Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.
1977-01-01
A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.
Advanced planning activity. [for interplanetary flight and space exploration
NASA Technical Reports Server (NTRS)
1974-01-01
Selected mission concepts for interplanetary exploration through 1985 were examined, including: (1) Jupiter orbiter performance characteristics; (2) solar electric propulsion missions to Mercury, Venus, Neptune, and Uranus; (3) space shuttle planetary missions; (4) Pioneer entry probes to Saturn and Uranus; (5) rendezvous with Comet Kohoutek and Comet Encke; (6) space tug capabilities; and (7) a Pioneer mission to Mars in 1979. Mission options, limitations, and performance predictions are assessed, along with probable configurational, boost, and propulsion requirements.
A multinational Mars mission for the International Space University
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1992-01-01
The International Space University's 1991 design project activity has yielded a report on the organization and implementation of a multinational program for manned exploration of Mars; the organization encompasses a political as well as a technical component. This International Manned Mission employs an artificial-gravity spacecraft with nuclear-electric propulsion for interplanetary transfer. An unmanned cargo mission precedes the piloted flights to increase the mass deliverable to Mars, as well as to serve as a testbed for interplanetary vehicle design.
Interplanetary laser ranging - an emerging technology for planetary science missions
NASA Astrophysics Data System (ADS)
Dirkx, D.; Vermeersen, L. L. A.
2012-09-01
Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.
Active shielding for long duration interplanetary manned missions
NASA Astrophysics Data System (ADS)
Spillantini, Piero
The problem of protecting astronauts from the cosmic rays action in unavoidable and was therefore preliminary studied by many space agencies. In Europe, in the years 2002-2004, ESA supported two works on this thematic: a topical team in the frame of the ‘life and physical sciences' and a study, assigned by tender, of the ‘radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars'. In both studies it was concluded that, while the protection from solar cosmic rays can relay on the use of passive absorbers, for long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole duration of the mission. This requires the protection of a large habitat where they could live and work, and not a temporary small volume shelter, and the use of active shielding is therefore mandatory. The possibilities offered by using superconducting magnets were discussed, and the needed R&D recommended. The technical development occurred in the meantime and the evolution of the panorama of the possible interplanetary missions in the near future require to revise these pioneer studies and think of the problem at a scale allowing long human permanence in ‘deep' space, and not for a relatively small number of dedicated astronauts but also for citizens conducting there ‘normal' activities.
ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses
NASA Technical Reports Server (NTRS)
Cano, Juan L.; Cacciatore, Francesco
2007-01-01
ExoMars is ESA s next mission to planet Mars. The probe is aimed for launch either in 2013 or in 2016. The project is currently undergoing Phase B1 studies under ESA management and Thales Alenia Space Italia project leadership. In that context, DEIMOS Space is responsible for the Mission Analysis and Design for the interplanetary and the entry, descent and landing (EDL) activities. The present mission baseline is based on an Ariane 5 or Proton M launch in 2013 of a spacecraft Composite bearing a Carrier Module (CM) and a Descent Module (DM). A back-up option is proposed in 2016. This paper presents the current status of the interplanetary mission design from launch up to the start of the EDL phase.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.
NASA Technical Reports Server (NTRS)
Fisk, L. A. (Editor); Axford, W. I. (Editor)
1976-01-01
A series of papers are presented from a symposium attended by over 200 European and American scientists to examine the importance of exploring the interplanetary medium and the sun by out-of-the-ecliptic space missions. The likely scientific returns of these missions in the areas of solar, interplanetary, and cosmic ray physics is examined. Theoretical models of the solar wind and its interaction with interplanetary magnetic fields are given.
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
Interplanetary monitoring platform engineering history and achievements
NASA Technical Reports Server (NTRS)
Butler, P. M.
1980-01-01
In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.
Mission Analysis for the Don Quijote Phase-A Study
NASA Technical Reports Server (NTRS)
Cano, Juan L.; Sanchez, Mariano; Cornara, Stefania; Carnelli, Ian
2007-01-01
The Don Quijote Phase-A study is a definition study funded by ESA and devoted to the analysis of the possibilities to deflect a Near Earth Object (NEO) in the range of 300-800 m diameter. DEIMOS Space S.L. and EADS Astrium have teamed up within this study to form one of the three consortia that have analyzed these aspects for ESA. Target asteroids for the mission are 1989 ML, 2002 AT4 and Apophis. This paper presents the mission analysis activities within the consortium providing: low-thrust interplanetary rendezvous Orbiter trajectories to the target asteroids, ballistic interplanetary trajectories for the Impactor, Orbiter arrival description at the asteroids, Orbiter stable orbits characterization at the asteroid, deflection determination by means of a Radio Science Experiment (RSE) as well as the mission timelines and overall mission scenarios.
Dust analysis on board the Destiny+ mission to 3200 Phaethon
NASA Astrophysics Data System (ADS)
Krüger, H.; Kobayashi, M.; Arai, T.; Srama, R.; Sarli, B. V.; Kimura, H.; Moragas-Klostermeyer, G.; Soja, R.; Altobelli, N.; Grün, E.
2017-09-01
The Japanese Destiny+ spacecraft will be launched to the active asteroid 3200 Phaethon in 2022. Among the proposed core payload is an in-situ dust instrument based on the Cassini Cosmic Dust Analyzer. We use the ESA Interplanetary Meteoroid Engineering Model (IMEM), to study detection conditions and fluences of interplanetary and interstellar dust with a dust analyzer on board Destiny+.
International Launch Vehicle Selection for Interplanetary Travel
NASA Technical Reports Server (NTRS)
Ferrone, Kristine; Nguyen, Lori T.
2010-01-01
In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.
Curation of Microscopic Astromaterials by NASA: "Gathering Dust Since 1981"
NASA Technical Reports Server (NTRS)
Frank, D. R.; Bastien, R. K.; Rodriguez, M.; Gonzalez, C.; Zolensky, M. E.
2013-01-01
Employing the philosophy that "Small is Beautiful", NASA has been collecting and curating microscopic astromaterials since 1981. These active collections now include interplanetary dust collected in Earth's stratosphere by U-2, ER-2 and WB-57F aircraft (the Cosmic Dust Program - our motto is "Gathering dust since 1981"), comet Wild-2 coma dust (the Stardust Mission), modern interstellar dust (also the Stardust Mission), asteroid Itokawa regolith dust (the Hayabusa Mission - joint curation with JAXA-ISAS), and interplanetary dust impact features on recovered portions of the following spacecraft: Skylab, the Solar Maximum Satellite, the Palapa Satellite, the Long Duration Exposure Facility (LDEF), the MIR Space Station, the International Space Station, and the Hubble Space Telescope (all in the Space Exposed Hardware Laboratory).
Design of the VISITOR Tool: A Versatile ImpulSive Interplanetary Trajectory OptimizeR
NASA Technical Reports Server (NTRS)
Corpaccioli, Luca; Linskens, Harry; Komar, David R.
2014-01-01
The design of trajectories for interplanetary missions represents one of the most complex and important problems to solve during conceptual space mission design. To facilitate conceptual mission sizing activities, it is essential to obtain sufficiently accurate trajectories in a fast and repeatable manner. To this end, the VISITOR tool was developed. This tool modularly augments a patched conic MGA-1DSM model with a mass model, launch window analysis, and the ability to simulate more realistic arrival and departure operations. This was implemented in MATLAB, exploiting the built-in optimization tools and vector analysis routines. The chosen optimization strategy uses a grid search and pattern search, an iterative variable grid method. A genetic algorithm can be selectively used to improve search space pruning, at the cost of losing the repeatability of the results and increased computation time. The tool was validated against seven flown missions: the average total mission (Delta)V offset from the nominal trajectory was 9.1%, which was reduced to 7.3% when using the genetic algorithm at the cost of an increase in computation time by a factor 5.7. It was found that VISITOR was well-suited for the conceptual design of interplanetary trajectories, while also facilitating future improvements due to its modular structure.
Applications of presently planned interplanetary missions to testing gravitational theories
NASA Technical Reports Server (NTRS)
Friedman, L. D.
1971-01-01
A summary of the probable interplanetary missions for the 1970's is presented, which may prove useful in testing the general theory of relativity. Mission characteristics are discussed, as well as instrumentation. This last includes a low-level accelerometer and S-/X-band transponders and antennas.
The role of automatic control in future interplanetary spaceflight
NASA Technical Reports Server (NTRS)
Scull, J. R.; Moore, J. W.
1976-01-01
The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.
From Basking Ridge to the Jupiter Trojans
NASA Technical Reports Server (NTRS)
Englander, Jacob
2017-01-01
This presentation describes the activities of the Global Trajectory Optimization Lab, a subdivision of the Navigation and Mission Design Branch at NASA GSFC. The students will learn the basics of interplanetary trajectory optimization and then, as an example, the Lucy mission to the Jupiter Trojans will be described from both a science and engineering perspective.
Nuclear electric propulsion mission engineering study. Volume 2: Final report
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.
NASA Technical Reports Server (NTRS)
Spangelo, Sara; Dalle, Derek; Longmier, Benjamin
2015-01-01
This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.
Interplanetary Small Satellite Conference 2017 Program
NASA Technical Reports Server (NTRS)
Dalle, Derek Jordan
2017-01-01
The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.
Research in Space Physics at the University of Iowa. [spaceborne experiments and instruments
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1981-01-01
Currently active projects conducted to extend knowledge of the energetic particles and the electric, magnetic, and electromagnetic fields associated with Earth, other celestial bodies, and the interplanetary medium are summarized. These include investigations and/or instruments for Hawkeye 1; Pioneers 10 and 11; Voyagers 1 and 2; ISEE; IMP 8; Dynamics Explorer; Galileo; Spacelab and Orbital flight test missions; VLBI; and the International Solar Polar mission. Experiments and instruments proposed for the future international comet mission, the origin of plasmas in the Earth's environment mission, and the NASA active magnetospheric particle tracer experiment are mentioned.
Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey
NASA Technical Reports Server (NTRS)
Dankanich, John W.; McAdams, James
2011-01-01
The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.
Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Contraints
NASA Technical Reports Server (NTRS)
Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren
2015-01-01
Interplanetary missions are often subject to difficult constraints, like solar phase angle upon arrival at the destination, velocity at arrival, and altitudes for flybys. Preliminary design of such missions is often conducted by solving the unconstrained problem and then filtering away solutions which do not naturally satisfy the constraints. However this can bias the search into non-advantageous regions of the solution space, so it can be better to conduct preliminary design with the full set of constraints imposed. In this work two stochastic global search methods are developed which are well suited to the constrained global interplanetary trajectory optimization problem.
NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit.
Hanu, A R; Barberiz, J; Bonneville, D; Byun, S H; Chen, L; Ciambella, C; Dao, E; Deshpande, V; Garnett, R; Hunter, S D; Jhirad, A; Johnston, E M; Kordic, M; Kurnell, M; Lopera, L; McFadden, M; Melnichuk, A; Nguyen, J; Otto, A; Scott, R; Wagner, D L; Wiendels, M
2017-01-01
During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions. The primary objective of the NEUDOSE CubeSat is to map the in situ lineal energy spectra produced by charged particles and neutrons in LEO where most of the preparatory activities for future interplanetary missions are currently taking place. To perform these measurements, the NEUDOSE CubeSat is equipped with the Charged & Neutral Particle Tissue Equivalent Proportional Counter (CNP-TEPC), an advanced radiation monitoring instrument that uses active coincidence techniques to separate the interactions of charged particles and neutrons in real time. The NEUDOSE CubeSat, currently under development at McMaster University, provides a modern approach to test the CNP-TEPC instrument directly in the unique environment of outer space while simultaneously collecting new georeferenced lineal energy spectra of the radiation environment in LEO.
Nuclear electric propulsion mission engineering study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.
NASA Technical Reports Server (NTRS)
Giorgini, Jon; Wong, S. Kuen; You, Tung-Han; Chadbourne, Pam; Lim, Lily
1995-01-01
The Magellan spacecraft has been aerobraked into a 197 x 541 km near-circular orbit around Venus from which it is conducting a high-resolution gravity mapping mission. This was the first interplanetary aerobrake maneuver and involved flying the spacecraft through the upper reaches of the Venusian atmosphere 730 times over a 70 day period. Round-trip light-time varied from 9.57 to 18.83 minutes during this period. Navigation for this dynamic phase of the Magellan mission was planned and executed in the face of budget-driven down-sizing with all spacecraft safe modes disabled and a flight-team one-third the size of comparable interplanetary missions. Successful execution of this manuever using spacecraft hardware not designed to operate in a planetary atmosphere, demonstrated a practical cost-saving technique for both large and small future interplanetary missions.
Simulating Autonomous Telecommunication Networks for Space Exploration
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.
2008-01-01
Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.
Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission
NASA Technical Reports Server (NTRS)
Cupples, Michael
2007-01-01
Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.
Integrated shielding systems for manned interplanetary spaceflight
NASA Astrophysics Data System (ADS)
George, Jeffrey A.
1992-01-01
The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.
Earth orbital operations supporting manned interplanetary missions
NASA Astrophysics Data System (ADS)
Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.
The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.
Earth orbital operations supporting manned interplanetary missions
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.
1989-01-01
The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.
Mission and vehicle sizing sensitivities
NASA Technical Reports Server (NTRS)
Young, Archie C.
1986-01-01
Representative interplanetary space vehicle systems are sized to compare and show sensitivity of the initial mass required in low Earth orbit to one mission mode and mission opportunity. Data are presented to show the requirements for Earth-Mars opposition and conjunction class roundtrip flyby and stopover mission opportunities available during the time period from year 1997 to year 2045. The interplanetary space vehicle consists of a spacecraft and a space vehicle acceleration system. Propellant boil-off for the various mission phases is given for the Lox/LH (Liquid Oxygen/Liquid Hydrogen) propulsion systems. Mission abort information is presented for the 1999 Venus outbound swingby trajectory, transfer profile.
The effect of interplanetary trajectory options on a manned Mars aerobrake configuration
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Powell, Richard W.; Hartung, Lin C.
1990-01-01
Manned Mars missions originating in low Earth orbit (LEO) in the time frame 2010 to 2025 were analyzed to identify preferred mission opportunities and their associated vehicle and trajectory characteristics. Interplanetary and Mars atmospheric trajectory options were examined under the constraints of an initial manned exploration scenario. Two chemically propelled vehicle options were considered: (1) an all propulsive configuration, and (2) a configuration which employs aerobraking at Earth and Mars with low lift/drag (L/D) shapes. Both the interplanetary trajectory options as well as the Mars atmospheric passage are addressed to provide a coupled trajectory simulation. Direct and Venus swingby interplanetary transfers with a 60 day Mars stopover are considered. The range and variation in both Earth and Mars entry velocity are also defined. Two promising mission strategies emerged from the study: (1) a 1.0 to 2.0 year Venus swingby mission, and (2) a 2.0 to 2.5 year direct mission. Through careful trajectory selection, 11 mission opportunities are identified in which the Mars entry velocity is between 6 and 10 km/sec and Earth entry velocity ranges from 11.5 to 12.5 km/sec. Simulation of the Earth return aerobraking maneuver is not performed. It is shown that a low L/D configuration is not feasible for Mars aerobraking without substantial improvements in the interplanetary navigation system. However, even with an advanced navigation system, entry corridor and aerothermal requirements restrict the number of potential mission opportunities. It is also shown that for a large blunt Mars aerobrake configuration, the effects of radiative heating can be significant at entry velocities as low as 6.2 km/sec and will grow to dominate the aerothermal environment at entry velocities above 8.5 km/sec. Despite the additional system complexity associated with an aerobraking vehicle, the use of aerobraking was shown to significantly lower the required initial LEO weight. In comparison with an all propulsive mission, savings between 19 and 59 percent were obtained depending upon launch date.
Cassini Maneuver Experience: Ending the Equinox Mission
NASA Technical Reports Server (NTRS)
Ballard, Christopher G.; Arrieta, Juan; Hahn, Yungsun; Stumpf, Paul W.; Wagner, Sean V.; Williams, Powtawche N.
2010-01-01
The Cassini-Huygens spacecraft was launched in 1997 on a mission to observe Saturn and its many moons. After a seven-year interplanetary cruise, it entered a Saturnian orbit for a four-year Prime Mission in 2004 and began a two-year Equinox Mission in 2008. It has been approved for another seven-year mission, the Solstice Mission, starting in October 2010. This paper highlights significant maneuver activities performed from July 2009 to June 2010. We present results for the 45 maneuvers during this time. The successful navigation of the Cassini orbiter can be attributed in part to the accurate maneuver performance, which has greatly exceeded pre-launch expectations.
CELSS and regenerative life support for manned missions to MARS
NASA Technical Reports Server (NTRS)
Mcelroy, R. D.
1986-01-01
In the mid 1990's, the space station will become a point from which inter-planetary vehicles can be launched. The practicalities of a manned Mars mission are now being studied, along with some newer concepts for human life support. Specifically, the use of organisms such as plants and algae as the basis for life support systems is now being actively considered. A Controlled Ecological Life Support System (CELSS) is composed of several facilities: (1) to grow photosynthetic plants or algae which will produce food, oxygen and potable water, and remove carbon dioxide exhaled by a crew; (2) to process biomass into food; (3) to oxidize organic wastes into CO2; and (4) to maintain system operation and stability. Such a system, when compared to using materials stored at launch, may have distinct weight and cost advantages, depending upon crew size and mission duration, as well as psychological benefits for the crew. The use of the system during transit, as well as in establishing a re-visitable surface camp, will increase the attractiveness of the CELSS concept for life support on interplanetary missions.
NASA Astrophysics Data System (ADS)
Armano, M.; Audley, H.; Baird, J.; Bassan, M.; Benella, S.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Fabi, M.; Ferraioli, L.; Ferroni, V.; Finetti, N.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Laurenza, M.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Sabbatini, F.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Telloni, D.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zambotti, A.; Zenoni, C.; Zweifel, P.
2018-02-01
Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder, meant for subsystems diagnostics, was devoted to the measurement of GCR and solar energetic particle integral fluxes above 70 MeV n‑1 up to 6500 counts s‑1. PD data were gathered with a sampling time of 15 s. Characteristics and energy dependence of GCR flux recurrent depressions and of a Forbush decrease dated 2016 August 2 are reported here. The capability of interplanetary missions, carrying PDs for instrument performance purposes, in monitoring the passage of interplanetary coronal mass ejections is also discussed.
The Distribution of Interplanetary Dust Near 1-AU: An MMS Perspective
NASA Astrophysics Data System (ADS)
Adrian, M. L.; St Cyr, O. C.; Wilson, L. B., III; Schiff, C.; Sacks, L. W.; Chai, D. J.; Queen, S. Z.; Sedlak, J. E.
2017-12-01
The distribution of dust in the ecliptic plane in the vicinity of 1-AU has been inferred from impacts on the four Magnetospheric Multiscale (MMS) mission spacecraft as detected by the Acceleration Measurement System (AMS) during periods when no other spacecraft activities are in progress. Consisting of four identically instrumented spacecraft, with an inter-spacecraft separation ranging from 10-km to 400-km, the MMS constellation forms a dust "detector" with approximately four-times the collection area of any previous dust monitoring framework. Here we introduce the MMS-AMS and the inferred dust impact observations, provide a preliminary comparison of the MMS distribution of dust impacts to previously reported interplanetary dust distributions — namely those of the STEREO mission — and report on our initial comparison of the MMS distribution of dust impacts with known meteor showers.
Far travelers: The exploring machines
NASA Technical Reports Server (NTRS)
Nicks, O. W.
1985-01-01
During the first two decades of space activities, unmanned spacecraft played a vital role in the initial exploration of the Moon and the planets. The spacecraft employed emerging technologies to provide extensions of man in the close-up viewing and measurement of the environment and features of Earth's interplanetary neighbors. An account of early experiences in the development and use of interplanetary vehicles is presented. Specific lunar and planetary missions (e.g., Ranger, Mariner, and Viking) are discussed. In addition, incidents highlighting the evolution of significant technologies are presented, based on personal views of people intimately involved in the efforts.
Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, T.L.; Schwingenschuh, K.; Lichtenegger, H.
1991-07-01
The Mars bow shock location and shape have been determined by examining the PHOBOS spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The authors also find that the shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field as expected from the asymmetricmore » propagation velocity of the fast magnetosonic wave. Comparing with earlier mission data, they show that the Mars shock location varies with solar activity. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.« less
NASA Technical Reports Server (NTRS)
Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.
2016-01-01
Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).
Crew activities, science, and hazards of manned missions to Mars
NASA Technical Reports Server (NTRS)
Clark, Benton C.
1988-01-01
The crew scientific and nonscientific activities that will occur at each stage of a mission to Mars are examined. Crew activities during the interplanetary flight phase will include simulations, maintenance and monitoring, communications, upgrading procedures and operations, solar activity monitoring, cross-training and sharpening of skills, physical conditioning, and free-time activities. Scientific activities will address human physiology, human psychology, sociology, astronomy, space environment effects, manufacturing, and space agriculture. Crew activities on the Martian surface will include exploration, construction, manufacturing, food production, maintenance and training, and free time. Studies of Martian geology and atmosphere, of the life forms that may exist there, and of the Martian moons will occur on the planet's surface. Crew activities and scientific studies that will occur in Mars orbit, and the hazards relevant to each stage of the mission, are also addressed.
The causes of geomagnetic storms during solar maximum
NASA Technical Reports Server (NTRS)
Tsurutani, Bruce T.; Gonzalez, Walter D.
1994-01-01
One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.
Performance potential of gas-core and fusion rockets - A mission applications survey.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Willis, E. A., Jr.
1971-01-01
This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-
Navigation and Guidance for Low-Thrust Trajectories, LOTNAV
NASA Astrophysics Data System (ADS)
Cano, J. L.; Bello, M.; Rodriguez-Canabal, J.
A number of interplanetary low-thrust missions have already been flown by many space agencies. Examples of already flown missions based on the use of electric propulsion are Deep Space 1, Hayabusa and SMART-1. Many others are already in the assessment phase or in the development phase itself. In such perspective, it is required by the space agencies the procurement and utilisation of assessment tools for fast prototyping in the areas of mission design and navigation. The Low-Thrust Interplanetary Navigation Tool, which is the subject of this paper, allows the mission analyst performing such type of quick assessment studies for the early phases in the development of low-thrust missions. A number of test cases on low-thrust missions are also presented along with the utilities composing the LOTNAV tool.
Solar cosmic ray hazard to interplanetary and earth-orbital space travel
NASA Technical Reports Server (NTRS)
Yucker, W. R.
1972-01-01
A statistical treatment of the radiation hazards to astronauts due to solar cosmic ray protons is reported to determine shielding requirements for solar proton events. More recent data are incorporated into the present analysis in order to improve the accuracy of the predicted mission fluence and dose. The effects of the finite data sample are discussed. Mission fluence and dose versus shield thickness data are presented for mission lengths up to 3 years during periods of maximum and minimum solar activity; these correspond to various levels of confidence that the predicted hazard will not be exceeded.
Galactic cosmic ray radiation levels in spacecraft on interplanetary missions
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.
1994-01-01
Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.
NASA Astrophysics Data System (ADS)
Johnson, Michael
2015-04-01
iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.
Evaluations of Risks from the Lunar and Mars Radiation Environments
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.
2008-01-01
Protecting astronauts from the space radiation environments requires accurate projections of radiation in future space missions. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. The galactic cosmic radiation (GCR) flux for the next solar cycle was estimated as a function of interplanetary deceleration potential, which has been derived from GCR flux and Climax neutron monitor rate measurements over the last 4 decades. For the chaotic nature of solar particle event (SPE) occurrence, the mean frequency of SPE at any given proton fluence threshold during a defined mission duration was obtained from a Poisson process model using proton fluence measurements of SPEs during the past 5 solar cycles (19-23). Analytic energy spectra of 34 historically large SPEs were constructed over broad energy ranges extending to GeV. Using an integrated space radiation model (which includes the transport codes HZETRN [1] and BRYNTRN [2], and the quantum nuclear interaction model QMSFRG[3]), the propagation and interaction properties of the energetic nucleons through various media were predicted. Risk assessment from GCR and SPE was evaluated at the specific organs inside a typical spacecraft using CAM [4] model. The representative risk level at each event size and their standard deviation were obtained from the analysis of 34 SPEs. Risks from different event sizes and their frequency of occurrences in a specified mission period were evaluated for the concern of acute health effects especially during extra-vehicular activities (EVA). The results will be useful for the development of an integrated strategy of optimizing radiation protection on the lunar and Mars missions. Keywords: Space Radiation Environments; Galactic Cosmic Radiation; Solar Particle Event; Radiation Risk; Risk Analysis; Radiation Protection.
TPS Ablator Technologies for Interplanetary Spacecraft
NASA Technical Reports Server (NTRS)
Curry, Donald M.
2004-01-01
This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.
Risk of defeats in the central nervous system during deep space missions.
Kokhan, Viktor S; Matveeva, Marina I; Mukhametov, Azat; Shtemberg, Andrey S
2016-12-01
Space flight factors (SFF) significantly affect the operating activity of astronauts during deep space missions. Gravitational overloads, hypo-magnetic field and ionizing radiation are the main SFF that perturb the normal activity of the central nervous system (CNS). Acute and chronic CNS risks include alterations in cognitive abilities, reduction of motor functions and behavioural changes. Multiple experimental works have been devoted to the SFF effects on integrative functional activity of the brain; however, the model parameters utilized have not always been ideal and consistent. Even less is known regarding the combined effects of these SFF in a real interplanetary mission, for example to Mars. Our review aims to systemize and analyse the last advancements in astrobiology, with a focus on the combined effects of SFF; as well as to discuss on unification of the parameters for ground-based models of deep space missions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diagnostic Imaging in the Medical Support of the Future Missions to the Moon
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael
2007-01-01
This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.
Smirnova, Olga A; Cucinotta, Francis A
2018-02-01
A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can also be used on the phase of the real-time responses during the space mission to make the decisions on the operational application of appropriate countermeasures to minimize the risks of occurrences of leukemia, especially, for emergency cases. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Merrill, Raymond Gabriel; Qu, Min; Vavrina, Matthew A.; Englander, Jacob A.; Jones, Christopher A.
2014-01-01
This paper presents mission performance analysis methods and results for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger NEA. It details the optimization and design of heliocentric low-thrust trajectories to asteroid targets for the ARRM solar electric propulsion spacecraft. Extensive searches were conducted to determine asteroid targets with large pick-up mass potential and potential observation opportunities. Interplanetary trajectory approximations were developed in method based tools for Itokawa, Bennu, 1999 JU3, and 2008 EV5 and were validated by end-to-end integrated trajectories.
NASA Technical Reports Server (NTRS)
1986-01-01
Activities of the Goddard Space Flight Center are described in the areas of planets and interplanetary media, comets, astronomy and high-energy physics, solar physics, atmospheres, terrestrial physics, ocean science, sensors and space technology, techniques, user space data systems, space communications and navigation, and system and software engineering. Flight projects and mission definition studies are presented, and institutional technology is described.
Smoothing and Predicting Celestial Pole Offsets using a Kalman Filter and Smoother
NASA Astrophysics Data System (ADS)
Nastula, J.; Chin, T. M.; Gross, R. S.; Winska, M.; Winska, J.
2017-12-01
Since the early days of interplanetary spaceflight, accounting for changes in the Earth's rotation is recognized to be critical for accurate navigation. In the 1960s, tracking anomalies during the Ranger VII and VIII lunar missions were traced to errors in the Earth orientation parameters. As a result, Earth orientation calibration methods were improved to support the Mariner IV and V planetary missions. Today, accurate Earth orientation parameters are used to track and navigate every interplanetary spaceflight mission. The interplanetary spacecraft tracking and navigation teams at JPL require the UT1 and polar motion parameters, and these Earth orientation parameters are estimated by the use of a Kalman filter to combine past measurements of these parameters and predict their future evolution. A model was then used to provide the nutation/precession components of the Earth's orientation separately. As a result, variations caused by the free core nutation were not taken into account. But for the highest accuracy, these variations must be considered. So JPL recently developed an approach based upon the use of a Kalman filter and smoother to provide smoothed and predicted celestial pole offsets (CPOs) to the interplanetary spacecraft tracking and navigation teams. The approach used at JPL to do this and an evaluation of the accuracy of the predicted CPOs will be given here.
NASA Technical Reports Server (NTRS)
Miller, R. B.
1974-01-01
The Tracking and Data System supported the deep space phases of the Pioneer 6, 7, 8, and 9 missions, with two spacecraft in an inward trajectory and two spacecraft in an outward trajectory from the earth in heliocentric orbits. During the period of this report, scientific instruments aboard each of the spacecraft continued to register information relative to interplanetary particles and fields, and radiometric data generated by the network continued to contribute to knowledge of the celestial mechanics of the solar system. In addition, to network support activity detail, network performance and special support activities are covered.
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Siegmeth, A. J.
1973-01-01
The Tracking and Data System supported the deep space phases of the Pioneer 6, 7, 8, and 9 missions, with two spacecraft in an inward trajectory and two spacecraft in an outward trajectory from the earth in heliocentric orbits. Scientific instruments aboard each of the spacecraft continued to register information relative to interplanetary particles and fields, and radio metric data generated by the network continued to improve our knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.
Design of a fast Mars space transfer system
NASA Astrophysics Data System (ADS)
Woo, Henry H.; Glass, James F.; Roy, Claude
1992-02-01
Architecture strategies and concepts for manned missions to Mars are being developed by NASA and industry. This paper addresses the key Mars transfer vehicle (MTV) design requirements which include surface payload mass, MTV mass, propulsion system characteristics, launch vehicle capability, in-space operations, abort considerations, crew exposure to interplanetary environments, and crew reconditioning for planetary entry. Different mission strategies are presented along with their implications. A representative artificial-g MTV using nuclear thermal propulsion is defined to show concepts which minimize extravehicular activity operations for in-space assembly, inspection, and maintenance.
An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem.
Englander, Jacob A; Conway, Bruce A
2017-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto.
An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Conway, Bruce
2016-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto.
An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem
Englander, Jacob A.; Conway, Bruce A.
2017-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated, which can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on hypothetical missions to Mercury, the main asteroid belt, and Pluto. PMID:29515289
Transfers from Earth to LEO and LEO to interplanetary space using lasers
NASA Astrophysics Data System (ADS)
Phipps, Claude R.; Bonnal, Christophe; Masson, Fréderic; Boustie, Michel; Berthe, Laurent; Schneider, Matthieu; Baton, Sophie; Brambrink, Erik; Chevalier, Jean-Marc; Videau, Laurent; Boyer, Séverine A. E.
2018-05-01
New data on some materials at 80ps pulse duration and 1057 nm wavelength give us the option of proportionally combining them to obtain arbitrary values between 35 (aluminum) and 800 N/MW (POM, polyoxymethylene) for momentum coupling coefficient Cm. Laser ablation physics lets us transfer to LEO from Earth, or to interplanetary space using repetitively pulsed lasers and Cm values appropriate for each mission. We discuss practical results for lifting small payloads from Earth to LEO, and space missions such as a cis-Mars orbit with associated laser system parameters.
Optimization of high-inclination orbits using planetary flybys for a zodiacal light-imaging mission
NASA Astrophysics Data System (ADS)
Soto, Gabriel; Lloyd, James; Savransky, Dmitry; Grogan, Keith; Sinha, Amlan
2017-09-01
The zodiacal light caused by interplanetary dust grains is the second-most luminous source in the solar system. The dust grains coalesce into structures reminiscent of early solar system formation; their composition has been predicted through simulations and some edge-on observations but better data is required to validate them. Scattered light from these dust grains presents challenges to exoplanet imaging missions: resolution of their stellar environment is hindered by exozodiacal emissions and therefore sets the size and scope of these imaging missions. Understanding the composition of this interplanetary dust in our solar system requires an imaging mission from a vantage point above the ecliptic plane. The high surface brightness of the zodiacal light requires only a small aperture with moderate sensitivity; therefore a 3cm camera is enough to meet the science goals of the mission at an orbital height of 0.1AU above the ecliptic. A 6U CubeSat is the target mass for this mission which will be a secondary payload detaching from an existing interplanetary mission. Planetary flybys are utilized to produce most of the plane change Δv deep space corrective maneuvers are implemented to optimize each planetary flyby. We developed an algorithm which determines the minimum Δv required to place the CubeSat on a transfer orbit to a planet's sphere of influence and maximizes the resultant orbital height with respect to the ecliptic plane. The satellite could reach an orbital height of 0.22 AU with an Earth gravity assist in late 2024 by boarding the Europa Clipper mission.
Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander
2015-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.
Time-dependent radiation dose estimations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, M. I.; Shprits, Y.; Drozdov, A.
2015-12-01
Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.
NASA Technical Reports Server (NTRS)
Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin
1987-01-01
Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.
Towards an interplanetary internet: a proposed strategy for standardization
NASA Technical Reports Server (NTRS)
Hooke, A. J.
2002-01-01
This paper reviews the current set of standard data communications capabilities that exist to support advanced missions, discusses the architectural concepts for the future Interplanetary Internet, and suggests how a standardized set of space communications protocols that can grow to support future scenarios where human intelligence is widely distributed across the Solar System.
Optimum solar electric interplanetary mission opportunities from 1975 to 1990
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1971-01-01
A collection of optimum trajectory and spacecraft data is presented for unmanned interplanetary missions from 1975 to 1990 using solar electric propulsion. Data are presented for one-way flyby and orbiter missions from Earth to Venus, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. The solar system model assumes planetary ephemerides which very closely approximate the true motion of the planets. Direct and indirect flight profiles are investigated. Data are presented for two representative flight times for each mission. The launch vehicle is the Titan 3 B (core)/Centaur, and a constant jet exhaust speed solar electric propulsion system having a specific mass of 30 kg/kw is completely optimized in terms of power level and jet exhaust speed to yield maximum net spacecraft mass. The hyperbolic excess speeds at departure and arrival and the launch date are optimized for each mission. For orbiter missions, a chemical retro stage is used to brake the spacecraft into a highly eccentric capture orbit about the target planet.
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.
2015-01-01
Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multiobjective hybrid optimal control problem. The method is demonstrated on several real-world problems.
Space technology in remote health care
NASA Technical Reports Server (NTRS)
Pool, Sam L.
1991-01-01
Crews and passengers on future long-duration Earth orbital and interplanetary missions must be provided quality health services - to combat illnesses and accidental injuries, and for routine preventive care. People on Earth-orbital missions can be returned relatively easily to Earth, but those on interplanetary missions cannot. Accordingly, crews on long-duration missions will likely include at least one specially trained person, perhaps a physician's assistant, hospital corpsman, nurse, or physician who will be responsible for providing onboard health services. Specifically, we must determine the most effective way to administer health care to a remotely located population. NASA with the cooperation of the Department of Health, Education, and Welfare is pursuing a program for providing health services to remote locations on Earth as a necessary step to developing and verifying this capability on a spacecraft. The STARPAHC program is described.
Trajectory Browser: An Online Tool for Interplanetary Trajectory Analysis and Visualization
NASA Technical Reports Server (NTRS)
Foster, Cyrus James
2013-01-01
The trajectory browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and (Delta)V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and (Delta)V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies.
NASA Technical Reports Server (NTRS)
Emrich, Bill
2006-01-01
A simple method of estimating vehicle parameters appropriate for interplanetary travel can provide a useful tool for evaluating the suitability of particular propulsion systems to various space missions. Although detailed mission analyses for interplanetary travel can be quite complex, it is possible to derive hirly simple correlations which will provide reasonable trip time estimates to the planets. In the present work, it is assumed that a constant thrust propulsion system propels a spacecraft on a round trip mission having equidistant outbound and inbound legs in which the spacecraft accelerates during the first portion of each leg of the journey and decelerates during the last portion of each leg of the journey. Comparisons are made with numerical calculations from low thrust trajectory codes to estimate the range of applicability of the simplified correlations.
NASA Astrophysics Data System (ADS)
Ravi, Aditya; Radhakrishnan, Arun
2016-07-01
The last decade has borne witness to a large number of Nano-satellites being launched.This increasing trend is mainly down to the advancements in consumer electronics that has played a crucial role in increasing the potential power available on board for mission study and analysis whilst being much smaller in size when compared to their satellite counterparts. This overall reduction in size and weight is a crucial factor when coupled with the recent innovations in various propulsion systems and orbital launch vehicles by private players has also allowed the cost of missions to brought down to a very small budget whilst able to retain the main science objectives of a dedicated space Missions. The success of first time missions such as India's Mars Orbiter Mission and the upcoming Cube-Sat Mission to Mars has served as a catalyst and is a major eye-opener on how Interplanetary missions can be funded and initiated in small time spans. This shows that Interplanetary missions with the main objective of a scientific study can be objectified by using Dedicated Nano-satellite constellations with each satellite carrying specific payloads for various mission parameters such as Telemetry, Observation and possible small lander payloads for studying the various Atmospheric and Geo-Physical parameters of a particular object with-out the requirement of a very long term expensive Spacecraft Mission. The association of Major Universities and Colleges in building Nano and-satellites are facilitating an atmosphere of innovation and research among students in a class-room level as their creative potential will allow for experiments and innovation on a scale never imagined before. In this paper, the Author envisions the feasibility of such low cost Nano satellite missions to various bodies in the solar system and how Nano satellite partnerships from universities and space agencies from around the world could foster a new era in diplomacy and International Co-operation.
The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network
NASA Technical Reports Server (NTRS)
Webb, W. A.
1978-01-01
The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.
One-Year Mission on ISS Is a Step Towards Interplanetary Missions.
Fomina, Elena V; Lysova, Nataliya Yu; Kukoba, Tatyana B; Grishin, Alexey P; Kornienko, Mikhail B
2017-12-01
in the 1990s Russian cosmonauts performed six long-duration missions on Mir that went from 312 to 438 d. In 2015 a mission on the International Space Station that continued for 340 d, 8 h, and 47 min was successfully accomplished. It was a joint U.S./Russian mission completed by Scott Kelly and Mikhail Kornienko (KM). The intensity of in-flight physical exercises and postflight motor changes were measured in KM and in the six cosmonauts who made shorter flights (173.3 ± 13.8 d) on ISS while using similar countermeasures against the adverse effects of microgravity. It was found that both parameters varied similarly in spite of the difference in the duration of ISS missions. KM maintained adequate physical performance throughout the entire flight; moreover, the level of postflight changes he displayed was comparable to that recorded in the group of cosmonauts who completed 6-mo missions on ISS. In summary, the 1-yr mission has clearly demonstrated the high efficacy of the countermeasures used by KM.Fomina EV, Lysova NYu, Kukoba TB, Grishin AP, Kornienko MB. One-year mission on ISS is a step towards interplanetary missions. Aerosp Med Hum Perform. 2017; 88(12):1094-1099.
Radiation analysis for manned missions to the Jupiter system
NASA Technical Reports Server (NTRS)
De Angelis, G.; Clowdsley, M. S.; Nealy, J. E.; Tripathi, R. K.; Wilson, J. W.
2004-01-01
An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Radiation analysis for manned missions to the Jupiter system.
De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W
2004-01-01
An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Expert diagnostics system as a part of analysis software for power mission operations
NASA Technical Reports Server (NTRS)
Harris, Jennifer A.; Bahrami, Khosrow A.
1993-01-01
The operation of interplanetary spacecraft at JPL has become an increasingly complex activity. This complexity is due to advanced spacecraft designs and ambitious mission objectives which lead to operations requirements that are more demanding than those of any previous mission. For this reason, several productivity enhancement measures are underway at JPL within mission operations, particularly in the spacecraft analysis area. These measures aimed at spacecraft analysis include: the development of a multi-mission, multi-subsystem operations environment; the introduction of automated tools into this environment; and the development of an expert diagnostics system. This paper discusses an effort to integrate the above mentioned productivity enhancement measures. A prototype was developed that integrates an expert diagnostics system into a multi-mission, multi-subsystem operations environment using the Galileo Power / Pyro Subsystem as a testbed. This prototype will be discussed in addition to background information associated with it.
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Gomez-Herrero, Raul; Malandraki, Olga; Szabo, Adam; Dresing, Nina; Davila, Joseph M.
2010-01-01
EUV disk imagers and white light coronagraphs have provided for many years information on the early formation and evolution of corona) mass ejections (CMEs). More recently, the novel heliospheric imaging instruments aboard the STEREO mission are providing crucial remote sensing information on the interplanetary evolution of these events while in situ instruments complete the overall characterization of the interplanetary CMEs. In this work, we present an analysis of CMEs from the Sun to the interplanetary medium using combined data from THE SOHO, STEREO, WIND, and ACE spacecraft. The events were selected to cover the widest possible spectrum of different ambient solar wind, magnetic field configurations, plasma parameters, etc. to allow uncovering those aspects that are important in understanding the propagation and evolution mechanisms of CMEs in the interplanetary medium.
Orbital Transfer Techniques for Round-Trip Mars Missions
NASA Astrophysics Data System (ADS)
Landau, D. F.; Barbee, B. W.; Woolley, R. C.; Gershman, R.
2012-06-01
Efficient methods to transfer among a variety of Mars orbits is presented. Emphasis is placed on connecting arrival and departure interplanetary trajectories to an arbitrary circular target orbit for a hybrid human/robotic Mars sample return mission.
NASA Technical Reports Server (NTRS)
Williams, Craig Hamilton
1995-01-01
A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.
Planetary CubeSats Come of Age
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John
2015-01-01
Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.
Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories
NASA Technical Reports Server (NTRS)
Spangelo, Sara; Dalle, Derek; Longmier, Ben
2014-01-01
The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.
Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit
NASA Astrophysics Data System (ADS)
Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.
Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.
Mars exploration, Venus swingby and conjunction class mission modes, time period 2000 to 2045
NASA Technical Reports Server (NTRS)
Young, A. C.; Mulqueen, J. A.; Skinner, J. E.
1984-01-01
Trajectory and mission requirement data are presented for Earth-Mars opposition class and conjunction class round trip stopover mission opportunities available during the time period year 2000 to year 2045. The opposition class mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg. The gravitational field of Venus was used to reduce the propulsion requirement associated with the opposition class mission. Representative space vehicle systems are sized to compare the initial mass required in low Earth orbit of one mission opportunity with another mission opportunity. The interplanetary space vehicle is made up of the spacecraft and the space vehicle acceleration system. The space vehicle acceleration system consists of three propulsion stages. The first propulsion stage performs the Earth escape maneuver; the second stage brakes the spacecraft and Earth braking stage into the Mars elliptical orbit and effects the escape maneuver from the Mars elliptical orbit. The third propulsion stage brakes the mission module into an elliptical orbit at Earth return. The interplanetary space vehicle was assumed to be assembled in and depart from the space station circular orbit.
Nano-Satellite Secondary Spacecraft on Deep Space Missions
NASA Technical Reports Server (NTRS)
Klesh, Andrew T.; Castillo-Rogez, Julie C.
2012-01-01
NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.
JPL-20180416-INSIGHf-0001-Marco Media Reel 1
2018-04-16
Mars Cube One is a Mars flyby mission consisting of two CubeSats that is planned for launch alongside NASA's InSight Mars lander mission. This will be the first interplanetary CubeSat mission. If successful, the CubeSats will relay entry, descent, and landing (EDL) data to Earth during InSight's landing.
Sensitivity of Lunar Resource Economic Model to Lunar Ice Concentration
NASA Technical Reports Server (NTRS)
Blair, Brad; Diaz, Javier
2002-01-01
Lunar Prospector mission data indicates sufficient concentration of hydrogen (presumed to be in the form of water ice) to form the basis for lunar in-situ mining activities to provide a source of propellant for near-Earth and solar system transport missions. A model being developed by JPL, Colorado School of Mines, and CSP, Inc. generates the necessary conditions under which a commercial enterprise could earn a sufficient rate of return to develop and operate a LEO propellant service for government and commercial customers. A combination of Lunar-derived propellants, L-1 staging, and orbital fuel depots could make commercial LEO/GEO development, inter-planetary missions and the human exploration and development of space more energy, cost, and mass efficient.
The solar polar radio telescope mission: an overview
NASA Astrophysics Data System (ADS)
Sun, Weiying; Zhang, Cheng; Zheng, Jianhua; Wu, Ji; Wang, C. B.; Wang, Chi; Wang, S.
: The solar polar orbit telescope (SPORT) is a mission proposed for the observation of ICMEs. The main payload is a synthetic aperture radiometer working at meter wave band taking images of the high density interplanetary plasma clouds formed by ICMEs and follows the propagation if it from the surface of the Sun all the way to as far as 0.5 AU or even further. With such a capability of observation, also the SPORT will study transient high energy phenomenon, the magnetic topology, temperature and density as well as velocity of the solar wind in the inner interplanetary heliosphere. In the practical part, the mission is also very useful for space weather forecast in advance of the geo-storm events. Other instruments are also selected to be on board of the solar polar orbit mission for in-situ measurement, such as fluxgate magnetometer, solar wind ion detector and high energy particle detectors. In this paper, we describe the scientific objective, basic principles and feasibility of the interferometric radiometer, general mission design and the status of the SPORT mission.
Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; MacDonald, Mark A.; McElrath, Timothy P.; Landau, Damon F.; Lantoine, Gregory; Hack, Kurt J.; Lopez, Pedro
2016-01-01
NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts.
Natural environment design requirements for the Solar Electric Propulsion Stage (SEPS)
NASA Technical Reports Server (NTRS)
Andrews, L. E.
1973-01-01
The natural environment design requirements for the solar electric propulsion stage are presented. Environment criteria for the SEP stage will cover earth orbital operations out to geosynchronous altitudes and also interplanetary missions including comet and asteroid missions.
Multipoint study of interplanetary shocks
NASA Astrophysics Data System (ADS)
Blanco-Cano, Xochitl; Kajdic, Primoz; Russell, Christopher T.; Aguilar-Rodriguez, Ernesto; Jian, Lan K.; Luhmann, Janet G.
2016-04-01
Interplanetary (IP) shocks are driven in the heliosphere by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs). These shocks perturb the solar wind plasma, and play an active role in the acceleration of ions to suprathermal energies. Shock fronts evolve as they move from the Sun. Their surfaces can be far from uniform and be modulated by changes in the ambient solar wind (magnetic field orientation, flow velocity), shocks rippling, and perturbations upstream and downstream from the shocks, i.e., electromagnetic waves. In this work we use multipoint observations from STEREO, WIND, and MESSENGER missions to study shock characteristics at different helio-longitudes and determine the properties of the waves near them. We also determine shock longitudinal extensions and foreshock sizes. The variations of geometry along the shock surface can result in different extensions of the wave and ion foreshocks ahead of the shocks, and in different wave modes upstream and downtream of the shocks. We find that the ion foreshock can extend up to 0.2 AU ahead of the shock, and that the upstream region with modified solar wind/waves can be very asymmetric.
Mars Science Laboratory Interplanetary Navigation Performance
NASA Technical Reports Server (NTRS)
Martin-Mur, Tomas J.; Kruizinga, Gerhard; Wong, Mau
2013-01-01
The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission.
NASA Astrophysics Data System (ADS)
Urbina, Diego A.; Charles, Romain
2014-01-01
The Mars500 mission was a 520-day long simulation of a round trip to Mars. After going through an intense selection process, 6 individuals from various countries lived and worked for several months in a pressurized facility in Moscow, Russia, mimicking as close as possible the conditions of real space flight. The simulation concluded in November 2011 when the crew came out of the facility in seemingly good health and mood. A first person point of view description of daily life and activities is provided as well as the indication of the environmental factors that can act as stressors during such a mission as well as their change over the different periods of flight, including adaptation to the real world. Advice for the design and logistics of future exploration missions is given.
Space station support of manned Mars missions
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1986-01-01
The assembly of a manned Mars interplanetary spacecraft in low Earth orbit can be best accomplished with the support of the space station. Station payload requirements for microgravity environments of .001 g and pointing stability requirements of less than 1 arc second could mean that the spacecraft may have to be assembled at a station-keeping position about 100 meters or more away from the station. In addition to the assembly of large modules and connective structures, the manned Mars mission assembly tasks may include the connection of power, fluid, and data lines and the handling and activation of components for chemical or nuclear power and propulsion systems. These assembly tasks will require the use of advanced automation and robotics in addition to Orbital Maneuvering Vehicle and Extravehicular Activity (EVA) crew support. Advanced development programs for the space station, including on-orbit demonstrations, could also be used to support manned Mars mission technology objectives. Follow-on studies should be conducted to identify space station activities which could be enhanced or expanded in scope (without significant cost and schedule impact) to help resolve key technical and scientific questions relating to manned Mars missions.
Viking 75 project: Viking lander system primary mission performance report
NASA Technical Reports Server (NTRS)
Cooley, C. G.
1977-01-01
Viking Lander hardware performance during launch, interplanetary cruise, Mars orbit insertion, preseparation, separation through landing, and the primary landed mission, with primary emphasis on Lander engineering and science hardware operations, the as-flown mission are described with respect to Lander system performance and anomalies during the various mission phases. The extended mission and predicted Lander performance is discussed along with a summary of Viking goals, mission plans, and description of the Lander, and its subsystem definitions.
Probe interface design consideration. [for interplanetary spacecraft missions
NASA Technical Reports Server (NTRS)
Casani, E. K.
1974-01-01
Interface design between a probe and a spacecraft requires not only technical considerations but also management planning and mission analysis interactions. Two further aspects of importance are the flyby versus the probe trade-off, and the relay link design and data handling optimization.
NASA Technical Reports Server (NTRS)
Barton, W. R.; Miller, R. B.
1975-01-01
The tracking and data system support of the planning, testing, launch, near-earth, and deep space phases of the Pioneer 11 Jupiter Mission are described, including critical phases of spacecraft flight and guidance. Scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields. Knowledge of the celestial mechanics of the solar system was improved through radiometric data gathering. Network performance, details of network support activity, and special support activities are discussed.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Jaynes, A. N.; Turner, D. L.; Nakamura, R.; Schmid, D.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.; Blake, J. B.; Strangeway, R. J.;
2016-01-01
An active storm period in June 2015 showed that particle injection events seen sequentially by the four (MagnetosphericMultiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw 500kms) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front characteristics. It was seen that magnetospheric substorm activity provided a seed electron population as observed by MMS particle sensors as multiple injections and related enhancements in electron flux.
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Nealy, John E.; Wilson, John W.
1988-01-01
Preliminary estimates of radiation exposures for manned interplanetary missions resulting from anomalously large solar flare events are presented. The calculations use integral particle fluences for the February 1956, November 1960, and August 1972 events as inputs into the Langley Research Center nucleon transport code BRYNTRN. This deterministic code transports primary and secondary nucleons (protons and neutrons) through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus fragmentation and recoil are also included. Estimates of 5 cm depth doses and dose equivalents in tissue are presented behind various thicknesses of aluminum, water, and composite aluminum/water shields for each of the three solar flare events.
Unmanned planetary spacecraft chemical rocket propulsion.
NASA Technical Reports Server (NTRS)
Burlage, H., Jr.; Gin, W.; Riebling, R. W.
1972-01-01
Review of some chemical propulsion technology advances suitable for future unmanned spacecraft applications. Discussed system varieties include liquid space-storable propulsion systems, advanced liquid monopropellant systems, liquid systems for rendezvous and landing applications, and low-thrust high-performance solid-propellant systems, as well as hybrid space-storable systems. To optimize the performance and operational characteristics of an unmanned interplanetary spacecraft for a particular mission, and to achieve high cost effectiveness of the entire system, it is shown to be essential that the type of spacecraft propulsion system to be used matches, as closely as possible the various requirements and constraints. The systems discussed are deemed to be the most promising candidates for some of the anticipated interplanetary missions.
Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning
NASA Technical Reports Server (NTRS)
Englander, Jacob
2015-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The methods is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.
Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning
NASA Technical Reports Server (NTRS)
Englander, Jacob A.
2014-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often may thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.
Tafforin, Carole
2013-10-01
This note provides an overview of salient factors that could have an impact on the behavior of a crew in an isolated and confined environment during a very long-term adaptive process. We present the Mars-500 experiment, which took place in Moscow, Russia, over 520 d from June 5, 2010, to November 4, 2011. It was designed to simulate a 250-d interplanetary mission from Earth to Mars, a 30-d orbital stay with a Mars landing, and a 240-d interplanetary mission from Mars back to Earth. The six-person crew was composed of three Russians, two Europeans, and one Chinese. We applied the ethological method based on observation, description, and quantification of nonverbal behavior expressed by actions and interactions, as well as verbal behavior expressed through positions and communications. These events were scored with The Observer XT software from video recordings made every 2 wk during a daily life activity at breakfast time and every month during a group discussion task. We show that the frequency of occurrences of personal actions, visual interactions, facial expressions and collateral acts are linked to certain phases, periods, and temporal points of the mission. Verbal communications in English and in Russian involve prevalent language associated with place preferences and preferential relationships among the crewmembers. We found evidence that the Mars-500 crew behavior was dependent on time, culture, and the individual.
Maximizing the science return of interplanetary missions using nuclear electric power
NASA Astrophysics Data System (ADS)
Zubrin, Robert M.
1995-01-01
In the past, most studies dealing with the benefits of space nuclear electric power systems for solar system exploration have focused on the potential of nuclear electric propulsion (NEP) to enhance missions by increasing delivered payload, decreasing LEO mass, or reducing trip time. While important, such mission enhancements have failed to go to the heart of the concerns of the scientific community supporting interplanetary exploration. To put the matter succintly, scientists don't buy delivered payload—they buy data returned. With nuclear power we can increase both the quantity of data returned, by enormously increasing data communication rates, and the quality of data by enabling a host of active sensing techniques otherwise impossible. These non-propulsive mission enhancement capabilities of space nuclear power have been known in principle for many years, but they have not been adequately documented. As a result, support for the development of space nuclear power by the interplanetary exploration community has been much less forceful than it might otherwise be. In this paper we shall present mission designs that take full advantage of the potential mission enhancements offered by space nuclear power systems in the 15 to 30 kWe range, not just for propulsion, but to radically improve, enrich, and expand the science return itself. Missions considered include orbiter missions to each of the outer planets. It will be shown that by using hybrid trajectories combining chemical propulsion with NEP and (in certain cases) gravity assists, that it is possible, using Proton, Tatan III or Titan IV-Centaur launch vehicles, for high-powered spacecraft to be placed in orbit around each of the outer planets with electric propulsion burn times of less than 4 years. Such hybrid trajectories therefore make the outer solar-system available to near-term nuclear electric power systems. Once in orbit, the spacecraft will utilize multi-kilowatt communication systems, similar to those now employed by the U.S. military, to increse data return far beyond that possible utilizing the 40 W rf traveling wave tube antennas that are the current NASA stadard. This higher data rate will make possible very high resolution multi-space imaging (with high resolutions both spatially and spectrally), a form of science hitherto impossible in the outer solar system. Larger numbers of such images could be returned, allowing the creation of motion pictures of atmospheric phenomenon on a small scale and greatly increasing the probability of capturing transient phenomena such as lighting or volcanic activity. The multi-kilowatt power sources on the spaecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground pentrating sounding of Pluto, the major planet's moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expanditures needed to bring a space qualified nuclear electric power source into being.
NASA Astrophysics Data System (ADS)
Grasso, C.
2015-10-01
Blue Sun Enterprises, Inc. is creating a common deep space bus capable of a wide variety of Mars, asteroid, and comet science missions, observational missions in and near GEO, and interplanetary delivery missions. The spacecraft are modular and highly autonomous, featuring a common core and optional expansion for variable-sized science or commercial payloads. Initial spacecraft designs are targeted for Mars atmospheric science, a Phobos sample return mission, geosynchronous reconnaissance, and en-masse delivery of payloads using packetized propulsion modules. By combining design, build, and operations processes for these missions, the cost and effort for creating the bus is shared across a variety of initial missions, reducing overall costs. A CLIpSAT can be delivered to different orbits and still be able to reach interplanetary targets like Mars due to up to 14.5 km/sec of delta-V provided by its high-ISP Xenon ion thruster(s). A 6U version of the spacecraft form fits PPOD-standard deployment systems, with up to 9 km/s of delta-V. A larger 12-U (with the addition of an expansion module) enables higher overall delta-V, and has the ability to jettison the expansion module and return to the Earth-Moon system from Mars orbit with the main spacecraft. CLIpSAT utilizes radiation-hardened electronics and RF equipment, 140+ We of power at earth (60 We at Mars), a compact navigation camera that doubles as a science imager, and communications of 2000 bps from Mars to the DSN via X-band. This bus could form the cornerstone of a large number asteroid survey projects, comet intercept missions, and planetary observation missions. The TugBot architecture uses groups of CLIpSATs attached to payloads lacking innate high-delta-V propulsion. The TugBots use coordinated trajectory following by each individual spacecraft to move the payload to the desired orbit - for example, a defense asset might be moved from GEO to lunar transfer orbit in order to protect and hide it, then returned to a useful GEO orbit as a replacement for a failed GEO asset. Interplanetary payload delivery can be undertaken by arraying these spacecraft buses, then staging each one. This approach is implemented by using CLIpSATs as propulsion "packets", delivered independently to low earth orbit and directed to rendezvous individually with a structure. Once all packets have attached themselves, the ensemble burns to follow a trajectory, delivering the payload to the desired planetary or heliocentric orbit. Autonomy technologies in CLIpSAT software include Virtual Machine Language 3 (VML 3) sequencing, JPL AutoNav software, optical navigation, ephemeris tracking, trajectory replanning, maneuver execution, advanced state-driven sequencing, expert systems, and fail-operational strategies. These technologies enable small teams to operate large numbers of spacecraft and lessen the need for the deep knowledge normally required. The consortium building CLIpSAT includes Blue Sun Enterprises, the Jet Propulsion Laboratory, Millennium Space Systems, the Laboratory for Atmospheric and Space Physics, and the Southwest Research Institute.
The Mars Telecommunications Orbiter a key asset in the Mars Network
NASA Technical Reports Server (NTRS)
Abilleira, Fernando
2006-01-01
The Mars Telecommunications Orbiter (MTO) to be launched in 2009 will play a key role in the Mars Network since it will be the first interplanetary mission whose primary objective is to provide communications to existing and upcoming Mars missions, This paper presents a basic description of the primary mission an provides trajectory information for the Mars Telecommunication Orbiter.
NASA Astrophysics Data System (ADS)
Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.
2017-12-01
NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.
Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.
Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank
2008-01-25
The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.
ERIC Educational Resources Information Center
Chapman, Clark R.
2004-01-01
Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…
Review of chemical-kinetic problems of future NASA missions, II: Mars entries
NASA Technical Reports Server (NTRS)
Park, Chul; Howe, John T.; Jaffe, Richard L.; Candler, Graham V.
1994-01-01
The present work aims to derive a set of thermomechanical relaxation rate parameters and chemical reaction rate coefficients relevant to future interplanetary missions. It also attempts to assess the impact of thermochemical nonequilibrium phenomena on radiative heating rates for the stagnation point of the Martian entry vehicle.
The Interplanetary Internet: A Communications Infrastructure for Mars Exploration
NASA Astrophysics Data System (ADS)
Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.
2002-01-01
A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the current set of standard CCSDS data communications protocols can be incrementally evolved so that true InterPlaNetary Internet operations are feasible by the end of the decade. The strategy - which is already in progress via the deployment of Mars relay links - needs individual missions to each contribute increments of capability so that a standard communications infrastructure can rapidly accrete. This paper will describe the IPN architectural concepts, discuss the current set of standard data communications capabilities that exist to support Mars exploration and review the proposed new developments. We will also postulate that the concept is scalable and can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog among planets is routine. 1 2 3 4 5
The Pioneer Projects - Economical exploration of the solar system
NASA Technical Reports Server (NTRS)
Spahr, J. R.; Hall, C. F.
1975-01-01
The interplanetary Pioneer missions are reviewed in terms of management implications and cost control. The responsibilities, organizational structure, and management practices of the Pioneer Projects are presented. The lines of authority and areas of responsibility of the principal organizational elements supporting the Pioneer missions are identified, and the methods employed for maintaining effective and timely interactions among these elements are indicated. The technical and administrative functions of various organizational elements of the project are described. The management and control of activities prior to and during the hardware procurement phase are described to indicate the basis for obtaining visibility of the technical progress, utilization of resources, and cost performance of the contractors and other institutions supporting the Pioneer projects.
Risks of radiation cataracts from interplanetary space missions.
Lett, J T; Lee, A C; Cox, A B
1994-11-01
Recognition of the human risks from radiation exposure during manned missions in deep space has been fostered by international co-operation; interagency collaboration is facilitating their evaluation. Further co-operation can lead, perhaps by the end of this decade, to an evaluation of one of the three major risks, namely radiation cataractogenesis, sufficient for use in the planning of the manned mission to Mars.
Interplanetary CubeSats system for space weather evaluations and technology demonstration
NASA Astrophysics Data System (ADS)
Viscio, Maria Antonietta; Viola, Nicole; Corpino, Sabrina; Stesina, Fabrizio; Fineschi, Silvano; Fumenti, Federico; Circi, Christian
2014-11-01
The paper deals with the mission analysis and conceptual design of an interplanetary 6U CubeSats system to be implemented in the L1 Earth-Sun Lagrangian Point mission for solar observation and in-situ space weather measurements. Interplanetary CubeSats could be an interesting alternative to big missions, to fulfill both scientific and technological tasks in deep space, as proved by the growing interest in this kind of application in the scientific community and most of all at NASA. Such systems allow less costly missions, due to their reduced sizes and volumes, and consequently less demanding launches requirements. The CubeSats mission presented in this paper is aimed at supporting measurements of space weather. The mission envisages the deployment of a 6U CubeSats system in the L1 Earth-Sun Lagrangian Point, where solar observations for in situ measurements of space weather to provide additional warning time to Earth can be carried out. The proposed mission is also intended as a technology validation mission, giving the chance to test advanced technologies, such as telecommunications and solar sails, envisaged as propulsion system. Furthermore, traveling outside the Van Allen belts, the 6U CubeSats system gives the opportunity to further investigate the space radiation environment: radiation dosimeters and advanced materials are envisaged to be implemented, in order to test their response to the harsh space environment, even in view of future implementation on other spacecrafts (e.g. manned spacecrafts). The main issue related to CubeSats is how to fit big science within a small package - namely power, mass, volume, and data limitations. One of the objectives of the work is therefore to identify and size the required subsystems and equipment, needed to accomplish specific mission objectives, and to investigate the most suitable configuration, in order to be compatible with the typical CubeSats (multi units) standards. The work has been developed as collaboration between Politecnico di Torino, Sapienza University of Rome, "Osservatorio Astrofisico di Torino - INAF" (Astrophysical Observatory of Torino) and Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Bremen.
Solar Eruptive Activity at Mars' Orbit and its Potential Impacts
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Lee, C. O.; Curry, S.; Hara, T.; Halekas, J. S.; Li, Y.; Dong, C.; Ma, Y.; Lillis, R. J.; Dunn, P.; Gruesbeck, J.; Espley, J. R.; Brain, D.; Connerney, J. E. P.; Larson, D. E.; Jakosky, B. M.; Russell, C. T.
2016-12-01
While a number of studies exist relating to ICME signatures at Venus (PVO and VEX) and Mercury (Helios and Messenger), relatively few analyses exist for Mars' orbit. Nevertheless plasma and field signatures of ICMEs have been observed in the space near Mars by Phobos-2, Mars Global Surveyor (MGS), Mars Express (MEX), and now MAVEN. Of these, MAVEN is arguably best-instrumented, space weather-wise, to characterize such events. However, the weak solar activity over the past decade has limited what MAVEN, whose mission is to study Mars' atmospheric response to solar activity, including escape to space, has been able to observe. While the major October 1989 event, that produced at Earth one of the largest geomagnetic storms on record, occurred during the short Phobos-2 mission, and the notable series of Halloween 2003 storms occurred during the MGS mission, MAVEN has detected only moderate solar eruptive activity-related interplanetary disturbances at Mars. We compare the largest ICME observed by MAVEN with some of these other more extreme activity episodes for perspective. These comparisons hint at the potential impact of the magnitude of solar eruptions on what is experienced at Mars orbit, and on our ability to investigate planetary responses over the full range -when missions are at the mercy of what the solar cycle produces during their lifetimes.
NASA Technical Reports Server (NTRS)
Cocks, F. Hadley
1991-01-01
The discovery of materials which are superconducting above 100 K makes possible the use of superconducting coils deployed beyong the hull of an interplanetary spacecraft to produce a magnetic shield capable of giving protection not only against solar flare radiation, but also even against Galactic radiation. Such deployed coils can be of very large size and can thus achieve the great magnetic moments required using only relatively low currents. Deployable high-temperature-superconducting coil magnetic shields appear to offer very substantial reductions in mass and energy compared to other concepts and could readily provide the radiation protection needed for a Mars mission or space colonies.
Preliminary Design of Low-Thrust Interplanetary Missions
NASA Technical Reports Server (NTRS)
Sims, Jon A.; Flanagan, Steve N.
1997-01-01
For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ness, N. F.
1976-01-01
A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown.
Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions
NASA Astrophysics Data System (ADS)
Yang, Y. F.; Lu, J. Y.; Wang, J.-S.; Peng, Z.; Zhou, L.
2013-01-01
By integrating and averaging the auroral brightness from Polar Ultraviolet Imager auroral images, which have the whole auroral ovals, and combining the observation data of interplanetary magnetic field (IMF) and solar wind from NASA Operating Missions as a Node on the Internet (OMNI), we investigate the influence of IMF and solar wind on auroral activities, and analyze the separate roles of the solar wind dynamic pressure, density, and velocity on aurora, respectively. We statistically analyze the relations between the interplanetary conditions and the auroral brightness in dawnside, dayside, duskside, and nightside. It is found that the three components of the IMF have different effects on the auroral brightness in the different regions. Different from the nightside auroral brightness, the dawnside, dayside, and duskside auroral brightness are affected by the IMF Bx, and By components more significantly. The IMF Bx and By components have different effects on these three regional auroral brightness under the opposite polarities of the IMF Bz. As expected, the nightside aurora is mainly affected by the IMF Bz, and under southward IMF, the larger the |Bz|, the brighter the nightside aurora. The IMF Bx and By components have no visible effects. On the other hand, it is also found that the aurora is not intensified singly with the increase of the solar wind dynamic pressure: when only the dynamic pressure is high, but the solar wind velocity is not very fast, the aurora will not necessarily be intensified significantly. These results can be used to qualitatively predict the auroral activities in different regions for various interplanetary conditions.
A magnetic shield/dual purpose mission
NASA Technical Reports Server (NTRS)
Watkins, Seth; Albertelli, Jamil; Copeland, R. Braden; Correll, Eric; Dales, Chris; Davis, Dana; Davis, Nechole; Duck, Rob; Feaster, Sandi; Grant, Patrick
1994-01-01
The objective of this work is to design, build, and fly a dual-purpose payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field to protect manned spacecraft against particle radiation. An additional mission objective is to study the effect of this moving field on upper atmosphere plasmas. Both mission objectives appear to be capable of being tested using the same superconducting coil. The potential benefits of this magnetic shield concept apply directly to both earth-orbital and interplanetary missions. This payload would be a first step in assessing the true potential of large volume magnetic fields in the U.S. space program. Either converted launch systems or piggyback payload opportunities may be appropriate for this mission. The use of superconducting coils for magnetic shielding against solar flare radiation during manned interplanetary missions has long been contemplated and was considered in detail in the years preceding the Apollo mission. With the advent of new superconductors, it has now become realistic to reconsider this concept for a Mars mission. Even in near-earth orbits, large volume magnetic fields produced using conventional metallic superconductors allow novel plasma physics experiments to be contemplated. Both deployed field-coil and non-deployed field-coil shielding arrangements have been investigated, with the latter being most suitable for an initial test payload in a polar orbit.
Space plasma physics at the Applied Physics Laboratory over the past half-century
NASA Technical Reports Server (NTRS)
Potemra, Thomas A.
1992-01-01
An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.
NASA Astrophysics Data System (ADS)
Leinweber, H. K.; Russell, C. T.; Torkar, K.
2012-10-01
We show that the spin axis offset of a fluxgate magnetometer can be calibrated with an electron drift instrument (EDI) and that the required input time interval is relatively short. For missions such as Cluster or the upcoming Magnetospheric Multiscale (MMS) mission the spin axis offset of a fluxgate magnetometer could be determined on an orbital basis. An improvement of existing methods for finding spin axis offsets via comparison of accurate measurements of the field magnitude is presented, that additionally matches the gains of the two instruments that are being compared. The technique has been applied to EDI data from the Cluster Active Archive and fluxgate magnetometer data processed with calibration files also from the Cluster Active Archive. The method could prove to be valuable for the MMS mission because the four MMS spacecraft will only be inside the interplanetary field (where spin axis offsets can be calculated from Alfvénic fluctuations) for short periods of time and during unusual solar wind conditions.
Simulated trajectories error analysis program, version 2. Volume 2: Programmer's manual
NASA Technical Reports Server (NTRS)
Vogt, E. D.; Adams, G. L.; Working, M. M.; Ferguson, J. B.; Bynum, M. R.
1971-01-01
A series of three computer programs for the mathematical analysis of navigation and guidance of lunar and interplanetary trajectories was developed. All three programs require the integration of n-body trajectories for both interplanetary and lunar missions. The virutal mass technique is used in all three programs. The user's manual contains the information necessary to operate the programs. The input and output quantities of the programs are described. Sample cases are given and discussed.
Mariner 9 propulsion subsystem performance during interplanetary cruise and Mars orbit insertion
NASA Technical Reports Server (NTRS)
Cork, M. J.; French, R. L.; Leising, C. J.; Schmit, D. D.
1972-01-01
On 14 November 1971 the Mariner 9 1334-N-(300-lbf)-thrust rocket engine was fired for just over 15 min to place the first man-made satellite into orbit about Mars. Propulsion subsystem data gathered during the 5-month interplanetary cruise and orbit insertion are of significance to future missions of this type. Specific results related to performance predictability, zero g heat transfer, and nitrogen permeation, diffusion, and solubility values are presented.
GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior
NASA Astrophysics Data System (ADS)
Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.
2005-08-01
A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.
NASA Technical Reports Server (NTRS)
Rayman, Marc D.; Patel, Keyur C.
2008-01-01
Dawn launched on 27 September 2007 on a mission to orbit main belt asteroids (4) Vesta in 2011 - 2012 and (1) Ceres in 2015. The operations team conducted an extensive set of assessments of the engineering subsystems and science instruments during the first 80 days of the mission. A major objective of this period was to thrust for one week with the ion propulsion system to verify flight and ground systems readiness for typical interplanetary operations. Upon successful conclusion of the checkout phase, the interplanetary cruise phase began, most of which will be devoted to thrusting. The flexibility afforded by the use of ion propulsion enabled the project to accommodate a launch postponement of more than 3 months caused by a combination of launch vehicle and tracking system readiness, unfavorable weather, and then conflicts with other launches. Even with the shift in the launch date, all of the science objectives are retained with the same schedule and greater technical margins. This paper describes the conclusion of the development phase of the project, launch operations, and the progress of mission operations.
NASA Technical Reports Server (NTRS)
1975-01-01
The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
Rai, Balwant; Kaur, Jasdeep
2012-11-01
Knowing the risks, costs, and complexities associated with human missions to Mars, analogue research can be a great (low-risk) tool for exploring the challenges associated with the preparation for living, operating, and undertaking research in interplanetary missions. Short-duration analogue studies, such as those being accomplished at the Mars Desert Research Station (MDRS), offer the chance to study mission operations and human factors in a simulated environment, and therefore contribute to exploration of the Moon and Mars in planned future missions. This article is based upon previously published articles, abstracts, and presentations by a series of independent authors, human factor studies performed on mars analogue station by Crew 100B. The MDRS Crew 100B performed studies over 15 days providing a unique insight into human factor issues in simulated short-duration Mars mission. In this study, 15 human factors were evaluated and analyzed by subjective and objective means, and from the summary of results it was concluded that optimum health of an individual and the crew as a whole is a necessity in order to encourage and maintain high performance and the satisfaction of project goals.
Rai, Balwant; Kaur, Jasdeep
2012-01-01
Knowing the risks, costs, and complexities associated with human missions to Mars, analogue research can be a great (low-risk) tool for exploring the challenges associated with the preparation for living, operating, and undertaking research in interplanetary missions. Short-duration analogue studies, such as those being accomplished at the Mars Desert Research Station (MDRS), offer the chance to study mission operations and human factors in a simulated environment, and therefore contribute to exploration of the Moon and Mars in planned future missions. This article is based upon previously published articles, abstracts, and presentations by a series of independent authors, human factor studies performed on mars analogue station by Crew 100B. The MDRS Crew 100B performed studies over 15 days providing a unique insight into human factor issues in simulated short-duration Mars mission. In this study, 15 human factors were evaluated and analyzed by subjective and objective means, and from the summary of results it was concluded that optimum health of an individual and the crew as a whole is a necessity in order to encourage and maintain high performance and the satisfaction of project goals. PMID:23181225
Velocity Distributions of Interplanetary Dust Derived from Astronomical Sky Spectra
NASA Astrophysics Data System (ADS)
Huestis, D. L.; Ali, S.; Cosby, P. C.; Slanger, T. G.
2001-11-01
Characterization of interplanetary dust is important for understanding the creation by accretion of planets and moons, the development of planetary atmospheres, and, potentially, for the initiation of prebiotic chemistry. The recent COBE mission has provided a profile in ecliptic coordinates of the distribution of interplanetary dust particles through their thermal infrared emission. Additional information about interplanetary dust can be extracted from its visible spectrum of scattered sunlight, called Zodiacal Light. Night sky spectra taken at large-aperture telescopes using high-resolution echelle spectrographs reveal Fraunhofer absorption features in the Zodiacal Light spectrum of scattered sunlight, a nuisance in subtraction from the spectrum of the extraterrestrial object under investigation. We are analyzing the intensity modulations and Doppler shifts of solar Fraunhofer absorption lines in the Zodiacal Light component of sky spectra, donated by collaborating astronomers using Keck/HIRES and other high-performance astronomical facilities. Our objectives include velocity distributions of interplanetary dust and improved separation of terrestrial and extraterrestrial sources in sky spectra. Participation of S. Ali was made possible by a grant from the NSF Physics Research Experiences for Undergraduates (REU) program.
Design of a scientific probe for obtaining Mars surface material
NASA Technical Reports Server (NTRS)
1990-01-01
With the recent renewed interest in interplanetary and deep space exploratory missions, the Red Planet, Mars, which has captured people's imagination for centuries, has again become a center of attention. In the late 1960s and early 1970s, a series of Mariner missions performed fly-by investigations of the Mars surface and atmosphere. Later, in the mid 1970s, the data gathered by these earlier Mariner missions provided the basis of the much-publicized Viking missions, whose main objective was to determine the possibility of extraterrestrial life on Mars. More recently, with the dramatic changes in international politics, ambitious joint manned missions between the United States and the Soviet Union have been proposed to be launched in the early 21st century. In light of these exciting developments, the Spacecraft Design course, which was newly established at UCLA under NASA/USRA sponsorship, has developed its curriculum around a design project: the synthesis of an unmanned Martian landing probe. The students are required to conceive a preliminary design of a small spacecraft that is capable of landing at a designated site, collecting soil samples, and then returning the samples to orbit. The goal of the project is to demonstrate the feasibility of such a mission. This preliminary study of an interplanetary exploration mission has shown the feasibility of such a mission. The students have learned valuable lessons about the complexity of spacecraft design, even though the mission is relatively simple.
NASA Technical Reports Server (NTRS)
Teles, Jerome (Editor); Samii, Mina V. (Editor)
1993-01-01
A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.
Experiments out of the solar system ecliptic plane: An introduction to the ecliptic mission
NASA Technical Reports Server (NTRS)
Simpson, J. A.
1976-01-01
Mission planning by NASA and ESA for the 1980 timeframe to observe the sun from an angle other than the solar ecliptic plane is discussed. Such missions will aid in a more thorough understanding of the sun, interplanetary space, and their influence on the earth. Jupiter swing-by techniques (first achieved by Pioneer 10) are proposed as a means of achieving an out-of-the-ecliptic mission for solar studies. Spacecraft trajectories are illustrated for a dual Pioneer spacecraft mission to observe the sun.
The use of x-ray pulsar-based navigation method for interplanetary flight
NASA Astrophysics Data System (ADS)
Yang, Bo; Guo, Xingcan; Yang, Yong
2009-07-01
As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.
SpaceNet: Modeling and Simulating Space Logistics
NASA Technical Reports Server (NTRS)
Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen
2008-01-01
This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1974-01-01
A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.
Space power technology into the 21st century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1984-01-01
This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.
Space power technology into the 21st Century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1983-01-01
The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.
NASA Astrophysics Data System (ADS)
St. Cyr, O. C.; Kaiser, M. L.; Meyer-Vernet, N.; Howard, R. A.; Harrison, R. A.; Bale, S. D.; Thompson, W. T.; Goetz, K.; Maksimovic, M.; Bougeret, J.-L.; Wang, D.; Crothers, S.
2009-05-01
Early in the STEREO mission observers noted that the white-light instruments of the SECCHI suite were detecting significantly more spacecraft-related “debris” than any previously flown coronagraphic instruments. Comparison of SECCHI “debris storms” with S/WAVES indicates that almost all are coincident with the most intense transient emissions observed by the radio and plasma waves instrument. We believe the debris is endogenous ( i.e., from the spacecraft thermal blanketing), and the storms appear to be caused by impacts of large interplanetary dust grains that are detected by S/WAVES. Here we report the observations, compare them to interplanetary dust distributions, and document a reminder for future spacebased coronagraphic instrument builders.
New Results in Astrodynamics Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.
1998-01-01
Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.
NASA Technical Reports Server (NTRS)
1975-01-01
A revised user's manual for the computer program MAPSEP is presented. Major changes from the interplanetary version of MAPSEP are summarized. The changes are intended to provide a basic capability to analyze anticipated solar electric missions, and a foundation for future more complex, modifications. For Vol. III, N75-16589.
Habitability during long-duration space missions - Key issues associated with a mission to Mars
NASA Technical Reports Server (NTRS)
Stuster, Jack
1989-01-01
Isolation and confinement conditions similar to those of a long-duration mission to Mars are examined, focusing on 14 behavioral issues with design implications. Consideration is given to sleep, clothing, exercise, medical support, personal hygiene, food preparation, group interaction, habitat aesthetics, outside communications, recreational opportunities, privacy, waste disposal, onboard training, and the microgravity environment. The results are used to develop operational requirements and habitability design guidelines for interplanetary spacecraft.
The Mars Reconnaissance Orbiter Mission: From Launch to the Primary Science Orbit
NASA Technical Reports Server (NTRS)
Johnston, Martin D.; Graf, James E.; Zurek, Richard W.; Eisen, Howard J.; Jai, Benhan; Erickson, James K.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) was launched from Cape Canaveral Air Force Station, Florida, USA, aboard an Atlas V-401 launch vehicle on August 12, 2005. The MRO spacecraft carries a very sophisticated scientific payload. Its primary science mission is to to provide global, regional survey, and targeted observations from a low altitude orbit for one Martian year (687 Earth days). After a seven month interplanetary transit, the spacecraft fired its six main engines and established a highly elliptical capture orbit at Mars. During the post-MOI early check-out period, four instruments acquired engineering-quality data. This was followed by five months of aerobraking operations. After aerobraking was terminated, a series of propulsive maneuvers were used to establish the desired low altitude science orbit. As the spacecraft is readied for its primary science mission, spacecraft and instrument checkout and deployment activities have continued.
NASA Astrophysics Data System (ADS)
Cheung, K.-M.; Abraham, D.; Arroyo, B.; Basilio, E.; Babuscia, A.; Duncan, C.; Lee, D.; Oudrhiri, K.; Pham, T.; Staehle, R.; Waldherr, S.; Welz, G.; Wyatt, J.; Lanucara, M.; Malphrus, B.; Bellardo, J.; Puig-Suari, J.; Corpino, S.
2015-08-01
As small spacecraft venture out of Earth orbit, they will encounter challenges not experienced or addressed by the numerous low Earth orbit (LEO) CubeSat and smallsat missions staged to date. The LEO CubeSats typically use low-cost, proven CubeSat radios, antennas, and university ground stations with small apertures. As more ambitious yet cost-constrained space mission concepts to the Moon and beyond are being developed, CubeSats and smallsats have the potential to provide a more affordable platform for exploring deep space and performing the associated science. Some of the challenges that have, so far, slowed the proliferation of small interplanetary spacecraft are those of communications and navigation. Unlike Earth-orbiting spacecraft that navigate via government services such as North American Aerospace Defense Command's (NORAD's) tracking elements or the Global Positioning Satellite (GPS) system, interplanetary spacecraft would have to operate in a fundamentally different manner that allows the deep-space communications link to provide both command/telemetry and the radiometric data needed for navigation. Another challenge occurs when smallsat and CubeSat missions would involve multiple spacecraft that require near-simultaneous communication and/or navigation, but have a very limited number of ground antenna assets, as well as available spectrum, to support their links. To address these challenges, the Jet Propulsion Laboratory (JPL) and the Deep Space Network (DSN) it operates for NASA are pursuing the following efforts: (1) Developing a CubeSat-compatible, DSN-compatible transponder -- Iris -- which a commercial vendor can then make available as a product line. (2) Developing CubeSat-compatible high-gain antennas -- deployable reflectors, reflectarrays, and inflatable antennas. (3) Streamlining access and utilization processes for DSN and related services such as the Advanced Multi-Mission Operations System (AMMOS). (4) Developing methodologies for tracking and operating multiple spacecraft simultaneously, including spectrum coordination. (5) Coordination and collaboration with non-DSN facilities. This article further describes the communications and tracking challenges facing interplanetary smallsats and CubeSats, and the next-generation ground network architecture being evolved to mitigate those challenges.
Sun-to-Earth Analysis of a Major Solar Eruption
NASA Astrophysics Data System (ADS)
Patsourakos, Spiros
During the interval of 7-10 March 2012, Earth's space environment experienced a barrage of space weather phenomena. Early during 7 March 2012, the biggest proton event of 2012 took place, while on 8 March 2012, an interplanetary shock and coronal mass ejection (CME) arrived at 1 AU. This sequence trigerred the biggest geomagnetic storm of cycle 24 so far. The solar source of these activities was a pair of homologous, eruptive X-class flares associated with two ultra-fast CMEs. The two eruptions originated from NOAA active region 11429 during the early hours of 7 March 2012 and within an hour from each other. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions and monitors, we perform a synergistic Sun-to-Earth study of various observational aspects of the event sequences. We will present an attempt to formulate a cohesive scenario which couples the eruption initiation, interplanetary propagation, and geospace consequences. Our main focus is on building a framework that starting from solar and near-Sun estimates of the magnetic and dynamic content and properties of the Earth-directed CME assess in advance the subsequent geomagnetic response expected, once the associated interplanetary CME reaches 1 AU. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.
Time-dependent radiation dose simulations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju
2016-07-01
Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.
NASA Technical Reports Server (NTRS)
Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.;
2012-01-01
Introduction: Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Dynamical Assessment: The current near-term NASA human spaceflight capability is in the process of being defined while the Multi-Purpose Crew Vehicle (MPCV) and Space Launch System (SLS) are still in development. Hence, those NEAs in more accessible heliocentric orbits relative to a minimal interplanetary exploration capability will be considered for the first missions. If total mission durations for the first voyages to NEAs are to be kept to less than one year, with minimal velocity changes, then NEA rendezvous missions ideally will take place within 0.1 AU of Earth (approx about 5 million km or 37 lunar distances). Human Exploration Considerations: These missions would be the first human expeditions to inter-planetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting detailed scientific investigations of these primitive objects. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at these destinations. In addition, the resulting scientific investigations would refine designs for future extraterrestrial In Situ Resource Utilization (ISRU), and assist in the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted mission to a NEA using NASA's proposed human exploration systems a compelling endeavor
NASA Technical Reports Server (NTRS)
Lasher, Larry E.; Hogan, Robert (Technical Monitor)
1999-01-01
This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.
Kawaguchi, Yuko; Yokobori, Shin-Ichi; Hashimoto, Hirofumi; Yano, Hajime; Tabata, Makoto; Kawai, Hideyuki; Yamagishi, Akihiko
2016-05-01
The Tanpopo mission will address fundamental questions on the origin of terrestrial life. The main goal is to test the panspermia hypothesis. Panspermia is a long-standing hypothesis suggesting the interplanetary transport of microbes. Another goal is to test the possible origin of organic compounds carried from space by micrometeorites before the terrestrial origin of life. To investigate the panspermia hypothesis and the possible space origin of organic compounds, we performed space experiments at the Exposed Facility (EF) of the Japanese Experiment Module (JEM) of the International Space Station (ISS). The mission was named Tanpopo, which in Japanese means dandelion. We capture any orbiting microparticles, such as micrometeorites, space debris, and terrestrial particles carrying microbes as bioaerosols, by using blocks of silica aerogel. We also test the survival of microbial species and organic compounds in the space environment for up to 3 years. The goal of this review is to introduce an overview of the Tanpopo mission with particular emphasis on the investigation of the interplanetary transfer of microbes. The Exposed Experiment Handrail Attachment Mechanism with aluminum Capture Panels (CPs) and Exposure Panels (EPs) was exposed on the EF-JEM on May 26, 2015. The first CPs and EPs will be returned to the ground in mid-2016. Possible escape of terrestrial microbes from Earth to space will be evaluated by investigating the upper limit of terrestrial microbes by the capture experiment. Possible mechanisms for transfer of microbes over the stratosphere and an investigation of the effect of the microbial cell-aggregate size on survivability in space will also be discussed. Panspermia-Astrobiology-Low-Earth orbit. Astrobiology 16, 363-376.
Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration
NASA Technical Reports Server (NTRS)
Ferguson, Scott; Mazzoleni, Andre
2016-01-01
Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability.
Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration
NASA Technical Reports Server (NTRS)
Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)
2001-01-01
The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.
Mars Sample Return mission: Two alternate scenarios
NASA Technical Reports Server (NTRS)
1991-01-01
Two scenarios for accomplishing a Mars Sample Return mission are presented herein. Mission A is a low cost, low mass scenario, while Mission B is a high technology, high science alternative. Mission A begins with the launch of one Titan IV rocket with a Centaur G' upper stage. The Centaur performs the trans-Mars injection burn and is then released. The payload consists of two lander packages and the Orbital Transfer Vehicle, which is responsible for supporting the landers during launch and interplanetary cruise. After descending to the surface, the landers deploy small, local rovers to collect samples. Mission B starts with 4 Titan IV launches, used to place the parts of the Planetary Transfer Vehicle (PTV) into orbit. The fourth launch payload is able to move to assemble the entire vehicle by simple docking routines. Once complete, the PTV begins a low thrust trajectory out from low Earth orbit, through interplanetary space, and into low Martian orbit. It deploys a communication satellite into a 1/2 sol orbit and then releases the lander package at 500 km altitude. The lander package contains the lander, the Mars Ascent Vehicle (MAV), two lighter than air rovers (called Aereons), and one conventional land rover. The entire package is contained with a biconic aeroshell. After release from the PTV, the lander package descends to the surface, where all three rovers are released to collect samples and map the terrain.
NASA Astrophysics Data System (ADS)
Segret, Boris; Semery, Alain; Vannitsen, Jordan; Mosser, Benoît.; Miau, Jiun-Jih; Juang, Jyh-Ching; Deleflie, Florent
2014-08-01
The AGILE principles in the software industry seems well adapted to the paradigm of CubeSat missions that involve students for the development of space missions. Some of well-known engineering and program processes are revisited on the example of an interplanetary CubeSat mission profile that has been developed by several teams of students in various countries and at various educational levels since 02/2013. The lessons learned at adapting traditional space mission methods are emphasized and they produce a metaphoric image of paving stones.
2016 Summer Series - Bethany Ehlmann - Early Mars: A View from Rovers and Orbiters
2016-08-18
Water signatures include geological changes and life. Surface and orbital interplanetary robotic missions are critical for obtaining knowledge on atmospheric, surface and subsurface conditions of planets in our solar system. Ehlmann will talk about Mars data collected from orbital and rover missions and their implication for our understating of Mars past and present water environments.
Automated Sensitivity Analysis of Interplanetary Trajectories for Optimal Mission Design
NASA Technical Reports Server (NTRS)
Knittel, Jeremy; Hughes, Kyle; Englander, Jacob; Sarli, Bruno
2017-01-01
This work describes a suite of Python tools known as the Python EMTG Automated Trade Study Application (PEATSA). PEATSA was written to automate the operation of trajectory optimization software, simplify the process of performing sensitivity analysis, and was ultimately found to out-perform a human trajectory designer in unexpected ways. These benefits will be discussed and demonstrated on sample mission designs.
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.
1982-01-01
Graphical data necessary for the preliminary design of ballistic missions to Jupiter are provided. Contours of launch energy requirements, as well as many other launch and Jupiter arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Jupiter probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.; Cunniff, R. A.
1983-01-01
Graphical data necessary for the preliminary design of ballistic missions to Mars are provided. Contours of launch energy requirements, as well as many other launch and Mars arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1990 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Mars probe and orbiter arrival design, utilizing the graphical data as well as numerous equations relating various parameters.
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Yin, N. H.
1983-01-01
Graphical data necessary for the preliminary design of ballistic missions to Venus is presented. Contours of launch energy requirements, as well as many other launch and arrival parameters, are presented in launch data/arrival date space for all launch opportunities from 1991 through 2005. An extensive text is included which explains mission design methods, from launch window development to Venus probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.
Interplanetary spacecraft design using solar electric propulsion
NASA Technical Reports Server (NTRS)
Duxbury, J. H.; Paul, G. M.
1974-01-01
Emphasis of the electric propulsion technology program is now on the application of solar electric propulsion to scientific missions. Candidate planetary, cometary, and geosynchronous missions are being studied. The object of this paper is to describe a basic spacecraft design proposed as the means to accomplish (1) a comet Encke slow flyby, (2) a comet Encke rendezvous, and (3) an out-of-the-ecliptic mission. The discussion includes design differences foreseen for the various missions and indicates those areas where spacecraft design commonality is possible. Particular emphasis is placed on a solar electric propulsion module design which permits an attractive degree of design inheritance from mission to mission.
NASA Astrophysics Data System (ADS)
Silin, D. V.
Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the stars in the observable Universe will become valid targets for interstellar missions.
Ushakov, I B; Tsetlin, V V; Moisa, S S
2013-01-01
The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.
Flight elements: Advanced avionics systems architectures
NASA Technical Reports Server (NTRS)
1990-01-01
Space transportation objectives are associated with transporting material from Earth to orbit, interplanetary travel, and planetary landing. The objectives considered herein are associated with Earth to orbit transportation. Many good avionics architectural features will support all phases of space transportation, but interplanetary transportation poses significantly different problems such as long mission time with high reliability, unattended operation, and many different opportunities such as long nonoperational flight segments that can be used for equipment fault diagnosis and repair. Fault tolerance can be used to permit continued operation with faulty units, not only during launch but also, and perhaps with more impact, during prelaunch activities. Avionics systems are entering a phase of development where the traditional approaches to satisfactory systems based on engineering judgement and thorough testing will alone no longer be adequate to assure that the required system performance can be obtained. A deeper understanding will be required to make the effects of obscure design decisions clear at a level where their impact can be properly judged.
The telecommunications and data acquisition
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1980-01-01
Radio astronomy and radio interferometry at microwave frequencies are discussed. Other topics concerning the Deep Space Network include program planning, planetary and interplanetary mission support, tracking and ground based navigation, communications, and station control and system technology.
Radioisotope Electric Propulsion (REP) for Selected Interplanetary Science Missions
NASA Technical Reports Server (NTRS)
Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Artis, Gwen
2005-01-01
This viewgraph presentation analyzes small body targets (Trojan Asteroids), Medium Outer Planet Class (Jupiter Polar Orbiter with Probes), and Main Belt Asteroids and Comets (Comet Surface Sample Return), for Radioisotope Electric Propulsion (REP).
Open Source Next Generation Visualization Software for Interplanetary Missions
NASA Technical Reports Server (NTRS)
Trimble, Jay; Rinker, George
2016-01-01
Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).
Basner, Mathias; Dinges, David F; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W; Hyder, Eric C; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V; Sutton, Jeffrey P
2013-02-12
The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep-wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep-wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep-wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep-wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior.
Potable water supply in U.S. manned space missions
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Straub, John E., II
1992-01-01
A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.
NASA Technical Reports Server (NTRS)
Cheng, L. Y.; Larsen, B.
2004-01-01
Launched in 1997, the Cassini-Huygens Mission sent the largest interplanetary spacecraft ever built in the service of science. Carrying a suite of 12 scientific instruments and an atmospheric entry probe, this complex spacecraft to explore the Saturn system may not have gotten off the ground without undergoing significant design changes and cost reductions.
Optimizing interplanetary trajectories with deep space maneuvers. M.S. Thesis
NASA Technical Reports Server (NTRS)
Navagh, John
1993-01-01
Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.
Optimizing interplanetary trajectories with deep space maneuvers
NASA Astrophysics Data System (ADS)
Navagh, John
1993-09-01
Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, Anny-Chantal; Gaboriaud, Alain; Buil, Christian; Ressouche, Antoine; Lasue, J.; Palun, Adrien; Apper, Fabien; Elmaleh, Marc
Intensity and linear polarization observations of the solar light scattered by interplanetary dust, the so-called zodiacal light, provide information on properties of the dust particles, such as their spatial density, local changes, morphology and albedo. Earth-based polarimetric observations, with a resolution of 5° or more, have been used to derive the polarization phase curve of interplanetary dust particles and to establish that the polarization at 90° phase angle increases with increasing solar distance, at least up to 1.5 au in the ecliptic, while the albedo decreases [1, 2]. Analysis of such studies will be revisited. Numerical simulations of the polarimetric behavior of interplanetary dust particles strongly suggest that, in the inner solar system, interplanetary dust particles consist of absorbing (e.g., organic compounds) and less absorbing (e.g., silicates) materials, that radial changes originate in a decrease of organics with decreasing solar distance (probably due to alteration processes), and that a significant fraction of the interplanetary dust is of cometary origin, in agreement with dynamical studies [3, 4]. The polarimetric behaviors of interplanetary dust and cometary dust particles seem to present striking similarities. The properties of cometary dust particles, as derived from remote polarimetric observations of comets including 67P/Churyumov-Gerasimenko, the target of the Rosetta rendezvous mission, at various wavelengths, will be summarized [5, 6]. The ground truth expected from Rosetta dust experiments, i.e., MIDAS, COSIMA, GIADA, about dust particles’ morphology, composition, and evolution (with distance to the nucleus before Philae release and with distance to the Sun before and after perihelion passage) over the year and a half of nominal mission, will be discussed. Finally, the Eye-Sat nanosatellite will be presented. This triple cubesat, developed by students from engineering schools working as interns at CNES, is to be launched in 2016 [7]. Its main purpose is to study the zodiacal light intensity and polarization from a Sun-synchronous orbit, for the first time at the high spatial resolution of 1° over a wide portion of the sky and at four different wavelengths (in the visible and near-IR domains). The instrumental choices and new on-board technologies will be summarized, together with the results that may be expected on local properties of the interplanetary dust particles and thus on their similarities and differences with cometary dust particles. Support from CNES is warmly acknowledged. [1] Leinert, C., Bowyer, S., Haikala, L.K., et al. The 1997 reference of diffuse night sky brightness, Astron. Astrophys. Supp., 127, 1-99, 1998. [2] Levasseur-Regourd, A.C., Mann, I., Dumont, R., et al. Optical and thermal properties of interplanetary dust. In Interplanetary dust (Grün, E. et al. Eds), 57-94, Springer-Verlag, Berlin, 2001. [3] Lasue, J., Levasseur-Regourd, A.C., Fray, N., et al. Inferring the interplanetary dust properties from remote observations and simulations, Astron. Astrophys., 473, 641-649, 2007. [4] Nesvorny, D., Jenniskens, P., Levison, H.F., et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites: implications for hot debris disks. Astrophys. J. 713, 816-836, 2010. [5] Levasseur-Regourd, A.C., Mukai, T., Lasue, J., et al. Physical properties of cometary and interplanetary dust, Planet. Space Sci., 55, 1010-1020, 2007. [6] Hadamcik, E., Sen, A.K., Levasseur-Regourd, A.C., et al., Astron. Astrophys., 517, A86, 2010. [7] CNES internal report. Eye-Sat end of phase A internal review, EYESAT-PR-0-022-CNES, 2013.
Cardiovascular Countermeasures for Exploration-Class Space Flight Missions
NASA Technical Reports Server (NTRS)
Charles, John B.
2004-01-01
Astronaut missions to Mars may be many years or even decades in thc future but current and planned efforts can be extrapolated to required treatments and prophylaxis for delerious efforts of prolonged space flight on the cardiovascular system. The literature of candidate countermeasures was considered in combination with unpublished plans for countermeasure implementation. The scope of cardiovascular countermeasures will be guided by assessments of the efficacy of mechanical, physiological and pharmacological approaches in protecting the cardiovascular capacities of interplanetary crewmembers. Plans for countermeasure development, evaluation and validation will exploit synergies among treatment modalities with the goal of maximizing protective effects while minimizing crew time and in-flight resource use. Protection of the cardiovascular capacity of interplanetary crewmembers will become more effective and efficient over the next few decades, but trade-offs between cost and effectiveness of efficiency are always possible if the increased level of risk can be accepted.
Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars
NASA Technical Reports Server (NTRS)
Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce
2014-01-01
Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability.
An Overview Of NASA's Solar Sail Propulsion Project
NASA Technical Reports Server (NTRS)
Garbe, Gregory; Montgomery, Edward E., IV
2003-01-01
Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.
MiniCOR: A miniature coronagraph for an interplanetary CUBESAT
NASA Astrophysics Data System (ADS)
Vourlidas, A.; Korendyke, C.; Liewer, P. C.; Cutler, J.; Howard, R.; Plunkett, S. P.; Thernisien, A. F.
2015-12-01
Coronagraphs occupy a unique place in Heliophysics, critical to both NAA and NOAA programs. They are the primary means for the study of the extended solar coorna and its short/long term activity. In addition coronagraphs are the only instrument that can image coronal mass ejections (CMEs) leaving the Sun and provide ciritical information for space weather forecasting. We descirbe a low cost miniaturzied CubeSat coronagraph, MiniCOR, designed to operate in deep space which will returndata with higher cadence and sensitivity than that from the SOHO/LASCO coronagraphs. MiniCOR is a six unit (6U) science craft with a tightly integrated, single instrument interplanetary flight system optiized for science. MiniCOR fully exploits recent technology advance in CubeSat technology and active pixel sensors. With a factor of 2.9 improvement in light gathering power over SOHO and quasi-continuous data collection, MiniCOR can observe the slow solar wind, CMEs and shocks with sufficient signal-to-noise ratio (SNR) to open new windows on our understanding of the inner Heliosphere. An operating Minic'OR would prvide coornagraphic observations in support of the upcoming Solar Probe Plus (SPP) and Solar Orbiter (SO) missions.
The interplanetary superhighway and the Origins Program
NASA Technical Reports Server (NTRS)
Lo, M. W.
2002-01-01
The origin of the universe and of life itself have been central to human inquiries since the dawn of consciousness. To develop and use the technologies to answer these timeless and profound questions is the mission of NASA's Origins Program.
Low-thrust solar electric propulsion navigation simulation program
NASA Technical Reports Server (NTRS)
Hagar, H. J.; Eller, T. J.
1973-01-01
An interplanetary low-thrust, solar electric propulsion mission simulation program suitable for navigation studies is presented. The mathematical models for trajectory simulation, error compensation, and tracking motion are described. The languages, input-output procedures, and subroutines are included.
Conceptual Drivers for an Exploration Medical System
NASA Technical Reports Server (NTRS)
Antonsen, E.; Canga, M.
2016-01-01
Interplanetary spaceflight provides unique challenges that have not been encountered in prior spaceflight experience. Extended distance and timeframes introduce new challenges such as an inability to resupply medications and consumables, inability to evacuate injured or ill crew, and communication delays that introduce a requirement for some level of autonomous medical capability. Because of these challenges the approaches used in prior programs have limited application to a proposed three year Mars mission. This paper proposes a paradigm shift in the approach to medical risk mitigation for crew health and mission objectives threatened by inadequate medical capabilities in the setting of severely limited resources. A conceptual approach is outlined to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this new paradigm. Using NASA Design Reference Missions this process assesses each mission phase to deconstruct medical needs at any point during a mission. Two operational categories are proposed, nominal operations (pre-planned activities) and contingency operations (medical conditions requiring evaluation) that meld clinical needs and research needs into a single system. These definitions are used to derive a task level analysis to support quantifiable studies into a medical capabilities trade. This trade allows system design to proceed from both a mission centric and ethics-based approach to medical limitations in an exploration class mission.
Anaesthesia in outer space: the ultimate ambulatory setting?
Komorowski, Matthieu; Fleming, Sarah; Hinkelbein, Jochen
2016-12-01
Missions to the Moon or more distant planets are planned in the next future, and will push back the limits of our experience in providing medical support in remote environments. Medical preparedness is ongoing, and involves planning for emergency surgical interventions and anaesthetic procedures. This review will summarize what principles of ambulatory anaesthesia on Earth could benefit the environment of a space mission with its unique constraints. Ambulatory anaesthesia relies on several principles such as improved patient pathway, correct patient selection, optimized procedural strategies to hasten recovery and active prevention of postoperative complications. Severe limitations in the equipment available and the skills of the crew members represent the key factors to be taken into account when designing the on-board medical system for future interplanetary space missions. The application of some of the key principles of ambulatory anaesthesia, as well as recent advances in anaesthetic techniques and better understanding of human adaptation to the space environment might allow nonanaesthesiologist physicians to perform common anaesthetic procedures, whilst maximizing crew safety and minimizing the impact of medical events on the mission.
The long life of Pioneer interplanetary spacecraft
NASA Technical Reports Server (NTRS)
Dixon, W. J.
1974-01-01
The Pioneer 6 to 9 interplanetary spacecraft were launched in 1965, 66, 67, and 68. All continue to operate in various orbits about the sun, gathering data on the solar system environment. Pioneer 10 was launched in 1972, and is now more than halfway to Jupiter, with all systems performing their required functions. The paper reviews these programs and the few anomalies which have been observed. The long-term mission success is discussed in terms of possible causative factors: simplicity in design and operation, redundancy in function and in equipment, comprehensive development and acceptance tests, the mildness of the space environment, and luck.
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew
2015-01-01
The customer (scientist or project manager) most often does not want just one point solution to the mission design problem Instead, an exploration of a multi-objective trade space is required. For a typical main-belt asteroid mission the customer might wish to see the trade-space of: Launch date vs. Flight time vs. Deliverable mass, while varying the destination asteroid, planetary flybys, launch year, etcetera. To address this question we use a multi-objective discrete outer-loop which defines many single objective real-valued inner-loop problems.
NASA Technical Reports Server (NTRS)
Jones, Ross M.
1988-01-01
The current status and potential scientific applications of intelligent 1-5-kg projectiles being developed by SDIO and DARPA for military missions are discussed. The importance of advanced microelectronics for such small spacecraft is stressed, and it is pointed out that both chemical rockets and EM launchers are currently under consideration for these lightweight exoatmospheric projectiles (LEAPs). Long-duration power supply is identified as the primary technological change required if LEAPs are to be used for interplanetary scientific missions, and the design concept of a solar-powered space-based railgun to accelerate LEAPs on such missions is considered.
Principles of Timekeeping for the NEAR and STEREO Spacecraft
NASA Technical Reports Server (NTRS)
Cooper, Stanley B.; Wolff, J. (Technical Monitor)
2001-01-01
This paper discusses the details of the inherently different timekeeping systems for two interplanetary missions, the NEAR Shoemaker mission to orbit the near-Earth asteroid 433 Eros and the STEREO (Solar Terrestrial Relations Observatory) mission to study and characterize solar coronal mass ejections. It also reveals the surprising dichotomy between two major categories of spacecraft timekeeping systems with respect to the relationship between spacecraft clock resolution and accuracy. The paper is written in a tutorial style so that it can be easily used as a reference for designing or analyzing spacecraft timekeeping systems.
NASA Astrophysics Data System (ADS)
Marsden, R. G.
1995-04-01
The following topics were dealt with: high latitude heliosphere, Ulysses mission, corona, spectra, coronal holes, composition, solar wind, He, plasma, streams, interplanetary magnetic field, plasma waves, radio bursts, energetic particles, cosmic rays, and interstellar gas.
NASA Astrophysics Data System (ADS)
Novikova, Nataliya; Gusev, Oleg; Sugimoto, Manabu; Deshevaya, Elena; Levinskikh, Margarita; Sychev, Vladimir; Okuda, Takashi; Orlov, Oleg; Alekseev, Victor; Poddubko, Svetlana; Polikarpov, Nikolay
The planetary quarantine is one of the key problems of deep space exploration. Risks of the possible transfer of biological objects across interplanetary space should be necessarily assessed during space exploration. The risks associated with a possible transfer of biological objects and primarily microorganisms in interplanetary space is a priority for space studies We can assume, that on the exterior side of both unmanned and manned space stations there can be millions of microbial cells, many of which are in spore forms, the stability of which towards the unfavorable factors is extremely high. However, direct evidence to support this assumption, obtained only in recent years. “Biorisk” is an apparatus designed for conduction of space experiments focused on long-term exposition of latent stages of different forms of organism on the outer side of Russian Segment of International Space Station was developed and used in SSC RF - Institute for Biomedical Problems RAS. The purpose of this experiment is to determine the principle capability of preservation of life capacity in test-cultures of microorganisms during long-term exposure (comparable with the term of interplanetary flight) in space. The first experiment was performed using spores of bacteria (Bacillus) and fungi (Penicillium, Aspergillus and Cladosporium) housed in 3 boxes that were exposed to outer space for 7, 12 or 18 months. It was for the first time demonstrated that bacterial and fungal spores could survive an exposure to outer space during the time period comparable with the duration of a return mission to Mars. Moreover, the microbial strains proved viable and highly active. The second experiment was expanded by flying, in addition to the above spores, dormant forms of higher plants, insects, lower crustaceans and vertebrates. The 31-month experiment showed that, in spite of harsher than in the first study temperatures, some specimens remained viable and capable of further multiplication. In summary, our experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions. Our findings are of scientific interest as well as of importance for the development of planetary quarantine concepts related to future space flight.
Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 2: Analytic manual
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows subproblems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.
An interstellar precursor mission
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.
1977-01-01
A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.
NASA Technical Reports Server (NTRS)
Sergeyevsky, A. B.; Snyder, G. C.
1981-01-01
Graphical data necessary for the preliminary design of ballistic missions to Saturn are provided. Contours of launch energy requirements as well as many other launch and Saturn arrival parameters, are presented in launch date/arrival date space for all launch opportunities from 1985 through 2005. In addition, an extensive text is included which explains mission design methods, from launch window development to Saturn probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations elating various parameters. This is the first of a planned series of mission design documents which will apply to all planets and some other bodies in the solar system.
Evaluation of radioisotope electric propulsion for selected interplanetary science missions
NASA Technical Reports Server (NTRS)
Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Robinson Artis, Gwen
2005-01-01
This study assessed the benefits and applicability of REP to missions relevant to the In-Space Propulsion Program (ISPP) using first and second generation RPS with specific powers of 4 We/kg and 8 We/kg, respectively. Three missions representing small body targets, medium outer planet class, and main belt asteroids and comets were evaluated. Those missions were a Trojan Asteroid Orbiter, Comet Surface Sample Return (CSSR), and Jupiter Polar Orbiter with Probes (JPOP). For each mission, REP cost and performance was compared with solar electric propulsion system (SEPS) and SOA chemical propulsion system (SCPS) cost and performance. The outcome of the analysis would be a determinant for potential inclusion in the ISPP investment portfolio.
Trajectory options for the DART mission
NASA Astrophysics Data System (ADS)
Atchison, Justin A.; Ozimek, Martin T.; Kantsiper, Brian L.; Cheng, Andrew F.
2016-06-01
This study presents interplanetary trajectory options for the Double Asteroid Redirection Test (DART) spacecraft to reach the near Earth object, Didymos binary system, during its 2022 Earth conjunction. DART represents a component of a joint NASA-ESA mission to study near Earth object kinetic impact deflection. The DART trajectory must satisfy mission objectives for arrival timing, geometry, and lighting while minimizing launch vehicle and spacecraft propellant requirements. Chemical propulsion trajectories are feasible from two candidate launch windows in late 2020 and 2021. The 2020 trajectories are highly perturbed by Earth's orbit, requiring post-launch deep space maneuvers to retarget the Didymos system. Within these windows, opportunities exist for flybys of additional near Earth objects: Orpheus in 2021 or 2007 YJ in 2022. A second impact attempt, in the event that the first impact is unsuccessful, can be added at the expense of a shorter launch window and increased (∼3x) spacecraft ΔV . However, the second impact arrival geometry has poor lighting, high Earth ranges, and would require additional degrees of freedom for solar panel and/or antenna gimbals. A low-thrust spacecraft configuration increases the trajectory flexibility. A solar electric propulsion spacecraft could be affordably launched as a secondary spacecraft in an Earth orbit and spiral out to target the requisite interplanetary departure condition. A sample solar electric trajectory was constructed from an Earth geostationary transfer using a representative 1.5 kW thruster. The trajectory requires 9 months to depart Earth's sphere of influence, after which its interplanetary trajectory includes a flyby of Orpheus and a second Didymos impact attempt. The solar electric spacecraft implementation would impose additional bus design constraints, including large solar arrays that could pose challenges for terminal guidance. On the basis of this study, there are many feasible options for DART to meet its mission design objectives and enable this unique kinetic impact experiment.
Test facilities for high power electric propulsion
NASA Technical Reports Server (NTRS)
Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.
1991-01-01
Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.
Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars
NASA Astrophysics Data System (ADS)
Rabotin, C. B.
Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches. Additionally, such spacecraft should be able to perform orbital insertions at destination in order to deliver the cargo directly in a desired orbit. An example application is designing round-trip missions to Mars to support exploration and eventually colonization. This research investigates the feasibility of return journeys to Mars based on the performance of existing or in-development continuous thrust propulsion systems. In order to determine the business viability of such missions, an emphasis is made on the time of flight during different parts of the mission, the relative velocity with respect to the destination planet, and the fuel requirements. The study looks at the applicability for interplanetary mission design of simple control laws for efficient correction of orbital elements, and of thrusting purely in velocity or anti-velocity direction. The simulations explore different configurations of continuous thrusting technologies using a patched-conics approach. In addition, all simulation scenarios facilitate escape from planetary gravity wells as the initial spacecraft orbit is highly elliptical, both around the Earth and around Mars. This work does not include any optimal trajectory design. For this research, a highly configurable orbit propagation software with SPICE ephemerides was developed from scratch in Go, a modern compiled computer language. The outcome of this research is that simple orbital element control laws do not lead to more efficient or faster interplanetary transfers. In addition, spiraling out of Earth's gravity wells requires a substantial amount of time despite starting from a highly elliptical orbit, and even with clustered high thrust engines like the VASIMR VX-200. Further investigation should look into hybrid solutions with a chemical engine for departing Earth; outbound spirals from Mars take a more reasonable amount of time.
Interplanetary CubeSat for Technology Demonstration at Mars Artist Concept
2015-06-12
NASA's two MarCO CubeSats will be flying past Mars in September 2016 just as NASA's next Mars lander, InSight, is descending through the Martian atmosphere and landing on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing. This illustration depicts a moment during the lander's descent when it is transmitting data in the UHF radio band, and the twin MarCO craft are receiving those transmissions while simultaneously relaying the data to Earth in a different radio band. Each of the MarCO twins carries two solar panels for power, and both UHF-band and X-band radio antennas. As a technology demonstration, MarCO could lead to other "bring-your-own-relay" mission designs and also to use of miniature spacecraft for a wide diversity of interplanetary missions. MarCO is the first interplanetary use of CubeSat technologies for small spacecraft. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies to streamline development. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. The two briefcase-size MarCO CubeSats will ride along with InSight on an Atlas V launch vehicle lifting off in March 2016 from Vandenberg Air Force Base, California. MarCO is a technology demonstration aspect of the InSight mission and not needed for that mission's success. InSight, an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, will investigate the deep interior of Mars to advance understanding of how rocky planets, including Earth, formed and evolved. After launch, the MarCO twins and InSight will be navigated separately to Mars. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19388
A close-up of the sun. [solar probe mission planning conference
NASA Technical Reports Server (NTRS)
Neugebauer, M. (Editor); Davies, R. W. (Editor)
1978-01-01
NASA's long-range plan for the study of solar-terrestrial relations includes a Solar Probe Mission in which a spacecraft is put into an eccentric orbit with perihelion near 4 solar radii (0.02 AU). The scientific experiments which might be done with such a mission are discussed. Topics include the distribution of mass within the Sun, solar angular momentum, the fine structure of the solar surface and corona, the acceleration of the solar wind and energetic particles, and the evolution of interplanetary dust. The mission could also contribute to high-accuracy tests of general relativity and the search for cosmic gravitational radiation.
A Post-Stardust Mission View of Jupiter Family Comets
NASA Technical Reports Server (NTRS)
Zolensky, M.
2011-01-01
Before the Stardust Mission, many persons (including the mission team) believed that comet nuclei would be geologically boring objects. Most believed that comet nucleus mineralogy would be close or identical to the chondritic interplanetary dust particles (IDPs), or perhaps contain mainly amorphous nebular condensates or that comets might even be composed mainly of preserved presolar material [1]. Amazingly, the results for Comet Wild 2 (a Jupiter class comet) were entirely different. Whether this particular comet will ultimately be shown to be typical or atypical will not be known for a rather long time, so we describe our new view of comets from the rather limited perspective of this single mission.
NASA Technical Reports Server (NTRS)
Sjauw, Waldy K.; McGuire, Melissa L.; Freeh, Joshua E.
2016-01-01
Recent NASA interest in human missions to Mars has led to an Evolvable Mars Campaign by the agency's Human Architecture Team. Delivering the crew return propulsion stages and Mars surface landers, SEP based systems are employed because of their high specific impulse characteristics enabling missions requiring less propellant although with longer transfer times. The Earth departure trajectories start from an SLS launch vehicle delivery orbit and are spiral shaped because of the low SEP thrust. Previous studies have led to interest in assessing the divide in trip time between the Earth departure and interplanetary legs of the mission for a representative SEP cargo vehicle.
NASA Technical Reports Server (NTRS)
1983-01-01
Voyager, Infrared Astronomical Satellite, Galileo, Viking, Solar Mesosphere Explorer, Wide-field/Planetary Camera, Venus Mapper, International Solar Polar Mission - Solar Interplanetary Satellite, Extreme Ultraviolet Explores, Starprobe, International Halley Watch, Marine Mark II, Samex, Shuttle Imaging Radar-A, Deep Space Network, Biomedical Technology, Ocean Studies and Robotics are summarized.
Evaluation of sample preservation methods for space mission
NASA Technical Reports Server (NTRS)
Schubert, W.; Rohatgi, N.; Kazarians, G.
2002-01-01
For interplanetary spacecraft that will travel to destinations where future life detection experiments may be conducted or samples are to be returned to earth, we should archive and preserve relevant samples from the spacecraft and cleanrooms for evaluation at a future date.
Fast round-trip Mars trajectories
NASA Technical Reports Server (NTRS)
Wilson, Sam
1990-01-01
This paper is concerned with the effect of limiting the overall duration or else the one-way flight time of a round trip to Mars, as reflected in the sum of impulsive velocity increments required of the spacecraft propulsion system. Ignition-to-burnout mass ratios for a hypothetical single stage spacecraft, obtained from the rocket equation by combining these delta-V sums with appropriate values of specific impulse, are used to evaluate the relative effectiveness of four high-thrust propulsion alternatives. If the flight crew goes to the surface of Mars and stays there for the duration of their stopover, it is much cheaper (in terms of delta-V) to minimize their zero-g exposure by limiting the interplanetary transit time of a conjunction-class mission (round trip time = 800-1000 days, Mars stopover = 450-700 days) than to impose the same limit on an opposition-class mission (round trip time less than 600 days, stopover = 40 days). Using solid-core nuclear thermal propulsion to fly a conjunction-class mission, for a moderate mass penalty the interplanetary transit time (each way) probably could be limited to something in the range of 4 to 6 months, depending on the launch year.
Laser Technology in Interplanetary Exploration: The Past and the Future
NASA Technical Reports Server (NTRS)
Smith, David E.
2000-01-01
Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.
Optimizing Mars Sphere of Influence Maneuvers for NASA's Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Merrill, Raymond G.; Komar, D. R.; Chai, Patrick; Qu, Min
2016-01-01
NASA's Human Spaceflight Architecture Team is refining human exploration architectures that will extend human presence to the Martian surface. For both Mars orbital and surface missions, NASA's Evolvable Mars Campaign assumes that cargo and crew can be delivered repeatedly to the same destination. Up to this point, interplanetary trajectories have been optimized to minimize the total propulsive requirements of the in-space transportation systems, while the pre-deployed assets and surface systems are optimized to minimize their respective propulsive requirements separate from the in-space transportation system. There is a need to investigate the coupled problem of optimizing the interplanetary trajectory and optimizing the maneuvers within Mars's sphere of influence. This paper provides a description of the ongoing method development, analysis and initial results of the effort to resolve the discontinuity between the interplanetary trajectory and the Mars sphere of influence trajectories. Assessment of Phobos and Deimos orbital missions shows the in-space transportation and crew taxi allocations are adequate for missions in the 2030s. Because the surface site has yet to be selected, the transportation elements must be sized to provide enough capability to provide surface access to all landing sites under consideration. Analysis shows access to sites from elliptical parking orbits with a lander that is designed for sub-periapsis landing location is either infeasible or requires expensive orbital maneuvers for many latitude ranges. In this case the locus of potential arrival perigee vectors identifies the potential maximum north or south latitudes accessible. Higher arrival velocities can decrease reorientation costs and increase landing site availability. Utilizing hyperbolic arrival and departure vectors in the optimization scheme will increase transportation site accessibility and provide more optimal solutions.
The PocketSpacecraft.com Integrated eXploration Environment (PIXE)
NASA Astrophysics Data System (ADS)
Johnson, Michael
2015-04-01
The PocketSpacecraft.com Integrated eXploration Environment (PIXE) is an integrated generic spacecraft design, simulation, manufacturing, and operations system for the low cost mass exploration of space by amateur and professional Principle Investigators (PIs). PIs use an online tool to design Thin-Film Spacecraft/Lander/Rovers (TF-SLRs) using a library of predefined spacecraft and mission components to specify TF-SLRs in quantities ranging from one to thousands per mission, each with a typical mass <1g, surface area <1m2, and
Imaging interplanetary CMEs at radio frequency from solar polar orbit
NASA Astrophysics Data System (ADS)
Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Liu, Hao; Yan, Jingye; Wang, Chi; Wang, Chuanbing; Wang, Shui
2011-09-01
Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun-Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.
2015-01-01
Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on several real-world problems. Two assumptions are frequently made to simplify the modeling of an interplanetary high-thrust trajectory during the preliminary design phase. The first assumption is that because the available thrust is high, any maneuvers performed by the spacecraft can be modeled as discrete changes in velocity. This assumption removes the need to integrate the equations of motion governing the motion of a spacecraft under thrust and allows the change in velocity to be modeled as an impulse and the expenditure of propellant to be modeled using the time-independent solution to Tsiolkovsky's rocket equation [1]. The second assumption is that the spacecraft moves primarily under the influence of the central body, i.e. the sun, and all other perturbing forces may be neglected in preliminary design. The path of the spacecraft may then be modeled as a series of conic sections. When a spacecraft performs a close approach to a planet, the central body switches from the sun to that planet and the trajectory is modeled as a hyperbola with respect to the planet. This is known as the method of patched conics. The impulsive and patched-conic assumptions significantly simplify the preliminary design problem.
On the Contribution of Asteroid Disruptions to the Interplanetary Dust Flux
NASA Astrophysics Data System (ADS)
Kehoe, T. J. J.; Kehoe, A. E.
2017-12-01
Recent modeling has shown the significant contribution of micron- to millimeter-sized particles released by the disruption of main-belt asteroids (MBAs) to the interplanetary dust particle (IDP) flux (e.g., Dermott et al., 2002; Nesvorný et al., 2003; Espy Kehoe et al., 2015). In this paper, we present the results of a study that indicates that the dust injected into the zodiacal cloud due to the catastrophic disruption of an asteroid is dominated by the release of its surface regolith particles. Our research suggests that disrupting a single asteroid with diameter O(100 km) will be enough to regenerate the entire zodiacal cloud. The breakup of smaller asteroids with diameters O(10 km) will likely produce more moderate, but still significant, changes in the dust environment of the inner solar system. As collisional disruptions of asteroids in this size range occur more frequently, it is important that we develop a better understanding of the injection of asteroidal material into the zodiacal cloud as a result of these type of events in order to determine the temporal evolution of the interplanetary dust flux. The results presented in this paper will lead to a better understanding of the threat to exploration activities due to the enhanced IDP flux resulting from the disruption of asteroidal regoliths. These findings can be employed to improve engineering models, for example, the NASA Meteoroid Engineering Model (MEM) that is widely utilized to assess the impact hazard to space hardware and activities in the inner solar system due to the natural meteoroid environment (McNamara et al., 2004). This is an important area of concern for current and future mission development purposes.
Effective radiation reduction in Space Station and missions beyond the magnetosphere
NASA Technical Reports Server (NTRS)
Jordan, Thomas M.; Stassinopoulos, E. G.
1989-01-01
This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).
The Interplanetary Network II: 11 Months of Rapid, Precise GRB Localizations
NASA Astrophysics Data System (ADS)
Hurley, K.; Cline, T.; Mazets, E.; Golenetskii, S.; Trombka, J.; Feroci, M.; Kippen, R. M.; Barthelmy, S.; Frontera, F.; Guidorzi, C.; Montanari, E.
2000-10-01
Since December 1999 the 3rd Interplanetary Network has been producing small ( 10') error boxes at a rate of about one per week, and circulating them rapidly ( 24 h) via the GCN. As of June 2000, 24 such error boxes have been obtained; 18 of them have been searched in the radio and optical ranges for counterparts, resulting in four definite counterpart detections and three redshift determinations. We will review these results and explain the some of the lesser known IPN operations. In particular, we maintain an "early warning" list of potential observers with pagers and cell phones, and send messages to them to alert them to bursts for which error boxes will be obtained, allowing them to prepare for observations many hours before the complete spacecraft data are received and the GCN message is issued. As an interesting aside, now that the CGRO mission is terminated, the IPN consists entirely of non-NASA and/or non-astrophysics missions, specifically, Ulysses and Wind (Space Physics), NEAR (Planetary Physics), and BeppoSAX (ASI).
Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David
2016-01-01
Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.
Guidance, navigation, and control study for a solar electric propulsion spacecraft
NASA Technical Reports Server (NTRS)
Kluever, Craig A.
1995-01-01
A preliminary investigation of a lunar-comet rendezvous mission using a solar electric propulsion (SEP) spacecraft was performed in two phases.The first phase involved exploration of the moon and the second involved rendezvous with a comet. The initial phase began with a chemical propulsion translunar injection and chemical insertion into a lunar orbit, followed by a low thrust SEP transfer to a circular, polar, low-lunar orbit. After collecting scientific data at the moon, the SEP spacecraft performed a spiral lunar escape maneuver to begin the interplanetary leg of the mission. After escape from the Earth-moon system, the SEP spacecraft maneuvered in interplanetary space and performed a rendezvous with a comet.The immediate goal of this study was to demonstrate the feasibility of using a low-thrust SEP spacecraft for orbit transfer to both the moon and a comet. Another primary goal was to develop a computer optimization code which would be robust enough to obtain minimum-fuel rendezvous trajectories for a wide range of comets.
NASA Technical Reports Server (NTRS)
Siegmeth, A. J.; Purdue, R. E.; Ryan, R. E.
1973-01-01
The tracking and data system support of the launch, near-earth, and deep space phases of the Pioneer 10 mission, which sent a Pioneer spacecraft into a flyby of Jupiter that would eventually allow the spacecraft to escape the solar system is discussed. The support through the spacecraft's second trajectory correction is reported. During this period, scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields, and radiometric data generated by the network continued to improve knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.
1999-10-21
Travel to distant stars is a long-range goal of Marshall Space Flight Center's Advanced Concept Group. One of the many propulsion systems currently being studied is fusion power. The objective of this and many other alternative propulsion systems is to reduce the costs of space access and to reduce the travel time for planetary missions. One of the major factors is providing an alternate engery source for these missions. Pictured is an artist's concept of future interplanetary space flight using fusion power.
Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials
NASA Technical Reports Server (NTRS)
Wilkins, Richard; Armendariz, Lupita (Technical Monitor)
2002-01-01
Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.
Optimization of interplanetary trajectories with unpowered planetary swingbys
NASA Technical Reports Server (NTRS)
Sauer, Carl G., Jr.
1988-01-01
A method is presented for calculating and optimizing unpowered planetary swingby trajectories using a patched conic trajectory generator. Examples of unpowered swingby trajectories are given to demonstrate the method. The method, which uses primer vector theory, is not highly accurate, but provides projections for preliminary mission definition studies. Advantages to using a patched conic trajectory simulation for preliminary studies which examine many different and complex missions include calculation speed and adaptability to changes or additions to the formulation.
Relativistic electron dropout echoes induced by interplanetary shocks
NASA Astrophysics Data System (ADS)
Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.
2017-12-01
Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.
The pioneer projects: Economical exploration of the solar system
NASA Technical Reports Server (NTRS)
Spahr, J. R.; Hall, C. F.
1975-01-01
The interplanetary Pioneer missions are reviewed in terms of management implications and cost control. The responsibilities, organizational structure, and management practices of the Pioneer Projects are presented. The lines of authority and areas of responsibility of the principal organizational elements supporting the Pioneer missions are identified, and the methods employed for maintaining effective and timely interactions among these elements are indicated. The technical and administrative functions of the various organizational elements of the Pioneer Project Office at Ames Research Center are described in terms of their management responsibilities and interactions with other elements of the Project Office and with external organizations having Pioneer Project responsibilities. The management and control of activities prior to and during the hardware procurement phase are described to indicate the basis for obtaining visibility of the technical progress, utilization of resources, and cost performance of the contractors and other institutions supporting the Pioneer projects.
Interplanetary propulsion using inertial fusion
NASA Technical Reports Server (NTRS)
Orth, Charles D.; Hoffman, Nate; Murray, Kathy; Klein, Gail; Diaz, Franklin Chang
1987-01-01
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short duration manned mission performance exceeding other technologies. A study was conducted to assess the systems aspects of inertial as applied to such missions, based on the conceptual engine design of Hyde (1983). The required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel is described. Preliminary design details are given for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days.
Solar system exploration - Some thoughts on techniques and technologies
NASA Technical Reports Server (NTRS)
Bekey, Ivan
1990-01-01
Some techniques and technologies for proposed interplanetary missions are described. Methods for reducing the effect of zero gravity on humans during missions to Mars and the moon, and the need for launch vehicles with increased lift capability are discussed. The use of nuclear power, liquid oxygen from the moon, and helium 3 as propellants for spacecraft is examined. The development and capabilities of the Shuttle Z vehicle are considered. Attention is given to the Space Station Freedom and Energia. A launch vehicle concept which utilizes the Shuttle Z for a mission to Mars is presented.
NASA Technical Reports Server (NTRS)
Horowitz, Richard; Ross, Patricia A.; King, Joseph H.
1989-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA, and other U.S. government agencies. This volume contains the Master Index. The following spacecraft are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
Time and Energy, Exploring Trajectory Options Between Nodes in Earth-Moon Space
NASA Technical Reports Server (NTRS)
Martinez, Roland; Condon, Gerald; Williams, Jacob
2012-01-01
The Global Exploration Roadmap (GER) was released by the International Space Exploration Coordination Group (ISECG) in September of 2011. It describes mission scenarios that begin with the International Space Station and utilize it to demonstrate necessary technologies and capabilities prior to deployment of systems into Earth-Moon space. Deployment of these systems is an intermediate step in preparation for more complex deep space missions to near-Earth asteroids and eventually Mars. In one of the scenarios described in the GER, "Asteroid Next", there are activities that occur in Earth-Moon space at one of the Earth-Moon Lagrange (libration) points. In this regard, the authors examine the possible role of an intermediate staging point in an effort to illuminate potential trajectory options for conducting missions in Earth-Moon space of increasing duration, ultimately leading to deep space missions. This paper will describe several options for transits between Low Earth Orbit (LEO) and the libration points, transits between libration points, and transits between the libration points and interplanetary trajectories. The solution space provided will be constrained by selected orbital mechanics design techniques and physical characteristics of hardware to be used in both crewed missions and uncrewed missions. The relationships between time and energy required to transfer hardware between these locations will provide a better understanding of the potential trade-offs mission planners could consider in the development of capabilities, individual missions, and mission series in the context of the ISECG GER.
Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions
NASA Technical Reports Server (NTRS)
Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich
2013-01-01
Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.
Performance comparison of earth and space storable bipropellant systems in interplanetary missions
NASA Technical Reports Server (NTRS)
Meissinger, H. F.
1978-01-01
The paper evaluates and compares the performance of earth-storable and space-storable liquid bipropellant propulsion systems in high-energy planetary mission applications, including specifically Saturn and Mercury orbiters, as well as asteroid and comet rendezvous missions. The discussion covers a brief review of the status of space-storable propulsion technology, along with an illustrative propulsion module design for a three-axis stabilized outer planet and cometary mission spacecraft of the Mariner class. The results take revised Shuttle/Upper Stage performance projections into account. It is shown that in some of the missions the performance improvement achievable in the ballistic transfer mode with space-storable spacecraft propulsion can provide a possible alternative to the use of solar-electric propulsion.
The Cambridge encyclopedia of space (revised edition)
NASA Technical Reports Server (NTRS)
D'Allest, Frederic; Arets, Jean; Baker, Phillip J.; Balmino, Georges; Barth, Hans; Benson, Robert H.
1990-01-01
A comprehensive and intensively illustrated development history is presented for spaceflight, ranging over its basic concepts' speculative and fictional origins, the historical roots of rocket-related technologies, and the scientific accomplishments of earth orbit and interplanetary missions to date. Attention is given to propulsion systems, spaceflight launch centers, satellite systems, and solar system exploration by the U.S. and the Soviet Union. Current space-related activities encompass the meteorology, remote sensing, telecommunications and direct broadcasting, and navigation functions of unmanned satellites, as well as such manned spacecraft roles as medical and materials science research. The military uses of space, and increasingly important space industrialization concepts, are discussed as well.
Z-Pinch Pulsed Plasma Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason;
2010-01-01
Fusion-based propulsion can enable fast interplanetary transportation. Magneto-inertial fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small reactor for fusion break even. The Z-Pinch/dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an axial current (I approximates 100 MA). Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4). This document presents a conceptual design of a Z-Pinch fusion propulsion system and a vehicle for human exploration. The purpose of this study is to apply Z-Pinch fusion principles to the design of a propulsion system for an interplanetary spacecraft. This study took four steps in service of that objective; these steps are identified below. 1. Z-Pinch Modeling and Analysis: There is a wealth of literature characterizing Z-Pinch physics and existing Z-Pinch physics models. In order to be useful in engineering analysis, simplified Z-Pinch fusion thermodynamic models are required to give propulsion engineers the quantity of plasma, plasma temperature, rate of expansion, etc. The study team developed these models in this study. 2. Propulsion Modeling and Analysis: While the Z-Pinch models characterize the fusion process itself, propulsion models calculate the parameters that characterize the propulsion system (thrust, specific impulse, etc.) The study team developed a Z-Pinch propulsion model and used it to determine the best values for pulse rate, amount of propellant per pulse, and mixture ratio of the D-T and liner materials as well as the resulting thrust and specific impulse of the system. 3. Mission Analysis: Several potential missions were studied. Trajectory analysis using data from the propulsion model was used to determine the duration of the propulsion burns, the amount of propellant expended to complete each mission considered. 4. Vehicle Design: To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it -- the propulsion system significantly impacts the design of the electrical, thermal control, avionics and structural subsystems of a vehicle. The study team developed a conceptual design of an interplanetary vehicle that transports crew and cargo to Mars and back and can be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study -- the Human Outer Planet Exploration (HOPE) Magnetized Target Fusion (MTF) vehicle. Portions of the vehicle design were used outright and others were modified from the MTF design in order to maintain comparability.
Galileo Science Writers' Briefing. Part 1
NASA Technical Reports Server (NTRS)
1989-01-01
This NASA Kennedy video production presents Part 1 of a press conference held at JPL on August 8, 1989. The briefing in its entirety covers the Galileo Project's mission design from launch to completion in 1997 and is moderated by JPL Public Information Mgr. Robert Macmillan. Part 1 of the 3 part video series includes presentations by Richard J. Spehalski (Galileo Project Manager) and Clayne M. Yeates (Acting Science Mission Design Manager). Mr. Spehalski's presentation includes actual footage of spacecraft preparations at Kennedy Space Center and slides of mission timelines. Dr. Yeates discusses the Galileo mission in chronological order and includes slides of the interplanetary trajectory, encounter geometry, propellant margins vs. launch date, and planned earth images.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael
2006-01-01
This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.
Interplanetary propulsion using inertial fusion
NASA Technical Reports Server (NTRS)
Orth, C. D.; Hogan, W. J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F. C.
1987-01-01
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed.
Near Earth Asteroid (NEA) Scout
NASA Technical Reports Server (NTRS)
Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared; McNutt, Leslie
2017-01-01
NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission that will lay the groundwork for the future use of solar sails. The NEA Scout mission will use the sail as primary propulsion allowing it to survey and image one NEA's of interest for future human exploration. NEA Scout will launch on the first mission of the Space Launch System (SLS) in 2018. After its first encounter with the Moon, NEA Scout will enter the sail characterization phase by the 86 square meter sail deployment. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. The spacecraft will perform a series of lunar flybys to achieve optimum departure trajectory before beginning its two year-long cruise. About one month before the asteroid flyby, NEA Scout will start its approach phase using optical navigation on top of radio tracking. The solar sail will provide NEA Scout continuous low thrust to enable a relatively slow flyby of the target asteroid under lighting conditions favorable to geological imaging. Once complete, NASA will have demonstrated the capability to fly low-cost, high delta V CubeSats to perform interplanetary missions.
Individual styles of professional operator's performance for the needs of interplanetary mission.
NASA Astrophysics Data System (ADS)
Boritko, Yaroslav; Gushin, Vadim; Zavalko, Irina; Smoleevskiy, Alexandr; Dudukin, Alexandr
Maintenance of the cosmonaut’s professional performance reliability is one of the priorities of long-term space flights safety. Cosmonaut’s performance during long-term space flight decreases due to combination of the microgravity effects and inevitable degradation of skills during prolonged breaks in training. Therefore, the objective of the elaboration of countermeasures against skill decrement is very relevant. During the experiment with prolonged isolation "Mars-500" in IMBP two virtual models of professional operator’s activities were used to investigate the influence of extended isolation, monotony and confinement on professional skills degradation. One is well-known “PILOT-1” (docking to the space station), another - "VIRTU" (manned operations of planet exploration). Individual resistance to the artificial sensory conflict was estimated using computerized version of “Mirror koordinograf” with GSR registration. Two different individual performance styles, referring to the different types of response to stress, have been identified. Individual performance style, called "conservative control", manifested in permanent control of parameters, conditions and results of the operator’s activity. Operators with this performance style demonstrate high reliability in performing tasks. The drawback of the style is intensive resource expenditure - both the operator (physiological "cost") and the technical system operated (fuel, time). This style is more efficient while executing tasks that require long work with high reliability required according to a detailed protocol, such as orbital flight. Individual style, called "exploratory ", manifested in the search of new ways of task fulfillment. This style is accompanied by partial, periodic lack of control of the conditions and result of operator’s activity due to flexible approach to the tasks perfect implementation. Operators spent less resource (fuel, time, lower physiological "cost") due to high self-regulation in tasks not requiring high reliability. "Exploratory" style is more effective when working in nonregulated and off-nominal situations, such as interplanetary mission, due to possibility to use nonstandard innovative solutions, save physiological resources and rapidly mobilize to demonstrate high reliability at key moments.
Thruster array design approaches for a solar electric propulsion Encke Flyby mission
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1973-01-01
Design approaches are described and evaluated for a mercury electron-bombardment ion thruster array. Such an array might be used on a solar electric interplanetary spacecraft that obtains electrical energy from large solar panels. Thruster array designs are described and evaluated as they would apply to an Encke Flyby mission. Besides several well known approaches, a new concept utilizing individual two-axis gimbal actuators on each thruster is described and shown to have many structural and thermal advantages.
Results of Skylab experiment T00-2, manual navigation sightings
NASA Technical Reports Server (NTRS)
Randle, R. J.
1976-01-01
An analysis of navigation data collected using a hand-held space sextant on the second and third manned Skylab missions was presented. From performance data and astronaut comments it was determined that: (1) the space sextant, the sighting station, and the sighting techniques require modification; (2) the sighting window must be of good optical quality; (3) astronaut performance was stable over long mission time; and (4) sightings made with a hand-held sextant were accurate and precise enough for reliable interplanetary manual navigation.
Earth observations during Space Shuttle flight STS-41 - Discovery's mission to planet earth
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh P.; Helfert, Michael R.; Amsbury, David L.; Whitehead, Victor S.; Richards, Richard N.; Cabana, Robert D.; Shepherd, William M.; Akers, Thomas D.; Melnick, Bruce E.
1991-01-01
An overview of space flight STS-41 is presented, including personal observations and comments by the mission astronauts. The crew deployed the Ulysses spacecraft to study the polar regions of the sun and the interplanetary space above the poles. Environmental observations, including those of Lake Turkana, Lake Chad, biomass burning in Madagascar and Argentina, and circular features in Yucatan are described. Observations that include landforms and geology, continental sedimentation, desert landscapes, and river morphology are discussed.
Safety and environmental constraints on space applications of fusion energy
NASA Technical Reports Server (NTRS)
Roth, J. Reece
1990-01-01
Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.
NASA Astrophysics Data System (ADS)
Nichols, J. D.; Badman, S. V.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Cowley, S. W. H.; Ebert, R. W.; Fujimoto, M.; Gérard, J.-C.; Gladstone, G. R.; Grodent, D.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; Murakami, G.; McComas, D. J.; Orton, G. S.; Radioti, A.; Stallard, T. S.; Tao, C.; Valek, P. W.; Wilson, R. J.; Yamazaki, A.; Yoshikawa, I.
2017-08-01
We present the first comparison of Jupiter's auroral morphology with an extended, continuous, and complete set of near-Jupiter interplanetary data, revealing the response of Jupiter's auroras to the interplanetary conditions. We show that for ˜1-3 days following compression region onset, the planet's main emission brightened. A duskside poleward region also brightened during compressions, as well as during shallow rarefaction conditions at the start of the program. The power emitted from the noon active region did not exhibit dependence on any interplanetary parameter, though the morphology typically differed between rarefactions and compressions. The auroras equatorward of the main emission brightened over ˜10 days following an interval of increased volcanic activity on Io. These results show that the dependence of Jupiter's magnetosphere and auroras on the interplanetary conditions are more diverse than previously thought.
General Human Health Issues For Moon And Mars Missions: Results From The HUMEX Study
NASA Astrophysics Data System (ADS)
Horneck, G.; Comet, B.
Human exploratory missions, such as the establishment of a permanently inhabited lunar base and/or human visits to Mars will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity lev-els, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues. Besides spaceflight specific risks, such as radiation health, gravity related effects and psy-chological issues, general health issues need to be considered. These individual risks of illness, injury or death are based on general human health statistics. The duration of the mission is the main factor in these considerations. These risk estimations are the base which have to supplemented by the risks related specifically to the nature of the expedition under consideration. Crew health and performance have to be secured during transfer flights, during lunar or Mars surface exploration, including EVAs, and upon return to Earth, as defined within the constraints of safety objectives and mass restrictions of the mission. Within the ESA Study on the Survivability and Adaptation of Humans to Long-Duration Interplanetary and Planetary Environments (so called HUMEX study), we have critically assessed the human responses, limits and needs with regard to the environments of interplanetary and planetary missions. Based on various scenarios, the crew health risks have been evaluated. The main results are as follows: (i) The state of the art shows that bone loss during the long stay in weightlessness, especially during missions to Mars, remains an unacceptable risk. Solutions to control and to prevent this risk shall be developed. (ii) The control of human physical capacity impairment under weightlessness shall be optimized. (iii) Based of the probability of occurrence of diseases and injuries and on the con-straints imposed by exploratory mission scenarios, the crew shall have a full auton-omy in terms of medical and surgical diagnostics and care means and competency. (iv) The control of the toxic and biological risks in a confined environment for a so long exposure shall be carefully analyzed and the technical solutions shall master these risks. A roadmap in the field of health care has been elaborated for a future European participation strategy towards human exploratory missions taking into account preparatory activities, such as analogue situations and ISS opportunities, European positioning and potential terrestrial applications and benefits. References: Horneck G. , R. Facius, M. Reichert, P. Rettberg, W. Seboldt, D. Man-zey, B. Comet, A. Maillet, H. Preiss, L. Schauer, C.G. Dussap, L. Poughon, A. Belyavin, G. Reitz, C. Baumstark-Khan, R. Gerzer (2003) HUMEX, a Study on the Survivability and Adaptation of Humans to Long-Duration Exploratory Missions, ESA SP-1264
Acquisition and cruise sensing for attitude control
NASA Technical Reports Server (NTRS)
Pace, G. D., Jr.; Schmidt, L. F.
1977-01-01
Modified wideangle analog cruise sun sensor coupled with changes in optic attitude correction capabilities, eliminate need of acquisition and sun gate sensors, making on-course navigation of spacecraft flying interplanetary missions less risky and costly. Operational characteristics potentially make system applicable to guidance and control of solar energy collection systems.
An antiproton driver for ICF propulsion
NASA Technical Reports Server (NTRS)
Chiang, Pi-Ren; Lewis, R. A.; Smith, G. A.; Gazze, C.; Higman, K.; Newton, R.; Chiaverini, M.; Dailey, J.; Surratt, M.; Werthman, W. Lance
1993-01-01
Inertial confinement fusion (ICF) utilizing an anitprotoncatalyzed target is discussed as a possible source of propulsion for rapid interplanetary manned space missions. The relevant compression, ignition, and thrust mechanisms are presented. Progress on an experiment presently in progress at the Phillips Laboratory, Kirtland AFB, NM to demonstrate proof-of-principle is reviewed.
Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Constraints
NASA Technical Reports Server (NTRS)
Hinckley, David; Englander, Jacob; Hitt, Darren
2015-01-01
Single trial evaluations Trial creation by Phase-wise GA-style or DE-inspired recombination Bin repository structure requires an initialization period Non-exclusionary Kill Distance Population collapse mechanic Main loop Creation Probabilistic switch between GA and DE creation types Locally optimize Submit to repository Repeat.
End-to-end information system concept for the Mars Telecommunications Orbiter
NASA Technical Reports Server (NTRS)
Breidenthal, Julian C.; Edwards, Charles D.; Greenberg, Edward; Kazz, Greg J.; Noreen, Gary K.
2006-01-01
The Mars Telecommunications Orbiter (MTO) was intended to provide high-performance deep space relay links to landers, orbiters, sample-return missions, and approaching spacecraft in the vicinity of Mars, to demostrate interplanetary laser communications, to demonstrate autonomous navigation, and to carry out its own science investigations.
End-to-end information system concept for the Mars Telecommunications Orbiter
NASA Technical Reports Server (NTRS)
Bridenthal, Julian C.; Edwards, Charles D.; Greenberg, Edward; Kazz, Greg J.; Noreen, Gary K.
2006-01-01
The Mars Telecommunications Orbiter (MTO) was intended to provide high-performance deep space relay links to landers, orbiters, sample-return, missions, and approaching spacecraft in the vicinity of Mars, to demonstrate interplanetary laser communications, to demonstrate autonomous navigation, and to carry out is own science investigations.
Interplanetary program to optimize simulated trajectories (IPOST). Volume 4: Sample cases
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D; Olson, D. W.; Vallado, C. A.
1992-01-01
The Interplanetary Program to Optimize Simulated Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization are performed using the Standard NPSOL algorithm. The IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.
Transceiver optics for interplanetary communications
NASA Astrophysics Data System (ADS)
Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.
2017-11-01
In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.
NASA Technical Reports Server (NTRS)
Gloeckler, G.
1977-01-01
An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.
The causes of recurrent geomagnetic storms
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Lepping, R. P.
1976-01-01
The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.
NASA Astrophysics Data System (ADS)
James, D.; Poppe, A.; Horanyi, M.
2008-12-01
The Venetia Burney Student Dust Counter (VSDC) on the New Horizons mission is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the spacecraft as it traverses our solar system. VSDC is the first student-built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when a dust particle impacts them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (12/2008), VSDC will have operated for about 500 days, and will have data covering an approximate distance of 1.2 to 11.0 AU from the Sun. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses and Galileo.
Ultra-Compact Ka-Band Parabolic Deployable Antenna for RADAR and Interplanetary CubeSats
NASA Technical Reports Server (NTRS)
Sauder, Jonathan; Chahat, Nacer; Thomson, Mark; Hodges, Richard; Peral, Eva; Rahmat-Samii, Yahya
2015-01-01
Over the past several years, technology and launch opportunities for CubeSats have exploded, enabling a wide variety of missions. However, as instruments become more complex and CubeSats travel deeper into space, data communication rates become an issue. To solve this challenge, JPL has initiated a research and technology development effort to design a 0.5 meter Ka-band parabolic deployable antenna (KaPDA) which would stow in 1.5U (10 x 10 x 15 cu cm) and provide 42dB of gain (50% efficiency). A folding rib architecture and dual reflector Cassegrainian design was selected as it best balances RF gain and stowed size. The design implements an innovative telescoping waveguide and gas powered deployment. RF simulations show that after losses, the antenna would have over 42 dB gain, supported by preliminary test results. KaPDA would create opportunities for a host of new CubeSat missions by allowing high data rate communication which would enable using high fidelity instruments or venturing further into deep space, including potential interplanetary missions. Additionally KaPDA would provide a solution for other small antenna needs and the opportunity to obtain Earth science data. This paper discusses the design challenges encountered, the architecture of the solution, and the antennas expected performance capabilities.
Electric Propulsion System Selection Process for Interplanetary Missions
NASA Technical Reports Server (NTRS)
Landau, Damon; Chase, James; Kowalkowski, Theresa; Oh, David; Randolph, Thomas; Sims, Jon; Timmerman, Paul
2008-01-01
The disparate design problems of selecting an electric propulsion system, launch vehicle, and flight time all have a significant impact on the cost and robustness of a mission. The effects of these system choices combine into a single optimization of the total mission cost, where the design constraint is a required spacecraft neutral (non-electric propulsion) mass. Cost-optimal systems are designed for a range of mass margins to examine how the optimal design varies with mass growth. The resulting cost-optimal designs are compared with results generated via mass optimization methods. Additional optimizations with continuous system parameters address the impact on mission cost due to discrete sets of launch vehicle, power, and specific impulse. The examined mission set comprises a near-Earth asteroid sample return, multiple main belt asteroid rendezvous, comet rendezvous, comet sample return, and a mission to Saturn.
Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2
NASA Astrophysics Data System (ADS)
Tuzzolino, A. J.; Economou, T. E.; McKibben, R. B.; Simpson, J. A.; McDonnell, J. A. M.; Burchell, M. J.; Vaughan, B. A. M.; Tsou, P.; Hanner, M. S.; Clark, B. C.; Brownlee, D. E.
2003-10-01
The Dust Flux Monitor Instrument (DFMI) is part of the Stardust instrument payload. The prime goal of the DFMI is to measure the particle flux, intensity profile, and mass distribution during passage through the coma of comet Wild 2 in January 2004. This information is valuable for assessment of spacecraft risk and health and also for interpretation of the laboratory analysis of dust captured by the Aerogel dust collectors and returned to Earth. At the encounter speed of 6.1 km/s, the DFMI measurements will extend over the particle mass range of 8 decades, from 10-11 to >10-3 g. A secondary science goal is to measure the particle flux and mass distribution during the ~7 year interplanetary portions of the mission, where, in addition to measurements of the background interplanetary dust over the radial range 0.98 AU to 2.7 AU, multiple opportunities exist for possible detection by the DFMI of interplanetary meteor-stream particles and interstellar dust. The DFMI consists of two different dust detector systems: a polyvinylidene fluoride (PVDF) Dust Sensor Unit (SU), which measures particles with mass <~10-4 g, and a Dual Acoustic Sensor System (DASS), which utilizes two quartz piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux of particles with mass >10-4 g. The large Whipple shield structures provide the large effective sensitive area required for detection of the expected low flux of high-mass particles.
An Initial Comparison of Selected Earth Departure Options for Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Merrill, Raymond Gabriel; Komar, D. R.; Qu, Min; Chrone, Jon; Strange, Nathan; Landau, Damon
2012-01-01
Earth departure options such as the location for deployment, aggregation, and crew rendezvous as well as the type of propulsion leveraged for each mission phase effect overall mission performance metrics such as number of critical maneuvers, mass of propellant to achieve departure, and initial mass required in low Earth orbit. This paper identifies and compares a subset of tactical options for deployment, crew rendezvous, and Earth departure that leverage electric propulsion and hybrid chemical electric propulsion with a goal of improving system efficiency. Departure maneuver specific limitations and penalties are then identified for missions to specific targets for human interplanetary missions providing a better understanding of the impact of decisions related to aggregation and rendezvous locations as well as Earth departure maneuvers on overall system performance.
Deep space environments for human exploration
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Clowdsley, M. S.; Cucinotta, F. A.; Tripathi, R. K.; Nealy, J. E.; De Angelis, G.
2004-01-01
Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed. Published by Elsevier Ltd on behalf of COSPAR.
The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2013-01-01
The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of the new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides a review of the SHM concept, the advantages it provides, trajectory assessments related to use of a high specific impulse space based propulsion system, advances in mission planning and new mass estimates.
NASA's Swift Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cominsky, L. R.; Graves, T.; Plait, P.; Silva, S.; Simonnet, A.
2004-08-01
Few astronomical objects excite students more than big explosions and black holes. Gamma Ray Bursts (GRBs) are both: powerful explosions that signal the births of black holes. NASA's Swift satellite mission, set for launch in Fall 2004, will detect hundreds of black holes over its two-year nominal mission timeline. The NASA Education and Public Outreach (E/PO) group at Sonoma State University is leading the Swift E/PO effort, using the Swift mission to engage students in science and math learning. We have partnered with the Lawrence Hall of Science to create a ``Great Explorations in Math and Science" guide entitled ``Invisible Universe: from Radio Waves to Gamma Rays," which uses GRBs to introduce students to the electromagnetic spectrum and the scale of energies in the Universe. We have also created new standards-based activities for grades 9-12 using GRBs: one activity puts the students in the place of astronomers 20 years ago, trying to sort out various types of stellar explosions that create high-energy radiation. Another mimics the use of the Interplanetary Network to let students figure out the direction to a GRB. Post-launch materials will include magazine articles about Swift and GRBs, and live updates of GRB information to the Swift E/PO website that will excite and inspire students to learn more about space science.
NASA Technical Reports Server (NTRS)
Aaron, John; Gabris, Edward A.; Sulzman, Frank M.; Connors, Mary M.; Pilcher, Carl
1989-01-01
NASA's Office of Aeronautics and Space Technology has undertaken a series of manned space presence-development efforts under the aegis of the Civil Space Technology Initiative (CSTI) and Project Pathfinder. Typical of these CSTI efforts is the Aeroassist Flight Experiment, which will demonstrate techniques suitable in aerobrake design for slow trajectories to Mars and for lunar mission return. Long-duration human operations in space are a major element of Pathfinder, giving attention to such problems as space radiation exposure effects that could be several orders of magnitude greater on interplanetary exploration missions than on typical Space Shuttle flights. Mars Observer and Lunar Observer orbital missions are planned as a steppingstone to manned planetary exploration.
Aerobrake concepts for NTP systems study
NASA Technical Reports Server (NTRS)
Cruz, Manuel I.
1992-01-01
Design concepts are described for landing large spacecraft masses on the Mars surface in support of manned missions with interplanetary transportation using Nuclear Thermal Propulsion (NTP). Included are the mission and systems analyses, trade studies and sensitivity analyses, design analyses, technology assessment, and derived requirements to support this concept. The mission phases include the Mars de-orbit, entry, terminal descent, and terminal touchdown. The study focuses primarily on Mars surface delivery from orbit after Mars orbit insertion using an NTP. The requirements associated with delivery of logistical supplies, habitats, and other equipment on minimum energy Earth to Mars transfers are also addressed in a preliminary fashion.
NASA Technical Reports Server (NTRS)
Dryer, M.; Smith, Z. K.
1989-01-01
An MHD 2-1/2D, time-dependent model is used, together with observations of six solar flares during February 3-7, 1986, to demonstrate global, large-scale, compound disturbances in the solar wind over a wide range of heliolongitudes. This scenario is one that is likely to occur many times during the cruise, possibly even encounter, phases of the Multi-Comet Mission. It is suggested that a model such as this one should be tested with multi-spacecraft data (such as the MCM and earth-based probes) with several goals in view: (1) utility of the model for operational real-time forecasting of geomagnetic storms, and (2) scientific interpretation of certain forms of cometary activities and their possible association with solar-generated activity.
NASA Astrophysics Data System (ADS)
Somavarapu, Dhathri H.
This thesis proposes a new parallel computing genetic algorithm framework for designing fuel-optimal trajectories for interplanetary spacecraft missions. The framework can capture the deep search space of the problem with the use of a fixed chromosome structure and hidden-genes concept, can explore the diverse set of candidate solutions with the use of the adaptive and twin-space crowding techniques and, can execute on any high-performance computing (HPC) platform with the adoption of the portable message passing interface (MPI) standard. The algorithm is implemented in C++ with the use of the MPICH implementation of the MPI standard. The algorithm uses a patched-conic approach with two-body dynamics assumptions. New procedures are developed for determining trajectories in the Vinfinity-leveraging legs of the flight from the launch and non-launch planets and, deep-space maneuver legs of the flight from the launch and non-launch planets. The chromosome structure maintains the time of flight as a free parameter within certain boundaries. The fitness or the cost function of the algorithm uses only the mission Delta V, and does not include time of flight. The optimization is conducted with two variations for the minimum mission gravity-assist sequence, the 4-gravity-assist, and the 3-gravity-assist, with a maximum of 5 gravity-assists allowed in both the cases. The optimal trajectories discovered using the framework in both of the cases demonstrate the success of this framework.
High energy astronomy or astrophysics and properties of the interplanetary plasma
NASA Technical Reports Server (NTRS)
1971-01-01
The research activities related to high energy astrophysics and interplanetary plasma are reported. The experimental work in the following areas are described: (1) balloon-and rocket-borne cosmic X-ray, (2) X-ray spectroscopy, and (3) OSO-3 gamma ray experiment. Plasma studies in the interplanetary region, magnetosphere, and geomagnetic tail are included.
Influence of the Sun on the Space Weather Conditions: Cycle 24 Observations from 1 AU to Mars
NASA Astrophysics Data System (ADS)
Lee, Christina
2016-10-01
Motivated by future crewed missions to Mars, there is a growing need to advance our knowledge of the heliospheric conditions between the Earth ( 1 AU) orbit and Mars ( 1.5 AU) orbit locations. Comparative conditions at these locations are of special interest since they are separated by the interplanetary region where most solar wind stream interaction regions develop. These regions alter the propagation of solar-heliospheric disturbances, including the interplanetary CME-driven shocks that create the space radiation (via solar energetic particles) that are hazardous to humans. Although the deep Cycle 23 minimum and the modestly active Cycle 24 maximum have produced generally weaker solar events and heliospheric conditions, observations from solar and planetary missions during the SDO era provide a unique opportunity to study how and to what extent the solar eruptive events impact the local space environments at Earth (and/or STEREO-A) and Mars, and for a given solar-heliospheric event period how the geospace and near-Mars space conditions compare and contrast with one another. Such observations include those from SDO, L1 observers (ACE,WIND,SOHO) and STEREO-A at 1 AU, and Mars Express, MSL, and MAVEN at 1.5 AU. Using these observations, we will highlight a number of Cycle 24 space weather events observed along the 1-AU orbit (at Earth and/or STEREO-A) and Mars that are triggered by CMEs, SEPs, flares, and/or CIRs. Numerical 3D simulations from WSA-Enlil-cone will also be presented to provide global context to the events discussed.
Mariner Jupiter/Saturn 1977 - The mission frame.
NASA Technical Reports Server (NTRS)
Bourke, R. D.; Miles, R. F., Jr.; Penzo, P. A.; Van Dillen, S. L.; Wallace, R. A.
1972-01-01
Following the cancellation of the Outer Planet Grand Tour Project, NASA and JPL examined less ambitious, alternative missions for exploring the outer planets. The mission that proved most attractive scientifically and fits within the projected NASA budget constraints embraces dual flights to Jupiter and Saturn, with launch in 1977. NASA has implemented it as the Mariner Jupiter/Saturn 1977 (MJS77) Project. The MJS77 mission covers exploratory investigations of the Jupiter and Saturn planetary systems and the interplanetary medium out to Saturn. Items of special interest include Jupiter's great red spot, the question of Io's anomalous brightening and phenomena associated with its EM behavior. After Saturn encounter, the spacecraft will escape the solar system in the general direction of the solar apex.
Pioneer probe mission with orbiter option
NASA Technical Reports Server (NTRS)
1975-01-01
A spacecraft is described which is based on Pioneer 10 and 11, and existing propulsion technology; it can transport and release a probe for entry into Jupiter's atmosphere, and subsequently maneuver to place the spacecraft in orbit about Jupiter. Orbital operations last 3 years and include maneuvers to provide multiple close satellite encounters which allow the orbit to be significantly changed to explore different parts of the magnetosphere. A mission summary, a guide to related documents, and background information about Jupiter are presented along with mission analysis over the complete mission profile. Other topics discussed include the launch, interplanetary flight, probe release and orbit deflection, probe entry, orbit selection, orbit insertion, periapsis raising, spacecraft description, and the effects of Jupiter's radiation belt on both orbiter and the probe.
Solar discrepancies: Mars exploration and the curious problem of inter-planetary time
NASA Astrophysics Data System (ADS)
Mirmalek, Zara Lenora
The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support technology and of the technologies supporting Mars time, Mirmalek explores some of the effects that follow from failing to recognize time as a socio-cultural construction that emerges, fundamentally, in and through a physical relationship between the environment and the human body. In this investigation of Mars time as a phenomenon comprised of several contradictory logics, Mirmalek takes into account several aspects of the social, technical, and cultural processes constituting the relationship between time and work at NASA and specifically on the MER mission.
Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.
2016-01-01
Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.
NASA Technical Reports Server (NTRS)
1988-01-01
The Deep Space Network (DSN) is the largest and most sensitive scientific telecommunications and radio navigation network in the world. Its principal responsibilities are to support unmanned interplanetary spacecraft missions and to support radio and radar astronomy observations in the exploration of the solar system and the universe. The DSN facilities and capabilities as of January 1988 are described.
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1974-01-01
Modifications and improvements are described that were made to the HILTOP electric propulsion trajectory optimization computer program during calendar years 1973 and 1974. New program features include the simulation of power degradation, housekeeping power, launch asymptote declination optimization, and powered and unpowered ballistic multiple swingby missions with an optional deep space burn.
NASA Astrophysics Data System (ADS)
Grefenstette, Brian
2017-08-01
Small satellites (<50 kg) have revolutionized the possibilities for inexpensive science from space-borne platforms. A number of scientific CubeSats have been recently launched or are under development, including some bound for interplanetary space. Recent miniaturization of technology for high-precision pointing, high efficiency solar power, high-powered on-board processing, and scientific detectors provide the capability for groundbreaking, focused science from these resource-limited spacecraft. Similar innovations in both radio frequency and optical/laser communications are poised to increase telemetry bandwidth to a gigabit per second (Gb/s) or more. This enhancement can allow real-time, global science measurements and/or ultra-high fidelity (resolution, cadence, etc.) observations from tens or hundreds of Earth-orbiting satellites, or permit high-bandwidth, direct-to-earth communications for (inter)planetary missions. Here we present the results of a recent Keck Institue for Space Science workshop that brought together scientists and engineers from academia and industry to showcase the breakthrough science enabled by optical communications on small satellites for future missions.
Interplanetary Radiation and Internal Charging Environment Models for Solar Sails
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda
2005-01-01
A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.
Interplanetary Radiation and Fault Tolerant Mini-Star Tracker System
NASA Technical Reports Server (NTRS)
Rakoczy, John; Paceley, Pete
2015-01-01
The Charles Stark Draper Laboratory, Inc. is partnering with the NASA Marshall Space Flight Center (MSFC) Engineering Directorate's Avionics Design Division and Flight Mechanics & Analysis Division to develop and test a prototype small, low-weight, low-power, radiation-hardened, fault-tolerant mini-star tracker (fig. 1). The project is expected to enable Draper Laboratory and its small business partner, L-1 Standards and Technologies, Inc., to develop a new guidance, navigation, and control sensor product for the growing small sat technology market. The project also addresses MSFC's need for sophisticated small sat technologies to support a variety of science missions in Earth orbit and beyond. The prototype star tracker will be tested on the night sky on MSFC's Automated Lunar and Meteor Observatory (ALAMO) telescope. The specific goal of the project is to address the need for a compact, low size, weight, and power, yet radiation hardened and fault tolerant star tracker system that can be used as a stand-alone attitude determination system or incorporated into a complete attitude determination and control system for emerging interplanetary and operational CubeSat and small sat missions.
Applications of different design methodologies in navigation systems and development at JPL
NASA Technical Reports Server (NTRS)
Thurman, S. W.
1990-01-01
The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.
An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT
NASA Technical Reports Server (NTRS)
Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian
2015-01-01
Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.
NASA Technical Reports Server (NTRS)
George, L. E.; Kos, L. D.
1998-01-01
This paper provides information for trajectory designers and mission planners to determine Earth-Mars and Mars-Earth mission opportunities for the years 2009-2024. These studies were performed in support of a human Mars mission scenario that will consist of two cargo launches followed by a piloted mission during the next opportunity approximately 2 years later. "Porkchop" plots defining all of these mission opportunities are provided which include departure energy, departure excess speed, departure declination arrival excess speed, and arrival declinations for the mission space surrounding each opportunity. These plots are intended to be directly applicable for the human Mars mission scenario described briefly herein. In addition, specific trajectories and several alternate trajectories are recommended for each cargo and piloted opportunity. Finally, additional studies were performed to evaluate the effect of various thrust-to-weight ratios on gravity losses and total time-of-flight tradeoff, and the resultant propellant savings and are briefly summarized.
Large-scale properties of the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Schatten, K. H.
1972-01-01
Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.
The Next Giant Leap: Human Exploration and Utilization of NEOs
NASA Astrophysics Data System (ADS)
Jones, T. D.; Vilas, F.; Love, S.; Hack, K.; Gefert, L.; Sykes, M. V.; Lewis, J. S.; Jedicke, R.; Davis, D.; Hartmann, W. K.; Farquhar, R.; McFadden, L.; Durda, D.
2001-11-01
Planetary science plays a unique role as the pathfinder for future human space activities beyond the International Space Station. It can also provide the rationale for the first human departure from LEO since the Apollo program. We are examining the potential for human missions to small near-Earth objects (typically tens of meters), passing close by the Earth-Moon system with very low delta-v. A preliminary estimate suggests there may be many thousands of these objects, raising the possibility of number of launch opportunities each year. To demonstrate feasibility, we have simulated a mission to 1991 VG during 1991/1992 when it passed within 0.004 AU of the Earth. This mission takes a total of 60 days, including a 30 day stay time at the asteroid. The accessibility of these targets may provide an opportunity to develop and test systems needed for longer duration interplanetary missions to Mars, and to engage in precursor space resource utilization activities. Early discovery, orbit determination, and target characterization should be pursued and spacebased and groundbased systems that would be needed assessed. Crewed missions would be preceded by robotic probes to test acquisition, rendezvous, and local operations while returning significant new science from target objects. As we look beyond ISS over the next decade, we must reinvigorate a mutually supportive relationship between our human space and solar system exploration goals. The scientific and exploration rationale for sending humans to NEOs must be mature to meet NASA's decision making window, now opening, for operations beyond near-Earth space.
A Comparative Study of Aerocapture Missions with a Mars Destination
NASA Technical Reports Server (NTRS)
Vaughan, Diane; Miller, Heather C.; Griffin, Brand; James, Bonnie F.; Munk, Michelle M.
2005-01-01
Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified.
Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities 2026 to 2045
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Falck, Robert D.; McGuire, Melissa L.
2010-01-01
The purpose of this Mission Design Handbook is to provide trajectory designers and mission planners with graphical information about Earth to Mars ballistic trajectory opportunities for the years of 2026 through 2045. The plots, displayed on a departure date/arrival date mission space, show departure energy, right ascension and declination of the launch asymptote, and target planet hyperbolic arrival excess speed, V(sub infinity), for each launch opportunity. Provided in this study are two sets of contour plots for each launch opportunity. The first set of plots shows Earth to Mars ballistic trajectories without the addition of any deep space maneuvers. The second set of plots shows Earth to Mars transfer trajectories with the addition of deep space maneuvers, which further optimize the determined trajectories. The accompanying texts explains the trajectory characteristics, transfers using deep space maneuvers, mission assumptions and a summary of the minimum departure energy for each opportunity.
Mission applications for advanced photovoltaic solar arrays
NASA Technical Reports Server (NTRS)
Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.
1990-01-01
The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.
Suprathermal ion detector results from Apollo missions.
NASA Technical Reports Server (NTRS)
Freeman, J. W., Jr.
1972-01-01
This paper reviews briefly the knowledge of the ion environment of the moon as obtained from the Apollo Lunar Surface Experiments Package, Suprathermal Ion Detector Experiment. Topics to be discussed include: an interplanetary shock as seen from the lunar surface; bow shock and magnetosheath ions; magnetotail plasma seen during a magnetic disturbance; suprathermal ions seen during passage of the sunset and sunrise terminators; and ions associated with neutral gas clouds in the vicinity of the moon, and in particular the low energy mono-energetic spectrum of these ions. It is believed that these low energy spectra and some terminator ions can be explained by ion acceleration by the interplanetary electric field. This paper serves as catalog to references to these and other related phenomena.
Launch Period Development for the Juno Mission to Jupiter
NASA Technical Reports Server (NTRS)
Kowalkowski, Theresa D.; Johannesen, Jennie R.; Lam, Try
2008-01-01
The Juno mission to Jupiter is targeted to launch in 2011 and would reach the giant planet about five years later. The interplanetary trajectory is planned to include two large deep space maneuvers and an Earth gravity assist a little more than two years after launch. In this paper, we describe the development of a 21-day launch period for Juno with the objective of keeping overall launch energy and delta-V low while meeting constraints imposed on Earth departure, the deep space maneuvers' timing and geometry, and Jupiter arrival.
GCR and SPE Radiation Effects in Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina; Nichols, Charles
2016-01-01
This Year 3 project provides risk reduction data to assess galactic cosmic ray (GCR) and solar particle event (SPE) space radiation damage in materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. Long duration (up to 50 years) space radiation damage is being quantified for materials used in inflatable structures (1st priority), and space suit and habitable composite materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent space radiation fluxes.
Broad Search Solar Electric Propulsion Trajectories to Saturn with Gravity Assists
NASA Technical Reports Server (NTRS)
Lam, Try; Landau, Damon; Strange, Nathan
2009-01-01
Solar electric propulsion (SEP) trajectories to Saturn using multiple gravity assists are explored for the joint NASA and ESA Titan Saturn System Mission study. Results show that these new trajectories enable greater performance compared to chemical propulsion with similar gravity assists or SEP without gravity assists. This paper describes the method used in finding these interplanetary trajectories and examines variations in the performance for different SEP systems, flight times, and flyby sequences. The benefits of the SEP trajectories for a mission to Saturn are also discussed.
Mission Advantages of Constant Power, Variable Isp Electrostatic Thrusters
NASA Technical Reports Server (NTRS)
Oleson, Steven R.
2000-01-01
Electric propulsion has moved from station-keeping capability for spacecraft to primary propulsion with the advent of both the Deep Space One asteroid flyby and geosynchronous spacecraft orbit insertion. In both cases notably more payload was delivered than would have been possible with chemical propulsion. To provide even greater improvements electrostatic thruster performance could be varied in specific impulse, but kept at constant power to provide better payload or trip time performance for different mission phases. Such variable specific impulse mission applications include geosynchronous and low earth orbit spacecraft stationkeeping and orbit insertion, geosynchronous reusable tug missions, and interplanetary probes. The application of variable specific impulse devices is shown to add from 5 to 15% payload for these missions. The challenges to building such devices include variable voltage power supplies and extending fuel throughput capabilities across the specific impulse range.
Solar-Planetary Relationships: Magnetospheric Physics
NASA Technical Reports Server (NTRS)
Barnes, Aaron
1979-01-01
The quadrennium 1975-1978 was a period of great advance for solar-wind studies, a period that combined exploration of new regions with increased maturity in established fields of study. The Helios, Pioneer, and Voyager spacecraft have been exploring the inner and outer regions of the solar wind. There has been a rebirth of the study of possible relations between solar variability and Earth's climate and weather, stimulated largely by Eddy's investigation of the Maunder Minimum; the solar wind may well prove to be a significant link in solar-terrestrial relations. Unique coronal data from the SKYLAB 1973-1974 mission, in combination with satellite and ground-based observations, provided the basis for identification of coronal holes as the main source of highspeed solar wind. The interplanetary medium has continued to serve as a laboratory for the study of plasma processes that cannot yet be studied in terrestrial laboratories, providing insights of potential importance both for controlled fusion research and for astrophysics. It is ironic that such a productive period, the legacy of many past space missions, was also a time of severely limited opportunity for new space investigations; the outlook for the future is equally austere. Especially regrettable is the dearth of career opportunities for young scientists in this field; comparison of the bibliography of this report with that of its predecessor 4 years ago shows few new names. Despite such problems, research has continued with enthusiasm and much has been learned. The present report will survey selected topics related to the origin, expansion, and acceleration of the solar wind and the plasma physics of the interplanetary medium. Companion reports deal with a number of closely related topics, including the heliocentric distance and latitude variation of the solar wind and its fluctuations topology of the interplanetary magnetic field morphology of solar-wind streams and shocks, sunweather studies, and interplanetary manifestations of type-3 bursts. Of the subjects that fall within the scope of this report, the study of the relationship between coronal holes and solar-wind streams, and the associated revision of our ideas about solar wind acceleration and heating, have had the most impact; hence I review these topics in considerable detail. In addition, I discuss the topics of hydromagnetic waves and turbulence, and interplanetary electrons, as items of particular importance during the past quadrennium.
Radiological health risks to astronauts from space activities and medical procedures
NASA Technical Reports Server (NTRS)
Peterson, Leif E.; Nachtwey, D. Stuart
1990-01-01
Radiation protection standards for space activities differ substantially from those applied to terrestrial working situations. The levels of radiation and subsequent hazards to which space workers are exposed are quite unlike anything found on Earth. The new more highly refined system of risk management involves assessing the risk to each space worker from all sources of radiation (occupational and non-occupational) at the organ level. The risk coefficients were applied to previous space and medical exposures (diagnostic x ray and nuclear medicine procedures) in order to estimate the radiation-induced lifetime cancer incidence and mortality risk. At present, the risk from medical procedures when compared to space activities is 14 times higher for cancer incidence and 13 times higher for cancer mortality; however, this will change as the per capita dose during Space Station Freedom and interplanetary missions increases and more is known about the risks from exposure to high-LET radiation.
Preliminary analysis of space mission applications for electromagnetic launchers
NASA Technical Reports Server (NTRS)
Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.
1984-01-01
The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.
NASA Astrophysics Data System (ADS)
Zubrin, Robert M.
1994-07-01
In the past, most studies dealing with the benefits of space nuclear electric power systems for solar system exploration have focused on the potential of nuclear electric propulsion (NEP) to enhance missions by increasing delivered payload, decreasing LEO mass, or reducing trip time. While important, such mission enhancements have failed to go to the heart of the concerns of the scientific community supporting interplanetary exploration. To put the matter succinctly, scientists don't buy delivered payload - they buy data returned. With nuclear power we can increase both the quantity of data returned, by enormously increasing data communication rates, and the quality of data by enabling a host of active sensing techniques otherwise impossible. These non-propulsive mission enhancement capabilities of space nuclear power have been known in principle for many years, but they have not been adequately documented. As a result, support for the development of space nuclear power by the interplanetary exploration community has been much less forceful than it might otherwise be. In this paper we shall present mission designs that take full advantage of the potential mission enhancements offered by space nuclear power systems in the 10 to 100 kWe range, not just for propulsion, but to radically improve, enrich, and expand the science return itself. Missions considered include orbiter missions to each of the outer planets. It will be shown that be using hybrid trajectories combining chemical propulsion with NEP and (in certain cases) gravity assists, that it is possible, using a Titan IV-Centaur launch vehicle, for high-powered spacecraft to be placed in orbit around each of the outer planets with electric propulsion burn times of less than 4 years. Such hybrid trajectories therefore make the outer solar-system available to near-term nuclear electric power systems. Once in orbit, the spacecraft will utilize multi-kilowatt communication systems, similar to those now employed by the U.S. military, to increase data return far beyond that possible utilizing the 40 W rf traveling wave tube antennas that are the current NASA standard. This higher data rate will make possible very high resolution multi-spectral imaging (with high resolutions both spatially and spectrally), a form of science hitherto impossible in the outer solar system. Large numbers of such images could be returned, allowing the creation of motion pictures of atmospheric phenomenon on a small scale and greatly increasing the probability of capturing transient phenomena such as lighting or volcanic activity. The multi-kilowatt power sources on the spacecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground penetrating sounding of Pluto, the major planet's moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expenditures needed to bring a space qualified nuclear electric power source into being.
Flight Performance of the Inflatable Reentry Vehicle Experiment 3
NASA Technical Reports Server (NTRS)
Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter
2013-01-01
The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.
A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Cupples, Michael; Coverstone, Vicki
2003-01-01
Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1985-01-01
Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.
NASA Technical Reports Server (NTRS)
Cameron, Winifred Sawtell (Editor); Vostreys, Robert W. (Editor)
1988-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also included.
Microwave communications from outer planets - The Voyager Project
NASA Technical Reports Server (NTRS)
Brejcha, A. G.
1980-01-01
The paper summarizes the Voyager Project, the mission objectives, and the spacecraft communications system required to meet the mission objectives. The primary emphasis of the mission is on comparative studies of the Jupiter and Saturn systems in the areas of: (1) the environment, atmosphere and body characteristics of the planets, and one or more of the satellites, (2) the nature of the recently discovered Jovian ring and the rings of Saturn, and (3) the interplanetary medium at increasing distances from the sun. The complexities and problems, such as power consumption, weight, and antenna pointing constraints are presented, along with a detailed description of the radio frequency and S/X-band antenna subsystems.
Gravity-Assist Mechanical Simulator for Outreach
NASA Technical Reports Server (NTRS)
Doody, David F.; White, Victor E.; Schaff, Mitch D.
2012-01-01
There is no convenient way to demonstrate mechanically, as an outreach (or inreach) topic, the angular momentum trade-offs and the conservation of angular momentum associated with gravityassist interplanetary trajectories. The mechanical concepts that underlie gravity assist are often misunderstood or confused, possibly because there is no mechanical analog to it in everyday experience. The Gravity Assist Mech - anical Simulator is a hands-on solution to this longstanding technical communications challenge. Users intuitively grasp the concepts, meeting specific educational objectives. A manually spun wheel with high angular mass and low-friction bearings supplies momentum to an attached spherical neodymium magnet that represents a planet orbiting the Sun. A steel bearing ball following a trajectory across a glass plate above the wheel and magnet undergoes an elastic collision with the revolving magnet, illustrating the gravitational elastic collision between spacecraft and planet on a gravity-assist interplanetary trajectory. Manually supplying the angular momentum for the elastic collision, rather than observing an animation, intuitively conveys the concepts, meeting nine specific educational objectives. Many NASA and JPL interplanetary missions are enabled by the gravity-assist technique.
Lessons Learned from 10 Years of STEREO Solar Wind Observations
NASA Astrophysics Data System (ADS)
Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.
2017-12-01
We have conducted long-term observations of large-scale solar wind structures since the launch of STEREO spacecraft, specifically interplanetary CMEs (ICMEs), slow-to-fast stream interaction regions (SIRs), and interplanetary shocks. In combination with our previous observations of the same solar wind structures in 1995-2009 using Wind/ACE data and the same identification criteria, we have first studied the solar cycle variations of these structures, especially for the same phases of solar cycles 23 and 24. Attributing the shocks to the interplanetary drivers, we have statistically compared the shocks driven by ICMEs and SIRs, and explained the shocks without a clear local driver. In addition, using the longitudinal and latitudinal separations between the twin spacecraft, we have investigated the recurrence and variability of ICMEs and SIRs, and gained the critical implications for the proposed L5 mission. At last, we have associated the heliospheric current sheet (HCS) crossings with the ICMEs and SIRs, and compared the properties of SIRs with and without HCS crossings, which correspond to the helmet streamers and pseudostreamers, respectively. The findings are important constraints on the theories of slow wind origin.
Diffuse Interplanetary Radio Emission (DIRE) Accompanying Type II Radio Bursts
NASA Astrophysics Data System (ADS)
Teklu, T. B.; Gopalswamy, N.; Makela, P. A.; Yashiro, S.; Akiyama, S.; Xie, H.
2015-12-01
We report on an unusual drifting feature in the radio dynamic spectra at frequencies below 14 MHz observed by the Radio and Plasma Wave (WAVES) experiment on board the Wind spacecraft. We call this feature as "Diffuse Interplanetary Radio Emission (DIRE)". The DIRE events are generally associated with intense interplanetary type II radio bursts produced by shocks driven by coronal mass ejections (CMEs). DIREs drift like type II bursts in the dynamic spectra, but the drifting feature consist of a series of short-duration spikes (similar to a type I chain). DIREs occur at higher frequencies than the associated type II bursts, with no harmonic relationship with the type II burst. The onset of DIREs is delayed by several hours from the onset of the eruption. Comparing the radio dynamic spectra with white-light observations from the Solar and Heliospheric Observatory (SOHO) mission, we find that the CMEs are generally very energetic (fast and mostly halos). We suggest that the DIRE source is typically located at the flanks of the CME-driven shock that is still at lower heliocentric distances.
CME Research and Space Weather Support for the SECCHI Experiments on the STEREO Mission
2014-01-14
Corbett, ed., Cambridge Univ. Press (2010) Kahler, S.W. and D. F. Webb, "Tracking Nonradial Motions and Azimuthal Expansions of Interplanetary CME...Imaging and In-situ Data from LASCO, STEREO and SMEI", Bull. AAS, 41(2), p. 855, 2009. Kahler S. and D. Webb, "Tracking Nonradial Motions and
Automated Sensitivity Analysis of Interplanetary Trajectories
NASA Technical Reports Server (NTRS)
Knittel, Jeremy; Hughes, Kyle; Englander, Jacob; Sarli, Bruno
2017-01-01
This work describes a suite of Python tools known as the Python EMTG Automated Trade Study Application (PEATSA). PEATSA was written to automate the operation of trajectory optimization software, simplify the process of performing sensitivity analysis, and was ultimately found to out-perform a human trajectory designer in unexpected ways. These benefits will be discussed and demonstrated on sample mission designs.
Human life support during interplanetary travel and domicile. I - System approach
NASA Technical Reports Server (NTRS)
Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh
1989-01-01
The importance of mission-driven system definition and assessment for extraterrestrial human life support is examined. The tricotyledon theory for system engineering is applied to the physiochemical life support system of the Pathfinder project. The rationale and methodology for adopting the systems approach is discussed. The assessment of the system during technology development is considered.
MIRACAL: A mission radiation calculation program for analysis of lunar and interplanetary missions
NASA Technical Reports Server (NTRS)
Nealy, John E.; Striepe, Scott A.; Simonsen, Lisa C.
1992-01-01
A computational procedure and data base are developed for manned space exploration missions for which estimates are made for the energetic particle fluences encountered and the resulting dose equivalent incurred. The data base includes the following options: statistical or continuum model for ordinary solar proton events, selection of up to six large proton flare spectra, and galactic cosmic ray fluxes for elemental nuclei of charge numbers 1 through 92. The program requires an input trajectory definition information and specifications of optional parameters, which include desired spectral data and nominal shield thickness. The procedure may be implemented as an independent program or as a subroutine in trajectory codes. This code should be most useful in mission optimization and selection studies for which radiation exposure is of special importance.
1986-09-01
AD-R173 822 MWD SIMULATION OF THE INTERPLANETARY ENVIRONMENT IN THE 1/1 ECLIPTIC PLRNE DU (U) AIR FORCE GEOPHYSICS LAS HANSCOM AFB MA M DRYER ET AL...RESOLUTION TEST CHART M4rtqOAI RIM) Of STANDARMS 96I-A AFGL-TR-86-0189 M Simulation of the Interplanetary Environment in the Ecliptic Plane During the 3-9...CLASSIFICATION OF THIS PAGE Cant of Block 11: in the Ecliptic Plane During the 3-9 February 1986 Solar and Geomagnetic Activity Cant of Block 19 (ABSTRACT
Shavers, M R; Cucinotta, F A; Miller, J; Zeitlin, C; Heilbronn, L; Wilson, J W; Singleterry, R C
2001-01-01
Radiological assessment of the many cosmic ion species of widely distributed energies requires the use of theoretical transport models to accurately describe diverse physical processes related to nuclear reactions in spacecraft structures, planetary atmospheres and surfaces, and tissues. Heavy-ion transport models that were designed to characterize shielded radiation fields have been validated through comparison with data from thick-target irradiation experiments at particle accelerators. With the RTD Mission comes a unique opportunity to validate existing radiation transport models and guide the development of tools for shield design. For the first time, transport properties will be measured in free-space to characterize the shielding effectiveness of materials that are likely to be aboard interplanetary space missions. Target materials composed of aluminum, advanced composite spacecraft structure and other shielding materials, helium (a propellant) and tissue equivalent matrices will be evaluated. Large solid state detectors will provide kinetic energy and charge identification for incident heavy-ions and for secondary ions created in the target material. Transport calculations using the HZETRN model suggest that 8 g cm -2 thick targets would be adequate to evaluate the shielding effectiveness during solar minimum activity conditions for a period of 30 days or more.
The Single Crew Module Concept for Exploration
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2012-01-01
Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, provides a top level mass estimate for the elements needed and trades the concept against Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, provides a top level mass estimate for the elements needed and trades the concept against Constellation approaches for Lunar, Near Earth Asteroid and Mars Surface missions.
Psychosocial issues in space: future challenges.
Sandal, G M
2001-06-01
As the duration of space flights increases and crews become more heterogeneous, psychosocial factors are likely to play an increasingly important role in determining mission success. The operations of the International Space Station and planning of interplanetary missions represent important future challenges for how to select, train and monitor crews. So far, empirical evidence about psychological factors in space is based on simulations and personnel in analog environments (i.e. polar expeditions, submarines). It is apparent that attempts to transfer from these environments to space requires a thorough analysis of the human behavior specific to the fields. Recommendations for research include the effects of multi-nationality on crew interaction, development of tension within crews and between Mission Control, and prediction of critical phases in adaptation over time. Selection of interpersonally compatible crews, pre-mission team training and implementation of tools for self-monitoring of psychological parameters ensure that changes in mission requirements maximize crew performance.
NASA Astrophysics Data System (ADS)
Ehresmann, B.; Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Guo, J.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.
2017-12-01
NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale Crater on the surface of Mars for five years. Onboard Curiosity, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights into its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. On short time scales, the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the shielding effect of the Martian atmosphere, shapes and intensities of SEP spectra differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Even in the absence of SEP events, the surface environment is influenced by solar activity, which determines the strength of the interplanetary magnetic field and modulates GCR intensities. The GCR flux has risen considerably since Curiosity's landing as the solar cycle heads towards minimum. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface from GCRs and SEP events from the five years of MSL operations on Mars. We will present results that incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. The GCR results will be compared to simulation results. The SEP-induced fluxes on the surface will be compared to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit.
Preface: GRBs and other transient sources: Twenty years of Konus-Wind Experiment
NASA Astrophysics Data System (ADS)
Bochkarev, N.
This special issue of Astronomical and Astrophysical Transactions comprises some of the papers presented at the Ioffe Workshop on Gamma-Ray Bursts and Other Transient Sources: Twenty Years of the Konus-Wind Experiment, which was held at the Ioffe Physico-Technical Institute, St. Petersburg, Russia in September 2014. The issue is dedicated to the memory of Professor Evgenii Pavlovich Mazets (1929-2013) in recognition of his outstanding and significant contribution, as Principal Investigator, of the Russian-American Konus-Wind experiment. The Konus instrument is a gamma-ray burst monitor and it was designed and manufactured at the Ioffe Physico-Technical Institute and was first used in the Venera 11-14 deep space missions in 1978-1983. The next important stage and application of the equipment was in association with the Konus-Wind experiment and the Konus instrument was mounted on board the American spacecraft Wind which was launched in November 1994. Wind's orbit in interplanetary space has proved very effective for the study of flares and other tran-and soft gamma repeaters and also solar sients. The Konus instrument consists of two high sensitivity gamma ray detectors which are positioned and located on the top and bottom of the spacecraft, aligned with the spin axis; the Konus equipment has enabled more than 20 years of constant and uninterrupted surveillance and has produced a very large database pertaining to GRBs. In fact, the Konus-Wind experiment continues to play a significant role in the study of GRBs and is an important source of information and data, as part of the InterPlanetary Network (IPN), together and in synchrony with other active missions/spacecraft (equipped with GRB detectors) including FERMI, SWIFT, AGILE, INTEGRAL.
Space weather at planet Venus during the forthcoming BepiColombo flybys
NASA Astrophysics Data System (ADS)
McKenna-Lawlor, S.; Jackson, B.; Odstrcil, D.
2018-03-01
The BepiColombo (BC) Mission which will be launched in 2018, will include during its Cruise Phase two flybys of Venus and five Mercury flybys. It will then enter a one Earth year orbit about Mercury (with a possible one-year extension) during which two spacecraft, one provided by ESA (MPO) and one provided by JAXA (MMO), will perform both autonomous and coordinated observations of the Hermean environment at various separations. The measurements will take place during the minimum of solar cycle 24 and the rise of solar cycle 25. At the start of the minimum of solar cycle 23, four major flares, each associated with the production of MeV particle radiation and CME activity occurred. Predictions of the HAFv.2 model of the arrival of particle radiation and a travelling shock at Venus on 6 December 2006 were verified by in-situ measurements made aboard Venus Express (VEX) by the ASPERA 4 instrument. Interplanetary scintillation observations, as well as the ENLIL 3-D MHD model when employed separately or in combination, enable the making of predictions of the solar wind density and speed at various locations in the inner heliosphere. Both methods, which outdate HAFv.2, are utilized in the present paper to predict (retrospectively) the arrival of the flare related, interplanetary propagating shock recorded at Venus on 6 December 2006 aboard VEX with a view to putting in place the facility to make very reliable space weather predictions for BC during both its Cruise Phase and when in the Hermean environment itself. The successful matching of the December 2006 predictions with in-situ signatures recorded aboard Venus Express provide confidence that the predictive methodology to be adopted will be appropriate to provide space weather predictions for BepiColombo during its Venus flybys and throughout the mission.
Data analysis and interpretation of UVSP and other experiments on board solar maximum mission
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
During the period of this contract (February 1 1980 to February 1987) there were two separate efforts involved: one was programmetric, i.e., the coordination of scientific working groups and the organization of workshops in the solar physics discipline; the second was scientific, i.e., to perform research to investigate the fundamental physical mechanisms of the energy and momentum transport from the solar surface to interplanetary space. In the former, 19 workshops, involving 88 scientists were organized. In the latter aspect, the following were investigated: solar flare energy buildup and release, coronal dynamics, energy and momentum transport from lower solar atmosphere to interplanetary space, numerical methods for the calculation of the nonlinear force-free field, and the evolution of the solar magnetic field.
On the causes of geomagnetic activity
NASA Technical Reports Server (NTRS)
Svalgaard, L.
1975-01-01
The causes of geomagnetic activity are studied both theoretically in terms of the reconnection model and empirically using the am-index and interplanetary solar wind parameters. It is found that two separate mechanisms supply energy to the magnetosphere. One mechanism depends critically on the magnitude and direction of the interplanetary magnetic field. Both depend strongly on solar wind speed.
Hybrid rocket propulsion systems for outer planet exploration missions
NASA Astrophysics Data System (ADS)
Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott
2016-11-01
Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.
Medical System Concept of Operations for Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Urbina, Michelle; Rubin, D.; Hailey, M.; Reyes, D.; Antonsen, Eric
2017-01-01
Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.
1973-03-16
CAPE KENNEDY, Fla. -- In the AO Building at Cape Kennedy Air Force Station in Florida, the Pioneer G spacecraft awaits the installation of its protective payload fairing. The interplanetary space probe is scheduled for launch atop an Atlas Centaur rocket from Cape Kennedy April 5, 1973. Pioneer G's nearly two-year mission will take it on an investigation of the asteroid belt, then on to Jupiter, largest planet in our solar system. NASA's launch teams from the Kennedy Space Center will direct final testing and the launch itself. The mission is a project of the Ames Research Center. Photo Credit: NASA
Autonomous Sample Acquisition for Planetary and Small Body Explorations
NASA Technical Reports Server (NTRS)
Ghavimi, Ali R.; Serricchio, Frederick; Dolgin, Ben; Hadaegh, Fred Y.
2000-01-01
Robotic drilling and autonomous sample acquisition are considered as the key technology requirements in future planetary or small body exploration missions. Core sampling or subsurface drilling operation is envisioned to be off rovers or landers. These supporting platforms are inherently flexible, light, and can withstand only limited amount of reaction forces and torques. This, together with unknown properties of sampled materials, makes the sampling operation a tedious task and quite challenging. This paper highlights the recent advancements in the sample acquisition control system design and development for the in situ scientific exploration of planetary and small interplanetary missions.
Space Radiation Effects in Inflatable and Composite Habitat Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina
2015-01-01
This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.
Space resources. Volume 2: Energy, power, and transport
NASA Technical Reports Server (NTRS)
Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)
1992-01-01
This volume of the Space Resources report covers a number of technical and policy issues concerning the energy and power to carry out advanced space missions and the means of transportation to get to the sites of those missions. Discussed in the first half of this volume are the technologies which might be used to provide power and a variety of ways to convert power from one form to another, store it, move it wherever it is needed, and use it. In the second half of this volume, various kinds of transportation, including both interplanetary and surface systems, are discussed.
Advanced flight computers for planetary exploration
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1988-01-01
Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.
NASA Technical Reports Server (NTRS)
Charles, John B.; Platts, S. H.
2011-01-01
The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.
The deep space network, volume 10
NASA Technical Reports Server (NTRS)
1972-01-01
Progress on the Deep Space Network (DSN) supporting research and technology is reported. The objectives, functions and facilities of the DSN are described along with the mission support for the following: interplanetary flight projects, planetary flight projects, and manned space flight projects. Work in advanced engineering and communications systems is reported along with changes in hardware and software configurations in the DSN/MSFN tracking stations.
NASA Technical Reports Server (NTRS)
Warmflash, D.; Larios-Sanz, M.; Fox, G. E.; McKay, D. S.
2002-01-01
To demonstrate the feasibility of two promising technologies, we have applied Enzyme-Linked Immunosorbent Assay (ELISA) as well as probes that target the 16S rRNA molecule to search for life in terrestrial soil samples, known to contain numerous life forms. Additional information is contained in the original extended abstract.
2016 Summer Series - Alan Stern - The Exploration of Pluto by New Horizons
2016-08-11
Interplanetary exploration is essential for the long-term survival of our species. Robotic space exploration allows us to advance our knowledge of our solar system and beyond. Dr. Alan Stern will talk about the New Horizons mission to Pluto and the scientific knowledge gained through the exploration of the icy worlds at the edge of our solar system.
Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints
NASA Technical Reports Server (NTRS)
Englander, Jacob Aldo; Vavrina, Matthew; Hinckley, David
2016-01-01
Low-thrust electric propulsion provides many advantages for mission to difficult targets-Comets and asteroids-Mercury-Outer planets (with sufficient power supply)Low-thrust electric propulsion is characterized by high power requirements but also very high specific impulse (Isp), leading to very good mass fractions. Low-thrust trajectory design is a very different process from chemical trajectory.
Dust Measurements by the Student Dust Counter (SDC) onboard the New Horizons Mission
NASA Astrophysics Data System (ADS)
James, David; Horanyi, Mihaly; Poppe, Andrew
The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (7/2008), VSDC will have operated for about 500 days, covering an approximate distance of 1.2 to 10.5 AU. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses, Galileo and Cassini.
Interplanetary Radiation and Internal Charging Environment Models for Solar Sails
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Altstatt, Richard L.; Neergaard, Linda F.
2004-01-01
A Solar Sail Radiation Environment (SSRE) model has been developed for characterizing the radiation dose and internal charging environments in the solar wind. The SSRE model defines the 0.01 keV to 1 MeV charged particle environment for use in testing the radiation dose vulnerability of candidate solar sail materials and for use in evaluating the internal charging effects in the interplanetary environment. Solar wind and energetic particle instruments aboard the Ulysses spacecraft provide the particle data used to derive the environments for the high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar sail missions. Ulysses is the only spacecraft to sample high latitude solar wind environments far from the ecliptic plane and is therefore uniquely capable of providing the information necessary for defining radiation environments for the Solar Polar Imager spacecraft. Cold plasma moments are used to derive differential flux spectra based on Kappa distribution functions. Energetic particle flux measurements are used to constrain the high energy, non-thermal tails of the distribution functions providing a comprehensive electron, proton, and helium spectra from less than 0.01 keV to a few MeV.
Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.
2004-01-01
Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.
Lühr, Hermann; Huang, Tao; Wing, Simon; Kervalishvili, Guram; Rauberg, Jan; Korth, Haje
2017-01-01
ESA’s Swarm constellation mission makes it possible for the first time to determine field-aligned currents (FACs) in the ionosphere uniquely. In particular at high latitudes, the dual-satellite approach can reliably detect some FAC structures which are missed by the traditional single-satellite technique. These FAC events occur preferentially poleward of the auroral oval and during times of northward interplanetary magnetic field (IMF) orientation. Most events appear on the nightside. They are not related to the typical FAC structures poleward of the cusp, commonly termed NBZ. Simultaneously observed precipitating particle spectrograms and auroral images from Defense Meteorological Satellite Program (DMSP) satellites are consistent with the detected FACs and indicate that they occur on closed field lines mostly adjacent to the auroral oval. We suggest that the FACs are associated with Sun-aligned filamentary auroral arcs. Here we introduce in an initial study features of the high-latitude FAC structures which have been observed during the early phase of the Swarm mission. A more systematic survey over longer times is required to fully characterize the so far undetected field aligned currents. PMID:29056833
Integrated RF/Optical Interplanetary Networking Preliminary Explorations and Empirical Results
NASA Technical Reports Server (NTRS)
Raible, Daniel E.; Hylton, Alan G.
2012-01-01
Over the last decade interplanetary telecommunication capabilities have been significantly expanded--specifically in support of the Mars exploration rover and lander missions. NASA is continuing to drive advances in new, high payoff optical communications technologies to enhance the network to Gbps performance from Mars, and the transition from technology demonstration to operational system is examined through a hybrid RF/optical approach. Such a system combines the best features of RF and optical communications considering availability and performance to realize a dual band trunk line operating within characteristic constraints. Disconnection due to planetary obscuration and solar conjunction, link delays, timing, ground terminal mission congestion and scheduling policy along with space and atmospheric weather disruptions all imply the need for network protocol solutions to ultimately manage the physical layer in a transparent manner to the end user. Delay Tolerant Networking (DTN) is an approach under evaluation which addresses these challenges. A multi-hop multi-path hybrid RF and optical test bed has been constructed to emulate the integrated deep space network and to support protocol and hardware refinement. Initial experimental results characterize several of these challenges and evaluate the effectiveness of DTN as a solution to mitigate them.
NASA Technical Reports Server (NTRS)
Ng, Carolyn; Stonesifer, G. Richard
1989-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from meteorological and terrestrial applications spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
NASA Technical Reports Server (NTRS)
Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)
1987-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
NASA Technical Reports Server (NTRS)
Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)
1988-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
Assessment of MCRM Boost Assist from Orbit for Deep Space Missions
NASA Technical Reports Server (NTRS)
2000-01-01
Report provides results of analysis for the beamed energy driven MHD Chemical Rocket Motor (MCRM) for application to boost from orbit to escape for deep space and interplanetary missions. Parametric analyses were performed in the mission to determine operating regime for which the MCRM provides significant propulsion performance enhancement. Analysis of the MHD accelerator was performed numerical computational methods to determine design and operational features necessary to achieve Isp on the order of 2,000 to 3,000 seconds. Algorithms were developed to scale weights for the accelerator and power supply. Significant improvement in propulsion system performance can be achieved with the beamed energy driven MCRM. The limiting factor on achievable vehicle acceleration is the specific power of the rectenna.
NASA Technical Reports Server (NTRS)
Jackson, John E. (Editor); Horowitz, Richard (Editor)
1986-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Da Silva, L. A.; Sibeck, D. G.; Alves, L. R.; Jauer, P. R.; Dias Silveira, M. V.; Medeiros, C.; Marchezi, J.; Rockenbach, M.; Baker, D. N.; Kletzing, C.; Kanekal, S. G.; Georgiou, M.; Mendes, O., Jr.; Dal Lago, A.; Vieira, L. E. A.
2015-12-01
We present a case study describing the dynamics of the outer radiation belt for two different solar wind conditions. First, we discuss a dropout of outer belt energetic electron fluxes corresponding to the arrival of an interplanetary coronal mass ejection (ICME) followed by a corotating stream in September 2014. Second, we discuss the reformation of the outer radiation belt that began on September 22nd. We find that the arrival of the ICME and the corotating interaction region that preceded the stream cause a long-duration (many day) dropout of high-energy electrons. The recovery in radiation belt fluxes only begins when the high-speed stream begins to develop IMF Bz fluctuations and auroral activity resumes. Furthermore, during periods in which several consecutive solar wind structures appear, the first structure primes the outer radiation belt prior to the interaction of the subsequent solar wind structures with the magnetosphere. Consequently, the evolution of the outer radiation belt through the solar cycle is significantly affected by the dominant structure of each phase of the cycle. We use energetic electron and magnetic field observations provided by the Van Allen Probes, THEMIS, and GOES missions.
Capturing Requirements for Autonomous Spacecraft with Autonomy Requirements Engineering
NASA Astrophysics Data System (ADS)
Vassev, Emil; Hinchey, Mike
2014-08-01
The Autonomy Requirements Engineering (ARE) approach has been developed by Lero - the Irish Software Engineering Research Center within the mandate of a joint project with ESA, the European Space Agency. The approach is intended to help engineers develop missions for unmanned exploration, often with limited or no human control. Such robotics space missions rely on the most recent advances in automation and robotic technologies where autonomy and autonomic computing principles drive the design and implementation of unmanned spacecraft [1]. To tackle the integration and promotion of autonomy in software-intensive systems, ARE combines generic autonomy requirements (GAR) with goal-oriented requirements engineering (GORE). Using this approach, software engineers can determine what autonomic features to develop for a particular system (e.g., a space mission) as well as what artifacts that process might generate (e.g., goals models, requirements specification, etc.). The inputs required by this approach are the mission goals and the domain-specific GAR reflecting specifics of the mission class (e.g., interplanetary missions).
Kawaguchi, Yuko; Yang, Yinjie; Kawashiri, Narutoshi; Shiraishi, Keisuke; Takasu, Masako; Narumi, Issay; Satoh, Katsuya; Hashimoto, Hirofumi; Nakagawa, Kazumichi; Tanigawa, Yoshiaki; Momoki, Yoh-Hei; Tanabe, Maiko; Sugino, Tomohiro; Takahashi, Yuta; Shimizu, Yasuyuki; Yoshida, Satoshi; Kobayashi, Kensei; Yokobori, Shin-Ichi; Yamagishi, Akihiko
2013-10-01
To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10(-1) Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to -80 °C in 90 min (± 80 °C/90 min cycle) or from 60 °C to -60 °C in 90 min (± 60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ± 80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it 'massapanspermia'.
NASA Technical Reports Server (NTRS)
Burch, J. L.
1972-01-01
Data from the auroral particles experiment on OGO-4 were used to study effects of substorm activity, interplanetary magnetic field latitutde, and dipole tilt angle on high-latitude precipitation of 700 eV electrons. It was found that: (1) The high-latitude zone of 700 eV electron precipitation in late evening and early morning hours moves equatorward by 5 to 10 deg during substorms. (2) The low-latitude boundary of polar cusp electron precipitation at 9 to 15 hours MLT also moves equatorward by several degrees during substorms and, in the absence of significant substorm activity, after a period of southward interplanetary magnetic field. (3) With times containing substorm activity or a southward interplanetary magnetic field eliminated, the low-latitude boundary of polar cusp electron precipitation is found to move by approximately 4 deg over the total yearly range of tilt angles. At maximum winter and summer conditions the invariant latitude of the boundary is shown to shift by approximately -3 deg and +1 deg respectively from its equinox location.
Dunham, David W; Farquhar, Robert W
2004-05-01
This paper describes astrodynamic techniques applied to develop special orbital designs for past and future space missions of the Applied Physics Laboratory (APL) of Johns Hopkins University, and background about those techniques. The paper does not describe the long history of low Earth-orbiting missions at APL, but rather concentrates on the astrodynamically more interesting high-altitude and interplanetary missions that APL has undertaken in recent years. The authors developed many of their techniques in preparation for, and during, the Third International Sun-Earth Explorer (ISEE-3) halo orbit mission while they worked for the Goddard Space Flight Center (GSFC) of NASA during the 1970s and 1980s. Later missions owed much to the ground breaking work of the trajectory designs for ISEE-3 (later known as the International Cometary Explorer, or ICE). This experience, and other new ideas, were applied to the APL near Earth asteroid rendezvous (NEAR) and comet nucleus tour (CONTOUR) discovery missions, as well as to APL's future MESSENGER, STEREO, and New Horizons missions. These will be described in the paper.
Basner, Mathias; Dinges, David F; Mollicone, Daniel J; Savelev, Igor; Ecker, Adrian J; Di Antonio, Adrian; Jones, Christopher W; Hyder, Eric C; Kan, Kevin; Morukov, Boris V; Sutton, Jeffrey P
2014-01-01
Behavioral health risks are among the most serious and difficult to mitigate risks of confinement in space craft during long-duration space exploration missions. We report on behavioral and psychological reactions of a multinational crew of 6 healthy males confined in a 550 m(3) chamber for 520 days during the first Earth-based, high-fidelity simulated mission to Mars. Rest-activity of crewmembers was objectively measured throughout the mission with wrist-worn actigraphs. Once weekly throughout the mission crewmembers completed the Beck Depression Inventory-II (BDI-II), Profile of Moods State short form (POMS), conflict questionnaire, the Psychomotor Vigilance Test (PVT-B), and series of visual analogue scales on stress and fatigue. We observed substantial inter-individual differences in the behavioral responses of crewmembers to the prolonged mission confinement and isolation. The crewmember with the highest average POMS total mood disturbance score throughout the mission also reported symptoms of depression in 93% of mission weeks, which reached mild-to-moderate levels in >10% of mission weeks. Conflicts with mission control were reported five times more often than conflicts among crewmembers. Two crewmembers who had the highest ratings of stress and physical exhaustion accounted for 85% of the perceived conflicts. One of them developed a persistent sleep onset insomnia with ratings of poor sleep quality, which resulted in chronic partial sleep deprivation, elevated ratings of daytime tiredness, and frequent deficits in behavioral alertness. Sleep-wake timing was altered in two other crewmembers, beginning in the first few months of the mission and persisting throughout. Two crewmembers showed neither behavioral disturbances nor reports of psychological distress during the 17-month period of mission confinement. These results highlight the importance of identifying behavioral, psychological, and biological markers of characteristics that predispose prospective crewmembers to both effective and ineffective behavioral reactions during the confinement of prolonged spaceflight, to inform crew selection, training, and individualized countermeasures.
Basner, Mathias; Dinges, David F.; Mollicone, Daniel J.; Savelev, Igor; Ecker, Adrian J.; Di Antonio, Adrian; Jones, Christopher W.; Hyder, Eric C.; Kan, Kevin; Morukov, Boris V.; Sutton, Jeffrey P.
2014-01-01
Behavioral health risks are among the most serious and difficult to mitigate risks of confinement in space craft during long-duration space exploration missions. We report on behavioral and psychological reactions of a multinational crew of 6 healthy males confined in a 550 m3 chamber for 520 days during the first Earth-based, high-fidelity simulated mission to Mars. Rest-activity of crewmembers was objectively measured throughout the mission with wrist-worn actigraphs. Once weekly throughout the mission crewmembers completed the Beck Depression Inventory-II (BDI-II), Profile of Moods State short form (POMS), conflict questionnaire, the Psychomotor Vigilance Test (PVT-B), and series of visual analogue scales on stress and fatigue. We observed substantial inter-individual differences in the behavioral responses of crewmembers to the prolonged mission confinement and isolation. The crewmember with the highest average POMS total mood disturbance score throughout the mission also reported symptoms of depression in 93% of mission weeks, which reached mild-to-moderate levels in >10% of mission weeks. Conflicts with mission control were reported five times more often than conflicts among crewmembers. Two crewmembers who had the highest ratings of stress and physical exhaustion accounted for 85% of the perceived conflicts. One of them developed a persistent sleep onset insomnia with ratings of poor sleep quality, which resulted in chronic partial sleep deprivation, elevated ratings of daytime tiredness, and frequent deficits in behavioral alertness. Sleep-wake timing was altered in two other crewmembers, beginning in the first few months of the mission and persisting throughout. Two crewmembers showed neither behavioral disturbances nor reports of psychological distress during the 17-month period of mission confinement. These results highlight the importance of identifying behavioral, psychological, and biological markers of characteristics that predispose prospective crewmembers to both effective and ineffective behavioral reactions during the confinement of prolonged spaceflight, to inform crew selection, training, and individualized countermeasures. PMID:24675720
NASA Technical Reports Server (NTRS)
Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.;
2008-01-01
From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.
Space radiation dosimetry in low-Earth orbit and beyond.
Benton, E R; Benton, E V
2001-09-01
Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Simpson, John A.; Garcia-Munoz, Moises
1995-01-01
Research was continued on the origins, acceleration mechanisms, and the propagation modes of the hierarchy of energetic charged particles found in a wide range of astrophysical settings, extending from the cosmic rays arriving from the depth of the galaxy to the energetic particles in the heliosphere and in the near earth environment. In particular this grant has been a vital support in the investigation of the particle radiations in the earth's magnetosphere. The ONR-604 instrument was launched in July 1990 aboard the CRRES spacecraft. The CRRES mission has been a joint program of NASA and the U.S. Air Force Space Test Program which has provided launch support and telemetry coverage. The spacecraft was placed into a low-inclination eccentric orbit with a period of approximately 10 hours, and thus measured charged particle fluxes in both interplanetary space and in the earth's trapped radiation. ONR-604 performed extremely well, both in interplanetary space and in the intense radiation belt environment. We were able to make detailed measurements of interplanetary fluxes and composition into L=4, or for more than 50% of the orbital period. Thus the experiment produced two valuable datasets, one set outside of L=4 for interplanetary studies, and one set inside of L=4 for radiation belt studies. The data returned by the University of Chicago ONR-604 instrument has been the base for 10 papers on magnetospheric and galactic energetic-particle research.
Conceptual Design For Interplanetary Spaceship Discovery
NASA Astrophysics Data System (ADS)
Benton, Mark G.
2006-01-01
With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR engines provide ``engine out'' redundancy. (5) The design efficiently implements galactic cosmic ray shielding using main propellant liquid hydrogen. (6) The design provides artificial gravity to mitigate crew physiological problems on long-duration missions. (7) The design is modular and can be launched using the proposed upgrades to the Evolved Expendable Launch Vehicles or Shuttle-derived heavy lift launch vehicles. (8) High value modules are reusable for Mars and Lunar missions. (9) The design has inherent growth capability, and can be tailored to satisfy expanding mission requirements to enable an in-family progression ``to the Moon, Mars, and beyond.''
Achievements and Future Plan of Interplanetary CubeSats and Micro-Sats in Japan
NASA Astrophysics Data System (ADS)
Funase, Ryu
2016-07-01
This paper introduces Japanese achievements and future plans of CubeSats and Micro-Sats for deep space exploration. As the first step toward deep space mission by such tiny spacecraft, University of Tokyo and Japan Aerospace Exploration Agency (JAXA) developed the world's first deep space micro-spacecraft PROCYON (Proximate Object Close flYby with Optical Navigation). Its mission objective is to demonstrate a micro-spacecraft bus technology for deep space exploration and proximity flyby to asteroids performing optical measurements. PROCYON was launched into the Earth departure trajectory on December 3, 2014 together with Japanese asteroid sample return mission Hayabusa-2. PROCYON successfully completed the bus system demonstration mission in its interplanetary flight. Currently, Japan is not only pursuing the improvement and utilization of the demonstrated micro-sat deep space bus system with a weight of tens of kg or more for more practical scientific deep space missions, but also trying to develop smaller spacecraft with a weight of less than tens of kg, namely CubeSats, for deep space exploration. We are proposing a self-contained 6U CubeSat mission for the rideshare opportunity on the USA's SLS EM-1 mission, which will fly to a libration orbit around Earth-Moon L2 point and perform scientific observations of the Earth and the Moon. We are also seeking the possibility of CubeSats which is carried by a larger spacecraft to the destination and supports the mission by taking advantage of its low-cost and risk-tolerable feature. As an example of such style of CubeSat missions, we are studying a CubeSat for close observations of an asteroid, which will be carried to the target asteroid by a larger mother spacecraft. This CubeSat is released from the mother spacecraft to make a close flyby for scientific observations, which is difficult to be performed by the mother spacecraft if we consider the risk of the collision to the target asteroid or dust particles ejected from the asteroid. In order to utilize the large deep space maneuverability of the mother spacecraft, the CubeSat is retrieved by the mother spacecraft after the close flyby observation and it is carried to the next target asteroid to realize multiple asteroids flyby exploration.
International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research
NASA Technical Reports Server (NTRS)
Charles, John B.
2012-01-01
Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the effects of a simulated lag in communications (mimicking that expected in transit to Mars) on astronaut performance aboard ISS. Extension of the current ISS increment duration from six months to nine or even twelve months would provide opportunities for expanded research relevant to long duration missions, albeit at the cost of fewer astronauts as subjects for those investigations. Given the possible limited access to ISS after 2020, if ISS is intended to facilitate future exploration missions, then the in-flight human investigations should focus on those that clearly enable future exploration missions.
Interplanetary approach optical navigation with applications
NASA Technical Reports Server (NTRS)
Jerath, N.
1978-01-01
The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.
Fluxgate magnetometers for outer planets exploration
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1974-01-01
The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.
An interplanetary targeting and orbit insertion maneuver design technique
NASA Technical Reports Server (NTRS)
Hintz, G. R.
1980-01-01
The paper describes a tradeoff in selecting a planetary encounter aimpoint and a spacecraft propulsive maneuver strategy in the Pioneer Venus Orbiter Mission. The method uses parametric data spanning a region of acceptable targeting aimpoints in the delivery space and the geometric considerations. Real-time maneuver adjustments accounted for known attitude control errors, orbit determination updates, and late changes in a targeting specification.
Preface: New challenges for planetary protection
NASA Astrophysics Data System (ADS)
Kminek, Gerhard
2016-05-01
Planetary protection as a discipline goes back to the advent of the space age and the formation of the Committee on Space Research (COSPAR). Planetary protection constraints are in place to ensure that scientific investigations related to the search for extraterrestrial life are not compromised and that the Earth is protected from the potential hazard posed by extraterrestrial matter carried by a spacecraft returning from an interplanetary mission.
NASA Technical Reports Server (NTRS)
Sakurai, K.
1972-01-01
Active heliographic longitudes at the sun are investigated by using the observational data for long-lived metric continuum noise sources. It is shown that, for the period from 1963 to 1969, the number of such longitudes was four in general and these longitudes were very stable for this radio activity since 1963. A discussion is given on the relationship between those longitudes and the sector structure of the interplanetary magnetic field.
Conceptual Drivers for an Exploration Medical System
NASA Technical Reports Server (NTRS)
Antonsen, Erik; Hanson, Andrea; Shah, Ronak; Reed, Rebekah; Canga, Michael
2016-01-01
Interplanetary spaceflight, such as NASA's proposed three-year mission to Mars, provides unique and novel challenges when compared with human spaceflight to date. Extended distance and multi-year missions introduce new elements of operational complexity and additional risk. These elements include: inability to resupply medications and consumables, inability to evacuate injured or ill crew, uncharted psychosocial conditions, and communication delays that create a requirement for some level of autonomous medical capability. Because of these unique challenges, the approaches used in prior programs have limited application to a Mars mission. On a Mars mission, resource limitations will significantly constrain available medical capabilities, and require a paradigm shift in the approach to medical system design and risk mitigation for crew health. To respond to this need for a new paradigm, the Exploration Medical Capability (ExMC) Element is assessing each Mars mission phase-transit, surface stay, rendezvous, extravehicular activity, and return-to identify and prioritize medical needs for the journey beyond low Earth orbit (LEO). ExMC is addressing both planned medical operations, and unplanned contingency medical operations that meld clinical needs and research needs into a single system. This assessment is being used to derive a gap analysis and studies to support meaningful medical capabilities trades. These trades, in turn, allow the exploration medical system design to proceed from both a mission centric and ethics-based approach, and to manage the risks associated with the medical limitations inherent in an exploration class mission. This paper outlines the conceptual drivers used to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this paradigm. Keywords: (Max 6 keywords: exploration, medicine, spaceflight, Mars, research, NASA)
Heliospheric Impact on Cosmic Rays Modulation
NASA Astrophysics Data System (ADS)
Tiwari, Bhupendra Kumar
2016-07-01
Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)
NASA's Swift Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Plait, P.; Silva, S.; Graves, T.; Simonnet, A.; Cominsky, L.
2003-05-01
Few astronomical objects excite students more than big explosions and black holes. Gamma Ray Bursts (GRBs) are both: powerful explosions that signal the births of black holes. NASA's Swift satellite mission, set for launch in December 2003, will detect hundreds of black holes over its two-year nominal mission timeline. The NASA Education and Public Outreach (E/PO) group at Sonoma State University is leading the Swift E/PO effort, using the Swift mission to engage students in science and math learning. We have partnered with the Lawrence Hall of Science to create a "Great Explorations in Math and Science" guide entitled "Invisible Universe: from Radio Waves to Gamma Rays," which uses GRBs to introduce students to the electromagnetic spectrum and the scale of energies in the Universe. Three to four segments about Swift are being broadcast each year to millions of middle-school children as part of "What's In The News," an educational television series based at Penn State University. We are also creating new standards-based activities for grades 9-12 using GRBs: one activity puts the students in the place of astronomers 20 years ago, trying to sort out various types of stellar explosions that create high-energy radiation. Another mimics the use of the Interplanetary Network to let students figure out the direction to a GRB. Post-launch materials will include magazine articles about Swift and GRBs, more formal educational activities, and additions to the Swift E/PO website (http://swift.sonoma.edu) that will excite and inspire students to learn more about space science.
Terrestrial Planet Space Weather Information: An Update
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Li, Y.; Lee, C.; Mays, M. L.; Odstrcil, D.; Jian, L.; Galvin, A. B.; Mewaldt, R. A.; von Rosenvinge, T. T.; Russell, C. T.; Halekas, J. S.; Connerney, J. E. P.; Jakosky, B. M.; Thompson, W. T.; Baker, D. N.; Dewey, R. M.; Zheng, Y.; Holmstrom, M.; Futaana, Y.
2015-12-01
Space weather research is now a solar system-wide enterprise. While with the end of the Venus Express Express mission and MESSENGER, we lost our 'inside' sentinels, new missions such as Solar Orbiter and SPP, and Bepi-Colombo will soon be launched and operating. In the meantime the combination of L1 resources (ACE,WIND,SOHO) and STEREO-A at 1 AU, and Mars Express and MAVEN missions at ~1.5 AU, provide opportunities. Comparative conditions at the Earth orbit and Mars orbit locations are of special interest because they are separated by the region where most solar wind stream interaction regions develop. These alter the propagation of disturbances including the interplanetary CME-driven shocks that make the space radiation affecting future Human mission planning. We share some observational and modeling results thatillustrate present capabilities, as well as developing ones such as ENLIL-based SEP event models that use a range of available observations.
NASA Technical Reports Server (NTRS)
Thomas, H. Dan
2008-01-01
NASA s Ares-I launch vehicle will be built to deliver the Orion spacecraft to Low-Earth orbit, servicing the International Space Station with crew-transfer and helping humans begin longer voyages in conjunction with the larger Ares-V. While there are no planned missions for Ares-I beyond these, the vehicle itself offers an additional capability for robotic exploration. Here we present an analysis of the capability of the Ares-I rocket for robotic missions to a variety of destinations, including lunar and planetary exploration, should such missions become viable in the future. Preliminary payload capabilities using both single and dual launch architectures are presented. Masses delivered to the lunar surface are computed along with throw capabilities to various Earth departure energies (i.e. C3s). The use of commercially available solid rocket motors as additional payload stages were analyzed and will also be discussed.
The Voyager Neptune travel guide
NASA Technical Reports Server (NTRS)
Kohlhase, Charles (Editor)
1989-01-01
The Voyager mission to the giant outer planets of our solar system is described. Scientific highlights include interplanetary cruise, Jupiter, Saturn, Uranus, and their vast satellite and ring systems. Detailed plans are provided for the August 1989 Neptune encounter and subsequent interstellar journey to reach the heliopause. As background, the elements of an unmanned space mission are explained, with emphasis on the capabilities of the spacecraft and the scientific sensors. Other topics include the Voyager Grand Tour trajectory design, deep-space navigation, and gravity-assist concepts. The Neptune flyby is animated through the use of computer-generated, flip-page movie frames that appear in the corners of the publication. Useful historical information is also presented, including facts associated with the Voyager mission. Finally, short summaries are provided to describe the major objectives and schedules for several space missions planned for the remainder of the 20th century.
Analysis of aerothermodynamic environment of a Titan aerocapture vehicle
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Chow, H.; Moss, J. N.
1982-01-01
The feasibility of an aerocapture vehicle mission has been emphasized recently for inner and outer planetary missions. Aerocapture involves a system concept which utilizes aerodynamic drag to acquire the velocity reduction necessary to obtain a closed planetary orbit from a hyperbolic flyby trajectory. It has been proposed to use the atmosphere of Titan for braking into a Saturn orbit. This approach for a Saturn orbital mission is expected to cut the interplanetary cruise travel time to Saturn from 8 to 3.5 years. In connection with the preparation of such a mission, it will be necessary to provide a complete analysis of the aerodynamic environment of the Titan aerocapture vehicle. The main objective of the present investigation is, therefore, to determine the extent of convective and radiative heating for the aerocapture vehicle under different entry conditions. This can be essentially accomplished by assessing the heating rates in the stagnation and windward regions of an equivalent body.
Aerocapture Systems Analysis for a Neptune Mission
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae; Edquist, Karl T.; Starr, Brett R.; Hollis, Brian R.; Hrinda, Glenn A.; Bailey, Robert W.; Hall, Jeffery L.; Spilker, Thomas R.; Noca, Muriel A.; O'Kongo, N.
2006-01-01
A Systems Analysis was completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The systems analysis includes the following disciplines: science; mission design; aeroshell configuration; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and aeroheating environment; stability analyses; guidance development; atmospheric flight simulation; thermal protection system design; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture is feasible and performance is adequate for the Neptune mission. Aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle and results in a 3-4 year reduction in trip time compared to all-propulsive systems. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads.
The Exercise and Environmental Physiology of Extravehicular Activity
NASA Technical Reports Server (NTRS)
Cowell, S. A.; Stocks, J. M.; Evans, D. G.; Simonson, S. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)
2000-01-01
Over the history of human expansion into space, extravehicular activity (EVA) has become indispensable for both daily living in weightlessness and for further space exploration. The physiological factors involved in the performance of extensive EVA, necessary for construction and maintenance of the International Space Station and during future human interplanetary missions, require further examination. An understanding of the physiological aspects of exercise and thermoregulation in the EVA environment will help to insure the health, safety, and efficiency of working astronauts. To that end, this review will focus on the interaction of the exercise and environmental aspects of EVA, as well as exercise during spaceflight and ground-based simulations such as bed-rest deconditioning. It will examine inflight exercise thermoregulation, and exercise, muscular strength, supine vs. seated exercise, exercise thermoregulation, and exercise in a hypobaric environment. Due to the paucity of data from controlled human research in this area, it is clear that more scientific studies are needed to insure safe and efficient extravehicular activity.
Interplanetary Transit Simulations Using the International Space Station
NASA Technical Reports Server (NTRS)
Charles, John B.; Arya, M.; Kundrot, C. E.
2010-01-01
We evaluated the space life sciences utility of the International Space Station (ISS) to simulate the outbound transit portion of missions to Mars and Near Earth Asteroids (NEA) to investigate biomedical and psychological aspects of such transits, to develop and test space operation procedures compatible with communication delays and outages, and to demonstrate and validate technologies and countermeasures. Two major categories of space life sciences activities can capitalize on ISS capabilities. The first includes studies that require ISS (or a comparable facility), typically for access to prolonged weightlessness. The second includes studies that do not strictly require ISS but can exploit it to maximize their scientific return more efficiently and productively than in ground-based simulations. For these studies, ISS offers a high fidelity analog for fundamental factors on future missions, such as crew composition, mission control personnel, operational tasks and workload, real-world risk, and isolation, and can mimic the effects of distance and limited accessibility. In addition to conducting Mars- and NEA-transit simulations on 6-month ISS increments, extending the current ISS increment duration from 6 months to 9 or even 12 months will provide opportunities for enhanced and focused research relevant to long duration Mars and NEA missions. Increasing the crew duration may pose little additional risk to crewmembers beyond that currently accepted on 6-month increments, but additional medical monitoring capabilities will be required beyond those currently used for ISS operations. Finally, while presenting major logistical challenges, such a simulation followed by a post-landing simulation of Mars exploration could provide quantitative evidence of capabilities in an actual mission. Thus, the use of ISS to simulate aspects of Mars and NEA missions seems practical. If it were to be implemented without major disruption of on-going ISS activities, then planning should begin soon, in close consultation with all international partners.
NASA Technical Reports Server (NTRS)
1975-01-01
Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.
[Consideration of the deuterium-free water supply to an expedition to Mars].
Siniak, Iu E; Turusov, V S; Grigor'ev, A I; Zaridze, D G; Gaĭdadymov, V B; Gus'kova, E I; Antoshina, E E; Gor'kova, T G; Trukhanova, L S
2003-01-01
Interplanetary missions, including to Mars, will put crews into severe radiation conditions. Search for methods of reducing the risk of radiation-induced cancer is of the top priority in preparation for the mission to Mars. One of the options is designing life support systems that will generate water with low content of the stable hydrogen isotope (deuterium) to be consumed by crewmembers. Preliminary investigations have shown that a decrease of the deuterium fraction by 65% does impart to water certain anti-cancer properties. Therefore, drinking deuterium-free water has the potential to reduce the risk of cancer consequent to the extreme radiation exposure of the Martian crew.
Space storable propellant acquisition system
NASA Technical Reports Server (NTRS)
Tegart, J. R.; Uney, P. E.; Anderson, J. E.; Fester, D. A.
1972-01-01
Surface tension propellant acquisition concepts for an advanced spacecraft propulsion system having a 10-year mission capability were investigated. Surface tension systems were specified because they were shown to be the best propellant acquisition technique for various interplanetery spacecraft in a prior study. A variety of surface tension concepts for accomplishing propellant acquisition were formulated for the baseline space storable propulsion module and Jupiter Orbiter mission. Analyses and evaluations were then conducted on each candidate concept to assess fabricability, performance capability, and spacecraft compatibility. A comparative evaluation of the results showed the Fruhof-class of low-g surface tension systems to be preferred for these interplanetary applications.
Destination Deimos: A Design Reference Architecture for Initial Human Exploration of the Mars System
NASA Technical Reports Server (NTRS)
Logan, James S.; Adamo, D. R.
2011-01-01
The two biggest challenges to successful human operations in interplanetary space are flight dynamics, constrained by the cold hard physics of the rocket equation, and bioastronautics, the psychophysiological realities of human adaptation, or lack thereof, to the deep space environment. Without substantial innovation in project/mission architecture and vehicle design, human exploration of the Mars system could be problematic for decades. Although a human landing on Mars is inevitable, humans-in-the-loop telerobotic exploration from the outer Martian moon Deimos is the best way to begin. Precursor robotic missions for reconnaissance and local site preparation will be required.
NASA Technical Reports Server (NTRS)
Swenberg, Charles E. (Editor); Horneck, Gerda (Editor); Stassinopoulos, E. G. (Editor)
1993-01-01
Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions.
Advanced Plasma Propulsion for Human Missions to Jupiter
NASA Technical Reports Server (NTRS)
Donahue, Benjamin B.; Pearson, J. Boise
1999-01-01
This paper will briefly identify a promising fusion plasma power source, which when coupled with a promising electric thruster technology would provide for an efficient interplanetary transfer craft suitable to a 4 year round trip mission to the Jovian system. An advanced, nearly radiation free Inertial Electrostatic Confinement scheme for containing fusion plasma was judged as offering potential for delivering the performance and operational benefits needed for such high energy human expedition missions, without requiring heavy superconducting magnets for containment of the fusion plasma. Once the Jovian transfer stage has matched the heliocentric velocity of Jupiter, the energy requirements for excursions to its outer satellites (Callisto, Ganymede and Europa) by smaller excursion craft are not prohibitive. The overall propulsion, power and thruster system is briefly described and a preliminary vehicle mass statement is presented.
Mars Science Laboratory Propulsive Maneuver Design and Execution
NASA Technical Reports Server (NTRS)
Wong, Mau C.; Kangas, Julie A.; Ballard, Christopher G.; Gustafson, Eric D.; Martin-Mur, Tomas J.
2012-01-01
The NASA Mars Science Laboratory (MSL) rover, Curiosity, was launched on November 26, 2011 and successfully landed at the Gale Crater on Mars. For the 8-month interplanetary trajectory from Earth to Mars, five nominal and two contingency trajectory correction maneuvers (TCM) were planned. The goal of these TCMs was to accurately deliver the spacecraft to the desired atmospheric entry aimpoint in Martian atmosphere so as to ensure a high probability of successful landing on the Mars surface. The primary mission requirements on maneuver performance were the total mission propellant usage and the entry flight path angle (EFPA) delivery accuracy. They were comfortably met in this mission. In this paper we will describe the spacecraft propulsion system, TCM constraints and requirements, TCM design processes, and their implementation and verification.
Schuster, Haley; Peck, Steven L
2016-12-01
The colonization of a new planet will inevitably bring about new bioethical issues. One is the possibility of pregnancy during the mission. During the journey to the target planet or moon, and for the first couple of years before a colony has been established and the colony has been accommodated for children, a pregnancy would jeopardize the safety of the crew and the wellbeing of the child. The principal concern with a pregnancy during an interplanetary mission is that it could put the entire crew in danger. Resources such as air, food, and medical supplies will be limited and calculated to keep the crew members alive. We explore the bioethical concerns of near-future space travel.
Cryogenic fluid management program at MSFC
NASA Technical Reports Server (NTRS)
Schmidt, G. R.; Hastings, L. J.
1990-01-01
Cryogenic fluid management (CFM) is an important aspect in the design and operation of spacecraft propellant systems. Consequently, it represents a key technology in the development of future vehicles for orbital transfer, lunar transit and manned interplanetary (i.e., Mars) missions. Because of Marshall Space Flight Center's (MSFC's) leading role in the definition of such vehicles, the center is currently managing and conducting a variety of tests to support development of this technology. The purpose of this paper is to summarize these activities and present their status within the context of CFM technology requirements. The first section reviews MSFC's role, identifies the major emphases and thrusts of its program, and presents the overall schedule. The final part comprises the bulk of the report, and describes at length the objectives, approach and status of each project.
Martian Methane From a Cometary Source: A Hypothesis
NASA Technical Reports Server (NTRS)
Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.;
2016-01-01
In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.
Low-Frequency Radio Bursts and Space Weather
NASA Technical Reports Server (NTRS)
Gopalswamy, N.
2016-01-01
Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.
Decades-long changes of the interstellar wind through our solar system.
Frisch, P C; Bzowski, M; Livadiotis, G; McComas, D J; Moebius, E; Mueller, H-R; Pryor, W R; Schwadron, N A; Sokół, J M; Vallerga, J V; Ajello, J M
2013-09-06
The journey of the Sun through the dynamically active local interstellar medium creates an evolving heliosphere environment. This motion drives a wind of interstellar material through the heliosphere that has been measured with Earth-orbiting and interplanetary spacecraft for 40 years. Recent results obtained by NASA's Interstellar Boundary Explorer mission during 2009-2010 suggest that neutral interstellar atoms flow into the solar system from a different direction than found previously. These prior measurements represent data collected from Ulysses and other spacecraft during 1992-2002 and a variety of older measurements acquired during 1972-1978. Consideration of all data types and their published results and uncertainties, over the three epochs of observations, indicates that the trend for the interstellar flow ecliptic longitude to increase linearly with time is statistically significant.
COMPARISON OF COSMIC-RAY ENVIRONMENTS ON EARTH, MOON, MARS AND IN SPACECARFT USING PHITS.
Sato, Tatsuhiko; Nagamatsu, Aiko; Ueno, Haruka; Kataoka, Ryuho; Miyake, Shoko; Takeda, Kazuo; Niita, Koji
2017-09-29
Estimation of cosmic-ray doses is of great importance not only in aircrew and astronaut dosimetry but also in evaluation of background radiation exposure to public. We therefore calculated the cosmic-ray doses on Earth, Moon and Mars as well as inside spacecraft, using Particle and Heavy Ion Transport code System PHITS. The same cosmic-ray models and dose conversion coefficients were employed in the calculation to properly compare between the simulation results for different environments. It is quantitatively confirmed that the thickness of physical shielding including the atmosphere and soil of the planets is the most important parameter to determine the cosmic-ray doses and their dominant contributors. The comparison also suggests that higher solar activity significantly reduces the astronaut doses particularly for the interplanetary missions. The information obtained from this study is useful in the designs of the future space missions as well as accelerator-based experiments dedicated to cosmic-ray research. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Observations of Shock Diffusion and Interactions in Supersonic Freestreams with Counterflowing Jets
NASA Technical Reports Server (NTRS)
Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Blankson, Isiah M.; Auslender, Aaron H.
2006-01-01
One of the technical challenges in long-duration space exploration and interplanetary missions is controlled entry and re-entry into planetary and Earth atmospheres, which requires the dissipation of considerable kinetic energy as the spacecraft decelerates and penetrates the atmosphere. Efficient heat load management of stagnation points and acreage heating remains a technological challenge and poses significant risk, particularly for human missions. An innovative approach using active flow control concept is proposed to significantly modify the external flow field about the spacecraft in planetary atmospheric entry and re-entry in order to mitigate the harsh aerothermal environments, and significantly weaken and disperse the shock-wave system to reduce aerothermal loads and wave drag, as well as improving aerodynamic performance. To explore the potential benefits of this approach, we conducted fundamental experiments in a trisonic blow down wind tunnel to investigate the effects of counterflowing sonic and supersonic jets against supersonic freestreams to gain a better understanding of the flow physics of the interactions of the opposing flows and the resulting shock structure.
NASA Technical Reports Server (NTRS)
Clark, John S.; George, Jeffrey A.; Gefert, Leon P.; Doherty, Michael P.; Sefcik, Robert J.
1994-01-01
NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power, and small NEP systems for interplanetary probes. System upgrades are expected to evolve that will result in even shorter trip times, improved payload capabilities, and enhanced safety and reliability.
Getting ready for the manned mission to Mars: the astronauts' risk from space radiation
NASA Astrophysics Data System (ADS)
Hellweg, Christine E.; Baumstark-Khan, Christa
2007-07-01
Space programmes are shifting towards planetary exploration and, in particular, towards missions by human beings to the Moon and to Mars. Radiation is considered to be one of the major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. The two cosmic sources of radiation that could impact a mission outside the Earth’s magnetic field are solar particle events (SPE) and galactic cosmic rays (GCR). Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data and are subject to many uncertainties. The paper describes present-day estimates of equivalent doses from GCR and solar cosmic radiation behind various shields and radiation risks for astronauts on a mission to Mars.
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, E. A.; Gee, G. B.
1999-01-01
The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, Edward A.; Gee, G. B.
1999-01-01
The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.
Solar Polar ORbit Telescope (SPORT): A Potential Space Weather Mission of China
NASA Astrophysics Data System (ADS)
Liu, Y. D.; Xiong, M.; Wu, J.; Liu, H.; Zheng, J.; Li, B.; Zhang, C.; Sun, W.
2013-12-01
We describe a spacecraft mission, named Solar Polar ORbit Telescope (SPORT), which is currently under a scientific and engineering background study in China. SPORT was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences. It will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. It is intended to be the first mission that carries remote-sensing instruments from a high-latitude orbit around the Sun, the first mission that could image interplanetary CMEs at radio wavelengths from space, and the first mission that could measure solar high-latitude magnetism leading to eruptions and the fast solar wind. The first extended view of the polar region of the Sun and the ecliptic plane enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere and solar high-latitude magnetism giving rise to eruptions and the fast solar wind.
Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.
Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco
2004-04-01
The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. c2003 Elsevier Ltd. All rights reserved.
Radiation Effects and Protection for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Parnell, Thomas A.; Watts, John W., Jr.; Armstrong, Tony W.
1998-01-01
Manned and robotic missions to the Earth's moon and Mars are exposed to a continuous flux of Galactic Cosmic Rays (GCR) and occasional, but intense, fluxes of Solar Energetic Particles (SEP). These natural radiations impose hazards to manned exploration, but also present some constraints to the design of robotic missions. The hazards to interplanetary flight crews and their uncertainties have been studied recently by a National Research Council Committee (Space Studies Board 1996). Considering the present uncertainty estimates, thick spacecraft shielding would be needed for manned missions, some of which could be accomplished with onboard equipment and expendables. For manned and robotic missions, the effects of radiation on electronics, sensors, and controls require special consideration in spacecraft design. This paper describes the GCR and SEP particle fluxes, secondary particles behind shielding, uncertainties in radiobiological effects and their impact on manned spacecraft design, as well as the major effects on spacecraft equipment. The principal calculational tools and considerations to mitigate the radiation effects are discussed, and work in progress to reduce uncertainties is included.
Multi-Objective Hybrid Optimal Control for Multiple-Flyby Low-Thrust Mission Design
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.; Ghosh, Alexander R.
2015-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.
Attitude Drift Analysis for the WIND and POLAR Missions
NASA Technical Reports Server (NTRS)
Crouse, Patrick
1996-01-01
The spin axis attitude drift due to environmental torques acting on the Global Geospace Science (GGS) Interplanetary Physics Laboratory (WIND) and the Polar Plasma Laboratory (POLAR) and the subsequent impact on the maneuver planning strategy for each mission is investigated. A brief overview of each mission is presented, including mission objectives, requirements, constraints, and spacecraft design. The environmental torques that act on the spacecraft and the relative importance of each is addressed. Analysis results are presented that provide the basis for recommendations made pre-launch to target the spin axis attitude to minimize attitude trim maneuvers for both spacecraft over their respective mission lives. It is demonstrated that attitude drift is not the dominant factor in maintaining the pointing requirement for each spacecraft. Further it is demonstrated that the WIND pointing cannot be met pas 4 months due to the Sun angle constraint, while the POLAR initial attitude can be chosen such that attitude trim maneuvers are not required during each 6 month viewing period.
Getting ready for the manned mission to Mars: the astronauts' risk from space radiation.
Hellweg, Christine E; Baumstark-Khan, Christa
2007-07-01
Space programmes are shifting towards planetary exploration and, in particular, towards missions by human beings to the Moon and to Mars. Radiation is considered to be one of the major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic rays (GCR). Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data and are subject to many uncertainties. The paper describes present-day estimates of equivalent doses from GCR and solar cosmic radiation behind various shields and radiation risks for astronauts on a mission to Mars.
Deployment Technology of a Heliogyro Solar Sail for Long Duration Propulsion
NASA Technical Reports Server (NTRS)
Peerawan, Wiwattananon; Bryant, Robert G.; Edmonson, William W.; Moore, William B.; Bell, Jared M.
2015-01-01
Interplanetary, multi-mission, station-keeping capabilities will require that a spacecraft employ a highly efficient propulsion-navigation system. The majority of space propulsion systems are fuel-based and require the vehicle to carry and consume fuel as part of the mission. Once the fuel is consumed, the mission is set, thereby limiting the potential capability. Alternatively, a method that derives its acceleration and direction from solar photon pressure using a solar sail would eliminate the requirement of onboard fuel to meet mission objectives. MacNeal theorized that the heliogyro-configured solar sail architecture would be lighter, less complex, cheaper, and less risky to deploy a large sail area versus a masted sail. As sail size increases, the masted sail requires longer booms resulting in increased mass, and chaotic uncontrollable deployment. With a heliogyro, the sail membrane is stowed as a roll of thin film forming a blade when deployed that can extend up to kilometers. Thus, a benefit of using a heliogyro-configured solar sail propulsion technology is the mission scalability as compared to masted versions, which are size constrained. Studies have shown that interplanetary travel is achievable by the heliogyro solar sail concept. Heliogyro solar sail concept also enables multi-mission missions such as sample returns, and supply transportation from Earth to Mars as well as station-keeping missions to provide enhanced warning of solar storm. This paper describes deployment technology being developed at NASA Langley Research Center to deploy and control the center-of-mass/center-of-pressure using a twin bladed heliogyro solar sail 6-unit (6U) CubeSat. The 6U comprises 2x2U blade deployers and 2U for payload. The 2U blade deployers can be mounted to 6U or larger scaled systems to serve as a non-chemical in-space propulsion system. A single solar sail blade length is estimated to be 2.4 km with a total area from two blades of 720 m2; total allowable weight of a 6U CubeSat is approximately 8 kg. This makes the theoretical characteristic acceleration of approximately 0.75 mm/s2 at I AU (astronomical unit), when compared to IKAROS (0.005 mm/s2) and NanoSail-D (0.02 mm/s2).
Artificial gravity Mars spaceship
NASA Technical Reports Server (NTRS)
Clark, Benton C.
1989-01-01
Experience gained in the study of artificial gravity for a manned trip to Mars is reviewed, and a snowflake-configured interplanetary vehicle cluster of habitat modules, descent vehicles, and propulsion systems is presented. An evolutionary design is described which permits sequential upgrading from five to nine crew members, an increase of landers from one to as many a three per mission, and an orderly, phased incorporation of advanced technologies as they become available.
NASA Technical Reports Server (NTRS)
Morabito, D. D.
2002-01-01
A superior solar conjunction occurs when the sun lies near the signal path of a source as observed from the Earth. Interplanetary spacecraft sent to the planets typically encounter one or more solar conjunctions during their mission lifetimes. During these periods, the signals sent to and from the spacecraft encounter degradation due to the intervening charged particles of the solar corona.
Magnetic shielding of interplanetary spacecraft against solar flare radiation
NASA Technical Reports Server (NTRS)
Cocks, Franklin H.; Watkins, Seth
1993-01-01
The ultimate objective of this work is to design, build, and fly a dual-purpose, piggyback payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field (1) to protect spacecraft against solar flare protons, (2) to produce a thrust of sufficient magnitude to stabilize low satellite orbits against orbital decay from atmospheric drag, and (3) to test the magsail concept. These all appear to be capable of being tested using the same deployed high temperature superconducting coil. In certain orbits, high temperature superconducting wire, which has now been developed to the point where silver-sheathed high T sub c wires one mm in diameter are commercially available, can be used to produce the magnetic moments required for shielding without requiring any mechanical cooling system. The potential benefits of this concept apply directly to both earth-orbital and interplanetary missions. The usefulness of a protective shield for manned missions needs scarcely to be emphasized. Similarly, the usefulness of increasing orbit perigee without expenditure of propellant is obvious. This payload would be a first step in assessing the true potential of large volume magnetic fields in the US space program. The objective of this design research is to develop an innovative, prototype deployed high temperature superconducting coil (DHTSC) system.
Testing the Interstellar Wind Helium Flow Direction with Galileo Euvs Data
NASA Astrophysics Data System (ADS)
Pryor, W. R.; Simmons, K. E.; Ajello, J. M.; Tobiska, W. K.; Retherford, K. D.; Stern, S. A.; Feldman, P. D.; Frisch, P. C.; Bzowski, M.; Grava, C.
2014-12-01
Forty years of measurements of the flow of interstellar helium through the heliosphere suggest that variations of the flow direction with time are possible. We will model Galileo Extreme Ultraviolet Spectrometer (EUVS) data to determine the best-fitting flow direction and compare it to values obtained by other spacecraft. The Galileo EUVS (Hord et al., 1992) was mounted on the spinning part of the spacecraft and obtained interstellar wind hydrogen Lyman-alpha 121.6 nm and helium 58.4 nm data on great circles passing near the ecliptic poles during the interplanetary cruise phase of the mission and also during the Jupiter orbital phase of the mission. The Galileo hydrogen cruise data have been previously published (Hord et al., 1991, Pryor et al., 1992; 1996; 2001), but the helium data have not. Our model was previously used by Ajello et al., 1978, 1979 to model Mariner 10 interstellar wind helium data, and by Stern et al., 2012 and Feldman et al., 2012 to model the interplanetary helium background near the moon in Lunar Reconnaissance Orbiter (LRO) Lyman-alpha Mapping Project (LAMP) data. The model has been updated to include recent determinations of daily helium 58.4 nm solar flux variations and helium losses due to EUV photoionization and electron impact ionization.
NASA Technical Reports Server (NTRS)
Rom, F. E.
1969-01-01
Recent developments in the fields of gas core hydrodynamics, heat transfer, and neutronics indicate that gas core nuclear rockets may be feasible from the point of view of basic principles. Based on performance predictions using these results, mission analyses indicate that gas core nuclear rockets may have the potential for reducing the initial weight in orbit of manned interplanetary vehicles by a factor of 5 when compared to the best chemical rocket systems. In addition, there is a potential for reducing total trip times from 450 to 500 days for chemical systems to 250 to 300 days for gas core systems. The possibility of demonstrating the feasibility of gas core nuclear rocket engines by means of a logical series of experiments of increasing difficulty that ends with ground tests of full scale gas core reactors is considered.
Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 1: User's guide
NASA Technical Reports Server (NTRS)
Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.
1992-01-01
IPOST is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence fo trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the coat function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.
Langmuir waveforms at interplanetary shocks: STEREO statistical analysis
NASA Astrophysics Data System (ADS)
Briand, C.
2016-12-01
Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.
NASA Technical Reports Server (NTRS)
Lo, M. W.
2001-01-01
Our Solar System is connected by a vast Interplanetary Superhighway System (ISSys) providing low energy transport throughout. The Outer Planets with their satellites and rings are smaller replicas of the Solar System with their own ISSys, also providing low energy transport within their own satellite systems. This low energy transport system is generated by all of the Lagrange points of the planets and satellites within the Solar System. Figures show the tubular passage-ways near L1 of Jupiter and the ISSys of Jupiter schematically. These delicate and resilient dynamics may be used to great effect to produce free temporary captures of a spacecraft by a planet or satellite, low energy interplanetary and inter-satellite transfers, as well as precision impact orbits onto the surface of the satellites. Additional information is contained in the original extended abstract.
Nymmik, R A
1999-10-01
A wide range of the galactic cosmic ray and SEP event flux simulation problems for the near-Earth satellite and manned spacecraft orbits and for the interplanetary mission trajectories are discussed. The models of the galactic cosmic ray and SEP events in the Earth orbit beyond the Earth's magnetosphere are used as a basis. The particle fluxes in the near-Earth orbits should be calculated using the transmission functions. To calculate the functions, the dependences of the cutoff rigidities on the magnetic disturbance level and on magnetic local time have to be known. In the case of space flights towards the Sun and to the boundary of the solar system, particular attention is paid to the changes in the SEP event occurrence frequency and size. The particle flux gradients are applied in this case to galactic cosmic ray fluxes.
A model of galactic cosmic rays for use in calculating linear energy transfer spectra
NASA Technical Reports Server (NTRS)
Chen, J.; Chenette, D.; Clark, R.; Garcia-Munoz, M.; Guzik, T. G.; Pyle, K. R.; Sang, Y.; Wefel, J. P.
1994-01-01
The Galactic Cosmic Rays (GCR) contain fully stripped nuclei, from Hydrogen to beyond the Iron group, accelerated to high energies and are a major component of the background radiation encountered by satellites and interplanetary spacecraft. This paper presents a GCR model which is based upon our current understanding of the astrophysics of GCR transport through interstellar and interplanetary space. The model can be used to predict the energy spectra for all stable and long-lived radioactive species from H to Ni over an energy range from 50 to 50,000 MeV/nucleon as a function of a single parameter, the solar modulation level phi. The details of this model are summarized, phi is derived for the period 1974 to present, and results from this model during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission are presented.
The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Studak, J. W.
2013-01-01
The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. A summary of calculations of the mass of the habitat propulsion system (HPS) needed to get the habitat from Low Mars Orbit (LMO) to the surface and back to LMO and an overview of trajectory and mission mass assessments related to use of a high specific impulse space based propulsion system is provided. Those calculations lead to the conclusion that the SHM concept can significantly reduce the mass required and streamline mission operations to explore Mars (and thus all exploration destinations).
The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Studak, J. W.
2013-01-01
The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. The paper also provides a summary of calculations of the mass of the Habitat Propulsion System (HPS) needed to get the habitat from low-Mars orbit (LMO) to the surface and back to LMO, and an overview of trajectory and mission mass assessments related to use of a high specific impulse space-based propulsion system. Those calculations led to the conclusion that the SHM concept results in low total mass required and streamlines mission operations to explore Mars (or other exploration destinations).
2017-09-15
Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, left, Cassini project scientist at JPL, Linda Spilker, second from left, director of NASA's Jet Propulsion Laboratory, Michael Watkins, center, director of NASA's Planetary Science Division, Jim Green, second from right, and director of the interplanetary network directorate at NASA's Jet Propulsion Laboratory, Keyur Patel, left, are seen in mission control, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)
Addressing the Hard Factors for Command File Errors by Probabilistic Reasoning
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Bryant, Larry
2014-01-01
Command File Errors (CFE) are managed using standard risk management approaches at the Jet Propulsion Laboratory. Over the last few years, more emphasis has been made on the collection, organization, and analysis of these errors for the purpose of reducing the CFE rates. More recently, probabilistic modeling techniques have been used for more in depth analysis of the perceived error rates of the DAWN mission and for managing the soft factors in the upcoming phases of the mission. We broadly classify the factors that can lead to CFE's as soft factors, which relate to the cognition of the operators and hard factors which relate to the Mission System which is composed of the hardware, software and procedures used for the generation, verification & validation and execution of commands. The focus of this paper is to use probabilistic models that represent multiple missions at JPL to determine the root cause and sensitivities of the various components of the mission system and develop recommendations and techniques for addressing them. The customization of these multi-mission models to a sample interplanetary spacecraft is done for this purpose.
MAVEN observations of the solar cycle 24 space weather conditions at Mars
NASA Astrophysics Data System (ADS)
Lee, C. O.; Hara, T.; Halekas, J. S.; Thiemann, E.; Chamberlin, P.; Eparvier, F.; Lillis, R. J.; Larson, D. E.; Dunn, P. A.; Espley, J. R.; Gruesbeck, J.; Curry, S. M.; Luhmann, J. G.; Jakosky, B. M.
2017-03-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been continuously observing the variability of solar soft X-rays and EUV irradiance, monitoring the upstream solar wind and interplanetary magnetic field conditions and measuring the fluxes of solar energetic ions and electrons since its arrival to Mars. In this paper, we provide a comprehensive overview of the space weather events observed during the first ˜1.9 years of the science mission, which includes the description of the solar and heliospheric sources of the space weather activity. To illustrate the variety of upstream conditions observed, we characterize a subset of the event periods by describing the Sun-to-Mars details using observations from the MAVEN solar Extreme Ultraviolet Monitor, solar energetic particle (SEP) instrument, Solar Wind Ion Analyzer, and Magnetometer together with solar observations using near-Earth assets and numerical solar wind simulation results from the Wang-Sheeley-Arge-Enlil model for some global context of the event periods. The subset of events includes an extensive period of intense SEP electron particle fluxes triggered by a series of solar flares and coronal mass ejection (CME) activity in December 2014, the impact by a succession of interplanetary CMEs and their associated SEPs in March 2015, and the passage of a strong corotating interaction region (CIR) and arrival of the CIR shock-accelerated energetic particles in June 2015. However, in the context of the weaker heliospheric conditions observed throughout solar cycle 24, these events were moderate in comparison to the stronger storms observed previously at Mars.
NASA Astrophysics Data System (ADS)
Barnes, D.
2017-12-01
The multiple, spatially separated vantage points afforded by the STEREO and SOHO missions provide physicists with a means to infer the three-dimensional structure of the solar corona via tomographic imaging. The reconstruction process combines these multiple projections of the optically thin plasma to constrain its three-dimensional density structure and has been successfully applied to the low corona using the STEREO and SOHO coronagraphs. However, the technique is also possible at larger, inter-planetary distances using wide-angle imagers, such as the STEREO Heliospheric Imagers (HIs), to observe faint solar wind plasma and Coronal Mass Ejections (CMEs). Limited small-scale structure may be inferred from only three, or fewer, viewpoints and the work presented here is done so with the aim of establishing techniques for observing CMEs with upcoming and future HI-like technology. We use simulated solar wind densities to compute realistic white-light HI observations, with which we explore the requirements of such instruments for determining solar wind plasma density structure via tomography. We exploit this information to investigate the optimal orbital characteristics, such as spacecraft number, separation, inclination and eccentricity, necessary to perform the technique with HIs. Further to this we argue that tomography may be greatly enhanced by means of improved instrumentation; specifically, the use of wide-angle imagers capable of measuring polarised light. This work has obvious space weather applications, serving as a demonstration for potential future missions (such as at L1 and L5) and will prove timely in fully exploiting the science return from the upcoming Solar Orbiter and Parker Solar Probe missions.
Oganov, V S; Bogomolov, V V; Bakulin, A V; Novikov, V E; Kabitskaia, O E; Murashko, L M; Morgun, V V; Kasparskiĭ, R R
2010-01-01
A summary of investigations results of human bone tissue changes in space flight on the orbital station (OS) Mir and international space station (ISS) using dual energy X-ray absorptiometry (DXA) is given. Results comparative analysis revealed an absence of significant differences in bone mass (BM) changes on the both OS. Theoretically expected BM loss was observed in bone trabecular structure of skeleton low part after space flight lasting 5-7 month. The BM losses are qualified in some cases as quicly developed but reversible osteopenia and generally interpreted as evidence of bone functional adaptation to the alterating mechanical loading. It was demonstrated the high individual variability BM loss amplitudes. Simultaneously was observed the individual pattern of BM loss distribution across different segments of skeleton after repetitive flights independently upon type of OS. In according with the above mentioned individual peculiarities it was impossible to establish the dependence of BM changes upon duration of space missions. Therefore we have not sufficiently data for calculation of probability to achive the critical demineralization level by the augmentation the space mission duration till 1.5-2 years. It is more less possibility of the bone quality changes prognosis, which in the aggregate with BM losses determines the bone fracture risk. It become clearly that DXA technology is unsuffitiently for this purpose. It is considered the main direction which may optimized the elaboration of the interplanetary project meaning the perfectly safe of skeleton mechanical function.
Collaborative Wideband Compressed Signal Detection in Interplanetary Internet
NASA Astrophysics Data System (ADS)
Wang, Yulin; Zhang, Gengxin; Bian, Dongming; Gou, Liang; Zhang, Wei
2014-07-01
As the development of autonomous radio in deep space network, it is possible to actualize communication between explorers, aircrafts, rovers and satellites, e.g. from different countries, adopting different signal modes. The first mission to enforce the autonomous radio is to detect signals of the explorer autonomously without disturbing the original communication. This paper develops a collaborative wideband compressed signal detection approach for InterPlaNetary (IPN) Internet where there exist sparse active signals in the deep space environment. Compressed sensing (CS) can be utilized by exploiting the sparsity of IPN Internet communication signal, whose useful frequency support occupies only a small portion of an entirely wide spectrum. An estimate of the signal spectrum can be obtained by using reconstruction algorithms. Against deep space shadowing and channel fading, multiple satellites collaboratively sense and make a final decision according to certain fusion rule to gain spatial diversity. A couple of novel discrete cosine transform (DCT) and walsh-hadamard transform (WHT) based compressed spectrum detection methods are proposed which significantly improve the performance of spectrum recovery and signal detection. Finally, extensive simulation results are presented to show the effectiveness of our proposed collaborative scheme for signal detection in IPN Internet. Compared with the conventional discrete fourier transform (DFT) based method, our DCT and WHT based methods reduce computational complexity, decrease processing time, save energy and enhance probability of detection.
The Propagation of Solar Energetic Particles as Observed by the Stereo Spacecraft and Near Earth
NASA Astrophysics Data System (ADS)
von Rosenvinge, T. T.; Richardson, I. G.; Cane, H. V.; Christian, E. R.; Cummings, A. C.; Cohen, C. M.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Wiedenbeck, M. E.
2014-12-01
Over 200 Solar Energetic Particle Events (SEPs) with protons > 25 MeV have been identified using data from the IMPACT HET telescopes on the STEREO A and B spacecraft and similar data from SoHO near Earth. The properties of these events are tabulated in a recent publication in Solar Physics (Richardson, et al., 2014). One of the goals of the Stereo Mission is to better understand the propagation of SEPs. The properties of events observed by multiple spacecraft on average are well-organized by the distance of the footpoints of the nominal Parker Spiral magnetic field lines passing the observing spacecraft from the parent active regions. However, some events deviate significantly from this pattern. For example, in events observed by three spacecraft, the spacecraft with the best nominal connection does not necessarily observe the highest intensity or earliest particle arrival time. We will search for such events and try to relate their behavior to non-nominal magnetic field patterns. We will look, for example, for the effects of the interplanetary current sheet, the influence of magnetic clouds which are thought to contain large magnetic loops with both ends connected to the sun (a large departure from the Parker spiral), and also whether particle propagation can be disrupted by the presence of interplanetary shocks. Reference: Richardson et al., Solar Phys. 289, 3059, 2014
From Present Surveying to Future Prospecting of the Asteroid Belt
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M.; Cheung, C.
2004-01-01
We have applied a future mission architecture, the Autonomous Nano-Technology Swarm (ANTS), to a proposed mission for in situ survey, or prospecting, of the asteroid belt, the Prospecting Asteroid Mission (PAM) as part of a NASA 2003 Revolutionary Aerospace Concept (RASC) study. ANTS architecture builds on and advances recent trends in robotics, artificial intelligence, and materials processing to minimize costs and maximize effectiveness of space operations. PAM and other applications have been proposed for the survey of inaccessible, high surface area populations of great interest from the standpoint of resources and/or solar system origin. The ANTS architecture is inspired by the success of social insect colonies, a success based on the division of labor within the colonies in two key ways: 1) within their specialties, individual specialists generally outperform generalists, and 2) with sufficiently efficient social interaction and coordination, the group of specialists generally outperforms the group of generalists. Thus systems designed as ANTS are built from potentially very large numbers of highly autonomous, yet socially interactive, elements. The architecture is self-similar in that elements and sub-elements of the system may also be recursively structured as ANTS on scales ranging from microscopic to interplanetary distances. Here, we analyze requirements for the mission application at the low gravity target end of the spectrum, the Prospecting Asteroid Mission (PAM), and for specialized autonomous operations which would support this mission. ANTS as applied to PAM involves the activities of hundreds of individual specialist 'sciencecraft'. Most of them, called Workers, carry and operate eight to nine different scientific instruments, as listed in the table, including spectrometers, ranging and radio science devices, and imagers. The remaining specialists, Messenger/Rulers, provide communication and coordination functions among specialists operating autonomously as individuals, team members, and subswarms.
NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.
2016-01-01
NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.
Geomagnetic activity: Dependence on solar wind parameters
NASA Technical Reports Server (NTRS)
Svalgaard, L.
1977-01-01
Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.
Psychological and interpersonal adaptation to Mars missions
NASA Technical Reports Server (NTRS)
Harrison, A. A.; Connors, M. M.
1985-01-01
The crucial importance of a thorough understanding of the psychological and interpersonal dimensions of Mars flights is indicated. This is necessary both to reduce the chances that psychological problems or interpersonal frictions will threaten the success of Mars missions and to enhance the quality of life of the people involved. Adaptation to interplanetary flight will depend on an interplay of the psychological stresses imposed by the missions and the psychological strengths and vulnerabilities of the crewmembers involved. Stresses may be reduced through environmental engineering, manipulating crew composition, and the structuring of situations and tasks. Vulnerabilities may be reduced through improving personnel selection procedures, training personnel in psychological and group dynamics, and providing mechanisms for emotional support. It is essential to supplement anecdotal evidence regarding the human side of space travel with the results of carefully conducted scientific research.
NASA Technical Reports Server (NTRS)
Kim, Sang J. (Editor)
1988-01-01
The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.
Design and systems analysis of a chemical interorbital shuttle. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Nissim, W.
1972-01-01
An interorbital shuttle that can be utilized to carry payloads between low earth orbit (180 n mi, 37.6 deg) and lunar or geosynchronous orbits, and also to interplanetary trajectories is discussed. After each mission the stage returns to its earth parking orbit where it delivers the inbound payloads, and where it is maintained and refueled for the subsequent missions. The stage can also be utilized to carry large payloads (150 to 200 KLBS) to the Space Station orbit (270 n mi, 55 deg) when it is used as a second or parallel burn stage to the space shuttle booster. The mission and systems analysis, as well as the results of structural, mechanical and propulsion, and avionics subsystems analysis and design are described. A development plan and cost estimates are also included.
NASA Technical Reports Server (NTRS)
Bates, David M.
2015-01-01
NASA's Cassini Spacecraft, launched on October 15th, 1997 arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended mission through 2017. As part of the final extended mission, Cassini will begin an aggressive and exciting campaign of high inclination low altitude flybys within the inner most rings of Saturn, skimming Saturn's outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, presents unique fault protection related challenges, the details of which are discussed in this paper.
Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind
NASA Astrophysics Data System (ADS)
Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.
2018-04-01
Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations < δ {n}{{e}}> /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.
NASA Technical Reports Server (NTRS)
Bravo, S.
1995-01-01
Coronal holes are the sources of the solar wind and, according to recent YOKOH observations, may undergo rapid changes which are associated with manifestations of explosive solar activity. Rapid changes in a hole's structure will produce rapid changes in the characteristics of the wind emerging from it and, in the particular c se of a sudden increase in wind velocity, this may lead to the formation of an interplanetary shock. We discuss the characteristics of shocks formed in such a way and compare them with interplanetary observations.
An Evidence Based Approach to Designing Medical Support for Long Duration, Interplanetary Missions
NASA Technical Reports Server (NTRS)
Watkins, S. D.; McGrath, T. L.; Bauman, D. K.; Wu, J. H.; Barsten, K. N.; Barr, Y. R.; Kerstman, E. L.
2011-01-01
The Exploration Medical Capability (ExMC) element is one of six elements under NASA's Human Research Program (HRP). The goal of the ExMC element is to address the risk of the "inability to adequately recognize or treat an ill or injured crewmember." This poster highlights the evidence-based approach that the ExMC element has taken to address this goal, and the ExMC element's current areas of interest.
Conceptual Design of a Synoptic Interplanetary Monitor Platform at L sub 1 (SIMPL).
1985-11-01
solar events. -159- . . . .. . 105 II1II" -I .5 year mission at Earth-Sun- libration point plus transfer orbit eDashed line is approximate true dose as...Design .. ...................................... 27 4.1 The L Libration Point .......................... 27 4.2 L Orbit Options...34) to provide power, attitude control, communications, and other support to maintain the instruments in a halo orbit around the L libration point ; 4. a
Study of spin-scan imaging for outer planets missions: Executive summary
NASA Technical Reports Server (NTRS)
Russell, E. E.; Chandos, R. A.; Kodak, J. C.; Pellicori, S. F.; Tomasko, M. G.
1974-01-01
The development and characteristics of spin-scan imagers for interplanetary exploration are discussed. The spin-scan imaging photopolarimeter instruments of Pioneer 10 and 11 are described. In addition to the imaging function, the instruments are also used in a faint-light mode to take sky maps in both radiance and polarization. The performance of a visible-infrared spin-scan radiometer (VISSR), which operates in both visible and infrared wavelengths, is reported.
NASA Technical Reports Server (NTRS)
Wang, Eric K.; Lee, Allan Y.
2011-01-01
The Cassini spacecraft was launched on 15 October 1997. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. Major science objectives of the Cassini mission include investigations of the configuration and dynamics of Saturn's magnetosphere, the structure and composition of the rings, the characterization of several of Saturn's icy satellites, and Titan's atmosphere constituent abundance
SNAP (Space Nuclear Auxiliary Power) Reactor Overview
1984-08-01
so that emphasis could be placed on the development of the space shuttle and the national space station . During 1969 NASA came up with a requirement...which would need the Zr-H reactor system which was the semipermanent orbiting space station . This helped the Zr-H system weather through the major FY 71...provide power for advanced space missions, such as lunar stations or orbiting space platforms, and for interplanetary com- munications. In addition
Rapid Development of Gossamer Propulsion for NASA Inner Solar System Science Missions
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.
2006-01-01
Over a two and one-half year period dating from 2003 through 2005, NASA s In-Space Propulsion Program matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. This paper describes the challenges identified; as well as the approaches taken toward solving a broad set of issues spanning material science, manufacturing technology, and interplanetary trajectory optimization. Revolutionary advances in system structural predictive analysis and characterization testing occurred. Also addressed are the remaining technology challenges that might be resolved with further ground technology research, geared toward reducing technical risks associated with future space validation and science missions.
Spacecraft fault tolerance: The Magellan experience
NASA Technical Reports Server (NTRS)
Kasuda, Rick; Packard, Donna Sexton
1993-01-01
Interplanetary and earth orbiting missions are now imposing unique fault tolerant requirements upon spacecraft design. Mission success is the prime motivator for building spacecraft with fault tolerant systems. The Magellan spacecraft had many such requirements imposed upon its design. Magellan met these requirements by building redundancy into all the major subsystem components and designing the onboard hardware and software with the capability to detect a fault, isolate it to a component, and issue commands to achieve a back-up configuration. This discussion is limited to fault protection, which is the autonomous capability to respond to a fault. The Magellan fault protection design is discussed, as well as the developmental and flight experiences and a summary of the lessons learned.
Launch Vehicle Systems Analysis
NASA Technical Reports Server (NTRS)
Olds, John R.
1999-01-01
This report summaries the key accomplishments of Georgia Tech's Space Systems Design Laboratory (SSDL) under NASA Grant NAG8-1302 from NASA - Marshall Space Flight Center. The report consists of this summary white paper, copies of technical papers written under this grant, and several viewgraph-style presentations. During the course of this grant four main tasks were completed: (1)Simulated Combined-Cycle Rocket Engine Analysis Module (SCCREAM), a computer analysis tool for predicting the performance of various RBCC engine configurations; (2) Hyperion, a single stage to orbit vehicle capable of delivering 25,000 pound payloads to the International Space Station Orbit; (3) Bantam-X Support - a small payload mission; (4) International Trajectory Support for interplanetary human Mars missions.
NASA Technical Reports Server (NTRS)
Sauer, Carl G., Jr.
1989-01-01
A patched conic trajectory optimization program MIDAS is described that was developed to investigate a wide variety of complex ballistic heliocentric transfer trajectories. MIDAS includes the capability of optimizing trajectory event times such as departure date, arrival date, and intermediate planetary flyby dates and is able to both add and delete deep space maneuvers when dictated by the optimization process. Both powered and unpowered flyby or gravity assist trajectories of intermediate bodies can be handled and capability is included to optimize trajectories having a rendezvous with an intermediate body such as for a sample return mission. Capability is included in the optimization process to constrain launch energy and launch vehicle parking orbit parameters.
The Magellan Venus explorer's guide
NASA Technical Reports Server (NTRS)
Young, Carolynn (Editor)
1990-01-01
The Magellan radar-mapping mission to the planet Venus is described. Scientific highlights include the history of U.S. and Soviet missions, as well as ground-based radar observations, that have provided the current knowledge about the surface of Venus. Descriptions of the major Venusian surface features include controversial theories about the origin of some of the features. The organization of the Magellan science investigators into discipline-related task groups for data-analysis purposes is presented. The design of the Magellan spacecraft and the ability of its radar sensor to conduct radar imaging, altimetry, and radiometry measurements are discussed. Other topics report on the May 1989 launch, the interplanetary cruise, the Venus orbit-insertion maneuver, and the in-orbit mapping strategy. The objectives of a possible extended mission emphasize the gravity experiment and explain why high-resolution gravity data cannot be acquired during the primary mission. A focus on the people of Magellan reveals how they fly the spacecraft and prepare for major mission events. Special items of interest associated with the Magellan mission are contained in windows interspersed throughout the text. Finally, short summaries describe the major objectives and schedules for several exciting space missions planned to take us into the 21st century.
Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications
NASA Technical Reports Server (NTRS)
Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy
2007-01-01
For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.
Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications
NASA Technical Reports Server (NTRS)
Korth, David; LeBlanc, Troy; Mishkin, Andrew; Lee, Young
2006-01-01
For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.
Study of Travelling Interplanetary Phenomena Report
NASA Astrophysics Data System (ADS)
Dryer, Murray
1987-09-01
Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.
NASA Astrophysics Data System (ADS)
Avakyan, S. V.; Gaponov, V. A.; Nicol'skii, G. A.; Solov'ev, A. A.
2017-06-01
During interplanetary flight, after large solar flares, astronauts are subject to the impact of relativistic solar protons. These particles produce an especially strong effect during extravehicular activity or landing on Mars (in the future). The relativistic protons reach the orbits of the Earth and Mars with a delay of several hours relative to solar X-rays and UV radiation. In this paper, we discuss a new opportunity to predict the most dangerous events caused by Solar Cosmic Rays with protons of maximum (relativistic) energy, known in the of solar-terrestrial physics asGround Level Enhancements or Ground Level Events (GLEs). This new capability is based on a close relationship between the dangerous events and decrease ofTotal Solar Irradiance (TSI)which precedes these events. This important relationship is revealed for the first time.
Interplanetary dust - Trace element analysis of individual particles by neutron activation
NASA Technical Reports Server (NTRS)
Ganapathy, R.; Brownlee, D. E.
1979-01-01
Although micrometeorites of cometary origin are thought to be the dominant component of interplanetary dust, it has never been possible to positively identify such micrometer-sized particles. Two such particles have been identified as definitely micrometeorites since their abundances of volatile and nonvolatile trace elements closely match those of primitive solar system material.
Autonomous interplanetary constellation design
NASA Astrophysics Data System (ADS)
Chow, Cornelius Channing, II
According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design methodology to the restricted Earth-Moon system, reveals optimal pairwise configurations for various L1, L2, and L5 (halo, axial, and vertical) periodic orbit families. Navigation accuracies, ranging from O (10+/-1) meters in position space, are obtained for the optimal Earth-Moon constellations, given measurement noise on the order of 1 meter.
Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft
NASA Astrophysics Data System (ADS)
Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy
2018-01-01
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.
NASA Astrophysics Data System (ADS)
Chashei, I. V.; Tyul'bashev, S. A.; Shishov, V. I.; Subaev, I. A.
2018-05-01
Results of monitoring of interplanetary scintillations with the Large Phased Array of the Pushchino Radio AstronomyObservatory at 111 MHz during a period of flare activity of the Sun in the first ten days of September 2017 are presented. Enhancements of scintillations associated with interplanetary coronal mass ejections propagating after limb flares have been recorded. The propagation velocities are estimated to be about 2000 km/s for an ejection on September 7 and about 1000 km/s for an ejection on September 6. It is shown that, during the propagation from the Sun, the lateral part of the ejections decelerates faster than its leading part. Night-time enhancements of second-timescale scintillations during periods of high geomagnetic activity have an ionospheric origin.
Mars Exploration Rover Terminal Descent Mission Modeling and Simulation
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.
2004-01-01
Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.
Photonics on the Mission to Mars
NASA Technical Reports Server (NTRS)
Watson, Michael D.
2013-01-01
Human missions to Mars present some unique challenges for photonics devices. These devices will have exposure to many different space environments. During assembly they will be exposed to the Earth orbiting environment. Upon departure they will need to function through the Earth's Van Allen Radiation Belt. While the general interplanetary environment is less challenging than the radiation belt, they will operate in this environment for 18 months, subject to sudden saturation from solar flares. These components must continue to function properly through these saturation events presenting quite a challenge to photonic components, both optical and electronic. At Mars, the orbital environment is more benign than the Earth's. Components used as part of the landing vehicles must also deal with the pervasive dust environment for 3 - 6 months. These assembly and mission execution environments provide every form of space environmental challenges to photonic components. This paper will briefly discuss each environment and the expectations on the components for successful operation over the life of the mission.
NASA Astrophysics Data System (ADS)
Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.
2010-05-01
Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target, positions of the source in the Solar system and Solar activity index were retrieved from our measurements and are reported. This study is focused on the technique of the measurements and data analysis, leaving the physical interpretation of the measurement results to the upcoming studies when more observational data is collected. Our measurements of the phase scintillations from the sources within the Solar system are complementary to the classical measurements of the power level scintillations of signals from the natural radio sources. The results presented in this paper are promising and observations will continue during 2010.
Cancer Risk Assessment for Space Radiation
NASA Technical Reports Server (NTRS)
Richmond, Robert C.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Predicting the occurrence of human cancer following exposure to any agent causing genetic damage is a difficult task. This is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within any given clinically normal individual. The radiation health research priorities for enabling long-duration human exploration of space were established in the 1996 NRC Report entitled "Radiation Hazards to Crews of Interplanetary Missions: Biological Issues and Research Strategies". This report emphasized that a 15-fold uncertainty in predicting radiation-induced cancer incidence must be reduced before NASA can commit humans to extended interplanetary missions. That report concluded that the great majority of this uncertainty is biologically based, while a minority is physically based due to uncertainties in radiation dosimetry and radiation transport codes. Since that report, the biologically based uncertainty has remained large, and the relatively small uncertainty associated with radiation dosimetry has increased due to the considerations raised by concepts of microdosimetry. In a practical sense, however, the additional uncertainties introduced by microdosimetry are encouraging since they are in a direction of lowered effective dose absorbed through infrequent interactions of any given cell with the high energy particle component of space radiation. The biological uncertainty in predicting cancer risk for space radiation derives from two primary facts. 1) One animal tumor study has been reported that includes a relevant spectrum of particle radiation energies, and that is the Harderian gland model in mice. Fact #1: Extension of cancer risk from animal models, and especially from a single study in an animal model, to humans is inherently uncertain. 2) One human database is predominantly used for assessing cancer risk caused by space radiation, and that is the Japanese atomic bomb survivors. Fact #2: The atomic-bomb-survivor database, itself a remarkable achievement, contains uncertainties. These include the actual exposure to each individual, the radiation quality of that exposure, and the fact that the exposure was to acute doses of predominantly low-LET radiation, not to chronic exposures of high-LET radiation expected on long-duration interplanetary manned missions.
Implementing Badhwar-O'Neill Galactic Cosmic Ray Model for the Analysis of Space Radiation Exposure
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; O'Neill, Patrick M.; Slaba, Tony C.
2014-01-01
For the analysis of radiation risks to astronauts and planning exploratory space missions, accurate energy spectrum of galactic cosmic radiation (GCR) is necessary. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. A model of the Badhwar-O'Neill 2011 (BO11) GCR environment, which is represented by GCR deceleration potential theta, has been derived by utilizing all of the GCR measurements from balloons, satellites, and the newer NASA Advanced Composition Explorer (ACE). In the BO11 model, the solar modulation level is derived from the mean international sunspot numbers with time-delay, which has been calibrated with actual flight instrument measurements to produce better GCR flux data fit during solar minima. GCR fluxes provided by the BO11 model were compared with various spacecraft measurements at 1 AU, and further comparisons were made for the tissue equivalent proportional counters measurements at low Earth orbits using the high-charge and energy transport (HZETRN) code and various GCR models. For the comparison of the absorbed dose and dose equivalent calculations with the measurements by Radiation Assessment Detector (RAD) at Gale crater on Mars, the intensities and energies of GCR entering the heliosphere were calculated by using the BO11 model, which accounts for time-dependent attenuation of the local interstellar spectrum of each element. The BO11 model, which has emphasized for the last 24 solar minima, showed in relatively good agreement with the RAD data for the first 200 sols, but it was resulted in to be less well during near the solar maximum of solar cycle 24 due to subtleties in the changing heliospheric conditions. By performing the error analysis of the BO11 model and the optimization in reducing overall uncertainty, the resultant BO13 model corrects the fit at solar maxima as well as being accurate at solar minima. The BO13 model is implemented to the NASA Space Cancer Risk model for the assessment of radiation risks. Overall cumulative probability distribution of solar modulation parameters represents the percentile rank of the average interplanetary GCR environment, and the probabilistic radiation risks can be assessed for various levels of GCR environment to support mission design and operational planning for future manned space exploration missions.
Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event
NASA Astrophysics Data System (ADS)
Manchester, W. B., IV; van der Holst, B.; Lavraud, B.
2014-06-01
Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.
Small Bodies: Near and Far (SBNAF)
NASA Astrophysics Data System (ADS)
Duffard, Rene; Mueller, Thomas G.; Marciniak, Anna; Santana-Ros, Toni; Ortiz, Jose-Luis; Santos-Sanz, Pablo; Estela, Fernandez-Valenzuela; Kiss, Csaba; Erika, Verebelyi; Bartczak, Przemyslaw; Magda, Butkiewicz-Bak; Dudziński, Grzegorz; Robert, Szakáts; Farkas Aniko, Takácsné
2016-10-01
We conduct an EU Horizon2020-funded benchmark study (2016-2019) that addresses critical points in reconstructing physical and thermal properties of near-Earth, main-belt, and trans-Neptunian objects. The combination of the visual and thermal data from the ground andfrom astrophysics missions (like Herschel, Spitzer and Akari) is key to improving the scientific understanding of these objects. The development of new tools will be crucial for the interpretation of much larger data sets from WISE, Gaia, JWST, or NEOShield-2, but also for the operations and scientific exploitation of the Hayabusa-2 mission. Our approach is to combine different methods and techniques to get full information on selected bodies: lightcurve inversion, stellar occultations, thermo-physical modeling, radiometric methods, radar ranging and adaptive optics imaging. The applications to objects with ground-truth information from interplanetary missions Hayabusa, NEAR-Shoemaker, Rosetta, and DAWN allows us to advance the techniques beyond the current state-of-the-art and to assess the limitations of each method.The SBNAF project will derive size, spin and shape, thermal inertia, surface roughness, and in some cases even internal structure and composition, out to the most distant objects in the Solar System. Another important aim is to build accurate thermo-physical asteroid modelsto establish new primary and secondary celestial calibrators for ALMA, SOFIA, APEX, and IRAM, as well as to provide a link to the high-quality calibration standards of Herschel and Planck.The target list comprises recent interplanetary mission targets, two samples of main-beltobjects, representatives of the Trojan and Centaur populations, and all known dwarf planets (and candidates) beyond Neptune. Our team combines world- leading expertise in different scientific areas in a new European partnership with a high synergy potential in the field ofsmall body and dwarf planet characterization, related to astrophysics, Earth, and planetary science. This research project has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378.
An Experimental Study on the Deployment Behavior of Membrane Structure under Spin Motion
NASA Astrophysics Data System (ADS)
Murakami, T.
load fuel, so to speak, is an ideal propellant system. As a large film is deployed in the space, solar radiation presses it. However, force of solar radiation is tiny, and so it is necessary for it to have a large square in order to use for propulsive force. As larger it becomes, bigger the weigh is. For realizing good efficient Solar Sail it is indispensable to develop a material. sail spacecraft mission realistic. However, to install a solar sail in the real mission, it is found that there are a lot of problems to be solved. Among them is a technology of deployment. attitude stability by rotating a film constantly. It is true that there are some difficulties to change an attitude, still in general, interplanetary missions does not require frequent attitude change. So the solar sail can be realistic if the mission is interplanetary. velocity, the estimation of a necessary deployment force, and the influence of outer force acting to the film. Moreover, it is necessary to consider a shape after deployment because of using it as a propellant system. That is to say, as larger difference from an ideal circular shape is, lower the efficiency as a propellant system is. numerical simulation, but also micro-gravity experiment. In numerical simulation membrane should be modeled carefully, because a dynamics of a film deployment is transitional and includes a large transformation. In this report a simple model which consists of many rigid boards is dealt with. A film is approximated to an aggregate of tiny rigid boards and the shape is calculated by solving additional force of each board. For showing a validity of this modeling, micro-gravity experiment is necessary to be conducted. Because there is a limitation of space and an experiment is conducted by using a small scaling model, similar parameters should be selected carefully.
Characteristic of the radiation field in low Earth orbit and in deep space.
Reitz, Guenther
2008-01-01
The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth orbits and in interplanetary missions.
Rendezvous missions to temporarily captured near Earth asteroids
NASA Astrophysics Data System (ADS)
Brelsford, S.; Chyba, M.; Haberkorn, T.; Patterson, G.
2016-04-01
Missions to rendezvous with or capture an asteroid present significant interest both from a geophysical and safety point of view. They are key to the understanding of our solar system and are stepping stones for interplanetary human flight. In this paper, we focus on a rendezvous mission with 2006 RH120, an asteroid classified as a Temporarily Captured Orbiter (TCO). TCOs form a new population of near Earth objects presenting many advantages toward that goal. Prior to the mission, we consider the spacecraft hibernating on a Halo orbit around the Earth-Moon's L2 libration point. The objective is to design a transfer for the spacecraft from the parking orbit to rendezvous with 2006 RH120 while minimizing the fuel consumption. Our transfers use indirect methods, based on the Pontryagin Maximum Principle, combined with continuation techniques and a direct method to address the sensitivity of the initialization. We demonstrate that a rendezvous mission with 2006 RH120 can be accomplished with low delta-v. This exploratory work can be seen as a first step to identify good candidates for a rendezvous on a given TCO trajectory.
Stardust Entry: Landing and Population Hazards in Mission Planning and Operations
NASA Technical Reports Server (NTRS)
Desai, P.; Wawrzyniak, G.
2006-01-01
The 385 kg Stardust mission was launched on Feb 7, 1999 on a mission to collect samples from the tail of comet Wild 2 and from interplanetary space. Stardust returned to Earth in the early morning of January 15, 2006. The sample return capsule landed in the Utah Test and Training Range (UTTR) southwest of Salt Lake City. Because Stardust was landing on Earth, hazard analysis was required by the National Aeronautics and Space Administration, UTTR, and the Stardust Project to ensure the safe return of the landing capsule along with the safety of people, ground assets, and aircraft. This paper focuses on the requirements affecting safe return of the capsule and safety of people on the ground by investigating parameters such as probability of impacting on UTTR, casualty expectation, and probability of casualty. This paper introduces the methods for the calculation of these requirements and shows how they affected mission planning, site selection, and mission operations. By analyzing these requirements before and during entry it allowed for the selection of a robust landing point that met all of the requirements during the actual landing event.
The Single Habitat Module Concept a Streamlined Way to Explore
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2012-01-01
Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technologies and capabilities that NASA was directed to pursue, the Single Habitathabitat module (SHMSHM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SHM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SHM concept, and the advantages it provides to accomplish exploration objectives.
The Single Crew Module Concept a Streamlined Way to Explore
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2012-01-01
Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, and the advantages it provides to accomplish exploration objectives.
An overview of tested and analyzed NTP concepts
NASA Technical Reports Server (NTRS)
Walton, James T.
1991-01-01
If we buy into the goals of the Space Exploration Initiative (SEI) and accept that they are worthy of the hefty investment of our tax dollars, then we must begin to evaluate the technologies which enable their attainment. The main driving technology is the propulsion systems; for interplanetary missions, the safest and most affordable is a Nuclear Thermal Propulsion (NTP) system. An overview is presented of the NTP systems which received detailed conceptual design and, for several, testing.
Solar Wind Plasma Flows and Space Weather Aspects Recent Solar Cycle
NASA Astrophysics Data System (ADS)
Kaushik, Sonia; Kaushik, Subhash Chandra
2016-07-01
Solar transients are responsible for initiating short - term and long - term variations in earth's magnetosphere. These variations are termed as geomagnetic disturbances, and driven by the interaction of solar wind features with the geo-magnetosphere. The strength of this modulation process depends upon the magnitude and orientation of the Interplanetary Magnetic Field and solar wind parameters. These interplanetary transients are large scale structures containing plasma and magnetic field expelled from the transient active regions of solar atmosphere. As they come to interplanetary medium the interplanetary magnetic field drape around them. This field line draping was thought as possible cause of the characteristic eastward deflection and giving rise to geomagnetic activities as well as a prime factor in producing the modulation effects in the near Earth environment. The Solar cycle 23 has exhibited the unique extended minima and peculiar effects in the geomagnetosphere. Selecting such transients, occurred during this interval, an attempt has been made to determine quantitative relationships of these transients with solar/ interplanetary and Geophysical Parameters. In this work we used hourly values of IMF data obtained from the NSSD Center. The analysis mainly based on looking into the effects of these transients on earth's magnetic field. The high-resolution data IMF Bz and solar wind data obtained from WDC-A, through its omniweb, available during the selected period. Dst and Ap obtained from WDC-Kyoto are taken as indicator of geomagnetic activities. It is found that Dst index, solar wind velocity, proton temperature and the Bz component of magnetic field have higher values and increase just before the occurrence of these events. Larger and varying magnetic field mainly responsible for producing the short-term changes in geomagnetic intensity are observed during these events associated with coronal holes.
Fusion Propulsion Z-Pinch Engine Concept
NASA Technical Reports Server (NTRS)
Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.;
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.
Cancer Risk Assessment for Space Radiation
NASA Technical Reports Server (NTRS)
Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)
2001-01-01
Predicting the occurrence of human cancer following exposure to any agent causing genetic damage is a difficult task. This is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within any given clinically normal individual. The radiation health research priorities for enabling long-duration human exploration of space were established in the 1996 NRC Report entitled 'Radiation Hazards to Crews of Interplanetary Missions: Biological Issues and Research Strategies'. This report emphasized that a 15-fold uncertainty in predicting radiation-induced cancer incidence must be reduced before NASA can commit humans to extended interplanetary missions. That report concluded that the great majority of this uncertainty is biologically based, while a minority is physically based due to uncertainties in radiation dosimetry and radiation transport codes. Since that report, the biologically based uncertainty has remained large, and the relatively small uncertainty associated with radiation dosimetry has increased due to the considerations raised by concepts of microdosimetry. In a practical sense, however, the additional uncertainties introduced by microdosimetry are encouraging since they are in a direction of lowered effective dose absorbed through infrequent interactions of any given cell with the high energy particle component of space radiation. Additional information is contained in the original extended abstract.
Field-aligned current response to solar indices
NASA Astrophysics Data System (ADS)
Edwards, Thom R.; Weimer, D. R.; Tobiska, W. K.; Olsen, Nils
2017-05-01
Magnetometer data from three satellite missions have been used to analyze and identify the effects of varying solar radiation on the magnitudes and locations of field-aligned currents in the Earth's upper atmosphere. Data from the CHAMP, Ørsted, and Swarm satellite missions have been brought together to provide a database spanning a 15 year period. The extensive time frame has been augmented by data from the ACE satellite, as well as a number of indices of solar radiation. This data set has been sorted by a number of solar wind, interplanetary magnetic field, and solar radiation indices to provide measurements for the field-aligned current structures in both hemispheres for arbitrary seasonal tilts. In addition, routines have been developed to extract the total current for different regions of the current structures, including regions 0, 1, and 2. Results from this study have been used to evaluate the effects of variations in four different solar indices on the total current in different regions of the polar cap. While the solar indices do not have major influence on the total current of the polar cap when compared to solar wind and interplanetary magnetic field parameters, it does appear that there is a nonlinear response to increasing F10.7, M10.7, and S10.7 solar indices. Surprisingly, there appears to be a very linear response as Y10.7 solar index increases.
NASA Astrophysics Data System (ADS)
Parvathi, S. P.; Ramanan, R. V.
2018-06-01
An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.
Galileo Press Conference from JPL. Parts 1 and 2
NASA Technical Reports Server (NTRS)
1992-01-01
This two-tape Jet Propulsion Laboratory (JPL) video production presents a Dec. 8, 1992 press conference held at JPL to discuss the final Galileo spacecraft encounter with Earth before beginning its journey to Jupiter. The main theme of the conference was centered on the significance of the 2nd and final Earth/Moon flyby as being the spacecraft's last planetary encounter in the solar system before reaching Jupiter, as well as final flight preparations prior to its final journey. Each person of the five member panel was introduced by Robert MacMillan (JPL Public Information Mgr.) before giving brief presentations including slides and viewgraphs covering their area of expertise regarding Galileo's current status and future plans. After the presentations, the media was given an opportunity to ask questions of the panel regarding the mission. Mr. Wesley Huntress (Dir. of Solar System Exploration (NASA)), William J. ONeill (Galileo Project Manager), Neal E. Ausman, Jr. (Galileo Mission Director), Dr. Torrence V. Johnson (Galileo Project Scientist) and Dr. Ronald Greeley (Member, Imaging Team, Colorado St. Univ.) made up the panel and discussed topics including: Galileo's interplanetary trajectory; project status and performance review; instrument calibration activities; mission timelines; lunar observation and imaging; and general lunar science. Also included in the last three minutes of the video are simulations and images of the 2nd Galileo/Moon encounter.
NASA Technical Reports Server (NTRS)
Kumar, S.; Broadfoot, A. L.
1979-01-01
A detailed analysis is conducted which shows that signatures in the interplanetary Lyman-alpha emissions observed in three different data sets from Mariner 10 (corresponding to different locations of the spacecraft) provide firm evidence that the intensity departures are correlated with a decrease in solar wind flux with increasing latitude. It is suggested that observations of the interplanetary emission can be used to monitor average solar wind activity at high latitudes. The asymmetry in the solar radiation field as a source of observed departures in L-alpha data is considered and attention is given to the interstellar hydrogen and helium density.
A study of unmanned mission opportunities to comets and asteroids
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.; Bjorkman, W.
1974-01-01
Several unmanned multiple-target mission opportunities to comets and asteroids were studied. The targets investigated include Grigg-Skjellerup, Giacobini-Zinner, Tuttle-Giacobini-Kresak, Borrelly, Halley, Schaumasse, Geographos, Eros, Icarus, and Toro, and the trajectories consist of purely ballistic flight, except that powered swingbys and deep space burns are employed when necessary. Optimum solar electric rendezvous trajectories to the comets Giacobini-Zinner/85, Borrelly/87, and Temple (2)/83 and /88 employing the 8.67 kw Sert III spacecraft modified for interplanetary flight were also investigated. The problem of optimizing electric propulsion heliocentric trajectories, including the effects of geocentric launch asymptote declination on launch vehicle performance capability, was formulated, and a solution developed using variational calculus techniques. Improvements were made to the HILTOP trajectory optimization computer program. An error analysis of high-thrust maneuvers involving spin-stabilized spacecraft was developed and applied to a synchronous meteorological satellite mission.
Telecommunications Relay Support of the Mars Phoenix Lander Mission
NASA Technical Reports Server (NTRS)
Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.;
2010-01-01
The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.
Video guidance, landing, and imaging systems
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Rice, R. B.; Moog, R. D.
1975-01-01
The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions.
Space propulsion and power beaming using millimeter systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benford, J.; Dickinson, R.
1995-11-01
Past schemes for using beamed microwave power for space propulsion and providing power to space platforms have used microwaves below 10 GHz. Recent expansions of the high power microwave technology domain offer fundamental reassessment of the following missions: (1) location of orbital debris, (2) supplying power to loitering high-altitude airplanes, (3) satellite battery recharging, (4) imaging of asteroids, (5) orbit raising and transfer, (6) interplanetary probe launch to the outer planets and comets, and ultimately (7) launch into Earth orbit. This group of applications may be done by a ground-based system. The system would start small, being built for themore » near Earth missions, and be enlarged incrementally as the technology matures and confidence develops. Of particular interest are sources in the millimeter range where there are low loss atmospheric windows and MJ pulses are available in quasi-CW operation. A development scenario for these missions using millimeter wave technology is described.« less
Scientific results from the Pioneer Saturn encounter - Summary
NASA Technical Reports Server (NTRS)
Opp, A. G.
1980-01-01
The scientific results of the Pioneer Saturn encounter with Saturn are summarized. The Pioneer mission was designed to image the planet, its satellites and rings, and measure its particulate environment and the magnetic field and photon and charged particle radiation by means of 11 operational scientific instruments and its 2.293-GHz telemetry carrier signal. Principle results of the mission include the discovery of an additional ring and a previously unidentified satellite, the further characterization of the physical properties of Saturn and its magnetic field, and the description of the planetary magnetosphere. The successful completion of the mission demonstrated the ability of spacecraft such as Voyager 1 and 2 to survive the particle environments of Saturn's rings and trapped radiation environments, and Pioneer Saturn is expected to continue transmitting information on the interplanetary medium and the solar wind interaction with the interstellar medium until the mid-1980's.
Use of magnetic sails for advanced exploration missions
NASA Technical Reports Server (NTRS)
Andrews, Dana G.; Zubrin, Robert M.
1990-01-01
The magnetic sail, or magsail, is a field effect device which interacts with the ambient solar wind or interstellar medium over a considerable volume of space to generate drag and lift forces. Two theories describing the method of thrust generation are analyzed and data results are presented. The techniques for maintaining superconductor temperatures in interplanetary space are analyzed and low risk options presented. Comparisons are presented showing mission performance differences between currently proposed spacecraft using chemical and electric propulsion systems, and a Magsail propelled spacecraft capable of generating an average thrust of 250 Newtons at a radius of one A.U. The magsail also provides unique capabilities for interstellar missions, in that at relativistic speeds the magnetic field would ionize and deflect the interstellar medium producing a large drag force. This would make it an ideal brake for decelerating a spacecraft from relativistic speeds and then maneuvering within the target star system.
The effect of spaceflight and microgravity on the human brain.
Van Ombergen, Angelique; Demertzi, Athena; Tomilovskaya, Elena; Jeurissen, Ben; Sijbers, Jan; Kozlovskaya, Inessa B; Parizel, Paul M; Van de Heyning, Paul H; Sunaert, Stefan; Laureys, Steven; Wuyts, Floris L
2017-10-01
Microgravity, confinement, isolation, and immobilization are just some of the features astronauts have to cope with during space missions. Consequently, long-duration space travel can have detrimental effects on human physiology. Although research has focused on the cardiovascular and musculoskeletal system in particular, the exact impact of spaceflight on the human central nervous system remains to be determined. Previous studies have reported psychological problems, cephalic fluid shifts, neurovestibular problems, and cognitive alterations, but there is paucity in the knowledge of the underlying neural substrates. Previous space analogue studies and preliminary spaceflight studies have shown an involvement of the cerebellum, cortical sensorimotor, and somatosensory areas and the vestibular pathways. Extending this knowledge is crucial, especially in view of long-duration interplanetary missions (e.g., Mars missions) and space tourism. In addition, the acquired insight could be relevant for vestibular patients, patients with neurodegenerative disorders, as well as the elderly population, coping with multisensory deficit syndromes, immobilization, and inactivity.
Cassini Operational Sun Sensor Risk Management During Proximal Orbit Saturn Ring Plane Crossings
NASA Technical Reports Server (NTRS)
Bates, David M.
2016-01-01
NASA's Cassini Spacecraft, launched on October 15th, 1997 which arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004–08), and has since been approved for a first and second extended mission through 2017. As part of the final extended missions, Cassini will begin an aggressive and exciting campaign of high inclination, low altitude flybys within the inner most rings of Saturn, skimming Saturn’s outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, requires a strategy for managing the Sun Sensor Assembly (SSA) health, the details of which are presented in this paper.
Space Weathering Impact on Solar System Surfaces and Planetary Mission Science
NASA Technical Reports Server (NTRS)
Cooper, John F.
2011-01-01
We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.
Aerocapture Performance Analysis for a Neptune-Triton Exploration Mission
NASA Technical Reports Server (NTRS)
Starr, Brett R.; Westhelle, Carlos H.; Masciarelli, James P.
2004-01-01
A systems analysis has been conducted for a Neptune-Triton Exploration Mission in which aerocapture is used to capture a spacecraft at Neptune. Aerocapture uses aerodynamic drag instead of propulsion to decelerate from the interplanetary approach trajectory to a captured orbit during a single pass through the atmosphere. After capture, propulsion is used to move the spacecraft from the initial captured orbit to the desired science orbit. A preliminary assessment identified that a spacecraft with a lift to drag ratio of 0.8 was required for aerocapture. Performance analyses of the 0.8 L/D vehicle were performed using a high fidelity flight simulation within a Monte Carlo executive to determine mission success statistics. The simulation was the Program to Optimize Simulated Trajectories (POST) modified to include Neptune specific atmospheric and planet models, spacecraft aerodynamic characteristics, and interplanetary trajectory models. To these were added autonomous guidance and pseudo flight controller models. The Monte Carlo analyses incorporated approach trajectory delivery errors, aerodynamic characteristics uncertainties, and atmospheric density variations. Monte Carlo analyses were performed for a reference set of uncertainties and sets of uncertainties modified to produce increased and reduced atmospheric variability. For the reference uncertainties, the 0.8 L/D flatbottom ellipsled vehicle achieves 100% successful capture and has a 99.87 probability of attaining the science orbit with a 360 m/s V budget for apoapsis and periapsis adjustment. Monte Carlo analyses were also performed for a guidance system that modulates both bank angle and angle of attack with the reference set of uncertainties. An alpha and bank modulation guidance system reduces the 99.87 percentile DELTA V 173 m/s (48%) to 187 m/s for the reference set of uncertainties.
Understanding cost growth during operations of planetary missions: An explanation of changes
NASA Astrophysics Data System (ADS)
McNeill, J. F.; Chapman, E. L.; Sklar, M. E.
In the development of project cost estimates for interplanetary missions, considerable focus is generally given to the development of cost estimates for the development of ground, flight, and launch systems, i.e., Phases B, C, and D. Depending on the project team, efforts expended to develop cost estimates for operations (Phase E) may be relatively less rigorous than that devoted to estimates for ground and flight systems development. Furthermore, the project team may be challenged to develop a solid estimate of operations cost in the early stages of mission development, e.g., Concept Study Report or Systems Requirement Review (CSR/SRR), Preliminary Design Review (PDR), as mission specific peculiarities that impact cost may not be well understood. In addition, a methodology generally used to develop Phase E cost is engineering build-up, also known as “ grass roots” . Phase E can include cost and schedule risks that are not anticipated at the time of the major milestone reviews prior to launch. If not incorporated into the engineering build-up cost method for Phase E, this may translate into an estimation of the complexity of operations and overall cost estimates that are not mature and at worse, insufficient. As a result, projects may find themselves with thin reserves during cruise and on-orbit operations or project overruns prior to the end of mission. This paper examines a set of interplanetary missions in an effort to better understand the reasons for cost and staffing growth in Phase E. The method used in the study is discussed as well as the major findings summarized as the Phase E Explanation of Change (EoC). Research for the study entailed the review of project materials, including Estimates at Completion (EAC) for Phase E and staffing profiles, major project milestone reviews, e.g., CSR, PDR, Critical Design Review (CDR), the interviewing of select project and mission management, and review of Phase E replan materials. From this work, a detai- ed picture is constructed of why cost grew during the operations phase, even to the level of specific events in the life of the missions. As a next step, the Phase E EoC results were gleaned and synthesized to produce leading indicators, i.e., what may be identifiable signs of cost and staffing growth that may be present as early as PDR or CDR. Both a qualitative and quantitative approach was used to determine leading indicators. These leading indicators will be reviewed and a practical method for their use will be discussed.
A Robust Method to Integrate End-to-End Mission Architecture Optimization Tools
NASA Technical Reports Server (NTRS)
Lugo, Rafael; Litton, Daniel; Qu, Min; Shidner, Jeremy; Powell, Richard
2016-01-01
End-to-end mission simulations include multiple phases of flight. For example, an end-to-end Mars mission simulation may include launch from Earth, interplanetary transit to Mars and entry, descent and landing. Each phase of flight is optimized to meet specified constraints and often depend on and impact subsequent phases. The design and optimization tools and methodologies used to combine different aspects of end-to-end framework and their impact on mission planning are presented. This work focuses on a robust implementation of a Multidisciplinary Design Analysis and Optimization (MDAO) method that offers the flexibility to quickly adapt to changing mission design requirements. Different simulations tailored to the liftoff, ascent, and atmospheric entry phases of a trajectory are integrated and optimized in the MDAO program Isight, which provides the user a graphical interface to link simulation inputs and outputs. This approach provides many advantages to mission planners, as it is easily adapted to different mission scenarios and can improve the understanding of the integrated system performance within a particular mission configuration. A Mars direct entry mission using the Space Launch System (SLS) is presented as a generic end-to-end case study. For the given launch period, the SLS launch performance is traded for improved orbit geometry alignment, resulting in an optimized a net payload that is comparable to that in the SLS Mission Planner's Guide.
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.
NASA Astrophysics Data System (ADS)
Brekke, P.; Dimitoglou, G.; Drobnes, E.; Fleck, B.; Haugan, S. V.; Sanchez, L.
2003-04-01
The Solar and Heliospheric Observatory (SOHO) provides an unparalleled breadth and depth of information about the Sun: Helioseismology data shed new light on structural and dynamic phenomena in the solar interior; imagers and spectrometers reveal an extremely dynamic solar surface and atmosphere; together with the in situ particle experiments and sky mappers, they expand our knowledge of conditions in the interplanetary space and how it is affected by the Sun. SOHO data are available to scientists and the general public via the mission's website. Numerous products are accessible, from web-friendly real-time images and movies to the mission's online data archive catalog. SOHO has a unique record for active collaboration between its 12 instruments, as well as with other spacecraft and ground-based observatories all over the world. The coordinated observing time (with one or more instruments coordinated) is in fact over 12 hours per day. SOHO is frequently mentioned in the international media, and SOHO movies have become "stock footage" for several news organizations. The latest discoveries are featured on the web pages, and the number of visitors on our web pages continues to grow - we are now serving about 1.75 Terabytes to more than 50,000 users in response to over 7 million requests every month.
A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.
2014-01-01
Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).
Effect of Departure Delays on Manned Mars Mission Selection
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Tartabini, Paul V.
1995-01-01
This study determines the effect on the initial mass in low Earth orbit (IMLEO) of delaying departure from Mars and Earth by 5, 15, and 30 days, once a nominal mission to Mars has been selected. Additionally, the use of a deep-space maneuver (DSM) is considered in order to alleviate the IMLEO penalties. Three different classes of missions are analyzed, using chemical and nuclear thermal propulsion systems in the 2000-2025 time frame: opposition, conjunction, and fast-transfer conjunction. The results indicate that Mars and Earth delays can lead to large IMLEO penalties. Opposition and fast-transfer conjunction-class missions have the highest IMLEO penalties, upwards of 432.4 and 1977.3 metric tons (mt), respectively. Conjunction-class missions, on the other hand, tend to be insensitive to Mars and Earth delays, having IMLEO penalties under 103.5 mt. As expected, nuclear thermal propulsion had significantly lower IMLEO penalties than chemical propulsion. The use of a DSM does not significantly reduce the penalties. The results of this study can enable mission designers to incorporate the influence of off-nominal departure conditions of the interplanetary trajectory in the overall conceptual design of a Mars transfer vehicle.
Ares V: Application to Solar System Scientific Exploration
NASA Technical Reports Server (NTRS)
Elliott, John; Spilker, Thomas; Reh, Kim; Smith, David; Woodcock, Gordon
2008-01-01
The development of the Ares V launch vehicle will provide levels of performance unseen since the days of Apollo. This capability, like the Saturn V before it, is being developed primarily for crewed lunar missions. However, the tremendous jump in performance offered by the Ares V launch system has tremendous potential for the furtherance of robotic solar system exploration missions as well. Preliminary performance assessments indicate that Ares V could deliver 5 times the payload to Mars as compared to the most capable US expendable launch vehicle available today. Beyond Mars, the outer planets offer a number of high-priority investigations with compelling science. Presently, missions to these destinations are only achievable using indirect flights with gravity assist trajectories and, in many cases, suffer from long flight times. An Ares V with an upper stage could capture these missions using direct flights with shorter interplanetary transfer times that would enable extensive in situ investigations and possibly the return of samples to Earth. This paper lays out an estimate of Ares V performance for moderate and high C3 missions, and goes on to discuss a range of revolutionary mission concepts that could be enabled by this significant in-crease in launch capability.
NASA Double Asteroid Redirection Test (Dart) Trajectory Validation and Robustness
NASA Technical Reports Server (NTRS)
Sarli, Bruno V.; Ozimek, Martin T.; Atchison, Justin A.; Englander, Jacob A.; Barbee, Brent W.
2017-01-01
The Double Asteroid Redirection Test (DART) mission will be the first to test the concept of a kinetic impactor. Several studies have been made on asteroid redirection and impact mitigation, however, to this date no mission tested the proposed concepts. An impact study on a representative body allows the measurement of the effects on the target's orbit and physical structure. With this goal, DART's objective is to verify the effectiveness of the kinetic impact concept for planetary defense. The spacecraft uses solar electric propulsion to escape Earth, flyby (138971) 2001 CB21 for impart rehearsal, and impact the secondary body of the (65803) Didymos system. This work focuses on the interplanetary trajectory design part of the mission with the validation of the baseline trajectory, performance comparison to other mission objectives, and assessment of the baseline robustness to missed thrust events. Results show a good performance of the selected trajectory for different mission objectives: latest possible escape date, maximum kinetic energy on impact, shortest possible time of flight, and use of an Earth swing-by. The baseline trajectory was shown to be robust to a missed thrust with 1% of fuel margin being enough to recover the mission for failures of more than 14 days.
The flyby of Rosetta at asteroid Šteins - mission and science operations
NASA Astrophysics Data System (ADS)
Accomazzo, Andrea; Wirth, Kristin R.; Lodiot, Sylvain; Küppers, Michael; Schwehm, Gerhard
2010-07-01
The international Rosetta mission, a cornerstone mission of the european space agency scientific Programme, was launched on 2nd March 2004 on its 10 years journey towards a rendezvous with comet Churyumov-Gerasimenko ( Gardini et al., 1999). During its interplanetary flight towards its target Rosetta crosses the asteroid belt twice with the opportunity to observe at close quarters two asteroids: (2867)-Šteins in 2008 and (21)-Lutetia in 2010. The spacecraft design was such that these opportunities could be fully exploited to deliver valuable data to the scientific community. The mission trajectory was controlled such that Rosetta would fly next to asteroid Šteins on the 5th of September 2008 with a relative speed of 8.6 km/s at a minimum distance of 800 km. Mission operations have been carefully planned to achieve the best possible flyby scenario and scientific outcome. The flyby scenario, the optical navigation campaign, and the planning of the scientific observations had to be adapted by the Mission and the Science Operations Centres to the demanding requirements expressed by the scientific community. The flyby was conducted as planned with a large number of successful observations.
NASA Astrophysics Data System (ADS)
Horneck, G.; Facius, R.; Reichert, M.; Rettberg, P.; Seboldt, W.; Manzey, D.; Comet, B.; Maillet, A.; Preiss, H.; Schauer, L.; Dussap, C. G.; Poughon, L.; Belyavin, A.; Reitz, G.; Baumstark-Khan, C.; Gerzer, R.
2006-01-01
Space exploration programmes, currently under discussion in the US and in Europe, foresee human missions to Mars to happen within the first half of this century. In this context, the European Space Agency (ESA) has conducted a study on the human responses, limits and needs for such exploratory missions, the so-called HUMEX study (ESA SP-1264). Based on a critical assessment of the limiting factors for human health and performance and the definition of the life science and life support requirements performed in the frame of the HUMEX study, the following major critical items have been identified: (i) radiation health risks, mainly occurring during the interplanetary transfer phases and severely augmented in case of an eruption of a solar particle event; (ii) health risks caused by extended periods in microgravity with an unacceptable risk of bone fracture as a consequence of bone demineralisation; (iii) psychological risks as a consequence of long-term isolation and confinement in an environment so far not experienced by humans; (iv) the requirement of bioregenerative life support systems complementary to physico-chemical systems, and of in situ resource utilisation to reach a closure of the life support system to the highest degree possible. Considering these constraints, it has been concluded that substantial research and development activities are required in order to provide the basic information for appropriate integrated risk managements, including efficient countermeasures and tailored life support. Methodological approaches should include research on the ISS, on robotic precursors missions to Mars, in ground-based simulation facilities as well as in analogue natural environments on Earth.
Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept
NASA Technical Reports Server (NTRS)
Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. Magneto-Inertial Fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small fusion reactor/engine assembly (1). The Z-Pinch dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an estimated axial current of approximately 100 MA. Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4) (2). The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this is repeated over short timescales (10(exp -6) sec). This plasma formation is widely used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, as well as in fusion energy research. There is a wealth of literature characterizing Z-Pinch physics and existing models (3-5). In order to be useful in engineering analysis, a simplified Z-Pinch fusion thermodynamic model was developed to determine the quantity of plasma, plasma temperature, rate of expansion, energy production, etc. to calculate the parameters that characterize a propulsion system. The amount of nuclear fuel per pulse, mixture ratio of the D-T and nozzle liner propellant, and assumptions about the efficiency of the engine, enabled the sizing of the propulsion system and resulted in an estimate of the thrust and Isp of a Z-Pinch fusion propulsion system for the concept vehicle. MIF requires a magnetic nozzle to contain and direct the nuclear pulses, as well as a robust structure and radiation shielding. The structure, configuration, and materials of the nozzle must meet many severe requirements. The configuration would focus, in a conical manner, the Deuterium-Tritium (D-T) fuel and Lithium-6/7 liner fluid to meet at a specific point that acts as a cathode so the Li-6 can serve as a current return path to complete the circuit. In addition to serving as a current return path, the Li liner also serves as a radiation shield. The advantage to this configuration is the reaction between neutrons and Li-6 results in the production of additional Tritium, thus adding further fuel to the fusion reaction and boosting the energy output. To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it. The propulsion system significantly impacts the design of the electrical, thermal control, avionics, radiation shielding, and structural subsystems of a vehicle. The design reference mission is the transport of crew and cargo to Mars and back, with the intention that the vehicle be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study called Human Outer Planet Exploration (HOPE), which employed a Magnetized Target Fusion (MTF) propulsion concept. Analysis of this propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. This along with a greater than 30% predicted payload mass fraction certainly warrants further development of enabling technologies. The vehicle is designed for multiple interplanetary missions and conceivably may be suited for an automated one-way interstellar voyage.
Representing operations procedures using temporal dependency networks
NASA Technical Reports Server (NTRS)
Fayyad, Kristina E.; Cooper, Lynne P.
1993-01-01
DSN Link Monitor & Control (LMC) operations consist primarily of executing procedures to configure, calibrate, test, and operate a communications link between an interplanetary spacecraft and its mission control center. Currently the LMC operators are responsible for integrating procedures into an end-to-end series of steps. The research presented in this paper is investigating new ways of specifying operations procedures that incorporate the insight of operations, engineering, and science personnel to improve mission operations. The paper describes the rationale for using Temporal Dependency Networks (TDN's) to represent the procedures, a description of how the data is acquired, and the knowledge engineering effort required to represent operations procedures. Results of operational tests of this concept, as implemented in the LMC Operator Assistant Prototype (LMCOA), are also presented.
(abstract) Application of Non-coherent Data Types for Deep Space Navigation
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam
1995-01-01
Several options are being examined to reduce the costs of spacecraft and deep space missions. One such option is to fly spacecraft in a non-coherent mode, that is, the spacecraft does not carry a transponder and cannot coherently return a Doppler signal. Historically, such one-way data has not been used as the sole data type due to the instability of the onboard oscillator, the use of S-band frequencies, and the corresponding larger error sources which could not be modeled. However, with the advent of high-speed work stations and more sophisticated modeling ability, the possibility of using one-way data is being re-examined. This paper addresses the navigation performance of various one-way data types for use in interplanetary missions.
Wear Testing of the HERMeS Thruster
NASA Technical Reports Server (NTRS)
Williams, George J.; Gilland, James H.; Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Ahern, Drew W.; Yim, John; Herman, Daniel A.; Hofer, Richard R.; Sekerak, Michael
2016-01-01
The Hall-Effect Rocket with Magnetic Shielding (HERMeS) thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) as primary propulsion for the Asteroid Rendezvous and Redirect Mission (ARRM). This thruster is advancing the state of the art of hall-effect thrusters (HETs) and is intended to serve as a precursor to higher power systems for human interplanetary exploration. The HERMeS Thruster Demonstration Unit One (TDU-1) has entered a 2000-hour wear test campaign at NASA GRC and has completed the first three of four test segments totaling 728 hours of operation. This is the first test of a NASA-designed magnetically shielded thruster to extend beyond 300 hours of continuous operation.
The Space Radiation Environment
NASA Technical Reports Server (NTRS)
Bourdarie, Sebastien; Xapsos, Michael A.
2008-01-01
The effects of the space radiation environment on spacecraft systems and instruments are significant design considerations for space missions. Astronaut exposure is a serious concern for manned missions. In order to meet these challenges and have reliable, cost-effective designs, the radiation environment must be understood and accurately modeled. The nature of the environment varies greatly between low earth orbits, higher earth orbits and interplanetary space. There are both short-term and long-term variations with the phase of the solar cycle. In this paper we concentrate mainly on charged particle radiations. Descriptions of the radiation belts and particles of solar and cosmic origin are reviewed. An overview of the traditional models is presented accompanied by their application areas and limitations. This is followed by discussion of some recent model developments.
Radiation hazard during a manned mission to Mars.
Jäkel, Oliver
2004-01-01
The radiation hazard of interplanetary flights is currently one of the major obstacles to manned missions to Mars. Highly energetic, heavy-charged particles from galactic cosmic radiation can not be sufficiently shielded in space vehicles. The long-term radiation effects to humans of these particles are largely unknown. In addition, unpredictable storms of solar particles may expose the crew to doses that lead to acute radiation effects. A manned flight to Mars currently seems to be a high-risk adventure. This article provides an overview on the radiation sources and risks for a crew on a manned flight to Mars, as currently estimated by scientists of the US National Administration for Space and Aeronautics (NASA) and the Space Studies Board (SSB) of the US National Research Council.
Retrograde and Direct Powered Aero-Gravity-Assist Trajectories around Mars
NASA Astrophysics Data System (ADS)
Murcia, J. O.; Prado, A. F. B. A.; Gomes, V. M.
2018-04-01
A Gravity-Assist maneuver is used to reduce fuel consumption and/or trip times in interplanetary missions. It is based in a close approach of a spacecraft to a celestial body. Missions like Voyager and Ulysses used this concept. The present paper performs a study of a maneuver that combines three effects: the gravity of the planet, the application of an impulsive maneuver when the spacecraft is passing by the periapsis and the effects of the atmosphere of the planet. Direct and retrograde trajectories are considered, with particular attention to the differences due to the higher relative velocity between the spacecraft and the atmosphere, which increases the effects of the atmosphere. The planet Mars is used for the numerical examples.
Space Radiation Effects on Inflatable Habitat Materials Project
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Nichols, Charles
2015-01-01
The Space Radiation Effects on Inflatable Habitat Materials project provides much needed risk reduction data to assess space radiation damage of existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage will be quantified for materials used in inflatable structures (1st priority), as well as for habitable composite structures and space suits materials (2nd priority). The data acquired will have relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes. This project also will help to determine the service lifetimes for habitable inflatable, composite, and space suit materials.
Extension of the IAU Metric to BE Considered for Inner Solar System Laser Experiments
NASA Astrophysics Data System (ADS)
Minazzoli, Olivier; Chauvineau, Bertrand
An increasing number of forthcoming spatial experiments will require a description of the solar system gravitational field including all the second order terms in the PN (Post-Newtonian) metric. This will be the case for missions planned or in project, like TIPO, ASTROD, LATOR. However, the solar system metric recommended by the IAU resolution B1.3, during its 24th general assembly in 2000, allows light propagation calculations until order 1.5 only. Hence, it is necessary to generalize this framework to include relevant contributing terms, which indeed are required for a great number of near-future interplanetary space missions. The present paper proposes such an extension for both General Relativity and Scalar-Tensor theories.
Radiation Risks From A Weak Field in the Coming Years
NASA Astrophysics Data System (ADS)
Rahmanifard, F.; Schwadron, N.; Smith, C. W.; Joyce, C. J.; Townsend, L.
2017-12-01
Recent solar conditions, including a prolonged solar minimum (2005-2009) and the recent small solar maximum, indicate that we are entering an era of lower solar activity than observed at other times during the space age- possibly similar to the past solar grand minima. During such periods of extremely low activity, the fluxes of galactic cosmic rays (GCRs) increase dramatically and limit the allowable days for human space missions. We use data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) to examine the correlation between the heliospheric magnetic field at 1AU and the modulation potential of the GCRs. We apply past grand solar minima conditions, including the Maunder minimum (1645-1715) and the Dalton minimum (1790-1830), to predict the modulation potential and the dose rates of the GCRs throughout the next solar cycle. The heliospheric magnetic field can drop to 4.21 (3.72) nT, leading to a modulation potential of 448.51 (235.96) MV and dose rates as high as 11.72 (16.68) cGy/yr for the case of conditions similar to the Dalton minimum (Maunder minimum). We use these results to predict the most conservative estimations of the time to 3% risk of exposure-induced death (REID) and the allowable mission durations in interplanetary space.
NASA Astrophysics Data System (ADS)
Strong, S. B.; Strikwerda, T.; Lario, D.; Raouafi, N.; Decker, R.
2010-12-01
The main components of interplanetary dust are created through destruction, erosion, and collision of asteroids and comets (e.g. Mann et al. 2006). Solar radiation forces distribute these interplanetary dust particles throughout the solar system. The percent contribution of these source particulates to the net interplanetary dust distribution can reveal information about solar nebula conditions, within which these objects are formed. In the absence of observational data (e.g. Helios, Pioneer), specifically at distances less than 0.3 AU, the precise dust distributions remain unknown and limited to 1 AU extrapolative models (e.g. Mann et al. 2003). We have developed a model suitable for the investigation of scattered dust and electron irradiance incident on a sensor for distances inward of 1 AU. The model utilizes the Grün et al. (1985) and Mann et al. (2004) dust distribution theory combined with Mie theory and Thomson electron scattering to determine the magnitude of solar irradiance scattered towards an optical sensor as a function of helio-ecliptic latitude and longitude. MESSENGER star tracker observations (launch to 2010) of the ambient celestial background combined with Helios data (Lienert et al. 1982) reveal trends in support of the model predictions. This analysis further emphasizes the need to characterize the inner solar system dust environment in anticipation of near-Solar missions.
Interplanetary Propagation of Coronal Mass Ejections
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat
2011-01-01
Although more than ten thousand coronal mass ejections (CMEs) are produced during each solar cycle at the Sun, only a small fraction hits the Earth. Only a small fraction of the Earth-directed CMEs ultimately arrive at Earth depending on their interaction with the solar wind and other large-scale structures such as coronal holes and CMEs. The interplanetary propagation is essentially controlled by the drag force because the propelling force and the solar gravity are significant only near the Sun. Combined remote-sensing and in situ observations have helped us estimate the influence of the solar wind on the propagation of CMEs. However, these measurements have severe limitations because the remote-sensed and in-situ observations correspond to different portions of the CME. Attempts to overcome this problem are made in two ways: the first is to model the CME and get the space speed of the CME, which can be compared with the in situ speed. The second method is to use stereoscopic observation so that the remote-sensed and in-situ observations make measurements on the Earth-arriving part of CMEs. The Solar Terrestrial Relations Observatory (STEREO) mission observed several such CMEs, which helped understand the interplanetary evolution of these CMEs and to test earlier model results. This paper discusses some of these issues and updates the CME/shock travel time estimates for a number of CMEs.
NASA Astrophysics Data System (ADS)
Hesar, Siamak G.; Parker, Jeffrey S.; Leonard, Jason M.; McGranaghan, Ryan M.; Born, George H.
2015-12-01
We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth-Moon system. Given the proper description of the force field, LiAISON is capable of producing absolute orbit determination solutions using relative satellite-to-satellite tracking observations alone. The lack of direct communication between Earth-based tracking stations and the far side of the Moon provides an ideal opportunity for implementing LiAISON. This paper presents a novel approach to use the LiAISON architecture to perform autonomous navigation of assets on the lunar far side surface. Relative measurements between a spacecraft placed in an EML-2 halo orbit and lunar surface asset(s) are simulated and processed. Comprehensive simulation results show that absolute states of the surface assets are observable with an achieved accuracy of the position estimate on the order of tens of meters.
Observations of disconnection of open coronal magnetic structures
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Phillips, J. L.; Hundhausen, A. J.; Burkepile, J. T.
1991-01-01
The solar maximum mission coronagraph/polarimeter observations are surveyed for evidence of magnetic disconnection of previously open magnetic structures and several sequences of images consistent with this interpretation are identified. Such disconnection occurs when open field lines above helmet streamers reconnect, in contrast to previously suggested disconnections of CMEs into closed plasmoids. In this paper a clear example of open field disconnection is shown in detail. The event, on June 27, 1988, is preceded by compression of a preexisting helmet streamer and the open coronal field around it. The compressed helmet streamer and surrounding open field region detach in a large U-shaped structure which subsequently accelerates outward from the sun. The observed sequence of events is consistent with reconnection across the heliospheric current sheet and the creation of a detached U-shaped magnetic structure. Unlike CMEs, which may open new magnetic flux into interplanetary space, this process could serve to close off previously open flux, perhaps helping to maintain the roughly constant amount of open magnetic flux observed in interplanetary space.
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Astrophysics Data System (ADS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T. W.
2010-12-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the ~2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.
NASA Astrophysics Data System (ADS)
Tsurutani, Bruce T.; Lakhina, Gurbax S.; Sen, Abhijit; Hellinger, Petr; Glassmeier, Karl-Heinz; Mannucci, Anthony J.
2018-04-01
Solar wind turbulence within high-speed streams is reviewed from the point of view of embedded single nonlinear Alfvén wave cycles, discontinuities, magnetic decreases (MDs), and shocks. For comparison and guidance, cometary plasma turbulence is also briefly reviewed. It is demonstrated that cometary nonlinear magnetosonic waves phase-steepen, with a right-hand circular polarized foreshortened front and an elongated, compressive trailing edge. The former part is a form of "wave breaking" and the latter that of "period doubling." Interplanetary nonlinear Alfvén waves, which are arc polarized, have a 180° foreshortened front and with an elongated trailing edge. Alfvén waves have polarizations different from those of cometary magnetosonic waves, indicating that helicity is a durable feature of plasma turbulence. Interplanetary Alfvén waves are noted to be spherical waves, suggesting the possibility of additional local generation. They kinetically dissipate, forming MDs, indicating that the solar wind is partially "compressive" and static. The 2 MeV protons can nonresonantly interact with MDs leading to rapid cross-field ( 5.5% Bohm) diffusion. The possibility of local ( 1 AU) generation of Alfvén waves may make it difficult to forecast High-Intensity, Long-Duration AE Activity and relativistic magnetospheric electrons with great accuracy. The future Solar Orbiter and Solar Probe Plus missions should be able to not only test these ideas but to also extend our knowledge of plasma turbulence evolution.
Operational Experience with Autonomous Star Trackers on ESA Interplanetary Spacecraft
NASA Technical Reports Server (NTRS)
Lauer, Mathias; Jauregui, Libe; Kielbassa, Sabine
2007-01-01
Mars Express (MEX), Rosetta and Venus Express (VEX) are ESA interplanetary spacecrafts (S/C) launched in June 2003, March 2004 and November 2005, respectively. Mars Express was injected into Mars orbit end of 2003 with routine operations starting in spring 2004. Rosetta is since launch on its way to rendezvous comet Churyumov-Gerasimenko in 2014. It has completed several test and commissioning activities and is performing several planetary swingbys (Earth in spring 2005, Mars in spring 2007, Earth in autumn 2007 and again two years later). Venus Express has also started routine operations since the completion of the Venus orbit insertion maneuver sequence beginning of May 2006. All three S/C are three axes stabilized with a similar attitude and orbit control system (AOCS). The attitude is estimated on board using star and rate sensors and controlled using four reaction wheels. A bipropellant reaction control system with 10N thrusters serves for wheel off loadings and attitude control in safe mode. Mars Express and Venus Express have an additional 400N engine for the planetary orbit insertion. Nominal Earth communication is accomplished through a high gain antenna. All three S/C are equipped with a redundant set of autonomous star trackers (STR) which are based on almost the same hardware. The STR software is especially adapted for the respective mission. This paper addresses several topics related to the experience gained with the STR operations on board the three S/C so far.
Shielding Structures for Interplanetary Human Mission
NASA Astrophysics Data System (ADS)
Tracino, Emanuele; Lobascio, Cesare
2012-07-01
Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the radiation shielding power of the interplanetary habitat structures, like the spacecraft shell, minimizing the amount of mass used. From the radiation protection point of view the spacecraft shell is an interesting spacecraft system because it surrounds almost homogeneously all the habitat and it is typically composed by the Micrometeorites and Debris Protection Systems (MDPS), the Multilayer Insulation (MLI) for thermal control purposes, and the primary structure that offers the pressure containment functionality. Nevertheless, the spacecraft internal outfitting is important to evaluate the different shielded areas in the habitat. Using Geant4 Monte Carlo simulations toolkit through GRAS (Geant4 Radiation Analysis for Space) tool, different spacecraft structures will be analyzed for their shielding behavior in terms of fluxes, dose reduction and radiation quality, and for their implementation in a real pressurized module. Effects on astronauts and electronic equipments will be also assessed with respect to the standard aluminum structures.
The Successful Conclusion of the Deep Space 1 Mission: Important Results without a Flashy Title
NASA Astrophysics Data System (ADS)
Rayman, Marc D.
2002-01-01
Conceived in 1995, Deep Space 1 (DS1) was the first mission of NASA s New Millennium program. Its purpose was to test high-risk, advanced technologies important for space and Earth science missions. DS1 s payload included ion propulsion, solar concentrator arrays, autonomous navigation and other autonomous systems, miniaturized telecommunications and microelectronic systems, and two highly integrated, compact science instruments. DS1 was launched in October 1998, only 39 months after the initial concept study began, and during its 11-month primary mission it exceeded its requirements. All technologies were rigorously exercised and characterized, thus reducing the cost and risk of subsequent science missions that could consider taking advantage of the capabilities offered by these new systems. Following its primary mission, DS1 embarked on an extended mission devoted to comet science, although it had not been designed for a comet encounter. Less than two months after the beginning of the extended mission, the spacecraft suffered a critical failure with the loss of its star tracker, its only source of 3-axis attitude knowledge. Although this was initially considered to be a catastrophic failure, the project completed an ambitious two-phase, seven-month recovery that included the development of extensive new software and new operations procedures. In September 2001, the spacecraft flawlessly completed a high-risk encounter with comet 19P/Borrelly. Using the two instruments included on the flight for technology tests as well as reprogrammed sensors originally intended for monitoring the effects of the ion propulsion system on the space environment, DS1 returned a rich harvest of data, with panchromatic images, infrared spectra, energy and angle distributions of electron and ion fluxes, ion compositions, and magnetic field and plasma wave measurements. These data constitute the most detailed view of a comet and offer surprising and exciting insights. In addition to the direct scientific return, the comet encounter is of engineering value to other missions planning comet encounters. With the successful conclusion of its extended mission, DS1 undertook a hyperextended mission. This phase of its flight was dedicated to final testing of the advanced technologies on board. With the mission at more than three times its planned lifetime, this offered an excellent opportunity to obtain unplanned data on the effects of long-term operation in space. All nine of the hardware technologies were used during the hyperextended mission, with a focus on the ion propulsion system. Following this period of extremely aggressive testing, with no further technology or science objectives, the mission was terminated on December 18, 2001, with the powering off of the spacecraft s transmitter, although the receiver was left on. By the end of its mission, DS1 had returned a wealth of important science data and engineering data for future missions. It did so following the shortest time from pre-phase A through launch of any NASA interplanetary mission in the modern era and the lowest cost of any NASA interplanetary mission ever conducted (measured in same year dollars, including the launch cost). This paper will describe the encounter with comet Borrelly, the hyperextended mission, and summarize the overall results of the Deep Space 1 project.
Effect of Earth and Mars departure delays on human missions to Mars
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Tartabini, Paul V.
1993-01-01
This study determines the impact on the initial mass in low-Earth orbit (IMLEO) for delaying departure from Mars and Earth by 5, 15, and 30 days, once a nominal mission to Mars has been selected. Additionally, the use of a deep space maneuver (DSM) is attempted to alleviate the IMLEO penalties. Three different classes of missions are analyzed using chemical and nuclear thermal propulsion systems in the 2000-2025 time-frame: opposition, conjunction, and fast-transfer conjunction. The results indicate that Mars and Earth delays can lead to large IMLEO penalties. Opposition and fast-transfer conjunction class missions have the highest IMLEO penalties, upwards of 432.4 mt and 1977.3 mt, respectively. Conjunction class missions, on the other hand, tend to be insensitive to Mars and Earth delays having IMLEO penalties under 103.5 mt. As expected, nuclear thermal propulsion had significantly lower IMLEO penalties as compared to chemical propulsion. The use of a DSM is found not to have a significant impact on reducing the IMLEO penalties. Through this investigation, the effect of off-nominal departure conditions on the overall mission (i.e., IMLEO) can be gained, enabling mission designers to incorporate the influence of off-nominal departure conditions of the interplanetary trajectory in the overall conceptual design process of a Mars transfer vehicle.
Demonstration of new data types for use in interplanetary navigation
NASA Technical Reports Server (NTRS)
Ondrasik, V. J.; Chao, C. C.; Winn, F. B.; Yip, K. B.; Acton, C. H.; Reinbold, S. J.
1974-01-01
Mariner 10 was the first mission which contained many elements of the advanced navigation system which will be used in the late 1970's and 1980's. Preliminary navigation demonstrated were conducted using S/X charged particle calibrations, simultaneous Doppler data, nearly simultaneous range data, and bright object/star imaging data. The results of these demonstrations are very encouraging and a navigation system based upon these data types should be an order of magnitude better than the current system.
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1971-01-01
An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.
The FIELDS Instrument Suite for Solar Probe Plus
NASA Technical Reports Server (NTRS)
Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.;
2016-01-01
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
The solar radio corona: Manifestations of energetic electrons
NASA Technical Reports Server (NTRS)
Pick, M.
1986-01-01
Radio observations are powerful tools which are complementary to the space missions devoted to the physics of the flares, of the corona, or of the interplanetary medium. To undertake this task two multifrequency radioheliographs presently exist: the Nancay instrument (the multifrequency facility will be in operation by the end of 1985) observes the middle corona at decimeter-meter wavelengths, and the Clark Lake radioheliograph, operating at decameter wavelengths, is the only one in the world to have the ability of observing the outer corona above the disk.
Coronal holes as sources of solar wind
NASA Technical Reports Server (NTRS)
Nolte, J. T.; Krieger, A. S.; Timothy, A. F.; Gold, R. E.; Roelof, E. C.; Vaiana, G.; Lazarus, A. J.; Sullivan, J. D.; Mcintosh, P. S.
1976-01-01
We investigate the association of high-speed solar wind with coronal holes during the Skylab mission by: (1) direct comparison of solar wind and coronal X-ray data; (2) comparison of near-equatorial coronal hole area with maximum solar wind velocity in the associated streams; and (3) examination of the correlation between solar and interplanetary magnetic polarities. We find that all large near-equatorial coronal holes seen during the Skylab period were associated with high-velocity solar wind streams observed at 1 AU.
Radiation in Space and Its Control of Equilibrium Temperatures in the Solar System
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2004-01-01
The problem of determining equilibrium temperatures for reradiating surfaces in space vacuum was analyzed and the resulting mathematical relationships were incorporated in a code to determine space sink temperatures in the solar system. A brief treatment of planetary atmospheres is also included. Temperature values obtained with the code are in good agreement with available spacecraft telemetry and meteorological measurements for Venus and Earth. The code has been used in the design of space power system radiators for future interplanetary missions.
JPL-20180505-INSIGHf-0001-NASA InSight on Its Way to Mars
2018-05-05
Making history as the first interplanetary launch from the West Coast, NASA's InSight spacecraft is now soaring towards Mars. The spacecraft, which lifted off from Vandenberg Air Force Base in Central California, will be the first mission to study the deep interior of Mars. Its instruments include a seismometer to detect marsquakes for the first time and a heat flow p[robe that will embed itself as deep as about 16 feet (5 meters) below the surface of Mars.
Trajectory Design for a Single-String Impactor Concept
NASA Technical Reports Server (NTRS)
Dono Perez, Andres; Burton, Roland; Stupl, Jan; Mauro, David
2017-01-01
This paper introduces a trajectory design for a secondary spacecraft concept to augment science return in interplanetary missions. The concept consist of a single-string probe with a kinetic impactor on board that generates an artificial plume to perform in-situ sampling. The trajectory design was applied to a particular case study that samples ejecta particles from the Jovian moon Europa. Results were validated using statistical analysis. Details regarding the navigation, targeting and disposal challenges related to this concept are presented herein.
The FIELDS Instrument Suite for Solar Probe Plus
Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.
2018-01-01
NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144
The Sun and the Solar Wind Close to the Sun
NASA Technical Reports Server (NTRS)
Suess, Steven T.
1998-01-01
One of the benefits from the Ulysses, SOHO, and YOHKOH missions has been a strong stimulus to better understand the magnetohydrodynamic processes involved in coronal expansion. Three topics for which this has been especially true are described here. These are: (i) The observed constancy of the radial interplanetary magnetic field strength (as mapped to constant radius). (ii) The geometric spreading of coronal plumes and coronal holes, and the fate of plumes. (iii) The plasma Beta in streamers and the physics of streamer confinement.
A presently available energy supply for high temperature environment (550-1000 deg F)
NASA Technical Reports Server (NTRS)
Jacquelin, J.; Vic, R. L.
1981-01-01
Sodium-sulfur cells attractive electric energy storage device for long service, are discussed. The state of art is given. More than 200 Wh/kg cells were tested. The known range of working temperature is 550 to 750 F. Self-discharge is quite nonexistent for months in operation. The technical basis for expecting an operating range up to 1,000 F under a high pressure atmosphere is given. Possibilities to adapt size and characteristics to particular interplanetary missions are discussed.