered and attention is given to the interstellar hydrogen and helium density.

  9. Interstellar chemistry recorded in organic matter from primitive meteorites.

    PubMed

    Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R

    2006-05-05

    Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system.

  10. Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Contraints

    NASA Technical Reports Server (NTRS)

    Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren

    2015-01-01

    Interplanetary missions are often subject to difficult constraints, like solar phase angle upon arrival at the destination, velocity at arrival, and altitudes for flybys. Preliminary design of such missions is often conducted by solving the unconstrained problem and then filtering away solutions which do not naturally satisfy the constraints. However this can bias the search into non-advantageous regions of the solution space, so it can be better to conduct preliminary design with the full set of constraints imposed. In this work two stochastic global search methods are developed which are well suited to the constrained global interplanetary trajectory optimization problem.

  11. Optical spectroscopy of interplanetary dust collected in the earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.

    1980-01-01

    Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.

  12. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  13. Propagation of monochromatic light in a hot and dense medium

    NASA Astrophysics Data System (ADS)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  14. Velocity sensitivity of seismic body waves to the anisotropic parameters of a TTI-medium

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, Stewart

    2008-09-01

    We formulate the derivatives of the phase and group velocities for each of the anisotropic parameters in a tilted transversely isotropic medium (TTI-medium). This is a common geological model in seismic exploration and has five elastic moduli or related Thomsen parameters and two orientation angles defining the axis of symmetry of the rock. We present two independent methods to compute the derivatives and examine the formulae with real anisotropic rocks. The formulations and numerical computations do not encounter any singularity problem when applied to the two quasi shear waves, which is a problem with other approaches. The two methods yield the same results, which show in a quantitative way the sensitivity behaviour of the phase and the group velocities to all of the elastic moduli or Thomsen's anisotropic parameters as well as the orientation angles in the 2D and 3D cases. One can recognize the dominant (strong effect) and weak (or 'dummy') parameters for the three seismic body-wave modes (qP, qSV, qSH) and their effective domains over the whole range of phase-slowness directions. These sensitivity patterns indicate the possibility of nonlinear kinematic inversion with the three wave modes for determining the anisotropic parameters and imaging an anisotropic medium.

  15. Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Zong, Qiugang

    Strong interplanetary shocks interaction with the Earth's magnetosphere would have great impacts on the Earth's magnetosphere. Cluster and Double Star constellation provides an ex-cellent opportunity to study the inner magnetospheric response to a powerful interplanetary solar wind forcing. An interplanetary shock on Nov.7 2004 with the solar wind dynamic pres-sure ˜ 70 nPa (Maximum) induced a large bipolar electric field in the plasmasphere boundary layer as observed by Cluster fleet, the peak-to-peak ∆Ey is more than 60 mV/m. Energetic elec-trons in the outer radiation belt are accelerated almost simultaneously when the interplanetary shock impinges upon the Earth's magnetosphere. Energetic electron bursts are coincident with the induced large electric field, energetic electrons (30 to 500 keV) with 900 pitch angles are accelerated first whereas those electrons are decelerated when the shock-induced electric field turns to positive value. Both toroidal and poloidal mode waves are found to be important but interacting with energetic electron at a different L-shell and a different period. At the Cluster's position (L = 4.4,), poloidal is predominant wave mode whereas at the geosynchronous orbits (L = 6.6), the ULF waves observed by the GOES -10 and -12 satellites are mostly toroidal. For comparison, a rather weak interplanetary shock on Aug. 30, 2001 (dynamic pressure ˜ 2.7 nPa) is also investigated in this paper. It is found that interplanetary shocks or solar wind pressure pulses with even small dynamic pressure change would have non-ignorable role in the radiation belt dynamic. Further, in this paper, our results also reveal the excitation of ULF waves re-sponses on the passing interplanetary shock, especially the importance of difference ULF wave modes when interacting with the energetic electrons in the radiation belt. The damping of the shock induced ULF waves could be separated into two terms: one term corresponds to the generalized Landau damping, the damping rate is large and the damping is fast; the other term corresponds to the damping through ionosphere due to its finite electric conductivity, the damping rate of this item is small and the damping is slow. The fast damping rate at (˜ 10-3 ) is significant larger than the slow damping rate (˜ 10-4 ) suggesting a rapid ULF wave energy lost is via drift resonance with energetic electrons in the radiation belt.

  16. Organic electroluminescent devices having improved light extraction

    DOEpatents

    Shiang, Joseph John [Niskayuna, NY

    2007-07-17

    Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

  17. Preliminary Examination of Impact Craters on Al Foil from the Stardust Interstellar Dust Collector

    NASA Astrophysics Data System (ADS)

    Stroud, R.; Stardust Interstellar Preliminary Examination Team; 29,000 Stardust@home Dusters

    2011-12-01

    The Interstellar Dust Collector from the NASA Stardust mission provides an unprecedented opportunity for direct laboratory study of particles from the contemporary interstellar dust (ISD) stream in order to obtain such information as grain composition and microstructure. The collector is comprised of two collection media: silica aerogel tiles and Al foil strips. Preliminary examination (PE) of particles captured in each medium is on-going. To-date, four grains analyzed in situ in aerogel with synchrotron X-ray techniques show track trajectories and elemental composition that indicate a probable interstellar origin. In addition, we report here the discovery of one crater on an Al foil for which the residue elemental composition and crater shape are consistent with the impact of a grain of interstellar origin, although an interplanetary origin has not been ruled out. Automated mapping by SEM is the primary tool for identifi-cation of craters on the Al foils. A complete map of each foil requires collection of several thousand images at a resolution of ~ 50 nm/px. Automated software has been developed to identify crater candidates, but so far it has not replaced manual efforts. Identified candidates are then re-imaged at ~ 15 nm/px, for confirmation as impact craters. Fifteen foils have been imaged; crater identification is complete for eight, yielding 32 craters. The average areal density of craters is 9.7 cm-2, which extrapolates to ~1500 craters on the total foil collection area. Initial elemental analysis of residues in six craters has been performed with a combination of Auger spectroscopy, conventional, off-axis energy dispersive X-ray spectroscopy (EDX), on-axis, silicon drift-detector EDX. Additional analysis by TEM of the residue composition and crater morphology was obtained on FIB cross-sections of four of the craters. All craters contained detectable levels of Si and O. One crater was found to contain Mg, Si, O, Fe, Ni, S, Ca and Cr, indicative of an interstellar or interplanetary origin. The shape of this crater is consistent with the impact of a fluffy aggregate grain at < 10 km/s, similar to three of the four ISD candidates identified in the aerogel, and slower than expected for an interplanetary dust grain. In three cases the impacting grain was determined by detection of additional Ce, Zn, Ti, K, or Na to be a fragment of the solar cell cover glass.

  18. Observations of a Small Interplanetary Magnetic Flux Rope Opening by Interchange Reconnection

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Feng, H. Q.; Zhao, G. Q.

    2018-01-01

    Interchange reconnection, specifically magnetic reconnection between open magnetic fields and closed magnetic flux ropes, plays a major role in the heliospheric magnetic flux budget. It is generally accepted that closed magnetic field lines of interplanetary magnetic flux ropes (IMFRs) can gradually open through reconnection between one of its legs and other open field lines until no closed field lines are left to contribute flux to the heliosphere. In this paper, we report an IMFR associated with a magnetic reconnection exhaust, whereby its closed field lines were opening by a magnetic reconnection event near 1 au. The reconnection exhaust and the following IMFR were observed on 2002 February 2 by both the Wind and ACE spacecraft. Observations on counterstreaming suprathermal electrons revealed that most magnetic field lines of the IMFR were closed, especially those after the front boundary of the IMFR, with both ends connected to the Sun. The unidirectional suprathermal electron strahls before the exhaust manifested the magnetic field lines observed before the exhaust was open. These observations provide direct evidence that closed field lines of IMFRs can be opened by interchange reconnection in interplanetary space. This is the first report of the closed field lines of IMFRs being opened by interchange reconnection in interplanetary space. This type of interplanetary interchange reconnection may pose important implications for balancing the heliospheric flux budget.

  19. Autonomous interplanetary constellation design

    NASA Astrophysics Data System (ADS)

    Chow, Cornelius Channing, II

    According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design methodology to the restricted Earth-Moon system, reveals optimal pairwise configurations for various L1, L2, and L5 (halo, axial, and vertical) periodic orbit families. Navigation accuracies, ranging from O (10+/-1) meters in position space, are obtained for the optimal Earth-Moon constellations, given measurement noise on the order of 1 meter.

  20. PC index as a proxy of the solar wind energy that entered into the magnetosphere: 2. Relation to the interplanetary electric field E KL before substorm onset

    NASA Astrophysics Data System (ADS)

    Troshichev, O. A.; Sormakov, D. A.

    2015-10-01

    This paper (the second of a series) presents the results of statistical investigation of relationship between the interplanetary electric field E KL and the Polar Cap (PC) index in case of magnetic substorms (1998-2001), which have been analyzed in Troshichev et al. (J. Geophys. Res. Space Physics, 119, 2014). The PC index is directly related to the E KL field variations on interval preceding the substorm sudden onset (SO): correlation R > 0.5 is typical of more than 90 % of isolated substorms, 80 % of expanded substorms, and 99 % of events with coordinated E KL and PC jumps. The low or negative correlation observing in ~10 % of examined substorms suggests that the solar wind flow measured by the Advanced Composition Explorer (ACE) spacecraft in the Lagrange point L1 did not encounter the magnetosphere in these cases. Examination of the delay times Δ T in the response of PC index to E KL variations provides the following results: (1) delay times do not depend on separate solar wind parameters, such as solar wind speed V X and interplanetary magnetic field (IMF) B Z component, contrary to general conviction, (2) the Δ T value is best controlled by the E KL field growth rate (d E KL/dt), (3) the lower Δ T limit (5-7 min is attained under conditions of the higher E KL growth rate, and (4) the PC index provides the possibility to verify the solar wind flow transportation time from ACE position (where the solar wind speed is estimated) to magnetosphere. These results, in combination with data testifying that the substorm onsets are related to the PC precursors, demonstrate that the PC index is an adequate ground-based indicator of the solar wind energy incoming into the magnetosphere.

  1. Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by Wind over its first 2.5 years

    NASA Astrophysics Data System (ADS)

    Berdichevsky, Daniel B.; Szabo, Adam; Lepping, Ronald P.; Viñas, Adolfo F.; Mariani, Franco

    2000-12-01

    A list of the interplanetary shocks observed by Wind from its launch (in Nov 1994) to May 1997 is presented. The magnetohydrodynamic nature of the shocks is investigated, and the associated shock parameters and their uncertainties are accurately computed using two techniques. These are: 1) a combination of the ``preaveraged'' magnetic-coplanarity, velocity-coplanarity, and the Abraham-Schrauner-mixed methods, and 2) the Viñas and Scudder [1986] technique for solving the nonlinear least squares Rankine-Hugoniot equations. Within acceptable limits these two techniques generally gave the same results, with some exceptions. The reasons for the exceptions are discussed. The mean strength and rate of occurrence of the shocks appear to correlate with the solar cycle. Both showed a decrease in 1996 coincident with the time of the lowest ultraviolet solar radiance, indicative of solar minimum and the beginning of solar cycle 23. Eighteen shocks appeared to be associated with corotating interaction regions (CIRs). The shock normal distribution showed a mean direction peaking in the ecliptic plane and with a longitude of ~200° (GSE coordinates). Another 16 shocks were determined to be driven by solar transients, including magnetic clouds. These had a broader distribution of normal directions than those of the CIR cases with a mean direction close to the Sun-Earth line. Eight shocks of unknown origin had normal orientations far off the ecliptic plane. No shock propagated with longitude φn>=220+/-10°, i.e. against the average Parker spiral direction. Examination of the obliquity angle θBn (i.e., between the shock normal and the upstream interplanetary magnetic field) for the full set of shocks revealed that about 58% were quasi-perpendicular, and about 32% of the shocks oblique, and the rest quasi-parallel. Small uncertainty in the estimated angle θBn was obtained for about 10 shocks with magnetosonic Mach numbers between 1 and 2.

  2. Applications of presently planned interplanetary missions to testing gravitational theories

    NASA Technical Reports Server (NTRS)

    Friedman, L. D.

    1971-01-01

    A summary of the probable interplanetary missions for the 1970's is presented, which may prove useful in testing the general theory of relativity. Mission characteristics are discussed, as well as instrumentation. This last includes a low-level accelerometer and S-/X-band transponders and antennas.

  3. Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies

    NASA Astrophysics Data System (ADS)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Malandraki, O.; Dröge, W.; Kartavykh, Y.

    2014-07-01

    Context. In February 2011, the two STEREO spacecrafts reached a separation of 180 degrees in longitude, offering a complete view of the Sun for the first time ever. When the full Sun surface is visible, source active regions of solar energetic particle (SEP) events can be identified unambiguously. STEREO, in combination with near-Earth observatories such as ACE or SOHO, provides three well separated viewpoints, which build an unprecedented platform from which to investigate the longitudinal variations of SEP events. Aims: We show an ensemble of SEP events that were observed between 2009 and mid-2013 by at least two spacecrafts and show a remarkably wide particle spread in longitude (wide-spread events). The main selection criterion for these events was a longitudinal separation of at least 80 degrees between active region and spacecraft magnetic footpoint for the widest separated spacecraft. We investigate the events statistically in terms of peak intensities, onset delays, and rise times, and determine the spread of the longitudinal events, which is the range filled by SEPs during the events. Energetic electron anisotropies are investigated to distinguish the source and transport mechanisms that lead to the observed wide particle spreads. Methods: According to the anisotropy distributions, we divided the events into three classes depending on different source and transport scenarios. One potential mechanism for wide-spread events is efficient perpendicular transport in the interplanetary medium that competes with another scenario, which is a wide particle spread that occurs close to the Sun. In the latter case, the observations at 1 AU during the early phase of the events are expected to show significant anisotropies because of the wide injection range at the Sun and particle-focusing during the outward propagation, while in the first case only low anisotropies are anticipated. Results: We find events for both of these scenarios in our sample that match the expected observations and even different events that do not agree with the scenarios. We conclude that probably both an extended source region at the Sun and perpendicular transport in the interplanetary medium are involved for most of these wide-spread events. Appendix A is available in electronic form at http://www.aanda.org

  4. Order-parameter tensor description of HPr in a medium of oriented bicelles.

    PubMed

    van Lune, Franciska; Manning, Linda; Dijkstra, Klaas; Berendsen, Herman J C; Scheek, Ruud M

    2002-07-01

    Residual dipolar couplings between 15N and 1H nuclear spins in HPr were used to determine the protein's orientation in a medium of bicelles, oriented by a magnetic field. In the case of wild-type HPr the protein's non-spherical shape can explain its orientation in this medium. In the case of the F48W mutant it was found that at least one other mechanism contributes to the observed orientation of the protein, to a degree that depends on the concentration of phosphate ions in the medium. We propose that the F48W mutant has a weak affinity towards the bicelle-surfaces that decreases with increasing phosphate concentrations. We used an order-parameter description to analyse this situation and to determine the axis of main order and the sign of the order parameter pertaining to this additional orientation mechanism.

  5. Effect of the medium's density on the hydrocyclonic separation of waste plastics with different densities.

    PubMed

    Fu, Shuangcheng; Fang, Yong; Yuan, Huixin; Tan, Wanjiang; Dong, Yiwen

    2017-09-01

    Hydrocyclones can be applied to recycle waste plastics with different densities through separating plastics based on their differences in densities. In the process, the medium density is one of key parameters and the value of the medium's density is not just the average of the density of two kinds of plastics separated. Based on the force analysis and establishing the equation of motion of particles in the hydrocyclone, a formula to calculate the optimum separation medium density has been deduced. This value of the medium's density is a function of various parameters including the diameter, density, radial position and tangential velocity of particles, and viscosity of the medium. Tests on the separation performance of the hydrocyclone has been conducted with PET and PVC particles. The theoretical result appeared to be in good agreement with experimental results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium

    NASA Astrophysics Data System (ADS)

    Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui

    2016-03-01

    Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.

  7. Evaluation of ebselen supplementation on cryopreservation medium in human semen

    PubMed Central

    Khodayari Naeini, Zohreh; Hassani Bafrani, Hassan; Nikzad, Hossein

    2014-01-01

    Background: An effect of cryopreservation on human sperm is sublethal cryodamage, in which cell viability post-thaw is lost more rapidly at later times than in fresh cells. Objective: This study examined whether the addition of an antioxidant to cryopreservation medium could improve the post-thaw parameters and evaluation of sperm chromatin quality of cryopreserved human spermatozoa from men with normal semen parameters. Materials and Methods: Semen samples (n=35) were collected by masturbation and assessed following WHO standards. Individual samples were classified as two portions. One portion (n=10) was for elucidate the concentration of ebselen.Then the samples(n=25) were divided in to 5groups.The first aliquot remained fresh.The second aliquots was mixed with cryopreservation medium.The third aliquots were mixed with cryopreservation medium containing solvent of ebselen.The forth and fifth aliquots were mixed with cryopreservation medium containing 1.25 and 2.5 µm of ebselen.Samples were frozen and thawed samples were assessed for sperm parameters.Three-way ANOVA Multivariate measures were used to assess. According to this assesment the differences are observed in existent groups in post-thaw count, motility index, vitality staining, and morphology and DNA fragmentation. Results: After freezing the media containing of ebselen, DNA fragmentation is significantly different in comparison with control group. ebselen with 1.25 µm dose was significantly associated with post-thaw DNA fragmentation (p=0.047). Similarly ebselen with 2.5 µm dose was significantly associated with post-thaw DNA fragmentation (p=0.038). But other parameters were not altered. Conclusion: These results suggest that the addition of ebselen to cryopreservation medium doesnot improve post-thaw parameters and DNA fragmentation of sperm. PMID:24976819

  8. Evaluation of ebselen supplementation on cryopreservation medium in human semen.

    PubMed

    Khodayari Naeini, Zohreh; Hassani Bafrani, Hassan; Nikzad, Hossein

    2014-04-01

    An effect of cryopreservation on human sperm is sublethal cryodamage, in which cell viability post-thaw is lost more rapidly at later times than in fresh cells. This study examined whether the addition of an antioxidant to cryopreservation medium could improve the post-thaw parameters and evaluation of sperm chromatin quality of cryopreserved human spermatozoa from men with normal semen parameters. Semen samples (n=35) were collected by masturbation and assessed following WHO standards. Individual samples were classified as two portions. One portion (n=10) was for elucidate the concentration of ebselen.Then the samples(n=25) were divided in to 5groups.The first aliquot remained fresh.The second aliquots was mixed with cryopreservation medium.The third aliquots were mixed with cryopreservation medium containing solvent of ebselen.The forth and fifth aliquots were mixed with cryopreservation medium containing 1.25 and 2.5 µm of ebselen.Samples were frozen and thawed samples were assessed for sperm parameters.Three-way ANOVA Multivariate measures were used to assess. According to this assesment the differences are observed in existent groups in post-thaw count, motility index, vitality staining, and morphology and DNA fragmentation. After freezing the media containing of ebselen, DNA fragmentation is significantly different in comparison with control group. ebselen with 1.25 µm dose was significantly associated with post-thaw DNA fragmentation (p=0.047). Similarly ebselen with 2.5 µm dose was significantly associated with post-thaw DNA fragmentation (p=0.038). But other parameters were not altered. These results suggest that the addition of ebselen to cryopreservation medium doesnot improve post-thaw parameters and DNA fragmentation of sperm.

  9. Effect of zero magnetic field on cardiovascular system and microcirculation

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.

    2016-02-01

    The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.

  10. Statistical analysis of solar events associated with SSC over year of solar maximum during cycle 23: 2. Characterisation on the Sun-Earth path - Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Cornilleau-Wehrlin, N.; Bocchialini, K.; Menvielle, M.; Fontaine, D.; Grison, B.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.; Chambodut, A.

    2017-12-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, magnetic field polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach ; for instance all the 12 well identified Magnetic Clouds of 2002 give rise to SSCs.

  11. Statistical Analysis of Solar Events Associated with SSC over Year of Solar Maximum during Cycle 23: 1. Identification of Related Sun-Earth Events

    NASA Astrophysics Data System (ADS)

    Grison, B.; Bocchialini, K.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.

    2017-12-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of herafter detailed criteria (velocities, drag coefficient, radio waves, polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The categorization of the events at L1 is made on published catalogues. For each potential CME/L1 event association we compare the velocity observed at L1 with the one observed at the Sun and the estimated balistic velocity. Observations of radio emissions (Type II, Type IV detected from the ground and /or by WIND) associated to the CMEs make the solar source more probable. We also compare the polarity of the magnetic clouds with the hemisphere of the solar source. The drag coefficient (estimated with the drag-based model) is calculated for each potential association and it is compared to the expected range values. We identified a solar source for 26 SSC related events. 12 of these 26 associations match all criteria. We finally discuss the difficulty to perform such associations.

  12. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lario, D.; Ho, G. C.; Decker, R. B.

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ - ({phi} - {phi}{sub 0}){sup 2}/2{sigma}{sup 2}], where {phi}more » is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, {phi}{sub 0} is the distribution centroid, and {sigma} determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R < 1 AU, allows us to determine a lower limit to the radial dependence of the 71-112 keV electron peak intensities measured along IMF lines. We find five events for which the nominal magnetic footpoint of MESSENGER was less than 20 Degree-Sign apart from the nominal footpoint of a spacecraft near 1 AU. Although the expected theoretical radial dependence for the peak intensity of the events observed along the same field line can be approximated by a functional form R {sup -{alpha}} with {alpha} < 3, we find two events for which {alpha} > 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.« less

  13. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  14. Upstream electron oscillations and ion overshoot at an interplanetary shock wave

    NASA Technical Reports Server (NTRS)

    Potter, D. W.; Parks, G. K.

    1983-01-01

    During the passage of a large interplanetary shock on Oct. 13, 1981, the ISEE-1 and -2 spacecraft were in the solar wind outside of the upstream region of the bow shock. The high time resolution data of the University of California particle instruments allow pinpointing the expected electron spike as occurring just before the magnetic ramp. In addition, two features that occur at this shock have not been observed before: electron oscillations associated with low frequency waves upstream of the shock and sharp 'overshoot' (about 1 sec) in the ion fluxes that occur right after the magnetic ramp. This interplanetary shock exhibits many of the same characteristics that are observed at the earth's bow shock.

  15. Infrared spectroscopy of interplanetary dust in the laboratory

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Freeman, J. J.

    1981-01-01

    A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.

  16. The large-scale magnetic field in the solar wind. [astronomical models of interplanetary magnetics and the solar magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1976-01-01

    A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown.

  17. Software Risk Identification for Interplanetary Probes

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert J.; Papadopoulos, Periklis E.

    2005-01-01

    The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.

  18. Plasma and energetic particle structure of a collisionless quasi-parallel shock

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.

    1983-01-01

    The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.

  19. Temporal Variability in the Accretion Rate of Interplanetary Dust Using (3)He as a Tracer

    NASA Technical Reports Server (NTRS)

    Farley, K. A.

    2005-01-01

    The research supported by this grant falls under three topics: 1) Weekly Interplanetary Dust Sampling via (3)He; 2) Extraterrestrial (3)He at Major Impact Boundaries; 3) Completing a Moderately-High Resolution Record of Extraterrestrial (3)He Flux: A Major Asteroidal Break up Event at 8.2 Ma.

  20. The interplanetary pioneers. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1972-01-01

    The Pioneer Space Probe Project is explained to document the events which occurred during the project. The subjects discussed are: (1) origin and history of interplanetary Pioneer program, (2) Pioneer system development and design, (3) Pioneer flight operations, and (4) Pioneer scientific results. Line drawings, circuit diagrams, illustrations, and photographs are included to augment the written material.

Top